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ABSTRACT

Aims. We study the secular evolution of two planets in mutual deep mean-motion resonance (MMR) in the planar elliptic three-body
problem framework for different mass ratios. We do not consider any restriction in the eccentricity of the inner planet e1 or in the
eccentricity of the outer planet e2.
Methods. The method we used is based on a semi-analytical model that consists of calculating the averaged resonant disturbing func-
tion numerically. It is assumed for this that all the orbital elements (except for the mean longitudes) of both planets are constant on the
resonant timescale. In order to obtain the secular evolution inside the MMR, we make use of the adiabatic invariance principle, assum-
ing a zero-amplitude resonant libration. We constructed two phase portraits, called the H1 and H2 surfaces, in the three-dimensional
spaces (e1,∆ϖ,σ) and (e2,∆ϖ,σ), where ∆ϖ is the difference between the planetary longitude of perihelia and σ is the critical angle.
These surfaces, which are related through the angular moment conservation, allow us to find the apsidal corotation resonances (ACRs)
and to predict the secular evolution of e1, e2, ∆ϖ, and σ (libration center).
Results. While studying the 1:1, 2:1, 3:1, and 3:2 MMR, we found that large excursions in eccentricity can exist in some particular
cases. We compared the secular variations of e1, e2, ∆ϖ, and σ predicted by the model with a numerical integration of the exact
equations of motion for different mass ratios. We obtained good matches. Finally, the model was applied to study the secular evolution
of the resonant exoplanet systems HD 73526 and HD 31527. They both have a pair of planets and are very close to the deep MMR
condition. In the first system, we found that the pair of planets that constitutes the system evolves in a symmetrical ACR, whereas in
the second system, we found that planets c and d, which are in an unusual 16:3 MMR, are close to an ACR, but outside its dynamical
region, where ∆ϖ circulates.
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1. Introduction

The long-term dynamical evolution of planetary systems is
defined by what is called their secular dynamics. Some planetary
systems are occasionally known to be in mean-motion resonance
(MMR), which means that their orbital periods are related in a
simple way. The secular dynamics of planetary systems within
MMR are generally very different from those outside MMR
(Beaugé & Michtchenko 2003; Callegari et al. 2004; Batygin &
Morbidelli 2013).

Methods for studying the secular dynamics of planetary sys-
tems within an MMR must initially contemplate and correctly
reproduce the dynamics of the MMR. Some methods for plan-
etary systems in MMR have been developed using analytical
methods (Batygin & Morbidelli 2013; Quillen & French 2014),
some were pure numerical studies (Haghighipour et al. 2003),
and semi-analytical methods were also proposed (Michtchenko
et al. 2008; Gallardo et al. 2021).

The secular evolution of planetary systems within MMRs is
a more challenging problem (Batygin & Morbidelli 2013). The
restricted problem is a simpler case, that is, a particle that is
perturbed by an unperturbed planet. In our first paper (Pons &
Gallardo 2022), we proposed a method for following the secu-
lar dynamics of a particle in deep resonance (i.e., zero libration
amplitude) with a planet. In this paper, we generalize the method
to the study of a two-planet system in deep MMR, allowing us to

obtain the long-term evolution of the planetary system without
restrictions on the eccentricity.

This work is organized as follows. Section 2 describes the
theoretical framework, starting with the Hamiltonian formalism,
the calculation formulae for the equilibrium points, and a brief
description of the invariant adiabatic principle that allows the
application of the model on secular timescales. Then, Sect. 3
describes the method we used to apply the model in the most
generic and comprehensive way. There, we recall the defini-
tion and construction of the phase-space graphical representation
we call H surface. Finally, we describe some nomenclature
that we used to distinguish and classify the apsidal corrota-
tion resonances (ACRs). Section 4 presents the most interesting
results. This section is divided into two subsections, the first of
which presents the generic results found for 1:1, 2:1, 3:1, and
3:2 MMRs, and the second subsection contains the results we
achieved by applying the model to two real exoplanetary systems.
In Sect. 5, we present our conclusions.

2. Theoretical framework

2.1. Semi-analytical theory

As is commonly used, index 1 is reserved for the inner and
index 2 for the outer planet. This means that a1 ≤ a2. Index 0
is reserved for the star. The method we describe in this work is
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valid for coplanar orbits of planets in deep MMR with arbitrary
masses. In order to obtain some simplified expressions below, we
assume that m1,2 << m0.

Following the model developed by Gallardo et al. (2021), we
can express the canonical elements of the planets in a coplanar
configuration as follows:

λi; Li = βi
√
µiai

ϖi; Γi = Li(
√

1 − e2
i − 1),

(1)

where βi = m0mi/(m0 + mi) is the reduced mass, µi = k2(m0 +
mi), ai is the ith planet semi-major axis, ei is the eccentricity,
and k is the gravitational Gauss constant. With these variables,
the Hamiltonian takes the next form,

H = −
µ2

1β
3
1

2L2
1

−
µ2

2β
3
2

2L2
2

− R, (2)

where R is the disturbing function, which can be expressed in the
following way:

R =
k2m1m2

|r2 − r1|
−

m1m2

m0
v1 · v2. (3)

Here, ri, vi are the planetary position and velocities in the
Poincare reference system. The nonperturbative Hamiltonian is
given by the termH0 = H + R.

