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In the context of audio restoration, the need to remove background noise from historical
music recordings is a recurring problem, for which traditional signal processing and super-
vised deep learning methods have been previously applied. In this work, a generative approach
that adapts conditional diffusion sampling for removing perceptually distributed noise is in-
vestigated, using the particular case of background noise removal from solo classical piano
recordings as a proof of concept. The proposed method uses a set of noise examples to
simulate perceptually distributed noise with specific characteristics throughout conditional
diffusion sampling. Experiments with real historical 78 RPM recordings and clean recordings
with added 78 RPM noise and tape hiss demonstrate that diffusion-based audio denoising
performs comparably to state-of-the-art deep learning methods.

0 INTRODUCTION

Recorded audio has a long history dating back to the late
19th century. From wax cylinders and vulcanite discs, to
vinyl long plays and magnetic tapes, to CDs and digital
audio formats, technological advances in audio recording
have shaped the way people listen to music today.

All recorded sound has some level of degradation asso-
ciated with the recording, storage, or reproduction stages
of its production. The study of techniques to correct defects
in previously recorded audio defines the domain of audio
restoration, in which this work is inserted.

Historically speaking, audio restoration works classified
artifacts as local (e.g., clicks, thumps) or global (e.g., tape
hiss) and dealt with these two classes of defects using differ-
ent strategies. For example, traditional methods for restor-
ing distributed additive noise, such as [1–3], rely mainly on
assumptions on the spectrum of the noise to be removed
and apply processing to the whole degraded signal. In con-

*To whom correspondence should be addressed, email:
bvm@poli.ufrj.br.

trast, typical methods for removing localized artifacts, such
as the click removal procedure of [4], apply processing to
a few samples of the signal and rely mainly on statistical
detection schemes to determine signal samples that must be
removed and then interpolated.

In [5] and [6], novel approaches were introduced to
jointly remove local and global artifacts from musical
recordings using supervised neural networks. In both cases,
a strategy was devised to artificially degrade a dataset of
clean digital recordings using realistic noise from record-
ings of the acoustical and electrical eras, thus generating
many pairs of <clean,degraded> signals. Having these
pairs, the authors of both papers were able to use super-
vised learning to train deep neural networks capable of
denoising historical recordings. In [6], a dataset of 78 RPM
disc noise was created to prepare a model specialized in
removing this type of additive background noise. The same
procedure was later adapted with a tape hiss dataset in [7]
to create a model specialized in dehissing. However, due
to their supervised learning strategy, models trained within
the framework of [5–7] are limited to a specific noise fam-
ily and have no guarantee of performance when faced with
other additive defects.
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One way to overcome this limitation is to use diffusion
models. Diffusion models are probabilistic generative mod-
els that have been applied most frequently in the (different,
but correlated) domain of speech enhancement [8, 9] but
also achieve remarkable results for musical audio restora-
tion [10, 11]. Although they can be used within a supervised
learning framework, as done in [8] for speech dereverbera-
tion, they also have the capability of being used as flexible
zero-shot inverse problem solvers.

The sampling procedure of a pretrained diffusion model
can be conditioned with the aid of a likelihood term. By
changing this term accordingly, the same diffusion model
can be used to restore different audio defects. For example,
in [9], a diffusion model pretrained in clean speech data is
used to correct artifacts introduced by four different speech
enhancement modules; in [11], diffusion models pretrained
on piano and singing voice data are used to equalize his-
torical recordings with different band limitations; and in
[10], a single diffusion model pretrained on piano data is
used for bandwidth extension, inpainting, and declipping.
A detailed review on diffusion models applied to general
audio restoration can be found in [12].

This paper proposes a novel method to remove addi-
tive background noise from historical music recordings us-
ing conditional sampling with a diffusion-based generative
model. The proposed method is zero-shot in a similar fash-
ion to [9–11]; once the unconditional diffusion model is
trained for a data distribution, different types of additive
noise can be removed without the need to train a special-
ized model. However, unlike [9], it does not require any
additional restoration modules, and unlike [10] and [11], it
does not require an explicit model for the degradation that
should be restored.

The remainder of this paper is organized as follows. SEC.
1 gives the theoretical background required to understand
the proposed method, with an overview of existing diffusion
frameworks and an explanation of conditional sampling for
inverse audio problems. Following this, SEC. 2 gives a de-
tailed description of the proposed method, and SEC. 3 out-
lines the model used for denoising in this work. SEC. 4
discusses experiments evaluating the proposed method for
78 RPM noise and tape hiss removal. The model presented
in SEC. 3 is used in both experiments, without further train-
ing, to showcase the zero-shot nature of the method. Finally,
SEC. 5 closes this work with remarks on the results obtained
and possible research directions.

1 THEORETICAL BACKGROUND

1.1 Diffusion Models
In physics, the phenomenon of diffusion refers to the

spread of particles in a medium due to the action of a random
external force. During physical diffusion, the distribution of
the position of the particles changes from p0(x) at time t = 0
to pT (x) at time t = T. Diffusion generative models borrow
this idea and learn the reverse diffusion process, that is, the
process that maps a sample from a known distribution pT (x)

(usually Gaussian) back to a sample from a data distribution
p0(x) [13].

