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Abstract

We prove a large deviation principle for the greedy exploration of configuration
models, building on a time-discretized version of the method proposed by [3] and
[4] for jointly constructing a random graph from a given degree sequence and its
exploration. The proof of this result follows the general strategy to study large
deviations of processes proposed by [8], based on the convergence of non-linear
semigroups. We provide an intuitive interpretation of the LD cost function using
Crámer’s theorem for the average of random variables with appropriate distribution,
depending on the degree distribution of explored nodes. The rate function can be
expressed in a closed-form formula, and the large deviations trajectories can be
obtained through explicit associated optimization problems. We then deduce large
deviations results for the size of the independent set constructed by the algorithm. As
a particular case, we analyze these results for d-regular graphs.
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1 Introduction

In this paper, we analyze a simple greedy algorithm to construct an independent
set over a random graph chosen uniformly from those with a given degree. We use a
simultaneous construction of the random graph from a given degree sequence (i.e., it is
a configuration model) and an exploration discovering independent set. This idea was
first used by [13] for d-regular graphs and then for [3] and [4] for more general uniform
random graphs. We consider a time-discretized version of the algorithm proposed by [4]
for a bounded degree sequence.

We prove a large deviation principle (LDP), when the numberN of the graph’s vertices

goes to infinity, for a rescaled version XN
t =

XN[Nt]
N (t ∈ [0, 1]) of the multidimensional

Markov chain
{
XN
n

}
n

that counts the number of vertices that have already been assigned
into the independent set, and the number of empty (or non-explored) vertices from each
degree at each step n of the algorithm.
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LD for the greedy exploration process on configuration models

The proof of this result is based on the general strategy proposed by Feng and Kurtz
in [8], which is based on the convergence of non-linear semigroups. Their seminal
work consists of combining the tools of probability, analysis, and control theory used
in the works of [5], [6], [7], [9], [12], and others to propose a general strategy for the
study of large deviations of processes. In the case of Markov processes, this program is
carried out in four steps. The first step consists of proving the convergence of non-linear
generators HN and derives the limit operator H. The second step consists of verifying
the exponential compact containment condition. The third step consists of proving that
H generates a semigroup V = {Vt}t. The rate function is constructed in terms of that
limit V. This limit semigroup usually admits a variational form known as Nisio semigroup
in control theory. Then, the fourth step consists in constructing a version of the rate I
that is much more tractable in practice.

In our case, after working on the four steps mentioned before, we prove that the
rate function can be expressed as an action integral. Moreover, its cost function has an
intuitive interpretation in terms of Crámer’s theorem for the average of random variables
with appropriate distribution, depending on the degree distribution of explored vertices
in each step of the algorithm.

We provide a way to find the trajectory that minimizes the LD rate function over a set
of trajectories (i.e., the most probable trajectory) by studying the Hamiltonian dynamics
associated with the rate function obtained and deduce LD results for the size of the
independent set constructed by such an algorithm.

The rest of the paper is organized as follows. In Section 2, we define the dynamic
analyzed in this article, which consists of simultaneously constructing a random graph
and an independent set from an initial distribution of degrees. Moreover, we define
a sequence of Markov processes related to this algorithm. In Section 3, we present
the main result of this article: a path-state LDP for the sequence of Markov processes
defined in Section 2 along with the heuristic that motivates the result. The detailed proof
is deferred to Section 5. As a corollary, we obtain the fluid limit of the process and LD
results for the size of the independent set constructed by the algorithm. In Section 4, we
analyze those results for the particular case of d-regular graphs.

2 Description of the dynamics

This section presents the dynamics considered in this article, which consist of a
simultaneous construction of a random graph and an independent set from an initial
distribution of degrees.

We start with a set of vertices VN = {1, 2, . . . , N}, such that deg(i) ≤ D <∞ for all i
and such that the initial distribution of degrees 1

N# {i : deg(i) = j} converges to pj ≥ 0,

when the number of vertices N goes to infinity, for all j = 0, . . . D with
D∑
j=0

pj = 1. Let us

denote λ =
∑
j jpj .

Each vertex i of the graph has a number deg(i) of half-edges available to be paired
with the half-edges of other vertices. Next we describe how these half-edges are paired
as the random graph is constructed.

At each step n = 0, 1, . . . , N , the set VN is partitioned into three classes:

• a set SNn of vertices that have already been assigned into the independent set, with
all half-edges paired with vertices out of SNn ;

• a set BNn of blocked vertices, where at least one of its half-edges has been paired
with a half-edge from SNn ;

• a set ENn of empty vertices, from which no half-edge has yet been paired. ENn can be

ECP 0 (2020), paper 0.
Page 2/12

https://www.imstat.org/ecp



LD for the greedy exploration process on configuration models

decomposed as ENn =
D⋃
j=0

ENn (j), where ENn (j) is the set of empty vertices of degree

j at step n.