Our next step is to introduce the so-called critical angle σ =
k1λ1 − k2λ2 + (k2 − k1)ϖ1. In order to do so, we apply a canonical
transformation (see Appendix A) and obtain the following set of
canonical variables:

σ; I1 = L1/k1

λ2; I2 = L2 + k2L1/k1

∆ϖ; K1 = Γ1 − (k2 − k1)L1/k1

ϖ2; K2 = Γ1 + Γ2 − (k2 − k1)L1/k1.

(4)

This transformation also introduces the variable ∆ϖ = ϖ1 −

ϖ2, which is useful for studying the ACRs in planetary systems
(Beaugé et al. 2003; Michtchenko et al. 2008).

To conclude the basis of our theoretical development, we
calculate the averaged disturbing function R (see Appendix A)
following the approach given in Gallardo (2020), that is, we
make an average in λ2 assuming that on the resonant timescale
(which is longer than the timescale on which the average is per-
formed) a1, a2, e1, e2, and ∆ϖ remain constant. This is a good
approximation as long as the eccentricities are not too close to 0,
because the closer they are to 0, the larger the longitudes of the
perihelion change rate.

After the averaging, the Hamiltonian no longer depends on
λ2. Therefore, I2 becomes a constant of motion, correlating the
evolution of the semi-major axis. Additionally, when we apply
D’Alembert rules to a generic argument of the form ϕ = k1λ1 +
k2λ2 + k3ϖ1 + k4ϖ2, it can be demonstrated that R depends on
σ and ∆ϖ, but not on ϖ2, implying that K2 is another constant
of motion. Based on these arguments, the Hamiltonian takes the
following form:

H = H0(I1; I2) − R(σ, I1,K1,∆ϖ; I2,K2), (5)

where all the values before the semicolon are variables, and
all values after the semicolon are considered fixed parameters.
These dependences of the resonant Hamiltonian variables are
valid on secular timescales.

2.2. Equilibrium points

Under the assumption of deep MMR condition, the two semi-
major axis are constant, that is, L1 and L2 are also constant (see
Sect. 2.3). In addition, on resonant timescales, as we previously
stated, e1, e2, and ∆ϖ can also be considered constant, that is,
K1 and K2 are constant. This allows us to write that

H = H0(I1; I2) − R(σ; I1 = I1nom, I2,K1,K2,∆ϖ), (6)

where I1 = I1nom (where nom stands for nominal, which refers
to the values for the exact resonance, given by Eq. (8)), and
the remaining values after the semicolon are considered fixed
parameters, at least on the resonant timescale. We consider I1 to
be a variable in the nonperturbative term, but a constant in the
perturbative term. This manipulation does not change the results
and simplifies the search for the equilibrium point.

To obtain the equilibrium points under these further assump-
tions, we used the canonical equations. Therefore, we have that
the equilibrium points must satisfy the following conditions:

∂H0

∂I1
= 0 ;

∂R

∂σ
= 0. (7)

The first equation leads to n1k1 = n2k2, where ni describes
the planetary mean motions. This is the deep resonant condition,
which is equivalent to the following formula:

a1 = a2

(
m0 + m1

m0 + m2

)1/3 (
k1

k2

)2/3

≡ a1nom, (8)

where for a given a2, a1 is defined by the masses and by the
MMR k2:k1. We refer to this value as the nominal semi-major
axis of the resonance.

The second equation indicates that all the equilibrium points
are located in the extrema of the R(σ) function. In particular,
it can be demonstrated (see Appendix A) that the stable equi-
librium points occur in the minima of this function. We assume
that a minimum occurs in σn. Therefore, we can say that there
is an stable equilibrium point in (I1, σ) = (I1nom, σn). In resonant
dynamics, the stable equilibrium points are also known as libra-
tion centers. In general, for a given set of (a1, a2, e1, e2,∆ϖ), N ≥
1 libration centers (I1nom, σn) can exist with n = 1...N. For better
graphical representations, we occasionally use an alternative for
the critical angle, which is defined as follows:

θ = k1λ1 − k2λ2. (9)

A priori, all libration centers are valid. Nevertheless, when
a close encounter between the planets occurs, the evolution can
become unstable, leading to strong changes in the orbital ele-
ments, including ai. This implies that the MMR is broken. In
order to dismiss these stable equilibrium points in the encounter
condition, we use Hill’s criteria. Consequently, we disregard a
libration center when the following condition is met:

|r2 − r1| < ξRHill, (10)

where RHill is the planetary Hill radius, which is defined as
follows (Gladman 1993):

RHill =
a1 + a2

2

(
m1 + m2

3m0

)1/3

. (11)

For practical use, we chose in general a ξ value from 3 to
4, depending on the particular studied case. A more complete
analysis of ξ values can be found in Gallardo et al. (2021).
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Fig. 1. Averaged resonant Hamiltonian contour curves in plane (a2, σ)
in 3:1 MMR for a system with m1 = m2, e1 = 0, 47, e2 = 0, 38, and
∆ϖ = 84◦.

2.3. Secular model

With the purpose of deriving a model that is applicable to sec-
ular timescales, we used the adiabatic invariant principle. In the
celestial mechanics context, in particular, in planetary dynamics,
this principle states that as long as the variations in ei and ∆ϖ are
slow enough, a quantity J exists that is related to faster variables
(I1 and σ). This variable remains constant in time. This quantity
is known as the adiabatic invariant and is defined as follows:

J =
∮

I1dσ. (12)

This definition can be interpreted as the enclosed area inside
one of the curves of the Hamiltonian level shown in Fig. 1. The
mathematical details of which exactly mean that the variations
in ei and ∆ϖ are slow enough can be found in Henrard (1993).
In simple terms, we assumed that ei and ∆ϖ change much more
slowly (i.e., adiabatically) than I1 and σ.

