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Eduardo Canale∗ Roberto Markarian⋆
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Abstract

The elliptical stadium is a plane region bounded by a curve constructed by joining two half-ellipses,
with half axes a > 1 and b = 1, by two parallel segments of equal length 2h.

V. Donnay [2] proved that if 1 < a <
√
2 and if h is big enough than the corresponding billiard

map has non-vanishing Lyapunov exponents almost everywhere; moreover h → ∞ as a →
√
2. In a

previous paper [4] we found a bound for h assuring the K-property for these billiards, for values of a
very close to 1.

In this work we study the stability of a particular family of periodic orbits obtaining a new bound
for the chaotic zone for any value of a <

√
2.

1 Introduction

The elliptical stadium is a plane region bounded by a curve Γ, constructed by joining two half-ellipses,
with major axes a > 1 and minor axes b = 1, by two straight segments of equal length 2h (see fig.1).
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Figure 1: The elliptical stadium.
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The billiard on the elliptical stadium consists in the study of the free motion of a point particle inside
the stadium, being reflected elastically at the impacts with Γ. Since the motion is free inside Γ, it
is determined either by two consecutive points of reflection at Γ or by the point of reflection and the
direction of motion immediately after each collision.

Let s ∈ [0, L) be the arclength parameter for Γ and the direction of motion be given by the angle β
with the normal to the boundary at the impact point. The billiard defines a map T from the annulus
A = [0, L)× (−π/2, π/2) into itself. Let (s0, β0) and (s1, β1) ∈ A be such that T (s0, β0) = (s1, β1) and
that Γ is C∞ in some neighborhood of s0 and s1 (notice that Γ is globally C1 but not C2 and piecewise
C∞). Then, T is a C∞-diffeomorphism in some neighborhoods of (s0, β0) and (s1, β1). It also preserves
the measure dµ = cosβ dβ ds (see, for instance, [3]).

(A, µ, T ) defines a discrete dynamical system, whose orbits are given by

O(s0, β0) = {(sn, βn) = T n(s0, β0), n ∈ Z} ⊂ A.

So the elliptical stadium billiard defines, almost everywhere, a two-parameter family of diffeomorphisms
Ta,h whose dynamics depend on the values of a and h. For instance, when h = 0, Ta,h is integrable for
every a since we have the elliptical billiard.

In [2], V. Donnay proved that the elliptical billiard stadium map Ta,h has non-vanishing Lyapunov
exponents almost everywhere if 1 < a <

√
2 and h is sufficiently large. He also proved that h must go to

infinity as a approaches
√
2. Donnay addressed a challenge: “One could try to calculate bounds on these

lengths.”

In [4], we proved that if 1 < a <
√

4− 2
√
2, then h > 2a2

√
a2 − 1 assures not only the positiveness of a

Lyapunov exponent, but also ergodicity and the K-property. However, 2a2
√
a2 − 1 does not seem to be

an optimal lower bound for h. Numerical simulations exhibit chaotic phase spaces for values of h smaller

than this bound. Moreover,
√

4− 2
√
2 ≈ 1.082 is far from

√
2 and close to 1, so in this case we are very

close to the Bunimovich stadium which is chaotic for all h > 0.

In this work, expanding and revising the work in [1], we study a family of periodic orbits, with any pair
period p ≥ 4, whose behavior looks generic. This means that in phase space, when they are elliptic, they
are surrounded by invariant curves which constitute elliptic islands of positive measure which disappear
as the orbits change from elliptic to hyperbolic.

We will prove the existence of a curve H = H(a), which diverges as a approaches
√
2 such that above it

all these periodic orbits are hyperbolic. Even though H = H(a) may not be the optimal searched bound
for chaoticity, it is at least a lower bound and seems not far from it. It also gives a very good answer to
Donnay’s challenge.

This paper continues in the following way: in section 2 we describe the family of periodic orbits. In
section 3, we study their hyperbolicity. Section 4 consists on the definition of the bound H(a). Section 5
contains some concluding remarks.

