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Pablo Musé . . . . . . . . . . . . . . . . . . . . . . . . . . . Universidad de la República

Dirección Académica
Alicia Fernández . . . . . . . . . . . . . . . . . . . . . . Universidad de la República

Montevideo
martes 29 abril, 2025



Deep Generative Models for Time-Series Anomaly Detection, Gastón Garćıa González.
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Abstract

Time series analysis has become a prominent area of study driven by the ex-
plosive growth of data generation a trend that continues to accelerate. Real time
anomaly detection in time series is a crucial and challenging problem. Behind an
anomaly may lie an ongoing system attack, a potential failure that could escalate,
or even fraudulent activities. Anomalies are inherently rare, isolated events that
are atypical and often unpredictable. They often lack consistent patterns and may
evolve over time, further complicating their identification. Additionally,monitoring
systems typically handle numerous time series, each with its own unique behavior.
In some cases, certain time series may exhibit causal relationships with others,
which could contain important information to take into account.

In this thesis, we present a novel and versatile approach for modeling the
normal behavior of multivariate and univariate time-series using generative deep
learning models. At its core, our methodology leverages Variational Autoencoders
(VAEs) to construct robust representations of typical patterns in data, addressing
critical challenges in anomaly detection. These challenges include handling limited
or incomplete information about anomalies and capturing causal and temporal
dependencies across diverse time-series.

A central contribution of this work is the development of the Dilated Convolu-
tional Variational Autoencoder (DC-VAE ), a lightweight and scalable generative
model tailored to capture the distribution of normal behavior within the variables
of a system. DC-VAE operates effectively in two configurations: a multivariate ap-
proach that models all variables of a system as a single multivariate time-series and
a global approach that treats individual time-series of the same system indepen-
dently within one model. By integrating dilated convolutions, DC-VAE efficiently
models long temporal patterns without compromising training or inference time,
maintaining its lightweight design.

This method, tested on the real TELCO dataset, demonstrates superior perfor-
mance over more time-series than methods that require training or fixing specific
models for each individual time-series. It also outperforms other multivariate deep
learning methods on datasets that are popular in the community.

To enhance adaptability and extend the utility of DC-VAE, we introduce Gen-
DeX, a continual learning mechanism that addresses catastrophic forgetting. This
mechanism enables the DC-VAE model to retain knowledge of previously lear-
ned series while seamlessly incorporating new ones, ensuring stable performance
in both reconstruction and anomaly detection tasks. GenDeX proves effective not
only for handling domain changes (such as adding or dropping time-series from the
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model) but also for dealing with more common challenges in time-series problems,
such as concept drift.

Building upon these foundations, we propose the Foundation Auto-Encoder
(FAE ), a pre-trained global model developed on the UCR’21 dataset, which en-
compasses a diverse range of time-series from multiple domains. FAE demonstrates
exceptional zero-shot learning capabilities, achieving competitive anomaly detec-
tion performance even without prior exposure to specific series. When applied to
the TELCO dataset, FAE not only maintains strong reconstruction quality but
also highlights its foundational properties, enabling generalization across datasets
and tasks.

Different experiments validate the effectiveness of our approach. DC-VAE achie-
ves good performance in anomaly detection, while GenDeX ensures stability and
knowledge retention in dynamic environments. FAE showcases the potential of
foundation models for time-series analysis, offering a scalable and interpretable
solution for monitoring, anomaly detection, and continual learning. These advan-
cements underscore the versatility and practicality of deep generative models in
real-world applications.

For the sake of reproducibility and as an additional contribution, we make the
TELCO dataset publicly available to the community and openly release the code
implementing DC-VAE, GenDeX, and FAE.

vi



Resumen

El análisis de series temporales se ha convertido en un área de estudio relevan-
te, impulsada por un gran crecimiento de la generación de datos, una tendencia
que continúa acelerándose. La detección de anomaĺıas en tiempo real en series tem-
porales es un problema crucial y desafiante. Detrás de una anomaĺıa puede estar
un ataque continuo al sistema, un fallo potencial que podŕıa escalar o incluso ac-
tividades fraudulentas. Las anomaĺıas son eventos aislados, inherentemente raros,
at́ıpicos y a menudo impredecibles. Con frecuencia carecen de patrones consisten-
tes y pueden evolucionar con el tiempo, lo que complica aún más su identificación.
Además, los sistemas de monitoreo generalmente manejan numerosas series tem-
porales, cada una con su propio comportamiento único. En algunos casos, ciertas
series temporales pueden presentar relaciones causales con otras, que podŕıan con-
tener información importante a tener en cuenta.

En esta tesis, presentamos un enfoque novedoso y versátil para modelar el
comportamiento normal de series temporales univariadas y multivariadas utilizan-
do modelos generativos basados en aprendizaje profundo. Como núcleo, nuestra
metodoloǵıa aprovecha las propiedades de los Variational Autoencoders (VAEs)
para construir representaciones robustas de los patrones t́ıpicos en los datos, de
manera de abordar los desaf́ıos cŕıticos que se presentan en la detección de ano-
maĺıas. Estos desaf́ıos incluyen manejar información limitada o incompleta sobre
anomaĺıas y capturar dependencias causales y temporales a través de diversas series
temporales.

Una contribución central de este trabajo es el desarrollo del Dilated Convolutio-
nal Variational Autoencoder (DC-VAE ), un modelo generativo liviano y escalable
diseñado para capturar la distribución del comportamiento normal dentro de las
variables de un sistema. DC-VAE opera de manera efectiva en dos configuracio-
nes: un enfoque multivariado que modela todas las variables de un sistema como
una única serie temporal multivariada y un enfoque global que trata series tem-
porales individuales del mismo sistema de forma independiente dentro de un solo
modelo. Al integrar convoluciones dilatadas, DC-VAE modela eficientemente pa-
trones temporales largos sin comprometer el tiempo de entrenamiento o inferencia,
manteniendo un diseño liviano.

Este método, probado en el conjunto de datos real TELCO, demuestra un
desempeño superior sobre más series temporales que los métodos que requieren
entrenar o fijar modelos espećıficos para cada serie temporal individual. También
supera a otros métodos de aprendizaje profundo multivariados en conjuntos de
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datos populares en la comunidad.
Para mejorar la adaptabilidad y ampliar la utilidad del DC-VAE, se propu-

so GenDeX, un mecanismo de aprendizaje continuo que aborda el problema de
olvido catastrófico. Este mecanismo permite que el modelo DC-VAE retenga el
conocimiento de series aprendidas previamente mientras incorpora nuevas series
sin problemas, asegurando un rendimiento estable tanto en tareas de reconstruc-
ción como de detección de anomaĺıas. GenDeX demuestra ser efectivo no solo para
manejar cambios de dominio (como agregar o eliminar series temporales del mo-
delo), sino también para abordar desaf́ıos más comunes en problemas de series
temporales, como el cambio de distribución.

Sobre estas bases, proponemos el Foundation Auto-Encoder (FAE ), un mode-
lo global pre entrenado en el conjunto de datos UCR’21, que abarca una amplia
gama de series temporales de múltiples dominios. FAE demuestra una capaci-
dad excepcional de aprendizaje cero (zero-shot learning), logrando un rendimiento
competitivo en la detección de anomaĺıas incluso sin haber sido expuesto previa-
mente a series espećıficas. Al aplicarse al conjunto de datos TELCO, FAE no solo
mantiene una fuerte calidad de reconstrucción, sino que también resalta sus pro-
piedades fundamentales, lo que permite la generalización a través de conjuntos de
datos y tareas.

Diferentes experimentos validan la efectividad de nuestro enfoque. DC-VAE
logra un buen desempeño en la detección de anomaĺıas, mientras que con Gen-
DeX se asegura estabilidad y retención de conocimiento en entornos dinámicos.
FAE muestra el potencial de los modelos fundamentales para el análisis de series
temporales, ofreciendo una solución escalable e interpretable para monitoreo, y de-
tección de anomaĺıas. Estos avances subrayan la versatilidad y la practicidad de los
modelos generativos profundos para el análisis de series temporales en aplicaciones
del mundo real.

Una contribución adicional de la tesis, es la generación y publicación de la
base de datos TELCO, aśı como el acceso libre al código que implementa DC-
VAE, GenDeX y FAE, lo que facilita la reproducibilidad de los experimentos por
parte de la comunidad cient́ıfica.
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Chapter 1

Introduction

In recent decades, time series analysis has emerged as a key field of research,
fueled by the rapid and ever-increasing growth of data generation. A time series
is defined as a sequence of values, each associated with a timestamp that deter-
mines its position within the series. These values are obtained through systematic
measurements, enabling the analysis of how certain metrics evolve over time.

Examples of time series span a wide range of domains. In socio-economic con-
texts, they include variables such as annual inflation rates or currency exchange
rates. In climate science, examples include trends in temperature or atmospheric
pressure. Industrial applications are equally diverse, with time series derived from
sensor readings in Internet of Things (IoT) systems monitoring machinery health,
variations in power grid voltage, or metrics tracking production line efficiency. Si-
milarly, in the medical field, time series often represent patient vital signs, such as
heart rate or blood pressure, as well as biochemical markers like glucose levels or
hormone concentrations measured over time.

The primary goal in analyzing time series is to uncover patterns within the
data to understand past phenomena or predict future behaviors. Among the wide
array of tasks in this domain, time series forecasting is particularly valuable to
industry, helping businesses anticipate future trends and make informed decisions.
Figure 1.11 highlights the ranking of company queries to Google Cloud solutions in
2022, where forecasting solutions take the top position, followed closely by anomaly
detection solutions.

In this work, we center our focus on the latter—anomaly detection in time se-
ries—exploring innovative approaches and methodologies to enhance performance
in identifying and analyzing deviations from expected behavior.

Anomaly detection is a crucial and challenging problem. Behind an anomaly
may lie an ongoing system attack, a potential failure that could escalate, or even
fraudulent activities. Anomalies are inherently rare, isolated events that are aty-
pical and often unpredictable. They frequently lack consistent patterns and may
evolve over time, further complicating their identification.

1Talk by Nicolás Loeff presenting [1] on 2022-07-22 at Facultad de Ingenieŕıa, Univer-
sidad de la República, Montevideo.

https://www.youtube.com/watch?v=SYuoTN4iQi8
https://www.youtube.com/watch?v=SYuoTN4iQi8
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Figure 1.1: Ranking of company queries to Google Cloud solutions in 2022. Image extracted
from a talk by Nicolás Loeff, presented on 2022-07-22 at Facultad de Ingenieŕıa, Universidad
de la República, Montevideo [1].

In fields such as image, text, or audio processing, deep learning solutions often
require substantial computational resources and memory but consistently outper-
form simpler methods. However, in the domain of time-series analysis, the per-
formance gap between deep learning and traditional methods is less pronounced.
Despite this, the interest in anomaly detection for time-series continues to grow
compared to other domains, as shown in Figure 1.2. Nevertheless, we aim to de-
monstrate that neural network-based solutions for anomaly detection offer unique
advantages and hold significant potential for future advancements.

This work also addresses additional challenges related to deep learning for
time-series analysis. These methods often incur substantial computational and ti-

Figure 1.2: The graphic shows the evolution of user interest on Google regarding anomaly
detection in time-series, images, text, and video. Image extracted from [2].

2
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me costs to achieve robust detection performance. Consequently, when the normal
behavior of time-series data shifts (Concept Drift) or when new series need to be
monitored (Domain Change), the method must adapt efficiently without compro-
mising its performance on unchanged data. Importantly, this adaptation process
should be less resource-intensive than retraining the model from scratch. To ad-
dress these challenges, this work explores the application of Continuous Learning
in anomaly detection.

Furthermore, with the rise of foundational models—initially developed for text
and later extended to time-series data—we investigate the feasibility of creating
a model that, once trained on diverse time-series datasets, can be applied to pre-
viously unseen series. We also evaluate the trade-offs between the adaptability of
such models and their accuracy in anomaly detection, offering insights into their
practical applications and limitations.

1.1. Motivation
Anomaly detection is a challenging problem, primarily because we often lack

sufficient information about anomalies, making feature extraction difficult. Addi-
tionally, monitoring systems typically handle numerous time series, each with its
own unique behavior. In some cases, certain time series may exhibit causal re-
lationships with others, which could contain important information to take into
account.

One of the most common approaches to anomaly detection is to create a base-
line model of normal behavior—the most frequent patterns in the data—and then,
during inference, compare each new value in the series to this model. Based on the
deviation from the baseline, the system can determine if a value is anomalous or
within the normal range.

In another way, deep generative models have shown impressive performance
in learning complex distributions for images, audio, and text, producing highly
realistic synthetic samples during inference. So, why not use these models for time
series as well, establishing them as the baseline for normal behavior? Additionally,
instead of developing a separate model for each time series, we could create a
single, unified model for all series in the system. Such a model would not only
learn temporal correlations but could also capture relationships across the different
series, further enhancing its ability to detect anomalies.

Of course, we are not the first to explore this idea; many studies have ad-
dressed it. However, in many cases, these works focus solely on anomaly detection
performance without evaluating the quality of the normal behavior representation,
or they test only on synthetic data or benchmarks with trivial anomalies. Addi-
tionally, some solutions present complex architectures, where the motivation for
using certain components is unclear.

For all these reasons, we chose to use a deep generative model to learn the nor-
mal behavior across many or all time series in the system. Specifically, we employed
Variational Autoencoders (VAEs), a generative model that can be trained in an
unsupervised or self-supervised manner without convergence issues. We prioritized

3
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designing a model architecture that is fast, lightweight, and easy to understand.
As you will be see, this method was tested not only for anomaly detection but also
for other tasks, such as continual learning to address catastrophic forgetting and
as a foundational model, as we discuss further on.

1.2. Main Contributions of the Thesis
The main contributions of this thesis are the in-depth analysis of generative

models, such as VAEs, for the implementation of versatile and accurate time-series
anomaly detectors. Throughout this work, we have prioritized practical conside-
rations for implementation, aiming for a lightweight and fast-to-train architecture
that does not require extensive hyperparameter tuning to achieve high accuracy,
while also providing a simple way to set the operational threshold. Another ma-
jor concern throughout this study was the model’s ability to adapt seamlessly to
new scenarios, including distribution shifts in the data, changes in domain, and
generalization to unseen conditions.

To address these challenges, we first proposed DC-VAE, a method for anomaly
detection in both multivariate and univariate time-series. DC-VAE is an easy-
to-implement detector that demonstrated accurate performance across different
types of data. To enhance adaptability to changes in the data and leverage the
generative capabilities of our models, we introduced GenDeX, a continual learning
extension of DC-VAE capable of incorporating new information without losing
performance on previously learned data. In the context of the growing popularity
of foundation models, we demonstrated that DC-VAE ’s ability to capture diverse
behaviors from different time-series sources opens the possibility of developing an
anomaly detection method capable of maintaining strong performance even on
previously unseen time-series data. We refer to this method as FAE.

During the course of this thesis, several research projects were undertaken,
where the results contributed significantly to achieving their objectives. Initially,
with the project titled Detección de anomaĺıas en sistemas de telecomunicaciones
mediante métodos de aprendizaje continuo, funded by the Agencia Nacional de
Investigación e Inovación (ANII), which was carried out between 2020 and 2022.
Later, with the project Generalización y adaptación de dominio en la detección de
anomaĺıas en series temporales, funded by the Comisión Sectorial de Investigación
Cient́ıfica (CSIC), during the 2022–2024 period. Throughout both projects, the
results also contributed to the final stages of an agreement with the company
Telefónica for anomaly detection in time series. This agreement had been developed
in different phases since 2016 and was the catalyst for my involvement in this
field, as well as the framework for my master’s thesis during the 2019–2020 period.
Currently, a collaboration agreement is underway with the state-owned energy
company UTE for the analysis of time series. The agreement consists of two distinct
problems: the first involves anomaly detection in transmission stations, and the
second focuses on the use of generative models for generating synthetic time series
for simulation in planning. Results from this thesis work have been applied to both
problems.
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1.2. Main Contributions of the Thesis

As a contribution, the TELCO dataset is made available, containing seven
months of data provided by the owning company, Telefónica. These data include
labels created by the company’s engineers, and their publication has been appre-
ciated by other experts in the field of anomaly detection. Additionally, all the code
used in this thesis is publicly accessible.

This openness has enabled other researchers to test the proposed DC-VAE
model in their experiments. Notably, an analysis conducted for the European Space
Agency [3] compared the performance of our method with another proposed by
the National Aeronautics and Space Administration (NASA) [4]. Among other
highlights, they specifically noted the ease of determining an operational detection
point, the fully convolutional architecture, the availability of public code, and its
ease of use. According to their analysis, these features make our code more elegant
and better aligned with their use cases compared to the other model.

1.2.1. Available
TELCO Dataset

• Our web

• IEEE - Data Port

Code

• DC-VAE

• global DC-VAE, and GenDeX experiments

• global DC-VAE, and FAE experiments

1.2.2. Peer-Reviewed Publications
G. Garćıa González, P. Casas, E. Mart́ınez, A. Fernández (2024). Towards
Foundation Auto-Encoders for Time-Series Anomaly Detection. In 30th ACM
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International Workshop on Mining and Learning from Time Series (MI-
LETS) — From Classical Methods to LLMs, Barcelona, Spain.

González, G. G., Casas, P., Mart́ınez, E., & Fernández, A. (2024, July).
On the Quest for Foundation Generative-AI Models for Anomaly Detection
in Time-Series Data. In 2024 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW) (pp. 252-260). IEEE.

González, G. G., Casas, P., Mart́ınez, E., & Fernández, A. (2024, May).
Timeless Foundations: Exploring DC-VAEs as Foundation Models for Time
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Conference (TMA) (pp. 1-4). IEEE.

5

https://iie.fing.edu.uy/investigacion/grupos/anomalias/en/telco-dataset-2/downloads/
https://ieee-dataport.org/documents/telco
https://github.com/GastonGarciaGonzalez/DC-VAE
https://github.com/GastonGarciaGonzalez/LCTS-VAE
https://gitlab.fing.edu.uy/anomaly-detection/dc-vae-multiorglob


Chapter 1. Introduction
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1.3. Thesis Structure
Chapter 2: The proposed detector in this work, DC-VAE, is introduced.
Its composition, structure, and functioning are explained. Advantages and
disadvantages compared to other detectors are analyzed.

Chapter 3: This chapter focuses on GenDex, the application of Generative
Replay to the DC-VAE method. It explores how this Continual Learning
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1.3. Thesis Structure

technique can be applied to address adaptability issues when faced with
changes in data distribution or domain shifts.

Chapter 4: This chapter is dedicated to FAE. It explores the use of our
model as a Foundation Model, demonstrating its ability to achieve good
performance on unseen data.