For practical reasons, we assumed the ideal case of J = 0,
as in Pons & Gallardo (2022). This implies that the area of the
enclosed curve in the (I1, σ) plane is 0. In other words, we are
located exactly in the libration center. In this situation, the plan-
etary resonant angles librate around the equilibrium value, but
with null resonant amplitude, which describes the deep MMR
hypothesis we mentioned in Sect. 2.1.

The value of a given libration center σn can change as a con-
sequence of ei and ∆ϖ variations (we recall Eqs. (6) and (7))
that are present in the secular evolution. When no encounter
occurs, the adiabatic invariant principle ensures that the system
continues in a deep MMR condition.

3. Method

3.1. AMD conservation

Since we have thatK2 is a constant of motion and L1 is assumed
constant (because of the deep MMR hypothesis), we conclude
that −(Γ1 + Γ2) is also constant. This is the quantity known as
angular momentum deficit (AMD), which is defined as follows
(Laskar 1997):

AMD =
2∑

i=1

βi
√
µi

(
1 −

√
1 − e2

i

)
. (13)

Petit et al. (2017) concluded that in the presence of MMR,
there is no guarantee that AMD is conserved. This is mainly due
to the chaos that emerges when an MMR overlap occurs, partic-
ularly in high-eccentricity domains. We assumed that there is no
MMR overlapping, which is reasonable in the deep-resonance
hypothesis. In other words, we assumed that AMD is conserved
even in a MMR.

3.2. Eccentricity domain

If the AMD is conserved, then the following quantity is also
conserved:

AM = β1

√
µ1a1(1 − e2

1) + β2

√
µ2a2(1 − e2

2). (14)

This quantity becomes the angular momentum of the system
when m1,2 << m0 (Michtchenko et al. 2008). Regardless of the
case,AM always has the same functional form, which is

AM = C1

√
1 − e2

1 +C2

√
1 − e2

2, (15)

where C1 = β1
√
µ1a1 and C2 = β2

√
µ2a2 are constants because

they only depend on the masses and semi-major axis (which are
constant because of the deep MMR hypothesis). It is convenient
to define a normalizedAM as follows:

AMnorm =
AM

AMmax
=

√
1 − e2

1

1 + η
+

√
1 − e2

2

1 + η−1 , (16)

whereAMmax = C1 +C2, and η = C2/C1 is a new parameter we
defined. With some simple operations, we obtained

η =
m2
√

(m0 + m2)a2

m1
√

(m0 + m1)a1
≃

m2

m1

3

√
k2

k1
, (17)

where the last equality is valid only when m1,2 << m0. In this
condition, the functional form of AMnorm only depends on the
planetary mass ratio and on the MMR in which the masses are
locked. Figure 2 shows an example of theAMnorm function and
its contour curves. These curves allow a rapid identification of
the eccentricity domains, that is, the possible variation ranges of
e1 and e2.

In order to inclusively and generically study the secular
dynamics of resonant coplanar planets with eccentric orbits, we
assumed AMnorm and η as free parameters. A priori, a double
sweep in these two parameters might be performed. Neverthe-
less, in the context of planetary dynamics, we considered a
predefined set of MMRs and a set of mass ratios that determined
the values for η. On the one hand, the MMR set comprised the
most typical and stronger resonances, which are the 2:1, 3:2, 3:1,
and 1:1 MMR. For the ratio m2/m1, we considered the values
1/20, 1/5, 1, 5, and 20. From the combination of these two sets,
we obtained 20 different values for η that ranged from 0.5 to
almost 30. On the other hand, the AMnorm values were chosen
(after η was defined) after an inspection of the contour curves,
with the aim of selecting the cases for which a higher eccentric-
ity excursion appeared possible. This condition was usually met
for AMnorm values between 0.7 to 0.95. We present the most
interesting cases hereafter studying all those that resulted from
our selection criteria.
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Fig. 2. Normalized angular momentum functionAMnorm(e1, e2) for 2:1
MMR with m2 = m1. (a) Three-dimensional plot ofAMnorm(e1, e2). (b)
AMnorm(e1, e2) contour curves with numerical values above the curves.

AfterAMnorm was fixed, the value of one eccentricity deter-
mined that of the other. For instance, for a value of e1, e2 is given
by the formula below,

e2 =

√
1 −

[
(1 + η−1)AMnorm − η−1

√
1 − e2

1

]2
. (18)

This equation allows drawing two restrictions. The first
restriction emerges just from the fact that the term inside the
radicals must be positive. Therefore,

AMnorm ≤

√
1 − e2

1 + η

1 + η
. (19)

The second restriction arises when we inspect the term inside
the straight parentheses in expression (18). This term must be

also positive because if it is not, the second term in Eq. (16)
would be negative. For this reason, we have

AMnorm ≥

√
1 − e2

1

1 + η
. (20)

These two limiting conditions for the eccentricity variation
ranges are useful in the next section, when we detail the method
we used to explore the phase space.