Diffusion generative models first appeared in [13] but
were popularized in [14], where forward diffusion is for-
mulated as the gradual conversion of p0(x) into a normal
distribution by iterative addition of Gaussian noise over
many steps. In [14], reverse diffusion is performed using
a neural network that is trained to estimate the amount of
noise added to a data sample at a given step i. Then, starting
from a sample of a Gaussian distribution, it is possible to
gradually remove the noise until a sample of the desired
data distribution is obtained.

An alternative formulation for diffusion appeared in [15],
in which the authors suggested using a Langevin Markov
chain Monte Carlo (MCMC) [16] procedure to sample data
points from an arbitrary distribution. In Langevin MCMC, a
recurrence based on the score function ∇xlog p(x)—where
p(x) is the distribution to be modeled—is used to trans-
form a sample from an arbitrary distribution into a sample
from p(x). In [15], the authors propose using a neural net-
work to estimate the score function using a denoising score
matching [17] loss function.

Recent articles on diffusion models use the framework
of [18] and [19], which unifies the formulations of [14] and
[15]. In [18], the authors showed that the loss functions of
the previous two diffusion formulations could be cast as
denoising score matching losses. More formally, the loss of
the neural networks in [14] and [15] can be written as

L(θ) = Ei

[
λi E f0,i

[∣∣∣∣sθ(xi , i) − ∇xi log pi (xi |x0)
∣∣∣∣2

]]
,

(1)

where vector θ represents the neural network parameters, i
indexes a forward diffusion step, λi is a weighting constant
that varies according to the noise level, sθ(·, ·) represents
the neural network to be optimized, and pi(xi|x0) represents
the distribution of data sample x0 corrupted with noise up
until diffusion step i.

Starting from this observation, the authors of [18] postu-
lated that diffusion could be represented in continuous time
by a pair of stochastic differential equations (SDEs), where
a forward equation defines the forward diffusion process
and a backward equation, dependent on the score function,
defines the reverse diffusion process. Using this formalism,
the corrupted version x(t) at continuous-time t of an initial
data sample x(0) ∼ p0(x) can be obtained via the forward
equation, and the initial data sample x(0) can be obtained
from x(t) via the backward equation. In this setting, the
terminal diffusion time T can be considered equal to one
without loss of generality. Moreover, the terminal distribu-
tion pT (x) can have the general form pT (x) = N (0, σ2

maxI),
where σmax denotes the maximum noise level of the forward
process [19]. The continuous-time version of the loss in Eq.
(1) is

L(θ) = Et
[
λ(t) E f0,t

[∣∣∣∣sθ(x(t), t)

−∇x(t) log pt (x(t)|x(0))
∣∣∣∣2

]]
, (2)
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where t is a randomly sampled time between the start and
end of the forward diffusion process.

In [19], the authors give empirical arguments to choose

dx =
√

2t dw (3)

as the forward SDE and

dx = −2t∇x(t) log pt (x(t))dt +
√

2t dw (4)

as the backward SDE, where dw is the differential of a
standard Wiener process [20]. They also show that, for
this specific choice of SDEs, pt (x(t)|x(0)) = N (x(0), t2I),
implying

∇x(t) log pt (x(t)|x(0)) = x(0) − x(t)

t2
. (5)

With Eq. (5) in mind, the authors of [19] replaced the
loss of Eq. (2) by the loss function

L(θ) = Et

[
λ(t) E f0,t

[∣∣∣∣xθ(x(t), t) − x(0)
∣∣∣∣2

]]
, (6)

where xθ(x(t), t) is a neural network approximation for the
data sample x(0) calculated from x(t). This version of the
loss function comes from applying Eq. (5) to Eq. (2) and
from adopting

sθ(x(t), t) = xθ(x(t), t) − x(t)

t2
(7)

as the score approximation. Note that the denominators of
Eqs. (5) and (7) were incorporated into λ(t).

Inference with diffusion models within the framework of
[18, 19] can be made with a numerical SDE solver [20, 19],
given a score approximation. The diffusion model used for
audio denoising in this work is based on [10], which follows
the formalism of [19] and adopts Eqs. (3) and (4) for the
forward and backward processes and Eq. (6) for the training
loss. More details on training and inference with this model,
including the choice of training weighting function λ(t) and
the SDE solving procedure for inference, are given in SEC.
3.

1.2 Diffusion Models for Inverse Problems
Diffusion models can be used for conditional sampling

(i.e., sampling new data according to a constraint) with
small modifications and no need to retrain the neural net-
work approximating the score. Supposing that one wishes
to sample from a distribution p0(x(0)|y)—with y being a
vector representing the degraded audio—it is enough to re-
place ∇x(t)log pt(x(t)) in Eq. (4) by ∇x(t)log pt(x(t)|y) [18].

In addition, applying Bayes’ rule and the multiplication
property of the logarithm, it is possible to write that

∇x(t) log pt (x(t)|y) = ∇x(t) log pt (y|x(t))

+∇x(t) log pt (x(t)). (8)

Therefore, conditional sampling given a degraded sample
is simply a matter of replacing the pure unconditional score
by a sum of the unconditional score with a likelihood term,
∇x(t)log pt(y|x(t)). As the unconditional score is already
approximated by a pretrained neural network, the challenge

of conditional sampling with diffusion is that of correctly
estimating the likelihood term.

