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We give a general procedure for constructing an extended phase space for Yang-Mills theory at
null infinity, capable of handling the asymptotic symmetries and construction of charges responsible for
subn-leading soft theorems at all orders. The procedure is coordinate and gauge-choice independent and
can be fed into the calculation of both tree and loop-level soft limits. We find a hierarchy in the extended
phase space controlled by the Bernoulli numbers arising in Todd genus computations. We give an example
of a calculation at tree level, in radial gauge, where we also uncover recursion relations at all orders for the
equations of motion and charges.
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Introduction. The null boundary of asymptotically flat
spacetimes (I) is an arena where unexpected deep con-
nections between a priori different physical results can be
made manifest, driving the quest for a flat space version [1]
of the celebrated holographic principle [4]. A prime
example of this is the duality between the soft theorems
and the so-called large gauge transformations via Ward
identities [5–11]. The soft theorems describe the behavior
of scattering amplitudes in the limit where the energy of
one or more of the particles vanishes. They are by now an
established result in quantum field theory [12,13]. In
contrast, the large gauge transformations are local sym-
metries, which, unlike their standard gauge counterparts, do
not vanish at the boundary and, hence, have a dynamical
role in the physical phase space.
An essential requirement for formulating the above

connection is the existence of a well-defined phase space
at null infinity I on which the symmetries act canonically.
It consists of the free data of the theory, and it allows us to
construct the charges corresponding to the large gauge
transformations, needed for the Ward identities to hold. The
soft theorems can be formulated more precisely as an
expansion in the small energy parameter, and the ideas
above have been established at leading order in a variety of
theories, as well as at some subleading orders [14–16].

An important question is whether we can extend this to all
orders in the energy expansion to give a full construction of
the extended phase space. There are some encouraging
signs coming from simplified setups, namely massless
QED [27] and self-dual theories in light-cone gauge [28].
In this paper we provide an affirmative answer to the

question above, working in the context of Yang-Mills
theory. We present a generalization of the Stueckelberg
procedure [29], an algorithm normally used for restoring a
broken gauge symmetry by the inclusion of a Goldstone-
type field. This allows us to construct an extended phase
space capable of accommodating the large gauge symmetries
necessary for the charges corresponding to subn-leading soft
theorems, for arbitrarily large n. Remarkably, the procedure
works independently of coordinate and gauge choice, even
accommodating field dependent gauge parameters. We also
make no assumptions at this stage about the falloff in the
coordinate dual to the energy (u in Bondi coordinates),
which means it can be applied to loop-level soft theorems as
well (see, e.g., [30–36]).
Interestingly, we find that the symmetry transformations

of the extended phase space Stueckelberg fields and
hence the hierarchical relations for the subn-charges are
controlled by the Bernoulli numbers, which arise from the
perturbative expansion of (an operator version of) the
characteristic power series generating the so-called Todd
polynomial [37,38].
In the second half of the paper, we show that the

equations of motion satisfy the necessary recursion rela-
tions to all orders in the radial expansion, and how this
relates to the energy expansion for subn-leading theorems.
To our knowledge, this has not been presented in the
literature at arbitrary order before. We accomplish this for
various gauge choices and coordinates, as will be detailed
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in a longer companion paper [39]. In this Letter, we will
specialize to radial gauge in Bondi coordinates.
Using the extended phase space constructed earlier, we

derive the expressions for the subn-leading charges, living
at null infinity. A standard renormalization procedure is
carried out in order to avoid infrared divergences (see,
e.g., [27]). Restricting to tree level, we also give a recursion
relation for the charges, using the very same recursive
relation from the equations of motion. For any n ≥ 0, we
prove the existence of a closed subalgebra of charges,
recovering known results from the literature at level
n ¼ 0 [5] and n ¼ 1 [15].
In the context of Ward identities, certain higher deriva-

