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Abstract—This paper present the first QUBO formulations
for the Snake-in-the-box (SITB) and Coil-in-the-box (CITB)
problems. Both formulations are also capable of solving the
NP-Hard problems of Maximum induced path and Maximum
induced cylce respectively. In the process we also found a new
QUBO formulation for the Maximum Common Induced Sub-
graph problem. We proved the correctness of our formulations
for the SITB, CITB and Maximum Common Sub-graph problem,
and tested the formulations of the SITB and CITB in both
classical and quantum solvers, being able to get the best solution
for up to 5 dimensions.

Index Terms—QUBO, Quantum Annealer, Snake in the box,
Coil in the box, Maximum common induced sub-graph problem

I. INTRODUCTION

A. Snake-In-The-Box and Coil-In-The-Box problems

Both the Snake-in-the-box problem (SITB problem for

short) and the Coil-in-the-box problem (CITB problem for

short) were first introduced by Kautz in 1958 [1].

The SITB problem involves finding the longest induced

path in the n-dimensional hypercube Qn. (See section II

for definitions of induced graphs and Qn). In other words,

it entails discovering the longest path that is isomorphic to

an induced sub-graph of Qn. Similarly, the CITB problem

involves finding the longest induced cycle in the hypercube

graph Qn.

Note that in both cases, by longest we mean the graph with

the maximum number of edges. Since in a path the number

of edges is one less than the number of vertices, and in a

cycle both numbers are the same, both the SITB and CITB

problems are equivalents if we aim to maximize the number

of vertices instead than the number of edges. Therefore, in all

the formulations presented here, we are trying to maximize the

number of vertices. We call n-snake and n-coil to an induced

path and cycle of Qn respectively. We often follow the notation

introduced in [5] and call an n-snake and n-coil simply as a

snake and a coil respectively.

Both problems have a wide range of applications, first,

solutions of these problems can be used for error-detection

codes [1]. Also, they can be used for scalar quantizers in digital

communication systems [11], rank modulation [14] or genetics

[12].

Usual methods to solve these problems involve brute force

approaches [1], genetic algorithms [10] and Monte-Carlo Tree

search [13]. In table I, we present the best known values for

snake and coil lengths for dimensions 1 to 13. Notice that the

length refer to the number of edges. Also, for dimentions 1 to

8, it is proved that the values shown are indeed the best ones.

Table I
BEST KNWON VALUES FOR SNAKE AND COIL IN THE BOX

Dimension SITB CITB

1 1 0

2 2 [2] 4 [1]
3 4 [2] 6 [1]
4 7 [2] 8 [1]
5 13 [2] 14 [1]
6 26 [2] 26 [2]
7 50 [10] 48 [8]
8 98 [20] 96 [18]
9 190 [15] 188 [15]
10 370 [13] 366 [21]
11 712 [21] 692 [21]
12 1373 [21] 1344 [21]
13 2687 [21] 2594 [21]

Values in bold type are proven to be the best

B. Quantum Annealer and QUBO formualtion

QUBO (Quadratic Unconstrained Binary Optimization) [23]

is a mathematical model for optimization problems. It en-

tails finding the minumum value of a binary quadratic form

(i.e. finding the minimum value of a function of the formř
i,j αi,jxixj for xi P t0, 1u, αi,j P R).

Quantum annealing [9] represents a potential advantage in

tackling the problem at hand compared to traditional algo-

rithms. It is a method aimed at finding the global minimum of

an objective function, drawing inspiration from the process

of annealing in metallurgy where a material is heated and

then slowly cooled to remove defects and attain a more stable

structure.

D-Wave Systems [29] is a notable producer of commercial

quantum annealers. These devices are specifically designed

for quantum annealing and have found application in various

research and commercial projects.

http://arxiv.org/abs/2409.04476v1


C. Quantum Annealers and NP-Hard problems

NP-hard problems [4] are distinguished by their substantial

complexity, where the time required to find a solution increases

exponentially with the size of the input. These problems

are particularly challenging in computational theory due to

their intractability using classical algorithms, especially as the

problem size expands.

In classical computing, solving NP-hard problems typically

involves heuristic or approximation methods, such as genetic

algorithms [7] or Monte-Carlo Tree search [16], to find

near-optimal solutions within a reasonable timeframe. Exact

solutions generally require brute-force approaches that are

computationally expensive and impractical for large instances.

Quantum computing introduces a new paradigm for address-

ing NP-hard problems, leveraging the principles of quantum

mechanics to process information in fundamentally different

ways compared to classical computers. One promising ap-

proach is quantum annealing.

Quantum annealers offer potential advantages over classical

solvers by exploring a vast solution space more efficiently

due to quantum superposition and tunneling effects [19].

Specifically, quantum annealers can escape local minima more

effectively than classical methods, potentially finding better

solutions for NP-hard problems.

D. Structure of the paper

The paper is organized as follows: Section II provides

the necessary background in graph theory, introducing key

concepts and definitions used throughout the paper. Section

III introduces the QUBO formulations for the SITB and

CITB problems, as well as formulations for the Induced Sub-

graph problem and the Maximum Common Induced Sub-graph

problem, which are foundational to the SITB and CITB for-

mulations. Section IV presents the statements of the theorems

related to the correctness of the QUBO formulations presented

in section III. Section V discusses the results obtained from

applying the QUBO formulations of the SITB and CITB

problems using both classical and quantum solvers. Section VI

concludes the paper, summarizing the findings and outlining

future work, with a particular focus on exploring problem

symmetries to reduce the number of variables in the QUBO

formulations, aiming to solve larger instances of the problems.

