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Abstract: We use effective string theory to study mesons with large spin J in large Nc QCD

as rotating open strings. In the first part of this work, we formulate a consistent effective field

theory (EFT) for open spinning strings with light quarks. Our EFT provides a consistent

treatment of the endpoints’ singularities that arise in the massless limit. We obtain results, in

a systematic 1/J expansion, for the spectrum of the leading and daughter Regge trajectories.

Interestingly, we find that the redshift factor associated with the quarks’ acceleration implies

that the applicability regime of the EFT is narrower compared to that of static flux tubes.

In the second part of this work, we discuss several extensions of phenomenological interests,

including mesons with heavy quarks, the quarks’ spin and the daughter Regge trajectories

associated with the worldsheet axion, a massive string mode identified in lattice simulations

of 4d flux tubes. We compare our predictions with 4d QCD spectroscopy data, and suggest

potential stringy interpretations of the observed mesons. We finally comment on the relation

between the EFT spectrum and the Axionic String Ansatz, a recently proposed characterization

of the spectrum of Yang-Mills glueballs.
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1 Introduction

It is believed that large N confining gauge theories, such as SU(N) Yang-Mills or QCDN ,

admit a dual formulation in terms of a weakly coupled string theory. The concept of confining

strings dates back to the observation that the lightest hadronic resonances organize into

families following the scaling relation M2 ∝ J . This empirical relation inspired early string

models, which ultimately evolved into the modern framework of fundamental string theory

aiming to describe all particles and interactions.

Despite decades of research, our understanding of the worldsheet dynamics of confining

strings remains incomplete. Nonetheless, recent years have witnessed substantial progress,
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Figure 1: Left: Spin J meson as a rotating open string. Right: Spin J glueball as a rotating closed

string.

driven by a synergy of theoretical insights and lattice simulations.1 Much of this progress

concerns the dynamics of long, static flux tubes in SU(N) Yang-Mills theory at large N , both

in d = 3 and d = 4 spacetime dimensions (see [4] for a recent account).

In particular, lattice measurements have confirmed the validity of the effective string theory

(EST) description of long strings in terms of d−2 Goldstones [5–7], providing quantitative values

for the basic parameters of the worldsheet theory (such as the string tension). Additionally,

Monte-Carlo simulations provide a glimpse on the UV dynamics of the flux tube beyond

effective field theory.

Surprisingly, all observed string states in three-dimensional SU(N) gauge theories are

well described by a single Goldstone, with no additional massive string degrees of freedom.

In contrast, in four-dimensional Yang-Mills theory, lattice data revealed the existence of a

massive pseudoscalar mode on the worldsheet, referred to as the “worldsheet axion”, besides

the two Goldstones [8, 9]. Both lattice measurements and theoretical arguments support the

hypothesis that no additional degrees of freedom exist on the worldsheet of the confining

string of SU(N) Yang-Mills theory in d = 3 and d = 4.2

Given these advancements in our understanding of confining strings, it is natural to revisit

the calculation of the hadron spectrum in large N confining theories from the dual string

perspective. This endeavor is further motivated by both experimental data from QCD and

recent lattice simulations of the glueball spectrum in 3d and 4d Yang-Mills theory [11–13].

In particular, identifying signatures of the 4d worldsheet axion in these datasets would be a

fascinating development.

A natural starting point for this analysis is particles with large spin J . Mesons and

1There has also been recent progress in the bootstrap approach to the QCD flux tube, see e.g. [1–3].
2Intriguingly, there exist integrable Lorentz-invariant worldsheet S-matrices precisely in terms of a single

massless mode in three dimensions, and in terms of two Goldstone modes and a massless worldsheet pseudoscalar

in four dimensions [10]. While the data show that the Yang-Mills string is only approximately described by

such integrable theories, one might speculate that the UV dynamics of the flux tube restores integrability at

high energies for certain inclusive observables, potentially reflecting the asymptotic freedom of partons.
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glueballs are described by, respectively, open and closed rotating strings. The string stretches

between a quark and an anti-quark for mesons, and it is folded between two cusps for glueballs

(see fig. 1). As the angular momentum increases, the string length grows, inducing thus

a parametric separation between its size L ∼
√
Jℓ̄s and the inverse confinement scale ℓ̄s.

This separation, similarly to long flux tubes, enables the systematic calculation of the mass

spectrum of the theory, in the vicinity of the leading Regge trajectory, via a semiclassical

expansion in powers of ℓ̄2s/L
2 ∼ 1/J .3 The primary goals of this work are to provide a

systematic formulation of the effective field theory for rotating open strings (in any d > 2),

and to compare its predictions with QCD meson spectroscopy data.

The effective field theory (EFT) argument outlined above offers a modern explanation

for the mass relation M2 ∼ J/ℓ̄2s obeyed by mesons on the leading Regge trajectory.4 The

spectrum of daughter Regge trajectories is similarly obtained by quantizing the worldsheet

Goldstone modes. However, the systematic calculation of 1/J corrections to the spectrum of

the leading and daughter Regge trajectories is hindered by a technical challenge: the presence

of singularities in the worldsheet metric. These singularities are localized at the cusps for

closed strings, and at the string endpoints for mesons composed of massless quarks. Even for

mesons made of light, but not necessarily massless quarks, the derivative expansion breaks

down near the string endpoints due to their large acceleration.

In the first part of this paper we provide a consistent EFT treatment of the string endpoints’

singularities for mesons composed of light quarks. To this aim, we augment the bulk EST

action with a suitable boundary action that describes the endpoints. The Wilson coefficients

of this boundary action absorb the singular contributions of bulk operators, ensuring that the

derivative expansion remains well-posed. Our analysis is largely inspired by [16, 17], which first

addressed this issue focusing on the leading Regge trajectory. Here we extend the framework

of those works to the calculation of the spectrum of daughter Regge trajectories.

A surprising outcome of our analysis is that the effective field theory cutoff is parametrically

lower than the naive expectation, ∼ ℓ̄−1
s . This phenomenon arises because the high acceleration

of the quarks causes frequencies at the string endpoints to appear significantly redshifted

relative to those at the string’s center. Consequently, the derivative expansion at the boundary

is formulated in terms of this reduced cutoff, and the expansion for the mass spectrum

progresses in powers of 1/
√
J rather than 1/J . A more detailed summary of the results of

Part I of this paper is given below in Section 1.1.

In the second part of this paper, we explore several extensions of the effective theory that

are of phenomenological interest: the inclusion of quark spin in the EFT, the daughter Regge

trajectories associated with the worldsheet axion, and the extension of our approach to mesons

containing heavy quarks. We then compare our predictions with QCD spectroscopy data from

the Particle Data Group (PDG) [18], focusing on mesons with light quarks. From fits of the

leading Regge trajectories, we estimate the leading boundary Wilson coefficient for different

3Recall that string splitting effects are negligible for large number of colors.
4Under some technical assumptions, it may be proven that the relation M2 ∝ J is a universal result for

particles on the leading Regge trajectories in large N theories [14, 15].
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quark families. We also suggest potential interpretations of the observed mesons beyond the

leading Regge trajectory in terms of states predicted by EST (extrapolating to low values of

J); fascinatingly, we suggest a candidate for a worldsheet axion excitation, though further

experimental data are required to confirm or disprove this interpretation.

Finally, we close this work commenting on the relation between the effective field theory

spectrum and the Axionic String Ansatz (ASA) [19, 20], a recently proposed recipe that

successfully interprets (and predicts) the quantum numbers of all the glueballs measured on

the lattice in 3d Yang-Mills theory. A more detailed account of the results of this work’s Part

II can be found in Section 1.2 below.

An important next step is to extend our approach to glueballs. While the physical picture

is similar for mesons and glueballs, with the role of the endpoints replaced by the cusps for

glueballs, the closed string setup seems to pose additional technical challenges. In particular,

we expect that a systematic treatment of the cusps will require more Wilson coefficients than

the case of open string endpoints. We are currently investigating this issue. An important

concrete target is the calculation of the energy splittings between particles just above the

leading Regge trajectory, which have been measured on the lattice for glueballs with angular

momentum up to J = 4 in 3d Yang-Mills theory [11, 12]. It would also be interesting to

identify axion excitations in the recent simulations of the mass spectrum of 4d glueballs in

SU(N) gauge theory. We plan to report on progress in these directions in the future.

In this work, we focus on classical corrections to the mass spectrum of large J particles.

It would also be valuable to analyze quantum corrections to the EFT spectrum of rotating

strings. While these corrections are subleading compared to the leading contributions from

the string endpoints, they are particularly interesting because they do not depend on new

Wilson coefficients. For the leading Regge trajectory, the quantum Regge intercept for mesons

was computed in [16], but performing similar calculations for the daughter Regge trajectories

(and for closed strings) does not appear to be entirely straightforward.

Finally, it would be interesting to identify sufficiently inclusive observables on the rotating

string that are not sensitive to the physics near the string endpoints and are thus unaffected

by the redshift of the cutoff described above. Such quantities should allow for more precise

EFT predictions, purely in terms of the Wilson coefficients of the bulk EST action that have

been measured in simulations of static flux tubes.

1.1 Summary of Part I

Effective String Theory (EST) describes the low energy dynamics of the chromodynamic

flux tube when this is much longer than the length scale associated with confinement ∼ Λ−1
QCD.

The EST action is organized as a series in terms of geometric invariants of the worldsheet

metric, with the leading term given by the Nambu-Goto (NG) action.

In the first part of this work we use EST to study mesons in large Nc QCD-like theories

with massless or light quarks in d = 3 and d = 4. We think of a meson as composed of a flux

tube stretching between a quark and an anti-quark. We ignore string breaking effects, that

are suppressed at large Nc for a finite number of flavors. As it is well known, the length of a
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δ δ

Figure 2: Graphical representation of a meson as a rotating open string with effective

endpoints of size δ.

classical rotating NG string is proportional to the square root of its angular momentum J , see

fig. 2. Therefore effective string theory (EST) should allow for the calculation of the spectrum

of mesons in a 1/J expansion. Famously, this logic predicts the existence of Regge trajectories

satisfying M2 ∝ J .

To successfully implement this program, we need to address an important technical

point: the effective theory close to the string endpoints, which is famously a subtle issue.

For instance, when the quarks are taken to be massless, the worldsheet metric at the string

endpoints becomes singular (since the projection onto the quark worldline is null), and all

higher derivative operators in EST diverge at the endpoints.5 More generally, for light quark

masses m ≲ ΛQCD the derivative expansion breaks down close to the endpoints, and all

higher derivative operators contribute at the same order in the 1/J expansion to the mesons’

spectrum–seemingly defying the derivative expansion.

The physical origin of the apparent breakdown of the derivative expansion is that, within

EFT, we cannot exactly resolve the positions nor the velocities of the quarks. Rather, we

need to supplement the bulk EST with a suitable effective boundary action that describes

the endpoints in a multipole expansion. Physically, this is similar to the worldline EFT

description for black holes as seen from afar [21]. The Wilson coefficients of the boundary

action naturally depend on a cutoff δ ∼ Λ−1
QCD, representing the size of the effective quarks.

Within this EFT, the contributions from bulk operators that are singular in the limit δ → 0

can simply be understood as a renormalization of the boundary coefficient of the endpoints’

action. Once these singular contributions are reabsorbed in the boundary Wilson coefficients,

higher derivative bulk operators contribute to observables according to the expected EFT

counting.

The formulation and study of the large spin mesons EFT for light quarks, including the

endpoints action, is the main topic of the first part of this work. We find that the masses of

the particles on the leading and daughter Regge trajectories can be computed in terms of

5For fundamental strings, for which we only need the Nambu-Goto action, the exact quantization of the

theory resolves these divergences.
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the string tension 1/ℓ2s ≡ 1/(2πℓ̄2s), and two boundary Wilson coefficients µ1 and µ2, up to

relative order ∼ J−3/2. For instance, the mass of the leading Regge trajectory is given by:

M2 =
1

ℓ̄2s
J +

2µ1
ℓ̄s
J1/4 − 1

ℓ̄2s
+

2µ2
ℓ̄s
J−1/4 +

3

4
µ21J

−1/2 + . . . . (1.1)

Daughter Regge trajectories are associated with excitations of the string and have a gap

≳ 1/L ∼ ℓ̄−1
s /

√
J on top of the leading trajectory. We provide explicit results for the spectrum

in the main text.

Interestingly, from the study of daughter Regge trajectories we find that we can reliably

compute the mass of only those mesons whose gap above the leading Regge trajectory is

smaller than ΛQCD/J
1/4, rather than the expected cutoff ΛQCD. This is due to the redshift

of the proper time at the location of the effective quarks with respect to the time coordinate

at the center of the string:

dtquark ∼ J−1/4dtbulk , (1.2)

which is a result of the large acceleration. Therefore, the local cutoff at the endpoints is

smaller than in the bulk by a factor of J1/4. In other words, Poincaré’ invariance implies that

the boundary action, is organized in a derivative expansion with cutoff Λb.dry ∼ ΛQCD/J
1/4,

when written in terms of the bulk time coordinate.

We remark that, once the boundary singularities are renormalized away, higher derivative

bulk operators are always at least O(J−2) suppressed, and therefore contribute at quite

subleading order compared to the boundary Wilson coefficients.

The results of the first part of this work agree with former investigations of large spin

mesons’ in the literature [16, 17, 22–27]. In particular, Hellerman and Swanson formulated

the endpoints EST and derived eq. (1.1) working in the Polyakov formalism in [16, 17]. We

instead work in the Nambu-Goto formalism, which does not require dealing with constraints

and allows obtaining results for the daughter Regge trajectories as well in a straightforward

manner. We also note that EFTs with nontrivial space-dependent local cutoffs were recently

analyzed in the context of finite density systems [28–30]. Finally, we remark that the fast

motion of the quarks makes the boundary EFT that we study in this work very different from

the EFTs describing the endpoints or the junctions of static long strings (see e.g. [31–33]).

1.2 Summary of Part II

In the second part of this work we discuss extensions and applications of the EFT developed

in the first part that are of phenomenological interest.

First we discuss how to describe the quarks’ spin in d = 4 within EFT. We find that,

generically, states with spin wave-functions that are different from those of the leading order

Regge trajectory have a large gap, of the order of the boundary cutoff. Intuitively, this result

can be understood as a consequence of the Thomas’ spin precession, which results from the

quarks’ acceleration; furthermore, interactions with the string renormalize the spins’ gap at

leading order. We conclude that within EFT, we cannot reliably analyze the energy splitting

between different spin states, and the spin variables must be integrated out.
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We then analyze the daughter Regge trajectories associated with the QCD worldsheet

axion. Massive worldsheet particles on the rotating strings localize near the endpoints of

the string due to a centrifugal force. We argue that as a consequence of the centrifugal

barrier, the wave-functions of the corresponding modes are approximately localized near the

two endpoints, and the axion’s single particle spectrum organizes in a set of approximately

doubly degenerate states on top of the leading Regge trajectory (at large J). We also point

out a puzzle concerning the boundary conditions at the string endpoints, that are needed to

compute the mass spectrum of daughter trajectories associated with the worldsheet axion.

Contrary to the EFT expectation, based on genericity arguments and symmetries, simulations

of open static flux tubes suggest that Neumann boundary conditions provide a more accurate

descriptions of the observed data [34, 35]. If this conclusion were to extend to the rotating

string setup, it would suggest that the daughter trajectories of the worldsheet axion may be

relatively light at moderate J . Due to the physical relevance of this point, in the future it

would be interesting to analyze further the axion boundary conditions, perhaps extending the

flux tube bootstrap of [1–3] to include the boundary reflection S-matrix.

Afterwards, we generalize the mesons’ EFT to the conceptually simpler case of heavy

quarks. We argue that the EFT is properly formulated as a double-scaling limit J → ∞
with J/(m2ℓ̄2s) = fixed, where m is the quarks’ mass. We find that for the flux tube to be

sufficiently long and EST to apply, we need angular momenta J ≫
√
mℓ̄s. We show that the

particle’s spectrum in the non-relativistic regime, which corresponds to
√
mℓ̄s ≪ J ≪ m2ℓ̄2s,

can be computed by semiclassically quantizing a simple quantum-mechanical potential model,

and we obtain analytical results for the quantum corrections to the leading Regge-trajectory in

the heavy quark regime. We finally analyze the quarks’ spins, which are within EFT for heavy

endpoints, and provide predictions for the gap of the corresponding states. In particular, we

predict that in the EFT regime J ≫
√
mℓ̄s, the state with minimal energy among the different

spin wavefunctions is the one in which the quarks’ spins are aligned with the orbital angular

momentum, therefore rigorously establishing the so-called spin-orbit inversion scenario [36].

We then compare our findings with real world mesons spectroscopy data from the Particle

Data Group (PDG) [18], focusing on light quark mesons. We estimate the string tension

and the coefficient µ1 (for u, d and s quarks) fitting the formula (1.1). For daughter Regge

trajectories, the scarcity of data points for J ≳ 2 does not allow for a quantitative comparison.

We nonetheless discuss potential interpretations of the observed data in terms of states

predicted by EST extrapolating to low values of J . To this aim, we discuss how to compute

parity and charge conjugation assignments of the particles within EFT. To discard states that

do not project onto open strings at Nc → ∞ (such as glueballs and molecules of two mesons),

we compare different isospin channels and identify a small subset of states that may be reliably

interpreted as mesons. Intriguingly, we argue that one of the observed states with J = 2 might

correspond to a worldsheet axion excitation on top of the leading Regge trajectory. Future

experimental analyses of J = 2 and J = 3 mesons, perhaps along the lines of [37], might prove

or disprove this interpretation.

We finally comment on some subtleties that arise when one attempts to extrapolate the
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EFT Hilbert space to low values of J , even when one assumes that the worldsheet does not

admit any additional fields besides those included in EFT (as lattice data suggest that is the

case in d = 3). Intuitively, the subtleties arise because knowing the dimensions and geometry

of the phase space at large J near the leading Regge trajectory is not enough to constrain the

shape and topology of the phase space at all values of J . Our discussion is motivated by a

recently proposed recipe to reproduce the spectrum of closed effective strings – the axionic

string Ansatz (ASA) – that qualitatively matches lattice data for glueballs in d = 3 all the

way down to J = 0 and disagrees with other quantization prescriptions such as lightcone

quantization [19]. Our discussion illustrates the physical origin of the discrepancies between

different quantization procedures in the simpler context of open strings.

Part I

The EFT with light quarks

2 Lightning review of effective string theory

2.1 The effective theory of long strings

As is well known, both in d = 3 and d = 4, in the limit where the length of the compact

dimension is much larger than the inverse QCD scale, inserting a Polyakov loop in Yang-Mills

(YM) theory creates a long, closed, string-like object: the QCD flux tube.

Any string-like object in field theory spontaneously breaks the d-dimensional Poincaré

group ISO(d-1,1) down to ISO(1, 1) × SO(d − 2), where the first factor represents the 2d

Poincaré group, and the second one corresponds to rotations in the transverse directions to

the string.

Therefore, the low-energy dynamics of a flux tube of length L, much larger than the

size of the lightest glueball m−1
g , is universally described in terms of the d− 2-dimensional

Goldstones associated with the broken translations.6 The corresponding effective theory is

usually referred to as effective string theory (EST).

Let us review the construction of the EST action in the Nambu-Goto formalism. For

clarity, we consider an infinitely long string.

The action for a string is written in terms of the coordinates Xµ of the string worldsheet’s

embedding into the target space, which are conveniently parametrized as follows in the static

gauge:

Xµ =
(
τ, σ,Xi(τ, σ)

)
, (2.1)

6Note that no additional Goldstones are required to account for the breaking of boosts and rotations; such

a mismatch between the number of broken generators and Goldstones is common for spontaneously broken

spacetime symmetries, see e.g. [38, 39].
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where σα = (τ, σ) are the worldsheet coordinates, and Xi denotes the transverse string

coordinates, which are the d− 2 dynamical Goldstone fields. Our conventions and some useful

geometric identities are summarized in appendix A.

The action is constrained by the reparametrization invariance of the worldsheet coordinates

and at the leading order it is given by the well known Nambu-Goto (NG) term:

Sbulk = − 1

ℓ2s

∫
d2σ

√
G
[
1 +O

(
ℓ̄4s(K

µ
αβ)

4
)]

, (2.2)

where 1/ℓ2s is the string tension and G = −det(Gαβ) is the determinant of the induced metric

defined by

Gαβ = ∂αX
µ∂βX

νηµν , (2.3)

where ηµν is the spacetime metric in mostly minus signature. For future convenience, we also

define the (reduced) string length ℓ̄s as

1

ℓ2s
=

1

2πℓ̄2s
. (2.4)

Note that 1/ℓ̄2s coincides with the α′ parameter in fundamental string theory; more generally,

we expect that the reduced string length parametrically coincides with the mass of the lightest

glueball ℓ̄−1
s ∼ mg, and thus sets the cutoff of the theory according to generalized dimensional

analysis [40].

Higher derivative contributions to the action (2.2) are given in terms of curvature invariants

and, because of the Gauss-Codazzi relation, they can all be written in terms of the second

fundamental form of the worldsheet,

Kµ
αβ = ∇α∂βX

µ , (2.5)

and derivatives thereof. It turns out that, upon using the equations of motion (EOM) to

remove redundant operators and discarding total derivatives, the first nontrivial terms arise at

fourth subleading order in derivatives. There is therefore a high degree of universality in the

low energy predictions of EST. It is also straightforward to include additional, non-Goldstone,

fields in the action (2.2). These can be analyzed consistently within EFT as long as they are

sufficiently light and weakly-coupled.

As is well known from the study of fundamental strings, the NG action is integrable

at the classical level. Integrability is broken by quantum effects away from the critical

dimensions d = 26 and (somewhat surprisingly) d = 3. Nonetheless, since the contribution of

loops is subleading in the derivative expansion, the low energy dynamics of the flux tube is

approximately integrable. As explained in [8, 41], this property can be used to improve the

convergence of the EFT results for the spectrum of flux tubes wrapping a nontrivial space

cycle of length L.
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2.2 EST from lattice data

Let us now review what is known about EST in Yang-Mills theory from lattice data.

First of all, the value of ℓ̄s can be expressed in terms of the mass mg of the lightest glueball,

comparing the mass spectrum with the ground-state energy of a long string. The result in

d = 3 [11] and d = 4 [13] reads, in the Nc −→ ∞ extrapolation,

mg|d=3 = 1.646ℓ̄−1
s , (2.6)

mg|d=4 = 1.229ℓ̄−1
s . (2.7)

In d = 3 there is a unique higher derivative operator at fourth order in derivatives, which

reads: ∫
d2σ

√
GR2 =

∫
d2σ

√
G
[(
Kµ

αβK
ν
γδ −Kµ

αγK
ν
βδ

)
GαβGγδηµν

]2
. (2.8)

The coefficient of this term was measured by comparing its contribution to the string fluctuation

S-matrix with the phase shift extracted via the Lüscher method from lattice calculations of

the spectrum of strings of finite length L. Rather surprisingly, it turns out that, using the

latest available data [42, 43] (which go up to Nc = 8), the value of the measured coefficient

is zero (within the uncertainties) in dimensional regularization in the minimal subtraction

scheme [41, 44].

In d = 4, lattice data surprisingly revealed the existence of a pseudoscalar resonance on

the worldsheet [8], which we shall denote a. While its mass ma is of the order of the cutoff ℓ̄−1
s ,

it turns out that its width is quite small: Γa/ma ≃ 0.21ma for Nc = 3. The basic properties

of this mode (at least at the qualitative level) can be understood by including a pseudoscalar

field in the EST and pretending that its mass ma is much smaller than the cutoff, as if a were

endowed with an approximate shift symmetry broken by effects of order (maℓ̄s)
2. The action

of this field, including the first nontrivial coupling to the string coordinates, reads

Sa =

∫
d2σ

√
G

[
1

2
(∂a)2 − m2

a

2
a2 +

Qa

32π
aK · K̃

]
. (2.9)

The first two terms are the free theory ones. Because of parity, the first nontrivial operator to

which a can couple is

K · K̃ =
εαβ√
G
∂αX

µ∂βX
νεµνρσK

ρ
γδK

σ
ηλG

δλ ε
γη

√
G
. (2.10)

The integral of 1
8π

√
GK · K̃ is a topological invariant that counts the sign-weighted self-

intersection number of the string worldsheet [45, 46]. Therefore the coupling between a and

K · K̃ is analogous to the QCD axion coupling - for this reason a is sometimes referred to

as a worldsheet axion. This coupling yields the leading contribution to the width of a. The

numerically measured values of ma and Qa for Nc = 3 are

ma = 0.74ℓ̄−1
s , Qa = 0.37 ; (2.11)

– 10 –



these numbers do not appear to change significantly in the large Nc limit [9]. Notice that ma

is slightly below the mass of the lightest glueball, which partially justifies its inclusion within

the EFT.7

3 Endpoint singularities for spinning strings

Before presenting a proper formulation of the endpoints’ EFT, the goal of this section is to

explain the breakdown of the bulk derivative expansion for spinning strings, which we alluded

to in the introduction. To this aim, it is simplest to consider the explicit calculation of the

leading Regge trajectory. We consider the same bulk action as in the previous Section (2.2).

Here, the spatial worldsheet coordinate runs over a finite range:

σ ∈ [−1, 1] . (3.1)

For now, we do not commit to any specific boundary action at the endpoints, that we assume

to be identical. In arbitrary d ≥ 3 spacetime dimensions, the classical profile describing a

spinning string is:

Xµ =
1

ω

(
τ, αf σ cos τ, αf σ sin τ, 0, 0, . . .︸ ︷︷ ︸

d−3 times

)
. (3.2)

This is guaranteed to be a solution of the bulk EOMs to all orders in the derivative expansion.

This is because eq. (3.2) is the most general ansatz invariant under translations in the transverse

directions and the linear combination H − ωJ of time translations and rotations in the first

two spatial coordinates. This profile corresponds to the following background metric:

ds2 =
1− σ2α2

f

ω2
dτ2 − dσ2

ω2
. (3.3)

In eqs. (3.2) and (3.3), ω is the angular velocity and we work in units such that τ and σ are

dimensionless. The parameter αf in eq. (3.2) is the velocity of the endpoints and depends

upon the precise boundary conditions. It determines physical length of the string L, which is

given by

L =

∫
dσ
√
Gσσ =

2αf

ω
. (3.4)

We see that the string is long for small angular velocity ωℓ̄s ≪ 1; as we review below,

somewhat counter-intuitively this is precisely the regime that describes a string with large

angular momentum. For a pure NG action with free endpoints one finds αf = 1; we will see

that αf ≃ 1 up to small corrections, even for more general boundary conditions in the large

spin limit.