tive interactions can display so-called quasiuniversal con-
tributions in addition to the universal terms [40,41]. We
compute these contributions to the subleading charge in
Yang-Mills using the dressing procedure in our framework,
for the particular example of an interaction of the form
ϕtrðF2Þ [42].
The paper is structured as follows: first, we describe

the general Stueckelberg procedure for constructing the
extended phase space. We also give expressions for the
charges and show that their algebra closes in the required
way. Next, we give an explicit example by focusing on
Bondi coordinates in radial gauge. We also give recursion
relations for the equations of motion and charges at all
perturbative orders in the radial and phase space expan-
sions, establishing a consistent charge algebra at each order.
Finally, we discuss the conclusions.
We give a more detailed account of these calculations in

the companion paper [39].

Extended phase space to all orders in arbitrary gauge and
coordinates. We are working in Yang-Mills (YM) theory
with the standard equation of motion in the absence of
matter sources

Eν ≡DμF μν ¼ 0; ð1Þ

with

F μν ¼ ∂μAν − ∂νAμ − i½Aμ;Aν�; ð2Þ

and the gauge field transforming as

A0
μ ¼ eiΛAμe−iΛ þ ieiΛ∂μe−iΛ: ð3Þ

We will assume that Aμ satisfies some gauge condition

GðAμÞ ¼ 0: ð4Þ

Let us denote our coordinates as xμ ¼ ðr; y⃗Þ, where r is our
expansion parameter [43]. Let us allow for a very general
expansion of the gauge field in terms of polyhomogeneous
functions

Aμ ¼
X
n;k≥0

Að−n;kÞ
μ ðy⃗Þ log

kr
rn

; ð5Þ

such that limr→∞
logkr
rn is of at most Oð1Þ. The logarithmic

terms are necessary for certain gauge choices (see, e.g., [15]
in Lorenz gauge). Let us assume we have determined the
radiative phase space:

Γ0 ¼ fA0 satisfying e:o:m: and the gauge conditiong: ð6Þ
We now wish to allow for large gauge transformations
with divergent behavior as r → þ∞, as expected in
subn-leading soft limits:

ΛþðxÞ ¼
X
n;k

rnlogkrΛðn;kÞðy⃗Þ; ð7Þ

with n and k chosen such that rnlogkr diverges as r → ∞.
More generally, we could find a possibly field dependent

parameter [44] given by

Λ̆þ ¼ Λ̆þ
�
AμðxÞ;ΛþðxÞ

�
;

¼
X
n;k

rnlogkrfðn;kÞ
�
Að0;0Þ
μ ðy⃗Þ;…;Λð0;1Þðy⃗Þ;…

�
: ð8Þ

It is this composite object that is the starting point for the
Stueckelberg procedure. We define the object

Ψ̆ ¼ Ψ̆
�
AμðxÞ;ΨðxÞ

�
;

¼
X
n;k

rnlogkr fðn;kÞ
�
Að0;0Þ
μ ðy⃗Þ;…;Ψð0;1Þðy⃗Þ;…

�
; ð9Þ

where f is as in (8), in other words (9) is obtained from (8)
via the replacement

ΛþðxÞ → ΨðxÞ; ð10Þ

where we have introduced our Stueckelberg field

ΨðxÞ ¼
X
n;k

rnlogkrΨðn;kÞðy⃗Þ; ð11Þ

with n, k as in (7). We then claim that the extended phase
space on which the subleading gauge transformations are
well defined is simply given by

Γext
∞ ≔ Γ0 × fΨðxÞg: ð12Þ

To verify this, we will derive the transformation rule for
ΨðxÞ and use this to construct our subn-leading charges,
which will act canonically on Γext

∞ . We first define the
extended gauge field by applying (10) to (3)

Ãμ ¼ eiΨ̆Aμe−iΨ̆ þ ieiΨ̆∂μe−iΨ̆: ð13Þ
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We then require that Ãμ has a standard linearized gauge
transformation