2 Pantographic Orbits

On IR2, we fix the origin on the center of the elliptical stadium and take the x-axes containing the major
half-axis of the half-ellipses (see figure 1).

Given a, h and a positive integer i, an (i, a, h)-pantographic orbit, denoted by Pan(i, a, h), is a (4 + 2i)-
periodic orbit, symmetric with respect to the coordinate axes, alternating the impacts up and down, with
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exactly 4 impacts at the half-ellipses (2 at each one, joined by a vertical path) and 2i impacts at the
straight parts (i at each one) and crossing the y-axis only twice (see figure 2).

i = 0 i = 1 i = 2

i = 3 i = 4 i = 5

Figure 2: Pantographic orbits of the elliptical stadium.

The choice of those pantographic orbits was motivated by several remarks. The elliptical stadium billiard
can be viewed as a perturbation of the elliptical billiard. The orbits of the elliptical billiard may be
classified according to two different main features: those that have an elliptical caustic and those with
a hyperbolic caustic (on the phase space of the elliptical billiard, these last orbits belong to invariant
curves surrounding the elliptic period–2 point). The invariant curves associated to the orbits with elliptical
caustic are easily destroyed by the perturbation (in the same way it happens in the Bunimovich stadium).
This is not so easy for those with hyperbolic caustic. So orbits that have a chance to remain elliptic,
after perturbation, must be close to those trajectories with hyperbolic caustic.

On the other hand, it is known [3] that the elliptic character of an orbit can be given by a relation
between the curvature of the boundary at the impact points and the total length of the trajectory. Since
bounces on the straight parts of the elliptical stadium only change the length of the trajectory, the elliptic
behavior will depend fundamentally on the number of impacts with the elliptical parts. But, if a <

√
2, no

trajectory with hyperbolic caustic, on the elliptical billiard, can have more than two consecutive bounces
on the same half-ellipse [2]. Since while bouncing on the half-ellipse, any trajectory on the elliptical
stadium billiard behaves exactly as a trajectory on the elliptical table, we must look for periodic orbits,
close to orbits of the elliptical billiard with hyperbolic caustic and bouncing twice at the elliptical part
of the stadium.

Between all the periodic orbits with this behavior, the pantographic have the following properties:
a) they exist for every even period p ≥ 4 and so can be studied as the period goes to infinity.
b) they can be explicitly localized and linearized.

Strengthening our choice of this family, in the numerical simulations we have carried out, those panto-
graphic orbits appear as the last ones having observable KAM-like-islands.

Proposition 1 Pan(i, a, h) exists for every 1 < a <
√
2 and h > 0.
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Proof: Let P be the point of Pan(i, a, h) located in the right half-ellipse and on the first quadrant. Let
λ ∈ [0, π/2] be such that P = (a cosλ + h, sinλ), and let β > 0 be the angle of the trajectory by P ,
with the normal to the boundary. Using the obvious symmetries, it is easy to see that P is a point of
Pan(i, a, h) if the straight line passing by P with slope tan(π/2 − 2β) cuts the y-axis at (0,−i). (see
figure 3)

ββ

P ′

P

y

x

−i

Figure 3:

So,

tan 2β =
h+ a cosλ

i+ sinλ
.

And since tanβ = cosλ/(a sinλ) we have

a tanλ− 1

a tanλ
=

2(i
√
1 + tan2λ+ tanλ)

h
√
1 + tan2λ+ a

(1)

It follows from the same arguments that a trajectory containing the vertical piece from P ′ = (a cosλ +
h,− sinλ) to P = (a cosλ+ h, sinλ) will cut the y-axis at (0,−y), where

y = y(t) =
a2t2 − 1

2at
√
1 + t2

(h
√

1 + t2 + a)− t√
1 + t2

, (2)

with t = tanλ. Then finding a solution of (1) is equivalent to find a t such that y(t) = i.