3.3. H surfaces

Exploiting the fact that we work with conservative systems, we
constructed some phase portraits that are very useful because
they contain the constant Hamiltonian contour curves. When
a system has more than one degree of freedom, these phase
portraits are constructed considering one coordinate and its con-
jugate momenta as variables and the rest as parameters. In our
case, the averaged Hamiltonian has three degrees of freedom
a priori, which translates into six variables that essentially are
a1, a2, e1, e2, ϖ1, and ϖ2. On the one hand, as a result of the
deep MMR condition, a1 and a2 were assumed constant, and as
we mentioned previously, R depends on ∆ϖ and σ (not on ϖ1
andϖ2 separately). On the other hand,AM conservation allows
us to establish a relation between e1 and e2. Therefore, we have
essentially three variables of interest to understand the secular
evolution in the resonant context, which are ei (where the index
i takes the value 1 or 2), ∆ϖ, and σ. For the three variables, we
used the graphical representation developed by Pons & Gallardo
(2022). This representation allows us to build one single phase
portrait that contains all the information of the secular evolution
of the system instead of several bidimensional phase portraits
with one of the three variables as a parameter. The single phase
portrait containing all the information is calledH surface.

Pons & Gallardo (2022) introduced the H surface for the
restricted case of the coplanar and resonant three-body problem.
In the present research, we need two H surfaces, one for each
planet. Consequently, one surface is associated with the vari-
ables (e1,∆ϖ,σ), and the other surface with (e2,∆ϖ,σ). We call
these phase portraits surfaceH1 and surfaceH2. They are related
through the AM conservation because this condition relates e1
with e2 (we recall expression (15)). As a consequence, the topol-
ogy of the two surfaces is the same, but they can vary somewhat
in size or scale. For this reason, it is usually sufficient to study
one of them to understand the system evolution qualitatively.

3.4. Apsidal corotation resonances

In terms of secular evolution, there are two possible behaviors
for the angular variable ∆ϖ. The first behavior is circulation,
where ∆ϖ eventually takes on all the possible values for an angu-
lar variable and essentially maintains the same sign as the time
derivative. Alternatively, ∆ϖ can librate (or oscillate) around
a certain value. In this last case, the two planets are in ACR
(Beaugé et al. 2003; Zhou et al. 2004). If this libration has null
amplitude, the angle between each the line of the apsides of each
orbit is fixed and the two eccentricities also remain unchanged.
The situation in which each orbit is frozen with respect to
the other persists until some external mechanism removes the
planets from the exact ACR point.

The ACRs are classified into two groups: symmetric ACRs,
and the asymmetric ACRs. The symmetric ACRs occur when
∆ϖ is 0° or 180°. In asymmetric ACRs, ∆ϖ takes the remaining
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possible angular values. This ACR distinction is very frequently
used in the literature. Is reasonable that asymmetric ACR have
double multiplicity because of the geometrical symmetry of
the problem, as we explain next. When the orientation of one
orbit with respect to the other implies that the relative position
between them is frozen on secular timescales, then the evolution
should be the same when we consider a new configuration of the
orientation, making an axial symmetry with respect to the sym-
metry of the apsis lines. Moreover, the planetary position in the
orbit should also be symmetrical to the line of aspsis. The math-
ematical counterpart of these statements is that when M is the
mean anomaly, when an ACR exists in (∆ϖ,M1) = (∆ϖα,M1α)
(we assumed M2 = 0◦), then another ACR exists in (∆ϖ,M1) =
(−∆ϖα,−M1α). With some simple operations, the same holds
for the critical angle, that is, when the first ACR has σ = σα,
then the other ACR has σ = −σα. A numerical example would
be that when an ACR exists in ∆ϖ = 45◦ and σ = 60◦, then
another asymmetric ACR must exist in ∆ϖ = 360 − 45 = 315◦
and σ = 360 − 60 = 300◦ (here we summed 360◦ just to work
with positive values). In order to simplify the ACR count, we
always refer to a group of two ACRs as one asymmetric ACR.

We introduce another criterion below to classify ACRs in the
framework of resonant dynamics. ACR type I or ACRI are ACRs
with a fixed libration center on the secular timescale. Conversely,
ACR type II or ACRII are ACRs with a changing libration cen-
ter on secular timescale (in all studied cases, this change was
always of a circulation type, but there is no reason a priori that
prevents it from having a librational-type change in the nominal
value of the ACR). In this case, the exact ACR may coincide
with the edge of an H surface. This implies that a system in an
exact ACRII cannot possibly maintain invariant J because it is
too close to the edge of theH surface (Pons & Gallardo 2022).

3.5. Numerical integrations

To perform numerical integrations, we made use of the Mer-
curius algorithm included in the Rebound Python package,
which is a hybrid symplectic integrator that is very similar to
Mercury (Chambers 1999). It is basically composed of a WHFast
algorithm that switches over smoothly to IAS15 whenever a
close encounter occurs.

4. Results and discussion
4.1. General results

Without losing generality, we fixed some variables to explore the
phase space. For the rest of the work, we have a2 = 1 au and a
larger planet with mass mi = 1 MJ .

With the aim of testing and validating the model, we com-
pared every phase portrait presented in this paper with numerical
integrations of the exact equations of motion. A small correction
was sometimes required to the initial value for a1 given by Eq. (8)
in order to ensure the deep MMR condition. This is mainly due to
the short-term perturbations and to the law of structure (Ferraz-
Mello 1988), which can slightly modify the resonant nominal
semi-major axis. The MMR we studied first is presented below.
In some of the integrations, we had to implement these cor-
rections to ensure the zero-amplitude condition in the resonant
librations.