Initially, all vertices are empty, i.e. EN0 = VN and SN0 = ∅. At step n, a vertex v

is selected uniformly from ENn , it is assigned to SNn , and all its half-edges are paired,
drawing uniformly within the available half-edges. This pairing procedure results in the
following updates:

• v is moved from ENn to SNn ,

• each half-edge incident to v (if it has some) is paired with some other uniformly
randomly chosen vertices among the currently unpaired half-edges,

• all vertices in ENn with some half-edges already paired with a half-edge from v are
moved to BNn .

Note that some half-edges from v may be paired with half-edges from BNn , or indeed
with other half-edges from v, and no change in the status of a vertex results from such
pairings. At each step n, the only paired edges are those with at least one endpoint in
SNn . This is the main difference between the dynamics described in [3] and [4] for a
continuous-time version of this algorithm. In [3], the neighbors of blocked vertices are
revealed at each step, meaning that degrees of empty vertices can change over time.
For simplicity, we do not do this.

The algorithm terminates at the first step n = T ∗N at which ENn = ∅. At this point,
there may still be some unpaired half-edges pointing out from blocked vertices. These
may be paired off uniformly at random to complete the construction of the graph
G (N, (deg(1), . . . ,deg(N))). Note that T ∗N coincides with the size of the independent set

constructed by the algorithm. The expected value of T∗
N

N is usually called the jamming
constant of the graph.

For each n ∈ {0, 1, . . . , N}, let us denote XN
n =

(
SNn , U

N
n , E

N
n (0), ENn (1), . . . , ENn (D)

)
with:

• SNn =
∣∣SNn ∣∣, the number of vertices that have already been assigned into the

independent set at step n;

• UNn , the total number of unpaired half-edges (corresponding to empty or blocked
vertices) at step n;

• ENn (j) =
∣∣ENn (j)

∣∣, the number of empty vertices with degree j at step n.{
XN
n

}
n

is a discrete-time Markov process in RD+3. By construction, it is updated at step
n+ 1 as follows:

• The vertex v is assigned to SNn . Then, SNn+1 = SNn + 1.

• If v ∈ ENn (k) with k 6= 0, then:

1. Each one of the k half-edges pointing out from v is paired in turn with some
other uniformly randomly chosen between the currently unpaired half-edges.
Let HN be the number of half-edges from v that are paired with another
vertex different from v (blocked or empty), i.e., that do not form loops. Note
that HN has a Hypergeometric distribution Hyper

(
UNn , U

N
n − k, k

)
. Then,

UNn+1 = UNn − k −HN .

2. We have to distribute those HN half-edges between the UNn −
∑
j jE

N
n (j)

half-edges corresponding to blocked vertices and the
∑
j jE

N
n (j) half-edges

corresponding to empties. Let BN be the number of half-edges of v that are
paired to blocked vertices, then BN has a Hypergeometric distribution with
parameters UNn − k, UNn −

∑D
j=1 jE

N
n (j) and HN .
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LD for the greedy exploration process on configuration models

3. Now, if HN = h (with h ≤ k) and BN = b (with b ≤ h), there are h − b half-
edges to distribute among the empties. Let WN

j be the number of half-edges
from v that are paired to some w ∈ ENn (j). Note that

(
WN

1 , . . . ,WN
D

)
has a

(multivariate) Hypergeometric distribution:

Hyper
(∑

j jE
N
n (j)− k,ENn (1), . . . , k

(
ENn (k)− 1

)
, . . . , DENn (D), h− b

)
.

4. Finally, let W̃N
j be the number of empty vertices of degree j that share at least

one edge with v. Then, ENn+1(0) = ENn (0), ENn+1(j) = ENn (j)− W̃N
j if j 6= k and

ENn+1(k) = ENn (k)− 1− W̃N
k .

• If deg(v) = 0, then SNn+1 = SNn +1, UNn+1 = UNn , ENn+1(0) = ENn (0)−1 and ENn+1(j) =

ENn (j) for all j 6= 0.

According to the following Lemma, the distribution of
(
W̃1, . . . , W̃D

)
can be approxi-

mated by the Hypergeometric distribution corresponding to (W1, . . . ,WD).