It is not difficult to verify that limt→0 y(t) = −∞, limt→∞ y(t) = +∞ and

dy

dt
=

(

1 + a2 t2
) (

a+ h (1 + t2)
√
1 + t2

)

2 a t2 (1 + t2)
3

2

> 0 for all fixed a > 0 and h > 0 .

Then, as y(t) is a continous strictly increasing function running from −∞ to +∞ as t runs from 0 to ∞,
y(t) = i has a unique solution ti(a, h) for each integer i, for every given a > 0, h > 0 and so (1) has also
a unique solution ti(a, h) = tan(λi(a, h)).
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On the other hand, as we know [2] that for a <
√
2 no trajectory crossing the x − axis between any

two consecutive hits with the boundary can have three consecutive impacts on the same half-ellipse, we
conclude that the next impact after P ′ and P on the vertical piece of the trajectory as described above
must be on the straight part of the billiard.

Then if s(λi) is the arclength corresponding to the point P = (h + a cosλi, sinλi) of the stadium, and
0 < β(λi) = arctan 1/(ati) < π/2 the orbit of (s(λi), β(λi)) under the billiard map T is Pan(i, a, h). So
is the orbit of (s(λi), π − β(λi)). ✷

Remark: Using the same ideas, the existence of those Pan(i, a, h) can be proved for 1 < a < 2, but we
are only interested on a <

√
2.

Lemma 2 Given i, a and h, let λi = λi(a, h) be the solution of (1). Then λi goes to arctan 1/a and
β(λi) goes to π/4 as h goes to ∞; λi goes to π/2 as h goes to 0 for all 1 < a <

√
2.

Proof: The right side of equation (1) goes to zero as h → ∞ so we must have in this limit, a tanλ =
1/(a tanλ) and it follows that tanλ → 1/a for all i.

To study the behavior when h → 0 it is sufficient to study for i = 0, because it follows from the proof of
Proposition 1 that if i < j then ti < tj . For i = 0, equation (1) can be rewritten as:

h

a
(a2 − cot2λ)

√

1 + cot2λ = [(2 − a2) + cot2λ] cotλ (3)

and when a <
√
2, h → 0, [(2− a2) + cot2λ] cotλ → 0 and ti(0) → π/2. Thus, ti → π/2 as h → 0. ✷

Remark: Let us call pantographic-like orbits on the elliptical billiard the periodic trajectories that
have vertical segments both at left and right extremes. It would be amazing to compare the results in
Proposition 1 with the existence of those pantographic-like orbits. As can be seen in [4], the 2n-periodic

pantographic-like orbit exists if a > an where an satisfies tanπ/n = 2
√

a2n − 1/(a2n − 2). For instance,
there is no 4-periodic pantographic-like orbit if a <

√
2, or 6-periodic if a < 2.

3 Hyperbolicity of the Pantographic Orbits

Proposition 3 For each i, let αi =
√

2+2i
2+i .

1. For i ≥ 0 if αi < a <
√
2, there exists a unique hi(a) such that if h < hi(a), Pan(i, a, h) is elliptic

and if h > hi(a), Pan(i, a, h) is hyperbolic.

2. For i ≥ 1, if 1 < a < αi , then Pan(i, a, h) is hyperbolic for all h > 0.

Proof: For fixed a <
√
2, i and h, let λi(a, h) be the solution of (1), β be the angle, with the normal, of the

outgoing trajectory at P = (a cosλi+h, sinλi) and s the corresponding arclength. So T 4+2i (s, β) = (s, β)
and to study the stability of this orbit we must analyze the eigenvalues of DT 4+2i|(s,β).