To obtain the mass of the leading Regge trajectory, it is convenient to compute the

Lagrangian L(ω) on the background profile (3.2), where S =
∫
dtL is the bulk action (2.2) and

7Notice that eqs. (2.6) and (2.7) parametrically agree with the pi-ology expected from generalized dimensional

analysis [40], according to which the UV cutoff ∼ mg is expected to be set by ℓ̄−1
s , which is slightly larger that

the square root of the tension 1/ℓs = 1/
(√

2πℓ̄s
)
.
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t = τ/ω. Using Noether’s theorem, the Lagrangian is related to the energy M and angular

momentum J of the rotating string via8 [23, 24]

J =
∂L
∂ω

, M = ω
∂L
∂ω

− L . (3.5)

From these equations, we obtain the well known result for the pure NG action with free

endpoints (αf = 1):

L = − π

2ωℓ2s
, J =

π

2ω2ℓ2s
=⇒ M2 =

π2

ℓ2sω
2
=
J

ℓ̄2s
. (3.6)

As anticipated, the relation between angular velocity and J implies that ω becomes small

at large J : ω ∼ ℓ̄−1
s /

√
J . Therefore, the derivative expansion in the bulk runs in powers of

(ℓ̄s/L)
2 ∼ (ωℓ̄s)

2, which is equivalent to the 1/J expansion.

Let us now discuss the expectation for the scaling of subleading corrections to eq. (3.6).

According to the naive power counting, the NG term scales as ∼ 1/(ℓ̄sω)
2 ∼ J , which thus

provides the loop counting parameter. Therefore, we expect a quantum J0 correction to M2 in

eq. (3.6). Higher derivative corrections are further suppressed and, as explained in Section 2,

start at fourth-order in derivatives. Therefore, their contribution to M is expected to be

suppressed by a relative ∼ (ℓ̄s/L)
4 ∼ 1/J2 factor with respect to the leading order.

As anticipated, this naive counting is incomplete. This is manifested by looking at the

metric (3.3); setting momentarily αf = 1, we see that there is an infinite redshift factor at

σ = 1, and the metric is singular at the string endpoints. This implies that higher derivative

curvature invariants also become singular, e.g.:[
ℓ̄2s(K

µ
αβ)

2
]n

=
2nℓ̄2ns ω

2n

(1− σ2)2n
for αf = 1 , (3.7)

which diverges at σ = 1.

Within EFT, this means that we need to avoid going all the way to σ = 1. Instead, we

should consider some region around the endpoints and replace it by some effective boundary.

It is natural to cutoff the integration where higher derivative operators become of order one,

ℓ̄2s(K
µ
αβ)

2 ∼ O(1). To this aim, we consider endpoints at σ = ±(1− zℓ̄sω) for some z > 0 that

does not scale with ω. In this way, the contribution of the operators (3.7) to the Lagrangian

reads

L ⊃ ℓ̄2n−2
s

2π

∫ 1−zℓ̄sω

−1+zℓ̄sω
dσ

√
G
[
(Kµ

αβ)
2
]n

≃
√
ω

ℓ̄s

2
3
2
−nz

3
2
−2n

π(4n− 3)

[
1 +

(
zℓ̄sω

) (4n− 3)(4n− 1)

4(4n− 5)
+O

((
zℓ̄sω

)2)]
.

(3.8)

8To obtain the result for J , note that a rotation in the X1-X2 plane by a time dependent angle δϕ = ϵt is

equivalent to a shift ω → ω + ϵ, and that Noether’s theorem implies that the variation of the action under a

rotation is δS =
∫
dtJδϕ̇. The expression for the mass is obtained similarly using that the same rotation is

equivalent to a time shift δt = tϵ/ω, and that by Noether’s theorem we have δS =
∫
dtMδṫ+ L|t=tf

t=ti
.
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As we will see in the next section, a similar result can be obtained in a manifestly gauge

invariant approach upon introducing a mass term at the endpoints, which makes the difference

1− αf nonzero.

Contrary to the naive expectation outlined before, eq. (3.8) shows that all higher derivative

terms contribute at the same order to the leading Regge trajectory. More precisely, each

contribution is suppressed only by ∼ (ℓ̄sω)
3/2 with respect to the NG contribution, with

further subleading terms organized in a series in ℓ̄sω rather than the expected (ℓ̄sω)
2. Similar

results are found in the study of other observables such as the energy of daughter Regge

trajectories. Notice also that eq. (3.8) does not contain any integer power of ωℓ̄s - this fact

will be important when we will discuss quantum corrections in the next sections.

It seems therefore that we lack an organizing principle for the derivative expansion beyond

the leading order. This is not just because all operators contribute at the same order, but

equally dramatically because the expansion in eq. (3.8) contains unexpected fractional powers

of (ℓ̄sω)
2 ∼ ℓ̄2s/L

2. It is clear that these issues have to do with the physics of the endpoints,

and as such we should expect a more careful treatment and EFT description of the endpoints

to resolve the confusion. The formulation of such boundary EFT will be the topic of next two

sections.

4 Effective endpoints: power-counting and results

In this section, we discuss the general construction of the endpoint effective action,

neglecting bulk higher derivative terms. We will explain how to use this action to absorb the

singular contributions from bulk operators in Section 5.

Before delving into the technicalities, it is useful to explain the physical picture. Since

the size of the region in which the derivative expansion breaks down is small compared to the

string extension (3.4), it should be possible to treat it as an effective endpoint within EFT,

whose interaction with the bulk is described in a multipole expansion. It is however important

to note that the worldsheet metric (3.3) varies nontrivially along the string. EFT is applicable

only at time and spatial differences much larger than the string length:

∆τ2(1− α2
fσ

2)/ω2 ≫ ℓ̄2s and ∆σ2/ω2 ≫ ℓ̄2s . (4.1)

Since (1− α2
fσ

2) ∼ ℓ̄sω at the location where we should impose boundary conditions, we infer

that in terms of the physical time t = τ/ω at the center of the string, the frequency cutoff at

the boundary appears redshifted

∂/∂t≪ Λb.dry ∼
√
ℓ̄sωΛbulk =

√
ω/ℓ̄s . (4.2)

In other words, Poincaré invariance and the large acceleration of the quarks imply that the

boundary conditions for the bulk fields admit an expansion in even powers of
√
ℓ̄sω (notice

that this matches the form of the expansion in eq. (3.8)). The cutoff over spatial momenta is

not affected by these considerations in the coordinates (3.3).
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The most important physical consequence of the redshift concerns the calculability of

observables within EFT that are sensitive to the boundary conditions. For such quantities,

the derivative expansion breaks down at smaller momenta than in the long string setup. Most

notably, this observation implies than the number of daughter Regge trajectories that can be

studied within EFT is smaller than the naive expectation, as we will see explicitly in the next

sections.

4.1 Warm-up: massless scalar field on a non-dynamical rotating string

As a warm-up, let us consider an external scalar field on a rigid, i.e. non dynamical,

rotating string. We work to quadratic order in the field, with bulk action given by

Sbulk =

∫
dτ

∫ 1

−1
dσ

√
G
1

2
(∂a)2 , (4.3)

where we called a the scalar field in preparation of the analysis of the 4d worldsheet axion,

and (∂a)2 = Gαβ∂αa∂βa. For the moment, we neglect higher derivative corrections whose

role we will analyze in Section 5. The worldsheet metric is given by (3.3) where we choose

αf = 1− zℓ̄sω for some z > 0 which does not scale with ω.

The free bulk EOM reads

ä− 1

α2
f

(
1− α2

fσ
2
)
a′′ + σa′ = 0 , (4.4)

where the dots and the primes respectively stand for time and spatial derivatives. Upon

changing coordinates via

s = arcsin(αfσ) , (4.5)

we recast eq. (4.4) into a standard Klein-Gordon equation, whose general solution is

a(τ, σ) =

∫
dϵ

2π

[
e−iϵτ+iϵsf+(ϵ) + e−iϵτ−iϵsf−(ϵ)

]
, (4.6)

where f+(ϵ) = f∗+(−ϵ) and f−(ϵ) = f∗−(−ϵ) denote the Fourier components.

To study the spectrum, we need to supplement eq. (4.4) with the boundary conditions.

The simplest way to do so is to write the most general boundary action for a at σ = ±1 in a

derivative expansion. We suppose that the boundary conditions preserve the shift-invariance of

a. In this case, we can self-consistently write the boundary action in terms of time derivatives

of a. This is because, as we will show, operators built out of derivatives normal to the boundary

are redundant due to the EOM and the leading order Neumann boundary conditions. Working

to quadratic order in the field and assuming identical endpoints, we consider the boundary

action to be

Sbdry = −
∑
σ=±1

1

2

∫
dτ

√
Ĝττ

[
ℓ̄sba(∇̂ta)

2 + ℓ̄3sda(∇̂2
ta)

2 + . . .
]
, (4.7)
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where ba and da are dimensionless Wilson coefficients, and we defined the endpoints’ worldline

metric and proper time derivatives as

Ĝττ = Gττ |σ=±1 , ∇̂t = Ĝ−1/2
ττ ∇̂τ , (4.8)

where ∇̂τ is the covariant derivative at the endpoints (see appendix A). These definitions

ensure that the action (4.7) is invariant under reparametrizations of τ . For simplicity, we

neglected operators built out of the acceleration or higher derivatives of the string coordinates

X’s, whose power counting is more subtle and will be discussed in the next subsection.

Since we work in terms of dimensionless coordinates, in order to power-count, it is enough

to count the powers of the metric. Bulk terms (up to the renormalization issues that we will

address later) are counted as in the long string background, i.e. using Gαβ ∼ 1/ω2. Therefore,

the bulk action (2.2) is of order
√
GG−1

αβ ∼ ω0, so a is canonically normalized and we count it

as a ∼ O(1). At the boundary, we power-count according to the rules

Ĝττ ∼ ℓ̄s
ω
, ∇̂t ∼

√
ω

ℓ̄s
, (4.9)

which follow from the redshift factor previously discussed. Therefore, the first term in eq. (4.7)

scales as ∼
√
ℓ̄sω, the second as (ℓ̄sω)

3/2, etc. We can see this more explicitly by writing the

boundary conditions that follow from variation of (4.3) and (4.7):

∂na|σ=±1 = baℓ̄s∇̂2
ta− daℓ̄

3
s∇̂4

ta+ . . . , (4.10)

where ∂n = nα∂α is the normal derivative (see app. A for notation). The aforementioned

scalings can be made manifest by working in terms of the coordinate s introduced in eq. (4.5)

±∂sa|σ±1 = ba

√
ℓ̄sω√
2z

(
1 +

1

4
zℓ̄sω + . . .

)
ä− da

(ℓ̄sω)
3/2

(2z)3/2
(1 + . . .) ∂4τa+ . . . , (4.11)

where the parentheses arise from the expansion of
√
Ĝττ ≃

√
2ℓ̄sz/ω

[
1 +O

(
ℓ̄sω
)]
.

It is instructive to use eq. (4.10) to extract the spectrum of single-particle states. In terms

of the coordinate (4.5), the endpoints are located at

σ = ±1 =⇒ s = ±
[
π

2
−
√
2zℓ̄sω − 1

6
√
2

(
zℓ̄sω

)3/2
+ . . .

]
. (4.12)

Because of worldsheet parity s→ −s, the solutions satisfying the boundary conditions must

take the form

a = e−iϵτ cos(ϵs) or a = e−iϵτ sin(ϵs) . (4.13)

Up to the leading order, we can identify the boundaries with s = ±π/2 and the boundary

conditions (4.10) with Neumann ∂sa = 0. Therefore, we find that the allowed frequencies are

ϵn ≃ n ∈ N , (4.14)

– 15 –



with even (odd) eigenfunction for even (odd) n. In physical units t = τ/ω, single-particle

states have energy ωϵn. Solving eqs. (4.10) to the subleading order, we find

ϵn = n

{
1−

√
ωℓ̄s

√
2Ba

π
+ ωℓ̄s

2B2
a

π2
+ (ωℓ̄s)

3/2

[
6Da +B3

a

3
√
2π

n2 +O(n0)

]
+ . . .

}
, n ∈ N ,

(4.15)

where we introduced the coefficients Ba and Da as follows for future convenience:

Ba = −ba + 2z√
z

, Da =
3da + 2z

(
3b2a + 6baz + 4z2

)
6z3/2

, (4.16)

supposing Ba ∼ Da ∼ O(1). In the parenthesis of eq. (4.15), we neglected a (ℓ̄sω)
3/2n0 term,

since this receives contributions from an operator built of higher derivatives of the X’s, which

we neglected in (4.7).9

Eq. (4.15) clearly illustrates the power-counting rules. The first correction to the dispersion

relation arises from the first term in eq. (4.7) and is suppressed by ∼
√
ωℓ̄s. We also find

a calculable ∼ ωℓ̄s term determined by the same coefficient Ba of the ∼
√
ωℓ̄s correction.

Finally, the second term in eq. (4.7) determines the (ωℓ̄s)
3/2n2 correction to the dispersion

relation. By comparing the terms proportional to Ba and Da in eq. (4.15) we conclude that

the derivative expansion is under control for

ωℓ̄sn
2 ≪ 1 . (4.17)

The regime specified by (4.17) is smaller than the one that one would have guessed neglecting

the redshift factor, namely ϵ2ω2 ≪ ℓ̄−2
s , i.e. n2(ωℓ̄s)

2 ≪ 1. As we will see, the derivative

expansion assumes a similar structure in the calculation of the energy for the daughter Regge

trajectories.

We conclude this section with two important technical remarks for what follows.

• The expected expansion arises as a consequence of the cutoff on the string length at

(1− αf ) = zℓ̄sω. Since the endpoint metric Ĝττ becomes singular for αf → 1, we may

think of a positive nonzero z as a regulator of the classical boundary divergences. While

working with a fixed z > 0 is justified on physical grounds, it is also possible to achieve

the same results by working directly in the limit z → 0, working thus with null endpoints.

To this aim, we introduce the following alternative metric at the endpoints:

γ̂ττ = ℓ̄s

[
−
(
∇̂τ∂τX

µ
)
ηµν

(
∇̂τ∂τX

ν
)]1/2

, (4.18)

which is the square-root of the endpoints’ acceleration and therefore constitutes a singular

operator on a static background. However, it is simple to check that γ̂ττ scales as ℓ̄s/ω

on the rotating background, like the wordline metric:10

γ̂ττ =
ℓ̄s
ω
(1− zℓ̄sω) ≃

1

z
Ĝττ . (4.19)

9This contribution arises from (∇3
tX)2(∇̂ta)

2.
10Note that the worldline connection Γ̂τ

ττ = 1
2
Ĝ−1

ττ ∂τ Ĝττ vanishes for any z on the background solution.
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We will see in the next section that γ̂ττ and Ĝττ are in fact equivalent and can be

used interchangeably around the rotating background also when the string fluctuates.

It is also possible to check that all the other operators with the right transformation

properties for defining a worldline metric are subleading in ω. Therefore, we may write

an action equivalent to (4.7) as

Sbdry = −
∑
σ=±1

1

2

∫
dτ
√
γ̂ττ

[
ℓ̄sb̃a(∇̂τa)

2γ̂−1
ττ + ℓ̄3sd̃a(∇̂2

τa)
2γ̂−2

ττ + . . .
]
. (4.20)

The action (4.20) is manifestly reparametrization invariant. The main advantage of the

formulation (4.20) is that it holds for arbitrary z and it allows us to work directly with

null endpoints setting z = 0, thus getting rid of the terms resulting from the expansion

of 1− αf in eqs. (4.11) and (4.12).

Note that for null boundaries one cannot define a normalized normal vector, therefore ∂na

in the left-hand side of eq. (4.10) is not well defined. To write the boundary conditions

in a geometric form, we note that in terms of the coordinate (4.5) the metric takes the

form (for αf = 1):

ds2 =
cos2(s)

ω2

(
dτ2 − ds2

)
, (4.21)

which shows that at the endpoint we have a natural conformal geometric structure. This

structure is preserved by diffeomorphism of the form τ ± s → f(τ ± s), under which

both ∂/∂τ and ∂/∂s transform as vectors. Therefore, for null endpoints we may write

the boundary conditions that follow from the action (4.3)+(4.20) in geometric form as

±∂sa|s±π
2
= ℓ̄sb̃a∇̂τ

(
γ̂−1/2
ττ ∇̂τa

)
+ ℓ̄3sd̃a∇̂2

τ

(
γ̂−3/2
ττ ∇̂2

τa
)
+ . . . . (4.22)

We see that both sides manifestly transform homogeneously under diffeomorphism of

the form τ ± s→ f(τ ± s).11

It is simple to solve (4.22) and check that the energy levels following from (4.20) take

the form (4.15) with the identifications

Ba =
√
2 b̃a , Da =

√
2 d̃a . (4.23)

which are significantly simpler than (4.16) since we work in the limit z → 0.

• The boundary conditions (4.10) are imposed at the string endpoint σ = 1. Since the

solutions of the EOMs are functions of αfσ, when solving the boundary condition (4.10)

perturbatively in ω for z > 0, we further need to expand (1 − αf ) using (4.12); as a

result, the physical parameters Ba and Da that enter the dispersion relation (4.15) are

nontrivial linear combinations of the ones multiplying derivatives of a in eq. (4.10). It

11Equivalently, in appendix A we show that the left-hand side of eq. (4.22) may be written in terms of a

Weyl invariant normal Nα
τ , that makes sense for both timelike and null boundaries.
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is possible and technically more convenient to write the boundary conditions directly

in terms of the expansion of the field around the singular point αfσ = 1 of the EOMs.

To this aim, one considers the following (near boundary) expansion of the solutions to

eq. (4.4):12

a(τ, σ) =

[
1 + (1− αfσ)

d2

dτ2
+

1

6
(1− αfσ)

2

(
d2

dτ2
+

d4

dτ4

)
+O

(
(1− αfσ)

3
)]
β1(τ)

+
√
1− αfσ

[
1 + (1− αfσ)

(
1

12
+

1

3

d2

dτ2

)
+O

(
(1− αfσ)

2
)]
β2(τ) ,

(4.24)

where β1(τ) and β2(τ) are the boundary data which specify the solution. The expansion

for 1 + αfσ → 0 is identical. The boundary condition (4.10) is conveniently solved

perturbatively in terms of the boundary modes β1 and β2 as (at both endpoints)

β2 =
√
ωℓ̄sBaβ̈1 + (ωℓ̄s)

3/2

[
Da

d4β1
dτ4

+O
(
β̈1

)]
+O

(
ω5/2ℓ̄5/2s

)
. (4.25)

Notice that eq. (4.25) manifestly depends solely upon the coefficients Ba and Da (and

not on z) that determine the dispersion relation (4.15). This is because the boundary

conditions (4.25) (at both endpoints) completely determine the profile of the field in

the bulk of the string with no reference to the regulator parameter z. We will use near

boundary expansions of the form (4.24) in the next sections to study fluctuations of the

string coordinates.

4.2 The general boundary action

4.2.1 The construction

Let us now discuss the endpoints of a dynamical string. Namely, we want to write boundary

actions that encode the boundary conditions for the Xµ(τ, σ) fields at σ = ±1 in a consistent

derivative expansion. As in the scalar example previously discussed, the boundary conditions

must be obtained from the variation of a Poincaré invariant functional made of derivatives of

the string coordinates at the endpoints. First, let us consider the simplest possible endpoint

action:

Sbdry = −
∑
σ=±1

m

∫
dτ

√
Ĝττ , (4.26)

where, here and for most of this section, we assume identical endpoints. Eq. (4.26) models

mass m quarks at the endpoints. More generally, we expect that such a term will always be

present in an effective description of the endpoints. In this section, we assume the minimal

scenario where the quark masses are comparable or smaller than the Yang-Mills scale, i.e.,

m ∼ 1/ℓ̄s. We postpone the discussion of heavy quarks m≫ 1/ℓ̄s to Section 7.

12This expansion is analogous to the mode expansion of bulk fields near the boundary of spacetime in the

AdS/CFT.
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The boundary conditions that follow from (4.26) and (2.2) read

1

ℓ2s

√
Ĝττ ∂nX

µ = −mĜ−1/2
ττ ∇̂τ∂τX

µ . (4.27)

Eq. (4.27) on the ansatz (3.2) imposes

αf = 1− πmωℓ̄2s +O
(
ℓ̄2sω

2
)
. (4.28)

As announced, for m ∼ 1/ℓ̄s the quark mass term shortens the string similarly to the cutoff

prescription adopted in Section 3. Plugging back in the action, we see that the boundary

action (4.26) scales as
√
ω/ℓ̄s, while the NG term scales as 1/(ℓ2sω

2) (recall X ∼ 1/ω from

eq. (3.2)). We may therefore think of the quark mass term (4.26) as a perturbation of the

Neumann boundary conditions
√
Ĝττ ∂nX

µ = 0.

Additional boundary operators are further suppressed. To see this, notice that leading

boundary conditions (4.27) imply that, working in a derivative expansion, we can remove

redundant operators according to the relations13

1

ℓ2s
∂nX

µ ≈ m∇̂2
tX

µ and Ĝττ ≈ 2πℓ̄smγ̂ττ , (4.29)

where the second is obtained by squaring eq. (4.27) and using ∂nX · ∂nX = −1. Eq. (4.29)

implies a somewhat unusual equivalence between the square-root of the quark accelaration

and the worldline metric. This is a special property of the rotating background and does not

hold for a static string. Using the relations (4.29) and the discussed geometric arguments, we

power-count boundary operators according to the rules

X ∼ 1

ω
, Ĝττ ∼ γ̂ττ ∼ ℓ̄s

ω
, ∂nX ∼ 1 , ∇̂t ∼

√
ω

ℓ̄s
. (4.30)

These rules allow us to estimate the relative size of a given operator contribution to an

arbitrary observable.

It is now straightforward to write the first correction to the endpoint action (4.27).

The analogy with the massless scalar example presented in eq. (4.7) is the simplest if we

momentarily choose a basis where according to (4.29), we systematically get rid of operators

with multiple time derivatives ∇̂k
tX, in favor of those with normal derivatives ∇̂k−2

t ∂nX
µ. To

the first subleading order,

Sbdry = −m
∑
σ=±1

∫
dτ

√
Ĝττ

[
1 + ℓ̄2s b̄1

(
∇̂t∂nX · ∇̂t∂nX

)
+ . . .

]
, (4.31)

13For bulk operators it is well known that operators vanishing on the leading EOMs can be eliminated via a

field redefinition [47]. A similar statement holds also for boundary operators provided we allow for singular

field redefinitions, that can be treated with standard methods within EFT, see e.g. [48]. We checked explicitly

that different choices of the basis of operators for the boundary action yield the same results for the leading

and the daughter Regge trajectories.
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where m ∼ 1/ℓ̄s and b̄1 ∼ O(1). We assumed time reversal and neglected terms with more

than overall 2 time derivatives (also accounting for partial integration). According to the

power counting, the leading order scales as 1/
√
ωℓ̄s, while the subleading scales as

√
ωℓ̄s. In

general, the expansion runs in single powers of ωℓ̄s as expected.

Let us illustrate our discussion by looking at the Lagrangian and the Regge intercept for

the theory defined by the NG action and the b.dry action (4.31). To this aim, we compute

the Lagrangian L for arbitrary αf on the background (3.2)

L = − 1

ℓ2sω

[
αf

√
1− α2

f + arcsin(αf )
]
− 2m

√1− α2
f − b̄1

ℓ̄2sω
2√

1− α2
f

 , (4.32)

where the first parenthesis arises from the bulk action, the second one from the boundary

terms. We then extremize with respect to αf :

∂L
∂αf

= 0 =⇒ αf = 1− πmωℓ̄2s +
1

2

(
π2ℓ̄2sm

2 − b̄1
)
ℓ̄2sω

2 +O
(
ℓ̄3sω

3
)
. (4.33)

Plugging in eq. (4.32), we find

L = − 1

4ℓ̄2sω
− 4

√
2π

3
m3/2ℓ̄s

√
ω +

1

5

√
2

π

√
mℓ̄s

(
5b̄1 + 2π2m2ℓ̄2s

)
ω3/2 + . . . . (4.34)

Eq. (4.34) contains terms at order ∼
√
ω and ω3/2 with independent coefficients (m and

b̄1), as it was expected from the discussion in Section 3. We then obtain the relation between

ω and J from (3.5)

ω =
1

2ℓ̄s
√
J

[
1− 2(mℓ̄s)

3/2

3J3/4
+

3
√
ℓ̄sm

(
5b̄1 + 2π2ℓ̄2sm

2
)

20
√
π J5/4

+
4(mℓ̄s)

3π

9J3/2
+O

(
1

J7/4

)]
, (4.35)

from which we get the Regge intercept (neglecting quantum corrections):

M2
classical =

J

ℓ̄2s
+

8
√
πm3/2

3
√
ℓ̄s

J1/4 −
√
m
(
5b̄1 + 2π2ℓ̄2sm

2
)

5
√
πℓ̄

3/2
s

J−1/4

+
4

3
πℓ̄sm

3J−1/2 +O
(
J−3/4

)
.

(4.36)

The existence of a J1/4 correction from the boundary mass term is a well known result.

The existence of a J−1/4 term (and in general of ∼ J1/4−n/2 with n ∈ N contributions) was

previously discussed in [16, 17] in the Polyakov formalism using a seemingly different EFT for

the endpoints. We will present an equivalent formulation of the action (4.31) which is more

closely related to that of those works in the next section. Finally the J−1/2 contribution arises

when using (4.35) to relate ω and J at subleading orders.

In eq. (4.36) we neglected quantum corrections. These provide a ∼ 1/J relative correction

to the result. We will discuss this point further in Section 4.4.
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We will soon show that the expansion for daughter Regge trajectories is similar to

eq. (4.36). The small ℓ̄sω expansion for the length of the string L = 2αf/ω takes instead a

different form, with the first correction at order ℓ̄sω ∼ 1/
√
J , see (4.33), therefore seemingly

violating the power-counting. The reason why this is allowed is that the string length, at least

as defined in eq. (3.4), is not a physical observable within EFT. Physically, this is because the

string length depends upon the precise size of the endpoints, which are fuzzy objects within

EFT. Technically, this is because the definition (3.4) is not invariant under field redefinitions,

which are instead crucial to get rid of redundant operators via (4.29). We will indeed see that

a different choice for the basis of operators of the boundary action leads to a different value

for 1− αf without affecting on-shell observables.

4.2.2 Alternative parametrization and the effective string length

In principle, we could now proceed and use the action (4.31) to compute the spectrum of

the rotating string up to relative order ∼ J−3/2. However, doing so would require us to deal

with some technical complications at intermediate steps of the calculation. This is because the

expansion of the operators in eq. (4.37) yields inverse powers of 1− αf , that in turn introduce

spurious powers of ω due to eq. (4.33). While these spurious powers eventually cancel from

the final result, the power counting and the expansion discussed in the previous sections are

obscured in intermediate steps.