The appendix contains the detailed proofs of the theorems

stated in Section IV, providing the mathematical rigor behind

the correctness of the QUBO formulations.

II. BACKGROUND

In this section we introduce some key concepts and defini-

tions used in this paper.

Induced sub-graph: Given a graph G “ pV,Eq, an induced

subgraph by a subset of vertices A Ď V is a subgraph of G

whose vertex set is equal to A, and whose edges consist of all

edges connecting two vertices in A. We denote this graph as

GrAs.
Graph Isomorphism: We say that two graphs G1 “

pV1, E1q and G2 “ pV2, E2q are isomorphic (denoted as

G1 » G2) if there exists a bijective function φ : V1 Ñ V2
that preserves the graph structure, i.e., tu, vu P E1 if and only

if tφpuq, φpvqu P E2. If such a function φ exists, we say that

φ is an isomorphism between G1 and G2.

n-dimensional hypercube: The hypecrube Qn can be de-

fined as a graph whose vertex set is VQn
“ t0, 1un and edge

set is EQn
“ ttu, vu | u, v P VQn

, dHpu, vq “ 1u, where

dHpu, vq is the Hamming distance between u and v.

Path and Coil graphs: We define the graph Pn as a path of

n vertices, meaning that VPn
“ tv0, v1, . . . , vn´1u and EPn

“
ttvi, vi`1u |0 ď i ă n´1u. Similarly, the graph Cn is defined

as a cycle of n vertices, so that VCn
“ tv0, v1, . . . , vn´1u and

ECn
“ ttvi, vpi`1 mod nqu | 0 ď i ď n´ 1u.

III. FORMULATION

A. QUBO formulation for the Induced sub-graph problem

The Induced sub-graph problem [3] is a decision problem

that involves determining if a graph G1 “ pV1, E1q is an

induced sub-graph of G2 “ pV2, E2q. Note that this problem is

equivalent to determining if there exists an injective function

φ : V1 Ñ V2 such that tu, vu P E1 if and only if

tφpuq, φpvqu P E2. Calude et al. (2017) [22] provides a QUBO

formulation for this problem.

In this work, we present a similar formulation inspired by

the formulation of the Graph Isomorphism Problem given

by Lucas (2014) [17]. The idea of the formulation involves

defining binary variables to describe the function φ. Let xu,i
for u P V1 and i P V2 be such that xu,i “ 1 only if the vertex

u is mapped to i by the function φ. Define si for i P V2 such

that si “ 1 only if there exists a vertex u P V1 that is mapped

to i by φ. We arrive at the following QUBO formulation:

Q “ HA `HB

HA “
ÿ

uPV1

˜
1 ´

ÿ

iPV2

xu,i

¸2

`
ÿ

iPV2

˜
si ´

ÿ

uPV1

xu,i

¸2

HB “
ÿ

uvPE1

ÿ

ijRE2

xu,ixv,j `
ÿ

uvRE1

ÿ

ijPE2

xu,ixv,j

This formulation needs a total of |V1||V2| ` |V2| binary

variables.

We define φ as the relationship tpu, iq P V1 ˆV2 |xu,i “ 1u.

Note that if HA “ 0, then φ defines an injective function

from V1 to V2, and if HB “ 0, the function preserves the graph

structure. Since HA ě 0 and HB ě 0, minpQq ě 0, implying

that if the minimum value of Q is zero, then HA “ HB “ 0,

and G1 is an induced sub-graph of G2.

B. QUBO formulation for the Maximum Common Induced

sub-graph problem

The maximum common induced sub-graph problem [3]

consists of finding, given two graphs G1 and G2, a graph

with the maximum number of vertices that is an induced

sub-graph of both G1 and G2. Equivalently, we aim to find



the induced sub-graph of G1 with the greatest order that is

isomorphic to an induced sub-graph of G2. [24] introduces

the first QUBO formulation for this problem. In this paper,

we provide a different formulation for this problem, that can

be naturally extended to solve the SITB and CITB problems.

We modify the formulation of the induced sub-graph prob-

lem by adding variables pu to indicate if a vertex u in V1 is

mapped to a vertex in V2. Let xu,i and si be defined as in

the previous formulation. Then, the QUBO formulation is as

follows:

Q “ αHA ` βHB ` γHO (1)

HO “ ´
ÿ

uPV1

pu (2)

HA “
ÿ

uPV1

˜
pu ´

ÿ

iPV2

xu,i

¸2

`
ÿ

iPV2

˜
si ´

ÿ

uPV1

xu,i

¸2

(3)

HB “
ÿ

uvPE1

ÿ

ijRE2

xu,ixv,j `
ÿ

uvRE1

ÿ

ijPE2

xu,ixv,j (4)

Where α, β, γ ą 0. Also, we found that if α, β ą γ then the

minimum value of Q is achieved only if we found a solution

for the Maximum Common Induced Sub-graph problem.

This formulation uses |V1||V2|`|V1|`|V2| binary variables.