Let (sn, βn) and (sn+1, βn+1) be two consecutive impacts of a trajectory with the two different half-ellipses
(with k ≥ 0 impacts with the straight parts between them), or two consecutive impacts of a trajectory
with the same half-ellipse (with k = 0), then (see, for instance,[3])

DT k+1|(sn,βn) =
(−1)k

cosβn+1

(

ln,n+1Kn − cosβn ln,n+1

KnKn+1(ln,n+1 − cosβn − cosβn+1) ln,n+1Kn+1 − cosβn+1

)
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where K stands for the curvature, and ln,n+1 is the total length of the trajectory between the two impacts
with the half-ellipses.

Then, using elementary geometry and the symmetries of the trajectory, we can write DT 4+2i|(s,β) =
(M1M2)

2 with

Mj =
1

cosβ

(

lj K − cosβ lj
K2 (lj − 2 cosβ) lj K − cosβ

)

and where l1 = 2 sinλi, l2 = 2
√

(h+ a cosλi)2 + (i+ sinλi)2 and K = a/(a2 sin2 λi + cos2 λi)
3/2.

Now if we define

∆i(a, h) =

(

l1 K

cosβ
− 1

) (

l2K

cosβ
− 1

)

,

we have that Pan(i, a, h) is elliptic if 0 < ∆i(a, h) < 1, parabolic if ∆i(a, h) = 0 or 1 and hyperbolic if
∆i(a, h) < 0 or ∆i(a, h) > 1, which means that the eigenvalues of DT 4+2i|(s,β) are respectively purely
imaginary and unitary, equal to 1, real and one bigger than 1 and the other smaller than 1 (remember
that the system is conservative).

To study the function ∆i(a, h), we need the following lemma:

Lemma 4 The function ∆i(a, h) has the following properties for h > 0 and 1 < a <
√
2:

1. ∆i(a, h) > 0

2. ∂∆i

∂h > 0

3. limh→+∞ ∆i(a, h) = +∞

4. limh→0 ∆i(a, h) = Li(a) = ( 2
a2 − 1)(2(i+1)

a2 − 1) > 0

Proof of the lemma: If a <
√
2 the half-osculating circles of the ellipse are entirely contained inside

the ellipse [4], and so l1 > cos β
K . Since l2 > l1, ∆i is the product of two positive factors and property 1

follows.

To prove property 2, we remark first that, from formula 2 we can derive implicitly ∂t/∂h and show that
it is negative.

We have
l1 K

cosβ
=

2

a2 sin2 β + cos2 β
= 2

1 + t2

1 + a2t2

and this is a decreasing function of t if a > 1. So the first factor of ∆i is a decreasing function of t.

For 0 < λ < π/2 (t > 0)K is a decreasing function of λ, and so a decreasing function of t. As tanβ = 1/at,
cosβ is an increasing function of t. This implies that K/ cosβ decreases with t. Now

∂l22
∂λ

=
−a sinλ

1 + sinλ
(tan 2β − tanβ)

is negative, as β < π/4.

Thus, ∆i is a product of two decreasing functions of t, and so, is an increasing function of h which is
property 2.
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Property 3 is obvious since l2 → ∞ as h → ∞ and all the other quantities are bounded.

When h → 0, λi → π/2, l1 → 2, cosβ → 1,K → 1/a2 and l2 → 2(1 + i), which implies property 4. ✷

Now we finish the proof of Proposition 3. Given i, we know from the lemma above that for each
1 < a <

√
2, ∆i(a, h) is an increasing function of h running from Li(a) to ∞. The function Li(a)

decreases with a, Li(1) = 1 + 2i > 1 if i > 0 and Li(
√
2) = 0 for every i. Li = 1 has the solution

a =
√
2
√

1+i
2+i = αi.

So, if αi < a <
√
2, there exists a unique hi(a) such that ∆i(a, hi(a)) = 1 and h < hi(a) implies

∆i(a, hi(a)) < 1, h > hi(a) implies ∆i(a, hi(a)) > 1.