In this work, the likelihood term was estimated using
diffusion posterior sampling (DPS) [21, 10], a method suc-
cessfully applied with conditional diffusion for general in-
verse problems in the audio [10] and image [21] domains.1

In DPS, ∇x(t)log pt(y|x(t)) is given by

∇x(t) log pt (y|x(t))=ξ(t)∇x(t)||y − A(xθ(x(t), t))||2, (9)

where ξ(t) is a function of t chosen by the user, A(·) is a
model of the degradation to be restored, and the gradient on
x(t) is calculated numerically. Intuitively, DPS is equivalent
to assuming that pt(y|x(t)) is Gaussian around a degraded
version of the estimate of x(0); the term ξ(t) is used to
represent the variance of this Gaussian distribution.

In [10], the authors empirically show that, with the SDEs
of [19], a reasonable choice for ξ(t) is

ξ(t) = −ξ′√N

t ||∇x(t)||y − A(xθ)||2||2 , (10)

where N is the audio length in samples, and ξ′ is a constant to
be set by the user. Making this choice of ξ(t) is advantageous

because it forces the norm of the likelihood term to be ξ′√N
t .

This makes conditioning stronger near the end of the reverse
diffusion process due to the diminishing values of t. At the
same time, it makes conditioning controllable through the
choice of the parameter ξ′.

The experiments of [10] evaluate conditional sampling
with diffusion in the tasks of bandwidth extension, gap fill-
ing, and audio declipping. In all three cases, conditional
sampling with diffusion yields competitive results. Audio
bandwidth extension with diffusion is evaluated objectively
and subjectively for signals low-passed at 1 and 3 kHz, and
the proposed method outperforms the models of [22] and
[23]. Gap filling is subjectively evaluated in a test asking
volunteers to assess the plausibility of the fills generated by
different models, and conditional diffusion sampling ob-
tains results comparable to [24] and [25]. For declipping,
psychoacoustically inspired objective audio quality metrics
show that the results of their diffusion model are compara-
ble to the sparsity-based methods of [26] and [27].

2 PROPOSED METHOD

In this work, a heuristic adaptation of the framework
of [10] is proposed to remove additive background noise
from classical piano recordings. The idea is that, although
an example of additive background noise is likely unique
to a particular recording (e.g., 78 RPM noise in a specific
record, tape hiss from a specific recorder), it is possible to
useA(xθ(x(t), t)) to simulate its degradation effect using an
inference set (i.e., a set of noise samples that are statistically
similar to the background noise to be removed).

For this simulation to work, A(xθ(x(t), t)) can be defined
as the addition of a randomly selected noise sample from
the inference set to xθ(x(t), t). It was heuristically found

1In [10], DPS is called reconstruction guidance.
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that randomly selecting a sample from the inference set
at each reverse diffusion step allows conditioning the dif-
fusion output with a specific type of additive degradation
without targeting a particular noise example. The random
selection of an inference set sample can intuitively be seen
as a form of regularization, similar to the “noise regulariza-
tion” procedure of [11]. Another possible interpretation is
to understand the overall effect of A(·) throughout reverse
diffusion as similar to that of a generic noise of the same
family as the one that needs to be removed.

More formally, A(xθ(x(t), t)) is defined here as

A(xθ(x(t), t)) = xθ(x(t), t) + Gn, (11)

where n is a unit power vector of the same size as xθ(x(t), t)
representing a randomly selected, power-normalized sam-
ple from the inference set and G is a factor used to regulate
the added noise power as explained further below. Adjust-
ments were made in this implementation of A(·) to ensure
that A(xθ(x(t), t)) would result in a vector with values in [
− 1, 1], avoiding overflow. The reader is invited to look at
this project’s GitHub repository2 for further details.

To properly simulate additive background noise degra-
dation with A(xθ(x(t), t)), it is important to ensure that n
is added to xθ(x(t), t) with the same power as the noise in
the degraded signal. Assuming n has unit power, G2 is the
power of the noise added to xθ(x(t), t), and therefore, G can
be used to regulate the added noise power. To estimate G
according to the background noise in the degraded signal, a
minimum statistics approach similar to the one mentioned
in [28] was used. A sliding window was used to calculate
the power Pnoisy[n] of the degraded signal over time, and G
was estimated heuristically as

√
min Pnoisy.

Intuitively, assuming that the sliding window is small
enough, min Pnoisy occurs in noise-only segments of the
degraded audio, and therefore, G2 approximates the noise
power. However, it is important to note that the minimum
operator necessarily introduces a downward bias. The slid-
ing window should be short enough to capture noise-only
segments of the target signal, but large enough so that these
segments will be representative of the noise.