As in the previous formulation, we define φ as the relation-

ship tpu, iq P V1 ˆ V2 | xu,i “ 1u. Also, we define two sets

Ax Ď V1 and Bx Ď V2 as:

Ax “ tu P V1 | xu,i “ 1 for some i P V2u (5)

Bx “ ti P V2 | xu,i “ 1 for some u P V1u (6)

In this formulation, HA “ 0 ensures that φ is an injective

function from the set Ax to V2, and HB “ 0 ensures that

the function preserves the graph structure. HO represents the

objective function of the formulation, which aims to maximize

the number of vertices in the induced sub-graph.

If we choose values for α, β, γ such that α, β ą γ, then the

minimum value of Q is achieved only if G1rAxs » G2rBxs.
We will prove this in the appendix.

C. QUBO formulation for the SITB problem

Using the formulation of the Maximum Common Induced

sub-graph problem, we can solve both the SITB and CITB

problems. The SITB problem can be viewed as an instance

of the maximum common induced sub-graph problem, where

G1 “ P2n (the path of 2
n vertices) and G2 “ Qn (the n-

dimensional hypercube graph). With an additional restriction

to ensure that the graph G1rAxs (the selected induced sub-

graph of Pn) is connected.

In order to achieve this, we introduce a new term, HC , to

the previous formulation. The QUBO function Q for the SITB

problem is then defined as follows:

Q “ αHA ` βHB ` γHO ` δHC (7)

HO “ ´
ÿ

uPV1

pu (8)

HA “
ÿ

uPV1

˜
pu ´

ÿ

iPV2

xu,i

¸2

`
ÿ

iPV2

˜
si ´

ÿ

uPV1

xu,i

¸2

(9)

HB “
ÿ

uvPE1

ÿ

ijRE2

xu,ixv,j `
ÿ

uvRE1

ÿ

ijPE2

xu,ixv,j (10)

HC “ p1 ´ pv0q2 `
ÿ

uvPE1

ppu ´ pvq2 (11)

Where α, β, γ, δ ą 0, α, β ą γ ` 2δ and δ ą 2
nγ.

Since |V1| “ |V2| “ 2
n this formulation uses |V1||V2| `

|V1| ` |V2| “ 2
2n ` 2

n`1 binary variables.

Notice that if HC equals 1, then the graph G1rAxs is

connected and contains the vertex v0, and HC “ 0 if and

only if all the variables pu are equal to one.

D. QUBO formulation for the CITB problem

The formulation for the Coil-in-the-box problem is not as

straightforward. In the SITB problem, as we showed earlier,

we can essentially solve the maximum common induced sub-

graph problem by setting the largest path that can fit in the

n-dimensional hypercube graph (a path with 2
n vertices) as

G1, setting Qn as G2 and introducing an additional term to

ensure that the chosen sub-graph of P2n remains connected.

This approach solves the SITB problem for two reasons.

First, any connected sub-graph of a path is also a path. Second,

in a path, the term HC can ensure that the selected sub-graph

of the path remains connected. However, it’s important to note

that in other types of graphs, such as general graphs or graphs

with more complex structures, the HC term may not guarantee

contentedness.

Then, in order to define the CITB problem, we cannot

simply take G1 as the largest possible cycle that can fit in the

Hypercube graph (a cycle with 2
n vertices) and use the same

formulation of the SITB. However we can slightly modify the

SITB formulation in the following way:

First, define G1 “ pV1, E1q where V1 “ Vpath Y Vcycle and

E1 “ Epath Y Ecycle, and:

Vpath “ t1, 2, . . . , 2n ´ 1u

Vcycles “ tp1, 3q, p1, 4q, . . . , p1, 2n ´ 1qu

Epath “ ttj, j ` 1u | 1 ď j ď 2
n ´ 2u

Ecycles “ tti, vu | i P t1, nu, v P Vcyclesu
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Figure 1. Representation of the graph G1 for n “ 3
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Figure 2. Representation of the directed graph ĹG1 for n “ 3

In Figure 1, we present a representation of the graph G1

for n “ 3. Vertices and edges belonging to Vcycle and Ecycle

are drawn in dotted blue, while vertices and edges belonging

to Vpath and Epath are shown in red.

From G1, we define an oriented graph ĹG1, where the vertex

set is V1, and we assign a direction to each edge as shown in

Figure 2. We refer to the edge set of the oriented graph as ĹE1.

Additionally, we denote the edge pu, vq P ĹE1 (with direction

from u to v) as u Ñ v.

Finally, we define G2 as the n-dimensional hypercube graph

Qn, and we define the binary variables xu,i, pu, and si in

the same manner as in our previous formulations. With these

definitions, we arrive at the following QUBO formulation:

Q “ αHA ` βHB ` γHO ` δHC ` ǫHR (12)

HO “ ´
ÿ

uPE1

pu (13)

HA “
ÿ

uPV1

˜
pu ´

ÿ

iPV2

xu,i

¸2

`
ÿ

iPV2

˜
si ´

ÿ

uPV1

xu,i

¸2

(14)

HB “
ÿ

uvPE1

ÿ

ijRE2

xu,ixv,j `
ÿ

uvRE1

ÿ

ijPE2

xu,ixv,j (15)

HC “

¨
˝1 ´

ÿ

uPVcycle

pu

˛
‚
2

(16)

HR “
ÿ

uPVpath

¨
˝pu ´

ÿ

v: uÑvP ĹE1

pv

˛
‚
2

(17)

Where α, β, γ, δ, ǫ ą 0, α, β ą γ ` δ ` ǫ and δ, ǫ ą 2
nγ.