4.1.1. MMR 2:1

In panel a of Fig. 3, we show two examples of H surfaces,
both regarding a planetary system locked in 2:1 MMR with

Fig. 3. Phase portraits for MMR 2:1 andAMnorm = 0.9. (a)H2 surface
for a system with m2/m1 = 0.2. The ten numerical integrations run for
10 kyr are plotted in colors (some areas of the surface were removed for
clarity). (b)H1 surface for a system with m2/m1 = 1. The nine numeri-
cal integrations run for 1 kyr are shown.

AMnorm = 0.9. The first system is a planetary system with
m2/m1 = 0.2. In this case, there are two topologically separated
surfaces in the phase portrait. When this occurs, we name them
subsurfaces. One of the subsurfaces has a constant libration cen-
ter (θ = 0◦) and an ACRI in (e2,∆ϖ, θ) = (0.88, 180◦, 0◦). The
contour curves of the constant Hamiltonian are plotted in black,
and the five numerical integrations run to test the model are
shown in red (some initial a1 values were modified up to 7%
from the nominal value to obtain the deep MMR condition).
Two integrations were required in the case of apsidal corotation
resonance, and three were required with a circulating ∆ϖ.

The other subsurface contains an asymmetric ACRI located
near ∆ϖ = θ = 0◦ (see the red marker in panel b of Fig. 3) and for
a lower eccentricity value. In this particular case, the subsurface
was filtered to remove areas in which a close encounter might
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Fig. 4.H1(e1,∆ϖ) contour curves for the 3:2 MMR for two different systems. (a) First system: m2/m1 = 1 andAMnorm = 0.95. (b) Second system:
m2/m1 = 5 andAMnorm = 0.9. In both panels, the numerical integrations are drawn in color. The red crosses indicate the initial condition in each
case.

occur. In one of these encounter zones lay another asymmetric
ACRI. However, as expected, numerical integrations with initial
conditions in this zone resulted in a chaotic evolution. Similar
to the other subsurface, we show in colors five 1 kyr numerical
integrations, four of which are in ACR condition (but around the
two close ACR points) and the remaining one is in a ∆ϖ circu-
lating condition. This last integration shows a great e2 excursion
of at least 0.6 (green curve).

The second case presented here for the MMR 2:1 is a system
with m2/m1 = 1. Figure 3b shows the resultingH1 surface. Here,
four ACR type I are distributed in two subsurfaces. Due to the
circularity of the angular variables, it seems to be more than two.
Notwithstanding, there are only two topologically separated sub-
surfaces. This time, nine numerical integrations were performed
to compare with the model. Most of them were evolutions around
an ACR, except for one (yellow curve), with a circulating ∆ϖ.
The assymetric ACR with an integation in green is in a quasi-
encounter situation because at this point |r2 − r1| ≃ 4RHill. This
integration is stable, but for a displacement from the ACR initial
conditions, the evolution remains stable for 400 yr at most and
then shows an irregular behavior.

We recall that three topological types of constant H curves
are possible in these surfaces: closed ones with a librating ∆ϖ
(ACR condition), closed ones with a circulating ∆ϖ, and open
curves (Pons & Gallardo 2022). The last type of curves implies
a breach of the invariance principle that might hamper the com-
parison between the model and the numerical experiments and
might in some cases lead to chaotic behavior. All the initial con-
ditions of the numerical integrations shown here correspond to
the first two groups of curves. The yellow curve is at the limit of
being in a closed curve. If the initial e1 were increased slightly,
the evolution changes drastically turning into a chaotic behavior
because an open curve family lies on the surface.

We found that the model contour curves and the numerical
integrations in all the cases presented so far agree well. This is
not a strictly mathematical proof that the model is correct, but it
contributes to validating the model.

4.1.2. MMR 3:2

In this section, we present two examples in MMR 3:2. The first
example consists of a planetary system with m2/m1 = 1 and

AMnorm = 0.95. We focused on the secular evolution of e1 and
∆ϖ and consequently disregarded the evolution of the libration
center. This was achieved by projecting the H1 surface onto the
(e1,∆ϖ) plane. The result of this operation is shown in Fig. 4. In
particular, panel a of the figure shows the evolution of the system.
Two symmetric ACRs are visible. One is located in ∆ϖ = 180◦
and the other in ∆ϖ = 0◦. The last ACR is type II and is placed
inside the encounter zone, and therefore, the contour curves in
the proximity of the ACR are missing. In this case in particu-
lar, surface areas where |r2 − r1| < 4.5RHill were removed. The
evolution in an encounter zone in general is related to abrupt
variations in the semi-major axis (which obviously disrupt the
resonant condition) and strong changes in eccentricity, which
can lead to a collision with the star or to an ejection from the
system. In between the two ACRs lies a transition zone where
∆ϖ circulates.

The second system is characterized by m2/m1 = 5 and
AMnorm = 0.9. In this case, the dynamical structure is more
complex, as shown in Fig. 4b. It shows four symmetric ACRs,
three of which are type I, and the remaining ACR is type II. The
transition areas between ACRs seem to be distorted because H1
overlaps slightly with itself. This constitutes a practical problem
when a projection is intended.

The numerical integration and the model contour curves in
the two systems again agree well. In these examples, eccentricity
excursions up to 0.4 at least can occur.

4.1.3. MMR 3:1

As in the previous MMRs, we present two examples for the 3:1
MMR as well. The phase-space structure is shown in Fig. 5.
Panel a shows the phase portrait of a system with two equal-
mass planets and AMnorm = 0.8. The resulting H1 surface is
similar to the surface shown in Fig. 3a because in both cases,
a symmetric ACRI and an asymmetric ACRI lie close to ∆ϖ =
σ = 0◦. They differ basically in the position of the eccentricity
value.