δΛ̆Ãμ ¼ D̃μΛ̆; ð14Þ

where D̃ is defined with respect to Ã and

Λ̆ ¼ Λð0Þ þ Λ̆þ; ð15Þ

where Λð0Þ is the parameter for the leading order large
gauge transformation. This requirement stems from the fact
the Stueckelberg field should not be thought of as an
additional field in the bulk but rather as originating from the
longitudinal components of the gauge field which were
discarded in the expansion (5). Then from (14) and (13),
and assuming that the transformation of the original gauge
field Aμ in (5) is unchanged, we derive

δΛ̆Ψ̆ ¼ O−1
−iΨ̆

�
Λ̆ − eiΨ̆Λð0Þe−iΨ̆

�
; ð16Þ

where we have introduced the operator

OX ≔
1 − e−adX

adX
¼
X∞
k¼0

ð−1Þk
ðkþ 1Þ! ðadXÞ

k; ð17Þ

where adXðYÞ ¼ ½X; Y� and O−1
X can be interpreted as an

operator version of the characteristic power series generat-
ing the Todd polynomials [37]

O−1
X ¼ adX

1 − e−adX
¼
X∞
m¼0

Bþ
mðadXÞm
m!

; ð18Þ

in terms of the Bernoulli numbers Bþ
m. This allows us to

extract the transformation of Ψ̆ at order m in Ψ̆

δ½m�
Λ̆ Ψ̆ ¼ Bþ

m

m!
ðad−iΨ̆Þm

�
Λ̆þ ð−1þ 2δm;1ÞΛð0Þ�: ð19Þ

We remark that for m > 1 and odd, the above vanishes,
since odd Bernoulli numbers Bþ

2kþ1 vanish for k > 0.
Incidentally, we remark that, in view of the identity

ζðmÞ ¼ ð−1Þm2þ1

2

Bþ
mð2πÞm
m!

; for m even; ð20Þ

where ζðmÞ is the Riemann ζ function [45], we can recast
(19), for m > 1, as

δ½m�
Λ̆ Ψ̆ ¼ 2ð−1Þm2þ1ζðmÞ

ð2πÞm ðad−iΨ̆Þm
�
Λ̆þ ð−1þ 2δm;1ÞΛð0Þ�:

ð21Þ

Next, recall that Λ̆ is a composite object depending on the
Stueckelberg field Ψ and possibly also the gauge field

itself, with the explicit form of f in (9) determined by the
gauge choice. Note that at m ¼ 0, Ψ̆ will transform via a
shift, as expected for a Goldstone-type mode [46].
The subn-leading charges, at all orders in n, arise as the

natural (renormalized) generalization of the leading charge

Q̃Λ̆ ¼
Z
B2

trðΛ̆F̃ μνÞrendSμν; ð22Þ

where we introduced the generalized field strength

F̃ μν ¼ eiΨ̆F μνe−iΨ̆: ð23Þ

Such renormalization has already been worked out in the
QED case at all orders [27], and we will proceed in the
same way for the YM case, with an explicit example given
in section. The volume element on the codimension two
hypersurface B2 is

dSμν ¼ dxBdyB
ffiffiffiffiffi
gB

p
mμnν; ð24Þ

where gB is the induced metric on B2 and mμ, nν are unit
vectors orthogonal to it. Wewill find it simpler to work with
the charge densities,

q̃Λ̆ ¼ tr
� ffiffiffiffiffi

gB
p

Λ̆F̃mn

�ðrenÞ; ð25Þ

where we use the notation

F̃mn ¼ F̃ μνmμnν: ð26Þ

Finally, making use of (16), and with the variation of
the gauge field unchanged, we can explicitly compute the
charge algebra. We note that it is deformed due to the
presence of the field-dependent parameter, e.g., [15,52],

fq̃Λ̆1
; q̃Λ̆2

g� ¼
1

2
½δΛ̆1

q̃Λ̆2
þ q̃δΛ̆1 Λ̆2

− ð1 ↔ 2Þ� ¼ q̃½Λ̆1;Λ̆2�� ;

ð27Þ

where the deformed bracket is

½Λ̆1; Λ̆2�� ¼ −i½Λ̆1; Λ̆2� þ δΛ̆1
Λ̆2 − δΛ̆2

Λ̆1: ð28Þ

Details of the derivation will be provided in [39].