To remedy this state of affair, in this section we use the redundancies (4.29) to write

the boundary action in a different basis of operators, where the effective quarks move at the

speed of light αf = 1 to all orders in the 1/J expansion. In this basis the power counting

discussed in the previous section remains manifest also at intermediate steps. Additionally,

the derivation of this simplified approach will also clarify the physical reasons for the validity

of the EFT approach.

The discussion proceed in two steps. First, we note that the relations (4.29) allow to

choose a different basis of operators, where ∂nX does not appear at all, and where we trade

Ĝττ for γ̂ττ . From these observations, we infer that the action (4.31) is equivalent to the

following

Sbdry = −m
∑
σ=±1

[
bm

∫
dτ

√
Ĝττ − bγ

∫
dτ
√
γ̂ττ

+ ℓ̄4sb1

∫
dτ
√
γ̂ττ (∇̃3

τX)2γ̂−3
ττ +O

(
(ℓ̄sω)

3/2
)]

,

(4.37)

where in the second line the covariant derivative ∇̃τ is defined using the following connection

Γ̃τ
ττ =

1

2
γ̂−1
ττ ∂τ γ̂ττ . (4.38)

Note that the usual connection Γ̂τ
ττ = 1

2Ĝ
−1
ττ ∂τ Ĝττ still appears in the definition (4.18) of γ̂ττ .

According to the power-counting, the first line of eq. (4.37) scales as ∼ 1/
√
ℓ̄sω, while the

second as ∼
√
ℓ̄sω.
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The action (4.37) is not yet the most convenient for our purposes. Nonetheless, it is useful

to discuss some of its features before performing further manipulations. Note in particular

that in the first line of (4.37) we retained an arbitrary linear combination of Ĝττ and γ̂ττ .

However, due to the discussed redundancy only two combinations of the coefficients bm, bγ ,

and b1 enter in physical observables. We will find below that these combinations are

µ1 = −
√
2bγm+

4

3

√
π b3/2m m3/2ℓ̄1/2s , (4.39)

µ2 = −m b1√
2
+ ℓ̄sm

2 bγbmπ

2
√
2

− ℓ̄3/2s m5/2π
3/2

5
b5/2m . (4.40)

Thus µ1 and µ2 are the true non-redundant Wilson coefficient: on dimensional grounds we

expect µ1 ∼ µ2 ∼ 1/ℓ̄s for a theory with light quarks. Nonetheless, the leading correction to

the string length, which is not an on-shell observable as previously observed, is controlled only

by bm:

αf = 1− bmmωℓ̄
2
sπ +

(
bγ

√
bmℓ̄3sm

3π3√
2

− π2

2
b2mℓ̄

2
sm

2

)
ℓ̄2sω

2

+

(
π2

4
b2γ ℓ̄

2
sm

2 − b1

√
bmℓ̄3sm

3π3√
2

)
ℓ̄3sω

3 +O
(
ℓ̄4sω

4
)
.

(4.41)

This observation has an important physical consequence: by choosing a sufficiently large

coefficient bm while keeping fixed the coefficients µ1 and µ2 in eqs. (4.39) and (4.40), we can

effectively cutoff the string before the derivative expansion breaks down without modifying

the spectrum. We may therefore think of bm as a regulator for the endpoints singularities.14

In some sense, the freedom of changing the effective string length via a redundant coupling

provides a technical explanation for the validity of the EFT approach.

Retaining a finite value of 1− αf > 0 will be important when discussing bulk operators

in Section 5, but, as announced at the beginning of this section, to make the power counting

manifest in our calculations we would like to work in a scheme in which the endpoints move at

the speed of light exactly. Naively, we might try to achieve this by setting bm = 0 in eq. (4.37),

but this is not enough due to the subleading terms in the expansion (4.41). Instead, it is

convenient to perform a further step and introduce an auxiliary einbein field e to rewrite the

first term in eq. (4.37) as

−m
∑
σ=±1

bm

∫
dτ

√
Ĝττ → −m

2

∑
σ=±1

∫
dτ

(
Ẋ2

e
+ b2me

)
, (4.42)

while leaving the rest of the action unchanged. Solving for e on its EOMs for bm > 0 we

recover the previous expression (assuming e ≥ 0). If we instead set the redundant coefficient

to zero, bm = 0, we find that the EOM for the einbein requires the string endpoints to be

precisely null:

Ẋ2|σ=±1 = 0 . (4.43)

14As usual, quantum corrections require an additional, different, regulator - such as dimensional regularization.
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Note that this constraint implies that the modified boundary metric (4.18) can be simply

written as

γ̂ττ = ℓ̄s

(
−ẌµηµνẌ

ν
)1/2

, (4.44)

with no reference to a connection.15 We therefore conclude that we can work in a scheme

where the endpoints’ effective action reads

Sbdry = m
∑
σ=±1

[
bγ

∫
dτ
√
γ̂ττ − ℓ̄4sb1

∫
dτ
√
γ̂ττ (∇̃3

τX)2γ̂−3
ττ +O

(
(ℓ̄sω)

3/2
)]

, (4.45)

with the constraint (4.43) that the endpoints move on lightlike trajectories. The action (4.45)

is analogous to the one discussed in [17], where the authors worked in Polyakov formalism.

Note that eq. (4.45) does not include operators containing ∂sX
µ, where s is the natural normal

coordinate in the null case according to the discussion around (4.21), since these vanish on

the leading order boundary conditions that follow from the Nambu-Goto action.

As an illustration, let us discuss the calculation of the leading Regge trajectory again,

using the action (4.45). The constraint (4.43) imposes that on the background profile (3.2)

we must set

αf = 1 . (4.46)

The Lagrangian is then straightforward to compute. Using (4.44) and noticing that Γ̃τ
ττ = 0

on the solution (3.2), we find

L = − 1

4ℓ̄2sω
−
√
2µ1
√
ℓ̄sω − 2

√
2µ2(ℓ̄sω)

3/2 +O
(
ℓ̄5/2s ω5/2

)
, (4.47)

where the Wilson coefficients are the ones given in (4.39) and (4.40) in the limit bm → 0:

µ1
bm→0
= −

√
2mbγ , µ2

bm→0
= − 1√

2
mb1 . (4.48)

We then find ω as

ω =
1

2ℓ̄s
J−1/2 − µ1

4
J−5/4 − 3µ2

4
J−7/4 +O

(
J−9/4

)
, (4.49)

from which we recover the same expansion in eq. (4.36) (neglecting the Casimir energy)

Mclassical =

√
J

ℓ̄s
+

µ1

J1/4
+

µ2

J3/4
+
µ21ℓ̄s
8
J−2 +O

(
J−5/4

)
. (4.50)

The same result is obtained using the action (4.37), with the Wilson coefficients given by

eq. (4.39) and (4.40). On physical grounds, we expect that the effective endpoints contribute

to the energy with a positive amount, hence µ1 > 0; this can indeed be proven rigorously

using Regge theory and the analytic S-matrix bootstrap [15].

15To derive eq. (4.18) we used that the connection Γ̂τ
ττ remains finite in the limit Ẋ2 → 0, as it can be

checked solving for (4.43) explicitly as in eq. (4.53) below.
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In the following sections, we will discuss the calculation of the spectrum of the daughter

Regge trajectories. We will mostly work with exactly massless endpoints, but we will also

comment on the calculation using the action (4.37), as this will be important when discussing

the renormalization of bulk operators. An important subtlety when working with massive

endpoints with the action (4.37) is that it is important to keep bm > 0 at intermediate

steps. This is because keeping bm > 0 ensures that the first two corrections to 1 − αf in

eq. (4.41) do not vanish and, as we will see, the expansion into fluctuations of the operators

in eq. (4.37) yields inverse powers of 1− αf , which obscure the power-counting as mentioned

in the introduction to this section. We checked that the final results for the spectrum are

independent of the scheme when expressed in terms of the physical Wilson coefficients (4.39)

and (4.40).

4.3 Fluctuations

4.3.1 Leading order analysis

We parametrize fluctuations around the background (3.2) with d− 1 fields {α, ϕ, ρi} as

Xµ =
1

ω
{τ, [αf σ + α(τ, σ)] cos (τ + ϕ(τ, σ)) , [αf σ + α(τ, σ)] sin (τ + ϕ(τ, σ)) , ρi(τ, σ)} ,

(4.51)

where i = 1, . . . , d−3. One might think that α(τ, σ) can be removed by a gauge transformation.

This is true everywhere but at σ = ±1, since we are only allowed to consider diffeomorphisms

that preserve the position of the boundaries. We will see that α(τ, σ) enters in the bulk

action only in total derivative terms, and only the α(τ,±1) boundary modes are physical. The

parametrization (4.51) was formerly used in [27].

Let us consider first the NG action, for arbitrary αf , neglecting the boundary terms.

Neglecting total time derivatives, the expansion to quadratic order yields:

Sbulk ≃
αf

2ω2ℓ2s

∫
d2σ
√
1− α2

fσ
2

[
(ρ̇i)

2

1− α2
fσ

2
− (ρ′i)

2

α2
f

+
α2
fσ

2ϕ̇2

(1− α2
fσ

2)2
− σ2(ϕ′)2

1− α2
fσ

2

]

+
1

ω2ℓ2s

∫
d2σ

∂

∂σ

−√1− α2
fσ

2 α+
αfσα

2

2
√

1− α2
fσ

2
+

α2
fσ

2ϕ̇ α√
1− α2

fσ
2

 . (4.52)

As anticipated, α enters only in a total derivative term, and is thus purely a boundary mode.

As formerly noted, the constraint (4.43) implies αf = 1 at leading order in fluctuations;

this sets to zero the term linear in α in eq. (4.52). At subleading order, we may solve

perturbatively for the null constraint in terms of the boundary mode α:

α|σ=±1 = −σϕ̇+ σ

(
ϕ̇2 − 1

2
ϕ̈2 − 1

2
ρ̇2
)
+ . . . , (4.53)

where the term that is quadratic in the fields will be important to obtain the expansion of the

boundary action (4.45) to quadratic order, that we report in the next subsection. Plugging
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back into eq. (4.52) we obtain

Sbulk ≃ 1

2ℓ2sω
2

∫
d2σ
√

1− σ2

[
(ρ̇i)

2

1− σ2
− (ρ′i)

2 +
σ2ϕ̇2

(1− σ2)2
− σ2(ϕ′)2

1− σ2

]

− 1

2ℓ2sω
2

∑
±

lim
σ→±1

∫
dτ

σ2ϕ̇2√
1− σ2

.

(4.54)

The boundary term in the second line ensures that the action is finite for configurations such

that the angular mode ϕ does not vanish at the endpoints. Within the standard approach, in

which eq. (4.43) is not imposed as a constraint, the action (4.54) is obtained noticing that

there is no kinetic term for α in eq. (4.52) and we can therefore integrate it out on its EOM.

We are now ready to extract the leading order spectrum from the action (4.54). The

action for the transverse mode(s) ρi is identical to that of a massless scalar in eq. (4.3), yielding

the EOM (4.4) with Neumann boundary conditions at the leading order:

lim
σ→±1

∓
√
1− σ2

ℓ2sω
2

ρ′i = 0 . (4.55)

Proceeding as in Section 4.1, we conclude that each of the transverse modes is associated

with a spectrum of excitations whose energy levels are integerly spaced in units of the angular

velocity:

ϵn = n ∈ N . (4.56)

At a quantum level, the modes with n ≥ 1 in eq. (4.56) are associated with creation and

annihilation operators â†ρi,n, âρi,n, and generate the corresponding Fock space. The n = 0

mode as usual needs to be treated differently and is associated with translations of the string.

Since we can always work in the rest-frame of the particle this mode is irrelevant for our

purposes. Also the n = 1 mode is special. To understand why, it is simpler to specialize

momentarily to d = 4 where there is a single transverse coordinate. The creation operator

associated with the n = 1 mode acts on the vacuum as

â†ρ,1|J, J⟩ = |J + 1, J⟩ , (4.57)

where |J, J⟩ indicates the EFT ground state, which is a highest weight state of the spin J

representation [49]. Therefore â†ρ,1 creates a non-highest weight state. The same is true for all

the n = 1 modes in d ≥ 4. In more physical terms, the n = 1 modes create states which can

be obtained by applying a rotation to states with a different J on the leading Regge trajectory.

Hence, to study the spectrum of particles in spin-J representations it is enough to focus on

highest weight states. Therefore only the n ≥ 2 modes are relevant for our discussion.

Let us now discuss the angular variable ϕ. The EOM reads

ϕ̈− (1− σ2)ϕ′′ −
(
2− σ2

)
ϕ′ = 0 . (4.58)
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The most general solution may be written as a superposition of plane waves of the form (see

also [27])

ϕ = e−iϵτ (1− σ2)3/4

σ

[
c1P

3
2

ϵ− 1
2

(σ) + c2Q
3
2

ϵ− 1
2

(σ)

]
, (4.59)

where P and Q are Legendre functions. For αf < 1, the solution is given by eq. (4.59) replacing

σ → αfσ. The overall 1/σ prefactor is due to the parametrization (4.51), which implies that

δX ∝ σϕ to linear order. The ratio c2/c1 and the allowed values of ϵ in eq. (4.59) are found

imposing the boundary conditions at both endpoints:

lim
σ→±1

∓ϕ′ + σ2ϕ̈

ω2ℓ2s
√
1− σ2

= 0 . (4.60)

The limit in this expression naively looks singular, but it is not. This is because, as for

the transverse fluctuations, the endpoints σ = ±1 are singular points of the differential

equation (4.58). To see that the limit is indeed well defined, it is convenient to consider the

near boundary expansion for ϕ:

ϕ = βϕ1 (τ)− (1− σ)β̈ϕ1 (τ) + (1− σ)3/2βϕ2 (τ) +O
(
(1− σ)2

)
, (4.61)

where we use a superscript to distinguish the transverse and angular boundary modes. The

expansion for 1 + σ → 0 is identical. Plugging (4.61) in (4.60), we see that the first two terms

cancel and in the limit σ → ±1 we are left with a nonsingular result

βϕ2 = 0 . (4.62)

Imposing eq. (4.62) at both endpoints implies that the solutions (4.59) must satisfy

c2 = 0 and ϵn = n ∈ N . (4.63)

Eq. (4.63) yields a Fock space spectrum identical to that of the transverse modes, as expected

from the standard results in critical string theory (this calculation is independent of the

number of spacetime dimensions).

As for the transverse coordinates, the n = 0 and n = 1 modes are associated, respectively,

with rigid rotations and translations; therefore they must be excluded when constructing the

spectrum of physical particles at fixed angular momentum. In particular, highest-weight states

in different representations are related via the action of the 0-mode of ϕ, which enters the

mode decomposition via

ϕ = ϕ̂0 + p̂0τ +wave-modes , (4.64)

where p̂0 ∝ ⟨J⟩ − Ĵ and ϕ̂0 is a 2π-periodic quantum mechanical variable. The canonical

commutation relation imply that
[
ϕ̂0, Ĵ

]
= i, therefore the operator eiϕ̂0 increases the angular

momentum; e.g. in four dimensions in the same notation of eq. (4.57) we have

eiϕ̂0 |J, J⟩ = |J + 1, J + 1⟩ . (4.65)
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Note that eqs. (4.57) and (4.65) imply that the lowering operator of the SU(2) algebra is

given by Ĵ− = e−iϕ̂0 â†ρ,1, as it can be checked via Noether’s procedure.16

Upon quantizing the system we conclude that daughter Regge trajectories corresponding

to multi-particle states created by ρi and ϕ have a gap over the ground-state (4.50) given by

δM = ω
∑
i

∑
k≥2

n
(ρi)
k ϵ

(ρi)
k + ω

∑
k≥2

n
(ϕ)
k ϵ

(ϕ)
k

≃ ω
∑
k≥2

[∑
i

n
(ρi)
k + n

(ϕ)
k

]
k ,

(4.66)

where the nk’s denote the occupations numbers and we used superscripts to distinguish between

the modes in obvious notation. We stress again that in eq. (4.66) there is no contribution

from the k = 0 and k = 1 modes, for the reasons explained above. Using (4.49) we recover

the well known result δM2 = ℓ̄−2
s

∑
k≥2

[∑
i n

(ρi)
k + n

(ϕ)
k

]
k to leading order in J .

Finally, we remark that upon canonically normalizing the bulk fields we infer that nonlinear

terms are suppressed in ωℓs, with the loop counting parameter given by ω2ℓ2s as anticipated.

We will discuss loop corrections further in Section 4.4.

4.3.2 Subleading orders: massless endpoints’ scheme

Let us now study the corrections to the energy spectrum that arise from the boundary

action (4.45). Upon expressing α through (4.53) and neglecting total derivatives, the expansion

to quadratic order of eq. (4.45) yields

Sbdry = mℓ̄s
∑
σ=±1

∫
dτ

{
bγ

4
√
ωℓ̄s

[
(ρ̇i)

2 + (ρ̈i)
2 − 1

2
ϕ̇2 + ϕ̈ 2 − 1

2

...
ϕ

2
]

+
b1
√
ℓ̄sω

4

[
(ρ̇i)

2 − 5(ρ̈i)
2 + 4(

...
ρ i)

2 +
3

2
ϕ̇2 + 4ϕ̈ 2 +

7

2

...
ϕ

2 −
....
ϕ

2
]

+O
(
(ℓ̄sω)

3/2
)}

.

(4.67)

Note that because of the O(d− 3) unbroken symmetry acting on the ρi there is no quadratic

mixing between the transverse modes and ϕ. We therefore discuss transverse and angular

modes separately below.

We start from the transverse modes. From the variation of the boundary action (4.67),

16This is analogous to the role of gapped Goldstones [50] in nonlinear sigma models at finite chemical potential

and finite volume [49].
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we find that the leading order boundary condition (4.55) is corrected as

lim
σ→±1

±
√
1− σ2

ℓ2sω
2

ρ′i =
mℓ̄s
2

[(
bγ√
ωℓ̄s

− b1
√
ωℓ̄s

)
∂2ρi
∂τ2

+

(
bγ√
ωℓ̄s

− 5b1
√
ωℓ̄s

)
∂4ρi
∂τ4

− 4b1
√
ωℓ̄s

∂6ρi
∂τ6

+O

(
(ωℓ̄s)

3/2∂
8ρi
∂τ8

)]
.

(4.68)

This condition may be written in a manifestly finite form using the near boundary expan-

sion (4.24) of the solution:

βρ2 = 0 + πµ1ω
3/2ℓ̄5/2s

(
d2βρ1
dτ2

+
d4βρ1
dτ4

)
− 2πµ2ω

5/2ℓ̄7/2s

[(
d2βρ1
dτ2

+
d4βρ1
dτ4

)
+ 4

(
d4βρ1
dτ4

+
d6βρ1
dτ6

)]
+O

(
ω7/2ℓ̄9/2s

d8βρ1
dτ8

)
,

(4.69)

where we used eq. (2.4).

Imposing the boundary condition (4.69) on plane wave solutions of the form (4.13), we

find that the eigenfrequencies are corrected as

ϵn = n
[
1 +

√
2(ωℓ̄s)

3/2µ1ℓ̄s
(
n2 − 1

)
+ 2

√
2(ωℓ̄s)

5/2µ2ℓ̄s(n
2 − 1)(4n2 − 1) + . . .

]
, (4.70)

where n ∈ N. Similarly to eq. (4.15), the derivative expansion breaks down for n2ωℓ̄s ∼ 1.

Eq. (4.70) neglects O
(
n6(ωℓ̄s)

7/2
)
corrections from higher derivative boundary terms. For the

moment we are also neglecting ω2ℓ̄2s one-loop corrections to the spectrum. Notice that ϵn is

unmodified by the higher derivative corrections for n = 0 and n = 1, since as explained these

are protected modes implementing translations and rotations.

The calculation of the corrections to the leading order boundary condtions (4.60) for ϕ

proceeds analgously. We directly report the result in terms of the boundary modes defined in

eq. (4.61):

βϕ2 = 0 +
π

3
µ1ω

3/2ℓ̄5/2s

(
d2βϕ1
dτ2

+ 2
d4βϕ1
dτ4

+
d6βϕ1
dτ6

)

− 2π

3
µ2ω

5/2ℓ̄7/2s

[
3

(
d2βϕ1
dτ2

+ 2
d4βϕ1
dτ4

+
d6βϕ1
dτ6

)
+ 2

(
d4βϕ1
dτ4

+ 2
d6βϕ1
dτ6

+
d8βϕ1
dτ8

)]

+O

(
ω7/2ℓ̄9/2s

d10βϕ1
dτ10

)
.

(4.71)

From eq. (4.71) we find the corrections to eq. (4.60):

c2 = c1

[
0 +

1√
2
µ1ℓ̄s(ωℓ̄s)

3/2n(n2 − 1) +
√
2µ2ℓ̄s(ωℓ̄s)

5/2n(2n2 − 3)(n2 − 1) + . . .

]
, (4.72)

ϵn = n

[
1− 1√

2
µ1ℓ̄s(ωℓ̄s)

3/2
(
n2 − 1

)
−
√
2µ2ℓ̄s(ωℓ̄s)

5/2(2n2 − 3)(n2 − 1) + . . .

]
, (4.73)
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where n ∈ N. Comments analogous to those below eq. (4.70) apply here. In particular,

notice again that the result for the n = 0 and n = 1 modes is unmodified by higher-derivative

corrections due to their protected nature. We also remark that the first correction to the leading

order result in eq. (4.73) takes the opposite sign compared to the transverse modes (4.70). As

formerly commented, we must have µ1 > 0, and therefore the daughter trajectories associated

with the angular mode are lighter than the ones for the transverse modes.

4.3.3 Subleading orders: massive endpoints’ scheme

Let us now briefly comment on the calculation using the action (4.37) in which the

endpoints are not constrained by eq. (4.43), and the quarks velocity αf is given in eq. (4.41)

(this ensures that in the expansion of the action, the terms linear in the fluctuations vanish).

We focus first on the transverse modes ρi. Expanding (4.37), we get

Sbdry ⊃ m
∑
σ=±1

∫
dτ

 bm(ρ̇i)
2

2ω
√

1− α2
f

+
bγ ℓ̄s

4αf

√
αf ℓ̄sω

(ρ̈i)
2 + b1ℓ̄s

√
ℓ̄sω

α5
f

[(
d3ρi
dτ3

)2

− 5

4
(ρ̈i)

2

] .

(4.74)

We see that, differently than eq. (4.67), since
√

1− α2
f ∼

√
ωℓ̄s, the first term in eq. (4.74)

is proportional to ω−3/2 rather than the expected power ω−1/2. This might seem to suggest

that the leading-order boundary conditions for ρ in eq. (4.55) is corrected already at order√
ωℓ̄s, therefore contradicting the EFT power-counting and the results of the previous section.

Luckily, it turns out that upon carefully using the value of αf in eq. (4.41), this contribution

cancels out upon summing the variation of the bulk and the boundary action, and the final

result agrees with the one we found in eq. (4.69).

Let us show this up to order O(ω). We write the boundary term in the variation of the

bulk action (4.52) using the near boundary expansion (which is identical to (4.24))

δSbulk = bulk EOMs +
∑
σ=±1

∫
dτ

[
δβρ1β

ρ
2√

2ω2ℓ2s
+

√
mbm

2ℓsω3/2

(
2δβρ1 β̈

ρ
1 + δβρ2 β̈

ρ
2

)
+
bmm√
2ω

(
δβρ2 β̈

ρ
1 + δβρ1 β̈

ρ
2

)
+O

(
1√
ℓ̄sω

)]
,

(4.75)

where we suppressed the O(d− 3) indices and retained terms up to order 1/ω. Expanding

similarly the variation of eq. (4.74) we obtain

δSbdry = −
∑
σ=±1

∫
dτ

[√
mbm

ℓsω3/2
δβρ1 β̈

ρ
1 +

bmm√
2ω

(
δβρ2 β̈

ρ
1 + δβρ1 β̈

ρ
2

)
+O

(
1√
ℓ̄sω

)]
, . (4.76)

Summing eqs. (4.75) and (4.76) we see that the subleading terms proportional to δβρ1 and βρ1
cancel out and we obtain

δSbulk+δSbdry = bulk EOMs+
∑
σ=±1

∫
dτ

[
δβρ1β

ρ
2√

2ℓ2sω
2
+

√
mbm

2ℓsω3/2
δβρ2 β̈

ρ
2 +O

(
1√
ℓ̄sω

)]
, (4.77)
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which is compatible with the leading order condition (4.55) up to order (ωℓ̄s)
3/2 as expected:17

βρ2 = 0 +O
(
(ωℓ̄s)

3/2
)
. (4.78)

Similar cancellations occur at subleading order. The reason for the existence of these

seemingly enhanced terms in the boundary action is that Ĝττ , and therefore also the boundary

connection Γ̂ = 1
2Ĝ

−1
ττ ∂τ Ĝττ , are not analytic for αf → 1. At some intuitive level, such terms

arise because the redundant operator in eq. (4.37) is effectively equivalent to a cutoff regulator

near the endpoints. While conceptually satisfying, it is often the case that cutoff schemes

yield enhanced contributions at intermediate steps in EFT.

The technical reason why such spurious terms in the expansion do not contribute to

observables, is that they always depend on the specific value of the regulator coefficient bm
(and are often singular in the limit bm → 0), which determines the leading correction to

the string length (4.41). Based on the arguments presented at the beginning of this section,

only the combinations in eq. (4.39) and (4.40), which are regular in the limit bm → 0, can

contribute to physical observables. Unfortunately, retaining bm > 0 in the action (4.37) is

nonetheless important at intermediate steps if we do not impose the condition (4.43).

Despite these complications, it is nonetheless straightforward to compute the subleading

corrections to the boundary conditions for the transverse modes. By expanding the variation of

the bulk and boundary actions as in eqs. (4.75) and (4.76), we eventually recover the previous

result (4.69) in terms of the physical Wilson coefficients in eqs. (4.39) and (4.40).

The analysis of angular fluctuations from the action (4.37) proceeds similarly to that of

the transverse modes. The main difference is that we now need to compute also subleading

corrections to the expression for the boundary mode α when we integrate it out.

It turns out that the cancellations described above are even more dramatic for the boundary

EOMs of α and ϕ than for the ρi’s. For instance the expansion of eq. (4.37) produces the

following terms

Sbdry ⊃ m
∑
σ=±1

∫
dτ

 bm(α± ϕ̇)2

4
√
2ω(1− αf )3/2

+
bγ ℓ̄s(α̇± ϕ̈)2

8
√
ℓ̄sω(1− αf )

+
bm(3α2 + 8α̇2 ± 14αϕ̇− 5ϕ̇2)

12ω
√
2(1− αf )

+
5b1ℓ̄

3/2
s

√
ω(α̇± ϕ̈)2

4(1− αf )2
+O

(
1√
ωℓ̄s

)]
, (4.79)

where the first term scales as 1/ω5/2 and the last three terms are all of order 1/ω3/2 using

1− αf ∼ ωℓ̄s. Luckily again, the first term vanishes on the leading order solution for α, given

by α|σ=±1 = ∓ϕ̇. Upon carefully expanding both the bulk and boundary actions we can solve

perturbatively for α and βϕ2 (cf. (4.61)), and we find similar cancellations at subleading order.