In this formulation |V1| “ 2
n`1 ´ 4 and |V2| “ 2

n. Then

the formulation uses |V1||V2| ` |V1| ` |V2| “ 2
2n`1 ´ 2

n ´ 4

binary variables.

Here, the term HC , if null, ensures that exactly one vertex

in Vcycle is selected, representing the use of a single vertex

from the cycle component. Whereas the term HR, if null,

ensures that for every selected vertex u in Vpath, there is exactly

one corresponding vertex v P V1 such that u Ñ v is in ĹE1.

Therefore, if both HC and HR are zero, the induced sub-graph

G1rAxs forms a cycle.

E. Longest induced path and Longest induced cycle problems

The longest induced path problem involves finding the

longest induced path in an arbitrary graph G. Similarly, the

longest induced cycle problem aims to find the longest induced

cycle in an arbitrary graph G. Both of these problems are

proven to be NP-hard [6].

Note that the SITB and CITB problems are just special

cases of these problems when the graph G is the hypercube

Qn. Thus, the formulations presented for the SITB and CITB

problems can handle the more general NP-hard problems of

the longest induced path and longest induced cycle in a graph,

respectively.

Therefore, to solve the longest induced path (respectively,

longest induced cycle) problem in a graph G “ pV,Eq, we can

use the same formulation employed for the CITB (respectively,

SITB) problem, where we set G2 “ G instead of G2 “ Qn.

This demonstrates the versatility and broader applicability of

our formulations in addressing these complex combinatorial

problems.

IV. CORRECTNESS OF THE QUBO FORMULATIONS

In this section we state four theorems regarding the cor-

rectness of the formulations presented in this paper. The first

two theorems (IV.1 and IV.2) proves the correctness of the

Maximum common induced sub-graph problem, under the

assumption that α, β, γ ą 0 and α, β ą γ. These results

are important since the formulation of both the SITB and

CITB problems are based on our formulation for the Maximum

common induced sub-graph problem.

Then we state two theorems (IV.3 and IV.4) that proves

the correctness of the QUBO formulations for the SITB and

CITB problem respectively. The four theorems are proven in

the Appendix.



A. Correctness of the QUBO formulation of the Maximum

Common Induced Sub-graph Problem

Theorem IV.1. Let Qpx, p, sq be the QUBO defined in (1) to

(4) for the Maximum Common Induced Sub-graph problem,

where x, p, s are vectors containing the variables xu,i, pu and

si respectively.

Then, if α, β ą γ and x, p, s are such that Qpx, p, sq is the

minimum value of Q then the relationship φ defined by x is

an injective function that preserves the graph structure.

Theorem IV.2. (Correctness of the QUBO formulation for

the Maximum Common Sub-graph Problem). Let Qpx, p, sq
be the QUBO defined in (1) to (4), where x, p, s are vectors

containing the variables xu,i, pu and si respectively.

Then, if α, β ą γ and x, p, s are such that Qpx, p, sq is the

minimum value of Q then the relationship φ defined by x is

the solution of the Maximum Commom sub-graph problem.

B. Correctness of the QUBO formulations for the SITB and

CITB problems

Theorem IV.3. (Correctness of the QUBO formulation for the

SITB Problem). Let Qpx, p, sq be the QUBO defined in (7) to

(11) for the SITB problem, where x, p, s are vectors containing

the variables xu,i, pu and si respectively.

Then, if α, β ą γ ` 2δ, δ ą 2
nγ and x, p, s are such that

Qpx, p, sq is the minimum value of Q then the relationship φ

defined by x is an injective function that preserves the graph

structure, and the subgraph P2n rAxs is a path.

Theorem IV.4. (Correctness of the QUBO formulation for

the CITB Problem). Let Qpx, p, sq be the QUBO defined in

(12) to (17) for the CITB problem, where x, p, s are vectors

containing the variables xu,i, pu and si respectively.

Then, if α, β ą γ`δ`ǫ, δ, ǫ ą 2
nγ and x, p, s are such that

Qpx, p, sq is the minimum value of Q then the relationship φ

defined by x is an injective function that preserves the graph

structure, and the subgraph G1rAxs is a cycle.

V. RESULTS

We tested both the SITB and CITB formulations in three

different solvers. We use one classic solver and two QPU

(Quantum Processing Unity) based solvers.
For the classic solver the SimulatedAnnealingSampler [28]

provided by D-Wave was used to simulate the implementation

of a thermal annealing process. This simulator runs locally

and was used on a personal laptop equipped with a 12th Gen

Intel(R) Core(TM) i7-1255U CPU.
For the QPU based solvers we use two solvers that make

use of the QPU. We used a Quantum-classical hybrid solver

provided by D-Wave that uses both classical and quantum

resources [27].
For the purely QPU-based solution, we used the D-Wave

Advantage system6.3 quantum computer, with 5614 qubits.

We configure the number of shots to 1000, leaving the rest of

the parameters unchanged. See [25] (D-Wave documentation)

for explanations for all parameters of the QPU.
We accessed the QPU based solvers (both the hybrid and

the purely quantum solver) using the sapi interface [26].