Chapter 5: In this final chapter, we summarize the key findings of the thesis
and reflect on the contributions made throughout the research. Additionally,
we discuss potential avenues for future work.
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Chapter 2

DC-VAE, anomaly detection in
multivariate time-series with dilated
convolutions and variational auto
encoders

In this chapter we conceive a novel approach for Multivariate Time-Series
(MTS) anomaly detection, tackling many of the aforementioned challenges. We
introduce DC-VAE, a deep-learning-based, unsupervised, and multivariate ap-
proach to real-time anomaly detection in MTS, based on popular Variational Auto-
Encoders (VAEs) [5]. VAEs are a generative version of classical auto-encoders, with
the advantage of producing as output prediction not only an expected value but
also the associated standard deviation, corresponding to the distribution the model
understands (i.e., has learned) generated the corresponding input. This automati-
cally defines a normality region for each independent time-series, which can then
be easily exploited for detecting deviations beyond this region. Using VAEs as an
underlying approach allows the user to visualize the region of normal behavior
in an interpretable way, enabling fine-grained, per univariate time-series anomaly
detection.

To exploit the temporal dependencies and characteristics of time-series data
in a fast and efficient manner, we take a Dilated Convolutional (DC) Neural Net-
work (NN) as the VAE’s encoder and decoder architecture. DCNNs have shown
excellent performance for processing sequential data in a causal manner [6], i.e.,
without relying on recursive architectures, which are generally less time-efficient
and more difficult to train (e.g., gradient exploding/vanishing problems). Compa-
red to normal convolutions, dilated convolutions improve time-series modeling by
increasing the receptive field of the neural network, reducing computational and
memory requirements, and enabling training – and detection – on longer-in-the-
past temporal sequences.

The main properties and contributions of DC-VAE can be summarized as fo-
llows: (i) single model for MTS analysis: DC-VAE learns the behavior of
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the complete MTS process within a single model parametrization, avoiding per-
time-series learning and fitting, and further exploiting the richness of the mul-
tidimensional process; (ii) real-time operation: the model architecture is fully
causal, and provides instantaneous predictions for each independent time-series at
each new time-step, using a sliding window of past measurements; (iii) efficient
temporal-memory representation: the VAE encoder/decoder architecture ba-
sed on dilated convolutions permits to efficiently process temporal sequences of
longer length, making detection more robust; (iv) self-supervised baseline mo-
deling: by conception, auto-encoders are self-supervised models, because the mo-
del trains itself to learn the main features of the input from the very same input
samples, and ground-truth labels are only needed for tighter calibration of de-
tection thresholds – nevertheless, in the absence of ground-truth, DC-VAE still
estimates a normal operation region, indirectly providing a detection threshold;
(v) compact deep-learning architecture: the structure and number of layers
in DC-VAE ’s architecture is defined by a single parameter T , representing the
length of the temporal sliding-window of past measurements used as input; (vi)
independent, per time-series detection: VAEs provide an estimation of the
expected value and its associated standard deviation for each independent time-
series, which provides further flexibility and detail to the monitoring process; (vii)
detection results are visually interpretable: predictions provided by DC-VAE
define a continual and dynamically adapted normality region, independently for
each time-series, making it visually easy to interpret the occurrence of an anomaly.

We apply DC-VAE to a MTS dataset arising from the monitoring of an ope-
rational mobile ISP, detecting anomalies of very different structural properties.
Referred to as the TELCO dataset [7], this large-scale – about 750 thousand
samples, long time-span – seven months’ worth of measurements collected at a
five-minutes scale, multi-dimensional – twelve different metrics (time-series), net-
work monitoring dataset includes ground-truth labels for anomalous events at each
individual time-series, manually labeled by the experts of the network operation
center (NOC) managing the mobile ISP. We benchmark DC-VAE against a broad
set of 18 different time-series anomaly detectors coming from the signal processing
and machine learning domains, individually testing on each time-series – to keep
the scope of the comparative analysis, 15 of these traditional models are combined
into a powerful ensemble detector. In addition, we evaluate DC-VAE in an open,
publicly available dataset commonly used in the literature – the SWaT dataset [8],
and compare its performance against other MTS anomaly detectors based on deep
learning generative models, which have become very popular in recent years. For
the sake of reproducibility and as an additional contribution, we make the TEL-
CO dataset publicly available to the community, and openly release the DC-VAE ’s
code (https://github.com/GastonGarciaGonzalez/DC-VAE).

2.1. Related Work
There are multiple surveys on general-domain anomaly detection techniques [9–

11]. The diversity of data characteristics and types of anomalies results in a lack
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of universal anomaly detection models. The temporal nature of a very large spec-
trum of data problems has led to a strong development of the particular field of
time-series anomaly detection [9, 12]. It is common to find open-source libraries
implementing traditional approaches from the literature—a notable example used
in this study is the Python library ADTK1. Other libraries, such as Darts2, Ti-
meEval3 and Ruptures 4, provide a variety of models, ranging from classic ones
like AutoRegressive Integrated Moving Average (ARIMA) models to deep neural
networks. As noted in [9], most of the methods for unsupervised anomaly detection
in univariate and multivariate time-series consist of predicting an expected value
based on past information and finding a decision threshold to decide whether the
prediction matches the observation. The automatic and adaptive computation of
detection thresholds remains an open research problem.

Modern approaches to time-series anomaly detection based on deep learning
technology have flourished in recent years [13–15]. Due to their data-driven na-
ture and achieved performance in multiple domains, generative models such as
VAEs [5] and Generative Adversarial Networks (GANs) [16] have gained relevance
in the anomaly detection field [17–23]. VAEs [5, 24, 25] represent a powerful and
widely used class of models to learn complex data distributions. A potential limi-
tation of VAEs is the prior assumption that latent sample representations are in-
dependent and identically distributed. While this is the most common assumption
followed in the literature, there is ongoing research on the benefits of accounting
for covariances between samples in time and between time-series to improve mo-
del performance [26–29]. For example, while the original work [5] assumes that the
priors over the parameters and latent variables are centered isotropic Gaussians,
and that the true posteriors are approximately Gaussian with roughly diagonal
covariance, [28] proposes an alternative approximation that captures temporal co-
rrelations by introducing a Gaussian process prior in the latent space.

Modeling data sequences through a combination of variational inference and
deep learning architectures has been vastly researched in other domains in re-
cent years, mostly by extending VAEs to Recurrent Neural Networks (RNNs),
with architectures such as STORN [30], VRNN [31], OmniAnomaly [32], and Bi-
LSTM [33] among others. Convolutional layers with dilation have also been incor-
porated into some of these approaches [34–36], allowing to speed up the training
process based on the possibilities of parallelization offered by these architectures.
Transformers [37] is another popular architecture recently showing great perfor-
mance in sequential data processing; previous work on anomaly detection using
transformers and VAEs [38] improves training speed as compared to the state of
the art, additionally outperforming standard baseline methods. In particular, the
paper improves over [32], considered a reference work in the area. Transformer-
based anomaly detection in MTS data is indeed a promising research direction.

Few papers on deep learning-based detectors have addressed the problem of

1https://pythonrepo.com/repo/arundo-adtk-python-machine-learning
2https://unit8co.github.io/darts/
3https://timeeval.readthedocs.io/en/latest/
4https://centre-borelli.github.io/ruptures-docs/
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real-time detection. In [39], the authors consider the alert delay in detecting so-
called range-anomalies – i.e., contiguous anomaly segments, and evaluate their
models based both on F1 scores and on average alert delay. The idea of range-
anomaly detection is appealing in practice; in real-world applications, the operator
generally does not care about point-wise anomalies, and it is acceptable for an
algorithm to trigger an alert for any sample in a contiguous anomaly segment, as
far as the detection delay is bounded to a certain max-delay threshold. The work
in [40] generalizes the classic measures of Recall, Precision, and F1-score for range-
anomalies. We consider these extended performance metrics when evaluating our
method on a local telecommunications company dataset.

The last topic we overview relates to evaluating and benchmarking model per-
formance through in-the-wild data time-series, using expert domain knowledge for
data labeling. Most proposals in the literature have been analyzed on public data-
sets, such as the well-known Yahoo [41], Numenta [42, 43], NASA [44], or others,
where operating conditions are unrealistic, anomalies might be trivial, and labels
are poorly assigned in the labeling process [45]. Getting access to datasets labeled
by domain experts in an operational environment is irreplaceable for the realistic
evaluation of algorithms.

2.2. Anomaly Detection with DC-VAE
Sequential data such as time-series is generally processed through sliding win-

dows, condensing the information of the most recent T measurements. Let us define
x as a matrix in RM×T , where M is the number of variables in the multivariate
time-series (MTS) process, which defines the dimension of the problem. We also
define x(t) ∈ RM×1 as an M -dimensional vector, representing the MTS at a certain
time t, and xm(t), with m ∈ {1, . . . ,M}, as the value of the m-th time-series at
time t.

As depicted in Figure 2.2, for a given input x, the trained VAE model produces
two different predictions, µx and σx – matrices in RM×T , corresponding to the
parametrization of the Gaussian probability distribution which better represents
the given input. If the VAE model was trained (mainly) with data describing the
normal behavior of the monitored system, then the output for a non-anomalous
input would not deviate from the mean µx more than a specific integer α times
the standard deviation σx. On the contrary, if the input presents an anomaly,
the output would not belong to the region determined by the predicted mean and
standard deviation. For reference, Figure 2.1 presents the main ideas behind the
usage of VAEs for time-series anomaly detection, in this case portraying the results
obtained in the analysis of the TELCO dataset, which is fully described in Section
2.3. For each of the displayed time-series TSi – the TELCO dataset corresponds
to twelve time-series TS1 to TS12, its real value xm(t), along with the outputs of
the VAE µxm(t) and σxm(t), are reported.

In the VAE model, observations x are assumed to depend on a variable z that
comes from a lower-dimensional latent space. The objective is to maximize ln P (x),
the logarithm of the marginal distribution of the observations through the model.
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(a) Prediction of time-series TS3. (b) Prediction of time-series TS5.
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Figure 2.1: Example of time-series analysis through DC-VAE, for the TELCO dataset. The
normal-operation region is defined by µx and σx.
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Figure 2.2: Variational autoencoder and the reparameterization trick.

For DC-VAE, similar to x, z will also be a sequence of length T , but with a smaller
number of dimensions J < M , z ∈ RJ×T . In formal terms, given an input sample
x characterized by an unknown probability density P (x), the objective is to model
or approximate the data’s true density P using a parametrized distribution pθ with
parameters θ. Let z be a random vector jointly-distributed with x, representing
the latent encoding of x. We can express pθ(x) as:

pθ(x) =

∫
z
pθ(x, z) dz, (2.1)

where pθ(x, z) represents the joint distribution under pθ of the observable data x
and its latent representation or encoding z. According to the chain rule (probabi-
lity), the equation can be rewritten as:
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pθ(x) =

∫
z
pθ(x|z)pθ(z) dz. (2.2)

In the vanilla VAE, pθ(x|z) is considered a Gaussian distribution, and therefo-
re, pθ(x) is a mixture of Gaussian distributions. The computation of pθ(x) is very
expensive and, in most cases, even intractable. To speed up training and make it
feasible, it is necessary to introduce a further function to approximate the poste-
rior distribution pθ(z|x), in the form of qϕ(z|x) ≈ pθ(z|x). In this way, the overall
problem can be easily translated into the autoencoder domain, in which the con-
ditional likelihood distribution pθ(x|z) is performed by the probabilistic decoder.
In contrast, the approximated posterior distribution qϕ(z|x) is computed by the
probabilistic encoder, cf. Figure 2.2.

As in every deep-learning problem, it is necessary to define a differentiable
loss function to update the network weights through backpropagation. In VAEs,
the idea is to jointly optimize the generative model parameters θ to reduce the
reconstruction error between the input and the output of the network and the
parameters ϕ of the approximated posterior distribution to have qϕ(z|x) as close
as possible to the real posterior pθ(z|x). The Evidence Lower Bound (ELBO) loss
function is generally considered for this task. In the case of VAEs, the ELBO loss
function Lθ,ϕ can be written as follows:

Lθ,ϕ = − log(pθ(x)) + DKL (qϕ(z|x) ∥ pθ(z|x)) (2.3)

= −Ez∼qϕ(z|x) [log pθ(x|z)] + DKL (qϕ(z|x) ∥ pθ(z)) ,

where DKL is the Kullback-Leibler divergence, which here basically measures the
information loss when using q to approximate p. To train the autoencoder and
make the application of backpropagation feasible, a so-called reparameterization
trick is generally introduced. The main assumption on the latent space is that it
can be considered as a set of multivariate Gaussian distributions, and therefore,
z ∼ qϕ(z|x) = N (µz,σ

2
z). Given a random matrix ε ∼ N (0, I) and ⊙ defined as

the element-wise product, the reparameterization trick permits to explicitly define
z = g(µz,σz) = µz + σz ⊙ ε. Thanks to this transformation, the variational
autoencoder is trainable. The probabilistic encoder has to learn how to map a
compressed representation of the input into the two latent vectors µz and σz. At
the same time, the stochasticity remains excluded from the updating process and
is injected in the latent space as an external input through ε. Under the Gaussian
assumption, the ELBO loss function Lθ,ϕ can be explicitly re-written as:
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Lθ,ϕ =
1

2 × T ×N

N∑
n=1

T∑
t=1

[
M∑

m=1

((
xm(t)(n) − µxm(t)(n)

)2
(σ2

xm
(t)(n))

+ log(σ2
xm

(t)(n))

)
(2.4)

−
J∑

j=1

(
1 + log(σ2

zj (t)
(n)) − (µ2

zj (t)
(n)) − σ2

zj (t)
(n)
)]

At each iteration, the loss is calculated for a batch of size N ; recall that m
indicates the variable (time-series) in the space of x, and j the variable in the
space of z, whereas t represents the specific time instant.

To exploit the temporal dimension of the input time-series, we proposed an
encoder/decoder architecture based on popular CNNs, using Dilated Convolutions
(DCs) [6]. DC is a technique that expands the input by inserting gaps between
its consecutive samples. In simpler terms, it is the same as a normal convolution,
but it involves skipping samples so as to cover a larger area of the input. Figure
2.3 explains the basic idea behind DCs. The convolutions must be causal, so that
detection can be implemented in real-time. Because such architectures do not have
recurrent connections, they are often much faster to train than RNNs and do not
suffer from complex-to-tame gradient exploding/vanishing problems. Using DCs
instead of standard convolutions has several advantages for real-time analysis: (i)
they increase the so-called receptive field, meaning that longer-in-the-past infor-
mation can be fed into the detection; (ii) DCs are computationally more efficient,
as they provide larger coverage at the same computation cost; (iii) by using DC,
the pooling steps are omitted, thus resulting in lesser memory consumption; (iv)
finally, for the same temporary receptive field, the resulting network architecture
is much more compact.

Figure 2.4 depicts the encoder architecture used in DC-VAE. The network
architecture must be such that the output values depend on all previous input
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(a) Normal convolution. (b) Dilated convolution.

Figure 2.3: Figure taken from the original WaveNet paper [6]. Using CNNs with causal filters
requires large filters or many layers to learn from long sequences. Dilated convolutions improve
time-series modeling by increasing the receptive field of the neural network, reducing compu-
tational and memory requirements, enabling training on long sequences.
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Figure 2.4: Encoder architecture using causal dilated convolutions, implemented through a
stack of 1D convolutional layers.

values. The length T of the sliding window plays a key role here, as it must ensure
that the output at t depends on the input at that time and at {t− T + 1, t− T +
2, . . . , t− 1}. The simplest way to achieve this is to use filters of length F = 2 and
DCs with dilatation factor d = F h, which grow exponentially with the layer depth
h ∈ [0, H − 1], where H is the number of layers of the network. Subsequently, H is
the minimum value that verifies: T ≤ 2 ·FH−1. In the example, the window length
is T = 8, and the target is achieved by taking H = 3 layers. This direct relationship
between T and the network architecture has a strong practical impact, making it
easy to construct the encoder/decoder based on the desired temporal-depth of the
analysis.

Note that the dilation process allows doubling T with each added layer. Con-
sequently, a large temporal receptive field of past measurements can be achieved
without further deepening the network. The encoder and decoder are symmetric
in architecture, both in the number of filters and applied dilations. In the encoder
model, the idea is to reduce or maintain layer output dimensions with network
depth. The opposite for the decoder is increasing or maintaining the dimension
until reaching the observations’ dimension. In both cases, the sequence length T
is always maintained.

Model training is conducted on top of normal-operation data to capture the
baseline for anomaly detection. Once trained, the detection process runs conti-
nually, rolling the sliding window of length T by a unitary-time step. At each time
t, the DC-VAE model takes as input the matrix x ∈ RM×T , constructed out of
the last T samples observed in the MTS, and produces as output matrices µx and
σx – for notation brevity, we define µ = µx and σ = σx. From these two output
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matrices, the anomaly detection only considers their values at time t, correspon-
ding to two vectors µ(t) and σ(t). For each of the univariate time-series m, an
anomaly is detected at time t if its value xm(t) falls outside the normal-operation
region, defined by µm(t) and σm(t). More precisely, an anomaly in time-series m
is declared at time t if:

|xm(t) − µm(t)| > αm × σm(t), (2.5)

where α = (α1, . . . , αm, . . . , αM ) is a vector of M detection sensitivity threshold,
where each αm can be set independently for each time-series, allowing for fine-
grained, per time-series calibration of the detection process.

Regarding the calibration of α, and despite being DC-VAE an unsupervised
system, we acknowledge that these thresholds are set relying on annotated ano-
malies. Inevitably in any anomaly detection problem, it is necessary to set an
operating point. This must be set by an expert operator in the system, who knows
the behavior of the data and the cost of false detections, both positive and ne-
gative. In all sets for anomaly detection, this knowledge is in the labels provided
by the experts. There are different techniques to define thresholds automatically
from the data [46], but all are applicable for the detection of outliers (i.e., values
far from normal behavior). In the problem we are dealing with, the interest is to
detect anomalies, which are often difficult to differentiate from normal behavior,
so the calibration stage inevitably must be supervised.

2.3. Dataset Descriptions
2.3.1. TELCO – A New Open Dataset Released to the Community

A recent study [45] alerts on the limitations of evaluating anomaly detection
algorithms on popular time-series datasets such as Yahoo, Numenta, or NASA,
among others. In particular, these datasets are noted to suffer from known flaws
such as trivial anomalies, unrealistic anomaly density, mislabeled ground truth, and
run-to-failure bias. For this reason, we decided to evaluate DC-VAE in a proprie-
tary MTS dataset, corresponding to real measurements collected at an operation
mobile ISP – note that we are publicly releasing this dataset to the community 5.
The TELCO dataset [7] corresponds to twelve different time-series, with a tem-
poral granularity of five minutes per sample, collected and manually labeled for
a period of seven months between January 1 and July 31, 2021. This temporal
length is seldom available in other publicly available datasets of this nature and is
highly relevant and useful to allow for long-term seasonal behavior analysis.