A final point that was addressed by the method proposed
in this paper is block processing for conditional diffusion
sampling. Diffusion models work from the first iteration
with vectors of the desired output size. Since high-fidelity
music has sampling rates of at least 44.1 kHz, the length of
the audio signals restored by conditional sampling is limited
to a few seconds. To overcome this, in all the examples in
this work, restoration was applied to overlapping blocks
of the degraded signals. The authors used 1-s blocks with
0.25-s overlap, selected using rectangular windows. The
blocks were treated sequentially in all experiments, and the
overlap-and-add algorithm [29, 30] was used to reconstruct
the complete audio signals later. Hann windows of the same
size as the rectangular analysis windows were used for
synthesis.

2https://github.com/bvm810/diffusion-audio-restoration.

3 MODEL SETUP

The unconditional diffusion model in this work uses the
CQT-Diff neural network architecture as an estimator for
xθ(x(t), t), exactly as described in [10]. This architecture
can be broadly understood as a U-Net [31] that is preceded
by a differentiable constant-Q transform (CQT) [32] block
and succeeded by a differentiable inverse CQT block.

Constant-Q time-frequency representations allow for
logarithmic frequency resolution, which in turn enables
representing bass and treble notes sharply while retain-
ing good time resolution in the upper frequencies. Further-
more, constant-Q representations can be designed so that
pitch shifting operations in the input audio correspond to
simple translations, which allows exploring the full poten-
tial of translation-equivariant convolution operations in the
backbone U-Net.

Through the use of CQT and inverse CQT blocks, the
CQT-Diff architecture is able to explore a traditional U-Net
architecture in the context of audio. Although U-Nets were
originally developed for image tasks, the use of differen-
tiable constant-Q time-frequency representations ensures
proper adaptation for the audio domain due to the equivari-
ance of pitch translation.

In [10], the CQT-Diff model is trained using classical
piano recordings with 22.05-kHz sampling rates. As this
sampling rate is half of the one used in CD quality record-
ings, their proposed model was retrained for this work.
Training was carried out on high-quality recordings ex-
tracted from the MIDI and Audio Edited for Synchronous
Tracks and Organization (MAESTRO) dataset [33], a col-
lection of about 200 hours of classical piano recordings
played by different performers on Yamaha Disklavier pi-
anos. MAESTRO has recordings sampled at 44.1-kHz and
48-kHz rates, but for convenience, the whole training set
was resampled to 44.1 kHz using the sox command line tool
[34]. MAESTRO is originally divided in train, validation,
and test splits, but they were all mixed for model training,
as there was no superposition between MAESTRO and the
test excerpts used in the experiments.

Following [19], the training employed the forward SDE
of Eq. (3) and the loss of Eq. (6) using

λ(t) = σ2
data + t2

σ2
datat2

, (12)

where σdata = 0.057 is the estimated data distribution vari-
ance. Additionally, following [10], the time t in the loss of
Eq. (6) was distributed following

t = (
σ1/ρ

min + τ
(
σ1/ρ

max − σ1/ρ
min

))ρ
, (13)

where σmax and σmin are the maximum and minimum noise
levels of the diffusion process, and where τ ∼ U(0, 1). In-
tuitively, this choice of distribution for t emphasizes lower
noise levels, which are responsible for adding detail to the
model outputs.

This training procedure used σmin = 10−6, σmax = 10, and
ρ = 10. The model was trained using 1.5-s audio samples
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with a batch size of one3 for 2,304,000 iterations. The Adam
optimizer was used with a learning rate of 2 × 10−4 and
a learning rate decay factor of 0.8 every 60,000 iterations.
The final network weights were averaged using an expo-
nential moving average of rate 0.9999. Training took about
1 month with an NVIDIA GeForce RTX 2080 GPU and re-
quired 11 GB of VRAM. The model weights are available
for download in the GitHub repository for this work.

For inference in all experiments, the heuristic second-
order solver of [19] was applied to the backward SDE of
Eq. (4) with parameters Stmin = 0, Stmax = 50, Snoise = 1,
and Schurn = 5. The solver time steps were chosen following
Eq. (13), with τ replaced by i

S−1 , where S = 140 denotes
the total number of solver time steps and i = 0, . . ., S − 1
indexes them. Using geometrically spaced time steps with
the solver allows more steps (and less error) in lower noise
levels, where more detail is needed [19]. Inference time
steps were established using σmin = 10−6, σmax = 10, and
ρ = 13. Note that different values of σmin, σmax, and ρ can
be used during training and inference, as long as the time
steps remain within the distribution defined for t.

With the setup above, the inference time for a 5-s signal
was around 20 min using an NVIDIA GeForce RTX 3090
GPU. Taking into account a single 1-s block, the process-
ing time was around 170 s using the same hardware. For
comparison, [6] infers on a 1-s audio signal in seconds,
and [10] does so in around a minute. However, it should
be taken into account that due to memory constraints, the
authors were forced to load one inference set noise sample
at a time during reverse diffusion. This generated a high
number of input/output operations and had a considerably
negative impact on processing time.

The gain of the degradation model G was estimated using
the sliding window method mentioned in SEC. 2, with a
window of 8,194 samples. DPS was used for conditional
sampling in all experiments, and ξ′ was set on a case-
by-case basis, as explained in the sections describing the
experiments.