Lemma 2.1. Let x = (s, u, e0, . . . , eD) be an element in the space state of
{
XN
n

}
n
, and

(ωj)j with 0 ≤ ωj ≤ ej such that
∑
j ωj ≤ h− b. Then,

lim
N→∞

P

((
W̃N
j

)
j

= (ωj)j

∣∣∣XN
n = x;deg(v) = k;HN = h;BN = b;

(
WN
j

)
j

= (ωj)j

)
= 1

Proof. See Equation 17 from [3]. In the article notation: WN
j = Y (µt−) (j) and W̃N

j =

Ỹ (µt−) (j).

Let XN
t :=

XN[Nt]
N be a rescaled version of XN

n with t ∈ [0, 1]. The state space

of XN
t is EN =

{
1
N (ŝ, û, ê0, . . . , êD) : ŝ, êi ∈ {0, . . . , N};

∑
j jêj ≤ û

}
which is a subset

of the compact set E :=
{

(s, u, e0, e1, . . . , eD) ∈ [0, 1]×R× [0, 1]D+1 :
∑
j jej ≤ u ≤ λ

}
.

The size of the independent set constructed by such an algorithm is given by T ∗N =

inf
{
n :

∑
j E

N
n (j) = 0

}
= N inf

{
t ∈ [0, 1] :

∑
j E

N
[Nt](j) = 0

}
.

We provide large deviations for both sequences
{
XN
.

}
N

and
{
T∗
N

N

}
N

.

3 Main results

In this section, we present the main results of the paper. In Subsection 3.1, we
present an LDP for XN =

{
XN
t

}
0≤t≤1

and a heuristic description to derive this result.
The proof of this theorem is based on the work of [8] and is deferred to Section 5. In
Subsection 3.2, we deduce the corresponding fluid limit. In Subsection 3.3, we provide a
way of finding the trajectory that minimizes the LD rate function over a set of trajectories
(i.e., the most probable trajectory) by studying the Hamiltonian dynamics associated
with the rate function obtained. Finally, in Subsection 3.4, we deduce an LD result for
the size of the independent set constructed by such an algorithm.

3.1 LDP for
{
XN

}
N

We now state our main result.

Theorem 3.1 (LDP for
{
XN

}
N
). The sequence

{
XN

}
N

with XN =
{
XN
t

}
0≤t≤1

verifies

an LDP on DE [0, 1] with good rate function I : DE [0, 1] → [0,+∞] such that I (x) =∫ 1

0
L (x(t), ẋ(t)) dt if x ∈ HL and it is +∞ in other case. L : E × RD+3 → R is the cost

function
L(x, β) = sup

α∈RD+3

{〈α, β〉 −H (x, α)} , (3.1)
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LD for the greedy exploration process on configuration models

with H : E ×RD+3 → R given by

H (x, α) =


log

∑
k

eαs−2kαu−αk

(
1 +

D∑
j=1

(e−αj − 1)
jej
u

)k
ek∑
j ej

 , if
∑
j ej > 0,

0, if
∑
j ej = 0,

(3.2)
being x = (s, u, e0, e1, . . . , eD) and α = (αs, αu, α0, α1, . . . , αD). HL is the set of all ab-
solutely continuous function x : [0, 1] → E, x(t) = (s(t), u(t), e0(t), e1(t), . . . , eD(t)) with
initial value x(0) = (0, λ, p0, p1, . . . , pD) and such that s(t) is increasing, u(t) and ej(t) are

decreasing, and the integral
∫ 1

0
L (x(t), ẋ(t)) dt exists and it is finite.

The proof of this result is deferred to Section 5. In what follows we provide an
intuitive way to construct the cost function of the LDP in terms of the rate function
provided by Cramer’s theorem for the average of the approximated distribution of the
new explored vertices in one step conditioning to the number of explored vertices.

Consider a curve x(t) = (s(t), u(t), e0(t), . . . , eD(t)) contained in E and such that
XN
t ≈ x(t). Then, the infinitesimal increments ẋ(t) correspond to the mean number

of new explored vertices from each degree in one step, as can be deduced from the
following statement:

ẋ(t) ≈ x(t+ h)− x(t)

h
≈
XN

[N(t+h)] −X
N
[Nt]

Nh
=

1

Nh

[N(t+h)]−1∑
n=[Nt]

(
XN
n+1 −XN

n

)
.

Proposition 3.2. The distribution of the number of new explored vertices in one step
XN
n+1−XN

n , conditioning toXN
t ≈ x(t) = (s(t), u(t), e0(t), . . . , eD(t)), can be approximated

by the random vector:

Zx(t) =

(1, 0,−1, 0, . . . , 0) , with probability e0(t)∑
j ej(t)

,

(1,−2k, 0,−M1, . . . ,−1−Mk, . . . ,−MD) , with probability ek(t)∑
j ej(t)

(1 ≤ k ≤ D),

where M ∼ Mult (K −B, q1, . . . , qD) is a multinomial vector depending on K such

that P(K = k) = ek(t)∑
j ej(t)

for k ∈ {0, · · · , D}, B = B(K) ∼ Bin
(
K, 1−

∑
j jej(t)

u(t)

)
, and

qi = iei(t)∑
j jej(t)

.