Each time-series corresponds to aggregated data from different sources; to keep
business confidentiality, we do not specify the exact data type reflected by each
time-series. The twelve time-series are typical data monitored in a mobile ISP,

5https://iie.fing.edu.uy/investigacion/grupos/anomalias/en/

telco-dataset-2/downloads/
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Figure 2.5: Snapshots of the TELCO MTS. For each time-series, the region of normal operation
is depicted, as estimated from DC-VAE predictions µx and σx.

including the number and amount of prepaid data transfer fees, number and cost
of calls, the volume of data traffic, number of SMS, and more.

Figure 2.5 depicts daily snapshots of the complete TELCO MTS. For each
time-series, the region of normal operation is depicted, as estimated from DC-
VAE predictions µx(t) and σx(t). Different time-series expose different behaviors,
e.g., some of them are noisier (TS3), others have lower dynamic ranges (TS11), and
some others show a smoother evolution (TS2). To appreciate the strong seasonality
component of the time-series, Figure 2.6 depicts the TELCO MTS for a period of
four days, covering weekdays and weekends.

Table 2.1 presents the main details of the dataset. Note in particular, how

TS11
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TS9

TS5

TS7

TS3

TS10

TS12

TS8

TS6

TS2

TS4

Figure 2.6: TELCO dataset time-series, for four days, along with the corresponding DC-VAE
estimations. The temporary receptive field – i.e., length of the rolling time-window, is T = 512
samples, spanning about two days of past measurements.

18



2.3. Dataset Descriptions

Table 2.1: TELCO dataset. Seven-months worth of measurements was manually labeled for
twelve different metrics.

Dataset # Samples Duration # Anomalous Samples

Training 310,974 3 months 5,672 (1.8%)

Validation 103,680 1 month 385 (0.4%)

Testing 317,953 3 months 3,080 (1.0%)

Total 732,607 7 months 9,137 (1.2%)

strongly imbalanced the dataset is in terms of normal-operation and anomalous
samples, which is the typical case for real network measurements in operational
deployments. By definition, anomalies are rare events. We split the full dataset
in three independent, time-ordered sub-sets, using measurements from January
to March for model training, April for model validation, and May to July for
testing purposes. For the sake of completeness, Table 2.2 reports normal-operation
and anomalous samples per individual time-series, for the training, validation, and
testing sub-sets. The share of anomaly samples is low and significantly different for
some of the time-series, adding richness and complexity to the dataset; for example,
time series TS1, TS4, TS9, and TS10 have a total share of anomaly samples above
2 % or 3 %.

While the TELCO dataset used in this paper and released to the community
has a seven-month time span, we acknowledge that the complete dataset we have
collected has almost two years of duration. We have decided to work only on these
seven months because it corresponds to the the data for which expert operator an-

Table 2.2: Distribution of anomaly samples in the TELCO dataset, per time-series and per
training, validation, and testing sub-sets.
The share of anomaly samples is low, and significantly different for some of the time-series.

Training Validation Testing Total

ID Norm Anom % Norm Anom % Norm Anom % Norm Anom %

TS1 24,731 1,183 4.6 8,628 12 0.14 26,084 412 1.6 59,443 1,607 2.6

TS2 25,713 201 0.8 8,629 11 0.13 25,995 501 1.9 60,337 713 1.2

TS3 25,784 130 0.5 8,636 4 0.05 26,358 138 0.5 60,778 272 0.4

TS4 24,464 1,450 5.6 8,636 4 0.05 26,317 179 0.7 59,417 1,633 2.7

TS5 25,840 74 0.3 8,637 3 0.03 26,390 106 0.4 60,867 183 0.3

TS6 25,850 64 0.2 8,639 1 0.01 26,390 107 0.4 60,879 172 0.3

TS7 25,793 127 0.5 8,638 2 0.02 26,227 269 1.0 60,658 398 0.7

TS8 25,787 127 0.5 8,640 0 – 26,229 267 1.0 60,656 394 0.6

TS9 25,287 627 2.4 8,508 132 1.53 25,932 564 2.1 59,727 1,323 2.2

TS10 24,558 1,356 5.2 8,463 177 2.05 25,995 501 1.9 59,016 2,034 3.3

TS11 25,725 189 0.7 8,601 39 0.45 26,475 21 0.1 60,801 249 0.4

TS12 25,770 144 0.6 8,640 0 – 26,481 15 0.1 60,891 159 0.3
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Figure 2.7: Average log-likelihood Ez∼qϕ(z|x) [log pθ(x|z)] in the reconstruction of TELCO in
the testing dataset, using different temporal spans (3 to 18 months) for self-supervised model
training.

notated labels are available. Although DC-VAE trains in a self-supervised fashion,
a fair comparison with supervised methods as the one we do in the evaluations
requires that all methods share the same training, validation, and test sets.

Nevertheless, and for the sake of completeness, we investigated the impact on
DC-VAE ’s baseline modeling performance when training with longer time-spans,
without labels. Figure 2.7 reports the average log-likelihood Ez∼qϕ(z|x) [log pθ(x|z)]
in the reconstruction of TELCO in the testing dataset, using different temporal
spans for self-supervised model training. Interestingly, improvements are rather
marginal when considering up to 18 months of training data, suggesting that ma-
nually labeling a longer time-span for TELCO might not actually provide a richer
dataset.
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Figure 2.8: SWaT – the four time-series represent normal operation. Anomaly labels in SWaT
correspond to 36 temporal ranges when attacks were executed.
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2.3.2. The SWaT Open Dataset for Cybersecurity Analysis
While the core of the evaluations and benchmarking is conducted on the TEL-

CO dataset, we also evaluate DC-VAE in the Secure Water Treatment (SWaT)
dataset [8], an open, publicly available dataset commonly used in the literature
for cybersecurity analysis. The SWaT dataset consists of 51 time-series of data co-
llected over eleven days in 2015-2016, on a water treatment operational test-bed,
which represents a small-scale version of a large modern cyber-physical system.
The dataset contains two sub-sets temporally split; the first week is anomaly free
and is considered as the training dataset, whereas the last four days of data contain
36 attacks of different nature and duration (from a few minutes to an hour), and
is meant for testing purposes. The total number of anomaly samples accounts for
about 5.8 % of the total measurements. As an example of the kind of patterns ob-
served in the SWaT MTS, Figure 2.8 depicts four of the time-series under normal
operation. Different from TELCO, which represents a real operational network
and anomaly labels are provided by manual inspection on individual time-series,
anomaly labels in SWaT correspond to temporal ranges in which the attacks were
executed under a controlled environment.

We acknowledge that the SWaT dataset is far from representing a real cyber-
physical system and is not perfect as benchmark for anomaly detection, presenting
significant trivial anomalies and unrealistic anomaly density, as well as some misla-
beled ground truth and missed anomalies in the data (https://mlad.kaspersky.
com/swat-testbed/). Nevertheless, there are two main reasons for testing DC-
VAE in SWaT: (i) firstly, despite its deficiencies, the SWaT dataset is widely used
in the state of the art as benchmark for multivariate time-series anomaly detec-
tion, and this allows us showing that DC-VAE provides similar, or even better
performance, than other similar systems in a well-known dataset; (ii) secondly,
using SWaT lets us testing the modeling capabilities of DC-VAE in a dataset with
a broader variety of variables – 51 time series in this case.

2.4. DC-VAE Evaluation and Benchmarking
2.4.1. DC-VAE Architecture Calibration

The first step before evaluation of DC-VAE is to calibrate the model. As ex-
plained in Section 2.2, the length T of the sliding window plays a major role in the
architecture of DC-VAE. Given the usage of the dilated convolutions, T determi-
nes the number of encoder and decoder layers (cf. Figure 2.4). The dimension J
of the latent space is the other relevant parameter to set; while it must be smaller
than the MTS dimension M , it must also be large enough to capture the most
relevant information of the MTS process. We test different values for the sequence
length T to show how this affects the performance of the model. In particular, we
test T = 1, 8, 16, 32, 64, 128, 256, 512, 1024 samples, considering the average of the
mean absolute error (MAE) between xm and µxm , for each time-series m. Sequence
length T = 1 corresponds to a standard VAE model with only snapshot-like inputs;
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to avoid an excessively compressed model for this sequence length, we consider here
an architecture with three fully-connected layers.

Besides the reconstruction MAE, we also compute the so-called explained va-
riance or variance score Varscore, which compares the variance of the reconstruction
error and the variance of the input signal:

Varscore (x(t),µx(t)) = 1 − Var (x(t) − µx(t))

Var(x(t))
(2.6)

The value of Varscore is between [0, 1], where 1 represents the ideal case. Figure
2.9 reports the (a) MAE and (b) Varscore for each sequence length T and corres-
ponding model architecture, in both cases obtained as the average value across
all the time-series, for the TELCO validation set. Latent space dimensions J = 4,
and J = 8 are considered in the analysis. The MAE varies considerably for the
proposed range, with T = 512 providing the smallest reconstruction error, almost
identical for both latent space dimensions. Similarly, for the Varscore, T = 512
results in the highest score, for both latent space dimensions.

Another relevant hyperparameter is the number of filters f for each hidden
convolutional layer, which together with the number of layers and the input and
output dimensions define the size of the architecture in terms of the number of
trainable parameters. Also, hyperparameters typical of the training stage, such as
the learning rate γ and the mini-batch size m, are key to find the optimal solution.
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Figure 2.9: Calibration of DC-VAE in TELCO. T = 512 provides the smallest reconstruction
error and the highest variance score.
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Table 2.3: Grid of hyperparameters used in the model calibration.

Hyperparameter Grid Best

T {8, 16, 32, 64, 128, 256, 512, 1024} 512

J {1, 2, 4, 8} 4

γ {10−3, 10−4} 10−3

m {32, 64} 32

f {8, 16, 32} 16

Table 2.4: Temporal complexity for architecture optimization and model training (hardware
reference: GPU Nvidia GTX 1060).

DC-VAE RNN

Hyperparameter search (hours) 15 37

Training best model (minutes) 10 15

To find the best combination of these hyperparameters, we use the Tree-structured
Parzen Estimator (TPE) approach [47]. In total, 50 attempts were tested on the
grid shown in table 2.3, where the hyperparameters for which the model showed
the smallest validation loss are reported in the last column.

The hyperparameter search stage for a deep learning model is one of the most
important and most expensive steps, since it involves training many models un-
til the optimal values are found. Therefore, lowering the times for this stage is
paramount. To evaluate the time gained by using a fully parallelizable compact
architecture such as the one proposed in DC-VAE, as compared to traditional re-
current architectures, we created another architecture by replacing all layers with
RNNs. To search for the hyperparameters, we define another grid that includes
the previous one, adding the number of hidden layers: h = {2, 4}. It is worth reca-
lling that for DC-VAE, defining the length of the T sequences automatically sets
the number of layers, and thus this value varies between [3, 10]. Gated Recurrent
Units (GRU) were the type of layer used in the RNNs, as they showed the highest
convergence stability in terms of vanilla RNN and LSTM models.

Table 2.4 reports the comparative times taken for hyperparameter search and
model training for both architectures, i.e., DC-VAE and the RNN-based one. The
tests are performed on standard GPU hardware, using a Nvidia GTX 1060 GPU.
The fully causal architecture proposed by DC-VAE is more compact and can
be optimized and trained much faster than traditional recursive architectures. In
particular, the hyperparameter search takes less than half the time, and the model
training is at least 33 % faster.
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2.4.2. Anomaly Detection Results in TELCO
We go back to Figure 2.6 to show DC-VAE in action, using a sliding-window

of length T = 512 samples. DC-VAE can properly track different types of beha-
vior in the time-series, including the strong seasonal daily component, but also the
operation during weekdays and weekends, clearly visible in TS2 and TS11, among
others. In this example, time-series TS3 and TS9 are noisier than time-series TS5

and TS12, which justifies the need for different sensitivity thresholds αm to address
the underlying nature of each monitored metric. Note in addition how different pe-
riods of time-series variability result in more or less tight normal-operation regions
estimated by DC-VAE, as defined by σ(t). Figure 2.10 extends the predictions
of DC-VAE to a longer time-span, considering two weeks of measurements, for
time-series TS2 and TS11. While both time-series have a strong seasonal compo-
nent, with marked differences in behavior on weekdays and weekends, TS11 has a
decreasing trend on the second week, which can be properly tracked by DC-VAE.

To apply DC-VAE for anomaly detection, we have to calibrate the sensitivity
thresholds α, which is usually done in a supervised manner, relying on the labe-
led anomalies available in the training and validation datasets. This step is the
only one that requires a certain level of “supervision” (in the sense of ground-
truth availability), but could also be done in a self-supervised manner, by labeling
anomalies through outlier detection techniques. In our specific problem, each sen-
sitivity threshold αm is calibrated on a per time-series basis, by maximizing the
F1 score over the training and validation datasets, doing a grid-search of integer
values from 1 to 5. In summary, we decide how many standard deviations σm shall
be considered as tolerances for the normal-operation variability of the data.

Figure 2.11 reports some examples of real (i.e., labeled) anomalies present in
the TELCO dataset, in particular for time-series TS2, TS4 TS6 and TS9, along with
their corresponding identification by DC-VAE, where sensitivity thresholds α were
calibrated as mentioned before. DC-VAE can detect different types of anomalies
present in the data, of a more transient and spiky nature in the case of TS6 and
TS9, or on a more structural basis in the case of TS2 and TS4. Note also how some
of the actual measurements fall significantly outside the normal-operation region –
e.g. in Figure 2.11(c), but still these were not labeled as anomalous by the expert
operator. Whether this is a false-positive produced by DC-VAE, or a non-labeled
anomaly missed by the expert operator is difficult to know. It is important to
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Figure 2.10: DC-VAE operation for time-series with stationary behavior. Weekly seasonality is
identified, with variations between weekdays and weekends.
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Figure 2.11: Examples of real anomalies present in the analyzed dataset, and their identification
by DC-VAE.

note that anomalies in real, operational measurements, as labeled by the expert
operator, do not always translate into clear outliers in the data; the contrary is
also true, meaning that typical outliers in the data might not correspond to actual
anomalies in the eyes of the expert operator. Manual data labeling by experts
is prone to human error, many times due to a lack of conclusive information for
the operator to take a proper decision. These observations are paramount when
evaluating anomaly detectors with real, in-the-wild data.

We run a quantitative performance analysis of DC-VAE in the testing dataset
(cf. Table 2.1), benchmarking its performance against a broad set of more tra-
ditional detectors. As performance metrics, we consider an elaborated version of
the traditionally used, per-sample evaluation metrics, to consider a more natural
and practical approach for real anomaly detection applications, evaluating detec-
tion performance in the form of anomaly temporal-ranges. Traditional metrics can
make sense for point anomalies where a true positive corresponds to a correct
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detection at the precise point in time. However, as shown for example in Figure
2.11(b), many anomalies occur in the form of multiple, consecutive point anoma-
lies, defining an anomaly range. In such scenarios, it could be already enough to
have a partial overlap between the real anomaly range and the predicted anomaly
interval to consider a correct detection. Previous papers have considered these
observations [39,40,42], defining new metrics which prioritize early or delayed de-
tection, or focusing mainly on range anomalies. Therefore, we take the extended
definitions of recall and precision as defined in [40] to generalize for ranges of
anomalies, considering a correct detection if at least one of the samples between
the start and the end of the actual anomaly is flagged by the model. We refer
to these extended, range-based metrics as Rr, Pr, and F1r, for recall, precision,
and F1-score, respectively. More precisely, given a set of λ Real Anomaly ranges
RA = RA1 . . . RAλ and a set of δ Predicted Anomaly ranges PA = PA1 . . . PAδ:

Rr(RA,PA) =

λ∑
j=1

Rr(RAi, PA)

λ
(2.7)

Pr(RA,PA) =

δ∑
j=1

Pr(RA,PAi)

δ
(2.8)

F1r = 2 × Rr × Pr

Rr + Pr
(2.9)

In a nutshell, an intersection between an anomaly interval and the whole set
of predictions is enough to set Rr(RAi, PA) to one. Pr(RA,PAi) is determined
in its dual form. To consider the manual labeling uncertainty in the real anomaly
location [48], we run a preprocessing on the real anomaly regions, convolving the
series with a rectangular window, to obtain better-defined anomaly ranges.

Table 2.5 summarizes the different anomaly detection approaches considered
in the benchmark against DC-VAE. Most of these approaches correspond to uni-
variate detection methods (except S-VAE), largely studied in the signal processing
domain. A broad set of 15 univariate detectors are integrated into a single ensemble
detector, referred to as ENS-15. The ensemble includes regression models, change-
point detectors, outliers detectors, dimensionality reduction, clustering, and more.
The aggregation corresponds to a majority voting strategy, where each detector
is independently calibrated in the training and validation datasets, and a voting
threshold maximizing F1 validation scores is computed. In TELCO, ENS-15 de-
tects an anomaly if at least four ensemble models detect it. We also consider
well-established time-series detectors, such as Seasonal Exponential Smoothing (S-
EXPS) and the standard Auto-Regressive Integrated Moving Average (ARIMA)
model. These approaches base the detection on the prediction of µx and σx for each
time instant, making them particularly interesting to compare against DC-VAE.
To show the advantages of DC-VAE as compared to the usage of standard, vanilla
VAEs for anomaly detection in time-series, we define the Standard-VAE (S-VAE)
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Table 2.5: Set of benchmark time-series anomaly detectors used in TELCO against DC-VAE.

ENS-15

Local Outlier Factor (LOF)

Isolation Forest (IF)

Double Roll. Aggregate with Interquartile Range (DRA-IR)

Quantile Detector (QQ)

Interquartile Range Detector (IR)

Generalized Extreme Studentized Deviate Test (G-ESDT)

DRA with Single Change-Point Detection (DRA-CP)

Level Shift Detector (LS)

Volatility Shift Detector (VS)

Seasonal Decomposition with Exp. Smoothing (SD-ETS)

Time-Series Seasonality Detector (TSS)

Autoregressive Detector (AR)

Linear Regression Detector (LR)

PCA Detector (PCA)

K-means Clustering Detector (K-means)

S-EXPS Seasonal Exponential Smoothing

ARIMA Auto Regressive Integrated Moving Average

S-VAE Standard vanilla VAE, equivalent to DC-VAE with T = 1

as a snapshot-input-based anomaly detection model, where the encoder/decoder
architecture is based on a standard 3-layers, fully connected feed-forward neural
network, and the input corresponds to the MTS at the specific time of detection
– i.e., T = 1 in S-VAE. The comparison against S-VAE serves to demonstrate
the advantages of DC-VAE temporal-aware architecture, through the dilated con-
volutions. Finally, evaluations are reported independently for each to the twelve
time-series TSm in the TELCO dataset.

