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Abstract: Evolutionary economics has been instrumental in explaining the nature of innovation
processes and providing valuable heuristics for applied research. However, quantitative tests in this
field remain scarce. A significant challenge is accurately estimating the fitness of companies. We
propose the estimation of the financial fitness of a company by its market capitalization (MC) time
series using Malthusian fitness and the selection equation of evolutionary biology. This definition of
fitness implies that all companies, regardless of their industry, compete for investors’ money through
their stocks. The resulting fluctuating selection from market capitalization (FSMC) formula allows
forecasting companies’ shares of total MC through this selection equation. We validate the method
using the daily MC of public-owned Fortune 100 companies over the period 2000–2021.

Keywords: stock market dynamics forecasting; evolutionary economics; market capitalization time series

1. Introduction

Evolutionary economics is a branch of economics that applies principles from evo-
lutionary biology to understand economic systems and their dynamics [1]. It focuses on
the processes of variation, selection, and adaptation within economic systems, viewing
them as evolving and dynamic entities. Evolutionary economists emphasize the roles of
innovation, technological change, institutional evolution, and learning mechanisms in shap-
ing economic behavior and outcomes over time [2]. This approach challenges traditional
neoclassical economics by highlighting the importance of historical context, path depen-
dence, and non-equilibrium dynamics in economic analysis. Evolutionary economics has
provided valuable insights for studying significant qualitative issues. For instance, it was
used to explore how complex socio-economic interactions shape evolving preferences and
habit formation [3], the types of institutional structures that can best support evolutionary
change [3,4], and the conditions necessary for economic activities to promote long-term
economic prosperity [5]. Evolutionary economics embraces the biological notion of fitness,
which reflects the relative competitiveness of a company compared to other companies and,
in turn, determines its probability of growth and survival.

A major challenge has been estimating this fitness. Fitness is often discussed synony-
mously with production-related performance, i.e., assessing how efficiently a company
manages its resources, processes, and production activities to deliver goods or services.
This canonical standpoint relates to firms producing a homogeneous good but with differ-
ent costs, determining their fitness in competing for market shares [6,7]. The shares of each
firm’s product in the total output of the competitor population are used to describe the
population structure at each time. As the market evolves, the market shares of less fit firms
decrease, while companies with greater fitness capture larger market shares [8]. However,
using market shares to assess the competitive position of firms poses different problems [9],
particularly in rapidly evolving industries and technology-driven markets [10]. In fact,
market shares can sometimes be negatively related to profitability [11,12]. Moreover,
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market shares do not always provide a complete or accurate picture of a company’s perfor-
mance [13].

In this article, to fill this gap, we present a new deterministic selection-driven dynamic
method [6,7] to model the evolutionary dynamics of companies with fluctuating fitnesses
estimated from empirical time-series data. The method is based on an alternative way to
measure a company’s fitness that focuses on financial performance rather than traditional
industrial performance, aligning more closely with the Malthusian fitness concept used in
biology [14,15]. This new fitness definition, inspired by ecology and evolution, is based
on market capitalization. We validate the method using the daily market capitalization
data of public Fortune 100 companies from 2000 to 2021 [16]. Our results indicate that
the fluctuating selection from market caps (FSMC) method produces reasonably accurate
forecasts of the proportions or shares of market capitalization among companies.

2. Materials and Methods
2.1. Data

The dataset we use here is the same as in [17], and is based on the Fortune 100 list,
which includes the top 100 companies by revenue, both public and privately held, in
the United States, as published by Fortune magazine [16]. From these 100 companies,
we selected the 78 publicly owned companies that reported annual revenue and market
capitalization from 1 January 2000 to 31 December 2021 (see Table 1). The resulting dataset
consists of the time series of daily closing market values for each company i, vi(t), with t
measured in days, for these 78 companies spanning T = 5536 days [18].

Table 1. The set of 78 companies considered in this study ordered by their market value, as of
31 December 2021.