A. Snake-in-the-box results

Here we present the best solution obtained in the three

solvers for the SITB problem. In both, the hybrid solver and

the simulated annealer, we were able to get a 5-snake of length

13 in Q5. This is, we were able to get the best solution for

dimension 5. For the QPU solver we only were able to get the

best solution for dimension 3.

Hybrid solution for n “ 5 (note that it has 14 vertices,

therefore the length of the snake is 13):

p10100q Ñ p00100q Ñ p00101q Ñ p01101q Ñ
p01111q Ñ p11111q Ñ p10111q Ñ p10011q Ñ
p00011q Ñ p00010q Ñ p01010q Ñ p11010q Ñ

p11000q Ñ p11001q

Simulated solution for n “ 5:

p11001q Ñ p10001q Ñ p10000q Ñ p10100q Ñ
p00100q Ñ p01100q Ñ p01000q Ñ p01010q Ñ
p01011q Ñ p00011q Ñ p00111q Ñ p10111q Ñ

p11111q Ñ p11110q

QPU solution for n “ 3:

p010q Ñ p000q Ñ p100q Ñ p101q Ñ p111q

B. Coil-in-the-box results

For the CITB problem we were also able to get the best

solution up to dimension 5 using the Simulated Annealing

and the Hybrid Solver. For the QPU we only were able to get

the best solution for dimension 2.

Hybrid solution for n “ 5:

p00101q Ñ p00111q Ñ p10111q Ñ p11111q Ñ
p11101q Ñ p11100q Ñ p10100q Ñ p10000q Ñ
p10010q Ñ p11010q Ñ p01010q Ñ p01011q Ñ

p01001q Ñ p00001q

Simulated solution for n “ 5:

p10111q Ñ p10110q Ñ p00110q Ñ p00100q Ñ
p01100q Ñ p01000q Ñ p11000q Ñ p10000q Ñ
p10001q Ñ p00001q Ñ p00011q Ñ p01011q Ñ

p11011q Ñ p11111q

QPU solution for n “ 2:

p11q Ñ p01q Ñ p00q Ñ p10q

VI. CONCLUSIONS AND FUTURE WORK

In this study, we introduced the first QUBO formulations

for the Snake-in-the-box (SITB) and Coil-in-the-box (CITB)

problems. Our formulations not only address these classic

problems but also extend to solving the NP-hard problems

of Maximum Induced Path and Maximum Induced Cycle,

respectively. Through testing on both classical and quantum

solvers, we demonstrated the efficacy of our approach by

obtaining optimal solutions for dimensions up to 5.

The results obtained are promising, especially considering

the complexity of the problems and the relatively early stage

of quantum computing technology. The ability of our formula-

tions to leverage quantum annealers for problem-solving hints



at the potential for significant advancements in combinatorial

optimization problems as quantum technology matures.

For future work, we aim to further optimize our QUBO for-

mulations by exploiting the symmetries inherent in the SITB

and CITB problems. By reducing the number of variables

in the formulations, we hope to increase the scalability of

our approach and enable the solving of these problems for

higher dimensions on quantum annealers. This would not only

advance the state-of-the-art for these specific problems but also

contribute to the broader field of quantum optimization and

its applications. Additionally, we plan to test our formulations

using a wider variety of solvers and apply them to solve the

more general problems of the longest induced path and longest

induced cycle.
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[20] P. R. J. Östergård and V. H. Pettersson, “Exhaustive Search for Snake-

in-the-Box Codes,” Graphs and Combinatorics, vol. 31, pp. 1019–1028,
2015. doi: 10.1007/s00373-014-1423-3.
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VII. APPENDIX

A. Proof of theorem IV.1

Theorem IV.1: Let Qpx, p, sq be the QUBO defined in

(1) for the Maximum Induced Sub-graph problem, where

x, p, s are vectors containing the variables xu,i, pu and si
respectively.

Then, if α, β ą γ and x, p, s are such that Qpx, p, sq is the

minimum value of Q then the relationship φ defined by x is

an injective function that preserves the graph structure.

Proof. We proceed by contradiction. First, suppose that

the minimum value of Q is achieved by x, p, s, and

φ “ tpu, iq P V1 ˆ V2 | xu,i “ 1u is either not a function

from Ax to V2 (case 1), not injective (case 2), or does

not preserve the graph structure (case 3). Then, we find x̂,

p̂, ŝ with a strictly lower value of Q, leading to a contradiction.

Case 1: The relationship φ is not a function from Ax to V2.

This implies that there exists a vertex u P V1 that is mapped to

more than one vertex in V2, meaning that there exist i, j P V2
with i ‰ j such that xu,i “ xu,j “ 1. We can suppose that

pu “ si “ sj “ 1. This is because if any of these three

variables were equal to 0, then we would immediately obtain

a new solution with the corresponding variable equal to 1 and

a strictly lower value of Q. Then, we have:

ÿ

kPV2

xu,k ě xu,i ` xu,j “ 2 (18)

Using (18) along with the fact that pu “ 1 we get:

pu ´
ÿ

kPV2

xu,k “ 1 ´
ÿ

kPV2

xu,k ď ´1 (19)

We can generate a new solution x̂, p̂, ŝ with x̂u,j “ 0, ŝj “
0, leaving all the other variables unchanged. We claim that

this solution satisfy Qpx̂, p̂, ŝq ă Qpx, p, sq.