Table 2.6 reports the corresponding results in the testing dataset, indepen-
dently for each time-series, and as an average value. The first observation is that
achieved results are in general rather poor, achieving F1r scores around 60 % for
eight out of the twelve time-series, and below for the rest. This is highly in con-
trast with the high F1 scores usually reported in the literature, when dealing with
simulated or flawed datasets [45]. Indeed, as we explained before, dealing with
in-the-wild measurements and human-labeled, highly-imbalanced datasets is more
complex than what the results in the literature usually report – real, in practice
MTS anomaly detection is highly complex. Performance is significantly different
for some of the time-series, which corresponds to the different nature and underl-
ying behavior (cf. Figure 2.6) and the fraction of anomalies (cf. Table 2.2). While
DC-VAE ’s performance as compared to S-VAE is outstanding, results show that
no single approach is superior to the rest in all the time-series. DC-VAE ’s perfor-
mance is similar, on average, to S-EXPS and ARIMA. Still, among those already
mentioned, the main advantage of DC-VAE remains its multivariate operation and

27



Chapter 2. DC-VAE, anomaly detection in multivariate time-series with dilated
convolutions and variational auto encoders
Table 2.6: Anomaly detection performance benchmarking in TELCO, comparing DC-VAE
against S-EXPS, ARIMA, S-VAE, and an ensemble of 15 traditional detectors (ENS-15). First
and second highest F1 scores are marked in red and blue, respectively.

% ENS-15 S-EXPS ARIMA S-VAE DC-VAE

TS ID Rr Pr F1r Rr Pr F1r Rr Pr F1r Rr Pr F1r Rr Pr F1r

TS1 45 50 48 45 88 60 64 92 75 23 56 32 58 71 64

TS2 37 100 54 70 96 81 59 95 73 16 92 27 74 20 67

TS3 78 33 47 78 58 67 78 46 58 71 50 59 86 47 60

TS4 75 59 66 67 41 51 58 38 46 63 25 36 63 21 32

TS5 73 73 73 45 63 53 64 64 64 50 20 29 75 50 60

TS6 88 62 72 63 63 63 75 50 60 14 100 25 57 83 68

TS7 77 63 69 69 53 60 69 46 56 45 100 63 72 90 80

TS8 67 44 53 56 36 43 56 56 56 57 35 43 44 80 57

TS9 10 17 12 5 5 5 19 9 12 6 4 4 17 11 13

TS10 8 18 11 48 44 46 48 38 42 39 81 52 52 59 55

TS11 58 21 31 50 32 39 67 26 37 67 17 27 100 25 40

TS12 0 0 0 100 67 80 100 24 38 0 0 0 100 11 22

mean 51 45 45 58 54 54 63 49 51 38 48 33 67 47 52

median 63 47 51 60 55 57 64 46 56 42 43 31 68 49 59

the overall MTS modeling within a single learning step.

2.4.3. Benchmarking DC-VAE in the SWaT Open Dataset
For the sake of completeness and to provide a stronger and more comprehen-

sive benchmarking, we compare DC-VAE against other deep-learning-based MTS
anomaly detectors in SWaT. As discussed in the related work, GAN-based MTS
detectors are very popular in the literature, given their flexibility to model a com-
plex MTS process without making any assumptions on the underlying distribu-
tions. GANs are a powerful approach to learning the underlying distributions of
data samples, in a purely data-driven, model-agnostic manner. Such models can be
used in the practice to construct better normal-operation baselines, improving the
identification of instances that deviate from this baseline. We, therefore, compare
DC-VAE against three GAN-based detectors proposed in recent years, including
EGAN [49], MAD-GAN [21], and our previous work on GAN-based MTS anomaly
detection, referred to as NET-GAN [23].

To train DC-VAE in SWaT, we take an architecture using J = 16 as the
dimension of the latent space, and a sequence length T = 128, both parameters
calibrated in the same way we did it in TELCO (cf. Figure 2.9). We train both
DC-VAE and NET-GAN in the SWaT training dataset, using a small share of
samples from the attacks for calibration. Regarding EGAN and MAD-GAN, we
decided to report here the results obtained by the authors in [21], which would
generally correspond to the best performance which could be achieved by these
methods. Finally, we also include a standard Auto Encoder (AE) model as the
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Table 2.7: Anomaly detection performance benchmarking against deep-learning generative mo-
dels in SWaT.

Detector R P F1

Auto Encoder 53 73 61

EGAN 68 41 51

NET-GAN-(G)enerator 65 98 78

NET-GAN-(D)iscriminator 65 29 40

MAD-GAN-P (best precision) 55 100 70

MAD-GAN-R (best recall) 100 12 22

MAD-GAN-F1 (best F1 score) 64 99 77

DC-VAE 67 94 78

simplest approach comparable to DC-VAE.

Table 2.7 reports the results obtained in the testing dataset in terms of re-
call, precision, and F1 scores. We fall back to the standard evaluation on point
anomalies instead of range anomalies, to be consistent with the results obtained
in SWaT as reported in the literature. We consider two variations of NET-GAN
detectors [23], one using the generator function (NET-GAN-G), and the other one
the discriminator function (NET-GAN-D). We also consider three different varia-
tions of MAD-GAN, optimized for best precision (MAD-GAN-P), recall (MAD-
GAN-R), and F1 score (MAD-GAN-F1). DC-VAE results are comparable to tho-
se obtained with NET-GAN-G and MAD-GAN-F1, and significantly better than
EGAN or the AE model. In addition, absolute results are also significantly better
than those obtained in TELCO, helping us demonstrate that anomaly detection
in real data as the one in TELCO, dealing with the error-prone process of hu-
man labeling, is much more complex than what the literature usually reports on
such benchmarks. To sum-up, we can claim that DC-VAE realizes state-of-the-art
detection performance, while again, flagging its underlying advantages.

2.4.4. DC-VAE for Satellite Telemetry
The code was made publicly available to encourage the community to adopt

and adapt it for their own applications.

The European Space Agency Anomaly Detection Dataset for Satellite Tele-
metry (ESA-ADB) [3] is the result of close collaboration between European Space
Agency (ESA) spacecraft operations engineers and machine learning experts. This
new ESA anomaly dataset contains real, annotated telemetry data from three dif-
ferent ESA missions, two of which are included in ESA-ADB. The results of typical
anomaly detection algorithms, evaluated through their novel hierarchical evalua-
tion process, highlight the need for new approaches to better address the needs of
operators.

Real-world satellite telemetry presents an especially challenging example of
multivariate time series data, with numerous specific problems and complexities
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related to its high dimensionality and volume (years of recordings from up to thou-
sands of channels per satellite), complex network of dependencies between chan-
nels, and diverse characteristics (e.g., varying sampling frequencies across time
and channels, data gaps caused by idle states and communication issues, trends
linked to the degradation of spacecraft components, and concept drifts associa-
ted with different operational modes and mission phases). Additionally, the data
includes diverse channel types (e.g., a wide variety of physical measurements, ca-
tegorical status flags, counters, and binary telecommands) and is affected by noise
and measurement errors due to the harsh space environment.

The dataset6 includes 76 channels from Mission 1 and 100 channels from Mis-
sion 2. The number of data points exceeds 700 million for each mission, resulting
in more than 7 gigabytes (GB) of compressed data in total. This is orders of
magnitude larger than any other publicly available satellite telemetry dataset.

For this extensive benchmark on anomaly detection in satellite telemetry, one
of the methods selected was our proposed method, DC-VAE 7. According to their
hierarchical evaluation of the results, Telemanom [4], a deep learning-based semi-
supervised algorithm designed for satellite telemetry anomaly detection, achieved
the best performance for Mission 1. It obtained the highest F-measure and alar-
ming precision, thanks to its dynamic thresholding scheme (NDT), which merges
adjacent detections. This highlights the importance of proper thresholding and
postprocessing methods as part of an anomaly detection algorithm.

While Telemanom had the lowest Anomaly Detection Timing Quality Curve
(ADTQC)—a novel metric designed to assess the accuracy of anomaly start-time
identification from the perspective of spacecraft operations engineers—DC-VAE
achieved the highest ADTQC, sometimes outperforming Telemanom. According to
their evaluation, this suggests that more advanced thresholding or postprocessing
techniques could significantly improve event-wise performance scores.

It is important to note that they did not perform model selection using vali-
dation instances. Instead, they tested only two fixed α configurations (α = 3 and
α = 5) across all channels, rather than optimizing α for each specific channel.

Telemanom vs. DC-VAE

After the publication of their work, the authors contacted us to provide feed-
back on their experience using DC-VAE. They wrote the following:

“Even if DC-VAE does not give the best results in terms of the specific bench-
mark metrics, we see it as a promising and elegant solution that only needs some
improvements in postprocessing/thresholding to outperform NASA’s Telemanom
and to be implemented in the real operational environment of ESA. Hence, we are
building on top of DC-VAE in a few ongoing projects.”

They also outlined several points highlighting the weaknesses of Telemanom
and the strengths of DC-VAE, with some of these being identified in their work [3].

Telemanom Disadvantages:

6https://zenodo.org/records/12528696
7https://github.com/kplabs-pl/ESA-ADB
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Only supports a single output channel.

The input (historical samples) and output (forecast) windows differ in size
and location, limiting the applicability of typical autoencoder-based methods.

The dynamic thresholding mechanism (NDT) involves complex parameters,
and recent findings suggest the presence of problematic hardcoded values
(“magic numbers”) that hinder anomaly detection in channels with small
signal values.

LSTM layers are challenging to accelerate on space-enabled hardware.

The latent space is not regularized, making it difficult to explore as a gene-
rative model.

DC-VAE Advantages:

Supports multiple output channels.

The input and output windows have the same size and location, following a
typical autoencoder structure.

Thresholding is simpler because the network outputs the standard deviation
for each sample, allowing thresholds to be set based on standard deviations
from the mean, adding interpretability.

Fully convolutional architecture, making it more suitable for efficient pro-
cessing.

The variational bottleneck enables the exploration of the latent space, ope-
ning new possibilities for generative tasks.

The code is publicly available, easy to run, and easy to modify.

The approach is considered more elegant and better aligned with ESA’s
operational use cases.

2.5. Temporal and Spatial Response of DC-VAE
The visual exploration of DC-VAE predictions and detections in TELCO re-

vealed certain behaviors of the model when confronted with different temporal
and/or spatial patterns which are worth studying. In particular, the impact of
the sequence length T on the reaction of the model to certain phenomena is rele-
vant. Next, we present different prototypical examples of simulated anomalies and
their impact on DC-VAE predictions, using S-VAE and the ARIMA models for
comparison, when applicable.
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Impact of strong outliers

The processing of the complete MTS simultaneously has evidenced, and in
particular for simpler versions of the model with shorter sequence lengths T , that
coarse outliers affecting a single time-series can affect the predictions for other
time-series, generating false detections. Figure 2.12 shows how a major outlier
in TS11 strongly perturbates predictions for TS4, especially for sequence length
below 32 in this example. This effect can be partially mitigated by taking longer
sequences at the input. As a lesson learned, using longer sequences improves the
filtering of strong outliers from the data.

Multivariate model properties

Besides being more scalable in production, having a single model for the analy-
sis of the complete MTS also improves detection. Figure 2.13(a) shows S-VAE
model predictions for two highly correlated time-series, TS1 and TS2. An artificial
univariate anomaly in TS1, emulating a period where the time-series is constant
(e.g., no incoming measurements), has a contained impact on the rest of the time-
series predictions, as reflected in the predictions of µx and σx for TS2. As the
S-VAE model has no temporal information (i.e., T = 1), predictions are influenced
by the fact that the rest of the time-series remained unchanged. Nevertheless, in
this example, the anomaly introduced in TS1 would be clearly detected.

Figure 2.12: A strong outlier in TS11 results in poor prediction for TS4, with sequence length
T = 32. This effect is mitigated with longer lengths T .
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Figure 2.13: S-VAE and DC-VAE response to univariate and multivariate anomalies. The si-
multaneous modeling of the full MTS process adds regularity and stability to the detection.

Temporal model properties

We now apply the previous anomaly to all the time-series in the same period
and verify how the VAE-based models exploit temporal correlations among time-
series. Figure 2.13(b) shows that this time, the S-VAE model predictions perfectly
follow the anomaly, making it go completely undetected. The result is totally
different for DC-VAE ; as shown in Figure 2.13(c), the predictions of a DC-VAE
model with a sequence length of T = 512 tend to follow the past behavior, and
take longer to track the anomaly pattern, effectively detecting it.

Similar to DC-VAE, the ARIMA detection model enables the visualization of
the normal-operation region. However, as we show in Figure 2.14, being univariate
and with a small temporal window makes ARIMA less robust for MTS anomaly
detection. In the figure, model predictions are depicted in green for ARIMA and
in orange for DC-VAE, and red dots indicate real (i.e., labeled) anomalies. Figures
2.14(a) and 2.14(b) show that the value of σx for the ARIMA model is constant
over time, but dynamically adapts in DC-VAE, providing a better, more accurate
normal-operation region. This is a strong advantage of DC-VAE, since it adapts
to the noise variations that these time-series generally present.

The same happens to the estimations of µx. While the estimation of the signal
through the ARIMA model closely follows the time-series, even in the occurrence
of real anomalies – and thus the model misses detection, the estimation provided
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Figure 2.14: DC-VAE and ARIMA response to range and point anomalies. The lower image is
always a close-up view of the upper one. Being univariate and with a small temporal window
makes ARIMA less robust for MTS anomaly detection, and missing anomalies.
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on the other time-series, it becomes easily detectable at the corresponding time-series.

by DC-VAE maintains a normal behavior in the face of the anomalies, allowing to
properly detect them. The largest spatial (M) and temporal (T ) ranges of DC-VAE
add robustness to the anomaly detection process.

Concept drift response

The ability to detect Concept Drift (CD) in time-series data is a paramount
property [50]. The CD can manifest itself as a shift in the mean, an increase or
decrease in the variance, or both changes simultaneously, which may be impercep-
tible for many methods [51]. These CD changes may be related to important trends
in the data, requiring proper detection. We simulate a univariate CD in one of the
time-series, and check the outputs of DC-VAE. Figure 2.15 shows an example of
CD, where a gradual change in the interval indicated as the CD zone is simulated
in TS5. The daily values of the time-series are reduced linearly, starting at 80 %
(beginning of the CD zone) up to 40 % (end of the CD zone). This change does not
only affect the mean value of the time-series, but also its variance. Interestingly,
predictions of the DC-VAE follow the past behavior learned as normal, allowing
the CD event to be detected.

2.6. Limitations of the Multivariate Approach
The multivariate approach has both advantages and disadvantages. In this sec-

tion, we present experiments that highlight its limitations in two specific situations
that could arise in real contexts.

The first evaluation aims to assess what happens when the order of the va-
riables in the input is not respected. For example, if we train a model with the
TELCO dataset where the variables are ordered from top to bottom as TS1, TS2,
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..., TS12, following the numerical sequence of the series, it is essential to maintain
this order during inference. However, in a real-world scenario, it is possible that
an operator might change this order, which could affect the model’s performance.
After testing different combinations of variable order changes, we observed that
the model tends to return predictions similar to those obtained when the original
order used during training is preserved, making it difficult to disrupt the model’s
learned patterns. As an example, we swapped the variables TS1 and TS3 and com-
pared the reconstruction output with the result obtained when the original order
was maintained. In Figure 2.16(a), we present both reconstructions over the real
values. As shown, the Shifted (green) reconstruction for TS1 retains the same sha-
pe as TS3, the position it occupied in the input. This is particularly noticeable in
the size of the sigma values, the shorter valleys, and the lack of distinction bet-
ween workdays and weekends. The same behavior, but in reverse, is observed in
the reconstruction of TS3.

To provide a quantitative comparison between DC-VAE models, we used the
metrics MSEµ,σ(x) and LLµ,σ(x), defined in equations 2.10 and 2.11, respectively.
Both metrics yield a value for each time-series data point when x, µx, and σx are
replaced by xm(t), µxm(t), and σxm(t) in the equations. Equation 2.10 represents
the result obtained when, given µx and σx, we generate a considerable number of
samples and compute the MSE for all these values with respect to x.
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Figure 2.16: In (a), a comparison of the reconstruction for an input in the same order as the
training (orange) and an input with the variables TS1 and TS3 shifted (green) is shown, over
the real values (blue). In (b), the distribution of the MSE values for each configuration is
presented, and in (c), the same is shown for the log-likelihood values.
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MSEµ,σ(x) = (x− µx)2 + σ2
x (2.10)

LLµ,σ(x) = −1

2
log(2π) − 1

2
log(σ2

x) − (x− µx)2

2σ2
x

(2.11)

The equation 2.11 is the logarithm of the distribution function given µx and
σx, which indicates how closely the real values align with the model. Larger va-
lues suggest a closer match. Figure 2.16(b) shows the distribution of MSE values.
For TS1, the difference observed in Figure 2.16(a) is reflected, where the MSE
distribution for the Normal inference is significantly lower than for the Shifted
configuration. A similar trend is evident in the log-likelihood metric, where the
Normal reconstruction outperforms the Shifted one. However, this pattern does
not hold for TS3, where the noisiness of the values reduces the relevance of the
mean reconstruction, and the σx values play a more dominant role. Nevertheless,
the performance change remains evident.

Figures 2.16(b) and (c) also present the same distributions for TS2 and TS4,
as these variables are correlated with TS1 and TS3, respectively. While a slight
performance difference can be observed, it is not significant, leading to the conclu-
sion that the most affected variables are those whose positions in the input order
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Figure 2.17: In (a), a comparison of the reconstruction for an input identical to the dataset
(orange) and an input where the variable TS2 is flattened to a constant value (green), simu-
lating the absence of data, is shown over the real values (blue). In (b), the distribution of the
MSE values for each configuration is presented, and in (c), the same distribution is shown for
the log-likelihood values. The variables shown: TS1, TS7, and TS8, are the most affected by
the absence of data in TS2.
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differ from those used during training.

The second evaluation examines how the absence of data in one variable affects
the reconstruction of the others. To assess this, we fix one of the variables to a
constant value, simulating missing data, and compare the reconstruction of the
remaining variables to the results obtained using the normal input.

Figure 2.17 presents an example where the Normal inference, as in the previous
case, corresponds to the input as it appears in the dataset. The data for the case
labeled TS2 no data is the same, except that the variable TS2 has been replaced
with a constant value, simulating the absence of data. In this example, we show the
reconstruction performance for the variables most affected—those that are more
correlated with TS2.