Proof. At step n, the vertex v ∈ ENn (k) is drawn uniformly. If k 6= 0, then XN
n+1 −XN

n =(
1,−k −HN , 0,−W̃N

1 , . . . ,−1− W̃N
k , . . . ,−W̃N

D

)
, where

• HN is the number of half-edges from v that are joined to another node different
from v. As the probability of loops converges to zero (see [4]), then HN ≈ k.

• Lemma 2.1 assures that W̃N
j ≈ WN

j , where
(
WN

1 , . . . ,WN
D

)
has a (multivariate)

Hypergeometric distribution with parameters
∑
j jE

N
n (j)− k, ENn (1), . . . , jENn (j),

. . . , k
(
ENn (k)− 1

)
, . . . , DENn (D), and k−BN . Note that BN can be approximated by

a Binomial random variable B with parameters n = k and p = limN
UNn −

∑
j jE

N
n (j)

UNn −k
=

1 −
∑
j jej(t)

u(t) . Moreover,
(
WN

1 , . . . ,WN
D

)
can be approximated by a Multinomial

random vector
(
WN

1 , . . . ,WN
D

)
≈ (M1, . . . ,MD) ∼ Mult (k −B, q1, . . . , qD), with

qi = iei(t)∑
j jej(t)

.

If v ∈ ENn (0), then XN
n+1 −XN

n = (1, 0,−1, 0, . . . , 0).
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LD for the greedy exploration process on configuration models

Proposition 3.3. The cost function L (x(t), ẋ(t)) defined in (3.1) coincides with the LDP

rate function for the average of i.i.d random variables (Z
x(t)
i )i∈N distributed as Zx(t):

L (x(t), ẋ(t)) = sup
α
{〈α, ẋ(t)〉 −H (x(t), α)} = Λ∗Zx(t) (ẋ(t)) .

Proof. Assuming that the (Z
x(t)
i )i are i.i.d., Cramér’s theorem states that the LDP

rate function for their average is I(x) = Λ∗
Zx(t)(x) = sup

α∈RD+3

{〈α, x〉 − ΛZx(t)(α)}, with

ΛZx(t)(α) = logE
[
e〈α,Z

x(t)〉
]
.

In this case, with α = (αs, αu, α0, . . . , αD), we have ΛZx(t)(α) = H (x(t), α) , being
H(x, α) (H : E × RD+3 → R) the log of the moment-generating function of the (con-
ditioned) Multinomial vector Zx (with x ∈ E) evaluated in α, which is presented
in Equation (3.2). Defining L : E × RD+3 → R as in Equation (3.1), results that
L (x(t), ẋ(t)) = sup

α
{〈α, ẋ(t)〉 −H (x(t), α)} coincides with Λ∗

Zx(t) (ẋ(t)).

That is, the global cost of a deviation of
{
XN
t

}
t

to a trajectory x(t) can be interpreted
as a consequence of the accumulated cost of microscopic deviations of the average of
(conditioned) Multinomial random vectors, representing the degrees of the new explored
vertices in one step.

Remark 3.4 (Fluid limit). Observe that, in particular, the mean macroscopic behavior
x(t) should verify:

ẋ(t) ≈ E
(
Zx(t)

)
= (1, 0,−1, 0, . . . , 0)

e0(t)∑
j ej(t)

+

D∑
k=1

(
1,−2k, 0,−k e1(t)

u(t)
, . . . ,−k jej(t)

u(t)
, . . . ,−1− kkek(t)

u(t)
, . . . ,−kDeD(t)

u(t)

)
ek(t)∑
j ej(t)

,

which coincides with the fluid limit that we formally prove in next subsection.

3.2 Fluid limit of the process
{
XN
t

}
t

In this subsection, we formally deduce the fluid limit of the process
{
XN
t

}
t
.

Proposition 3.5 (Fluid limit). The sequence of processes
{
XN

}
N

converges almost-sure,
as N →∞, to the deterministic function x̂ : [0, 1]→ E given by

x̂(t) =

{
(s(t), û(t), ê0(t), . . . , êD(t)) , if t ≤ T ∗,
(T ∗, 0, . . . , 0) , if t > T ∗,

where êi(t) =

{
ei(t), if t ≤ ti,
0, if t > ti.