On the other hand, if a < αi, ∆i(a, h) > 1 for all h and the result follows. ✷

For each i ≥ 0 fixed, and for all αi < a <
√
2, formula (1) and ∆i(a, h) = 1 constitute a system equivalent

to

a2 sin3 λ+
i

2
(a2 − 1) sin2 λ− sinλ− i

2
= 0 (4)

hi(a) =
a
√

1− sin2 λ

(a2 + 1) sin2 λ− 1

(

2i sinλ+ 1− (a2 − 1) sin2 λ
)

(5)

where λ = λi(a).

The values sinλ = 1/a and h =
√
a2 − 1 satisfy the equations above for i = 0. So, h0(a) =

√
a2 − 1 for

1 < a <
√
2.

Now, let be y = sinλi(a). The problem of finding hi(a) is reduced to finding a root of the cubic polynomial

Pi,a(y) = y3 +
i

2a2
(a2 − 1)y2 − 1

a2
y − i

2a2

in the interval (0, 1). Pi,a(y) = 0 can be rewritten as

y

(

y2 − 1

a2

)

=
i

2a2
(

1− (a2 − 1)y2
)

The left hand side is a cubic polinomial with roots at 0,±1/a; it is positive for y > 1/a and negative in
(0, 1/a). The right hand side is a quadratic polynomial, with roots ±1/

√
a2 − 1 and which is negative for

y > 1/
√
a2 − 1 > 1/a. This implies that Pi,a has only one positive real root and that this root belongs to

(1/a, 1/
√
a2 − 1). As the left hand side is 0 for y = 1/a and the right hand side is positive, Pi,a(1/a) < 0.

However, Pi,a(1) > 0 for a > αi and Pi,a(1) < 0 for a > αi. This implies that for each i, Pi,a(y) has one
and only one real root in (0, 1) for αi < a <

√
2.

This root can be found by standard techniques:

yi(a) = 2
√
A cos θ − i (a2 − 1)

6 a2
(6)

where

A =
12 a2 + (a2 − 1)2 i2

(6a2)2

B =
2
(

18 a2(1 + 2 a2) i+ (a2 − 1)3 i3
)

(6a2)3

cos 3θ = −B/(2A3/2)

7



Moreover, a more careful investigation shows that B/(2A3/2) < 1. When B/(2A3/2) < −1, there is only
one real root and one should make use of the definition of cosine for imaginary arguments so “cos” is
changed into “csh”. For −1 < B/(2A3/2) ≤ 1, there are 3 real roots and we choose 0 ≤ θ ≤ π/3, in order
to have yi(a) > 0.

One can also write (6) as

yi(a) =
A

C
1

3

+ C
1

3 −
(

−1 + a2
)

i

6 a2

where C = (
√
B2 − 4A3−B)/2, and when it is imaginary, the choice of the logarithm branch is the same

as the choice of θ above.

If we introduce this value of sinλi(a) in (5), we obtain explicit formulae for the hi(a). These functions
are plotted in figure 4.

1.00

i =0

i =1

i =2

i =3

i =4

i =5

a√
2

h

1

1.24 1.31

i =5

i =1000

a√
2

h

1

Figure 4: Graphs of hi

4 A lower bound for the chaotic zone

For i = 0, h0(a) =
√
a2 − 1 is a strictly increasing function in (1,

√
2). Figure 4 shows that this is also

true for i = 1, 2. For i ≥ 3 we have the following:

Proposition 5 For each fixed i ≥ 3, dhi

da > 0.
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Proof: For i > 0, we have

hi(a) =
2 a y

√

1− y2

−1 + (1 + a2) y2

(

i+
−1 + a2 y2

i

)

where y = yi(a) is the only root of Pi,a(y) in (1/a, 1). Then, we have that

dy

da
=

−a y2 (i+ 2 y)

i y (a2 − 1) + 3 a2 y2 − 1
< 0.

Now
dhi

da
=

∂hi

∂a
+

∂hi

∂y

dy

da

can be written as

dhi

da
=

∂hi

∂a

(

1 +
a

y(1− y2)

dy

da

)

+

(

∂hi

∂y
− a

y(1− y2)

∂hi

∂a

)

dy

da
.