Company Ticker Market Cap.
(USD Bill) Rank Industry

Apple AAPL 2902 1 Consumer Electronics
Microsoft MSFT 2522 2 Software–Infrastructure
Amazon AMZN 1697 3 Internet Retail

Berkshire Hathaway BRK 662.63 4 Insurance
JP Morgan JPM 472.51 5 Banks

United Health Group UNH 466.21 6 Healthcare Plans
Johnson & Johnson JNJ 450.36 7 Drug Manufacturers

Home Depot HD 433.37 8 Home Retail
Walmart WMT 401.35 9 Discount Stores

P&G PG 392.11 10 Household
Bank of America BAC 359.38 11 Banks

Pfizer Inc. PFE 331.86 12 Drug Manufacturers
The Walt Disney Company DIS 281.54 13 Entertainment

Cisco Systems, Inc. CSCO 267.27 14 Comm. Equipment
Nike NKE 263.55 15 Footwear and Access.

Thermo Fisher Scientific Inc. TMO 263.18 16 Diagnosis and Research
Exxon Mobil XOM 259.38 17 Oil and Gas

The Coca-Cola Company KO 256.09 18 Beverages
Costco COST 251.74 19 Discount Stores

Abbott Laboratories ABT 248.28 20 Medical Devices
PepsiCo, Inc. PEP 240.24 21 Beverages

Oracle ORCL 232.89 22 Software–Infrastructure
Comcast CMCSA 228.16 23 Telecom Services
Chevron CVX 226.46 24 Oil and Gas
Verizon VZ 218.12 25 Telecom Services

Intel Corporation INTC 209.6 26 Semiconductors
QUALCOMM Incorporated QCOM 205.73 27 Semiconductors

Merck & Co., Inc. MRK 193.72 28 Drug Manufacturers
Wells Fargo WFC 186.44 29 Banks
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Table 1. Cont.

Company Ticker Market Cap.
(USD Bill) Rank Industry

Anthem UPS 186.41 30 Integrated Freight and Logistics
Lowe’s LOW 174.15 31 Home Retail

Morgan Stanley MS 173.96 32 Banks
Honeywell International Inc. HON 142.79 33 Conglomerates

CVS Caremark CVS 136.38 34 Healthcare Plans
Bristol-Myers Squibb Company BMY 134.24 35 Drug Manufacturers

AT&T T 132.58 36 Telecom Services
Raytheon Technologies Corp. RTX 128.51 37 Aerospace and Defense

The Goldman Sachs Group, Inc. GS 127.61 38 Banks
American Express Company AXP 124.5 39 Credit Services

IBM IBM 120.04 40 Information Tech. Serv.
Citigroup C 119.84 41 Banks

Boeing BA 118.56 42 Aerospace and Defense
Target TGT 110.89 43 Discount Stores

Caterpillar Inc. CAT 110.79 44 Farm and Heavy Constr.
Deere & Company DE 105.68 45 Farm and Heavy Constr.
General electrics GE 103.83 46 Specialty Industry Machinery

3M Company MMM 101.58 47 Conglomerates
Lockheed Martin Corporation LMT 96.32 48 Aerospace and Defense

ConocoPhillips COP 94.01 49 Oil and Gas
Phillips 66 TJX 90.56 50 Oil and Gas

Ford Motors F 85.59 51 Auto Manufacturers
Cigna Corporation CI 74.16 52 Healthcare Plans
FedEx Corporation FDX 68.53 53 Integrated Freight and Logistics

Northrop Grumman Corp. NOC 60.49 54 Aerospace and Defense
Capital One Financial Corp. COF 60.05 55 Credit Services
The Progressive Corporation PGR 59.99 56 Insurance

Humana Inc. HUM 59.75 57 Healthcare Plans
General Dynamics GD 57.88 58 Aerospace and Defense