Observing the reconstructions in Figure 2.17(a), particularly around the peaks,
we can see that the absence of data in TS2 (green reconstruction) causes the µx

values to struggle in accurately following the real values x (blue line). Even for TS1,
there are noticeable issues with the reconstruction’s shape compared to both the
real values and the reconstruction when TS2 contains data (orange reconstruction).

In Figures 2.17(b–c), we observe a clear degradation in the reconstruction me-
trics when data is absent. Specifically, the distributions of the MSEµ, σ and LLµ, σ
values become wider, indicating increased variability in reconstruction errors and
likelihood.

This result highlights how the advantage of a multivariate model—leveraging
information across variables—can also become a disadvantage when data from one
variable is missing, as it negatively affects the reconstruction of other correlated
variables.

2.7. Global DC-VAE : A New Approach for Better Adap-
tability

A multivariate model has several advantages, as we observed earlier, such as
leveraging the relationships between variables, providing predictions for all varia-
bles simultaneously, and being faster to train. However, it also presents a rigidity
that can pose challenges in specific scenarios.

The first issue is that during inference, the order of the variables in the multiva-
riate time series must remain consistent with the model’s expected input. Changing
the order of some variables affects the reconstruction performance for those varia-
bles. Similarly, the absence of data in one variable can degrade the performance
of other related variables.

Another challenge arises from the need to add or remove variables in certain
systems. In such cases, the input and output layers would need to be retrained from
scratch. For example, in the case of a telecommunication company as Telefónica, as
we’ll see after, where variables are obtained from database queries, the monitored
variables may change dynamically based on user requirements. These challenges
make it difficult to reuse the model across different scenarios, limiting its flexibility
and generalizability.
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For this reason, we propose developing a new version of the DC-VAE, shifting
from a multivariate approach to a global approach. A global model in time-series
analysis is typically a univariate model trained on multiple time-series simultaneo-
usly. This means the global model learns patterns that are shared across multiple
series, allowing it to generalize better and handle variability between series. In
contrast to a multivariate model that operates on a fixed set of variables, a glo-
bal model can dynamically adapt to the inclusion or exclusion of variables or
series. This flexibility not only addresses the rigidity of multivariate models but
also enables the model to be reused across different scenarios and datasets with
minimal retraining.

The architecture and detection process remain the same in the global approach.
However, two significant aspects change: the shape of the input and output of
the VAE model, and the structure of the latent space. The latter change arises
because, in the original DC-VAE, the latent space samples z have the same length
T as the input samples x. In the global approach, since the inputs are univariate,
maintaining this shape in the latent space is not feasible in an Auto-Encoder (AE).
This necessitates adjustments to the latent space structure to accommodate the
univariate nature of the inputs while preserving the model’s functionality.

To address this, we leverage the dilated convolutional architecture of the enco-
der, which ensures that the last vector of the output sequence captures information
from the entire input sequence, as illustrated in Figure 2.4 and Figure 2.18. The-
refore, we use only this final vector for the latent space representation. With this
approach, the shape of the latent space depends solely on J , making z ∈ RJ as
shown in the figure 2.18. In this figure, the complete structure of the global DC-
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Figure 2.18: Scheme of the global DC-VAE. The three main aspects that change are: the input
and output of the encoder and decoder, which are now univariate; the shape of the latent
space, which now depends only on the hyperparameter J ; and the input to the decoder, which
is the repetition of the vector z T times.
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VAE is represented. It highlights changes in the input and output of the encoder
and decoder, as well as the dimension of the latent space. One aspect that may
draw attention is the input to the decoder, which consists of repeating the vector
z, obtained from the reparameterization trick, T times.

This decision was made, firstly, to preserve the decoder architecture from the
original DC-VAE and, secondly, to maintain symmetry between the encoder and
decoder in terms of the number of parameters. An alternative approach could in-
volve using the z vector followed by a dense layer as the decoder’s input layer, but
this would result in a decoder with more parameters than the encoder. Another
option could involve using transpose convolutions, but we observed that this ap-
proach made it more difficult for the model to converge. One negative aspect of
this approach is that, at the beginning of the decoder, many layer outputs are
identical for different time instances. However, due to the fact that only a portion
of the filters are active at the start of the sequence, combined with the dilations,
these values quickly evolve into distinct outputs as the sequence progresses.

2.7.1. Global DC-VAE Analysis
The first step for developing a global model was to determine the appropriate

hyperparameters, as the architecture changes slightly in this approach. To achieve
this, we performed a hyperparameter search using a predefined grid, as shown in
Table 2.8. The search was conducted while ensuring that the number of trainable
parameters did not exceed 90 % of the total number of samples (time-series win-
dows). In the column Best, we present the selected hyperparameters. Notably, the
value of T was 128, approximately half a day for the TELCO dataset (288 values
per day), while J was set to half of this value, 64. The total number of parameters
amounted to 174,560, which represents 56 % of the total samples (309,516).

Reconstruction Capability

The first aspect to analyze is the model’s capability to reconstruct the data
accurately. As a reference, we also trained a model with the same architecture
but with a multivariate input. The only differences were in the input and output
configurations of the model, which incorporated slightly more trainable parameters
(179,840), while the latent space remained the same as in the global approach.

Table 2.8: Grid of hyperparameters used in the model calibration of the global DC-VAE.

Hyperparameter Grid Search Ranges Best

T - sequence length {128 − 2048}, step=128 128

J - latent dimension {64 − 3T/4}, step=32 64

γ - learning rate {1e−5 − 5e−4} 4e−4

m - mini-batch size [32, 64, 128] 32

U - number of filters {64 − 128}, step=16 80
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In Figure 2.19, we present both qualitative and quantitative comparisons bet-
ween the two approaches. In Figure 2.19(a), the reconstructions are shown alongsi-
de the actual series values, revealing that both approaches produce similar results.
However, the multivariate model exhibits slightly smoother reconstructions in noi-
sier series. Figure 2.19(b) displays boxplots of the MSE for each TELCO time
series, indicating comparable performance across most series. Notably, for TS9,
the global model achieves better reconstruction accuracy.
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(a) Reconstruction comparison for some time-series of TELCO.
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Figure 2.19: Comparison of MSE reconstructions between both approaches, global and multi-
variate, where the figure shows that there isn’t a significant difference between them.
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Anomaly Detection Performance

Then, if the reconstruction is similar between both approaches, we would ex-
pect similar anomaly detection performance. In Table 2.9, the performance of
DC-VAE is shown, consistent with Table 2.6, where the color coding remains the
same. On the right side, the performance of the global model with the selected hy-
perparameters is presented. As observed, the global approach outperforms in F1r
for only 1/3 of the variables. However, the mean values are comparable, with a
decrease of 10 points in Rr but a gain of 6 points in Pr. The median is considerably
lower.

In conclusion, the global approach is unaffected by the order of variables in the
input or by missing data influencing other variables, as it operates with univariate
inputs and outputs. In addition, while its anomaly detection performance may
be slightly lower than that of the multivariate approach, the difference is not
significant.

Completely Unsupervised Detection using p-values

Up to this point, the operational points of all evaluated DC-VAE models were
selected in a supervised manner by choosing the αi values that maximize the F1r
metric on a validation set, which requires a labeled dataset. This approach allows
for a fair comparison of DC-VAE models with others under the same conditions.
However, given that our models follow a Gaussian distribution, it is possible to
set the α values using specific criteria based on the properties of the Gaussian
distribution.

When we define a value as an anomaly if its distance to the predicted µx

exceeds α times σx, this is equivalent to establishing symmetric bounds around µx,
where any value inside these bounds is considered normal, and any value outside

Table 2.9: Anomaly detection performance benchmarking in TELCO, comparing DC-VAE
against global DC-VAE.

DC-VAE global DC-VAE

TS ID Rr Pr F1r Rr Pr F1r

TS1 58 71 64 29 60 39

TS2 74 20 67 71 80 75

TS3 86 47 60 71 29 42

TS4 63 21 32 50 35 41

TS5 75 50 60 50 67 57

TS6 57 83 68 57 100 72

TS7 72 90 80 50 71 59

TS8 44 80 57 38 50 43

TS9 17 11 13 0 0 0

TS10 52 59 55 60 24 34

TS11 100 25 40 100 21 35

TS12 100 11 22 100 100 100

mean 67 47 52 56 53 50

median 68 49 59 54 55 42
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is considered anomalous. The area under the Gaussian distribution within these
bounds represents the probability of normality, PN . This enables us to link PN

with α. Let the lower bound be γ (where γ < µx). Since the area under both tails
is symmetric, we can calculate PN as follows:

PN = 1−2Pµx,σx(x < γ) = 1−2

∫ γ

−∞

1√
2πσ2

x

e
− (x−µx)2

2σ2
x dx = 1−2Φµx,σx(γ). (2.12)

The function Φµx,σx(γ) can be expressed in terms of the error function, erf(),
which has an inverse function:

Φµx,σx(γ) =
1

2

[
1 + erf

(
γ − µx

σx
√

2

)]
. (2.13)

By combining Equations 2.12 and 2.13, we can solve for γ in terms of PN :

γ = µx + σx
√

2 erf−1(−PN ). (2.14)

Considering that all values satisfying |x − µx| > µx − γ are anomalies, we can
rewrite the inequality and derive α in terms of PN , that is,

|x− µx| > µx − γ (2.15)

|x− µx| > −σx
√

2 erf−1(−PN ) (2.16)

|x− µx|
σx

> −
√

2 erf−1(−PN ). (2.17)

Thus, the α value is given by,

α = −
√

2 erf−1(−PN ). (2.18)

If we set a criterion, such as requiring PN to be more than: [99 %, 90 %, 70 %], the
corresponding α values are [2.58, 1.64, 1.03].

In Table 2.10, we present the results for these PN values applied to the Global
DC-VAE. As observed, α decreases as PN decreases. Starting with a high PN value,
we see high Pr values and low Rr values. As PN decreases, Pr begins to decline,
while Rr improves. This trend is evident for most time-series in Table 2.10.

An interesting observation is that the mean and median of Rr, Pr, and F1r for
PN = 70 % are not significantly different from those reported in Table 2.9 for the
same model. This suggests that DC-VAE, as a Gaussian-based model, enables the
definition of an operational point using a fixed criterion for all time series. This
approach, which does not rely on labeled data, can yield results comparable to
those obtained using a supervised criterion.

Moreover, we must consider that linking performance directly to the values of
PN is not straightforward. First, the values may not originate from a Gaussian
distribution. Even if they did, DC-VAE is trained to maximize the ELBO, and
since this is a relative maximization, it does not necessarily coincide with the
maximization of the likelihood. Additionally, performance depends on the quality
of the labeled data, and throughout this work, performance has been measured
using range metrics, whereas this probability is a point estimate.
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Table 2.10: Global DC-VAE performance in a completely unsupervised approach for different
values of PN .

Global DC-VAE PN = 99% PN = 90% PN = 70%

TS ID Rr Pr F1r Rr Pr F1r Rr Pr F1r

TS1 14 100 25 21 100 35 28 60 39

TS2 0 0 0 8 100 15 13 100 22

TS3 43 60 50 57 44 50 86 10 17

TS4 25 100 40 38 50 43 75 25 38

TS5 25 67 36 38 80 51 63 71 67

TS6 0 0 0 0 0 0 57 83 68

TS7 40 100 57 50 100 67 50 56 53

TS8 13 50 20 35 67 36 38 43 40

TS9 5 20 9 33 15 21 50 8 13

TS10 0 0 0 10 100 18 45 68 54

TS11 33 100 50 67 33 44 100 19 32

TS12 0 0 0 0 0 0 100 100 100

mean 17 50 24 29 57 32 59 54 45

median 13 55 23 29 58 33 53 58 39
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(a) Reconstruction with global approach. (b) Reconstruction with multivariate approach.

Figure 2.20: Time-series reconstruction on TELCO2 using the global and multivariate models
trained on TELCO.

Zero-shot Reconstruction

To test the generalization capability of the global model, we performed an
inference on a different dataset using the same model trained on TELCO from the
previous experiment. This new dataset, which we call TELCO2, also contains 12
distinct time-series sampled every 5 minutes but originates from a different source
than TELCO. The series exhibit similar seasonality, with valleys at night and
peaks during the day, but with different shapes. In Figure 2.20(a), an example of
the global model’s inference on TELCO2 is shown. As observed, the reconstructions
are as accurate as those obtained with TELCO. For comparison, Figure 2.20 (b)
presents the inference results using the multivariate model. As expected, given the
previous results, the reconstructions show poorer performance.

This result demonstrates that the global approach can generalize not only
within the domain where the model was trained but also in a different domain,
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proving that this approach can work for zero-shot inference. Although the domains
of TELCO and TELCO2 are not drastically different, in a later section, we will
show that a global approach can be useful for time series from very different do-
mains as well. Additionally, we will explore whether this zero-shot capability can
be applied to anomaly detection tasks.

2.8. Conclusions
DC-VAE is an anomaly detection method based on variational autoencoders

(VAE), featuring a fully convolutional architecture with dilations. This combina-
tion makes the method simple and fast to train while avoiding convergence issues.
Additionally, it requires only a few hyperparameters, most of which are practi-
cally determined once the sliding window length is selected, simplifying the search
for the optimal model. Regarding training data, the method benefits from semi-
supervised training (excluding anomalies), but its autoencoder nature also allows
for unsupervised training (using raw data) without compromising performance.

For detection, although the method’s inputs and outputs can be either multi-
variate or univariate, anomaly detection is performed in a univariate manner, with
a normality region defined for each individual time series. The operating point is
determined by a single parameter, α. Given the model’s Gaussian assumption, it
is possible to establish α values using unsupervised criteria. Thanks to its fully
causal and lightweight architecture, anomaly detection can be performed in near
real-time.

When applied to real-world data, such as the TELCO dataset (provided in this
work), the original multivariate version of DC-VAE proved to be the most effecti-
ve anomaly detection method across a greater number of time series compared to
other approaches. It outperformed a combination of machine learning, statistical,
and recursive methods (ENS-15), as well as established models for this task, such as
state-space-based approaches (S-EXPS, ARIMA), and even a standard VAE model
(S-VAE). It also demonstrated superiority over its own variations, including the
global DC-VAE and FAE, as will be discussed later. Furthermore, its application
to the widely used multivariate dataset SWaT showed that the model is compe-
titive with more complex state-of-the-art methods such as EGAN, MAD-GAN,
and NET-GAN (previously proposed by us). DC-VAE was also evaluated on sa-
tellite telemetry data, benchmarked against different anomaly detection methods.
It demonstrated strong performance in the early detection of anomalies in one of
the missions, outperforming Telemanom, a specialized method designed for this
type of data. Additionally, the authors of the benchmarking study highlighted the
versatility and ease of use of DC-VAE compared to Telemanom.

Later, the global DC-VAE variant addressed several adaptability limitations
caused by multivariate inputs, such as the ordering of time series or the absence
of data for certain variables, without significantly compromising detection perfor-
mance. Since it retains nearly the same architecture, all the original properties
are preserved. Additionally, it showed signs of being capable of adapting to new
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domains without requiring prior exposure during training. This observation led to
the development of the foundational version of DC-VAE, known as FAE, which
will be discussed in Chapter 4.
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Chapter 3

Continual Anomaly Detection in
Time-Series using Generative AI

One of the main limitations faced by DC-VAE, and AI/ML-driven approaches
for anomaly detection in general, is their inability to effectively handle Concept
Drift (CD) and Domain Change (DC). Concept drift refers to events where the
statistical properties of the target variable, or the relationships between input fea-
tures and the target variable, change over time. As a result, the patterns and
rules that an AI/ML model has learned from historical data may no longer hold
for current data, requiring the model to be updated to adapt to these changes.
Domain change, on the other hand, occurs when the environment in which the
model operates differs from the one it was trained on. For example, if the system
monitored by the anomaly detector adds one or more new time series after the mo-
del has been trained, these new variables need to be incorporated into the model.
CD and DC are closely related to another phenomenon that impacts and degra-
des the performance of AI/ML models, known as catastrophic forgetting. While
catastrophic forgetting is a distinct issue, it is related in that it occurs when an
AI/ML model trained on a set of tasks or data samples forgets previously learned
information after learning new tasks or samples. Under catastrophic forgetting,
the model’s performance on earlier tasks deteriorates significantly, even if the old
and new tasks are related. CD and DC are strongly linked to catastrophic for-
getting because they involve changes in the data distribution that can render an
AI/ML model outdated or inaccurate. Both problems require methods that enable
models to adapt to evolving data distributions, typically through retraining. In
its simplest and most effective form, retraining an AI/ML model with newly ac-
quired data—whether due to CD, DC, or new related tasks—requires access to
all previously used training data. However, this traditional retraining approach
is often limited by the availability of past data and constrained by memory and
computational resource requirements.

We resort to the continual learning paradigm [52] to address the continual mo-
del adaptation and retraining of DC-VAE. Continual learning enables a model to
learn from a stream of evolving data, without forgetting previously learned know-
ledge. It involves updating the model’s parameters and architecture as new data
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arrives, while also preserving knowledge learned from previous data, representing
a promising approach to deal with CD and DC. We extend DC-VAE to a continual
learning setup, leveraging the generative AI properties of the underlying VAE mo-
del to remember past data. By conception, once the encoder-decoder VAE model
has been trained, the decoding function is capable to synthesize new “fake” data
mimicking the characteristics of the time-series training datasets, using as input
only Gaussian noise. As such, the decoder acts as a lossy compression of the data
used for training. We combine DC-VAE and its generative decoder into GenDeX,
an approach to continual learning for anomaly detection in time-series network
measurements. In a nutshell, when DC-VAE is confronted with concept drifts, or
is applied to a new time-serie dataset – e.g., measurements collected at a different
network or representing a different process – GenDeX uses the previously trained
decoder to synthesize past time-serie measurements, and combines them with the
new time-serie data to retrain the underlying VAE model. GenDeX follows a Deep
Generative Replay (DGR) [53] paradigm for continual learning, where a genera-
tive model produces synthetic data which replays old memories during training,
augmenting the heterogeneity and expressiveness of the retraining. The rationale
behind GenDeX is that DC-VAE continually improves its tracking and baselining
capabilities as it processes new measurements with different underlying statistical
characteristics, improving as such its generalization and anomaly detection capa-
bilities with time.

In this chapter, we study in depth the generative capabilities of DC-VAE,
investigating the characteristics of the resulting latent space and refining it for
fine-grained temporal data generation. Finally, we demonstrate how the trained
decoder can generate synthetic time series from Gaussian noise, successfully captu-
ring the patterns of each individual time series in the process, despite their differing
characteristics. Additionally, we evaluate how GenDeX addresses catastrophic for-
getting, maintaining performance on both new and previously learned tasks in the
context of both concept drift (CD) and domain change (DC).