The second example consists of a system with m2/m1 = 0.2
and AMnorm = 0.99. This time, there is an asymmetric ACRI
and, for lower e1 values, a symmetric ACRII around which the
libration center circulates on secular timescales.
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Fig. 5. Phase portraits for MMR 3:1. (a) H1 surface for a system with
m2/m1 = 1 and AMnorm = 0.8. The ten numerical integrations run for
10 kyr are plotted in colors. (b) H1 surface for a system with m2/m1 =
0.2 and AMnorm = 0.99. The five numerical integrations run for 1 kyr
are shown.

4.1.4. MMR 1:1

From all the cases investigated in this MMR, we present the
most interesting, which consists of a system with m2 = m1 and
AMnorm = 0.9. In this case, there are three subsurfaces with
negligible libration center variation, that is, which are essen-
tially planes located at σ ∼ 0◦, σ ∼ 120◦ and σ ∼ 240◦. We
therefore present just the Hamiltonian contour curves projected
onto the (ei,∆ϖ) domain. On the one hand, in Fig. 6a, we show
the contour curves of the case σ ∼ 120◦, where two asymmetric
ACRI lie. We only show this subsurface, but the other sub-urface
around σ ∼ 240◦, has a similar aspect, but is flipped symmetri-
cally with respect to the ∆ϖ = 0◦ axis. This ACR distribution
completely satisfies the explanation given in Sect. 3.4 for the
pair multiplicity in all asymmetric ACRs. On the other hand,
in Fig. 6b, we show a stable symmetric ACRI (the other one
is in encounter condition). These five ACRs correspond to the
classical Lagrangian solutions L3, L4, and L5 and to the two

points mentioned as anti-Lagrangian points in Giuppone et al.
(2010, see Table 1 of that work). There, the authors carried out
a very complete research in co-orbital planetary motion, where
they explored the entire ACR families for different m2/m1 values.

4.2. Real exoplanetary systems

After investigating the secular dynamics of coplanar resonant
three-body systems with a generic approach, we explored the
exoplanet database1 to find examples of resonant planet pairs
with the aim of applying the model to them. Our intention
was to focus on systems that might be in or near the deep
MMR condition and with at least one planet with moderate
to high eccentricity. In order to meet these criteria, we dis-
regarded systems with a resonant offset (Charalambous et al.
2022) larger than 2%. Additionally, we filtered the database and
selected systems with at least one planet with e > 0.2 and with
a low uncertainty in their determination (∆e < 0.05). After we
searched the database, we found 22 exoplanet pairs. Most of
them were analyzed, and we finally selected two of the more
interesting systems. The first system is in a very common res-
onance, but in a deep MMR condition. The second system is in a
very rare MMR and also very close to the deep MMR condition.

For a real exoplanet system locked in a k2 : k1 MMR, we cal-
culated theAMnorm from its planetary masses, semi-major axes,
and eccentricities. The procedure of the H surface construction
was then analogous to the generic case. Finally, a numerical inte-
gration of the real system was carried out, and the result was
compared directly with theH surface contour curves.

For a given system, the initial conditions used for the numer-
ical integration were obtained from the orbital elements for
which observational data were fit. In the following sections,
the corresponding paper is referenced for each analyzed sys-
tem. At the moment of setting up the numerical integration,
some adjustments to the initial conditions were needed for a
more straightforward comparison with our model. On the one
hand, our model focuses in the relative orientation of the orbits,
that is, it considers ∆ϖ to describe the orientation. We there-
fore assumed ϖ2 = 0◦ and calculated ϖ1 = ϖ1i − ϖ2i, where
variables with the subindex i refer to the data obtained from the
original paper.

On the other hand, we also redefined the reference zero
time by imposing M2 = 0◦. This implies that M1 = (τ2i − τ1i) ∗
(360◦/P1), where P1 is the orbital period of the inner planet, and
τ is the time of periapsis passage. For each system, we finally
summarized the orbital elements in a table where we also com-
pare the libration center value σ given by the model with the real
value σint given by the orbital elements of the system, in order
to be quantitatively aware of how far the system is from being in
deep MMR.

4.2.1. System HD 73526

This system possess two confirmed exoplanets that lie almost
exactly in the 2:1 MMR (Wittenmyer et al. 2014). The reso-
nant offset is precisely 0.343%. Table 1 lists the orbital elements
of the system members, and Fig. 7 shows the H1 surface com-
pared with a numerical integration (green curve) of the system
that uses as initial condition the orbital elements of the real
exoplanet.

This example is outstanding because the system is found to
be almost in the deep MMR hypothesis assumed by our model.

1 http://exoplanet.eu/

A105, page 7 of 11

http://exoplanet.eu/


Pons, J., and Gallardo, T.: A&A, 685, A105 (2024)

Fig. 6. H2(e2,∆ϖ) contour curves in the 1:1 MMR for a system with m2/m1 = 1 and AMnorm = 0.9. (a) The first projection shows a near planar
subsurface with σ ∼ 120◦. (b) The second projection shows a near planar subsurface with σ ∼ 0◦. In both panels, the nine numerical integrations
are drawn in colors. The red crosses indicate the initial condition in each case.

Table 1. Exoplanet elements in system HD 73526 (Wittenmyer et al.
2014), whose host star mass is m0 = 1.014 M⊙.