Enterprise Products Partners L.P. EPD 47.79 59 Oil and Gas
AIG AIG 47.21 60 Insurance

Walgreens Boots Alliance WBA 45.03 61 Pharmaceutical Retailers
HP Inc. HPQ 40.79 62 Computer Hardware

Exelon Corporation EXC 40.34 63 Utilities-Regulated Electrics
Sysco Corporation SYY 40.27 64 Food Distribution

Archer-Daniels-Midland Comp. ADM 37.85 65 Farm Products
The Travelers Companies, Inc. TRV 37.73 66 Insurance

McKesson Corp. MCK 37.24 67 Medical Distribution
The Kroger Co. KR 33.28 68 Grocery Stores

The Allstate Corporation ALL 33.06 69 Insurance
Tyson Foods, Inc. TSN 31.65 70 Farm Products

Nucor Corporation NUE 31.1 71 Steel
Valero Energy VLO 30.73 72 Oil and Gas

AmerisourceBergen ABC 27.78 73 Medical Distribution
Best Buy Co., Inc. BBY 24.44 74 Specialty Retail
Cardinal Health CAH 14.26 75 Medical Distribution

Arrow Electronics, Inc. ARW 9.14 76 Electronics Distribution
Fannie Mae FNMA 0.95 77 Mortgage Finance

Chico’s FAS, Inc. CHS 0.66 78 Apparel Retail

2.2. Modeling
2.2.1. Fluctuating Selection from Market Caps (FSMC) Method

As we previously pointed out, selection involves considering the differential rates of
expansion (that is, the ‘fitness’) among the competing, interacting members of a population.
To estimate the fitness of firms, we start with the market capitalization of each company i
at time t, as denoted by vi(t). This quantity plays the role played by the biomass or number
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of individuals of a genotype or phenotype in biology [15,19]. Consequently, the proportion
or share of total market cap of each company (analogous to the frequency of a genotype or
phenotype in a population) is given by the following:

xi(t) ≡
vi(t)

N
∑

j=1
vj(t)

, i = 1, 2, . . . , N. (1)

Note that, in Equation (1), the number of companies is denoted by N, and the same is
true for all the equations of this section for the generality of presentation. In the Section 3,
we always take N = 78.

The Malthusian fitness, fi, of each company, which is identical to its growth rate, is
thus defined as

fi(t) ≡
∂vi
∂t
vi

, i = 1, 2, . . . , N (2)

Incidentally, note that the fitnesses, as defined by Equation (2), is in general time-
dependent (we stress this by writing it explicitly as a function of t). In fact, this dependence
on time reflects the Schumpeterian view that permeates evolutionary economics, i.e.,
winners and losers emerge from an ongoing process of disequilibrium [20]. This implies a
fluctuating selection [21,22] within a variable environment characterized by fitnesses that
are not constant. This is why the method is called fluctuating selection from market
capitalization (FSMC).

By deriving Equation (1) with respect to t, it is straightforward to obtain the following
identity:

dxi
dt

= xi( fi(t)− ϕ(t)) i = 1, 2, . . . , N, (3)

where ϕ(t) is the weighted average fitness, i.e.,

ϕ(t) =
N

∑
i=1

xi(t) fi(t). (4)

Identity (3) is the so-called selection equation [19,23].

2.2.2. Forecasting with the FSMC Method

In order to forecast future shares of the total market cap of companies, we firstly
rewrite the selection equation in terms of discrete time (measured in days). By rearranging
it, we obtain

xi(t + 1) = xi(t) + xi(t)[ fi(t)− ϕ(t)], i = 1, 2, . . . , N, (5)

with

fi(t) ≡
vi(t)

vi(t − 1)
− 1, i = 1, 2, . . . , N. (6)