The expansion for α takes a form similar to eq. (4.41)

α|σ=±1 = ∓
[
β̇ϕ1 − (ωℓ̄s)

2α2 − (ωℓ̄s)
3α3 +O

(
(ℓ̄sω)

4
)]
. (4.80)

17Notice that when solving (4.77) with the ansatz βρ
2 = F

(
d
dτ

)
βρ
1 we also need to express the variation of βρ

2

in terms of that of βρ
1 as δβρ

2 = F
(

d
dτ

)
δβρ

1 .
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The precise value of α2 and α3 is scheme-dependent for the same reason as the background

string length. We show for illustration the result for α2 obtained from the action (4.37)

α2 =

(
π2

2
b2mℓ̄

2
sm

2 − bγ
√
bm√
2

π3/2ℓ̄3/2s m3/2

)(
d5βϕ1
dτ5

+ 2
d3βϕ1
dτ3

+
dβϕ1
dτ

)
. (4.81)

The expression for α3 is lengthy and we do not report it. Using this result and the near

boundary expansion to the third subleading order, as reported in appendix B, we eventually

recover the result (4.71) given in the previous subsection.

4.4 Comments on one-loop corrections

As already commented, the loop counting parameter is 1/ω2 ∼ J . A detailed account of

one-loop effects is beyond the scope of this work. Here we limit ourselves to some comments.

As well known, the NG action at the classical level is equivalent to the Polyakov action,

which consists of d free fields subject to the Virasoro constraints. The Polyakov formulation

is convenient for the purposes of this section, since it makes the classical integrability of the

NG action manifest. As emphasized in [6, 51], at one-loop level, the same equivalence holds

provided one adds the so called Polchinski-Strominger (PS) term to the Polyakov action [5]. In

modern language, the PS term is a Wess-Zumino term compensating for the anomalous Weyl

transformation properties of the path-integral measure away from d = 26 [51]. To compute

one-loop corrections in Polyakov formalism, one therefore simply needs to sum the result from

the free bosons’s action (which is simple to obtain), to the correction from a single insertion

of the PS term.

For the leading Regge trajectory, the calculation was done in [16], where it was found

that the result is independent of the number of dimensions and reads18

δM2
quantum = − 1

ℓ̄2s
+O

(
J−3/4

)
. (4.82)

The O(J−3/4) correction is expected to arise from the deviations from Neumann boundary

conditions. We remark that, as well known, in the covariant formalism one directly computes

the mass square rather than the mass.

To perform a similar calculation for excited states is less straightforward unfortunately.

This is because the Polchinski-Strominger term corrects the structure of the constraints

nontrivially. Nevertheless, there are specific regimes where the free theory result, that

coincides with the critical string theory expression:

δM2 =
1

ℓ̄2s

∑
k≥2

[∑
i

n
(ρi)
k + n

(ϕ)
k

]
k , (4.83)

18Ref. [24] obtained a different result working in the Nambu-Goto formalism; we suspect that the mismatch

is due to subtleties in dealing with UV divergences compatibly with Poincaré symmetry in the Nambu-Goto

formalism.
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offers an improvement over the naive expansion (4.66). This is because the formula (4.83)

is exact in the classical limit, and therefore accounts for infinitely many corrections from

nonlinear vertices (which are not suppressed in derivatives) in the NG formalism. In other

words, the classically exact Polyakov result should provide a better approximation than the

naive expansion (4.66) for large occupation numbers: n
(ρi)
k ≫ 1 and/or n

(ϕ)
k ≫ 1.

In practice, the only difference between the formula for the NG expansion (4.66) and the

result of the Polyakov formalism (4.83) is that the latter directly yields to M2 rather than M .

Therefore, upon accounting for the corrections that we computed in (4.70) and (4.73), our

final result for the spectrum is written as

M =MPol + δMNG , (4.84)

where MPol is the exact result from the free Polyakov action

MPol =
1

ℓ̄s

√√√√(J − 1) +
∑
k≥2

[∑
i

n
(ρi)
k + n

(ϕ)
k

]
k , (4.85)

and in the second term we include the correction in the usual derivative expansion

δMNG =

(
µ1

J1/4
+

µ2

J3/4
− µ21ℓ̄s

8J
+ . . .

)
+ ω

∑
i

∑
k≥2

n
(ρi)
k (ϵ

(ρi)
k − k) + ω

∑
k≥2

n
(ϕ)
k (ϵ

(ϕ)
k − k) + . . . ,

(4.86)

where we have subtracted the free part of the excitations’ energy, which is already included in

MPol, and ω is given in eq. (4.49). In general, δMNG is constructed such that when expanding

the square root, MPol + δMNG agrees with the result of a naive calculation in NG formalism.

Let us finally comment that the square-root formula (4.85) might improve the convergence

of the derivative expansion already for low-momentum few-particle states. This is because

actual one-loop corrections are expected to be further supressed by factors of 2π in the

denominator with respect to the terms arising from the expansion of (4.85). While this is

admittedly just optimistic numerology in the absence of one-loop results to compare to, we

remark that an analogous phenomenon was analyzed to study long flux tubes in [41]. In that

case, arranging the derivative expansion similar to (4.84) (using the classical GGRT result for

the string spectrum [52, 53]) rather than the naive EFT expansion, dramatically improves the

agreement between lattice results and theoretical predictions.
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4.5 Different endpoints

We finally consider mesons made of different quarks, that we model via different boundary

conditions at the endpoints. We introduce different Wilson coefficients at the two ends of the

string:

Sbdry = −
∑
σ=±1

m

[
bm,σ

∫
dτ

√
Ĝττ − bγ,σ

∫
dτ
√
γ̂ττ + ...

]
, (4.87)

where we work to relative order ∼ ω3/2. Similarly to eq. (4.37), the operators multiplied

by bm,σ are redundant and may be removed if we work with null endpoints as in eq. (4.43).

Analogolously to eq. (4.39), the physical Wilson coefficients that control the first corrections

to the spectrum are given by

µ1,±1 = −
√
2mbγ,±1 +

4

3

√
ℓ̄sπm

3/2b
3/2
m,±1 . (4.88)

The calculation of the mass of the leading Regge trajectory and the spectrum of the

daughter particles proceeds analogously to the case of identical points. The only difference is

that we have to modify the background solution (3.2) to account for the asymmetry of the

string:

Xµ
class. =

1

ω

(
τ, (αfσ + δαcm) cos τ, (αfσ + δαcm) sin τ, 0, 0, . . .︸ ︷︷ ︸

d−3 times

)
, (4.89)

where σ ∈ (−1, 1) as before and δαcm represents a shift in the center of mass of the string

with respect to the symmetric case. Extremizing the classical action we can solve for αf and

δαcm perturbatively in ω

αf =1− πmωℓ̄2s
bm,1 + bm,−1

2

− ω2ℓ̄2s

[
π2m2ℓ̄2s

4
(b2m,1 + b2m,−1)−

π3/2(ℓ̄sm)3/2

2
√
2

(bγ,1
√
bm,1 + bγ,−1

√
bm,−1)

]
+ . . . ,

(4.90)

δαcm =− πmωℓ̄2s
bm,1 − bm,−1

2

− ω2ℓ̄2s

[
π2m2ℓ̄2s

4
(b2m,1 − b2m,−1)−

π3/2(ℓ̄sm)3/2

2
√
2

(bγ,1
√
bm,1 − bγ,−1

√
bm,−1)

]
+ . . . .

(4.91)

Proceeding as in Section 4, we arrive at the final result for the mass of the leading Regge

trajectory:

Mclassical =

√
J

ℓ̄s
+
µ1,1 + µ1,−1

2J1/4
+O

(
J−3/4

)
. (4.92)

To analyze fluctuations we use a parametrization similar to (4.51):

Xµ =
1

ω
{τ, [αf σ + δαcm + α(τ, σ)] cos (τ + ϕ(τ, σ)) ,

[αf σ + δαcm + α(τ, σ)] sin (τ + ϕ(τ, σ)) , ρi(τ, σ)} . (4.93)
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The analysis of the bulk and boundary equations proceeds as before. We find that the boundary

conditions at the two endpoints of the string depend on the boundary coefficients (4.88) exactly

as in the former results (4.69) and (4.71). We spare the details of the derivation to the reader,

and simply provide the results for the spectrum and wave-functions of the single-particle states

below.

Let us start from the transverse mode. As explained around (4.13), the solution to the

bulk equations of motion is given by plane waves of the form

ρi = e−iϵτ [c̃1 cos(ϵs̃) + c̃2 sin(ϵs̃)] , (4.94)

where s̃ = arcsin(αfσ + δαcm), a modified version of eq. (4.5) due to the shift in the center of

mass. For equal endpoints, worldsheet parity (i.e. charge conjugation) guarantees that the

wave-function must be either even or odd under s→ −s, hence setting one between c̃1 and c̃2
to zero. For different endpoints instead the boundary conditions break worldsheet parity, and

even and odd plane waves mix at subleading order. The ratio c̃2/c̃1 and the allowed values for

the energy are found by imposing the boundary conditions at both σ → 1 and σ → −1. We

find for n even

c̃2 = c̃1

[
0− ℓ̄sπ

2
√
2
(ωℓ̄s)

3/2(µ1,1 − µ1,−1)n(n
2 − 1) +O

(
(ωℓ̄s)

5/2
)]

, (4.95)

ϵn = n

[
1 +

ℓ̄s√
2
(ωℓ̄s)

3/2(µ1,1 + µ1,−1)
(
n2 − 1

)
+O

(
(ωℓ̄s)

5/2
)]

. (4.96)

For n odd, the energy levels are given by the same expression but the ratio should be inverted,

which means

c̃2 = c̃1

[
0 +

ℓ̄sπ

2
√
2
(ωℓ̄s)

3/2(µ1,1 − µ1,−1)n(n
2 − 1) +O

(
(ωℓ̄s)

5/2
)]

. (4.97)

Note that the mixing between even and odd wavefunctions disappears for µ1,1 = µ1,−1, as

expected, as well as for n = 0, 1. This is because the first two modes correspond to the action

of symmetry generators, as explained in Section 4.3.1.

For angular fluctuations, the solution to the EOM reads as in eq. (4.59) with the replace-

ment σ → αfσ + δαcm/αf . Imposing the boundary conditions we find that the coefficients of

the wave-functions (4.59) and the energy levels are given by:

c2 = c1

[
0 +

ℓ̄s√
2
(ωℓ̄s)

3/2µ1,1 n(n
2 − 1) +O

(
(ωℓ̄s)

5/2
)]

, (4.98)

ϵn = n

[
1− ℓ̄s

2
√
2
(ωℓ̄s)

3/2(µ1,1 + µ1,−1)
(
n2 − 1

)
+O

(
(ωℓ̄s)

5/2
)]

. (4.99)

Note that ratio c2/c1 depends only on µ1,1 since the Legendre function Q
3
2

ϵ− 1
2

(x) in general

does not have any symmetry property as a function of x.
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5 Endpoint renormalization from bulk operators

Given the construction of the boundary action in the previous section, we are now ready

to address the issue raised in Section 3: the breakdown of the derivative expansion near the

string endpoints. In this section we show that higher derivative bulk operators renormalize,

already at the classical level, the boundary action (4.37). As a zeroth order check, we observe

that the contribution (3.8) of an higher derivative operator to the leading Regge trajectory

has the same ω-scaling as that of the boundary operators in eq. (4.37). Therefore, we may

think that each bulk operator is associated with an infinite tower of boundary operators that

cancel its singular contributions.

The physical picture underlying this renormalization procedure is simple. Within EFT we

resolve the location of the effective endpoints only up to a certain uncertainty, parametrized

by the boundary cutoff. By lowering such cutoff we also effectively shorten the bulk string

length and therefore modify the contribution of the bulk operators near the boundary. For

physical quantities to remain invariant, such contributions must thus be absorbed in a change

of the boundary Wilson coefficients.

In practice we technically implement this strategy by retaining a finite value of the

redundant coefficient bm in eq. (4.37); this ensures that the contributions from bulk operators

remain finite. This also implies that, when dealing with bulk operators, we cannot work with

null endpoints as in the previous sections, and therefore we encounter unphysical powers of

ωℓ̄s in the calculations. It would clearly be desirable to have a more convenient calculational

scheme, more analogous to a mass independent regulator, which would make power-counting

manifest at all stages of the calculation. Unfortunately, we were not able to devise such a

refined approach.19

5.1 Warm-up: massless scalar field with curvature coupling

As in Section 4, it is convenient to first illustrate the renormalization procedure in the toy

example of a massless scalar field on a rigid rotating string. We consider the system defined

by the bulk action (4.3) and the boundary action (4.20), perturbed by the following coupling

to the extrinsic curvature

Sbulk,2 = ℓ̄2s

∫
dτ

∫ 1

−1
dσ

√
G
c

4
K2(∂a)2 , (5.1)

where c is some O(1) coefficient and K2 = Kµ
αβηµνK

ν
γδG

αγGβδ is the extrinsic curvature

squared. As in Section 4.1, the worldsheet metric is given by (3.3) with αf = 1− zℓ̄sω.

We obtained the boundary conditions and the spectrum for the free scalar in eqs. (4.14)

and (4.25) up to order O(ω3/2ℓ̄
3/2
s ). By power-counting, the operator (5.1) scales as ω2ℓ̄2s and

19For instance, it is simple to check that considering a D = 2 + ε dimensional rotating brane and working in

dimensional regularization does not regulate the endpoint singularities discussed in Section 3. In [17] a different

scheme, which does not involve introducing a redundant operator, was used to compute the leading Regge

trajectory; that scheme does not present any technical advantage compared to ours, and it is unclear to us how

to use it in calculations involving fluctuations around the background.
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thus it should not affect these results. As formerly explained, because of eq. (3.7) K2 however

is not suppressed near σ = ±1. This implies that the physical boundary Wilson coefficients in

eq. (4.23) receive a contribution also from the bulk coefficient c. Intuitively, this is because

we can lower our boundary cutoff increasing z → z + δz with δz > 0 and reabsorb in the

boundary action the contribution of the bulk operators between σ = 1 and σ = 1− δzℓ̄sω/αf .

Notice that already in the definition (4.23) the physical Wilson coefficients depend upon the

value of z. Additionally, the operator in eq. (5.1) contributes as

δSbdry =

∫
dτ

∫ 1

1−δzℓ̄sω/αf

dσ
cℓ̄2sω

2
[
α2
f ȧ

2 − (1− α2
fσ

2)(a′)2
]

2αf (1− σ2α2
f )

5/2
+ (σ → −σ)

≈ c
δz

z5/2

∑
σ=±1

∫
dτ
√
γ̂ττ

[
#ℓ̄sγ̂

−1
ττ (∇̂τa)

2 +#ℓ̄3s(∇̂2
τa)

2γ̂−2
ττ + . . .

]
,

(5.2)

where in the second line we Taylor expanded at leading order a near σ = 1 and we used the

leading order boundary conditions (4.25). We denoted with # some O(1) numerical coefficients

whose precise value is irrelevant for our discussion. The important message is that we expect

a contribution of order c/z3/2 for z ≫ 1 to the coefficients (4.23), such that a variation of

z can be reabsrobed by a shift of the form (5.2) in the Wilson coefficients of the boundary

action (4.20).

Let us now show how to compute the boundary conditions in the presence of the bulk

higher derivative operator (5.1). First notice that the bulk EOMs in the presence of the

operator (5.1) can be solved perturbatively in the form

a(τ, σ) = a(0)(τ, σ) +
cℓ̄2sω

2

(1− α2
fσ

2)2
a(1)(τ, σ) +O

(
c2ℓ̄4sω

4

(1− α2
fσ

2)4

)
, (5.3)

where a(0) is the leading order solution (4.13) and we defined the prefactor of the perturbation

such that a(1) is regular for αfσ → ±1. In the case at hand a(1) can be written explicitly as a

product of hypergeometric functions and trigonometric functions. For our purposes it suffices

to know the expansion of a(1) for 1− αfσ → 0:

a(1)(τ, σ) =

[
4

3
(1− αfσ)

d2

dτ2
− 8

3
(1− αfσ)

2 log(1− αfσ)

(
d2

dτ2
+

d4

dτ4

)
+ . . .

]
β1(τ)

+
√
1− αfσ

[
1

3
+ (1− αfσ)

(
11

12
+

7

3

d2

dτ2

)
+ . . .

]
β2(τ) ,

(5.4)

where β1 and β2 are the boundary modes defined in eq. (4.24). Using eq. (5.4) in eq. (5.3)

we see that the higher derivative correction to the solution is only ∼
√
ωℓ̄s suppressed with

respect to the leading order for |σ| ≃ 1. To formally retain control of the expansion we may

imagine taking z ≫ 1. In this way the field at the endpoints admits a double-expansion for

(zℓ̄sω) → 0 and z ≫ 1, whose schematic form up to possible logarithmic corrections is

a(τ,±1) =
∑
n≥0

[
c(0)n (τ) +

c

z2
c(1)n (τ) +O

(
c2

z4

)]
(zℓ̄sω)

n/2 , (5.5)
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where the c
(k)
n (τ)’s are functions of β1 and β2 as in eqs. (4.24) and (5.4).

To proceed we simply need to compute the variation of the bulk and boundary actions in

a double-expansion of the form (5.5). This procedure is justified since we can always choose

z ≫ 1, but in practice can be implemented for any value of z > 0. It is however important to

retain z ̸= 0 to regulate the endpoint singularities. The boundary term in the variation of the

bulk action (4.3)+(5.1) is

δSbulk + δSbulk,2 = bulk EOMs +
∑
σ=±1

∫
dτ

{
δβ1β2√

2
+

√
ωℓ̄sz√
2

[
δβ2β2 + 2δβ1β̈1

+
c

12z4

(
δβ2β2 − 2δβ1β̈1

)
+O

(
c2

z8

)]
+O

(
zωℓ̄s

)}
.

(5.6)

The variation of the boundary action is particularly simple to this order

δSbdry =
∑
σ=±1

∫
dτ b̃a

√
ℓ̄sωδβ1β̈1 +O

(
ℓ̄sω
)
. (5.7)

Summing eqs. (5.6) and (5.7) we find the solution

β2 ≃
√
ωℓ̄sB

(new)
a β̈1 , (5.8)

where B
(new)
a can be written in terms of the coefficient defined in (4.23) as

B(new)
a = Ba +

c

6z3/2
+O

(
c2

z7/2

)
= −

√
2 b̃a − 2

√
z +

c

6z3/2
+O

(
c2

z7/2

)
.

(5.9)

As promised, the contribution of the bulk higher derivative operator can be absorbed in a

shift of the boundary Wilson coefficient b̃a → b̃a + c/(
√
2 6z3/2).

Restoring the subleading orders in eqs. (5.6) and (5.7), we find that the boundary

conditions take exactly the same form as in eq. (4.25). As in eq. (5.9), the only difference is

that the coefficient Da in (4.16) is replaced by

D(new)
a = Da +

c
(
2z − 4

√
2z b̃a + b̄2a

)
6z3/2

+O

(
c2

z5/2

)

=
√
2 d̃a + 2b̃2a

√
z + 2

√
2 b̃az +

4z3/2

3
+
c
(
2z − 4

√
2z b̃a + b̃2a

)
6z3/2

+O

(
c2

z5/2

)
.

(5.10)

This is equivalent to a renormalization of the boundary Wilson coefficient d̃a.

Finally we comment that it is tempting to interpret the z-dependence of the coefficients

B
(new)
a and D

(new)
a as a boundary RG flow for the operators multilplied by b̃a and d̃a in the

action (4.20), with z setting the boundary cutoff. While conceptually appealing, we did not
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find any practical use of this viewpoint. This is because all the operators of the boundary

action can be thought as irrelevant deformation of the rotating NG string with free endpoints,

and therefore, similarly to the chiral Lagrangian, no interesting RG flow takes place. Note also

that bulk and boundary operators always have different scalings in ωℓ̄s, and therefore we do

not expect any logarithmic running for the boundary Wilson coefficients at the classical level.

5.2 Endpoints’ renormalization in the dynamical string: an example

The discussion of boundary conditions for the rotating string coordinates in the presence

of bulk higher derivative operators is completely analogous to the example of a massless scalar

that we just discussed. Intuitively, this can be understood using arguments analogous to those

presented around eq. (5.2), as formerly discussed in [17].20

Let us illustrate this point by considering the NG action perturbed by a nontrivial bulk

operator:

Sbulk = − 1

ℓ2s

∫
dτ

∫ 1

−1
dσ

√
G
[
1− c4ℓ̄

4
s(K

2)2
]
. (5.11)

In the bulk, the operator multiplied by c4 is suppressed by a factor (ℓ̄sω)
4 with respect to the

leading order action.

Let us consider first the leading Regge trajectory. As in the previous section, it is formally

advantageous to consider a large value of z ≡ (1− αf )/(ℓ̄sω). Because of eq. (4.41), this is

equivalent to taking a large value of the redundant coefficient bm. In this case, we can compute

the classical action and extremize over αf to obtain

αf =1− ωbm

[
πmℓ̄2s +

c4
b4m

1

4π3m3ℓ̄2s
+O

(
c24
b8m

)]
+ ω2b2m

[
π2

2
m2ℓ̄4s −

bγ√
2b

3/2
m

π3/2m3/2ℓ̄7/2s +
c4
b4m

5
√
2mbmbγ − 12

√
πℓ̄smb

2
m

16π5/2
√
ℓ̄sm3b2m

+O

(
c24
b8m

)]
+O

(
ℓ̄3sω

3
)
,

(5.12)

where we work in a double-expansion analogous to eq. (5.5). Namely, at each order in ωℓ̄s we

have a series in c4/b
4
m.

The rest of the calculation proceeds as in Section 4.2. Eventually we recover the result

20Unfortunately, it seems hard to turn such physical arguments based on explicitly shortening the integration

region of σ into concrete calculational schemes. For instance, in [17] the authors use the leading order boundary

conditions to rewrite operators integrated along the small strip as in eq. (5.2), while as we have seen the string

length is not invariant under such replacements.
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(4.50) with the coefficients µ1 and µ2 now replaced by

µ
(new)
1 = µ1 −

c4

b
5/2
m

1

10π7/2m5/2ℓ̄
7/2
s

+O

(
c24

b
13/2
m ℓ̄s

)
,

µ
(new)
2 = µ2 +

c4

b
3/2
m

(
bγ

8
√
2π3b

3/2
m ℓ̄3sm

2
− 5

√
ℓ̄sm

24π5/2ℓ̄3sm
2

)
+O

(
c24

b
11/2
m ℓ̄s

)
, (5.13)

where µ1 and µ2 were given in eqs. (4.39) and (4.40). As in the previous section, the shifts in

eqs. (5.13) can be understood as a renormalization of the coefficients bγ and b1 in eq. (4.37).

It is also possible to check that the boundary conditions (4.69) and (4.71) for the fluctua-

tions are unchanged up to the shifts in eq. (5.13). To see this one proceeds as in the previous

section. For instance, the new operator (5.11) modifies the solutions to the bulk equations

similarly to eq. (5.3), e.g. for the transverse modes we have

ρi(τ, σ) = ρ
(0)
i (τ, σ) + c4

ℓ̄4sω
4

(1− α2
fσ

2)4
ρ
(1)
i (τ, σ) + . . . , (5.14)

where the ρ(i) are normalized such that they are regular for αfσ → ±1:

ρ(i)(τ, σ) =
∑
n≥0

c(i)n (τ)(1− αfσ)
n/2 , (5.15)

which again holds up to logarithms. Analogous expressions hold for ϕ. We provide the explicit

results for the near boundary expansion in the presence of the operator (K2)2 in appendix B.

For bm ≫ 1 we impose the boundary conditions at a point (1− αfσ) = zωℓ̄s ≫ ωℓ̄s. We

thus again organize the near boundary expansion for ρ (and ϕ) as of a double expansion

analogous to eq. (5.5) (neglecting O(d− 3) indices):

ρ(τ, 1) =
∑
n≥0

[
c(0)n (τ) +

c4
z4
c(1)n (τ) + . . .

]
(zω)n . (5.16)

We checked that, writing the variation of the bulk and boundary action using such expansions

for ρ and ϕ as in eqs. (5.6) and (5.7), we eventually recover the former results (4.69) and (4.71)

for the boundary conditions (and thus for the spectrum, cf. (4.70) and (4.73)), with the

replacement µ1 → µ
(new)
1 and µ2 → µ

(new)
2 .

Part II

Extensions and phenomenology

6 Additional degrees of freedom in 4d

To apply our results to mesons with light quarks in real world QCD, it is important to

discuss two important extensions of the formalism that we have presented so far: the role

of spin at the endpoints and the inclusion of the pseudoscalar resonance on the worldsheet

discussed in Section 2.2. In this section we therefore specialize to d = 4.
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6.1 Endpoints with spin

In QCD, the string endpoints are expected to be endowed with a 2-dimensional quantum

mechanical system describing different spin states of a quark. As we review in appendix C,

it is possible to describe the spin degrees of freedom for a point particle of arbitrary spin

s using the coadjoint orbit technique. This amounts to considering two angles (θs, ϕs) that

parametrize the orientation of the particle spin in the rest frame via

S⃗rest = s (sin θs cosϕs, sin θs sinϕs, cos θs) . (6.1)

To write the spin-component of the Lorentz generator in an arbitrary frame, it is convenient

to introduce a bosonic Dirac spinor living on the worldline as

ψ =
1√
2
Λu ·

(
z

z

)
where z =

√
2

(
e−iϕs/2 cos θs

2

eiϕs/2 sin θs
2

)
, (6.2)

where Λu is the Dirac boost matrix associated with the four-velocity uµ = Ẋµ/
√
Ẋ2 of the

particle. The spin components of the Lorentz generators is then written in terms of ψ as

Sµν =
i

4
sψ̄[γµ, γν ]ψ , (6.3)

from which we obtain the Pauli-Lubanski vector: Sµ = 1
2ε

µνρσuνSρσ. Notice that these satisfy

Sµu
µ = Sµνu

ν = 0. Finally, in the free limit, the worldline action for the spin degrees of

freedom reads:

Sspin = s

∫
dτiψ̄ψ̇ . (6.4)

It is possible to show that the action (6.4) leads to the expected canonical commutation

relations [Si
rest, S

j
rest] = iεijkSk

rest and the constraint S⃗ 2
rest = s(s+ 1).