The times ti are defined by ti = inf {t ∈ [0, 1] : ei(ti) ≤ 0} and x(t) = (s(t), u(t), e0(t), . . . , eD(t))

is (the) solution of the following ordinary differential equation:
ṡ = 1,

u̇ =
−2

∑
k kek∑
k ek

,

ėi =
−ei−

iei
u

∑
k kek∑

k ek
, i = 0, . . . , D,

s(0) = 0, u(0) = λ, ei(0) = pi.

(3.3)

û is the solution of Equation (3.3) replacing ei by êi and T ∗ = inf {t ∈ [0, 1] :
∑
k êk(t) = 0} =

max {t1, . . . , tD}.

Proof. The cost function L(x, β) defined in Theorem 3.1 satisfies L(x, β) ≥ 0 and
L (x, β) = 0 if and only if β = Hα (x, 0), where Hα (x, α) are the partial derivatives of
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LD for the greedy exploration process on configuration models

H (x, α) w.r.t. α = (αs, αu, α0, . . . , αD). Then, the trajectories with zero cost are the ones
that verify ẋ = Hα (x, 0). If in addition we impose the condition x(0) = (0, λ, p0, . . . , pD),
we obtain the autonomous Equation (3.3). Cauchy-Peano existence theorem ensures
the existence of at least one solution of such equation. Let D = {x ∈ E : ei > 0∀i} and
f(x) = Hα (x, 0). Then f is a C1-function onD, i.e. it is a locally Lipschitz continuous func-

tion on D. This implies the uniqueness of solutions ei(t) for equation

{
ẋ = f(x),

x(0) = x0 ∈ D,
until the time ti at which ei(ti) = 0, and then we take the solution ei(t) = 0 for all
t ≥ ti.

3.3 Optimization of the rate function.

The following proposition allows to transform the optimization problem of the rate
function I over a set of trajectories into a much simpler optimization problem on R.

Proposition 3.6 (Rate function optimization). Let A be a subset of DE [0, 1]. Then,

inf
x∈A

I(x) = inf
{α0∈RD+3:x̂α0

∈Ā}
I (x̂α0) ,

where the closure of A is considered w.r.t. the Skorohod topology,

x̂α0
(t) =

{
(sα0(t), ûα0(t), ê0,α0(t), . . . , êD,α0(t)) , if t ≤ Tα0

(Tα0
, 0, . . . , 0) , if t > Tα0

,

êi,α0(t) =

{
ei,α0

(t), if t ≤ ti,α0
,

0, if t > ti,α0

, ti,α0 = inf {t ∈ [0, 1] : ei,α0(t) ≤ 0}, and

xα0(t) = (sα0(t), uα0(t), e0,α0(t), . . . , eD,α0(t)) is (the) solution of the ODE:
ẋ = Hα(x, α);

α̇ = −Hx(x, α);

x(0) = (0, λ, p0, . . . , pD) ; α(0) = α0.

(3.4)

Hx and Hα are the vectors of partial derivatives of H w.r.t. x and α,
and Tα0

= inf {t ∈ [0, 1] :
∑
k êk,α0

(t) = 0}.
Remark 3.7. As expected, for α0 = (0, 0, . . . , 0), x̂α0(t) coincides with the fluid limit,
which is solution of Equation (3.3), and α(t) = (0, . . . , 0) for all t. Then inf

x∈A
I(x) = 0 if the

fluid limit belongs to A.

Proof. Note that if x ∈ HL is such that x(t) = (s(t), u(t), e0(t), . . . , eD(t)) and
∑
k ek(t) = 0

for all t ≥ t0, then I(x) =
∫ 1

0
L(x, ẋ)dt =

∫ t0
0
L(x, ẋ)dt, so just consider Hamilton’s

equations for the case
∑
k ek > 0. Hamilton’s equations, presented in Equation (3.4),

give conditions for a function x to be a stationary curve of the functional I (and are
equivalents to Euler-Lagrange equation, see [1], for example). Note that α is an auxiliary
function.

3.4 LD for the size of the independent set constructed by the algorithm

We can now deduce LD results for the sequence of stopping times T∗
N

N , (which coincide
with the proportion of vertices in the independent set constructed by the algorithm)
using our previous results:

Theorem 3.8. Consider T ∗N defined before as the stopping time of the algorithm pre-
sented in Section 2.
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LD for the greedy exploration process on configuration models

1. If ε > 0 is such that T ∗ + ε < 1, then

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= −F+ (T ∗ + ε) ,

being F+ (T ∗ + ε) = inf
{
I (x̂α0

) : Tα0
≥ T ∗ + ε, α0 ∈ RD+3

}
.