As

∂hi

∂a
=

2 y
√

1− y2
(

1− y2 − 2 a2 y2 + 3 a2 y4 + a4 y4 − i2 (1− y2 + a2 y2)
)

i (−1 + y2 + a2 y2)2

∂hi

∂y
=

2 a
(

1− y2 − 2 a2 y2 + 3 a2 y4 + a4 y4 + 2 a2 y4 − 2 a2 y6 − 2 a4 y6 − i2(1− y2 + a2 y2)
)

i
√

1− y2 (−1 + y2 + a2 y2)
2

we obtain that
∂hi

∂y
− a

y(1− y2)

∂hi

∂a
=

−4 a3 y4

i
√

1− y2 (−1 + y2 + a2 y2)
< 0

and

1 +
a

y(1− y2)

dy

da
=

1 + y2 (3 a2 y2 − 1− a2) + i y (1 − y2 + a2 y2)

− (1− y2) (i y (a2 − 1) + 3 a2 y2 − 1)
< 0

Now we will show that ∂hi/∂a < 0 for i ≥ 3, so dhi/da > 0 for i ≥ 3.

∂hi

∂a
=

2 y
√

1− y2

i (−1 + y2 + a2 y2)
2

(

D − i2 E
)

where

D = (1 − y2) + a2 y2 (3y2 − 1) + a2 y2 (a2 y2 − 1) > 0

E = 1 + (a2 − 1) y2 > 0

Now

E ≥ 1 +
y2

3
≥ 1 +

1

6
=

7

6
> 0

as
√
2 ≥ a ≥ α1 = 2/

√
3, for i ≥ 1, and 1 ≥ y ≥ 1/a ≥ 1/

√
2.

On the other hand

0 < D ≤ 1

2
+ 2a2 y2 + a2 y2 =

1

2
+ 3a2 y2 ≤ 1

2
+ 6 =

13

2
.

9



So if

i ≥ 3 >

√

39

7
≥

√

D

E

∂hi/∂a < 0 and the result follows. ✷

We were also able to found the asymptotical behavior of the hi at a =
√
2.

Proposition 6 If a =
√
2 then lim

i→∞

h2
i (
√
2)

4i
= 1.

Proof: For a =
√
2 we have

Pi,
√
2(y) = y3 +

i

4
y2 − 1

2
y − i

4

so its only positive real root goes to 1 as i goes to ∞. It follows that

lim
i→∞

sinλi(
√
2) = 1 .

Since Pi,
√
2(sinλ) = 0,

sinλ

(

sin2 λ− 1

2

)

=
i

4
cos2 λ .

The left hand side goes to 1/2 as i goes to ∞ implying

lim
i→∞

i

2
cos2 λi(

√
2) = 1 .

As

h2
i (
√
2) =

2 cos2 λ

3 sin2 λ− 1

(

2i sinλ+ cos2 λ
)2

using the limits above, gives the desired result. ✷

Proposition 6 tells us that there exists an N such that if i > N , h2
i (
√
2)/4 ≈ i. Plotting h2

i (
√
2)/4 × i,

we have observed the same linear behavior also for small values of i.

For each 1 < a <
√
2 there exists a j such that αj−1 ≤ a < αj . So, Pan(i, a, h) is hyperbolic for i ≥ j

and is elliptic if 0 ≤ i < j and h < hi(a). There exists, then, only a finite number of hi’s defined for
this value of a and we can define the announced lower bound by H(a) = maxi<j {hi(a)}. Proposition 6
implies that H(a) → ∞ as a →

√
2. H(a) can be seen on figure 4.

5 Final remarks

Clearly above the curve H(a) all pantographic orbits are hyperbolic and bellow it some have eigenvalues
in the unit complex circle. Generically, KAM theory establishes the existence of positive measure elliptic
islands surrounding those orbits and our numerical simulations corroborate this result. In this paper we
have not proved the existence of such islands.