ÿ

kPV2

x̂u,k “ x̂u,j `
ÿ

kPV2, k “j

x̂u,k

“ pxu,j ´ 1q `
ÿ

kPV2, k “j

xu,k

“
ÿ

kPV2

xu,k ´ 1

Using now (19), along with the fact that pu “ p̂u:

p̂u ´
ÿ

kPV2

x̂u,k “ pu ´
ÿ

kPV2

xu,k ` 1 ď 0

By taking absolute value on both sides we get:

ˇ̌
ˇ̌
ˇp̂u ´

ÿ

kPV2

x̂u,k

ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇpu ´

ÿ

kPV2

xu,k

ˇ̌
ˇ̌
ˇ ´ 1

˜
p̂u ´

ÿ

kPV2

x̂u,k

¸2

ă

˜
pu ´

ÿ

kPV2

xu,k

¸2

(20)

The rest of the terms of HA (defined in (3)) remains

unchanged. The term HO also remains unchanged, since

pu “ p̂u. Finally, HB may change, but clearly it does not

increase (since we are changing a variable that is set to 1 by

0). Therefore:

HApx̂, p̂, ŝq ă HApx, p, sq

HBpx̂, p̂, ŝq ď HBpx, p, sq

HOpx̂, p̂, ŝq “ HOpx, p, sq

Therefore Qpx̂, p̂, ŝq ă Qpx, p, sq, contradicting the

minimality of Qpx, p, sq.

case 2: The map φ is not injective, This implies that there

exists a vertex i P V2 such that two (or more) vertices of V1 are

mapped to it. Meaning that there exists i P V2 and u, v P V1,

u “ v such that xu,i “ xv,i “ 1. As in the first case, we can

suppose that si “ pu “ pv “ 1.

We take the solution x̂, p̂, ŝ with x̂v,i “ 0, p̂v “ 0 and all

the other values unchanged. We have then:

βHBpx̂, p̂, ŝq ď βHBpx, p, sq

γHOpx̂, p̂, ŝq “ γHOpx, p, sq ` γ

With a similar analysis of the term HA that the one in case

1, we get:

˜
ŝi ´

ÿ

wPV2

x̂w,i

¸2

ă

˜
si ´

ÿ

wPV2

xw,i

¸2

(21)

Since we are working with natural numbers, we can subtract

one from the second term changing the strict inequality for a

non-strict one.

˜
ŝi ´

ÿ

wPV2

x̂w,i

¸2

ď

˜
si ´

ÿ

wPV2

xw,i

¸2

´ 1

All the other terms in HA remains unchanged. After mul-

tiplying by α we have:

αHApx̂, p̂, ŝq ď αHApx, p, sq ´ α

Then:

Qpx̂, p̂, ŝq ď Qpx, p, sq ` γ ´ α

Since α ą γ, Qpx̂, p̂, ŝq ă Qpx, p, sq, contradicting the

minimality of the solution.

Now, using what we proved in cases 1 and 2, we can

assume that if x, p, s gives the minimum value of Q, then φ

is an injective function (implying that HA “ 0). This will be

useful in the next case.

Case 3: The function φ does not preserves the graph

structure. Then, we can find u, v P V1, i, j P V2 such that

xu,i “ xv,j “ 1, tu, vu P E1 but ti, ju R E2 (The case when



tu, vu R E1 and ti, ju P E2 is analogous). Notice that this

implies that pu “ pv “ si “ sj “ 1.

Like we mentioned earlier, we can assume that φ is an

injective function. In this case, we consider the solution x̂, p̂, ŝ

with x̂u,i “ 0, p̂u “ 0, and ŝi “ 0. If φ is an injective function,

then the map φ̂ “ tpu, iq P V1 ˆ V2 | x̂u,i “ 1u is also an

injective function, implying that HA remains equal to zero.

Then:

αHApx̂, p̂, ŝq “ αHApx, p, sq “ 0

βHBpx̂, p̂, ŝq ď βHBpx, p, sq ´ β

γHOpx̂, p̂, ŝq “ γHOpx, p, sq ` γ

Implying that:

Qpx̂, p̂, ŝq ď Qps, p, sq ` γ ´ β

Since β ą γ, Qpx̂, p̂, ŝq ă Qpx, p, sq, contradicting the

minimality of x, p, s.

Thus, if the minimum value of Q is achieved by the binary

variables x, p, s the set φ is an structure preserving injective

function.

B. Proof of theorem IV.2

Theorem IV.2: (Correctness of the QUBO formulation for

the Maximum Common Sub-graph Problem). Let Qpx, p, sq be

the QUBO defined in (1), where x, p, s are vectors containing

the variables xu,i, pu and si respectively.

Then, if α, β ą γ and x, p, s are such that Qpx, p, sq is the

minimum value of Q then the relationship φ defined by x is

the solution of the Maximum Commom sub-graph problem.

Proof. Since Qpx, p, sq is the minimum value of Q, using the-

orem IV.1 we know that φ is an injective function from Ax to

V2 that preserves the graph structure, meaning that G1rAxs »
G2rBxs. Then, we have HApx, p, sq “ HBpx, p, sq “ 0 and

γHOpx, p, sq “ ´γ|Ax|, therefore:

Qpx, p, sq “ ´γ|Ax| (22)

By contradiction, suppose that there exists A Ď V1, B Ď V2
such that G1rAs » G2rBs with |A| ą |Ax|.