Planet HD 73526 b HD 73526 c

m (MJ) 2.25 ± 0.12 2.25 ± 0.13
P (days) 188.9 ± 0.1 379.1 ± 0.5
a (au) 0.65 ± 0.01 1.03 ± 0.02
e 0.29 ± 0.03 0.28 ± 0.05
ϖ (◦) 196 ± 5 272 ± 10
M (◦) 69 145

ϖi (◦) 284 0
Mi (◦) 126 0

Notes. The critical angles are σ = 338◦ and σint = 334◦.

The real critical angle value is just 4◦ away from the center of
libration (see the footnote of Table 1). To correctness of the
model is confirmed by the numerical integration, which matches
one of the constantH curves from the phase space.

This system is evolving around an ACRI located in
(∆α, σα) = (0◦, 0◦). This ACR appears to be rather usual in the
2:1 MMR (we recall Fig. 3), and due to the topology of the
contour curves, some local maxima appear in the eccentricity
excursions in the proximity of ∆ϖ ± 90◦.

In this case, e1 evolves around 0.35 with a secular ampli-
tude of approximately 0.2 (see Fig. A.1). The secular evolution
of the center of libration has a certain amplitude (∼ 90◦), and
its evolution its related to ∆ϖ and to the secular evolution of
the eccentricities. This is explained, for instance, by the numeri-
cal integration in the time domain, which clearly shows that the
secular frequency of all the variables is the same. This is coher-
ent with the shape of the contour curve in which the system
evolves.

4.2.2. System HD 31527

System HD 31527 is composed of three exoplanets whose orbital
elements are summarized in Table 2. According to Gallardo et al.
(2021), planets c and d are in a very uncommon MMR, the 16:3

Fig. 7. H1 surface compared to a 10 kyr numerical integration (green
curve) of the HD 73526 extrasolar system. The orbital elements are
listed in Table 1.

MMR. In this case, we show the projection of surface H1 in
Fig. 8 since the three-dimensional representation is extremely
complex.

This is an interesting case because the secular evolution of
the system is really close to the a phase-space separatrix that
defines whether the system is in the ACR condition. Currently,
e1 = 0.03, but in the future, it way reach values that are higher by
one magnitude, regardless of whether it is in the ACR condition
(see Fig. A.2).

The secular frequency relation between the orbital elements
and the critical angle contrast with the system HD 73526 because
in this case, for each secular period of ∆ϖ and the eccentricities,
there are seven secular periods of the center of libration. This is
closely related to the complexity of theH surface (which we do
not show).
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Fig. 8. H1 surface projection compared to a 100 kyr numerical inte-
gration (green curve) of the HD 31527 extrasolar system. The orbital
elements are listed in Table 2. The red cross indicates the initial condi-
tions.

Table 2. Exoplanet elements in system HD 31527 (Gallardo et al. 2021),
whose host star mass is m0 = 0.96 M⊙.

Planet HD 31527 b HD 31527 c HD 31527 d

m (M⊕) 10.8279 ± 0.50 15.0399 ± 0.71 13.5044 ± 1.20
P (days) 16.5545 ± 0.0024 51.265 ± 0.023 272.84 ± 0.78
a (au) 0.1254 ± 0.002 0.2664 ± 0.005 0.8121 ± 0.014
e 0.137 ± 0.033 0.030 ± 0.034 0.596 ± 0.055
ϖ (◦) 47 ± 14 277 ± 69 183.3 ± 6.5
M (◦) – 14 283

ϖi (◦) – 94 0
Mi (◦) – 205 0

Notes. The critical angles are σ = 318◦ and σint = 315◦.

We clarify that the numerical integration for this system was
performed considering planets c and d alone. When we compare
them with the numerical integration results shown in Gallardo
et al. (2021), who considered planet b, there is a difference in
the behaviour of ∆ϖ. Specifically, they obtained that ∆ϖ usually
oscillates with some eventual circulations, while we obtained
that it circulates in general.

5. Conclusions

The main conclusion of our work is that we successfully
extended the resonant prescription in Gallardo et al. (2021) by
applying the method constructed in Pons & Gallardo (2022). In
that work, we studied the secular evolution of resonant motions
in the framework of an elliptical restricted planar three-body
problem. This model allowed us to visualize the phase space in a
three-dimensional phase portrait we call H surface. This phase
portrait provided us with the secular evolution information of
e1, e2, ∆ϖ, and σ (or θ). This has several advantages, the most
important of which is the capability of encountering exhaustively
all the families (or subsurfaces) of resonant evolution that can
exist. It is also useful to distinguish a resonant motion with a cir-
culating libration center from a nonresonant motion, where the
critical angle circulates on resonant timescales.

We divided the study cases into two groups, the general
cases, and the real cases. In the first group, we chose the most
common MMRs, which are the 2:1, 3:2, 3:1, and 1:1 MMR.
This last MMR, also known as co-orbital motion, is interest-
ing because not every model is capable of describing it. We
showed the two most interesting results obtained after explor-
ing several generic systems for each MMR. This uncovered the
great complexity that can exist in phase space, and also the high-
eccentricity excursions that in some conditions can occur on
secular timescales.

We presented two real exoplanet systems in different evolv-
ing conditions. First, system HD 73526, which is in an ACRI
condition where e1 presents relatively low excursions, but with
a moderately high absolute value. This could imply that some
other mechanism has excited its eccentricity to such high values,
and then, the system encountered a stable condition to continue
its evolution.