Before discussing additional interactions, it is interesting to add the term (6.4) at the

string endpoints. Indeed eq. (6.4) already encodes interactions between the spin degrees of

freedom, (θs, ϕs), and the string coordinates via the boost matrix in eq. (6.2). We work in the

massive endpoint formalism (4.37) for simplicity. Expanding (6.4) around the background (3.2)

we find

s

∫
dτiψ̄ψ̇ = s

∫
dτ

(
cos θsϕ̇s + cos θs

Ω

ω

)
, (6.5)

where we defined a positive frequency as

Ω ≡ ω

 1√
1− α2

f

− 1

 ≃ 1

ℓ̄s

√
ω

2πbmm
; (6.6)

in the second line we used (4.41) and expanded for mω ≪ 1/ℓ2s. From the EOMs of the spin

angles, we find that at the classical level the spin moves on trajectories specified by

θs = const. , ϕs = −Ωt+ const. (6.7)
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where t = τ/ω. This is just the well known Thomas spin’s precession for an accelerated

particle.21 Quantum-mechanically, since S3 = s cos θs, eq. (6.5) implies that (in physical units

t = τ/ω) the Hamiltonian for the spin variables reads

H = −ΩS3 . (6.9)

Therefore different spin states are separated by a gap Ω ∼
√
ω/ℓ̄s. Recalling eq. (4.2), we

conclude that the splitting between the different spin states is of the order of the strong

coupling scale at the boundary.

Being at the cutoff scale, the gap between the lowest spin state and the excited ones is not

calculable within EFT. Notice that indeed eq. (6.8) depends on the redundant coefficient bm.

Additionally, we show below that the splitting between the spin states receives contributions

from infinitely many operators.

Let us consider couplings between the spin tensor Sµν , or equivalently S
µ, and the endpoint

worldline. To estimate the size of the interaction terms, it is convenient to write Sµ as

Sµ = huµ + δSµ , (6.10)

where h = u⃗ · S⃗rest/u0 ∼ O(1) is the helicity, uµ ∼ 1/
√
ω and δSµ ∼ O(1). The first term in

eq. (6.10) is large despite the constraint S · S = −s2 (at the classical level) due to the boost

factor.

Inverting eq. (6.10) via Sρσ = εµνρσS
µuν and recalling Sµνu

ν = 0, we identify the

following leading interaction term compatibly with parity and time reversal (notice that Sµ is

a pseudovector) ∫
dτ
√
γ̂ττf(Os) where Os = Sµν∇2

τX
µ∇3

τX
ν γ̂−5/2

ττ . (6.11)

Here f is an arbitrary function.22 Evaluating (6.11) on the background (3.2) we find∫
dτ
f(S3)√
ωℓ̄s

. (6.12)

Therefore the interaction (6.11) contributes to the splitting between different spin states at

the same order of the free term. Since f is an arbitrary function, the splittings between

different spin states does not need to scale linearly with S3 (for endpoints in spin s > 1/2

21Thomas precession is usually stated in terms of the following equation [54]

Ṡµ = −uµu̇ · S . (6.8)

This equation can be derived noticing that the fact that Ṡi
rest = 0 in the rest frame for a free particle is

equivalent to Ṡµ ∝ uµ in covariant form. Eq. (6.8) follows then using that Sµuµ = 0 implies d
dτ

(S · u) = 0 (see

e.g. [55]). It is simple to check that eq. (6.7) is indeed a solution of eq. (6.8).
22For f(x) = x, the coupling (6.11) (and its equivalent formulation in eq. (7.27)) induces the long-range

interaction between spin at different endpoints first discussed in [56].
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representations). In practice, EFT breaks down at energies smaller than the ones needed to

excite the first nontrivial spin state.

In conclusion, the different spin states of the quarks are separated by (uncalculable)

splittings of the order of the cutoff at the endpoints, Λbdry ∼
√
ω/ℓ̄s. Therefore, within EFT

we are forced to integrate out all the spin states but the lowest one. We conclude that the

only effect of spin degrees of freedom at the endpoints is to renormalize the boundary Wilson

coefficients in eq. (4.31), which are anyway uncalculable from the low energy viewpoint.

Physically, the degeneracy between the spin states is broken due to the accelerated motion

of the endpoints, that implies a nontrivial spin precession. Due to the sign of the Thomas’

force (i.e. the minus sign in eq. (6.9)), this argument suggests that in the lowest energy state

the quarks’ spin align with the orbital angular momentum of the meson. This possibility is

sometimes referred to as spin-orbit inversion [36], in comparison with the usual spin-orbit

coupling in atomic physics. We remark however that the interaction terms (6.11) do not have

a fixed sign and may therefore affect this conclusion. In fact, it is also possible that for light

quarks the spin states become infinitely heavy and completely decouple for sufficiently large J .

We will nonetheless argue in favor of the spin orbit inversion phenomenon in Section 7 for

heavy quarks’ mesons with large orbital angular momentum.

Finally, we remark that, from the viewpoint of symmetry breaking, it should not come

as a surprise that the spin degrees of freedom are gapped. Indeed, for a point particle, the

spin angles (θs, ϕs) can be thought as Goldstone fields parametrizing the symmetry breaking

pattern SO(3) → SO(2), where SO(3) is the rotation group in the rest frame of the particle.

The rotating string breaks spontaneously the rotation group even for spinless endpoints, with

the string coordinates accounting for its nonlinear realization. Therefore the spin angles at

the endpoints provide redundant Goldstone fields. This is not a new phenomenon: it is often

the case that in the presence of spontaneously broken spacetime symmetries one can introduce

redundant Goldstones, see e.g., [39, 57, 58]. In all the examples of this sort that we are aware

of, such additional Goldstones behave similarly to generic matter fields, and acquire a gap.

This is also the fate of the spin states at the string endpoints.

6.2 Worldsheet axion states on the rotating string

As we reviewed in Section 2, lattice data revealed the existence of a massive pseudoscalar

resonance on the worldsheet. As explained in Section 2.2, in EFT we describe it via the

action (2.9), pretending that its mass is sufficiently small ma ≪ ℓ̄−1
s . In this section we analyze

this massive scalar mode on the rotating string background (3.2). The regime of interest to us

is

ω ≪ ma ≪ ℓ̄−1
s . (6.13)

Due to the nontrivial dependence on σ of the worldsheet metric (3.3), the energy levels

of a free massive particle have a nontrivial dependence on ma and ω. To see this, consider

the free EOM for the worldsheet axion in frequency space a(τ, σ) = e−iϵτa(σ) (neglecting the
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higher-derivative coupling to K · K̃):

−
(
1− σ2

)
a′′(σ) + σa′(σ) +

m2
a

ω2

(
1− σ2

)
a(σ) = ϵ2a(σ) , (6.14)

where we set αf = 1 for simplicity since we are dealing with light quarks. Changing coordinates

as in eq. (4.5), we recast (6.14) as

−a′′(s) + m2
a

ω2
cos2(s)a(s) = ϵ2a(s) . (6.15)

In appendix D we discuss the general solution of (6.15) in terms of Mathieu functions. Here

we present an approximate analysis in the regime (6.13), that captures the essential results.

Eq. (6.15) has the same structure of the Schrödinger equation for a particle in a potential
m2

a
ω2 cos2(s). In the limit of interestma ≫ ω, such potential localizes the field near the endpoints

s = ±π
2 . To look for approximate solutions, it is convenient to rewrite s = ±(π/2−

√
ω/ma x),

so that near each endpoint we obtain the following equation to leading order in ω/ma

−1

2
a′′(x) +

x2

2
a(x) ≃ ω

2ma
ϵ2a(x) with x > 0 . (6.16)

Notice that in the approximation we are working with we obtain two copies of eq. (6.16) at the

two endpoints. We thus conclude that the particle spectrum of the axion is doubly-degenerate

up to corrections exponentially suppressed in ma/ω, physically associated with the tunneling

between the localized states.

Eq. (6.15) is the Schrödinger equation for the harmonic oscillator in half-space with energy

levels ω
2ma

ϵ2. The allowed values of ϵ depend on the boundary conditions at x = 0;23 we will

discuss below the possibilities for the example at hand. For the moment we simply notice that

the eigenfunctions for Dirichlet and Neumann boundary conditions are obtained restricting

the usual wave-functions for the harmonic oscillator to, respectively, even and odd quantum

numbers. Therefore we have solutions for

ω

2ma
ϵ2 =

{
2k + 1

2 for Neumann

2k + 3
2 for Dirichlet

with k ∈ N , (6.17)

where N stands for natural numbers including zero. In any case the energy of a single-particle

axion mode scales as ϵ ∼
√
ma/ω. This is an important conclusion. In fact, this result shows

that the axion states are below cutoff for ma ≪ ℓ̄−1
s when we account for the redshift factor

at the boundary. Indeed eq. (4.2) demands ωϵ≪ Λbdry ∼
√
ω/ℓ̄s.

Let us now briefly discuss the boundary conditions for a. In the regime (6.13), a is

approximately invariant under constant shifts. We would like to understand if the string

endpoints also preserve such approximate shift symmetry, in which case the Neumann condition

would be a good approximation as in Section 4.1; conversely, if the (approximate) shift

23In the approximation leading to (6.16) we simply demand regularity at x → ∞.
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symmetry is explicitly broken at the string endpoints, one expects a Dirichlet condition to

provide a better approximation.

One the one hand, even for ma = 0, the axion-like coupling in eq. (2.9) always breaks the

shift invariance of a in the presence of a boundary. This is because K · K̃, despite being a

topological invariant, cannot be written as a total derivative of a gauge-invariant invariant

quantity, as showed in eq. (A.10) of the appendix. This suggests that the string endpoints

will always break the approximate shift symmetry. Therefore, a priori nothing prevents us

from considering an arbitrary potential V (a) at the string endpoints, where V (a) = V (−a)
due to parity. Under the assumption that a = 0 is a global minimum of the potential, this

would set a|σ=±1 = 0 up to corrections of order ∼
√
ωℓ̄s.

24

Note that the above theoretical argument suggests that the approximate shift symmetry

for a should also be broken at the boundaries of a long static flux tube. This would imply

that the gap of the worldsheet axion in a long open flux tube of length L should be larger by

a factor ∼ π2/(maL
2) compared to a closed string due to the Dirichlet boundary condition.

Perhaps surprisingly, lattice data suggest instead that the lightest worldsheet axion state in

a static open flux tube has approximately the same gap as in a closed flux tube, even for

relatively short strings [34, 35]. This surprising result suggests that the above theoretical

argument, hinting at Dirichlet-like boundary conditions for a, should be taken with caution.

For this reason, we prefer not to commit to a specific choice of boundary conditions.

In summary, the low energy excitations of the worldsheet axion in the rotating string

background are localized at distance (1− |σ|) ≲ ω/ma from the endpoints. This implies that

at large J the corresponding modes have an approximately doubly degenerate spectrum. The

result may be summarized by the formula

ϵn ≃
√
ma

ω
×


√
4
[
n
2

]
+ 3 for Dirichlet√

4
[
n
2

]
+ 1 for Neumann

with n ∈ N , (6.19)

where we reported the result both for Dirichlet and Neumann boundary conditions and [n/2]

denotes the integer part of n/2 (notice that the lowest energy state corresponds to n = 0).

In appendix D we provide the exact result for arbitrary values of ma/ω. Since in practice in

24As well known, for Dirichlet boundary conditions it is convenient to write the boundary actions in terms of

normal derivatives (see e.g. appendix B of [59]). In the case at hand, one could consider an action of the form

Sbdry =−
∑

σ=±1

∫
dτ σ a∂sa

−
∑

σ=±1

∫
dτ
√

γ̂ττ

{
c1ℓ̄s(∂sa)

2γ̂−1
ττ + c2ℓ̄

3
s

[
∇̃τ (∂sa)

]2
γ̂−2
ττ + . . .

}
,

(6.18)

where σ∂sa|σ=±1 = Nα
τ ∂αa in terms of the covariant normal defined in eq. (A.19). The first term in eq. (6.18)

is designed to cancel the boundary term in the variation of the bulk action ∼ δa∂sa. The boundary conditions

then arise from the variation with respect to ∂sa (which is independent of a at the endpoints). The first term

in eq. (6.18) then scales like ω0. The terms proportional to c1 and c2 in eq. (6.18) scale as, respectively,
√

ωℓ̄s
and (ωℓ̄s)

3/2.
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QCD ma is close to the cutoff, we do not consider higher derivative corrections in ℓ̄sma to this

result. Note that the axion states have a gap δM ∼ ωϵ ∼ √
maω ∼

√
ma/ℓ̄sJ

−1/4. Therefore,

for ma ∼ ℓ̄−1
s , the gap of the axion scales as the contribution of an endpoint mass term (4.26)

to M .

7 Heavy quarks

In order to understand how EST relates to heavy quarkonium states and what are the

different regimes as a function of the quarks’ masses, in this section we develop the EFT for

mesons with heavy quarks, i.e., with mass m≫ ℓ̄−1
s . The EFT of mesons with heavy quarks is

not plagued by the endpoints’ singularities that we mentioned in Section 3, and it is therefore

technically straightforward. (In fact, some of the calculations that we present have already

appeared in [27]). Nonetheless, the existence of an additional large scale, the quark mass m,

makes power counting more involved compared to mesons with light quarks.

We will find that one needs J ≫
√
ℓ̄sm for the flux tube to be much longer than ℓ̄s,

pushing the validity regime of the EFT to higher values of J compared to light quarks. We

will also show that the parameter y ≡ J/(m2ℓ̄2s) controls the EFT spectrum. In the relativistic

regime y ≫ 1, the mass becomes a small perturbation and we recover results similar to those

that we discussed so far. In the opposite regime, y ≪ 1, the lowest energy states of the

effective theory coincide with the energy levels of two heavy particles in a linear potential.

Notably, in this regime the quarks’ spin states are below the cutoff, and can be analyzed

within EFT differently than for light quarks (cf. Section 6.1). We will use this to show that in

the EFT regime (J ≫
√
ℓ̄sm), the quarks’ Thomas precession leads to spin-orbit inversion of

the energy levels.

7.1 Double-scaling limit

Let us again consider the NG action supplemented with the endpoint mass term (4.26).

For a heavy quarkonium meson the quarks velocity αf does not need to be close to the speed

of light for the string to be long. Recalling eq. (4.28), we may therefore formulate the EFT in

the following double-scaling limit

ℓ̄sω → 0 with m̃ ≡ mωℓ2s = 2πmωℓ̄2s = fixed , (7.1)

which is equivalent to

J → ∞ with y ≡ J

m2ℓ̄2s
= fixed . (7.2)

In other words, we can use EFT to obtain result for the spectrum in a series at large J with

coefficients that are functions of J/(m2ℓ̄2s).

For heavy quarks, the endpoints’ redshift factor is controlled by the fixed parameter

mωℓ2s and is not necessarily large. Therefore we can use the bulk power counting also at

the endpoints, i.e. X ∼ 1/ω and Gαβ ∼ 1/ω2. Due to the factor of m upfront, in the

double-scaling limit (7.1), the quark mass term (4.26) scales as the NG bulk action and cannot
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be thought as a small perturbation of the Neumann boundary conditions. The scaling of

higher derivative boundary terms depends on the Wilson coefficients’ dependence on m. In

the simplest scenario, which is also the one of phenomenological interests in QCD, we think

of the endpoints as fundamental particles whose free action is exactly given by (4.26). Note

that all higher derivative terms for a free point particle are redundant due to the equations

of motion [58]. In this case, higher derivative boundary terms can be thought as the result

of the interactions with the string. Therefore, we expect them to be suppressed simply by

powers of ℓ̄s∇̂t with respect to the free-particle action.

In summary, using the equivalence (4.29) between ℓ−2
s ∂nX and m(∇̂tX)2 dictated by the

leading order boundary conditions (now being careful about the factors of m’s), we conclude

that to the first nontrivial subleading order, the boundary action can be written in the same

form as eq. (4.31) after rescaling b̄1 → b̄1/(ℓ̄
2
sm

2):

Sbdry = −m
∑
σ=±1

∫
dτ

√
Ĝττ

[
1 +

b̄1
m2

(
∇̂t∂nX · ∇̂t∂nX

)
+ . . .

]
, (7.3)

where we used the fact implied by eq. (4.27) that (∇̂2
tX)2 is a redundant operator and the last

term in eq. (7.3) is equivalent to ∼ ℓ̄4s(∇̂3
tX)2. As formerly mentioned, in the double-scaling

limit (7.1), the leading term in eq. (7.3) contributes at order m/ω ∼ 1/(ℓ̄sω)
2, which is the

same as the NG action, while the last term in eq. (7.3) is suppressed by a relative factor of

ω2/m2 ∼ (ℓ̄sω)
4, i.e. it is fourth order in derivatives according to the power-counting that we

just discussed.

Let us now illustrate our discussion concretely by calculating the energy of the leading

Regge trajectory. Taking the bulk action to be just the NG one25, from the boundary conditions

we obtain the value of αf as

αf = αf,0 + (ℓ̄sω)
4αf,1 + . . . , (7.4)

where

αf,0 =
1

2

(√
4 + m̃2 − m̃

)
, αf,1 = − 4π2b̄1

m̃2
√
4 + m̃2

. (7.5)

Expressing m̃ in terms of αf,0 and using eq. (3.5), the angular momentum and the mass are

conveniently expressed as

J =
αf,0

√
1− α2

f,0 + arcsin(αf,0)

2πℓ̄2sω
2

+
4πb̄1ℓ̄

2
sω

2αf,0

(
2 + α2

f,0

)
(
1− α2

f,0

)3/2 (
1 + α2

f,0

) +O
(
ℓ̄6sω

6
)
, (7.6)

M =

√
1− α2

f,0/αf,0 + arcsin(αf,0)

πℓ̄2sω
+

4πb̄1ℓ̄
2
sω

3αf,0(
1− α2

f,0

)3/2 (
1 + α2

f,0

) +O
(
ℓ̄6sω

7
)
. (7.7)

25At fourth order in derivatives, there are also bulk operators that contribute at the same order of b̄1/m
2 in

eq. (7.3) in the double-scaling limit (7.1); we nonetheless neglect such bulk contributions since our goal here is

simply illustrating the structure of the expansion.
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Note that when the endpoints have spin, eq. (7.6) is just the orbital contribution to the angular

momentum. From eqs. (7.5) and (7.6) we can solve for ω in terms of J (now using m̃ = mωℓ2s).

We find

ℓ̄sω =
1√
J
g1(y) +

b̄1

J5/2
g2(y) + . . . , (7.8)

where we defined two functions g1(y) and g2(y). In the two opposite limits these are given by:

g1(y) =


1

2
−

√
π

3y3/4
+

3π3/2

20y5/4
+ . . . for y ≫ 2π

y1/6

(2π2)1/3
− 7y5/6

36(2π2)2/3
+ . . . for y ≪ 1 ,

(7.9)

g2(y) =


3y3/4

8
√
π

+
5
√
π

32
y1/4 + . . . for y ≫ 2π

24/3y5/6

3π4/3
− 871y13/6

19440
(
21/3π8/3

) + . . . for y ≪ 1 ,

(7.10)

where y ≫ 1 corresponds to the ultra-relativistic limit J ≫ ℓ̄2sm
2, while y ≪ 1 is the

non-relativistic (NR) limit J ≪ ℓ̄2sm
2. Plugging back into eq. (7.5), we extract αf,0

αf,0 =



(
1− 1

2
π

√
1

y
+
π2

8y
+ . . .

)
− b̄1
J2

(
3

8

√
πy1/4 +

π3/2

32y1/4
+ . . .

)
+ . . . for y ≫ 1(

y1/3

22/3π1/3
− 11y

72π
+ . . .

)
− b̄1
J2

(
2y

3π
− 1022/3y5/3

27π5/3
+ . . .

)
+ . . . for y ≪ 1 .

(7.11)

Finally, using eq. (7.11) we obtain M from eq. (7.7). In the relativistic limit, after

re-arranging terms , we recover the previous result (4.36) up to the rescaling b̄1 → b̄1/(m
2ℓ̄2s)

that we performed in going from the boundary action for light quarks (4.31) to our current

conventions in eq. (7.3). Note that although the expansion takes the same form in terms

of J for both light and heavy quarks, the quark mass provides the leading contributions to

several terms in the large J expansion in the case of heavy endpoints. E.g. the coefficient

of the term proportional to ∼ J−1/4 in eq. (4.36) is ∼ (m4 + 10b̄1/ℓ̄
4
s)/m

3/2 (recalling the

rescaling of b̄1), and therefore is dominated by the mass contribution for heavy quarks. In

other words, for heavy quarks all the 1/J (classical) corrections to the relativistic Regge slope

are approximately determined only by the quark mass, as expected.

The result takes a qualitatively different form in the NR limit J ≪ (ℓ̄2sm
2). First, notice

that in this limit the length of the string (3.4) is given by

L ≃
2αf,0

ω
≃ ℓ̄s

(
4πJ2

ℓ̄sm

)1/3

. (7.12)

Therefore, the EFT is reliable only as long as

J ≫
√
ℓ̄sm. (7.13)
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Physically, eq. (7.12) arises because in this regime the meson can be thought as a bound state of

two NR particles in a linear potential. In such a system the Virial theorem relates the potential

and the kinetic energy L/ℓ2s ∼ mω2L2, while the angular momentum is J ≃ mωL2, which

results in eq. (7.12) and ω ∼ ℓ−1
s /

√
Lm ∼ ℓ

−4/3
s /(mJ)1/3 as formerly found. In Section 7.2,

we will discuss the derivation of the NR quantum-mechanical Hamiltonian from EST in more

detail. In the NR limit, the mass of a state on the leading Regge trajectory reads

M = 2m

[
1 +

3

4(2π2)1/3

(
J

ℓ̄2sm
2

)2/3

+ . . .

]
− 2b̄1m

(2π2)2/3J2

[(
J

ℓ̄2sm
2

)4/3

+ . . .

]
+ . . . , (7.14)

where we arranged the result in a double-series according to eq. (7.2). We see that the leading

contribution in the NR limit is the rest mass of the quarks. The second term in the first square

parenthesis of eq. (7.14) is the first nontrivial contribution and arises both from the string

tension and the kinetic energy of the quarks. Finally, the term proportional to b̄1 in eq. (7.14)

scales as ℓ̄4smω
6L2 and is suppressed with respect to the first nontrivial contribution by a

factor of ∼ 1/(L2m2) in terms of the length (7.12). In the next section, we will discuss the

scaling of corrections in the NR regime in more detail. In particular, we will discuss quantum

corrections that we neglected so far and are larger than the b̄1 term in eq. (7.14).

7.2 String excitations and quantum effects in the non-relativistic limit

The spectrum of fluctuations in the NR regime J ≪ m2ℓ̄2s takes a qualitatively different

form compared to the relativistic limit J ≫ m2ℓ̄2s. A general analysis was done in [27]; we

checked the results and reported some details in appendix E. Here, we provide a simple

interpretation of the results in the non-relativistic limit.

We find that in the relativistic limit, the spectrum takes the same form as for light quarks,

as one would expect. In the NR regime, on the other hand, due to the slow motion, most of

the modes behave as in a static string with Dirichlet boundary conditions and therefore have

energy ϵ ≳ π/(ωL) ∼ 1/αf,0 (in units of ω). The only states which make exception are the

protected states whose frequencies are fixed to be ϵ = 0, 1 and do not contribute to the mass

spectrum as formerly explained, and the lightest nontrivial state associated with the angular

mode, which has a gap ϵ2 ≃
√
3. This mode is physically associated with the stretching of the

string and is parametrically lighter than all the others nontrivial states (because αf,0 ≪ 1 in

the NR limit).

To illustrate the physics of the NR regime clearly, it is instructive to derive the result for

the leading Regge trajectory and the light excitations’ gap ϵ2 in the language of a potential

quark model. To this aim, we first restore powers of the speed of light c explicitly and then

take the limit c→ ∞ in the leading order action. In this limit, the Dirichlet-like modes have

energy πc/L→ ∞ and therefore decouple. Using ηµν = diag(c2,−1,−1, . . .) and Xµ = (t, X⃗),
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the leading order action is

S = −T
c

∫
d2σ

√
G−mc

∑
σ=±1

∫
dτ
√
Ẋ2

→
∫
dt

[
−2mc2 +

m

2

∑
σ=±1

˙⃗
X2 − T

∫ 1

−1
dσ

√
∂σX⃗ · ∂σX⃗ +O

(
1

c2

)]
,

(7.15)

where we defined T = c/ℓ2s. More precisely, the corrections to the above results are suppressed

by inverse powers of the double-scaling parameter α2
f,0 ∼ v2/c2 ∼ T 2/(m2ω2c2) = m̃−2.

Equivalently, in terms of the angular momentum, corrections are proportional to inverse

powers of y1/3, where y is the large double-scaling parameter in eq. (7.2); note that after

restoring the speed of light, y1/3 is given by

y1/3 = c

(
m2

2πJT

)1/3

=

(
m2ℓ̄2sc

2

J

)1/3

. (7.16)

As expected in the NR limit, only the boundary fields have a kinetic term. Solving the

bulk equations of motion, we therefore arrive at the expected result

S =

∫
dt
[
−2mc2 +m

˙⃗
XCM +

m

4
∆

˙⃗
X2 − T |∆X⃗|

]
, (7.17)

where we wrote the action in terms of the center of mass coordinates in obvious notation. In

the following discussion, we neglect the center of mass variables.

At large J , the system (7.17) can be quantized semiclassically similarly to the rigid

rotor or the hydrogen atom (see e.g. [49, 60]). To this aim, we work in spherical coordinates

∆X⃗ = r(sin θ cosφ, sin θ sinφ, cos θ) and expand the field around the minimal energy solution

of the EOMs with fixed angular momentum J :

r = r0 , θ =
π

2
, φ = ωt , (7.18)

where the EOMs and the angular momentum fix r0 and ω as

m

2
r0ω

2 = T ,
m

2
r20ω = J =⇒ r0 =

(
2J2

mT

) 1
3

, ω =

(
2T 2

Jm

) 1
3

. (7.19)

The result (7.14) for the leading Regge trajectory is then obtained by evaluating the classical

energy on the solution (7.18):

Mclassical = 2mc2 +
3

4
mr20ω

2

[
1 +O

(
1

c2

)]
= 2mc2 + 3

(
J2T 2

4m

) 1
3

[
1 +O

(
J2/3T 2/3

m4/3c2

)]
.

(7.20)
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To compute the spectrum of fluctuations, we simply need to quantize the theory at leading

order in the 1/J expansion. This is accomplished expanding ∆X⃗ around the solution (7.18).