Nevertheless, directly obtaining the fitness values from Equation (6) presents the issue
of rapid daily variations in the data, leading to very noisy fitness estimates. Additionally,
since the selection process is unlikely to be instantaneous, the concept of fitness must exhibit
some degree of constancy over time [24], reflecting the firm’s behavioral continuity [1].
The method overcomes this problem by averaging fi(t) over a training period of length TT.
Hence, a smoothed fitness for day t0 is obtained as follows:

f smooth
i (t0) =

t0
∑

τ=t−TT+1
fi(τ)

TT
. (7)
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Figure 1 compares the ‘instantaneous’ fitness, given by Equation (6), and the smoothed
one. Using this smoothed fitness in Equation (5), we finally arrive to the FSMC forecast-
ing equation:

xFSMC
i (t + 1) = xFSMC

i (t)

[
1 + f smooth

i (t0)−
N
∑

j=1
xFSMC

j (t) f smooth
j (t0)

]
,

i = 1, 2, . . . , N, t = t0, t0 + 1, . . .
starting at t = t0with xFSMC

i (t0) = xi(t0)

(8)

where the superscript FSMC is to distinguish the FSMC predictions for total capital market
shares from the observed ones, which are just denoted by x(t).

Two remarks about the FSMC forecasting Equation (8):

• It is no longer an identity. This is because we have replaced the instantaneous fitness
with the smoothed one evaluated at day t0 in selection Equation (5).

• Furthermore, we kept this value of the smoothed fitness at day t0 fixed over the
validation period, t > t0, shown in Figure 1 as a red-dotted line. Notice that the
smoothed fitness generated by Equation (7) across the validation period (thick gray
line) slightly departs from this constant fitness value, thus supporting the assumption
of the constant fitness of the FSMC method over the validation period.
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Figure 1. Estimation of fitness: instantaneous vs. smoothed fitness. Data corresponding to
Apple (AAPL) for the second and third quarters of 2021. The rapidly varying black full line is the
instantaneous fitness produced by Equation (6) for each day of the validation period. The thick gray
line is the smoothed fitness, obtained through Equation (7) with a running time window of length
TT = 63 days (the number of market days of a quarter); it shows much smaller variations and slightly
departs from the constant fitness value (red-dotted line) used by the FSMC forecasting.

A rule of thumb of series forecasting is to take the validation period TV as less or
equal to the training period TT [25]. Here, we always take TV = TT (taking TV < TT does
not introduce qualitative differences). We used TT = 21, 63, 126, and 252 market days,
corresponding, respectively, to a month, a quarter, two quarters, and a year. The first
prediction of the FSMC method starts at t = TT and the last one at t = T − TV = 5536-TV.
Therefore, to validate the FSMC method, we consider 5536 − 2TV validation instances of
length TV.

2.2.3. Assessing the Performance of the FSMC Method

To evaluate the quantitative forecasting performance of the FSMC method, we com-
puted the errors of its predictions of shares of total market capital for each firm i. Specifically,
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we computed for each given day t and for each validation instance α, both the absolute
error ε

(α)
i (t) =

∣∣∣xFSMC(α)
i (t) − xi(t)

∣∣∣ and the percentage error δ
(α)
i (t), defined as

δ
(α)
i (t) = 100 ×

ε
(α)
i (t)
xi(t)

,
i = 1, 2, · · · , N
t = 1, 2, · · · , TV

α = 1, 2, · · · , 5536 − 2TV

. (9)

Then, to measure the forecast accuracy, we used the following metrics obtained in
terms of {ε(α)i (t)} and {δ(α)i (t)}:

i. Their averages over the 5536 − 2TV validation instances:

εav
i (t) =

5536−2TV
∑

α=1
ε
(α)
i (t)

5536 − 2TV
, i = 1, 2, · · · , N (10)

δav
i (t) =

5536−2TV
∑

α=1
δ
(α)
i (t)

5536 − 2TV
, i = 1, 2, · · · , N (11)

ii. The mean absolute error (MAE) for firm i, which is given by

MAEi(TV) =

TV
∑

t=1
εav

i (t)