The other real system we analyzed is system HD 31527,
which is in a veryy rare 16:3 MMR and also very close to the
strange condition in which it alternates between being in and out
of an ACR. In this case, e1 evolves between low and moderate
values, whereas e2 remains almost unchanged at a high value.

Because there is no encounter between the planets and they
are in a deep MMR condition, the numerical integrations agreed
with the model in all cases we studied, which is remarkable.
A small correction in initial semi-major axis was sometimes
required in order to be in the deep MMR condition. Another
important detail that ensured that the deep MMR resonant con-
dition (and therefore, the adiabatic invariant principle) was not
broken were the initial conditions for the systems, so that they
lay in a closed-contour curve on theH surface.
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Appendix A: Mathematical developments

A.1. Canonical transformation

In this section, we outline that the transformation from variables
1 to variables 4 is canonical.

There are several ways to prove whether a given transfor-
mation is canonical. We verified this by confirming whether
the matrix M associated with the transformation satisfied the
symplectic condition.

This matrix the Jacobian of the new variables with respect to
the old ones. Therefore, it is easy to see that

M =



k1 −k2 k2 − k1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1/k1 0 0 0
0 0 0 0 k2/k1 1 0 0
0 0 0 0 (k1 − k2)/k1 0 1 0
0 0 0 0 (k1 − k2)/k1 0 1 1.


(A.1)

In the context of Hamiltonian mechanics, the matrix M
satisfies the symplectic condition if (Goldstein 1987)

MJMt = J, (A.2)

where J is an antisymmetric matrix, defined as follows:

J =

(
O4x4 I4x4
−I4x4 O4x4.

)
(A.3)

Here, O4x4 represents the null matrix, and I4x4 represents
the identity matrix. Both are 4x4 matrices.

Equation A.2 states that the transformation (represented by
the matrix M) preserves the symplectic structure. This means
that after the transformation is performed, the canonical Hamil-
tonian equations are still valid. For the sake of brevity, we do not
show the detailed calculations here that prove the fulfillment of
the condition A.2.

A.2. Averaged disturbing function

The third term in equation 2 was averaged to obtain the func-
tion R, the calculation of which was carried out following the
approach adopted by Gallardo (2006, 2019, 2020),

R(σ) =
1

2πk1

∫ 2πk1

0
R(λ2, λ1(λ2, σ))dλ2. (A.4)

We assumed that during k1 revolutions of the outer planet
(and therefore, k2 revolutions of the inner planet), ai, ei, and ∆ϖ
remain constant, which is reasonable because the variations in
these elements tend to be much more slowly than those of σ
(Gallardo et al. 2021). For this calculation, we set a1 to the nom-
inal value given by equation 8. The function R represents the
instantaneous disturbing function defined in equation 3.

The relation λ1(λ2, σ) was obtained from Equation 9, which
represents the resonant condition2.

2 Formally, the condition is that σ librates.

A.3. Stable equilibrium points

We demonstrate that stable solutions3 occur at the local minima
of the disturbing function. To do this, we followed the idea of
small oscillations that was used, for example, in Gallardo (2020).

The idea is to consider small displacements of the equilib-
rium points on the resonant timescale. Let (I1, σ) = (I10 , σ0)
be an equilibrium point, that is, values that satisfy the equa-
tions 7. We define the small displacements as S = I1 − I10 and
s = σ − σ0. It is easy to see that

dS
dt
=

dI1

dt
= −
∂H

∂σ
= −Hσ

ds
dt
=

dσ
dt
=
∂H

∂I1
= HI1 ,

(A.5)

where in the last equality of each equation, we introduce the
compact notation for partial derivatives.

We performed a first-order expansion of the functions
Hσ(I1, σ) and HI1 (I1, σ). The result expressed in terms of the
variables S and s in matrix form is(
Ṡ
ṡ

)
=

(
−HσI1 −Hσσ
HI1I1 HI1σ

) (
S
s

)
= Q

(S
s

)
. (A.6)

For the equilibrium point (I10 , σ0) to be stable, the eigen-
values of the matrix in equation A.6 must be purely imaginary.
Therefore, we proceeded to calculate the characteristic polyno-
mial of Q,

det(Q−λI) =
∣∣∣∣∣−HσI1 − λ −Hσσ
HI1I1 HI1σ − λ

∣∣∣∣∣ = −H2
I1σ
+λ2 +HI1I1Hσσ.

(A.7)

The eigenvalues are given by the roots of the characteristic
polynomial. We proceeded to compute them and imposed the
stability condition

λ2 = −HI1I1Hσσ +H
2
I1σ
< 0. (A.8)

We recall the expression for the Hamiltonian (Eq. (6)) and
have

HI1I1 = −
3µ2

1β
3
1

k2
1

1
I4
1

Hσσ = −Rσσ.

(A.9)

Therefore, the only way for λ2 < 0 to hold is if Rσσ > 0. This
corresponds to positive concavity in the perturbing function, in
other words, the condition for a local minimum. Using this pro-
cedure, we can conclude that if Rσσ < 0 (local maximum), then
the evolution of that equilibrium point is unstable.

A.4. Time evolution of real exoplanet examples

In this section we report the results of numerical integrations of
the two real exoplanet systems in the time domain.

3 In this context, we refer to stable solutions as oscillatory solutions
with a constant amplitude.
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Fig. A.1: Orbital element evolution in the time domain for exoplanet system HD 73526.

Fig. A.2: Orbital element evolution in the time domain for exoplanet system HD 31527. This integration was computed considering only the planets
involved in the MMR. σ librates around a long-term circulating libration center.
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