Since G1rAs » G2rBs, we know that there exists a bijective

function ψ : A Ñ B that preserves the graph structure. Define

the binary variables x̂u,i, p̂u, ŝi for u P V1, i P V2 in the

following way:

x̂u,i “

#
1 if u P A and ψpuq “ i

0 otherwise

p̂u “

#
1 if u P A

0 otherwise

ŝi “

#
1 if i P B

0 otherwise

The map tpu, iq P V1 ˆ V2 | x̂u,i “ 1u is exactly ψ. This

means that the map induced by the binary variables x̂u,i, p̂u
and ŝi is an structure preserving injective function. Therefore

HApx̂, p̂, ŝq “ HBpx̂, p̂, ŝq “ 0 and γHOpx̂, p̂, ŝq “ ´γ|A|,
and:

Qpx̂, p̂, ŝq “ ´γ|A|

This is a contradiction, since Qpx̂, p̂, ŝq ă Qpx, p, sq.

C. Proof of theorem of SITB

Theorem IV.3: (Correctness of the QUBO formulation for

the SITB Problem). Let Qpx, p, sq be the QUBO defined in

(7) to (11) for the SITB problem, where x, p, s are vectors

containing the variables xu,i, pu and si respectively.

Then, if α, β ą γ ` 2δ, δ ą 2
nγ and x, p, s are such that

Qpx, p, sq is the minimum value of Q then the relationship φ

defined by x is an injective function that preserves the graph

structure, and the subgraph P2nrAxs is a path.

Proof. We can proceed exactly as in the proof of Theorem

IV.1. First, we suppose that Qpx, p, sq is the minimum

value of Q and φ is not a correct solution of the SITB

problem, and then we find a new solution x̂, p̂, ŝ with

Qpx̂, p̂, ŝq ă Qpx, p, sq, leading to a contradiction. In this

proof, we have 4 cases:

Case 1: If the relationship φ is not a function, there exists

a vertex u P V1 that is mapped to more than one vertex in V2,

meaning that there exist i, j P V2 with i ‰ j such that xu,i “
xu,j “ 1. Again, we can suppose that pu “ si “ sj “ 1. With

the same change of variables as the one

αHApx̂, p̂, ŝq ă αHApx, p, sq

βHBpx̂, p̂, ŝq ď βHBpx, p, sq

γHOpx̂, p̂, ŝq “ γHOpx, p, sq

δHCpx̂, p̂, ŝq “ δHCpx, p, sq

Implying that Qpx̂, p̂, ŝq ă Qpx, p, sq, contradicting the

minimality of Qpx, p, sq.

Case 2: φ is not injective. Again, we can do the same

change as the one performed in the Case 2 of Theorem IV.1.

Notice that in that after changing the value of only one pu
then HC can change on at most 2. Therefore we obtain:

αHApx̂, p̂, ŝq ď αHApx, p, sq ´ α

βHBpx̂, p̂, ŝq ď βHBpx, p, sq

γHOpx̂, p̂, ŝq “ γHOpx, p, sq ` γ

δHCpx̂, p̂, ŝq ď δHCpx, p, sq ` 2δ

Then:

Qpx̂, p̂, ŝq ď Qpx, p, sq ` 2δ ` γ ´ α



Since α ą γ ` 2δ we have that Qpx̂, p̂, ŝq ă Qpx, p, sq,

leading to a contradiction.

Case 3: The function φ does not preserves the graph

structure. Then we can perform the same change as in Case

3 of Theorem IV.1. In this case the effect on HC is the same,

therefore we obtain:

HApx̂, p̂, ŝq “ HApx, p, sq “ 0

βHBpx̂, p̂, ŝq ď βHBpx, p, sq ´ β

γHOpx̂, p̂, ŝq “ γHOpx, p, sq ` γ

δHCpx̂, p̂, ŝq ď δHCpx, p, sq ` 2δ

Then:

Qpx̂, p̂, ŝq ď Qpx, p, sq ` 2δ ` γ ´ β

Since β ą γ ` 2δ we have that Qpx̂, p̂, ŝq ă Qpx, p, sq,

leading to a contradiction.

Case 4: The selected subgraph of P2n is not con-

nected. Since HApx, p, sq “ HBpx, p, sq “ 0, we have that

HCpx, p, sq ě 1 (this is because HCpx, p, sq “ 0 only if all

the 2
n vertices are used in the induced path, but we know that

for n ě 2 there is no induced path of 2n vertices)

Since G1rAxs is not connected then HCpx, p, sq ą 1. We

can see that the trivial solution x̂u,i “ p̂u “ ŝi “ 0 @u, i (all

variables equal to zero) gives a lower value of Q:

Qpx̂, p̂, ŝq “ δ

Qpx, p, sq ě ´|Ax|γ ` 2δ ą ´2
nγ ` 2δ

Therefore:

Qpx, p, sq ě ´2
nγ `Qpx̂, p̂, ŝq ` δ

Since δ ą 2
nγ we get that Qpx̂, p̂, ŝq ă 0, leading to a

contradiction.

D. Proof of theorem CITB

Theorem IV.4: (Correctness of the QUBO formulation for

the CITB Problem). Let Qpx, p, sq be the QUBO defined in

(12) to (17) for the CITB problem, where x, p, s are vectors

containing the variables xu,i, pu and si respectively.