2. If ε > 0 is such that T ∗ − ε > 0, then

lim
N

1

N
logP

(
T ∗N
N
≤ T ∗ − ε

)
= −F− (T ∗ − ε) ,

being F− (T ∗ − ε) = inf
{
I (x̂α0) : Tα0 ≤ T ∗ − ε, α0 ∈ RD+3

}
.

In both cases x̂α0
and Tα0

are as in Proposition 3.6.

Proof. We only prove the first statement because the proof of the second one is anal-
ogous. Define the set Aε, that contains the trajectories x ∈ DE [0, 1] such that x(t) =

(s(t), u(t), e0(t), . . . , eD(t)), x(0) = (0, λ, p0, . . . , pd), coordinates ei(t), u(t) are decreasing,
s(t) is increasing, 0 ≤ ei(t), s(t) ≤ 1 for all t, and such that inf {t :

∑
k ek(t) = 0} ≥ T ∗+ ε.

Then, Proposition 3.6 implies that

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= lim

N

1

N
logP

(
XN
. ∈ Aε

)
= − inf
{α0∈RD+3: x̂α0

∈Āε}
I (x̂α0) = F+ (T ∗ + ε) .

4 d-regular case

In this section, we analyze the results presented in previous sections for the particular
case of a d-regular graph, i.e. pd = 1 and pi = 0 for all i 6= d. In this case, the sequence
of interest is

{
XN
t

}
t∈[0,1]

with XN
t = 1

NX
N
[Nt], being XN

n =
(
SNn , U

N
n , E

N
n

)
, and

• SNn =
∣∣SNn ∣∣, the number of vertices that have already been assigned to the indepen-

dent set at step n;

• UNn , the total number of unpaired half-edges at step n;

• ENn =
∣∣ENn ∣∣, the number of empty vertices at step n.

XN
t ∈ EN , being EN =

{
1
N (ŝ, û, ê) : ŝ, ê ∈ {0, . . . , N}; û ∈ {0, . . . , dN}; û ≥ dê

}
, which

is a subset of the compact set E := {(x1, x2, x3) ∈ [0, 1]× [0, d]× [0, 1] : x2 ≥ dx3} ⊂ R3.
The Hamiltonian H : E ×R3 → R is given by

H (x, α) =

{
α1 − 2dα2 − α3 + d log

[
1 + (e−α3 − 1) dx3

x2

]
, if x3 > 0,

0, if x3 = 0,
(4.1)

where x = (x1, x2, x3), α = (α1, α2, α3), and the cost function L can be obtained explicitly
as L : E ×R3 → R such that

L(x, β) =


(β3 + 1)α∗3 − d log

[
1 +

(
e−α

∗
3 − 1

)
dx3

x2

]
, with α∗3 = log

[
dx3

dx3−x2

(
d

β3+1 + 1
)]
,

if β1 = 1, β2 = −2d, β3 ≥ −(d+ 1),

0, if x3 = β3 = 0,

+∞, in other cases.
(4.2)
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4.1 Fluid limit

The trajectories with zero cost are x(t) = (s(t), u(t), e(t)) such that ṡ = 1, u̇ = −2d,

and ė = −1− d2e
u . For the initial condition x(0) = (0, d, 1) with d ≥ 3, the unique solution

is x(t) = (s(t), u(t), e(t)) with s(t) = t, u(t) = d(−2t+ 1), and

e(t) =

{
1
d−2

[
2t− 1 + (d− 1)(1− 2t)

d
2

]
, if t ≤ T ∗,

0, if t > T ∗,

where T ∗ = inf {t : e(t) = 0}, i.e. the jamming constant is T ∗ = 1
2

[
1−

(
1
d−1

) 2
d−2

]
. This

coincides with the known result given in [13].
If d = 2, then the fluid limit is x(t) = (s(t), u(t), e(t)) with the same functions s(t) and

u(t), and e(t) is given by

e(t) =

{
(1− 2t)

[
1
2 log(1− 2t) + 1

]
, if t ≤ T ∗,

0, if t > T ∗,

where T ∗ = 1−e−2

2 . This coincides with the known result from the earlier work of [10].

4.2 LDP for
{
EN
}
N

Since the trajectories with positive probability for XN
t , when N → ∞, are those

x(t) = (s(t), u(t), e(t)) such that s(t) = t and u(t) = d(−2t+ 1), we can directly deduce an
LDP for a rescale of the process that counts the number of unexplored vertices in each
step of the algorithm.

Corollary 4.1 (LDP for
{
EN
}
N
). The sequence of processes

{
EN
}
N

given byENt :=
EN[Nt]
N

verifies an LDP in D[0,1][0, 1] with good rate function Î : D[0,1][0, 1] → [0,+∞] such that

Î(x) =
∫ 1

0
L̂ (t, x(t), ẋ(t)) dt, where

L̂(t, x, y) = L ((t, u(t), x) , (1,−2d, y)) , with u(t) = d(−2t+ 1).