3.1. Related Work
Continual Learning (CL) enables a model to learn from a stream of evol-

ving data, without forgetting previously learned knowledge. There are various
approaches to CL, including Regularization Techniques (RT) [52], Generative Re-
play (GR) [53], and Dynamic Architecture (DA) [54]. RT involves penalizing the
model’s parameters to reduce the impact of new data on previously learned know-
ledge. One such technique is Elastic Weight Consolidation (EWC) [52], which uses
a quadratic penalty term to constrain the neural network’s weights during training
to protect important parameters from forgetting. GR involves generating synthetic
data that is similar to previously observed data to reinforce old memories. Deep
Generative Replay (DGR) is an example of this approach, which uses a generative
model to produce synthetic data that is similar to previously observed data. The
synthetic data is used to replay old memories during training to prevent forget-
ting. Similar to DGR, BooVAE [55] generates new data to augment the training
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set. However, unlike generative replay, BooVAE generates new samples by pertur-
bing the existing data rather than directly generating new samples from scratch,
(in theory) preserving the statistical properties of the original data distribution.
Dynamic architecture involves expanding or shrinking the model’s architecture to
accommodate new knowledge or discard outdated knowledge. Progressive Neural
Networks (PNN) [54] is a notable approach to dynamic architectures, which dy-
namically expands the neural network architecture to incorporate new knowledge
while retaining previous knowledge. PNN can achieve high accuracy on sequential
learning tasks without forgetting previously learned knowledge.

3.2. GenDeX - Continual Learning for DC-VAE
A Concept Drift (CD) can manifest itself as a shift in the mean, an increase

or decrease in the variance, or even as complete data modifications. Such changes
may be related to important trends in the data or to measurements collected in
a different setup, requiring proper detection and retraining. Figure 2.15 in Sec-
tion 2.5 shows an example of DC-VAE operation under a concept drift, where
a gradual change in the interval indicated as the CD zone is simulated in a sin-
gle time-series (TS5), leaving the other series untouched. DC-VAE is not capable
to track this individual drift, given its multivariate nature – the complete MTS
process introduces an hysteresis effect in the reaction of the model. Note in par-
ticular how the model can perfectly track the non-modified time-series, and how
the estimation for TS5 follows the pre-CD pattern. Once the induced drift is over,
and the MTS process returns to previous statistical behavior, DC-VAE ’s tracking
for TS5 becomes again accurate. Figure 3.1 shows DC-VAE under a more drastic
concept drift, in this case considering data from different years (2015 and 2017)
from the open SWaT dataset [8] – commonly used for detection of cyber-attacks in
cyber-physical systems. Figure 3.1(a) shows the tracking of DC-VAE in (top) the
2015 normal operation dataset used for training, (middle) the 2015 attack dataset
used for testing, and (bottom) the 2017 dataset. DC-VAE performs accurately
in the testing dataset, as the underlying empirical distributions of both training
and testing datasets significantly overlap, as evidenced in Figure 3.1(b). However,
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Figure 3.1: Strong subset changes requires retraining.
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the model totally fails to capture the SWaT dataset in 2017, as the underlying
distributions of the corresponding data are significantly different.

We therefore explore an approach to cope with the described concept drifts,
in particular exploiting the generative nature of the DC-VAE model for continual
learning. In a continual learning framework, we assume a continually evolving
stream of data, represented as a sequence of subsets Sj , each characterized by a
specific underlying distribution. We define a sequence of λ∞ subsets S1, . . . , Sλ∞

arriving sequentially and assume access to only the data in the current subset St,
with t ≤ λ∞. We consider a CD occurring at time t, and thus assume that the un-
derlying distributions of S1, . . . , St−1 are similar among them, but significantly dif-
ferent from St. An initial DC-VAE model is trained using S1 data, which performs
accurately until time t. We refer to this model as DC-VAE 0 = {q0ϕ, p0θ} = {E0

ϕ, D
0
θ},

where E and D represent the encoding and decoding functions, respectively.

GenDeX follows the principles behind DGR to adapt DC-VAE 0 to the new da-
ta St, without forgetting the parameterization learned from S1, valid for S1, . . . , St−1.
Figure 3.2 explains the GenDeX approach. The decoding function D0

θ acts as ge-
nerator, and it is used to synthesize a new dataset F1→(t−1) out of Gaussian noise,
which mimics former training examples in S1 and its underlying distribution. We
say D0

θ acts as the teacher model. Then, the new student model DC-VAE 1 is trai-
ned on joint synthetic data F and new data St. This approach is conceptually sim-
ple, model-agnostic and overcomes catastrophic forgetting, as the updated model
DC-VAE 1 is now capable to handle pre- and post-concept drift data distributions.
The challenging part in GenDeX is to tame the latent space of DC-VAE to ac-
tually generate an time-serie process which reliably reproduces the data initially
used for training.

Recall that for the original multivariate DC-VAE latent space z ∈ RJ×T can
be potentially huge, e.g., in the examples we showed in Section 2.2, J = 4 and
T = 512, so we have to deal with a 2048-dimensional space, and thus, sampling
Gaussian noise of such dimensionality might not generate the desired outcome.
Therefore, as mentioned before and as reflected by the architecture of DC-VAE
in Figure 2.4, we trim the latent space dimensionality and focus exclusively on
z at T as show in Figure 2.18, resulting in a vector z ∈ RJ . Realizing a latent
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Figure 3.2: The GenDeX generative replay approach. At time t, a concept drift significantly
modifying the underlying distribution of St triggers a model retraining event i.
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space where the sample distribution approaches a zero-one normal distribution,
as the VAE hypothesis states, helps the generative part of the VAE model, i.e.,
the decoder, to generate samples that resemble the real ones, by simply drawing
inputs from such a Gaussian distribution. Next, we demonstrate how to realize
the generating function in practice, exploring the latent space and reporting the
results obtained in the synthetic generation of MTS data from the TELCO time-
series dataset.

3.3. Latent space and generative feature of DC-VAE

We now focus on the generative properties of DC-VAE, firstly by analyzing
the latent space generated by the encoding function Eϕ, and then by exploring
the generative capabilities of the generative model as represented by the trained
decoding function Dθ. The dimension of the latent space in a VAE model is one
of the hyper-parameters to define during model evaluation. These dimensions are
restricted by the dimensions of the input samples x space, as for the model to
only capture the relevant information or energy of the samples, there must be a
dimension reduction. By conception and hypothesis, the distribution of the samples
z living in the latent space must be a normal distribution with zero mean and an
identity covariance matrix. This is enforced during training with the second term
of the ELBO loss function 2.3.
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catastrophic forgetting or interference

•Constraint: previous data will not be available
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• Generative Replay (GR)
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• Generative: for overcoming catastrophic forgetting
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(a) Latent space representation. (b) Synthetic time-series generation.

Figure 3.3: DC-VAE latent space representation. Latent space z with J = 4. The colors
correspond to the hours of the day. Grid of samples generated from uniform sampling on
dimensions z[2] and z[3] of the z latent space. If the figure is traversed clockwise, it is possible
to see how the generated time-series evolve over time.
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3.3.1. Analysis for the multivariate approach
To evaluate the behavior of the encoder Eϕ, a representation of the latent space

is shown for a trained DC-VAE multivariate model using TELCO data. We use
J = 4 in the architecture adopted for the global approach, as illustrated in Figure
2.7, where the latent space consists of vectors of dimension J . Therefore, each
latent representation is given by z = z[0], z[1], z[2], z[3]. Figure 3.3(a) shows the
resulting latent representation, projected onto each bi-dimensional combination of
the dimensions z[i]. Each point in the figure corresponds to the projection of a
sample from the validation set.

The Gaussian property of the latent space distribution is essential for the time-
series generation process, as there are no input samples x in DC-VAE to use as
reference, thus samples need to be generated from input noise. Besides the shape
of the realized distribution, and to reflect the temporal dimension of the MTS
data, Figure 3.3(a) depicts the coded samples in colors, each color representing a
different hour of the day. More specifically, each sample color corresponds to the
discretized hourly values of the newest sample-value within the input sequence, at
time t. If we consider the bi-dimensional latent space {z[2], z[3]}, we observe how
each hour of the day maps to a different angular area in the data distribution. To

Figure 3.4: DC-VAE latent space representation, in an hourly basis. Sampling the latent space
at different angles results in different times of the day in the generated time-series.
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better appreciate this effect, Figure 3.4 shows the same encoding, but this time
highlighting the values of {z[2], z[3]} for each hour. Interestingly, each hour has
a particular range of angles, and these are sequentially arranged, ordered conti-
nuously by hour of the day. Under this setup, it is enough to feed the decoder
Dθ with samples drawn from a zero-one normal distribution to generate synthetic
time-series samples out of noise. Figure 3.3(b) displays a series of synthetically
generated µx windows for one of the twelve variables of TELCO, obtained by uni-
formly sampling the dimensions z[2] and z[3]. If the figure is traversed clockwise,
it is possible to appreciate how the generated time-series evolve over time.

We now move on to the generation of synthetic time-serie data, for the twelve
time-series in TELCO, using Dθ. Figure 3.5 shows two examples per time-series
generated out of noise, along with real time-series included in the original validation
set, for two days worth of time series duration. The trend of the twelve time-series is
perfectly captured by the synthetically µx generated examples, with the paramount
advantage of these being synthetically generated by Dθ. The twelve time-series are
properly generated, despite having different types of behavior and variability.

To evaluate the generative power of DC-VAE more broadly, we generate the
same number of samples (windows) as those in the validation set for each time-
series, and compare them with the real time-series values in the validation set.
Figure 3.6 reports, for each time-series, the distribution of the generated and real
values, in the form of a histogram. Each pair of distributions have strong over-
lapping, especially for non-spiky values. Time-series TS3, TS9, and TS10 show a
rather variable behavior, with values strongly deviating from the baseline, which
cannot be tracked by the generated baseline values, as shown in the corresponding
histograms. Recall that we are using DC-VAE to track the form and trends of the
time-series, by generating µx, which would naturally not capture spiky behaviors.

TS1

TS5

TS9

TS2

TS6

TS10

TS3

TS7

TS11

TS4

TS8

TS12

Figure 3.5: Synthetic MTS data generated through multivariate DC-VAE. For each time-series
in TELCO, two examples of time-series window generated from noise are depicted. The trend
of the twelve time-series is perfectly captured by the synthetically generated examples.
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Figure 3.6: Synthetic MTS data generated through DC-VAE. Histograms of samples (µx)
generated from noise for each time-series of the TELCO dataset. The same number of samples
as those in the validation set are generated for each time-series.

Indeed, we are interested in adapting the baselines for anomaly detection, to enable
a proper detection of deviations from these baselines.

3.3.2. Analysis for the global approach
In a multivariate approach, the differences between the samples correspond

to the specific time period covered by each window. As shown in Figure 3.4, the
time of day is a key factor that the encoder Eϕ needs to capture, forming distinct
clusters so that the decoder Dθ can accurately reconstruct the data without delays
or distortions. Another factor could be the day of the week, as some series in

ZPC2

ZPC1

Figure 3.7: Latent space representation in two dimensions for a global model – temporal
evolution.
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TELCO exhibit different patterns on weekdays compared to weekends. However,
beyond temporal characteristics, the encoder does not need to encode additional
information, since all series occupy the same positions in the input.

In a global approach, the encoder must capture both, temporal features and
the specific type of time-series it needs to reconstruct, as each time-series can have
different shapes and trends. To better understand the modeling capabilities of the
global DC-VAE, we focus on the analysis of the latent space for the different time-
series and times within the analysis period. Recall that the latent space dimension
for DC-VAE, as shown in Table 2.8, is set to J = 64. To facilitate visualization of
z in a two- or three-dimensional space, we apply the standard PCA and study the
top two and the top three principal components, denoted zPCi,...i=1,2,3.

To compare the encoding of temporal features with multivariate encoding, we
analyzed the entire test dataset to observe how the global model encodes different
windows across all time series with respect to the hour of the day. Figure 3.7 shows
the latent representations of each test sample xt for all 12 time series, with each
point color-coded according to a three-hour period of the day. When plotting the
first two principal components, a pattern similar to that observed in Figure 3.3 for
the multivariate approach emerges, where the direction in the latent space aligns
with the natural progression of hours on a clock, continuously ordered by the time
of day.

To analyze how the model encodes information from different time series to
accurately decode each with its distinct shape and behavior, we examined the la-
tent space for four different time series from the TELCO dataset. Figure 3.8 shows
the first three principal components of the latent representations, highlighting the
latent space for TS1, TS4, TS8, and TS12. As observed, DC-VAE maps each time
series to a distinct region of the latent space, demonstrating its ability to effecti-
vely differentiate between the characteristics of different time series. Samples from
different time series that are located close to each other in the latent space exhibit
similar behaviors in the time-series domain. For example, TS1 and TS12 are po-
sitioned closer to the center of the latent space, both showing marked differences
between weekends and weekdays. In contrast, TS4 and TS8, which do not exhibit
significant variations between weekdays and weekends, are grouped together and

Figure 3.8: Latent space representation per different time-series: TS1, TS4, TS8, TS12.
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positioned farther from the center of the latent space.

Since the global model allows us to differentiate and analyze each time series
individually, we can explore how DC-VAE encodes temporal characteristics that
are not shared across all TELCO time series. One such characteristic is the diffe-
rence between weekdays and weekends, which is present in some series but absent
in others. To investigate this, we selected two examples—one with and one without
this feature—to analyze their latent space encodings. Figures 3.9(a, b) show the
latent representations, where workday samples are displayed in purple and wee-
kend samples in yellow. In (a), we present TS1, which exhibits a clear difference
between weekdays and weekends, and in (b), TS4, which does not. For reference,
both plots include two spheres with radii of one and two, centered at the origin,
along with an example week from each time series displayed below the plots. As
observed, TS1 shows a distinct separation: weekend samples cluster closer to the
center of the latent space, while workday samples are distributed near the bor-
ders of the spheres. This clear distinction between workdays and weekends is not
present in TS4, where the samples are more uniformly distributed, reflecting the
absence of significant temporal variation between weekdays and weekends.

Finally, another feature present in only some time series is the variation across
days of the month. Time series TS11 and TS12 exhibit a downward trend th-
roughout the month, a behavior that can also be observed in their latent space
representations. Figure 3.10 shows the latent representation of TS12, with each
point color-coded according to the day of the month, ranging from day 1 in purple
to day 31 in yellow. As the month progresses, the latent representations shift from
the outer borders of the space towards the center, reflecting the series’ gradual
downtrend over time.

To conclude these evaluations, we observe that DC-VAE effectively captures

(a) Latent space representation of TS1. (b) Latent space representation of TS4.

Figure 3.9: Latent space representation specifically for TS1 and TS4 in a temporal basis,
considering workdays (purple) and weekends (yellow).
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Figure 3.10: Latent space representation for TS12, in a daily basis – from day 1 in purple to
day 31 in yellow, for the full month of March 2021.

and differentiates various time-series behaviors and temporal features present in
the training data. This indicates that the model and its architecture are sufficiently
expressive to handle large, heterogeneous time-series datasets. Additionally, the
visual analysis of the latent representations highlights how VAEs—despite their
generative nature—operate in a relatively transparent manner, facilitating inter-
pretation and analysis for human understanding. This characteristic represents a
significant advantage of VAEs, positioning them as powerful yet explainable gene-
rative AI models.

Furthermore, we observe that the latent encodings for all time series—or sub-
sets of them—tend to approximate a standard normal distribution. This implies
that sampling from an isotropic normal distribution with zero mean and an iden-
tity covariance matrix, and feeding these samples into the decoder Dθ, will result
in the generation of all time series (in the global approach) and all time instances
(in both approaches). This property is fundamental for the application of GenDeX,
the continual learning extension of DC-VAE.

3.3.3. GenDeX analysis
As we explained before, GenDeX is an anomaly detection model capable of

incorporating new information into the base model without losing performance on
the rest of the time-series that make up the system. For example, if we want to
start monitoring a new time-series added to the system but lack sufficient data
to train a model from scratch, we can perform fine-tuning on a previously trained
DC-VAE. This allows us to leverage a model likely trained on a substantial amount
of data from the same system.
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However, if fine-tuning is not handled carefully, it can lead to overfitting on
the new data, where the model weights are adjusted specifically for the new se-
ries, causing catastrophic forgetting of the other time-series. The same issue arises
when one of the time-series already included in the model experiences concept
drift, making the base model’s representation of normal behavior for that specific
series obsolete. Therefore, it is essential to incorporate this new behavior without
compromising the performance on the remaining series.

This is where the use of a generative model as the base model becomes ad-
vantageous for continual learning, as it allows to the generation of synthetic data
to preserve prior knowledge without the need to store large volumes of historical
data.

GenDeX for Concept Drift

The first analysis compares the behavior of the model when a single time series
undergoes concept drift (CD) and fine-tuning is required to update the model.
In Figure 3.11, we present the time series example used for this experiment. As
observed, the time series experiences three consecutive CDs, where both the mean
and standard deviation increase over time. Each CD lasts for three months, with
the first two months used for fine-tuning and the remaining month reserved as a
validation set to evaluate the reconstruction using the MSE. For this experiment,
we use the same twelve time-series from TELCO but from different months outside
the published dataset, where the affected time series is TS1.

To make the application of generative replay (GR) in this experiment more
explicit and to complement Figure 3.2, Figure 3.12 presents a diagram illustrating
the use of GenDeX in this scenario. It shows how the input data was composed
for each fine-tuning performed on the model during each CD. Initially, we have
Modelt−1, which represents the model trained with all the time series in the data-
set and is in operation when the first concept drift CDt occurs. At this point, the
current decoder (Dt−1) is used as a generator to produce synthetic data represen-
ting the base model learned by Modelt−1. This synthetic data is combined with the
data from CDt. The combined dataset is then used to fine-tune the model, resul-
ting in Modelt, which captures both the pre-CD data distribution and the newly
introduced distribution. This process is applied consecutively for subsequent CDs.

𝑆𝑡−1 𝐶𝐷𝑡 𝐶𝐷𝑡+1 𝐶𝐷𝑡+2

Figure 3.11: Time series experiencing three consecutive concept drifts. St−i represents the
previous values where the models were trained, while CDt, CDt+1, and CDt+2 represent the
consecutive concept drifts.
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Figure 3.12: Diagram of the application of GenDeX in the concept drift example. It shows
that for each CD, the decoder of the model in operation is used to generate the synthetic data
required for the update.