We obtain the following quadratic action

L ≃ m

4
(δṙ2 − 3ω2δr2) +

m

4
r20(δθ̇

2 − ω2δθ2) +
m

4
(r0δφ̇+ 2ωδr)2 . (7.21)

Eq. (7.21) describes a massless mode and two harmonic oscillators, with frequencies ω and√
3ω. The massless mode and the mass ω oscillator correspond to symmetry generators

(equivalent to the n = 0 and n = 1 modes analyzed in Section 4.3.1) and thus do not create

new particles. Therefore, at a quantum level the nontrivial states are made of n ≥ 0 quanta of

the radial oscillator, each with energy (in units of ω)

ϵ2 =
√
3 . (7.22)

The corresponding particles have mass Mclassical + n
√
3ω.

Finally, let us analyze the structure of quantum corrections. We focus on the leading

Regge trajectory (7.20). To the first subleading order, the corrections arise from the one-loop

Casimir energy. This consists of two contributions. The first is due to the heavy Dirichlet-like

modes, that at one-loop order simply modify the linear potential by the Casimir contribution

of (d− 2) massless scalar modes:

V (|∆X⃗|) ⊃
d−2∑
k=1

∞∑
n=1

πcn

|∆X⃗|

[
1 +O

(
1

c2

)]
= −cπ(d− 2)

12|∆X⃗|
+O

(
1

c

)
. (7.23)

This term is suppressed by ℓ̄2s/L
2 ∼ c/(TL2) with respect to the leading order potential TL;

note the explicit factor of c due to the relation 2πT/c = ℓ̄−2
s . The other contribution is simply

due to the oscillators in eq. (7.21) and trivially reads

1 +
√
3

2
ω

[
1 +O

(
1

c2

)]
. (7.24)

Summing up, we arrive at

δM (1−loop) = −cπ(d− 2)

12r0
+

1 +
√
3

2
ω +O

(
1

c

)
= −

(
mT

2J2

)1/3
[
c
π(d− 2)

12
−
(
1 +

√
3
)( JT

2m2

)1/3

+O

(
J2/3T 2/3

m4/3c

)]
,

(7.25)

which is suppressed by a factor y1/3/J compared to the kinetic term in eq. (7.20). As formerly

noted, the expansion is well posed only as long as y1/3/J ≪ 1, i.e. J2 ≫ mc3/2
√
T ∼ mcℓ̄s.

The structure of higher derivative and loop corrections is analogous to the one-loop

result (7.25). At each order, the most important contribution arises from integrating out

the heavy modes, which yield to contributions to the potential starting at relative order

(ℓ̄s/L)
2n ∼ yn/3/Jn (due to the Dirichlet-like modes Casimir energy) with additional terms

suppressed in y. Bulk higher derivative terms result into corrections of order ∼ yk/3/Jn with

k < n, while quantum corrections from the fluctuations of the point-like particles are always

suppressed by 1/Jn. Boundary higher derivative terms are further suppressed in y.
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7.3 Quarks’ spin and spin-orbit inversion

Let us analyze the quarks’ spin states for heavy quarks. The kinetic term for the spin

is again given by eq. (6.4), and yields the Hamiltonian (6.9). The main difference between

light and heavy quarks is that in the latter case the gap Ω is not large and, in the NR limit

J ≪ m2ℓ̄2sc
2, is given by

Ω ≃ ω

2
α2
f,0 =

cJ1/3/ℓ̄s

(4π)4/3(mc ℓ̄s)5/3
, (7.26)

where we keep track of the speed of light c as in the previous section.

All the other couplings between the string coordinates and the spin variables involve

higher derivative terms and therefore are subleading compared to the kinetic term contribution.

The most important nontrivial contribution arises at first order in derivatives from an operator

similar to eq. (6.11), explicitly given by

mℓ̄3s
c4

∫
dτ

√
Ĝττ Sµν∇̂2

tX
µ∇̂3

tX
ν ∼ 1

mℓ̄sc2

∫
dτ

√
Ĝττ Sµν∂nX

µ∇̂t∂nX
ν , (7.27)

where we used eq. (4.29) keeping track of the factors of m (and c) as commented above

eq. (7.3).26 Evaluating the operator (7.27) on the classical background, we find that its

contribution to the gap between the spin states in the NR limit is proportional to

δΩ ∝ ω

mℓ̄sc
∼ Ω×

(
mℓ̄sc

J2

)1/3

, (7.28)

which is always smaller than eq. (7.26) in the regime of applicability of EFT (7.13).

In conclusion, the leading contribution to the energy splitting between the different spin

states within EFT arises from the free Thomas precession effect and is given by eq. (7.26).

This implies that in the state that minimizes the energy the quarks’ spin are aligned with

the orbital angular momentum, therefore realizing the spin-orbit inversion scenario alluded

in Section 6.1. Note however that this prediction is reliable only for J ≫
√
mcℓ̄s, as the

extrapolation of the interaction contribution in eq. (7.28) makes clear.

8 A stringy view on meson spectroscopy

In this section, we compare the predictions of EST with real world data, both for light and

heavy quarks’ mesons. Unfortunately, for most mesons’ families we barely have data beyond

J = 2, making a quantitative comparison impossible. Nonetheless, motivated by the success

of similar descriptions for glueballs in 3d Yang-Mills [19, 20], we will attempt at a qualitative

description of the observed spectrum in terms of stringy states, i.e. as particles predicted by

EST.

26The power of m is also justified on physical grounds if we interpret eq. (7.27) as a generalized version of

the Pauli interaction term B⃗ · S⃗/m, with the magnetic field identified as B⃗ ∼ ℓ̄−1
s ∂nX⃗ ∧ ∂n

˙⃗
X [56].
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8.1 Discrete quantum numbers

Let us consider a meson made of a string connecting a quark and anti-quark. Besides

its mass and spin J , we can measure its quantum numbers under parity (P ) and charge

conjugation (C). Therefore, in order to compare our analysis to the experimental data, we

need to discuss the assignments under P and C for the daughter Regge trajectories (including

the ones associated with the worldsheet axion) in d = 4.

Parity acts in the standard way Xi → −Xi. In terms of the string fluctuations (4.51) and

the worldsheet axion, therefore

Pϕ(τ, σ)P = ϕ(τ, σ) + π , Pρ(τ, σ)P = −ρ(τ, σ) , Pa(τ, σ)P = −a(τ, σ) . (8.1)

Charge conjugation turns the quark at the endpoint into an antiquark, and viceversa.

When the quarks at the endpoints have different flavors, we obtain a meson with opposite

charge. Therefore, since C is a conserved quantum number in QCD, mesons with different

endpoints are not eigenstates of C and yield two identical towers of states with opposite

charges.

When the quark and the anti-quark have the same flavor, charge conjugation is equivalent

to reversing the string orientation and performing a rotation by a factor of π, such that the

background (3.2) remains invariant. Therefore, working at linear order in the fluctuations, we

find

Cϕ(τ, σ)C = ϕ(τ,−σ) + π , Cρ(τ, σ)C = ρ(τ,−σ) , Ca(τ, σ)C = a(τ,−σ) , (8.2)

which is equivalent to worldsheet parity up to the nonlinear action on the zero-mode of ϕ.

Note that for long strings worldsheet parity has a different interpretation. Namely, the

action σ → −σ corresponds to spacetime CP for long strings, and the worldsheet axion flips

sign under that, differently than in eq. (8.2).

Consider the string ground-state with angular momentum J . This has quantum numbers

(PJ , CJ), which are arbitrary within EFT. Because of eq. (4.65), since the zero mode of ϕ

shifts by π under both P and C, we conclude that the next state in the Regge trajectory has

opposite quantum numbers (PJ+1, CJ+1) = (−PJ ,−CJ). More in general we must have

(PJ+δJ , CJ+δJ) = (−1)δJ(PJ , CJ) . (8.3)

For the same reasons, this relation holds also for all the daughter Regge trajectories. For

heavy quarks, this relation reflects the fact that, in a NR potential model, the wave-function

of the quarks is even/odd for even/odd orbital angular momentum.

It is also straightforward to compute the quantum numbers of the daughter Regge

trajectories in terms of the leading one. For parity, this follows directly from eq. (8.1):

daughter Regge trajectories obtained by acting on the vacuum with an even (odd) number of

creation operators associated with ρ and a, have the same (opposite) parity compared to the

state in the leading Regge trajectory with the same angular momentum.
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ϕ ρ a

n even P C (−P ) C (−P ) C
n odd P (−C) (−P ) (−C) (−P ) (−C)

Table 1: P and C assignments for the modes of the string fluctuations ϕ and ρ, and the

worldsheet axion a. The notation compares the quantum numbers P and C of the leading

Regge trajectory with those of the daughter trajectory obtained by exciting the corresponding

mode on the string.

For mesons with identical quarks at the endpoints, eq. (8.2) implies that a single-particle

state on the string is C even (odd) if its wavefunction e−iϵτfϵ(σ) is even (odd) under σ → −σ.
From our results eqs. (4.59) and (4.63) for ϕ, we conclude that angular modes with n even

are C-even, while those with n odd are C-odd. A similar result is found for ρ and a (see

Section 4.1 and app. D). The C assignment of a daughter Regge trajectory is that of the

leading Regge trajectory times the product of the C-charges of all the single particles.

In table 1, we summarize the quantum numbers of the single-modes created by the string

fluctuations and the worldsheet axion. Notice that the lowest energy states are expected to

be the daughter Regge trajectories associated with a single n = 2 mode of ϕ or ρ, while the

lightest axion mode has n = 0, but this is expected to be almost degenerate with the n = 1

axionic state for light quarks.

Let us conclude this section discussing the action of P and C on the different spin states

(assuming these are not infinitely heavy) for mesons made of spin one-half quarks. It is

convenient to think of a meson as a string of orbital angular momentum ℓ tensored with

the Hilbert space of the spins. Therefore for each string state (either in the leading or in

a daughter Regge trajectory), we obtain a spin-family of four states. The Hilbert space of

the two spins decomposes into an s = 1 triplet representation with symmetric wave-function

and an s = 0 singlet with an antisymmetric wavefunction. The tensor product of the triplet

states with a string state with (P,C) charges yields three states with the same charges under

parity and charge conjugation: (PJ , CJ) = (P,C) with J = ℓ− 1, ℓ, ℓ+ 1. The state obtained

considering the product of the string state and the spin singlet instead has the opposite value

of C due to the antisymmetric wavefunction: (PJ , CJ) = (P,−C) with J = ℓ. Note again that

the charge conjugation assignment makes sense only for mesons with identical endpoints.
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ρ/a (J--)
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ω/f (J--)
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Figure 3: Leading Regge trajectories: the plot shows the mass of the lightest particles for each

value of J ≥ 1 for all possible light quark compositions. The ω/f and ϕ/f ′ trajectory have I = 0

and (to a very good approximation) correspond, respectively, to ŪU and s̄s states. The K trajectory

has I = 1/2, corresponding to s̄U , and the I = 1 trajectory is made of ρ/a particles, with quark

wave-function Ū σ⃗U . The legend details the discrete quantum numbers of the particles. Data points

with one star are listed in the summary table of PDG but they are not yet firmly established, while

data with two stars are considered poorly established and are listed in the further states section of

PDG. The continuous lines are the result of the best fit using the model (8.4).

8.2 Light mesons

In this section, we discuss mesons made of light quarks (u, d and s). These are conveniently

grouped according to their isospin I = 0, 1/2, 1. We recall the reader that the u and d quarks

are approximately degenerate and, in the approximation in which they are approximately

massless, form a doublet under isospin U = 1√
2
(u, d). In the following, all the data are obtained

from the current PDG listings [61]; we provide summary tables in appendix F.

Let us begin by discussing the leading Regge trajectories, that we plot in fig. 3. Note

that we plot two different trajectories for I = 0, where the ω/f particles are the ground

states for ŪU mesons, and the ϕ/f ′ particles correspond instead to s̄s mesons.27 Parity and

charge conjugation quantum numbers, that we indicate with the standard notation JPC (C

is measured only for I = 0, 1), follow the predicted pattern (8.3). We fitted each trajectory

(boldly using all the data, including unconfirmed ones, down to J = 1) with the formula

M2
leading =

1

ℓ̄2s
(J − 1) +

2µ1
ℓ̄s
J1/4 , (8.4)

27In principle ŪU and s̄s mesons may mix with each other, but the mixing angle is numerically small.
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ℓ̄−2
s (GeV2) 2µ1/ℓ̄s (GeV2)

ω/f 1.09 0.52

ρ/a 1.06 0.59

K 1.10 0.76

ϕ/f ′ 1.02 1.06

Table 2: Results of the fit of the leading Regge trajectories using eq. (8.4).

that is obtained truncating eq. (4.50) to the first nontrivial correction and including the

quantum predicted Regge intercept (4.82). The fits are shown in fig. 3 and the results for the

coefficients are reported in table 2.

We remark that the data in fig. 3 include some particles that are not yet firmly established,

in particular all the ones with J > 4. Also because of this, we did not attempt at a systematic

analysis of the errors in the fit, but we expect the results in table 2 to be subject to significant

uncertainties. Nonetheless, we find the consistency of the results obtained from different

families encouraging, as we discuss more in detail below.

The Regge slope is approximately the same ℓ̄−2
s ≈ 1.06GeV2 for all families. This is

remarkable, especially since for the ϕ/f ′ trajectory we only have three data points. The value

of µ1 is very similar for the ω/f and the ρ/a trajectories, whose curves almost overlap in

plot 3. These mesons indeed differ only in the quarks’ flavor content and one expects them

to be degenerate at large Nc. The K and ϕ/f ′ trajectories have increasingly larger values of

µ1, as expected since the s quark is heavier than u and d.28 Note also that the prediction for

different endpoints (4.92) implies (in obvious notation)

µ1|K =
µ1|ρ/a,ω/f + µ1|ϕ/f ′

2
, (8.5)

which is in good agreement with the results of the fit in table 2.

Let us now consider states beyond the leading Regge trajectory. Due to the low values of

J , typically J = 0, 1, 2, we cannot expect a quantitative agreement with the EST predictions.

Nonetheless, we find it instructive to analyze the data from a stringy perspective, and discuss

their potential interpretations as EST states based on their quantum numbers.

In figs. 4 we plot the mass square as a function of J for most observed established mesons29,

as well as some unestablished ones, that are made of light quarks (u, d and s) and whose

quantum numbers are known. The plot stops at J = 3, since for higher values of J the

28If we use µ1 to naively determine the quark mass from eq. (4.36), we obtain mu ≃ md ≈ 240MeV from

the ρ/a and the ω/f trajectories, and ms ≈ 370MeV from the ϕ/f ′ trajectory. These values are somewhat

smaller than the constituent quark masses quoted in PDG: mu ≃ md ≈ 340MeV and ms ≈ 486MeV. This

is not suprising since, as we have explained, the coefficient µ1 provides a reliable determination of the quark

masses only for heavy quarks.
29We do not show the π(1800), f0(1710), f0(2020), ϕ(2170), f2(2300), and f2(2340), which appear around

the third daughter Regge trajectory and are thus much heavier than the others particles shown in figs. 4.
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Figure 4: Mesons’ spectrum for light quarks: The three plots show the masses and the quantum

numbers for mesons with isospon I = 0, I = 1/2 and I = 1. As in fig. 3, the legend details the discrete

quantum numbers of the particles, data points with one star are listed in the summary table of PDG

but they are not yet firmly established, while data with two stars are considered poorly established

and are listed in the further states section of PDG. The solid lines are the fits for the leading Regge

trajectories, and the dashed lines represent the curves M2
n(J) =M2

leading(J) + nℓ̄−2
s with n = 1, 2.

only confirmed particles are those on the leading Regge trajectories; we also excluded some

unconfirmed very heavy states.

A naive extrapolation of the EST predictions would suggest that the lightest daughter

Regge trajectories should be found around 2ℓ̄−2
s above the leading Regge trajectory in the

absence of an axion. This prediction spectacularly fails in all plots: in the I = 1/2, 1 plots, we
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Figure 5: Reliable mesons’ states: the plot shows a subset of I = 1 states that appear also in the

other isospin channels (twice at I = 0) and that therefore we expect to be continuously connected to

the true mesons’ spectrum at Nc → ∞.

see that the distance between the leading Regge trajectory and the other particles with the

same spin is roughly ℓ̄−2
s , while for I = 0 it is sometimes even smaller. We also observe many

unconfirmed states as well as sometimes partially overlapping resonances (we did not report

the widths for simplicity); finally, we might be missing states because we do not consider

particles listed in PDG whose quantum numbers are unknown. It appears therefore very hard

to provide a rationale for all the observed data points given these features and uncertainties.

To make progress, we focus on a subset of data which is more promising from our

perspective. In experiments, it is hard to distinguish mesons with light quarks from other

kinds of particles, such as molecular bound states of mesons, tetraquarks, glueballs, and

mixtures thereof. To identify states which are continuously connected to meson particles in

the limit Nc → ∞ we therefore compare different isospin channels. Since at Nc = ∞ the

meson spectrum is expected to take qualitatively the same form for all possible endpoints,

we consider (confirmed) states that appear once, with the same quantum numbers (or just

the same P and J when comparing to I = 1/2) and roughly similar mass, in the I = 1/2

and I = 1 plots, and appear twice in the I = 0 listing (twice to account for both ŪU and s̄s

mesons).

Proceeding in this way, we conservatively identify a set of 10 states that we believe should

admit an interpretation as proper meson particles. We show them in fig. 5, focusing for

concreteness on I = 1. Note that for J ≥ 3 only the particles on the leading Regge trajectories

showed before can be considered reliable meson candidates according to this rationale. The

J = 0 and J = 1 candidates selected with this rationale agree with the states found in the
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large Nc lattice study in [62], that measured masses and quantum numbers of the lightest

mesons with small angular momentum.

Among the reliable mesons we still observe several particles at ∼ ℓ̄−2
s distance from

the leading Regge trajectory. (However, all the I = 0 particles with mass smaller than

M2
leading + ℓ̄−2

s , besides the ω/f and ϕ/f ′ leading Regge trajectory, have no analogues at

I = 1/2 and I = 1, suggesting that these should be more properly interpreted as molecular

bound states of two lighter mesons). To interpret these unexpectedly light states, the most

natural scenario is to suppose that, for some reason, we observe states with different spin

wavefunctions in the low J part of the spectrum, as if the meson behaved similarly to the

NR heavy quarks’ regime. This is because the orbital angular momentum on the leading

Regge trajectory is ℓ = J − 1, and therefore at J = 1 the string would classically be static.

The two lightest states are the ρ at J = 1 and the pion at J = 0, and, as well known [63],

these can be interpreted, respectively, as having a symmetric s = 1 and an antisymmetric

s = 0 spin wavefunction for the quarks, which are connected by a static flux tube with ℓ = 0

orbital angular momentum. The pion is much lighter than the ρ due to (approximate) chiral

symmetry breaking. Similarly, the grey and orange states at J = 1, and the empty blue point

at J = 0, have the right quantum numbers to arrange in a spin quartet together with the J = 2

a2 particle in the leading Regge trajectory. Note that these four particles are approximately

mass degenerate, in agreement with the assumption that the spins’ energy splittings are small.

At this point we might expect to see also the states corresponding to different spin

wave-functions of the J = 3 particle on the leading Regge trajectory. However, at J = 2 there

is only a candidate for the antisymmetric state, which has 2−+ quantum numbers, but no

2−− candidate for the symmetric state. The disappearence of this spin state at J = 2 seems

a robust conclusion and is a well known puzzle in mesons’ phenomenology (see e.g. [64] and

refs. therein). Indeed in the complete plots 4 we see that at I = 1 the only particle with the

right quantum numbers to be interpreted as the missing spin state is poorly established and is

quite heavier than the other potential spin state; similarly, at I = 0 we have only one (poorly

established) particle, rather than two as required, with 2−− quantum numbers. Additionally,

even if we insist in interpreting the heaviest 2−+ and 1−− particles as spin partners of the

3−− ρ3, we do not have an understanding of the heaviest 0+− state in plot 5.

EST suggests also a potentially different interpretation of the data. We may speculate

that between J = 2 and J = 3 a transition occurs, from a regime in which the meson behaves

as if the quarks were heavy to one that follows more closely the expectations from the light

quarks’ EFT that we described in the first part of this work. According to this scenario,

for J ≥ 3 all the nontrivial spin states, i.e., those with J < ℓ+ 1, acquire a large (infinite?)

gap above the leading Regge trajectory. Note that indeed the energy of the states in the

spin family of the leading Regge trajectory increases with J (at J = 0 the π is much lighter

than the ρ obviously, while at J = 1 the four states in the a2 spin family are approximately

degenerate). The disappearence of spin states with J ≥ 2 would also be compatible with

the spectrum being analytic for J ≥ 2, as expected from general arguments. According to

this scenario, the heaviest 2−+ and 1−− particles in fig. 5 are naturally interpreted as some
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Figure 6: Potential interpretations of the states: Graphic representations of the two scenarios

described in the main text. The colored kets label the states, the subscript denoting whether the spin

wave-function is symmetric or antisymmetric. Kets with the same color correspond to the same leading

Regge trajectory or excitations thereof.

anomalously light string excitations, with the heaviest 0+− state obtained from the 1−− one

modifying the spin wave-function. In particular, the 1−− particle could be a n = 2 ϕ single

particle state, which is indeed the expected lightest excitation in the heavy quark regime.

Appealingly, the 2−+ particle one has instead the right quantum numbers to be interpreted as

a worldsheet axion n = 0 mode or a ρ n = 2 state. In particular, the extrapolation of our

formulas suggests that the gap δM2 ≈ 2/ℓ̄2s of the n = 2 ρ state is larger than the one of the

first axion daughter trajectory at low values of J . Indeed, given the lattice measured value

of the axion mass (2.11), we can estimate the mass of the associated daughter trajectories

using the formula δM2
n ≃ 2

√
ℓωϵn/ℓ̄s and eqs. (D.5) and (D.6) of the appendix. A naive

extrapolation to ℓ = J − 1 = 1 gives δM2
0 ≈ 1/ℓ̄2s and δM2

1 ≈ 1.3/ℓ̄2s for the first two axion

energy levels assuming Neumann boundary conditions, and δM2
0 ≈ 1.6/ℓ̄2s and δM2

1 ≈ 2.25/ℓ̄2s
assuming Dirichlet boundary conditions. The prediction δM2

0 ≈ 1/ℓ̄2s with Neumann boundary

conditions is in remarkable agreement with the experimental measure δM2 ≃ 0.99/ℓ̄2s. Notice,

however, that if we were to take the numerical predictions with Neumann boundary conditions

seriously, we would also expect a slightly heavier 2−− partner axion particle, which is nowhere

to be seen as commented above. We therefore do not take this numerical agreement at low

values of J as an indication that Neumann boundary conditions are preferred for the axion

state.

The two potential interpretations of the data that we described are schematically repre-

sented in fig. 6. Clearly, at this stage none of the described scenarios is particularly compelling,

and it is well possible that the right interpretation of the data requires more refined ideas.

Nonetheless, our analysis provides motivation for experiments to look for more mesons, in

– 59 –



all isospin channels, at J = 3. In particular, if the 2−+ state in fig. 5 indeed corresponds

to a wordlsheet axion mode, it would be natural to expect at 3+− meson, again due to a

axion excitation, somewhere in between ℓ̄−2
s and 2ℓ̄−2

s above the leading Regge trajectory.

Alternatively, if the states with different spin wavefunctions do not completely disappear and

only slightly increase their gap from J = 1 to J = 2 (after all, we are at low values of J),

we should expect two approximately degenerate particles with quantum numbers 3+− and

3++ - and the absence of the 2−− particle would then need to be explained by some other

mechanism.

Before concluding, we would like to make a remark about the so-called hybrid mesons.

These are the two π/b particles and the candidate η/h mesons with 1−+ quantum numbers,

denoted by plain black markers in plot 4. These are called hybrid because their quantum

numbers cannot be reproduced in a potential quark model, and are therefore usually interpreted

as mesons in which the glue binding the quarks is excited [63]. From our viewpoint, these

should therefore be string excitations of the leading Regge trajectory. Consider for instance

the lightest 1−+ π/b in the I = 1 plot in fig. 4. In the interpretation in which the lightest 2−+

π/b is an axion excitation, then the lightest hybrid 1−+ π/b and one of the nearby 1−− ρ/a

could be interpreted as different spin wavefunctions of the J = 2 worldsheet axion. However,

as noted also in [65], for the interpretation of hybrid mesons as string excitations to be reliable

one would expect iso-partner states at I = 0 and I = 1/2 of the two hybrid π/b’s; instead, the

only potential candidate at I = 0 is much heavier than the two I = 1 hybrids, while there is at

most one particle candidate for an isopartner at I = 1/2 (the heaviest K 1+ state). Therefore,

at this stage, pending further experimental data, the interpretation of the currently observed

hybrid mesons remains puzzling.

Let us conclude by remarking that the discussion in this section is only a first attempt at

mesons’ phenomenology from a stringy viewpoint. More data and more ideas are undoubtedly

needed to improve our understanding of QCD from the point of view of the confining string.

8.3 Comments on other mesons

We close this section with some brief comments on other mesons’ families.

We did not attempt a quantitative analysis of the heavy charmonium and bottomium

states due to the reduced validity window of EST (and the scarcity of data for J ≳ 1). All

confirmed states in heavy quarkonium are believed to admit an interpretation in terms of the

quantization of a phenomenological potential model of quarks moving in a central potential

(qualitatively, and suprisingly often also quantitatively; see e.g.[63, 66]). Since, as explained in

Section 7.2, for heavy quarks EST reduces to a NR potential model, and the quantum numbers

of the bound states do not depend on the details of the potential (as long as it is spherically

symmetric), we do not have anything to add to the existing literature on the subject. In other

words, all observed heavy mesons admit a reasonable qualitative interpretation in terms of

states of the QM potential model (7.17), including the different spin wavefunctions. The states

corresponding to string excitations are expected to be quite heavy (with a ∼ π/ℓ̄s gap on top
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of the leading Regge trajectory for the low values of J that we can access in experiments) and

presumably have not yet been observed.30

It might be easier to identify candidates for string excitations and axion states in heavy-

light mesons. The application of EST to these particles is a straightforward extension of our

work. Unfortunately, very few confirmed particles are listed in PDG, for instance, for both

charmed and bottom particles we have data only for J < 2 after excluding the leading Regge

trajectory and unconfirmed states.

In the future, additional data for heavy-heavy and heavy-light mesons might provide a

testing ground for our predictions. In particular, it would be interesting to confront data at

J ≳
√
mℓ̄s for heavy quarkonium with the prediction of spin-orbit inversion and the result for

the leading Regge trajectory in Section 7.