Recursive construction in radial gauge. Recursive con-
struction in radial gauge In this section we will present a
recursion relation that allows us to construct the compo-
nents of the gauge field at any order. This will be crucial in
the construction of the charges.
Let us specialize to Bondi coordinates, working in a

neighborhood of Iþ,

ds2 ¼ −du2 − 2dudrþ 2r2γdzdz̄; ð29Þ
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where γ ¼ 2
ð1þzz̄Þ2. For simplicity, let us assume that the

gauge choice (4) allows for a consistent field expansion free
of logarithmic terms in (5) [53], such that a general tensor
T μ1…

ν1… is expanded as

T μ1…
ν1…ðu; r; z; z̄Þ ¼

X
n∈N

1

rn
Tð−nÞμ1…

ν1…ðu; z; z̄Þ: ð30Þ

General recursion relations to arbitrary order in r in radial
gauge: Let us now specialize to radial gauge, where Ar

vanishes, together with the standard condition Að0Þ
u ¼ 0.

The equations of motion in radial gauge, at arbitrary order
in the radial expansion, are given in [42]. From these
equations with n ¼ 2, we first get [54]

Að−1Þ
u ¼ 2γ−1

�
∂ðzA

ð0Þ
z̄Þ þ i∂−1u

h
∂uA

ð0Þ
ðz ; A

ð0Þ
z̄Þ
i�

; ð31Þ

where

∂
−1
u fðu; z; z̄Þ ≔

Z
u

−∞
fðu; z; z̄Þdu: ð32Þ

For n ≥ 2 we find

Að−nÞ
u ¼ −

2γ−1

n

 
∂ðzA

ð1−nÞ
z̄Þ þ

Xn−1
k¼1

ik
1 − n

h
Að1þk−nÞ
ðz ; Að−kÞ

z̄Þ
i!

:

ð33Þ

We notice that, in general,

Að−nÞ
u depends on

	
Að−kÞ
z ; Að−kÞ

z̄



k<n: ð34Þ

Let us now focus on the remaining Az and Az̄ components.
After some algebra we obtain, for n ≥ 1,

Að−nÞ
z ¼ ∂

−1
u

2

�
∂zA

ð−nÞ
u þ ð1 − nÞAð1−nÞ

z þ 1

n
∂z

�
γ−1Fð1−nÞ

zz̄

�

−
i
n

Xn
k¼1

h
Aðk−nÞ
z ; ð2n − kÞAð−kÞ

u þ γ−1Fð1−kÞ
zz̄

i�
:

ð35Þ
By plugging (33) into the above, and in light of (34), we

see that we have

Að−nÞ
z depends on

	
Að−kÞ
z ; Að−kÞ

z̄



k<n; ð36Þ

with a completely analogous result for Að−nÞ
z̄ . Finally, from

(34) and (36) we see that all the gauge components can be

constructed recursively from fAð0Þ
z ; Að0Þ

z̄ g.
The above equations, together with all the expressions

in the Supplemental Material [42], can be checked
explicitly to arbitrarily high order using the Mathematica

package developed by one of the authors, which will be
presented in [55].
As we will see below, for the construction of charges we

will be specifically interested in Fð−nÞ
ur , and we reproduce

the recursion formula for this below for convenience,

Fð−2Þ
ur ¼ 2γ−1

�
∂ðzA

ð0Þ
z̄Þ þ i∂−1u

h
∂uA

ð0Þ
ðz ; A

ð0Þ
z̄Þ
i�

ð37Þ

and

Fð−nÞ
ur ¼ −2γ−1

 
∂ðzA

ð2−nÞ
z̄Þ þ

Xn−2
k¼1

ik
2 − n

h
Að2þk−nÞ
ðz ; Að−kÞ

z̄Þ
i!