On the other hand, above this bound, although we can prove that all the orbits of this family are
hyperbolic, we can not assure the non existence of other elliptic periodic orbits that could be surrounded
by positive measure sets of invariant curves and having vanishing Lyapunov exponents. As a matter of
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fact, we have observed other periodic orbits of Ta,h but the elliptic islands around them seem to disappear
for values of h < H(a).

A numerical case study which seems generic for this problem is presented in figures 5, 6 and 7. There,
we show the phase space associated for a = 1.24 fixed and different values of h. For this value of a we
have that α2 =

√
1.5 < 1.24 <

√
1.6 = α3 (see fig. 4) so Pan(i, 1.24, h) are hyperbolic for any h > 0 and

i ≥ 3. The pantographic orbits of period 4, 6 and 8 (Pan(0, 1.24, h), Pan(1, 1.24, h) and Pan(2, 1.24, h))
are the only relevant pantographic orbits as they are elliptic for small h. In fact we have h0 ≈ 0.7332,
h1 ≈ 1.0236, h2 ≈ 0.6770, h2 < h0 < h1 = H(1.24).

Note that for very small h (in this example, 0.1), a very rich structure of elliptic islands (the white holes
on fig. 5) can be observed; some of these islands correspond to other periodic orbits.

Figure 5: a = 1.24, h = 0.1. 150,000 iterations of a single initial condition.

As h is increased (fig. 6), they gradually disappear and only the pantographic islands seem to remain
at h = 0.45. Then, at h = 0.73 > h2, the eight islands around Pan(2, 1.24, h) have disappeared and at
h0 < h = 0.75 < h1 only the six islands around Pan(1, 1.24, h) can be seen, since Pan(0, 1.24, h) has
also become hyperbolic. In each case, the region outside the elliptic islands seems to be a single ergodic
component as it is filled up by a single orbit.

For h = 1.05 > h1 = H(1.24) (fig. 7) the system seems to be ergodic.

As we can see on figure 4, the order of extinction of the pantographic elliptic islands depends on the value
of a. As shown above, for a = 1.24, the order is i = 2, then i = 0 and then i = 1. But, for values of a a
little bigger than 1.24, it can be 0,2,1 or even 0,1 and 2.

However one can learn from figure 4, that as a approaches
√
2 the last islands to disappear correspond

to orbits with long period. This is expressed in proposition 6. So in this system, and this fact seems
also to occur in other problems, the obstruction to ergodicity seems to be existence of elliptic islands
around orbits with arbitrarily large period and so the existence of an arbitrarily large number of very
small islands. Those islands, even though summing up into a positive measure region, can be invisible in
a numerical simulation.

We would like to point out that the pantographic orbits also seem to be the most important ones from
the point of view of their focusing properties. In [4], the existence of a positive Lyapunov exponent
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Figure 6: a = 1.24 and different h’s. On the left side, 150,000 iterations of a single initial condition and.
On the right, the iteration of a few initial conditions close to the elliptic pantographic orbits.
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Figure 7: a = 1.24, h = 1.05. 150,000 iterations of a single initial condition.

for the elliptical billiard was obtained through the study of the behavior of the caustic pencil, or the
tangent vector to the invariant curves of the elliptical billiard. In the pantographic orbits, after hitting
a half-ellipse twice, in the vertical portion of the trajectory, it crosses to the other half-ellipse. At this
moment the focusing distance of the caustic pencil can be very large. This lack of focalization should
be compensated by a larger traveling distance, so a bigger h, in order to have a splitting of neighboring
trajectories. However, as a approaches

√
2 this focusing distance may tend to ∞. The loss of ellipticity

by all the pantographic orbits caused by increasing h indicates that the behavior of the caustic pencil may
be controlled at this point and one should be able to prove the existence of positive Lyapunov exponents.
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