9 Beyond EFT: inequivalent quantizations and glueballs in 3d

Let us now briefly consider what happens when we try to extend our results beyond the

vicinity of the leading order Regge trajectory, where we expect the large J expansion to be

valid. The discussion will not focus on whether the expansion is under control but rather

on the qualitative features of the leading order spectrum, such as energy degeneracies, when

extended beyond this regime. As we will review, our motivation for extrapolating the EFT

predictions is the study of the glueball spectrum in d = 3, 4 Yang-Mills theory. Indeed, lattice

simulations show that the string transverse coordinate qualitatively describes all the observed

flux tube states, up to very high energies, also for short strings in 3d. Similarly, the string

coordinates and the worldsheet axion describe all observed flux tube states in 4d. This suggests

that the string coordinates can be thought as the only fundamental worldsheet fields in 3d, and

similarly in 4d including the axion. In the context of the rotating string, these observations

suggest that it should be possible to, at least qualitatively, describe all the glueballs measured

on the lattice in 3d and 4d Yang-Mills theory in terms of states of the rotating string Hilbert

space that we described in this work.

Perhaps surprisingly, it turns out that, even after specifying the field content of the theory,

the extrapolation of the Hilbert space of the theory to low values of J is not unambiguous

beyond the leading Regge trajectory. We will see that the natural semiclassical quantization

procedure that emerges when considering the large J effective field theory expansion differs,

even when considering critical strings, with respect to what one would obtain from lightcone

quantization. Indeed, this fact was already observed in [19], where a recipe for quantization of

closed effective strings at large J—the axionic string Ansatz (ASA)—was used to describe

qualitative features of the lattice glueball spectrum all the way to J −→ 0. In this section, we

30On the other hand, assuming Neumann boundary conditions, as suggested by simulations of open static

flux tubes [34, 35], the lightest daughter trajectory that is not captured by the quark model might be the one

associated with a single worldsheet axion state on the string, whose gap is simply given by its mass (2.11) and

is thus not enhanced by a factor of π, for sufficiently low values of J .
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identify the physical origin of this discrepancy in the simpler context of open strings—we plan

to investigate this issue further in the context of closed strings in a future publication.

We will start with a brief recap of how the closed string spectrum of [19, 20] is obtained,

where we will consider only d = 3 for now. There, one starts with the leading order effective

string theory description at large J for open strings, which is in essence the leading order

part of the theory described in this work, although there it was obtained by working with the

Polyakov action and solving the Virasoro constraints. From the semiclassical quantization

of fluctuations around the classical rotating rod solution at a given J , one may construct a

Hilbert space of states which we will label Hopen,effective and within this Hilbert space, one can

find the energy degeneracies—the levels—at leading order in J . The resulting Hilbert space is

spanned by vectors of the form

|Ψ⟩open,effective =
∏
n≥2

(
a†n

)mn

|J⟩ (9.1)

where an’s have the standard commutation relations and are the only oscillators that survive

after imposing the Virasoro constraints on top of the fluctuations on the rotating rod back-

ground. The an can be schematically thought as the annihilation operators for the fluctuations

of the angular coordinate ϕ in Polyakov formalism. The an are built in such a way that they

don’t change the value of J . At leading order in J , all states with the same level N

N = J +
∑
n≥2

na†nan (9.2)

are mass degenerate: M2 = N/ℓ̄2s.
31

As explained in [19], within the ASA the closed string spectrum is postulated to be, at

each value of the level N , the tensor product of left-moving and right-moving Hilbert spaces

Hclosed,ASA =
∑
N

HL(N)⊗HR(N) (9.3)

where in analogy with what happens in the critical case, the left- and right-moving sectors

are postulated to be identical to the open string Hilbert space, which is taken to be the one

obtained from the large J effective string description just described

HL = HR = Hopen,effective . (9.4)

The closed string quantization obtained from this prescription was found in [19] to qualitatively

match the features of the d = 3 glueball spectrum. Furthermore, a number of predictions

made in [19] were later confirmed by [12].

Interestingly, as discussed in [20], one may also use the closed string large J semiclassical

quantization directly to construct the “effective closed string” spectrum. The result is that at

31In the present discussion, we ignore all ordering issues, as they are irrelevant for the key point we are trying

to make.
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d = 3 the Hilbert space Hclosed,effective is spanned by vectors of the form

|Ψ⟩closed,effective =
∏
n≥2

(
a†n

)mn ∏
n′≥2

(
a†n′

)mn′
|J⟩ (9.5)

where again the an, an′ are oscillators that do not alter J . The level is given by

N = J +
∑
n≥2

na†nan +
∑
n′≥2

n′a†nan′ (9.6)

As explained in [20], there is crucially the extra subtlety that, due to the imposition

of reparametrization invariance, the states in Hclosed,effective are those of the form of (9.5)

subject to the extra condition that N must be even. This, in particular, restricts us to states

of even J at the leading Regge trajectory.

Interestingly, the two prescriptions to build the closed strings quantizations, Hclosed,ASA

and Hclosed,effective do not match beyond the leading Regge trajectory when extrapolated to

low values of J . This is seen from the fact that they give different degeneracies: at a given

value of J and N the number of states in Hclosed,effective is larger than the number of states

in Hclosed,ASA. For instance we see that at J = 1 and N = 2, Hclosed,ASA is empty, while

Hclosed,effective yields 2 states [20]. As discussed in [20], the two prescriptions match close to

the leading Regge trajectory for large J . It is still surprising however that the “closed effective

string” prediction so heavily over-predicts the number of states at higher levels.

Furthermore, both prescriptions also differ from what is obtained from the lightcone

quantization. To see this, it is simpler to work in an arbitrary number of dimensions d > 3.

We also consider for simplicity only states with zero spatial momentum. Then the Hilbert

space is spanned by vectors of the form

|Ψ⟩open,lightcone =
∏

I,n>0

(
aI†n

)mI,n

|0⟩ (9.7)

for open strings and

|Ψ⟩closed,lightcone =
∏

I,n>0

(
aI†n

)mI,n ∏
I′,n′>0

(
aI

′†
n′

)mI′,n′
|0⟩ (9.8)

for closed strings. Here the label I = 1 . . . d−2 denotes the fact that the αI oscillators generate

fluctuations in the d−2 directions transverse to the lightcone plane. The corresponding masses

(squared) are obtained from the zero mode of the Virasoro constraints and yield (again we

ignore constant terms that arise from ordering)

M2
open ∼ N =

∑
n,I

naI†n a
I
n (9.9)

and

M2
closed ∼

∑
n,I

naI†n a
I
n +

∑
n,I

na′I†n a′In (9.10)
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where the ∼ symbol denotes up to some dimensionful constant factor and the closed spectrum

is subject to the level-matching condition that imposes the total worldsheet spatial momentum

to be zero: ∑
n,I

naI†n a
I
n =

∑
n,I

na′I†n a′In (9.11)

As usual in lightcone quantization, the states obtained with this procedure come out in O(d−2)

representations, and should then be arranged into irreps. of the massive little group O(d− 1).

As is well known, such a rearrangement fails for N = J = 1 in open strings, and for N = 1

and J = 2 in closed strings (away from the critical dimension d = 26 where it is possible to

bypass this requirement by making the corresponding states massless), but it can be done for

all other states.32

It can be seen that the d = 3 spectrum obtained in this way differs from both the “ASA”

and “effective string” spectra described above. For instance, besides the aforementioned issue

at N = 1, at N = 2 lightcone quantization predicts two scalars and a J = 4 particle at

N = 4; “ASA” instead predicts three scalars, two J = 2 particles, and one J = 4; finally, the

extrapolation of closed effective string theory yields the same particles as “ASA”, plus two

J = 1 particles and two additional scalars. In general, the full situation is summarized by the

following schematic inequalities(
closed

lightcone

)
=

(
open

lightcone

)2

<

(
open

effective

)2

<

(
closed

effective

)
. (9.12)

The first equality denotes the fact that the tensor product procedure outlined above, which

accounts for level matching (this is what is meant from “squaring” in this picture), applied to

the open string lightcone spectrum yields the closed string lightcone spectrum (indeed, this

fact was the inspiration for performing this procedure within the ASA). The first inequality

describes the fact that open string lightcone quantization yields a smaller number of states at

fixed N and J than ASA, which is just the open effective string theory spectrum squared. The

second inequality further indicates that the closed effective string theory spectrum predicts an

even larger number of particles.

Let us attempt to identify the physical origin of how these discrepancies come about. In

order to do this let us consider the situation in d = 4, where the analysis is simpler, although

the key subtlety we will point out is also present in the d = 3 case we have described. The

usefulness of considering the d = 4 case is that here one can start by gauge fixing the lightcone

gauge, and then decide whether to perform lightcone quantization or to expand around a fixed

angular momentum background. This is because in d = 4, it is possible to take a background

where the string rotates in the plane transverse to the lightcone coordinates, which is not

possible in d = 3.

32In d = 3, we are interested in the spectrum that is obtained by analytic continuation of the results of

the lightcone quantization procedure outlined in the main text for d > 3 —(see also [19]). This spectrum is

different than the one that is obtained applying lightcone quantization directly in d = 3, whose Hilbert space

consists of particles with fractional angular momentum and anyonic statistics [67].
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To illustrate he point, we will consider only open strings. If 2, 3 denote the two transverse

coordinates to the lightcone plane and we define (the ± symbol here should not be confused

with the ± associated to lightcone coordinates)

a±n =
(
a2n ± ia3n

)
/
√
2 , (9.13)

then in lightcone gauge the zero mode of the Virasoro constraints imply that the number

operator defined above is given by

N =
∑
n

na+†
n a+n +

∑
n

na−†
n a−n . (9.14)

The angular momentum operator for rotation in the (2, 3) plane is given by

J =
∑
n

a+†
n a+n −

∑
n

a−†
n a−n . (9.15)

We will now see how different inequivalent quantizations arise when the theory is quantized

around the a± = 0 background versus when one quantizes around a rotating rod background

with non zero J . This subtlety is already captured when one considers just the two a+

oscillators with lower frequency, so in order to show our point we may restrict ourselves to the

simpler quantum system with two oscillators and two commuting charges, the “Hamiltonian”

H = ω1a
†
1a1 + ω2a

†
2a2 , (9.16)

and the “angular momentum”

J = a†1a1 + a†2a2 , (9.17)

where the a1 and a2 oscillators should be thought of as the two a+ oscillators with lowest

frequency and the ωi represent the frequencies in N of these oscillators (their values of n in

formula for N above). The standard quantization – that is, around the trivial a1 = a2 = 0

background – obviously yields states of the form

|n,m⟩ = (a†1)
n

√
n!

(a†2)
m

√
m!

|0⟩ . (9.18)

Then if we take the case ω2 > ω1, at fixed J the states with smallest energy are of the form

|J, 0⟩. This would be the analogue of our leading Regge trajectory. At fixed J , there is a finite

tower of states on top, of the form |J − 1, 1⟩ , |J − 2, 2⟩ . . . |0, J⟩.
Let us now consider, in this simple system, the analogue of our effective field theory

quantization around the non-zero J background. In order to do this, we will define a new set

of canonical variables {δ, J, α, α†} by the canonical transformation

a1 = e−iω1(t+δ)
(
J
1/2
0 + β(J)

)
, (9.19)

a2 = e−iω1(t+δ)α , (9.20)
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where J0 is the background value of the angular momentum and α and β describe the

fluctuations around this background. In order to work at fixed angular momentum, the β

fluctuation is written in terms of our new canonical variable J by plugging these expressions

into (9.17) and solving for β. In these terms, the “Hamiltonian” becomes

H = ω1J + (ω2 − ω1)α
†α (9.21)

while the symplectic form yields

ω = ida†1 ∧ da1 + ida†2 ∧ da2
= dδ ∧ dJ + idα† ∧ dα . (9.22)

When we quantize this canonical system we realize that the eigenvalues of the operator

J are integer because this is the conjugate variable to δ, which is 2π periodic. Furthermore,

since δ does not appear in the Hamiltonian, J is conserved, and so the Hilbert space can be

split into the direct sum of sectors with constant integer J . The key difference with the trivial

quantization in terms of a1 and a2 outlined above is that now for each value of J we have

an infinite tower of α oscillators, so that at fixed J there are in this quantization many more

states than in the standard one. Namely, we can consider states of the form

|J0, n⟩ =
(α†)n√
n!

|J0, 0⟩ , (9.23)

for every integer n ≥ 0, where the leading Regge trajectory state is defined by

J |J0, 0⟩ = J0|J0, 0⟩ , α|J0, 0⟩ = 0 . (9.24)

The existence of this infinite tower of states is precisely the reason why the “effective string”

quantizations outlined above have many more states at fixed J and N than the lightcone

quantization.

How can it be, however, that such a simple system—two harmonic oscillators—has two

inequivalent quantizations? The reason is that the phase spaces spanned by the canonical

variables {a1, a†1, a2, a
†
2, } and {δ, J, α, α†} are globally inequivalent, given that the first is merely

R4, whereas the second one is actually R3 × S1. In other words, the canonical transformation

that relates {a1, a†1, a2, a
†
2, } and {δ, J, α, α†} is singular at the origin. Given the full theory, it

is always possible to identify the correct set of global coordinates for the phase space, but

if one starts from the EFT spectrum, that only describes the Hilbert space locally near the

leading Regge trajectory, one is faced with a choice when extrapolating to low values of J .

Surprisingly, our discussion suggests that the right choice for QCD strings results in a different

phase space structure compared to the natural choice in the context of fundamental strings.
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Appendix

A Geometric identities and notation

A.1 Bulk geometry

We denote the string coordinates as Xµ and assume the ambient space to be flat: ηµν =

ηµν = diag(1,−1,−1, . . .). The worldsheet coordinates are denoted by σα and the induced

metric then takes the form

Gαβ = ∂αX
µ∂βX

νηµν . (A.1)

The associated connection is denoted Γα
βγ and ∇α is the associated covariant derivative. We

also define G = −det(Gαβ).

We define the second fundamental form and the worldsheet curvature via

Kµ
αβ = ∇α∂βX

µ , Rα
βγδ = ∂γΓ

α
βδ − ∂δΓ

α
βγ + Γα

γηΓ
η
βδ − Γα

δηΓ
η
γβ . (A.2)

The second fundamental form satisfies:

Kµ
αβ ηµν ∂γX

ν = 0 . (A.3)

The Riemann tensor and the second fundamental form are related by the Gauss-Codazzi

formula:

Rαβγδ =
(
Kµ

αγK
ν
βδ −Kµ

αδK
ν
βγ

)
ηµν . (A.4)

Sometimes it is useful to choose a basis of d − 2 (spacelike) normal vectors {nµA}.33

Normalizing them such that nµAn
ν
Bηµν = −δAB, we can decompose the bulk metric as

ηµν = ∂αX
µ∂βX

νGαβ − nµAn
ν
Bδ

AB . (A.5)

33In d = 3 there is a unique normal vector and it can be written as nµ = 1
2
εµνρ∂αX

µ∂βX
νεαβ/

√
G, where

we normalized it such that nµnµ = −1.
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There are clearly many equivalent choices for the normals. Indeed we can change the basis of the

normal bundle with an arbitrary local orthogonal transformation of the normals: nµA → R B
A nµB

where R ∈ SO(d− 2). We may thus define a connection on the normal bundle [7]:

AAB ,α = nµA∂αn
ν
Bηµν = −ABA ,α . (A.6)

Under a local change of basis, parametrized by R ∈ SO(d− 2), AAB ,α transforms as (omitting

the SO(d− 2) indices):

Aα → RAαR
T −R∂αR

T . (A.7)

The connection can be used to define covariant derivatives of the normal vectors, that are

parallel to the string and are related to the second fundamental form as

Dαn
µ
A ≡ ∂αn

µ
A −AAB,αδ

BCnµC = −∂βXµGβγKν
αγn

ρ
Aηνρ . (A.8)

Finally, we notice that in d = 4 the connection on the normal bundle is Abelian:

Aα =
1

2
εABnµA∂αn

ν
Bηµν (d = 4) . (A.9)

The topological invariant introduced in eq. (2.10) is nothing but the field strength of this

Abelian connection

√
GK · K̃ = εαβFαβ where Fαβ = ∂αAβ − ∂βAα . (A.10)

A.2 Boundary geometry

We denote the endpoint coordinate with τ and σα(τ) denotes the boundary wordline on

the worldsheet. The induced metric is

Ĝττ = ∂τσ
α∂τσ

βGαβ = ∂τX
µ∂τX

νηµν . (A.11)

Let us first discuss the case of a time-like boundary Ĝττ > 0. In this case we call

Γ̂τ
ττ = 1

2Ĝ
−1
ττ ∂τ Ĝττ the worldline connection and ∇̂τ is the associated covariant derivative. We

can decompose the inverse worldsheet metric at the boundary as

Gαβ = ∂τσ
α∂τσ

βĜ−1
ττ − n̂αn̂β , (A.12)

where ∂τσ
α is the vector parallel to the boundary, and n̂α denotes instead the normal. The

normal can be written explicitly as

n̂α =

√
G√
Ĝττ

εαβ∂τσ
β =⇒ n̂αn̂

α = −1 . (A.13)

From (A.13) it follows that

(n̂α∂αX
µ)2 = n̂α∂αX

µn̂β∂βX
νηµν = −1 . (A.14)
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The second fundamental form associated with the embedding of the endpoint in the ambient

space coincides with the acceleration ∇̂τ∂τX
µ. We can also consider the second fundamental

form associated with the embedding of the endpoint in the worldsheet,

k̂αττ = ∇̂τ∂τσ
α . (A.15)

It turns out however that k̂αττ is not an independent object, since it satisfies:

k̂αττ = −n̂α
(
∇̂τ∂τX

µηµν n̂
β∂βX

ν
)
. (A.16)

Let us now discuss a null boundary: Ĝττ = 0. For a null worldline, we may define a

reparametrization invariant metric as [68]:

γ̂ττ = ℓ̄s

(
−ẌµηµνẌ

ν
)1/2

, (A.17)

that allows to define the following natural connection

Γ̃τ
ττ =

1

2
γ̂−1
ττ ∂τ γ̂ττ . (A.18)

The main difference compared to the timelike case is that it is not possible to define a normal

which is invariant under reparametrizations of the boundary coordinate τ as in eq. (A.13).

We may however define a covariant normal as

Nα
τ = lim

σα→σα(τ)

√
GGαβεβγ∂τσ

γ , (A.19)

where the limit is well defined under the assumption that the boundary admits a natural

conformal structure as in eq. (4.21); note indeed that the definition (A.19) is Weyl invariant.

It is simple to check that the left-hand side of eq. (4.22) coincides with Nα
τ ∂αa. Note that the

definition (A.19) makes sense for both timelike and null boundaries, and reduces to nα
√
Ĝττ

in the former case.

B Near boundary expansion with the (K2)2 term

As explained in Section 5.2, the solutions of the quadratic EOMs deriving from eq. (5.11)

admit the following expansion:

ρi(τ, σ) = ρ
(0)
i (τ, σ) + c4

ℓ̄4sω
4

(1− α2
fσ

2)4
ρ
(1)
i (τ, σ) + . . . , (B.1)

ϕ(τ, σ) = ϕ(0)(τ, σ) + c4
ℓ̄4sω

4

(1− α2
fσ

2)4
ϕ(1)(τ, σ) + . . . , (B.2)

where both the {ρ(0)i , ϕ(0)} and the {ρ(1)i , ϕ(1)} are regular for αfσ → ±1.
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We used the following expansions for 1∓ αfσ ≡ δ → 0 of the leading order solutions:

ρ
(0)
i =

[
1 + δ

d2

dτ2
+
δ2

6

(
d2

dτ2
+

d4

dτ4

)
+
δ3

90

(
4
d2

dτ2
+ 5

d4

dτ4
+

d6

dτ6

)
+O

(
δ4
)]
βρ1(τ)

+δ1/2
[
1 + δ

(
1

12
+

1

3

d2

dτ2

)
+ δ2

(
3

160
+

1

12

d2

dτ2
+

1

30

d4

dτ4

)
+δ3

(
5

896
+

37

1440

d2

dτ2
+

1

72

d4

dτ4
+

1

630

d6

dτ6

)
+O

(
δ4
)]
βρ2(τ) , (B.3)

ϕ(0) =

[
1− δ

d2

dτ2
− δ2

(
3

2

d2

dτ2
+

1

2

d4

dτ4

)
− δ3

(
14

9

d2

dτ2
+

11

18

d4

dτ4
+

1

18

d6

dτ6

)
− δ4

(
47

30

d2

dτ2
+

229

360

d4

dτ4
+

13

180

d6

dτ6
+

1

360

d8

dτ8

)
+O

(
δ5
)]
βϕ1 (τ)

+δ3/2
[
1 + δ

(
21

20
+

1

5

d2

dτ2

)
+ δ2

(
237

224
+

33

140

d2

dτ2
+

1

70

d4

dτ4

)
+δ3

(
407

384
+

7387

30240

d2

dτ2
+

143

7560

d4

dτ4
+

1

1890

d6

dτ6

)
+O

(
δ4
)]
βϕ2 (τ) . (B.4)

For the second correction we used

ρ
(1)
i =

[
0 + 0 +

24

15
δ2
(
d2

dτ2
+

d4

dτ4

)
+ δ3

(
96

5

d2

dτ2
+

512

15

d4

dτ4
+

224

15

d6

dτ6

)
+O

(
δ4
)]
βρ1(τ)

+δ1/2
[
−4 + δ

(
41

5
+

36

5

d2

dτ2

)
+ δ2

(
247

120
+

187

15

d2

dτ2
+

158

15

d4

dτ4

)
+δ3

(
8419

480
+

26171

360

d2

dτ2
+

1295

18

d4

dτ4
+

754

45

d6

dτ6

)
+O

(
δ4
)]
βρ2(τ) , (B.5)

ϕ(1) =

[
0 + 0 + 0− 512

15
δ3
(
d2

dτ2
+ 2

d4

dτ4
+

d6

dτ6

)
+
256

15
δ4 log δ

(
4
d2

dτ2
+ 9

d4

dτ4
+ 6

d6

dτ6
+

d8

dτ8

)
+O

(
δ5
)]
βϕ1 (τ)

+δ3/2
[
−84

5
− δ

(
37

5
− 124

5

d2

dτ2

)
− δ2

(
1223

40
− 713

5

d2

dτ2
− 242

5

d4

dτ4

)
+δ3

(
18399

160
− 55493

120

d2

dτ2
− 10081

30

d4

dτ4
− 766

15

d6

dτ6

)
+O

(
δ4
)]
βϕ2 (τ) . (B.6)

Notice the appearence of a δ4 log δ term. In general, an operator of order 2n in derivatives

leads to δ2n+k log δ terms, with k = 0, 1, . . ., in the near boundary expansion.
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C Bosonic action for a point particle with spin

C.1 Coadjoint orbit through spinors

Let us consider a relativistic-point particle with spin s. We are interested in writing a

worldline action which describes its spin. In the standard approach, one introduces some

suitably coupled Grassmanian variables on the worldline, whose Hilbert space describes the

different spin states [69–71], see [72] for a review. This approach relies on the introduction of

supersymmetric gauge redundancies, and the number of Grassmanian fields needed depends

upon the size of the spin representation.

A more straighftorward approach, which encompasses all spin representations, is the so-

called coadjoint orbit technique [73, 74]. Below, we review how to implement this construction

in terms of spinors following [75]. In the next subsection we explain how this approach can be

understood from the viewpoint of spontaneous symmetry breaking.

Let us first review the action for a non-relativistic spin in the 2s+ 1-dimensional repre-

sentation at a point in space. We consider a bosonic su(2) spinor z = {z1, z2}, subject to the

constraint z̄z = 2. In this formulation, the action reads (see e.g. [76])34

S = is

∫
dτ z̄ż , z̄z = 2 . (C.1)

The action (C.1) is invariant under U(1) gauge transformations z → eiα(τ)z. Invariance under

large gauge-transformations requires

s ∈ Z/2 . (C.2)

The target space is CP 1 ≃ S2, physically parametrizing the orientation of the spin:

Si = sz̄
σi

2
z . (C.3)

The canonical commutation relations [z, z̄] = 1/s imply that the spin satisfies the su(2)

algebra [Si, Sj ] = iεijkSk, while the constraint implies SiSi = s(s+ 1).35 Because of the U(1)

gauge-invariance and the constraint, all the interactions with other fields on the worldline are

straightforwardly written in terms of Si.

To make contact with the standard literature on the subject [76–78], it is convenient to

write z in terms of polar and azimuthal angles θs and ϕs:

z =
√
2

(
e−iϕs/2 cos θs

2

eiϕs/2 sin θs
2

)
(C.4)

34The action (C.1) has been studied in several different contexts, see e.g. [77–79]. The constrained spinor z

is also equivalent to a charged particle moving on a sphere with a charge s monopole at the center in the lowest

Landau level [80–82].
35To check this, it is important to use the correct ordering of the operators; we refer the reader to [83] for a

more detailed discussion of ordering issues in the path-integral formulation.
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Then the action (C.1) becomes

S = s

∫
dτ cos θsϕ̇s = −s

∫
M
ϵijkn̂

idn̂jdn̂k , n̂i = Si/s , (C.5)

where in the second line we wrote the spin kinetic term as a Wess-Zumino integral, such that

∂M coincides with the worldline.

Let us now discuss the generalization to a relativistic point particle with worldline Xµ(τ).36

The motion of the particle is described via the standard action −m
∫
dτ
√
Ẋ2. To account for

the spin, we introduce a bosonic Dirac spinor ψ satisfying

ψ̄ψ = 2 , /uψ = ψ , (C.6)

where uµ = Ẋµ/
√
Ẋ2. ψ can be written explicitly in terms of a two-component spinor z like

before as (in Weyl basis)

ψ =
1√
2
Λu · {z, z} , (C.7)

where Λu is the Dirac boost matrix with velocity uµ. Then we include on the worldline an

action analogous to eq. (C.1):

Sspin = s

∫
dτiψ̄ψ̇ . (C.8)

This action is manifestly Lorentz invariant and admits a U(1) gauge-invariance similarly to

eq. (C.1), which fixes s ∈ Z/2.
It is straightforward to check that in the nonrelativistic limit uµ ≃ δµ0 , the action (C.8)

reduces to (C.1). To prove that the action (C.8) describes a relativistic spin-s particle in general,

it is convenient to quantize ψ as an unconstrained variable, and impose the constraints (C.6)

on-shell. One finds that the canonical commutation relations

[ψ, ψ̄] =
1

s
1 , (C.9)

imply that the spin part of the Lorentz generators,

Sµν =
i

4
sψ̄[γµ, γν ]ψ , (C.10)

satisfies the Lorentz algebra:

[Sµν , Sρσ] = −iηµσSνρ + permutations . (C.11)

36In the relativistic case, the coadjoint orbit technicque is equivalent to a certain nonlinear relalization of

the coset ISO(3, 1)/ (U(1)×R), as we will see below. This coset spans an eight dimensional phase space,

parametrized by the tree spatial positions Xi, the corresponding momenta and the two angles describing the

spin variable [73–75].
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One also finds that the on-shell constraint ψ̄ψ implies SµSµ|phys⟩ = −s(s+ 1)|phys⟩,37 where

Sµ is the Pauli-Lubanski vector defined by

Sµ =
1

2
εµνρσuνSρσ . (C.13)

Finally, all interactions with other worldline fields are written in terms of Sµν . This is

because of the U(1) gauge-invariance and the following relation that follows from (C.6)

ψψ̄ = Pu + Puγ5γµPun̂
µ , (C.14)

where n̂µ = Sµ/s and we introduced the following projector:

Pu =
1

2
(1+ /u) = P 2

u . (C.15)

Notice also that Sµνu
ν = 0 and SµνS

µν = −2SµS
µ = 2s2 (at the classical level).