ð38Þ

for n ≥ 3. Let us briefly discuss the consequences of the ∂−1u
operator appearing in the recursion relations above. We will
assume that we are working at tree level, in which case at
leading order we have [27,56]

lim
u→�∞

Fð−2Þ
ur ðu; z; z̄Þ ¼ Fð−2;0Þ

ur ðz; z̄Þ þ oðu−∞Þ; ð39Þ

where Fð−n;kÞ
ur denotes the coefficient of uk

rn in a formal
expansion in r and u, and oðu−∞Þ is a remainder that this
falls off faster than juj−n, for any n > 0. The recursion
relations (31), (33), and (35) imply that the fields have the
following polynomial expansion in u

lim
u→�∞

Að−nÞ
z ðu; z; z̄Þ ¼

Xn
k¼0

Að−n;kÞ
z ðz; z̄Þuk þ oðu−∞Þ;

lim
u→�∞

Að−nÞ
u ðu; z; z̄Þ ¼

Xn−1
k¼0

Að−n;kÞ
u ðz; z̄Þuk þ oðu−∞Þ: ð40Þ

In the companion article [39] we additionally present an
arbitrary order recursion relation in light-cone gauge.

Charge construction and algebra: In radial gauge in Bondi
coordinates, the renormalized charge (22) reduces to

Q̃Λ ¼
Z
S2
tr

 X
l¼0

ΛðlÞðr2F̃ruÞð−lÞ
!
dSS2 ; ð41Þ

where dSS2 ¼ γdzdz̄, and F̃ru is defined as in (23). We
shall not impose any further constraints, thus leading to a
simplified version of the expression for Ψ̆, Eq. (9), and
we have

Ψ̆ðxÞ ¼ ΨðxÞ ¼
X∞
k¼1

rkΨðkÞðu; z; z̄Þ: ð42Þ

For each l ≥ 0, consider the extended charge density
associated to ΛðlÞ, defined as
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q̃ΛðlÞ ≔ tr

�
ΛðlÞFð−2−lÞ

ru −
�
iΨð1Þ;ΛðlÞ�Fð−3−lÞ

ru

þ
�
1

2

�
iΨð1Þ;

�
iΨð1Þ;ΛðlÞ�� − �iΨð2Þ;ΛðlÞ��

× Fð−4−lÞ
ru þ � � �

�
: ð43Þ

Observe that q̃ΛðlÞ is linear in both ΛðlÞ and the coeffi-

cients Fð−i−lÞ
ru .

In what follows we will define a hierarchy of
subn-charges, labeled by jþ l ≥ 0 in the set of sequences

ffqjΛðlÞgl≥0gj≥0, where q
n
denotes that we are working up to

order n in Ψ in the expansion of q. At each cutoff in the
expansion of Ψ we will construct a closed charge algebra,
that approximates q̃ΛðlÞ . Each charge algebra will corre-
spond to the radiative, linear, quadratic,..., approximations.
Let us now expand in the field Ψ. At zeroth order

we obtain the standard large gauge symmetry charges.
Working up to linear order, we have

q
1

Λð0Þ ¼ tr
�
Λð0ÞFð−2Þ

ru −
�
iΨð1Þ;Λð0Þ�Fð−3Þ

ru

�
; ð44Þ

q
0

Λð1Þ ¼ tr
�
Λð1ÞFð−3Þ

ru

�
: ð45Þ

We note that (44) and (45) agree with the expressions
previously computed in [15]. At order n we have the
expressions below, showcasing how charges at order n in
the Stueckelberg field can be constructed recursively from
the lower order charges:

q
0

ΛðnÞ ¼ tr
�
ΛðnÞFð−2−nÞ

ru

�
; ð46Þ

q
1

Λðn−1Þ ¼ q
0

Λðn−1Þ − q
0

½iΨ;Λðn−1Þ�ðnÞ ; ð47Þ

…

q
n
Λð0Þ ¼ q

n−1
Λð0Þ −

Xn
k¼1

q
0 �

1
k!ad

k
iΨðΛð0ÞÞ

�ðnÞ : ð48Þ

This hierarchy is schematically represented in Fig. 1 in [42].