Proof. It is deduced directly from Theorem 3.1.

Remark 4.2. The cost function L̂(t, x, y) verifies L̂(t, x, y) = Λ∗Wt,x
(y), being Λ∗Wt,x

(y) the
LD rate function for the average of random variables Wt,x = Bt,x − d− 1, where Bt,x has
a Binomial distribution with parameters n = d and p = 1− dx

u(t) . This corresponds to the
approximation to the distribution of new explored vertices in each step of the algorithm.
Note that Λ∗Wt,x

(y) = Λ∗Bt,x(y + d+ 1).

In this case, we can explicitly deduce the LD rate for the size of the independent set
constructed by the algorithm since the optimization problem of the rate function Î over
a set of trajectories of D[0,1][0, 1] becomes an optimization problem in R.

Corollary 4.3 (Optimization of the rate function Î). Let A be a subset of D[0,1][0, 1].

Then, inf
x∈A

Î(x) = inf
{α0∈R:x̂α0∈Ā}

F (α0), being F (α0) =
∫ Tα0

0
L̂ (t, xα0

(t), ẋα0
(t)) dt, xα0

is the

solution of the ODE: 
ẋ = −1 + dx

ey(2t−1+x)−x ;

ẏ = d(1−ey)
ey(2t−1+x)−x ;

x(0) = 1; y(0) = α0,

(4.3)

Tα0
= inf {t ∈ [0, 1] : xα0

≤ 0}, and x̂α0
(t) =

{
xα0

(t), if 0 ≤ t ≤ Tα0
,

0, if t > Tα0 .
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Figure 1: Left: Evolution of F (α0) as function of α0 for d = 2, . . . , 10. Right: Evolution of
F (α0(T ∗ ± ε)) as function of ε for d = 2, . . . , 9.

Proof. It is a corollary of Proposition 3.6.

In Figure 1 (left), the evolution of F as a function of α0 is presented for d = 2, . . . , 10.
It is observed that when d = 2 (where the problem basically boils down to finding
independent sets on circles), the possibility of deviating from the fluid limit is much
higher than for larger d.

Corollary 4.4. The sequence of stopping times T ∗N defined over a d-regular graphG(N, d)

verifies:

1. If ε > 0 is such that T ∗ + ε < 1, then

lim
N

1

N
logP

(
T ∗N
N
≥ T ∗ + ε

)
= −F (α0(T ∗ + ε)) ,

where α0(T ∗ + ε) is the unique real number α0 > 0 such that Tα0 = T ∗ + ε.

2. If ε > 0 is such that T ∗ − ε > 0, then

lim
N

1

N
logP

(
T ∗N
N
≤ T ∗ − ε

)
= −F (α0(T ∗ − ε)) ,

where α0(T ∗ − ε) is the unique real number α0 < 0 such that Tα0 = T ∗ − ε.

In both cases F (α0) and Tα0 are as in Proposition 4.3.

Figure 1 (right) presents the evolution of F (α0(T ∗ ± ε)) as a function of ε ∈
[
0, T

∗

4

]
for d = 3, . . . , 9, compared with ε ∈

[
0, T

∗

6

]
for d = 2. Note that in each case the time T ∗

depends on d. Again, the abrupt change in the dynamics is observed for d = 2 and d > 2.

Proof. In this case, if xα0
is the solution of Equation (4.3) with y(0) = α0, then the

following monotony property with respect to the initial condition α0 is verified: if α0 <

α1 ⇒ xα0
(t) < xα1

(t) for all t, then Tα0
< Tα1

. In addition, it can be seen that for
all T ∈ (T ∗, 1), there exists a unique value α0 = α0(T ) > 0 such that xα0

(T ) = 1 (i.e.
T = Tα0

). Then, there is only one α∗0 > 0 such that xα∗
0

(T ∗ + ε) = 1. If Aε is the set
defined in the proof of Theorem 3.8, then x̂α0

∈ Aε ⇔ α0 ≥ α∗0, which implies that
inf

{α0:x̂α0∈Āε}
F (α0) = inf

{α0≥α∗
0}
F (α0) = F (α∗0) .
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5 Proof of Theorem 3.1

The proof of Theorem 3.1 goes similar to the one included with full details in [2] for
the process that counts the number of unexplored vertices of an exploration algorithm
over Erdös-Renyi graphs. Basically, it consists in verifying steps 1,2,3, 4, and using
Theorems 5.15, 8.14, and 8.23 from [8]. We briefly describe each of these steps below.