The objective of this experiment is to compare how the model adapts to each
instance of concept drift (CD) and how this adaptation affects the reconstruction
of the previous data distribution when using GenDeX versus not using it. The
application of GenDeX is illustrated in Figure 3.12, while the non-application
scenario involves fine-tuning the model using only the data from each CD without
incorporating synthetic data.

Figure 3.13 presents the results of this comparison for the affected time series.

𝑆𝑡−1

𝐶𝐷𝑡

𝐶𝐷𝑡+1

𝐶𝐷𝑡+2

𝑀𝑜𝑑𝑒𝑙𝑡−1

𝑀𝑜𝑑𝑒𝑙𝑡

𝑀𝑜𝑑𝑒𝑙𝑡+1

𝑀𝑜𝑑𝑒𝑙𝑡+2

Figure 3.13: Boxplot comparison of squared z-score exponent values across different data
distributions and models. Columns indicate the evaluation data distribution, rows indicate
the evaluated model. Left boxplot (Not) shows results without GenDeX, and right boxplot
(GenDeX ) shows results with GenDeX applied. Values near 1 indicate better reconstruction
quality.
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The columns represent the data distributions used for evaluation, while the rows
correspond to the models being evaluated. Each cell contains a boxplot illustrating
the distribution of squared z-score exponent values, where values close to 1 indicate
high reconstruction quality, and values near zero indicate poor reconstruction. In
each box, the left boxplot corresponds to results without GenDeX (labeled Not),
and the right boxplot represents results with GenDeX applied.

z-score =
|x− µx|

σx
(3.1)

The diagonal of the figure shows the results of models fine-tuned and evaluated
on the same data distribution used for the update. As observed, both approaches
achieve good performance in this scenario. This demonstrates that the combination
of synthetic data generated from the previous decoder, together with the CD data
in the case of GenDeX, does not negatively impact performance on the new data
compared to a model fine-tuned exclusively with the CD data.

On the other hand, to assess the impact of catastrophic forgetting, the key
observations lie in the first two columns, corresponding to the base distribution
St−1 and the first CD (CDt). Here, models fine-tuned on subsequent CDs are eva-
luated on the original and earlier data distributions. It is evident that performance
degrades for both approaches as models continue to be updated. However, compa-
ring the boxplots reveals that the degradation is more pronounced when GenDeX
is not used (left boxplots). In contrast, models using GenDeX better preserve
performance on the original data distribution and earlier CDs during continual
updates.

GenDeX Adaptation to Domain Changes

The next experiment aims to demonstrate how GenDeX performs when hand-
ling domain changes, specifically in scenarios where the base model needs to be
updated to incorporate new time series for monitoring. Using the TELCO dataset,
we trained a base model with the first six time series, TS1..,6, designed to detect
anomalies within this system of six series. The remaining time series were treated
as new data sources to be integrated into the base model, one at a time. For these
new series, we utilized the validation set to simulate a realistic scenario where only
a limited amount of data is available for model updates. The process of applying
GenDeX in this context is illustrated in the diagram in Figure 3.14.

𝑇𝑆8

+ +

𝑇𝑆7

+

𝑇𝑆9𝑇𝑆1…6

𝐷𝑡−1𝐸𝑡−1 𝐷𝑡−1 𝐸𝑡 𝐷𝑡 𝐷𝑡 𝐸𝑡+1 𝐷𝑡+1 𝐸𝑡+2 𝐷𝑡+2𝐷𝑡+1

𝑀𝑜𝑑𝑒𝑙𝑡−1 𝑀𝑜𝑑𝑒𝑙𝑡 𝑀𝑜𝑑𝑒𝑙𝑡+1 𝑀𝑜𝑑𝑒𝑙𝑡+2

…

Figure 3.14: Diagram of the application of GenDeX in the domain change example. It illustrates
how, for each time-series incorporation, the decoder of the model in operation is used to
generate the synthetic data required for model updating.
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Regarding the synthetic data generation process, given its speed and scalability,
we could generate as many synthetic samples as needed. However, for consistency
and comparability, we generated a number of synthetic samples equal to the num-
ber of real samples multiplied by the number of time series already present in the
model prior to the update.

For comparison, we also evaluated a baseline approach where fine-tuning was
conducted using only the data from the newly introduced time series, without
incorporating any synthetic data generated by GenDeX.

Figure 3.15 presents the MSE results for the reconstruction of the time-series
originally present in the base model Modelt−1, highlighting how the reconstruction
error evolves as new time-series are incorporated through standard fine-tuning
(left) and with GenDeX (right). The first row shows the results for TS1 and
TS2. The blue boxplot represents the reconstruction error using Modelt−1, while
the subsequent boxplots (from left to right) represent the error evolution after
incrementally adding new time-series, from TS7 to TS11.

Without GenDeX (left), the reconstruction error increases as more time series
are added, indicating a degradation in performance for the original series TS1 and
TS2. Conversely, when using GenDeX (right), the error decreases, demonstrating
improved performance after the update. For TS3 (second row), the incorporation of
new time series has minimal impact on reconstruction quality in both approaches,
as the error remains stable across the boxplots. A similar trend is observed for
TS4 without GenDeX ; however, when GenDeX is applied, the error decreases
compared to the initial boxplot. The third row mirrors the behavior of the first,
where the use of GenDeX consistently prevents performance degradation and, in

Figure 3.15: Results of the MSE over the series TS1..,6, used to train the base model prior
to the domain changes. The results without GenDeX (Not) are shown on the left, and with
GenDeX on the right. The blue boxplot represents the values of the base model, while the
remaining boxplots (from left to right) show the results after updating the model with TS7

through TS11.
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some cases, even improves reconstruction quality.

These results demonstrate that for this example, GenDeX effectively mitigates
the risk of catastrophic forgetting when integrating new time-series, preserving or
even improved the reconstruction quality for previously learned data while sup-
porting continuous model updates.

Another important consideration when applying a continual learning method
like GenDeX is whether it could interfere with the performance of the newly
incorporated information. On one hand, fine-tuning modifies the model specifically
to adapt to the new data, while on the other, GenDeX mixes the new information
with previously learned knowledge to preserve prior performance.

In Figure 3.16, we present the MSE results for the reconstruction of the time-
series TS7..,11, which were sequentially added to the base model as new time-series.
Regarding catastrophic forgetting, the results are consistent with those observed
for the previously included series (TS1..,6), where GenDeX effectively mitigates
performance degradation—except for a minor deviation in TS9.

Additionally, when examining the first boxplot for each time-series (represen-
ting performance immediately after its incorporation) and comparing results with
and without GenDeX, the performance remains comparable. This indicates that
the application of GenDeX does not compromise the model’s ability to effectively
integrate new information while still preserving the performance on previously
learned data.

While in both examples—the Concept Drift and Domain Change problem—the
application of GenDeX clearly demonstrates its ability to mitigate the catastrophic
forgetting problem without losing performance on the newly incorporated informa-
tion regarding reconstruction, which is the foundation for the anomaly detection.
Consequently, the next logical step is to evaluate solely the anomaly detection
performance. For this evaluation, we specifically focus on the last example be-
cause it utilizes the original TELCO dataset without alterations and includes the

Figure 3.16: Results of the MSE over the series TS7..,11, which were incrementally incorpo-
rated into the model using fine-tuning. The results without GenDeX (“Not”) are shown on
the left, while those with GenDeX are shown on the right. Each time-series starts with the
model’s performance immediately after its incorporation (first boxplot for each series), while
the subsequent boxplots to the right represent the reconstruction error for the same series after
the addition of further time-series.
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corresponding labels.

To begin, we fix the operational points (α’s) for TS1..,6 using Modelt−1 on a
validation set. Following this, we evaluate the subsequent models—after incorpo-
rating their respective series—on the test set of TS1..,6. As shown in Figure 3.17,
the F1r and the area under the curve of PrRr (PR AUCr) values are presented
in a bar graph format. In line with Figure 3.15, the blue bar represents the per-
formance of Modelt−1, whereas the subsequent bars illustrate the performance of
Modelt,...t+4.

If we analyze the results series by series, starting with TS1, we observe that,
regardless of whether GenDeX is applied, the performance in both metrics, F1r
and PR AUCr, deteriorates with the incorporation of most of the new time-series.
For TS2, when the last two time-series, TS10 and TS11, are incorporated, the F1r
decreases when only fine-tuning is used. However, with GenDeX, the value increa-
ses consistently for all incorporations. In the case of TS3, the performance remains
unchanged for both approaches. For TS4, a clear improvement in F1r is observed
with the use of GenDeX, although the opposite occurs with PR AUCr. TS5, like
TS3, shows identical performance for both approaches. Finally, for TS6, similar to
TS2, there is a noticeable improvement with the use of GenDeX. In conclusion,
for this example, the anomaly detection performance does not exhibit substantial
degradation when fine-tuning is applied to new time-series, which GenDeX could
improve. This shows that, for this example, the degradation in the model’s recons-
truction is not significant enough to affect anomaly detection performance, though
this does not rule out the possibility that it could happen in other cases.

Figure 3.17: Results of the F1r and PR AUCr over the series TS1..,6, used to train the base
model prior to the domain changes. The results without GenDeX (Not) are shown on the left,
and with GenDeX on the right. The blue boxplot represents the values of the base model,
while the remaining boxplots (from left to right) show the results after updating the model
with TS7 through TS11.
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3.4. Conclusions
DC-VAE is a promising approach for anomaly detection in time-series data.

However, like other learning-based methods, it requires retraining when faced with
concept drift (adapting to continually evolving data) or domain changes (incorpo-
rating new time series). To address these challenges, we have extended DC-VAE
into a continual learning framework, leveraging the generative AI capabilities of
the underlying model.

Through GenDeX, DC-VAE can be retrained efficiently without requiring ac-
cess to historical time-series data, maintaining performance while mitigating the
effects of catastrophic forgetting. The key idea behind GenDeX is that DC-VAE
can continually enhance its tracking and baselining capabilities as it encounters
new data with different statistical characteristics, thereby improving its generali-
zation and anomaly detection performance over time.

In this chapter, we investigate the generative capabilities of DC-VAE, exploring
its latent space and demonstrating how it can be harnessed to generate synthetic
time-series data. Using real ISP measurements, we show that DC-VAE can genera-
te synthetic time-series samples that accurately replicate the behavior and trends
of the original data used for training, drawing these samples from simple Gaussian
noise.

When evaluating reconstruction performance in concept drift and domain adap-
tation tasks, GenDeX outperforms simple fine-tuning. It effectively addresses the
limitations of catastrophic forgetting, enables retraining without access to past
data, and maintains strong performance when incorporating new information.
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Chapter 4

Foundation Models for Time-Serie
Anomaly Detection

In this chapter, we focus on devising a Generative AI model capable of matching
or even surpassing the performance of conventional time-series modeling methods
without the need for training on the specific target dataset - a concept known
as Zero-Shot Learning (ZSL). ZSL is a problem setup in deep learning where,
at test time, a learner observes samples from classes which were not observed
during training, and needs to predict the class that they belong to. The ZSL
concept is powerful and appealing for anomaly detection applications, and such a
foundational model could be utilized with limited, or even without specific fine-
tuning on the downstream data typically used by other models. The zero-shot
approach offers several inherent advantages: firstly, it simplifies the application
of the model for time-series modeling, eliminating the requirement for specialized
knowledge of fine-tuning techniques and the significant computational resources
associated with them; secondly, it naturally aligns with scenarios characterized
by limited data availability, where training or fine-tuning data is limited; lastly,
by harnessing the comprehensive pattern extrapolation capabilities of extensively
pre-trained models, it circumvents the substantial time, effort, and domain-specific
expertise typically demanded for crafting dedicated time-series models.

We therefore investigate if a model pre-trained on multiple time-series data
can learn temporal patterns useful for accurate reconstruction on previously un-
seen time-series. For doing so, we use as starting point our former DC-VAE model.
VAEs are generative AI models that learn the underlying distribution of the data
and can generate new samples from this distribution. In the context of time-series
data, VAEs can capture latent representations of temporal patterns and generate
sequences that exhibit similar characteristics, making them powerful for generali-
zation and ZSL. VAEs learn a low-dimensional latent space representation of the
input data, which captures the underlying structure of the data in a compressed
form. By learning meaningful representations, VAEs can generalize well to unseen
data points that lie within the same distribution as the training data, supporting
generalization to new instances. As generative models, VAEs can generate new
samples from the learned latent space distribution, potentially enabling zero-shot
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learning (ZSL) by producing samples that belong to unseen classes or categories
without explicitly being trained on them. By sampling from the latent space, VAEs
can generate diverse and realistic data points even for classes not present in the
training set.

We introduce and investigate FAE (Foundational Auto-Encoders), a founda-
tional generative-AI model for anomaly detection in time-series data, based on in
the previouse introduced global DC-VAE.

4.1. Related Work
Transformer-based models [56] are gaining popularity in recent years for time-

series analysis, given their remarkable performance in large-scale settings, such as
long sequence time-series forecasting (LSTF). LSTF requires capturing long-range
dependencies between input and output efficiently. Earlier examples include the
TFT interpretable model [57] and the MQTransformer model [58]. The Informer
model [59] introduced Transformers for long sequence forecasting through sparse
self-attention mechanisms. This concept has since been further refined through
various forms of inductive bias and attention mechanisms in models like the Au-
toformer [60] and the FEDformer [61].

Finally, there is a recent surge in papers targeting the conception of foundation
models for time-series data, capable of generating accurate predictions for diverse
datasets not seen during training. The underlying concept of these models is to
rely on highly expressive, large-scale architectures which are trained on millions or
billions of time-series data points, coming from very diverse domains and having
high heterogeneity in terms of temporal behaviors and characteristics. TimeGPT-
1 [62], PromptCast [63], LLMTime [64], TimesFM [65], Lag-Llama [66], and Time-
LLM [67] are all examples of novel foundation models for time-series forecasting,
which target a Zero-Shot Learning (ZSL) application.

4.2. Preliminary Analysis of Zero-Shot Learning over TEL-
CO

We now present FAE in a zero-shot setting, evaluating the model on time
series that were not seen during training. We focus our analysis on TS12 due
to its combined seasonality and distinctive temporal trend, as well as its strong
correlation with TS11. To conduct this evaluation, we train three DC-VAE models
on three different TELCO training datasets, each considering a different number
of time series TSi, representing three distinct FAE models. The first model uses
all 12 time-series – we refer to it as full-FAE ; the second model considers a zero-
shot setting for TS12, with a training dataset which includes time-series TS1 to
TS11, leaving out all samples from TS12; given the strong temporal correlation
between TS12 to TS11, we also train a third model leaving out all samples from
TS11 and TS12, i.e., training on time-series TS1 to TS10. The full-FAE model
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Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS12}

(a) FAE predictions for TS12, with full-FAE (12 time-series).

Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS11}

(b) FAE predictions for TS12, with FAE trained without TS12.

Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS10}

(c) FAE predictions for TS12, with FAE trained without TS11 and TS12.

Figure 4.1: Zero-shot modeling experimentation, predicting TS12 for two weeks in the testing
dataset (May 2021). (a) FAE is trained on the full, 12 time-series training set – modeling
performance is optimal. (b) FAE is trained on 11 time-series, leaving out TS12 – performance
remains almost unchanged. (c) FAE is trained on 10 time-series, leaving out TS11 and TS12

– modeling performance is impacted.

mimics a situation where we pre-train with a sufficiently large and heterogeneous
dataset which covers the statistical behavior of the downstream data – i.e., a
model that has seen it all. The other two models mimic two different levels of
zero-shot learning: the former represents a pure zero-shot setting for TS12, where
the pre-trained model has nevertheless observed a similar statistical behavior in
a different time-series, i.e., TS11 – in particular, it has seen both the seasonality
and the monthly trend behaviors; the latter represents a more challenging setting,
where the pre-trained model has not seen the monthly trend behavior, which is
not present in TS1 to TS10.

Figure 4.1 presents the prediction performance of the three models, when ap-
plied to two weeks of TS12 samples. In Figure 4.1(a), the modeling performance for
full-FAE is optimal, as it can properly track the different behaviors and patterns
in the time-series. A similar performance is observed in Figure 4.1(b) for the se-
cond model, which learns the characteristics of TS12 at training time, from TS11.
Not surprisingly, the performance of the third model in Figure 4.1(c) is signifi-
cantly worse than for the other two models, given the lack of a similar temporal
pattern in the training data. To some extent, there is an identification with the
patterns observed in time-series TS1 – note how the daily sharp peaks are exacer-
bated – which is coherent with their close representations in the latent space (cf.
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ZPC3
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Figure 4.2: Latent space representation for TS12, with different FAE pre-trained models. Colors
represent the different days of the analysis window, going from day 5 in purple to day 19 in
yellow, for the full month of March 2021. (a) is the result for the Full-FAE, (b) for FAE trained
without TS11, and (c) for FAE trained without TS11 and TS12

Figure 3.8). Nevertheless, it somehow manages to capture and track the monthly
downtrend, even without previous evidence of it.

To conclude, Figure 4.2 shows the latent representation of the TS12 test samples
for the three FAE pre-trained models, where colors represent the different days
of the analysis window, going from day 5 in purple to day 19 in yellow. Full-FAE
encoded samples form a sort of cone in the latent space in Figure 4.2(a), where
the base (purple and blue) represents the first days of the month and the tip –
pointing towards the center of the latent space – represents the days towards end
of the month. Figure 4.2(b) shows a similar cone-shape for the samples encoded
by the second pre-trained model, but this time, the tip of the cone has moved
away from the center. Finally, while Figure 4.2(c) shows a similar distribution of
samples, with yellow and clearer colors closer to the center and darker ones at the
periphery of the central sphere, the regular cone-shape observed before is no longer
well-defined, evidencing a different mapping behavior of the model.

4.3. The pre-trained model for FAE
To achieve the desired diversity of time-series data necessary for obtaining a

robust pre-trained model—the foundation of our foundational model—we selected
a dataset that meets these criteria: UCR’21, presented in [68].

4.3.1. The UCR dataset
The UCR’21 dataset includes 250 time-series from various sources, such as

electric power systems, medical applications, telecommunications, and more. This
dataset reflects over 20 years of work surveying time-series anomaly detection
literature and consolidating datasets into a comprehensive collection.

Figure 4.3 illustrates 12 different examples of time-series from UCR. As obser-
ved, the dataset showcases significant variability in shapes and frequencies. This
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Figure 4.3: Twelve different examples of time-series from the UCR ’21 dataset. Each plot
displays the first 1024 values, highlighting the diversity of frequencies and periods present in
the dataset.

diversity is further emphasized as each plot represents the first 1024 samples of a
series, revealing different numbers of periods across the examples.