Manual adjustment of ξ′ is required for the proposed
method, which is not necessarily a drawback. Occasion-
ally, denoising can excessively remove high-frequency sig-
nal content, causing muffling. Adjusting ξ′ allows the user
to change the conditioning strength and consequently how
much content is removed from the target signal during
restoration. Therefore, manually controlling ξ′ can allow
users to choose their desired balance between noise removal
and signal preservation.

In informal listening tests with artificially degraded
recordings, it was found that the power of the background
noise to be removed appears to be somewhat correlated with
the ξ′ values that were used in the most pleasant restored
outputs. This can be investigated in future contributions so
that a starting value for ξ′ can be automatically determined
prior to human-assisted fine-tuning.

3Due to memory constraints, the authors were unable to use
longer audio samples or a larger batch size. This had a considerable
impact on training time.

4 EXPERIMENTS

4.1 78 RPM Noise Removal
The proposed method was objectively and subjectively

evaluated for the removal of 78 RPM disc noise. This de-
noising task is particularly interesting because 78 RPM
noise is statistically nonstationary and also because its char-
acteristic sound is created by a composition of common ar-
tifacts in historical recordings, such as clicks, thumps, and
motor rumble. Despite the fact that some of these artifacts
can be modeled as local degradations, the perceived result
is that of a distributed noise.

4.1.1 Objective Evaluation
For objective testing, 16 excerpts from clean digital

solo piano recordings were artificially degraded using 78
RPM disc noise samples. The noise samples were power-
normalized, extended through repetition, and then added
to the clean signals with various SNRs to create a set of
noisy test recordings. This test set was then restored using
diffusion conditional sampling and a benchmark method,
and the quality improvement in the restored outputs was
measured using Virtual Speech Quality Objective Listener
(ViSQOL) Audio [35], an objective audio quality metric.

The clean excerpts had lengths between 9 and 23 s and
were extracted from the Gyorgi Ligeti – Works [36], Ameri-
can Classics – Samuel Barber [37], and Schumann – Piano
Works [38] albums. Ligeti’s piano pieces were recorded by
Pierre-Laurent Aimard in 1995, Barber’s pieces by Daniel
Pollack in 1995, and Schumann’s pieces by Bernd Glemser
in 1993. Their complete metadata can be found in the
GitHub repository for this work.

The noise samples were taken from the gramophone
noise dataset of [6], which consists of noise-only segments
extracted from publicly available digitized 78 RPM record-
ings [39]. The noise dataset was divided into train, valida-
tion, and test sets, but only the test split was used to degrade
the clean excerpts. Each of the 16 excerpts was degraded
with SNRs of 10, 20, 30, and 40 dB, making a total of 64
test signals.

A retrained version of the neural denoiser of [6] was used
as the benchmark model in this test. Retraining also used the
strategy proposed in [6], using pairs of clean and artificially
degraded signals. However, the degraded signals used to
train the model of [6] had SNRs between 2 and 20 dB,
while those used here had SNRs between 10 and 40 dB.
Using higher SNRs in training prepared the benchmark to
handle higher SNR test signals, making the comparison
with diffusion denoising more reasonable. In addition, very
low SNRs might not accurately represent late electric-era
gramophone recordings, which make up a significant part
of 78 RPM recordings.

Aside from this, the retraining procedure was similar to
[6], employing the same clean recording [40] and 78 RPM
noise datasets. The benchmark was trained for 2,400,000
iterations using 5-s audio segments and a batch size of one.
The weights of the neural network were updated using the
Adam optimizer with a learning rate of 10−4 and a decay

224 J. Audio Eng. Soc., Vol. 73, No. 4, 2025 Apr.



ENGINEERING REPORTS DIFFUSION-BASED DENOISING OF HISTORICAL RECORDINGS

Table 1. Average �MOS for the signals artificially
contaminated with 78 RPM noise.

Restoration Method Average �MOS

Retrained Moliner et al. [6] 2.267 ± 0.261
Diffusion 1.952 ± 0.271

factor of 0.1 every 800,000 steps, while the rest of the
training setup was exactly as described in [6].

The diffusion denoiser in this test used the train split
of the gramophone noise dataset as the inference set for
conditional sampling. The ξ′ values used for DPS were set
according to a heuristic based on the SNRs of the test sig-
nals. Ideally, choosing a custom value of ξ′ through informal
listening for each of the 64 test signals would be necessary.
However, as this would be very time-consuming, the au-
thors opted for using the heuristic of Eq. (14), in which S
represents the SNR of the test signal in decibels.

ξ′ =

⎧⎪⎪⎨
⎪⎪⎩

0.35, if S < 20;
1.4, if 20 ≤ S < 30;
2.45, if 30 ≤ S < 40;
3.5, if S ≥ 40.

(14)

It is important to note that this heuristic is likely subop-
timal. As mentioned in SEC. 3, the most pleasant restored
outputs appear to be obtained using ξ′ related to the power of
the noise to be removed from the recording. Since the SNR
also depends on the power of the signal, using this rule to
determine ξ′ could result in using the same ξ′ to restore sig-
nals where the noise power varies significantly. However,
this heuristic proved to be useful in obtaining satisfactory
results without performing many inference operations for a
large set of test signals.