Finally, the charge algebra spanned by fq0 ΛðnÞ ;…; q
n
Λð0Þg

at the nth level can be shown to close via the identities

n
q
k

ΛðlÞ
1

; q
j

ΛðmÞ
2

o
¼
(

q
kþj−n

−i
�
ΛðlÞ
1
;ΛðmÞ

2

� if lþm ≤ n

0 otherwise
; ð49Þ

where kþ l ¼ jþm ¼ n. As will be shown in the longer
companion paper [39], a subset of these charges is equivalent
to the recursion relations presented in [57,58], where a sector
of the charges was shown to obey the infinite-dimensional
Yang-Mills analog of the w1þ∞ algebra.

Conclusions. We have given the first construction of an
enlarged phase space at null infinity to all orders, capable of
producing the charges needed for understanding the sym-
metry origin of subn-leading effects, both at tree and loop
level, in the context of YM theory. The first novel feature of
our construction is that it employs a generalization of the
Stueckelberg procedure, which has so far appeared in
seemingly unrelated studies of massive gauge theories
and cosmology [29,59–61]. The unifying principle is the
presence of a local broken symmetry, though in our case
this is subtly related to the radial expansion at null infinity.
We demonstrated the procedure by taking the radial

gauge in Bondi coordinates as an example, further giving
general nth order recursion relations in this context, which
facilitates the construction of charges to all orders, working
at tree level. A new insight here is that the recursion
relations for the charges within the hierarchy are controlled
by the Bernoulli numbers in the expansion of the generating
power series for the Todd polynomials. Since B2kþ1 are
vanishing for k > 0, it seems that the higher levels are
controlled by the even subn-leading charges. We will
explore this further in future work.
A natural question is whether this extends to gravity,

where work at the first few subleading orders already exists
in some contexts (e.g., [15,17,62,63]), see also results in the
Newman-Penrose formalism [58]. An encouraging sugges-
tion comes from the toy model calculation in [28], where
the self-dual sector of gravity was considered. Additionally,
a straightforward relation was established there between
YM and gravity, advancing the double copy program at the
level of fields and symmetries. An exciting prospect opened
up by our results here is whether this can be extended to the
full YM and gravitational theories [64]. The construction
presented in this Letter is particularly well suited for a
generalization to gravity, via the finite action of a
“Stueckelberg” diffeomorphism ξ acting on the metric g,

ğ ¼ eLξg: ð50Þ
A proper understanding of the role of classical large

gauge symmetries in the quantum symmetries of the S
matrix is necessary for establishing a holographic principle
in asymptotically flat spacetimes (e.g., [2,3] and references
therein). The hierarchical structure of charge algebras en-
compasses, in a subsector, an infinite-dimensional algebra
in the so-called corner approach to gauge theories and
gravity [57,70] and in the celestial holography program
[71,72]. It would be interesting to see how they fit in our
generalized framework.
In relation to scattering amplitudes, the next step is to

directly apply the ideas in this article to the calculation
of subn-leading soft theorems, including the loop effects
[30–36,73], via the Ward identities [74]. A simple setup
that looks promising as a starting point for going to
arbitrary orders is the self-dual sector, which has the benefit
of being one-loop exact, for both Yang-Mills and
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gravity [75–81], and which preserves the infinite dimen-
sional algebras above at loop level [82–85].
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