Then, if α, β ą γ ` δ ` ǫ, δ, ǫ ą 2
nγ and x, p, s are such

that Qpx, p, sq is the minimum value of Q then the map φ

defined by x is an injective function that preserves the graph

structure, and the subgraph G1rAxs cycle.

Proof. We proceed as in the proof of theorem IV.1. First,

suppose that the minimum value of Q is achieved by x, p, s,

and φ “ tpu, iq P V1 ˆ V2 | xu,i “ 1u is not a correct solution

of the CITB problem, then, we find a solution x̂, p̂, ŝ such

that Qpx̂, p̂, ŝq ă Qpx, p, sq, leading to a contradiction. We

have now 4 cases:

Case 1: The relationship φ is not a function from Ax to V2.

This implies that there exists a vertex u P V1 that is mapped to

more than one vertex in V2, meaning that there exist i, j P V2
with i ‰ j such that xu,i “ xu,j “ 1. Again, we can suppose

that pu “ si “ sj “ 1. Then we have:

αHApx̂, p̂, ŝq ă αHApx, p, sq

βHBpx̂, p̂, ŝq ď βHBpx, p, sq

γHOpx̂, p̂, ŝq “ γHOpx, p, sq

δHCpx̂, p̂, ŝq “ δHCpx, p, sq

ǫHRpx̂, p̂, ŝq ď ǫHRpx, p, sq

Then Qpx̂, p̂, ŝq ă Qpx, p, sq contradicting the minimality

of Qpx, p, sq.

case 2: The map φ is not injective, This implies that there

exists a vertex i P V2 such that two (or more) vertices of V1 are

mapped to it. Meaning that there exists i P V2 and u, v P V1,

u “ v such that xu,i “ xv,i “ 1. As in the first case, we can

suppose that si “ pu “ pv “ 1.

We take the solution x̂, p̂, ŝ with x̂v,i “ 0, p̂v “ 0 and all

the other values unchanged. We have then:

αHApx̂, p̂, ŝq ď αHApx, p, sq ´ α

βHBpx̂, p̂, ŝq ď βHBpx, p, sq

γHOpx̂, p̂, ŝq “ γHOpx, p, sq ` γ

δHCpx̂, p̂, ŝq ď δHCpx, p, sq ` δ

ǫHRpx̂, p̂, ŝq ď ǫHRpx, p, sq ` ǫ

Then we have:

Qpx̂, p̂, ŝq ď Qpx, p, sq ` ǫ` δ ` γ ´ α

Since α ą ǫ ` δ ` γ we get Qpx̂, p̂, ŝq ă Qpx, p, sq,

contradicting the minimality of Qpx, p, sq.

Case 3: The function φ does not preserves the graph

structure. Then, we can find u, v P V1, i, j P V2 such that

xu,i “ xv,j “ 1, tu, vu P E1 but ti, ju R E2 (The case when

tu, vu R E1 and ti, ju P E2 is analogous). Notice that this

implies that pu “ pv “ si “ sj “ 1.

Like we mentioned earlier, we can assume that φ is an

injective function. In this case, we consider the solution x̂, p̂, ŝ

with x̂u,i “ 0, p̂u “ 0, and ŝi “ 0. If φ is an injective function,

then the map φ̂ “ tpu, iq P V1 ˆ V2 | x̂u,i “ 1u is also an

injective function, implying that HA remains equal to zero.

Then:

αHApx̂, p̂, ŝq “ αHApx, p, sq “ 0

βHBpx̂, p̂, ŝq ď βHBpx, p, sq ´ β



γHOpx̂, p̂, ŝq “ γHOpx, p, sq ` γ

δHCpx̂, p̂, ŝq ď δHCpx, p, sq ` δ

ǫHRpx̂, p̂, ŝq ď ǫHRpx, p, sq ` ǫ

Then:

Qpx̂, p̂, ŝq ď Qpx, p, sq ` ǫ` δ ` γ ´ β

Since β ą ǫ ` δ ` γ we get Qpx̂, p̂, ŝq ă Qpx, p, sq,

contradicting the minimality of Qpx, p, sq.

Case 4: Finally, we prove that the selected induced sub-

graph G1rAxs is a cycle. For that we prove that HCpx, p, sq “
HRpx, p, sq “ 0. By contradiction, suppose that HCpx, p, sq ą
0, then, taking the trivial solution x̂u,i “ p̂u “ ŝi “ 0 @u, i.

Qpx̂, p̂, ŝq “ 0

Qpx, p, sq ě ´|Ax|γ`δ`ǫHRpx, p, sq ą ´2
nγ`δ`ǫHRpx, p, sq

Therefore, since HRpx, p, sq ě 0 and δ ą 2
nγ we get that

Qpx̂, p̂, ŝq ă Qpx, p, sq, leading to a contradiction.

Similarly, if HRpx, p, sq ą 0, we can take again the trivial

solution x̂, p̂, ŝ:

Qpx̂, p̂, ŝq “ 0

Qpx, p, sq ě ´|Ax|γ`ǫ`δHCpx, p, sq ą ´2
nγ`ǫ`δHCpx, p, sq

Therefore, since HCpx, p, sq ě 0 and ǫ ą 2
nγ we get that

Qpx̂, p̂, ŝq ă Qpx, p, sq, leading to a contradiction.
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