A final limitation of this experiment is the fact that
ViSQOL Audio was developed to evaluate quality loss in
compressed audio formats [35]. Audio restoration is out-
side the original scope of ViSQOL, and therefore, it could
be biased in some sense in this domain (e.g., by favoring
complete noise removal over signal preservation).

ViSQOL compares a degraded signal with a reference in
order to calculate a mean opinion score (MOS) that ranges
from 1.0 (worst, very annoying impairment) to 5.0 (best,
imperceptible impairment). To measure the performance of
each method, �MOS, the improvement in ViSQOL MOS
after restoration, is calculated. Table 1 (best result in bold)
shows the average �MOS with Gaussian 95% confidence
intervals for the two methods.

In this test, the benchmark method was consistently
better; in a one-tailed Student t test comparing the two
methods, the null hypothesis that diffusion restoration had
�MOS greater or equal to the benchmark was rejected with
over 99% confidence. However, the considerable overlap in
the �MOS ranges shows that diffusion denoising achieves
results that are comparable to the benchmark. Furthermore,
it is important to remember that ξ′ was not optimized for
the test signals, which means that the diffusion results could
potentially be improved.

Qualitative (informal) listening of the restored excerpts
appears to show that the proposed method allows more
residual noise to appear in the restored outputs. In exchange,
it also preserves more high-frequency content in the orig-
inal signals. The benchmark method, on the other hand,
completely removes the noise, at the cost of potentially
eliminating musical content in the signals being restored.

4.1.2 Subjective Evaluation
In addition to the objective test, a subjective test was de-

signed to evaluate the restoration performance of the pro-
posed method in denoising historical 78 RPM recordings.
A group of volunteers rated the quality of signals restored
with diffusion conditional sampling and with the bench-
mark method of the previous test. The results were com-
pared to assess the performance of the methods in a realistic
restoration scenario.

This test used six excerpts of 23 s extracted from six
different historical recordings. Five excerpts were extracted
from tracks of the companion CD of The Art of the Piano
piano encyclopedia [41], and one excerpt was taken from a
recording of Friedrich Gulda’s Complete Decca Recordings
[42] collection. To the best of the authors’ knowledge, no
preprocessing had been applied to any of the signals before
restoration.

The tracks from [41] chosen for this test were Eugene
D’Albert’s 1920 recording of Franz Lizst’s “Au Bord d’une
Source” (excerpt 1); Arthur De Greef’s 1929 recording of
Edvard Grieg’s “Arietta” Op. 12 No. 1 (excerpt 2); Walter
Gieseking’s 1938 recording of Claude Debussy’s “Mouve-
ment,” from the first book of “Images” (excerpt 3); Bela
Bartok’s 1945 recording of his own piece “Evening in Tran-
sylvania” (excerpt 4); and Ignaz Friedman’s 1930 recording
of Felix Mendelssohn’s “Song Without Words” Op. 102
No. 5 (excerpt 5). Friedrich Gulda’s 1949 recording of the
first movement of Ludwig van Beethoven’s Sonata No. 31
(excerpt 6) was selected from [42].

The choice of recordings was made to cover important
technological innovations in recording techniques, and by
listening to the excerpts, it is possible to see that the back-
ground noise gradually diminishes for more recent excerpts.
Avoiding as much as possible the occurrence of nonaddi-
tive defects, such as hard-clipping, was also a selection
criterion.

In the test, 13 volunteers answered six questions, one per
excerpt, using the interface of [43]. In each question, the
historical recording excerpt was presented as a reference
and volunteers were asked to rate the quality of three re-
stored test signals from zero to 100. An introductory text
explaining that quality was to be evaluated both in terms of
absence of background noise and integrity of the musical
content in the signal was presented to all volunteers.

Two of the test signals were created using the proposed
method with different values of ξ′; one of them used a fixed
value ξ′ of 0.35, while the other used ξ′ customized through
informal listening by the authors. The third signal was the
benchmark for this test and was created using the same
retrained neural denoiser as the objective test.
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Fig. 1. Boxplots with the SGs of the six restored 78 RPM recordings, for the three methods.

Table 2. Average SGs for the restored 78 RPM recordings.

Restoration Method Average SG

Benchmark 65.436 ± 5.257
ξ′ = 0.35 72.974 ± 3.453
Custom ξ′ 77.833 ± 3.257

Evaluating with customized values of ξ′ mirrors real-life
scenarios in which experimenting with various values of
ξ′ would be possible to achieve optimal restoration results.
Custom ξ′ = 0.3 was used for all excerpts taken from [41],
and ξ′ = 1.4 for Friedrich Gulda’s 1949 recording. In all
cases, the training split of the 78 RPM noise dataset of [6]
was used as the inference set for conditional sampling.

The volunteers took the test in a dedicated listening room
using Sennheiser HD265 linear headphones. The output
volume of the testing equipment was defined in advance
for each question and volunteers were instructed to respect
it during the test. The individual grades given by each vol-
unteer for each restored signal can be found in this work’s
GitHub page.

Table 2 (best result in bold) shows the average subjective
grades (SGs) for the benchmark, ξ′ = 0.35, and custom ξ′

restored excerpts with 95% confidence intervals set using
Gaussian distributions. One-tailed Student’s t tests with null
hypothesis that the mean benchmark results were greater or
equal to each of the mean diffusion results were used to
assess the differences between the benchmark and the two
diffusion mean results; in both cases, the null hypothesis
was rejected with p values below 1%. In addition to this, it
is possible to see that there is no overlap in the confidence
intervals of the benchmark and custom ξ′ methods.

