Motivation	Problem	Network Transformations	Results	Conclusions

Building Reliability-Improving Network Transformations

Eduardo Canale, Franco Robledo, Pablo Romero, Julián Viera

15th International Conference on Design of Reliable Communication Networks.

DRCN, 2019

Motivation ●	Problem ○	Network Transformations	Results	Conclusions o
Motivation				
Motivat	ion			

Remark

- Graph with either bridges or cut-points are not good from a telecommunication viewpoint.
- The intuition suggests that we can transform them into biconnected graphs, winning in terms of reliability.
- Kelmans already provided in 1981 a reliability-improving transformation.
- To the best of our knowledge, there is no other reliability-improving transformation in the scientific literature.

Goal

Here we formalize this intuition, finding reliability-improving transformations. They require the movement of a single link.

Motivation o	Problem ●	Network Transformations	Results	Conclusions o
Problem				
Problem				

Definition (Unreliability)

The *unreliability* of a simple graph *G* with independent link failures with probability ρ is:

$$U_G(\rho) = \sum_{k=0}^{q} m_k \rho^k (1-\rho)^{q-k},$$

being m_k the number of ways to disconnect *G* removing *k* links. A (p, q)-graph is a graph with *p* nodes and *q* links.

Definition (Reliability-Improving Transformation)

Given a (p, q)-graph G, a reliability-improving transformation is a mapping $f : G \to H$, where H is another (p, q) graph but $U_H(\rho) < U_G(\rho)$ for all $\rho \in (0, 1)$.

Motivation ○	Problem o	Network Transformations ●○	Results	Conclusions o
Network Transform	nations			
Old Tra	nsformati	on (Kelmans, 198	31)	

Motivation	Problem	Network Transformations	Results	Conclusions
○	○	○●		o
Network Transfor	mations			

New Transformations (Canale et. al., 2019)

Figure: Building a bridgeless graph.

Figure: Building a biconnected graph.

<ロ > < 母 > < 直 > < 直 > < 直 > 三 2000 5/10

Motivation ○	Problem ○	Network Transformations	Results ●○○○	$^{\circ}$
Results				
Results 1/	′ 3			

Theorem

Let $q \ge p \ge 3$. For any connected (p, q)-graph G = (V, E) with a bridge, there is some bridgeless (p, q)-graph G' such that $m_k(G') \le m_k(G)$ for all k.

Main Idea of the Proof:

Define $G_1 = G - xy + vy$. It has less bridges than G. Find a one-to-one mapping $f_k : M_k(G_1) \to M_k(G)$, to conclude that $m_k(G_1) = |M_k(G_1)| \le |M_k(G)| = m_k(G)$. The following function works:

$$f_k(S) = egin{cases} S & vy
ot\in S, \ S - vy + xy & vy \in S, \end{cases}$$

Motivation O	Problem ○	Network Transformations	Results ○●○○	Conclusions O
Results				
Results 2/	/3			

Theorem

Let $q \ge p \ge 3$. For any connected (p, q)-graph G with a cut-point, there is some biconnected (p, q)-graph G' such that $m_k(G') \le m_k(G)$ for all k.

Main Idea of the Proof:

Analogous. Consider the graph $G_1 = G - wx + xy$, and find a one-to-one mapping from $f_k : M_k(G_1) \to M_k(G)$:

$$f_k(S) = egin{cases} S & xy
ot\in S, \ S - xy + wx & xy \in S. \end{cases}$$

Motivation ○	Problem ○	Network Transformations	Results ○○●○	Conclusions O
Results				
Results 3/	/3			

Theorem

Yutsis graph Y₆ is uniformly most-reliable.

Main Idea of the Proof:

It suffices to prove that $m_k(Y_6) \le m_k(G)$ for all (12, 18)-graphs *G*. Observe that the minimum-degree must be $\delta(G) \le 3$. The case $\delta(G) = 1$ is not necessary (Theorem 3). There are 85 non-isomorphic cubic graphs with 12 nodes (Bussemake, 1977), so, a simple test finishes these cases. A previous computational test shows that Yutsis is t-optimal (Chen, 2005). Yutsis has superconnectivity $\lambda = 3$, so, $m_3(Y_6)$ is minimum. The remaining cases for $\delta(G) = 2$ are longer.

Motivation ○	Problem ○	Network Transformations	Results ○○○●	Conclusions ○
Results				
Yutsis G	araph			

Figure: Yutsis-18jF

Motivation °	Problem ○	Network Transformations	Results	Conclusions •
Conclusions				
Conclusio	ons			

- Two reliability-improving transformations are proposed.
- Both transformation lead to biconnected graphs.
- Yutsis is uniformly most-reliable.
- A formal proof is waiting for Heawood and Kantor-Mobius graphs.

The progress in the theory of UMR graphs is slow.