The first step consists of proving the convergence of non-linear generators HN (f)(x) =

log
[
e−Nf(x)TN

(
eNf(x)

)]
, where TN is the linear generator of

{
XNn
N

}
n
, and derive the

limit operator H. In our case, using Taylor’s theorem and Stirling’s formula we prove
that HN converges to H in the following sense: lim

N→∞
sup
x∈EN

|HN (f)(x)−H(f)(x)| = 0 for

all f ∈ C1(E), being H : C1(E)→ R such that H(f)(x) = H (x,∇f(x)), and H is defined
in Equation (3.2).

The second step consists of verifying the exponential compact containment condition
(see Condition 2.8 from [8]). In our case, it is trivially verified since the state space E is
a compact subset of RD+3.

The third step consists of proving that H generates a semigroup V = {Vt}t. This
issue is nontrivial and follows by showing that the Hamilton-Jacobi equation:

f(x)− βH (x,∇f(x))− h(x) = 0, (5.1)

has a unique solution f for all h ∈ C(E) and β > 0 in a viscosity sense. In our case, we
use results from [11] to prove that this Hamilton-Jacobi equation verifies the comparison
principle, which ensures the uniqueness of the viscosity solution, explicitly constructed
in Chapter 9 of [8]. As a consequence of Proposition 4.2 in [11], it is enough to prove
that the following inequality holds:

lim inf
α→∞

H (xα, αψx (xα, yα))−H (yα, αψx (xα, yα)) ≤ 0, (5.2)

where ψx(x, y) is the vector of partial derivatives w.r.t. x = (s, u, e0, . . . , eD) of the
good distance function ψ(x, y) = 1

2 ‖x− y‖
2. xα = (sxα , uxα , exα0 , . . . , exαD ) and yα =

(syα , uyα , eyα0 , . . . , eyαD ) are the sequences constructed in Chapter 9 of [8] (with α→ +∞)
and verify (xα, yα)→ (z, z) where µ(z)− v(z) = sup

x∈E
{µ(x)− v(x)} for a given subsolution

µ and supersolution v of Equation (5.1).
Finally, the limiting semigroup V = {Vt}t usually admits a variational form {Vt}t,

known as the Nisio semigroup in control theory. Then, the fourth step consists of
providing the more treatable form of the rate function I presented in Theorem 3.1. In
our case, as H(f)(x) = H (x,∇f(x)) for each x ∈ E and H ↔ L 1, we have that H can
be written as H(f)(x) = sup

u∈U
{A(f)(x, u)− L(x, u)} , where U = RD+3 and A : C1(E) →

M (E × U) is the linear operator given by A(f)(x, u) = 〈∇f(x), u〉. Then, we consider the
Nisio semigroup corresponding to the control problem determined by A and the cost
function −L:

Vt(f)(x0) = sup
{(x,λ)∈Y: x(0)=x0}

{
f(x(t))−

∫∫
U×[0,t]

L(x(s), u)λ (du× ds)

}
(5.3)

for each x0 ∈ E. Y ⊂ DE [0, 1] ×Mm(U) is the control set of the linear operator A
(see Definition 8.1 from [8]), andMm(U) is the space of Borel measures λ on U × [0, 1]

satisfying λ (U × [0, t]) = t for all t ∈ [0, 1]. Measure λ is known as a relaxed control.
As L is convex w.r.t. β, it follows that a deterministic control λ (du× ds) = δu(s)(du)ds

1We use H ↔ L to denote that L(x, β) = sup
α
{〈α, β〉 −H (x, α)} and H(x, α) = sup

β
{〈α, β〉 − L (x, β)}
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is always the control with smallest cost by Jensen’s inequality, and the supremum in
Equation (5.3) is attained on YAC := {(x, λ) ∈ Y : x ∈ AC, x(0) = x0}, being AC the
space of absolutely continuous functions x : E → R.
Then, as consequence of Theorems 8.14 and 8.23 from [8], it is enough to prove that
Conditions 8.9, 8.10 and 8.11 from [8] are verified to prove that Vt = Vt and I can be
written as in Theorem 3.1.
To prove these conditions, we consider elements (x, λ) from YAC and use that L (x, q(x)) =

0 for all x ∈ E if q(x) = Hα (x, 0), and H (x,∇f(x)) = 〈∇f(x), qf (x)〉 − L (x, qf (x)) if
qf (x) = Hα (x,∇f(x)).

In a nutshell, as a consequence of the first two steps, the process verifies the
exponential tightness condition; the third step assures the existence of an LDP, and the
fourth step provides the useful version of the rate presented in this theorem.
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