Fig. 1 shows the boxplots for the SGs of each of the six
excerpts, in chronological order. It is possible to see that
the benchmark method had a particularly poor performance
in the first and last excerpts. In the case of excerpt 6, the
results could be explained by the presence of a strong motor
rumble, which made it difficult for the benchmark method
to distinguish musical content in the bass region from the
noise component of the signal. The output of the benchmark
method in this case was noticeably noisier than the outputs

of the other two methods. For excerpt 1, a possible expla-
nation lies in the fact that the reference excerpt was very
limited in bandwidth. In addition to removing the noise, the
benchmark method also removed the (little) high-frequency
content that was originally present in the recording, making
it sound particularly muffled.

There are a few possible explanations for the different
results in the objective and subjective tests. First, given the
fact that the benchmark was trained with artificial data, a de-
crease in performance when restoring historical recordings
was not entirely unexpected. Second, as mentioned earlier,
the objective test might have underestimated the perfor-
mance of the proposed method as a consequence of the
suboptimal choice of ξ′ and of possible biases in ViSQOL.
Finally, the blind setup of the subjective test, without clean
references, might have made the volunteers mistake small
amounts of residual noise for high-frequency musical con-
tent, favoring the proposed method in the subjective test.

Despite these limitations, the results of the benchmark
and the proposed method in both tests are quite close. This
suggests that diffusion denoising can achieve results com-
parable to the state-of-the-art for 78 RPM noise removal.

4.2 Tape Hiss Removal
The proposed method was also objectively evaluated for

the removal of tape hiss. Analog tapes dominated audio
recording technology for much of the 20th century and are
a significant part of global sound archives. Because of the
importance of analog tape recordings, tape hiss removal in
historical recordings is well studied, making it suitable for
demonstrating the zero-shot nature of diffusion denoising
on another kind of perceptually distributed noise.

4.2.1 Objective Evaluation
This experiment replicated the setup from SEC. 4.1.1

using analog tape hiss in place of 78 RPM noise to degrade
the same 16 solo piano excerpts as before. Like in the
previous experiment, ViSQOL Audio was chosen as the
audio quality metric for this test.

The tape hiss dataset of [7] was used to additively de-
grade the clean recordings. This dataset consists of tape hiss
snippets created by reproducing blank tapes in six different
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(open reel and cassette) tape recorders at different speeds.
Revox, Uher, and Technics tape recorders were used to
play the blank tapes, and digitization was performed at a
44.1-kHz sampling rate. More details on the tape recorder
models, their speeds, and the hiss dataset can be found in
[7].

Similarly to SEC. 4.1.1, this experiment also degraded
the clean excerpts with SNRs of 10, 20, 30, and 40 dB.
This choice of SNR for the test signals was meant to extend
the recording settings of the objective experiment of [7]. In
their work, only 10-dB and 16-dB test signals (simulating
adverse recording conditions) were used. All excerpts were
corrupted with all SNR levels, resulting in 64 test signals
in total, but only Uher noise samples were used during this
procedure.

Unlike the test of SEC. 4.1.1, here the proposed method
was evaluated against two different benchmarks. The first
was a retrained version of the neural denoiser from [7],
which is an adaptation of [6] for tape hiss removal. The
second was an improved implementation of the Wiener
filter, following the heuristics recommended in [4].

As in the test benchmark of SEC. 4.1.1, the neural de-
noiser of [7] was retrained here using higher SNRs than
in its original implementation. The model was originally
trained in [7] using artificially degraded signals with SNRs
between 6 and 32 dB. Here, this range was changed to [10,
40] dB to cover all possible SNRs in the test signals.

Retraining used the dataset of [40] for the clean record-
ings and Revox snippets from the tape hiss dataset for the
noise samples. The model was retrained for 340,000 itera-
tions using 5-s audio segments and a batch size of one. It
was optimized with the Adam optimizer using a learning
rate of 10−4 and a decay factor of 0.1 every 50,000 itera-
tions. The remainder of the training setup was exactly as
described in [7].

The Wiener filter acts as a frequency-dependent gain
based on an estimate of the noise power spectral density
(PSD) in the signal being restored and might suppress low-
amplitude frequency components of the noise while failing
to attenuate high-amplitude ones if the noise PSD esti-
mate is inaccurate. Unsuppressed components are typically
spread across the spectrum and change randomly across
frames, which makes the residual noise in Wiener-filtered
musical signals acquire a tonal characteristic known as “mu-
sical noise” or “birdies.”

To reduce the occurrence of such artifacts, this imple-
mentation of the Wiener filter was improved following [4]
by including a lower bound on the Wiener gain, smoothed
estimates of the PSD of the signal being restored, and
an additional gain α ≥ 1 applied to the noise PSD. Ap-
plying a lower bound to the Wiener gain leaves a noise
floor in the restored signal, reducing the tonal aspect of the
residual noise. Smoothing out the PSD of the signal that
is being restored makes the Wiener gain estimate more
stable, which in turn reduces random tonal fluctuations
in the residual noise. Finally, using α > 1 overestimates
the PSD of the noise to ensure its complete suppression,
although it tends to also remove musical content from
the signal.