C.2 Spin from Goldstones

As emphasized in [58], a point-particle, or more in general any relativistic object which

appears point-like from large distances, defines a state which breaks spontaneously the Poincaré

group, similarly to a string (as described in Section 2) or a membrane. A spinless particle in

its rest frame, breaks the Poincaré group to time translations and transverse rotations SO(3).

It is well known that we can think of the particle’s spatial coordinates Xi(τ) as the Goldstone

fields associated with such symmetry breaking pattern. Accordingly, the standard worldline

action can be shown to be the most general action compatible with the nonlinear realization of

the symmetry via the spacetime generalization of the Callan-Coleman-Wess-Zumino (CCWZ)

construction [85, 86]. A particle with spin further breaks the transverse SO(3) rotations to

SO(2) in the rest frame, due to the spin orientation. Here we show that the action (C.8)

can also be derived insisting on the nonlinear realization of the symmetry via the CCWZ

construction.38

It is again instructive to derive first from this perspective the non-relativistic action (C.1).

To this aim we consider the symmetry breaking pattern SO(3) → SO(2). Assuming that the

spin points in the direction “1”, we consider the coset

ΩR = e−iϕs(τ)J3e−i(θs(τ)−π
2 )J2 , (C.16)

37To prove this it is useful to write Sµ as [84]:

Sµ =

(
u⃗ · S⃗rest, S⃗rest +

u⃗ · S⃗rest

1 + u0
u⃗

)
, (C.12)

and use that S⃗ 2
rest|phys⟩ = s(s+ 1)|phys⟩.

38[72] proposed a generalization of the CCWZ construction to describe particles with spin in the Grassmanian

formalism alluded before. The approach of [72] however relies on the introduction of supsersymmetric gauge

redundancies, while the construction in this section instead does not require any extra ingredients compared to

the usual CCWZ procedure for broken spacetime symmetries.
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where we denoted with J2 and J3 the broken generators, while J1 is the unbroken one. To

construct SO(3) invariants, we are instructed to consider the Maurer-Cartan one form

Ω−1
R Ω̇R = iDΘa

sJa + iAJ1 , (C.17)

where a = 2, 3 and

DΘ2
s = −θ̇s , DΘ3

s = − sin θsϕ̇s , A = − cos θsϕ̇s . (C.18)

The SO(3) group acts linearly via local SO(2) rotations on the vector DΘa
s , while A transforms

as a U(1) connection, which may be used to define a covariant derivatives acting on the DΘa
s

and matter fields.

We now have two choices for the kinetic term of the angular Goldstones compatibly with

the SU(2) symmetry. The simplest one is to consider a quadratic kinetic term

S =
I

2

∫
dτDΘa

sDΘa
s =

I

2

∫
dτ ˙̂ni ˙̂ni , (C.19)

where n̂i = Si/s is a unit vector. This choice gives the standard rigid rotor and, at the

quantum level, describes an infinite tower of states arranged in all the representations of

SO(3). Eq. (C.5) corresponds instead to a Chern-Simons like term,

S = −s
∫
dτA , (C.20)

which is first order in derivatives and it is allowed since A shifts by a total derivative under

SO(3) transformations.

From the viewpoint of symmetries, the choice between eq. (C.19) or (C.20) is dictated by

the transformation properties of the angles under time reversal T (assuming it is a symmetry).

Indeed eq. (C.20) is allowed only if the action of T is accompanied by {θs, ϕs}
T→ {π−θs, ϕs+π}

(up to SO(3) rotations), that physically corresponds to the spin being a pseudovector.39

Notice also that (C.20), due to the transformation properties of A, is the only allowed

term that cannot be written as a local integral in terms of the unit vector n̂i. To write A in a

convenient form, it is useful to evaluate Ω in a spin j representation. Working in a basis that

diagonalizes J1 we have, in obvious notation,

iA =
1

m
⟨j,m|Ω−1

R Ω̇R|j,m⟩ . (C.21)

The spinor representation in eq. (C.1) is the minimal choice, corresponding to j = m = 1/2,

so that the spinor (C.4) is obtained from

z =
√
2Ω|1/2, 1/2⟩ = e−iϕs

σ3

2 e−i(θs−π
2 )

σ2

2 ·

(
1

1

)
. (C.22)

39Note that, within EFT, in the simplest option, given the action (C.20), terms with two or more derivatives,

such as (C.19), are treated perturbatively and do not yield new states when included.
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The generalization to the relativistic case is conceptually straightforward. We refer

the reader to [58, 87] for an introduction to the CCWZ technology for nonlinearly realized

spacetime symmetries and its application to the spinless relativistic point-particle. Here we

focus directly on a particle with spin. The associated symmetry breaking pattern is

unbroken =

{
P0 time translations ,

J1 spatial rotation ,

broken =


Pi spatial translations ,

Ki boosts ,

Ja spatial rotations ,

(C.23)

where i = 1, 2, 3 and a = 2, 3 as before. The coset can be parametrized as

Ω = eiX
µ(τ)Pµeiη

i(τ)KiΩR , (C.24)

where ΩR was defined in eq. (C.16). The Maurer-Cartan one-form is given by

Ω−1Ω̇ = iE
(
P0 +∇πiPi +∇ηiKi +∇Θa

sJa +APJ1
)
. (C.25)

Here E transforms as a worldline vielbein, while the coefficients of the broken generators can

be thought as the covariant derivatives of the Goldstones and, under the action of any element

of the full group, they transform as a linear (local) representation of the unbroken subgroup

SO(2). Finally AP transforms as U(1) connection similarly to A in eq. (C.17). We can write

the covariant derivatives and the connection explicitly in terms of the following matrices

(e−iηiKi)µν = (Λ−1)µν = Λ µ
ν , (ΩR)

µ
ν = R µ

ν , Λ̄ µ
ν = R ρ

ν Λ
µ
ρ . (C.26)

We find
E = ẊνΛ 0

ν , ∇πi = E−1ẊνΛ̄ i
ν , ∇ηi = −E−1Λ̄ 0

ν
˙̄Λνi ,

∇Θa
s = −1

2
εaijE

−1Λ̄ i
ν
˙̄Λνj , AP = −E−1Λ̄ 2

ν
˙̄Λν3 .

(C.27)

As in the spinless case, the boost Goldstones ηi are redundant [38]. This means that we can

eliminate them imposing an Inverse Higgs Constraint [57], namely a covariant condition which

allows to express the redundant Goldstones in terms of other Goldstone fields. For the case at

hand the relevant condition is

∇πi = 0 =⇒ ηi

η
tanh η =

Ẋi

Ẋ0
. (C.28)

As explained in [58], eq. (C.28) implies Λ 0
µ = uµ, so that the vectors {Λµ

i} form an orthonormal

basis for the normal vectors on the worldline.

We may finally write the action for the point-particle. To lowest order in derivatives the

kinetic term for its coordinates is simply given by the vielbein

S = −m
∫
dτE = −m

∫
dτ
√
Ẋ2 , (C.29)
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where we used eq. (C.28). It is possible to check that, upon using eq. (C.28), the ∇ηi become

proportional to the particle’s acceleration and therefore are of higher order in derivative

expansion. As in the non-relativistic case, we have two choices for the leading order action for

the rotational Goldstones (θs, ϕs) analogously to the non-relativistic case. If we assume that

they do not transform under T , we consider a rigid-rotor like kinetic term:

I

2

∫
dτE∇Θa

s∇Θa
s . (C.30)

Eq. (C.30) has physical applications in the description of astrophysical objects [58]. Unsur-

prisingly, the spin action (C.8) is given instead by

Sspin = −s
∫
dτE AP , (C.31)

which as eq. (C.20) is compatible with time reversal only if the spin flips sign under T .

Finally, we remark that (C.31) is the only allowed term that cannot be written as a local

integral in terms of the vector n̂µ = Sµ/s, which satisfies n̂µn̂µ = −1 and n̂µuµ = 0. For

instance, we have

E∇η1 = −u̇µn̂µ , E2∇ηa∇ηa = u̇µŜµν Ŝ
ν
ρu̇

ρ , E2∇Θa
s∇Θa

s =
˙̂
Sµν ˙̂

Sµν + u̇µŜµν Ŝ
ν
ρu̇

ρ ,

(C.32)

where Ŝρσ = Sρσ/s = εµνρσn̂
µuν . To write the connection AP we instead need to evaluate the

coset matrix in a specific representation, as in eq. (C.21). The Dirac spinor in eq. (C.8) is

the minimal choice, that allows writing E AP without picking additional terms (e.g. a Weyl

spinor always picks up a term proportional to E∇η1).

D Worldsheet axion energy levels from the Mathieu equation

Eq. (6.15) can be written as a Mathieu equation in the form

a′′ + [R− 2Q cos(2s)] a = 0 , R = ϵ2 − m2
a

2ω2
, Q =

m2
a

4ω2
. (D.1)

The most general solution is a linear combination of the two Mathieu functions. For fixed Q,

only a series of discrete values of R labeled by k ∈ N yields solutions satisfying Dirichlet or

Neumann boundary conditions. These are

Dirichlet =⇒ R = Dk(Q) ≡

{
Bk(Q) k = even > 0

Ak(Q) k = odd > 0 ,
(D.2)

Neumann =⇒ R = Nk(Q) ≡

{
Ak(Q) n = even ≥ 0

Bk(Q) n = odd > 0 ,
(D.3)

where Ak and Bk are the so called Mathieu characteristics (MathieuCharacteristicA and

MathieuCharacteristicB in Mathematica), and we defined Dk and Nk for future reference.
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(Notice that k = 0 is allowed only for Neumann). For Q = 0 we have Ak(0) = Bk(0) = k2,

and we recover thus the massless solution discussed in Section 4.1.

As explained in Section 6.2, we are interested in the large Q ∼ m2
a/ω

2 limit. In this limit

the Mathieu Characteristics admit the following expansion [88]

Ak(Q) ∼ Bk+1(Q) = −2Q+ 2(2k + 1)
√
Q+O(Q0) . (D.4)

Additionally, the difference Bk+1(Q) − Ak(Q) ∼ e−4
√
Q is nonperturbative in Q. This is

because the Mathieu equation has the structure of a Schrödinger equation in a double-well

potential, as explained below eq. (6.16).

In conclusion, depending on the boundary conditions, the single-particle energy levels are

given by

ϵ2n =
m2

a

2ω2
+Dn+1

(
m2

a

4ω2

)
≃

{
(2n+ 3)ma

ω n even

(2n+ 1)ma
ω n odd ,

(D.5)

for Dirichlet, and by

ϵ2n =
m2

a

2ω2
+Nn

(
m2

a

4ω2

)
≃

{
(2n+ 1)ma

ω n even

(2n− 1)ma
ω n odd ,

(D.6)

for Neumann, where n ∈ N and we ordered such that ϵn < ϵn+1. Eq. (D.5) and (D.6) imply

a double-degeneracy to all orders in 1/Q ∼ ω/ma. Notice that this result coincides with

eq. (6.19) to leading order in ω/ma. Under σ → −σ, the wave-functions are even (MathieuC

in Mathematica) for n =even, and odd (MathieuS in Mathematica) for n =odd.

E Daughter Regge trajectories for heavy quarks

In this appendix we briefly analyze the spectrum of fluctuations for heavy quarks. We limit

ourselves to the leading order in derivatives, therefore neglecting the contribution proportional

to b̄1 = 0 in eq. (7.3). The analysis is largely analogous to that of Section 4. The main

difference is that the boundary mode α cannot be thought of as an auxiliary field anymore.

This is because the expansion of the boundary action (7.3) results in the following contribution

to the quadratic action

∑
σ=±1

1/(αf,0ω
2)

2ℓ2s

√
1− α2

f,0

∫
dτ
[
α2
f,0ϕ̇

2 +
(
1− α2

f,0

)
α̇2 + α2 ± 2αf,0

(
2− α2

f,0

)
αϕ̇+ (1− α2

f,0)ρ̇
2
i

]
,

(E.1)

where we wrote m̃ in terms of αf,0 to make manifest that this contribution is of the same

order as the NG action. Therefore we cannot integrate out α as for light quarks. Note that

α mixes nontrivially with the bulk field ϕ, and therefore it does not correspond to a special

boundary mode at generic values of αf,0
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The spectrum of fluctuations is then extracted from the solutions of the EOMs that follow

from the action (E.1)+(4.52). The analysis is straightforward and we only report the results.

We refer the reader to [27] for details.

For the transverse modes ρi, in units of ω the frequencies are the solutions of the following

equation

2ϵ αf,0

√
1− α2

f,0 cos (2ϵ arcsin(αf,0)) +
[
α2
f,0 + ϵ2

(
1− α2

f,0

)]
sin (2ϵ arcsin(αf,0)) = 0 . (E.2)

Eq. (E.2) is solved by ϵ = 0, 1 for all values of αf,0, as expected due to the protected nature of

these modes. In the relativistic regime αf,0 ≃ 1 the other modes have frequencies given by

ϵn = n+
2
(
mωℓ2s

)3/2
3π

n
(
n2 − 1

)
+ . . . n = 2, 3, . . . , (E.3)

in agreement with eq. (4.70). In the NR regime αf,0 ≪ 1 there is a parametric separation

between the first two protected modes ϵ = 0, 1 and the other string excitations, whose gap

scales as 1/αf,0 ∼ mωℓ2s ≫ 1 and is given by

ϵn ≃ π(n− 1)

2αf,0
− αf,0

π2(n− 1)2/4− 6

3π(n− 1)
+ . . .

=
π(n− 1)mω

2ℓ−2
s

+

[
5π2(n− 1)2/4 + 6

]
ℓ−2
s

3π(n− 1)mω
+ . . . n = 2, 3, . . . .

(E.4)

The leading order term in eq. (E.4) coincides with the answer for the energy levels on a static

string of length 2αf,0/ω and Dirichlet boundary conditions.

The eigenfrequencies of the α/ϕ system are the solutions of the following equation:[(
1 + α2

f,0

)2 − 2
(
1 + 2α2

f,0 − 3α4
f,0

)
ϵ2 +

(
1− α2

f,0

)2
ϵ4
]
sin (2ϵ arcsin(αf,0))

+ 4ϵ αf,0

√
1− α2

f,0

[
1 + α2

f,0 −
(
1− α2

f,0

)
ϵ2
]
cos (2ϵ arcsin(αf,0)) = 0 . (E.5)

As before, the lowest modes are protected and have ϵ = 0, 1, that solve eq. (E.5) for any value

of αf,0. In the relativistic regime the other modes have frequency given by

ϵn = n− 1

3π

(
mωℓ2s

)3/2
n
(
n2 − 1

)
+ . . . n = 2, 3, . . . , (E.6)

in agreement with the result for light quarks eq. (4.73). In the NR regime the first unprotected

mode has frequency given by

ϵ2 =
√
3 +

α2
f,0

3
√
3
+ . . . =

√
3 +

1

3
√
3m2ω2ℓ4s

+ . . . . (E.7)

The other modes are parametrically heavier and, similarly to eq. (E.4), their gap at leading

order is as for a static string of length 2αf,0/ω and Dirichlet boundary conditions:

ϵn =
π(n− 2)

2αf,0
−
αf,0

[
π2(n− 2)2 − 48

]
12π(n− 2)

+ . . .

≃ π(n− 2)mω

2ℓ−2
s

+

[
5π2(n− 2)2 + 48

]
ℓ−2
s

12π(n− 2)mω
+ . . . n = 3, 4, . . . .

(E.8)
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Note that the nth mode of ρi and the (n+ 1)th ϕ/α mode have the same energy at leading

order in the NR limit.

A similar analysis can be performed for the axion. In the relativistic regime mωℓ2s ≪ 1 we

recover the results of Section 6.2, while for a NR rotating string its energy levels approximately

coincide with those of a massive particle on a static string:

ϵn ≃


√

m2
a

ω2 + π2(n+1)2

4α2
f,0

=
√

m2
a

ω2 + π2

4 (n+ 1)2m2ω2ℓ4s for Dirichlet√
m2

a
ω2 + π2n2

4α2
f,0

=
√

m2
a

ω2 + π2

4 n
2m2ω2ℓ4s for Neumann

n = 0, 1, . . . ,

(E.9)

where we reported the result both for Dirichlet and Neumann boundary conditions according

to the discussion in Section 6.2.

In summary, in the relativistic limit, we recover results analogous to those for light quarks,

while in the NR regime the spectrum coincides with that of a static string with Dirichlet

boundary conditions, but for the protected modes and the excitation (E.7), that creates the

only parametrically light states. As explained in the main text in Section 7.2, these light

states admit a simple interpretation in terms of a quark model with linear potential.

F Tables of mesons

This appendix reports the data that we used for mesons and lists the potential stringy

interpretation of each particle purely based on its quantum numbers. Fig. 4 summarizes our

predictions for the lightest excited states on top of the leading Regge trajectory, and tables 3

to 5 list and compare the mesons from PDG with these predictions.

At each spin J , we take the lightest ρ/a meson for I = 1 and the lightest ω/f meson

for I = 0 to be the string gorund-state. Fig. 3 and fig. 4 show that the parity assignment of

these states follow the same behavior expressed in eq. (8.3). As discussed in the first part

of this paper, we expect to have two string excitations at the second energy level on top of

each state on the Regge trajectory. Looking at PDG, we see candidates for this prediction

with parity assignments that match with table 1. Due to the subleading order corrections,

these two degenerate excited states would have an energy splitting that results in the angular

fluctuation to be lighter than the transverse one. The first plot in fig. 8 represents a subset of

particles with I = 1 that approximately follow this mass hierarchy.

Based on the discussion on parity assignments for spin states explained in Section (8.1),

for each string ground-state, we might have up to three associated spin states in the vicinity

of leading Regge trajectory. The second plot in fig. 8 shows the I = 1 PDG candidates for

these spin states. Following the parity assignment for pseudoscalar in table 1, we also expect

to see up to three axionic excitations among the particles around the first two daugther Regge

trajectories; we included three because the gap of the axion is not determined within EFT,

and it is a priori possible that the resulting modes are parametrically light. In fig. 8, the third

plot shows the PDG I = 1 candidates for these axionic excitations.
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Figure 7: Qualitative presentation of the predictions for the lightest daughter Regge

trajectories: For each spin J , the states are classified into three categories, separated by gray dashed

lines; we know the energy hierarchy in each category, but we don’t know the hierarchy between different

categories. The first column shows the axionic excitations (n = 0, n = 1, and two n = 0). The second

one shows the string excitations around second daughter Regge trajectory. The last column shows the

spin excitations. The double-side arrows are included because the hierarchy between those two states

is not determined from EFT.

Other than the single excitations and the double-axion of first-level (presented in fig. 7),

there are some multiple excitations that could be detectable in the range of our study. Potential

PDG candidates for such states are marked on the last two columns of tables 3 to 5. The

I = 1 candidates for such excitations are demonstrated in fig. 9. They all have overlaps with

the particles shown in fig. 8 except for π1(1400) and π1(1600)
40, known as isovector exotic

mesons. As mentioned in the main text, in our framework, their quantum numbers could only

match with an axionic excitation of a spin state.

40In fig. 9, they are represented in black.
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Table 3: Flavourless light mesons with isospin one, I = 1: Numbers in parenthesis are particle

masses in MeV. In the first column, “?” means that the particle is on Meson Summary Table but has

yet to be established; the particles that PDG refers to as Further States are marked by “??”. The

particles are first ordered by spin and then, by mass. The spin and discrete quantum numbers are given

in the third column. In the remaining columns, we put a check symbol if the particle has the right

quantum numbers to be interpreted as respectively a string ground-state, a transverse string excitation,

an angular string excitation, a spin state, an axionic excitation of the respective ground-state, an

axionic excitation of a spin state, or the angular fluctuation of a spin state. For the axionic states, the

level of axion excitation n is also determined. The symbol “∗” stands double-axion excitations. The

color codes are the same as those used in our plots.

JPC GS ρ ϕ S na S, a S, ϕ

π0(135) 0−+ ✓ 0

a0(980) 0++ ✓ ✓ 0∗

π(1300) 0−+ ✓ ✓ ✓

a0(1450) 0++ ✓ 0∗ ✓

ρ(770) 1−− ✓

b1(1235) 1+− ✓ 0

a1(1260) 1++ ✓ 1

π1(1400) 1−+ ✓

ρ1(1450) 1−− ✓ ✓

? ρ1(1570) 1−− ✓ ✓ 0∗ ✓

π1(1600) 1−+ ✓

a1(1640) 1++ 1 ✓

ρ(1700) 1−− ✓ ✓ 0∗ ✓

?? π1(1960) 1+− ✓ ✓

a2(1320) 2++ ✓

π2(1670) 2−+ ✓ 0

a2(1700) 2++ ✓ ✓

π2(1880) 2−+ ✓ ✓

?? ρ2(1940) 2−− ✓ 1 ✓

?? a2(1950) 2++ ✓ ✓ 0∗ ✓

?? a2(1990) 2++ ✓ ✓ 0∗ ✓

? π2(2005) 2−+ ✓ ✓

?? a2(2030) 2++ ✓ 0∗ ✓

? π2(2100) 2−+ ✓ ✓

ρ3(1690) 3−− ✓
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JPC GS ρ ϕ S na S, a S, ϕ

?? a3(1875) 3++ ✓

? ρ3(1990) 3−− ✓

?? b3(2030) 3+− ✓ 0

?? a3(2030) 3++ ✓ 1 ✓

?? b3(2245) 3+− ✓ ✓

? ρ3(2250) 3−− ✓ ✓ 0∗ ✓

?? a3(2275) 3++ 1 ✓

a4(1970) 4++ ✓

? ρ5(2350) 5−− ✓

?? a6(2450) 6++ ✓

Table 4: Flavourless light mesons with isospin zero, I = 0

JPC GS ρ ϕ S na S, a S, ϕ

f0(500) 0++ ✓

η(548) 0−+ ✓ 0

η(958) 0−+ ✓ 0 ✓

f0(980) 0++ ✓ ✓ 0∗

η(1295) 0−+ ✓ ✓ ✓

f0(1370) 0++ ✓ 0∗ ✓

η(1405) 0−+ ✓

η(1475) 0−+ ✓

f0(1500) 0++ ✓ 0∗ ✓

ω(782) 1−− ✓

ϕ(1020) 1−− ✓

η(1170) 1+− ✓ 0

f1(1285) 1++ ✓ 1

h1(1415) 1+− ✓ 0 ✓

f1(1420) 1++ ✓ 1 ✓

ω(1420) 1−− ✓ ✓ 0∗

? f1(1510) 1++ ✓ 1 ✓

? h1(1595) 1+− ✓ ✓
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JPC GS ρ ϕ S na S, a S, ϕ

ω(1650) 1−− ✓ ✓ 0∗ ✓

ϕ(1680) 1−− ✓ 0∗ ✓

? η1(1855) 1−+ ✓

f2(1270) 2++ ✓

? f2(1430) 2++ ✓

f ′2(1525) 2++ ✓

? f2(1565) 2++ ✓

? f2(1640) 2++ ✓

η2(1645) 2−+ ✓ 0

?? f2(1750) 2++ ✓ ✓

? f2(1810) 2++ ✓ ✓

η2(1870) 2−+ ✓ ✓

? f2(1910) 2++ ✓ ✓ 0∗

f2(1950) 2++ ✓ ✓ 0∗ ✓

?? ω2(1975) 2−− ✓ 1 ✓

?? f2(2000) 2++ ✓ ✓ 0∗ ✓

f2(2010) 2++ ✓ ✓ 0∗ ✓

?? η2(2030) 2−+ ✓

ω3(1670) 3−− ✓

ϕ3(1850) 3−− ✓

?? ω3(1945) 3−− ✓

?? h3(2025) 3+− ✓ 0

?? f3(2050) 3++ ✓ 1

?? ω3(2255) 3−− ✓ ✓ 0∗ ✓

?? h3(2275) 3+− ✓ ✓

f4(2050) 4++ ✓

?? ω5(2250) 5−− ✓

? f6(2510) 6++ ✓

– 83 –



Table 5: Strange mesons with isospin half, I = 1/2

JPC GS ρ ϕ S na S, a S, ϕ

K0(498) 0− ✓ 0

K∗
0 (700) 0+ ✓

K∗
0 (1430) 0+ ✓ 0∗ ✓

K(1460) 0− ✓ ✓ 1

K∗(892) 1− ✓

K1(1270) 1+ ✓ 0

K1(1400) 1+ ✓ 0/1

K∗(1410) 1− ✓ ✓

K1(1650) 1+ ✓ 1 ✓

K∗(1680) 1− ✓ ✓ 0∗ ✓

K∗
2 (1430) 2+ ✓

? K2(1580) 2− 0

K2(1770) 2− ✓ 0/1

K2(1820) 2− ✓ 0/1

K∗
2 (1980) 2+ ✓ ✓ 0∗ ✓

K∗
3 (1780) 3− ✓

? K3(2320) 3+ ✓ ✓ 1

K∗
4 (2045) 4+ ✓

? K∗
5 (2380) 5− ✓
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(b) PDG candidates for spin states
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(c) PDG candidates for axionic excitations

Figure 8: I=1 PDG candidates for our predictions: The solid line shows the leading Regge

trajectory, which is associated with ρ/a meson. The dashed lines show the first two daughter Regge

trajectories: M2
n(J) = M2(J)leading + n/ℓ̄2s with n = 1, 2. In (a), the blue markers represent the

candidates for the angular excitation, while particles in orange are candidates for the transverse

excitation. In (b), the orange and gray markers stand for candidates for the first two spin states in

plot 7. The last, expectedly heavier, spin state with the same quantum numbers as the ground-state, is

shown in blue. In (c), the candidates for the lightest axionic excitation, associated with level n = 0,

are shown in orange. The particles in blue are candidates for double-axion excitation with n = 0. An

axionic excitation with n = 1, heavier than the first n = 0 excitation, could appear either above or

below the second n = 0 excitation in gray.
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(b) PDG candidates for angular string fluctua-

tions of spin states

Figure 9: I=1 PDG candidates for mixed excitations: In (a), we represent the candidates

for n = 0 and n = 1 axionic excitations of spin states, which could be light enough to be observable

in the range of our study. Noting that the angular string excitation is lighter than transverse string

excitation, we only show the candidates for angular fluctuations of spin states in (b).
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