This diversity, combined with the size of the UCR dataset—over 5 million data
points in the training set alone—posed a significant challenge at the beginning. It
was the first time we applied an architecture like the global DC-VAE to a dataset
with such characteristics. In comparison, TELCO, with fewer than 100,000 data
points in its training dataset, offered a much more uniform structure: all time
series originated from the same system, shared the same sampling frequency (5
minutes), and followed the same daily seasonality.

Due to these differences, it became necessary to enhance our architecture with
additional tools to effectively handle the complexity of the UCR dataset.

4.3.2. Giving flexibility to the architecture
Inspired by the WaveNet architecture [6], which influenced the use of dila-

ted convolutions in DC-VAE, we introduced gates, residual connections, and skip
connections into the model. These additions were carefully chosen for two main
reasons.

The first and most important reason lies in the diversity of sampling frequencies
and periods present in the UCR’21 dataset. The combination of gates, residual
connections, and skip connections enhances the model’s flexibility. Gates allow
the model to suppress specific parts of the hidden layer outputs, passing only the
relevant information along the time and filter axes. Residual connections enable
the model to preserve the input information from one layer to the next, providing
the possibility to skip certain layers that may not be relevant for a given input.
This is particularly useful in our architecture with dilated convolutions, where each
layer captures correlations at different temporal scales. Finally, skip connections
summarize information from all layer outputs, benefiting both the encoder and

69



Chapter 4. Foundation Models for Time-Serie Anomaly Detection
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Figure 4.4: Encoder architecture of the FAE. This diagram shows the new components incor-
porated into the previously presented DC-VAE. Unlike the latter, each dilated convolutional
layer includes a gate, and residual connections are added. At the end, a skip connection sum-
marizes the outputs of each residual block. The decoder is symmetric, so the same diagram
can represent the full architecture.

decoder. In Figure 4.4, we can observe a diagram of the architecture connections
for the encoder. As mentioned before, this is similar to the structure presented
in [6], but our version includes some modifications in the output. The Dilated
Conv block represents a dilated convolution layer, which is the same as the hidden
layer shown in Figures 2.18 and 2.4.

The second reason is that these mechanisms do not introduce many additional
trainable parameters. For example, a gate is simply the element-wise multiplica-
tion of two different nonlinear transformations applied to the same output of the
dilated convolution: a hyperbolic tangent (tanh()), which processes preliminary
information to pass to the next level, and a sigmoid function (σ()), which acts
as a gating mechanism. Similarly, a residual connection is a simple sum where
the layer’s input is added to its output, while skip connections aggregate all layer
outputs at the end of the encoder or decoder block. Additionally, these mecha-
nisms accelerate convergence, helping the model train more efficiently. The only
part where we add more parameters is in the 1 × 1 convolution layers, which we-
re added to maintain the same dimensions between the input and output of the
main block to enable the residual connection sum. By incorporating these techni-
ques, we maintain a lightweight and scalable architecture, aligning with our goal
of designing an efficient model.

4.3.3. Pre-trained model
For the pre-trained model on UCR’21, we first performed a hyperparameter

search to identify the best model configuration. Notably, the modifications to the
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Table 4.1: Grid of hyperparameters used in the model calibration of the pre-trained model for
FAE.

Hyperparameter Grid Search Ranges Best

T - sequence length {128 − 2048}, step=128 128

J - latent dimension {64 − 3T/4}, step=32 96

γ - learning rate {1e−5 − 5e−6} 1,8e−5

m - mini-batch size [32, 64, 128] 128

U - number of filters {64 − 512}, step=16 256

1000

500

0

DISTORTED1sddb40

0

20

40

DISTORTEDCIMIS44AirTemperature1

100

0

100

DISTORTEDECG1

0.00

0.05

0.10

0.15
DISTORTEDGP711MarkerLFM5z1

50

100

DISTORTEDInternalBleeding10

0.1

0.2

0.3

DISTORTEDLab2Cmac011215EPG1

100

200

300

400
DISTORTEDPowerDemand1

1

0

1

DISTORTEDTkeepFifthMARS

10

0

10

DISTORTEDWalkingAceleration1

1000 1200 1400 1600 1800 2000

1000

0

DISTORTEDapneaecg2

1000 1200 1400 1600 1800 2000

2000

0

2000
DISTORTEDgait1

1000 1200 1400 1600 1800 2000

2000

0

DISTORTEDgaitHunt1

Figure 4.5: Reconstruction examples over the values of the same time-series from the UCR
dataset as in Figure 4.3, but using the test set.

architecture did not introduce any additional hyperparameters. In Table 4.1, we
present the search grid and the selected values for the pre-trained model.

Due to the increase in the number of filters per layer (U = 256) and the size
of the latent space (J = 96) compared to previous configurations, this model has
2.6 million trainable parameters, significantly fewer than the more than 5 million
samples in the UCR’21 training set.

A portion of the reconstruction results on the test set can be observed in Figure
4.5. This figure demonstrates that, despite the variability of the time series, the
model was able to learn a well-structured latent space representation. As a result,
the decoder successfully generates accurate reconstructions of the diverse behaviors
present in the dataset.

4.4. Zero-Shot Evaluation on TELCO
After pre-training the FAE model, we evaluated its foundational properties

on the TELCO dataset. We expect that the features learned from the diverse
time series in UCR’21 will help the model encode the samples in a way that
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represents their characteristics, even if they were not seen before, allowing the
decoder to reconstruct the samples accurately. As in previous experiments, we
began by comparing reconstruction metrics.

In Figure 4.6(a), we compare the MSE of a global DC-VAE and a multiva-
riate DC-VAE trained directly on TELCO (previously shown in Figure 2.19(b)).
Meanwhile, Figure 4.6(b) presents the reconstruction performance of FAE in a
zero-shot setting. Notably, the boxplots for the DC-VAE models and FAE are
comparable, except for TS9, where the MSE boxplot is wider for the FAE recons-
truction.

Additionally, in Figure 4.7, we visualize the zero-shot reconstruction for all
time series in TELCO. As observed, the values of µx consistently track the real
series, demonstrating performance comparable to previous reconstruction examples
with DC-VAE models trained on TELCO (e.g., Figures 2.1, 2.5, 2.6, and 2.10).
However, when examining the σx values, we notice noisier and less meaningful
results compared to previous cases, which poses a problem for anomaly detection.

To compare the anomaly detection performance of zero-shot FAE against mul-
tivariate and global DC-VAE models, we present the results on the TELCO test
set in Table 4.3. As shown in the FAE column, the majority of the F1r values
show worse performance compared to the DC-VAE models, except for TS4 and
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(a) Multivariate and global DC-VAE reconstruction results.
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(b) FAE zero-shot reconstruction results.

Figure 4.6: MSE results for reconstruction predictions: (a) Results for multivariate and global
DC-VAE models trained on TELCO. (b) Results for zero-shot inference using the pre-trained
FAE.
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Figure 4.7: Reconstruction examples over the TELCO dataset using the FAE model.

Table 4.2: DC-VAE with new results obtained using FAE. For the latter, two columns are
presented: the first, labeled simply as FAE, shows results calculated in the same manner as for
the DC-VAE models. In the FAEµx column, the z-score calculation was performed using only
the values of µx.

DC-VAE global DC-VAE FAE FAEµx

TS ID Rr Pr F1r Rr Pr F1r Rr Pr F1r Rr Pr F1r

TS1 58 71 64 29 60 39 14 67 24 21 100 41

TS2 74 20 67 71 80 75 8 100 15 41 100 59

TS3 86 47 60 71 29 42 43 30 35 71 45 55

TS4 63 21 32 50 35 41 50 50 50 38 56 45

TS5 75 50 60 50 67 57 38 38 38 63 56 59

TS6 57 83 68 57 100 72 29 100 44 71 50 59

TS7 72 90 80 50 71 59 40 44 42 50 100 67

TS8 44 80 57 38 50 43 25 40 31 50 80 62

TS9 17 11 13 0 0 0 17 19 18 17 33 22

TS10 52 59 55 60 24 34 35 15 21 30 26 28

TS11 100 25 40 100 21 35 33 8 13 33 7 12

TS12 100 11 22 100 100 100 0 0 0 0 0 0

mean 67 47 52 56 53 50 28 43 28 40 54 41

median 68 49 59 54 55 42 31 39 27 40 53 50

TS9, where FAE performs better. This is mainly due to a decrease in Recallr
values.

As observed in the reconstruction evaluation, the σx values do not appear to
be good representations of the real data, and as previously mentioned, this affects
the anomaly detection (AD) performance. Although σx is a fundamental part of
our approach to creating a normal environment for AD, we decided to further
investigate the performance using only the µx values for scoring. In this approach,
the σx values were excluded, and the z-score was calculated using a rolling mean
and standard deviation with a window size equal to T , based on the absolute error
between x and µx.
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First, we calculated the absolute error for each time series (e = |x − µx|).
Then, for each time point t in the series e, we computed the mean and standard
deviation, denoted as µet and σet , respectively, using the previous T values. This
is shown in Equations 4.2 and 4.3:

µet =
1

T

T−1∑
j=0

et−j (4.1)

σet =

√√√√ 1

T

T−1∑
j=0

(et−j − µet)
2 (4.2)

z-scoret =
|et − µet|

σet
(4.3)

For each value of the time series x, excluding the first T values, we calculated
the z-score as shown in Equation 4.3.

As with the previous scoring method, we first selected the α values using the
validation set and then performed detections on the test set. The results are shown
in the FAEµx column.

As observed, this adjustment significantly improves performance. The majority
of the F1r values increase compared to the original FAE, except for TS4, TS11,
and TS12, which remain the same. When observing the mean and median in the
last rows, both are better than the FAE values, with the median even showing an
improvement of 8 points over the global DC-VAE.

Although it does not surpass the DC-VAE models trained directly on TELCO
in most cases, the results are comparable.

4.5. Zero-Shot Learning against Lag-Llama
To compare the FAE with another foundation model, we chose a recently

proposed algorithm, Lag-Llama [66]. Lag-Llama is a general-purpose foundation
model for univariate probabilistic time series forecasting, based on a decoder-only
transformer architecture that uses lags as covariates.

Lag-Llama is pretrained on a large corpus of diverse time series data from se-
veral domains and demonstrates strong zero-shot generalization capabilities com-
pared to a wide range of forecasting models on downstream datasets across do-
mains. Moreover, when fine-tuned on relatively small fractions of such previously
unseen datasets, Lag-Llama achieves state-of-the-art performance, outperforming
prior deep learning approaches, and emerging as the best general-purpose model
on average.

Unlike FAE, which is designed for anomaly detection, Lag-Llama is a forecas-
ting method. To use it for anomaly detection, we configured it with a context size
of 128 values to make it comparable with the T values used in FAE. Additionally,
we set the method to output five predictions for the next value and return the mean
of these predictions. Using this configuration, we performed zero-shot inference on

74



4.5. Zero-Shot Learning against Lag-Llama

TS1 TS2 TS3

TS4 TS5 TS6

TS7 TS8 TS9

TS10 TS11 TS12

X
Lag-Llama X

Figure 4.8: Reconstruction examples on the TELCO dataset using zero-shot inference with the
Lag-Llama model.

the concatenated train and validation sets of TELCO to calculate the α values for
each time series, and then applied the model to the test set. One key observation
is that Lag-Llama required more than 20 minutes to generate predictions for each
set, whereas FAE produced its predictions in under 1 minute.

To illustrate the predictions compared to the real values, Figure 4.8 presents
an example from a portion of the TELCO test set. As observed, the zero-shot
predictions closely follow the real values; however, they appear noisier than the µx

values shown in Figure 4.7.

Then, applying the same rolling z-score used for FAEµx, we evaluated the
performance of zero-shot anomaly detection using Lag-Llama. In Table 4.3, we

Table 4.3: Comparison of zero-shot anomaly detection on TELCO using FAE, FAEµx , and
Lag-Llama. The best F1r values are highlighted.

FAE FAEµx Lag-Llama

TS ID Rr Pr F1r Rr Pr F1r Rr Pr F1r

TS1 14 67 24 21 100 41 29 100 44

TS2 8 100 15 41 100 59 4 13 6

TS3 43 30 35 71 45 55 29 29 29

TS4 50 50 50 38 56 45 50 19 27

TS5 38 38 38 63 56 59 25 67 36

TS6 29 100 44 71 50 59 29 67 40

TS7 40 44 42 50 100 67 50 50 50

TS8 25 40 31 50 80 62 25 33 29

TS9 17 19 18 17 33 22 11 12 11

TS10 35 15 21 30 26 28 15 20 17

TS11 33 8 13 33 7 12 67 9 15

TS12 0 0 0 0 0 0 0 0 0

mean 28 43 28 40 54 41 27 35 25

median 31 39 27 40 53 50 27 24 28
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compare the results of FAE and FAEµx with those of Lag-Llama. As observed,
the performance of Lag-Llama is comparable to that of FAE, but for the majority
of the time series, FAEµx performs better, except for TS1 and TS11, where Lag-
Llama is superior. This shows that our method, FAE, although it does not achieve
a good estimation of σx to be compared with a DC-VAE model trained on TELCO,
can achieve a better representation of µx than the more complex and sophisticated
pre-trained method, Lag-Llama, for better zero-shot anomaly detection.

4.6. Conclusions
We have introduced FAE, a novel approach for time-series modeling, inspired

by the success of large pre-trained foundation models in different domains. FAE fo-
cuses on detecting anomalies in univariate time-series data, leveraging DC-VAE for
pre-training on large-scale, heterogeneous time-series datasets. This pre-training
potentially enables it to model and track a baseline for normal operation, even on
previously unseen datasets.

The assessment of FAE ’s performance has shown promising results. In par-
ticular, we have demonstrated FAE ’s ability to capture and distinguish various
temporal behaviors within the training time-series, highlighting its capacity to
model large and heterogeneous datasets effectively.

Our exploration extended to the zero-shot learning scenario, where FAE ’s per-
formance on unseen time-series was evaluated. To enhance flexibility in handling
different sampling frequencies and seasonality patterns, we incorporated additio-
nal architectural components into DC-VAE, including gating mechanisms, residual
connections, and skip connections. These modifications allow FAE to adapt mo-
re effectively while ensuring fast convergence without compromising the model’s
efficiency.

We trained a diverse pre-trained model for FAE using the UCR’21 dataset, de-
monstrating its ability to track various behaviors and patterns in time-series data.
The zero-shot capability of this model was tested on TELCO, comparing its re-
construction and anomaly detection performance against models selected through
hyperparameter search and extensively trained on the target data distribution. No-
tably, FAE, pre-trained on a diverse time-series distribution that excluded TELCO
data, was able to track TELCO’s time-series effectively using µx. However, unlike
the DC-VAE model, FAE exhibited noisier σx values, which negatively impacted
anomaly detection performance. By adopting a new scoring approach that levera-
ged the strong performance of µx, FAE achieved results approximately comparable
to those of the DC-VAE models.

To further benchmark the zero-shot detection capabilities of our model, we
implemented an anomaly detector based on the time-series foundation forecasting
model Lag-Llama. While Lag-Llama successfully tracked TELCO time-series, its
predictions were noisier compared to FAE ’s µx values, resulting in poorer overall
performance compared to our FAE.

These findings underscore FAE ’s potential as a viable foundation model for
time-series analysis.
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Chapter 5

Concluding Remarks

In this work, we have presented —and progressively extended— the DC-VAE
framework, demonstrating its effectiveness as an anomaly detection method for
time-series data through three key developments: the original DC-VAE, its conti-
nual learning extension GenDeX, and the foundational model FAE.

The original DC-VAE combines the strengths of variational autoencoders with
a fully convolutional architecture featuring dilations. This design ensures efficient
training, stable convergence, and near real-time anomaly detection capabilities. Its
simplicity, characterized by a small set of hyperparameters and Gaussian-based th-
resholding, facilitates both supervised and unsupervised training. When evaluated
on real-world datasets such as TELCO and SWaT, DC-VAE consistently outper-
formed traditional statistical models, machine learning approaches, and even other
deep learning-based methods, showcasing its robustness in diverse operational en-
vironments.

To address the challenges posed by concept drift and domain adaptation, we
introduced GenDeX, a continual learning framework built on top of DC-VAE. Le-
veraging the model’s generative capabilities, GenDeX enables efficient retraining
without the need for historical data, mitigating catastrophic forgetting while main-
taining strong anomaly detection performance. Through synthetic data generation
and robust adaptation to evolving statistical characteristics, GenDeX demonstra-
ted superior performance over conventional fine-tuning techniques, particularly in
dynamic environments.

Further extending the DC-VAE framework, we developed FAE, inspired by
the success of foundation models in other domains. FAE applies pretrained know-
ledge from large, heterogeneous time-series datasets to anomaly detection tasks,
even in zero-shot scenarios. Its architecture, enhanced with gating mechanisms
and residual connections, facilitates fast convergence and adaptability to new data
distributions. Despite some challenges in modeling uncertainty σx for unseen da-
tasets, FAE achieved competitive results in comparison to extensively fine-tuned
models and outperformed state-of-the-art foundation models like Lag-Llama.

Overall, the evolution from DC-VAE to GenDeX and FAE illustrates a com-
prehensive approach to time-series anomaly detection, balancing model simplicity,
adaptability, and performance. These advancements highlight the potential of com-
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bining variational inference with continual learning and foundation modeling prin-
ciples, paving the way for future research in scalable, interpretable, and resilient
time-series analysis.

5.1. Future Directions
In this section, we outline some potential lines of future work that could be

based on this research. The complete convolutional architecture allows for flexibi-
lity with respect to the window size of the input samples. Specifically, if we train
a DC-VAE by fixing a maximum window size T , but generate a training dataset
with varying window sizes, the model could be capable of producing reconstruc-
tions at different resolutions. We believe that this approach empowers the model,
during inference, to detect anomalies at multiple time scales. Due to the fast infe-
rence speed of DC-VAE, this process could be performed efficiently. By sweeping
between smaller and larger resolutions, we may be able to identify anomalies that
could be difficult to detect with a single resolution.

In addition, in this work, all the proposed models rely solely on the values
of the time series, without considering the information provided by timestamps.
Preliminary tests were conducted, and incorporating this information resulted in
highly similar predictions. This suggests that the model prioritizes the countable
and finite aspects of the timestamp data over the stochastic nature of the series.
However, effectively leveraging timestamp information could lead to a more robust
base model, potentially reducing false positives on specific dates. Furthermore, it
could provide greater control over the samples generated by the decoder. This
capability would enable the model to generate complete time series, making it
useful for creating different scenarios or filling gaps in missing data.
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GP-VAE: Deep Probabilistic Time Series Imputation. In International confe-
rence on artificial intelligence and statistics, pages 1651–1661. PMLR, 2020.

[29] Siddharth Ramchandran, Gleb Tikhonov, Kalle Kujanpää, Miika Koskinen,
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