Table 3. Average �MOS for the signals artificially
contaminated with tape hiss.

Restoration Method Average �MOS

Retrained Irigaray et al. [7] 2.298 ± 0.223
Wiener 1.781 ± 0.287
Diffusion 2.217 ± 0.239

For the restoration of the test signals with Wiener filter-
ing, frames of 1,024 samples with 50% overlap were used.
The lower bound of the Wiener gain was set to 0.05, and the
PSD of the signal being restored was estimated using the
median of the squared spectrum over five frames. Because
tape hiss is a broadband signal, the noise PSD was consid-
ered constant for all frequencies and was estimated by the
median of the last 256 frequency bins of the smoothed PSD
of the test signal. All noisy excerpts were restored with six
different values of α ({1, 2, 3, 4, 5, 6}), but the aggregate
results for this experiment only consider the best α for each
test signal, according to ViSQOL.

In this experiment, only Revox samples from the hiss
dataset were used in the inference set for diffusion denois-
ing. As in SEC. 4.1.1, the heuristic of Eq. (14) was used to
determine the values of ξ′ for the test signals. Once again,
it is important to remember that this rule was used for
convenience and could negatively impact the results of the
proposed method.

Table 3 (best result in bold) shows the average �MOS
with Gaussian 95% confidence intervals for the three meth-
ods. Using pairwise one-tailed Student t tests, the null hy-
potheses that diffusion denoising and Wiener filtering had
�MOS results greater than or equal to the first benchmark
were rejected with p = 0.026 and p < 0.01, respectively,
while the hypothesis that Wiener filtering performed bet-
ter than the proposed method was rejected with confidence
above 99%.

There is significant overlap in the confidence inter-
vals of the retrained denoiser of [7] and the proposed
method, indicating that the—zero-shot—proposed method
surpasses traditional tape hiss removal techniques and per-
forms comparably, though slightly less effectively, to the
current state-of-the-art neural method. This should be con-
sidered along with the suboptimal heuristic for ξ′ and the
potential limitations of ViSQOL as an evaluation metric
for restoration.

Once again qualitatively listening to the restored signals,
it appears that the proposed method has a tendency to allow
more residual noise while preserving better the musical
content in the test signals. In contrast, the method of [7]
(based on [6]) appears to remove more hiss at the cost
of potentially removing musical content from the original
signal. This analysis is consistent with what was observed
informally in the outputs of both 78 RPM tests.

5 CONCLUSION

This paper investigated a zero-shot approach for back-
ground noise removal inspired by diffusion models. The
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concept of the method was proven for digitized classical
solo piano recordings in three experiments evaluating the
restoration of recordings degraded by two distinct types of
perceptually distributed noise.

The proposed method uses the continuous-time SDE for-
mulation of diffusion models and DPS to remove additive
background noise. A degradation model A(·) randomly se-
lects noise samples from an inference set in each reverse dif-
fusion step, simulating specific additive degradations dur-
ing conditional sampling. By changing the inference set, the
same unconditional model can be used to remove different
types of noise without retraining.

Diffusion denoising was evaluated in the removal of 78
RPM disc noise and analog tape hiss. In both cases, ob-
jective experiments comparing the proposed method with
state-of-the-art benchmarks showed that diffusion denois-
ing was competitive, despite obtaining slightly inferior re-
sults. For removal of 78 RPM noise, an additional sub-
jective test was also performed using historical gramo-
phone recordings, and the proposed method outperformed
the benchmark.

The diffusion denoising results in the objective exper-
iments may have been underestimated due to the cho-
sen heuristic for ξ′ and potential limitations of the audio
quality metric. At the same time, the proposed method
might have gained an advantage from the absence of
clean references in the subjective test with historical
recordings. Nevertheless, despite these limitations across
the three experiments, the similar performance of the
benchmarks and the proposed method indicates that it
is comparable to the current state-of-the-art in different
denoising tasks.

Diffusion denoising was adapted for all experiments only
through the selection of a new inference set, without any
retraining of the base unconditional model. This is an ad-
vantage over current neural denoisers, which require some
strategy to artificially create pairs of clean and degraded
signals.

Future improvements to this method might be made both
in the conditional sampling procedure and in the inference
set used for restoration. Using automatic algorithms based
on noise power estimates to determine a starting value for
ξ′ is likely to improve the user experience. Similarly, a part
of the fine-tuning procedure for ξ′ could be performed us-
ing automatic adaptive strategies, such as that in [44]. In
addition to this, using augmentation strategies for the in-
ference set, such as enhancing it with noise-only excerpts
of the target signal, can potentially ameliorate the degra-
dation model A(·) and consequently improve the overall
restoration results.
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“Solving Audio Inverse Problems with a Diffusion
Model,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 1–5 (Rhodes, Greece) (2023 Jun.).
https://doi.org/10.1109/ICASSP49357.2023.10095637.

[11] E. Moliner, M. Turunen, F. Elvander, and V.
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