TV
, i = 1, 2, · · · , N, (12)

where the TV within parentheses is to highlight the dependence of this metric on
the validation period. Specifically, it quantifies the error of the predicted “trajectory”
followed by the share xi of company i with respect to the real trajectory over TV.

iii. The mean absolute percentage error (MAPE) for firm i, given by

MAPEi(TV) =

TV
∑

t=1
δav

i (t)

TV
, i = 1, 2, · · · , N, (13)

iv. A grand MAE and a grand MAPE, denoted, respectively, as GMAE and GMAPE,
obtained as averages of MAEi and MAPEi across all firms:

GMAE(TV) =
N

∑
i=1

MAEi(TV)

N
=

N
∑

i=1

Tv
∑

t=1
εav

i (t)

NTV
. (14)

GMAPE(TV) =
N

∑
i=1

MAPEi(TV)

N
=

N
∑

i=1

Tv
∑

t=1
δav

i (t)

NTV
. (15)

The GMAE and GMAPE offer a comprehensive evaluation of the method’s accuracy:
the smaller the global metric, the more accurate the method overall.

3. Results

Figure 2 shows the averaged absolute error εav
i (t) produced by Equation (10) across

the TV = 252 days of one year for the 78 companies. We can see the following:

(a) Most of these errors are < the mean of fractions {xi(t)} of all companies and days
(=0.0025). Indeed, for the first month (day 21), they are all much smaller.

(b) They tend to increase with the forecasted day.
(c) For firms #60, AIG, and #77, Fannie Mae, these errors reach very large values.
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Figure 2. The absolute error of FSMC predictions for each firm over Tv = 252 days (a market year).
Each of the 252 × 78 cells corresponds to the absolute error for the forecasted day and company
number i averaged over the 5536 − 2TV = 5536 − 2 × 252 = 5032 validation instances (Equation
(10)). The color code is as follows: blue indicates errors smaller than the value of the mean fractions.
mean{xi(t)} = 0.025.

Now, let us consider the other extreme of the forecasts, namely TV = 21 days. Figure 3
shows the averaged percentual absolute error δav

i (t) produced by Equation (11) over
TV = 21 days for the 78 companies.
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Figure 3. The absolute percentage errors yielded by the FSMC method for each firm over
Tv = 21 days (a market month). Each of the 21 × 78 cells corresponds to the percentage error
for the forecasted day and company number i averaged over the 5536 − 2TV = 5536 − 2 × 21 = 5494
validation instances (Equation (11)). The color code is as follows: blue indicates small average relative
errors (<5%), while red corresponds to large relative errors (>20%).

We can see the following from Figure 3:

(a) Most of these errors are <5%.
(b) Consistently with the absolute errors, they tend to increase with the forecasted day.
(c) Also in agreement with what we found for the absolute errors, the relative errors for

AIG and Fannie Mae reach very large values (>20%)

Likewise, as shown in Figure 4, the MAPEi (Equation (11)) over TV = 21 days for most
of the companies is <5%, while only for two companies, AIG and Fannie Mae, it is >15%.
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Table 2. GMAPE for the different TV values considered. 

TV (days) GMAE GMAPE 

21 6.00 × 10−4 5.4% 

63 1.10 × 10−3 10.1% 

Figure 4. MAPE of FSMC forecast (Equation (13)) over TV = 21 days (a month) for each firm.

The large errors of AIG and Fannie Mae can be understood from their singular behavior
shown in Figure 5. We can see that the market cap of both companies plummeted in 2008
during the Great Recession. Additionally, in 2011, the market cap of AIG skyrocketed. These
drastic sudden variations are of course very difficult to capture through most forecasting
methods. The FSMC is able to capture the trend, but not its intensity (see inset).
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21 6.00 × 10−4 5.4% 

63 1.10 × 10−3 10.1% 

Figure 5. The evolution of the market caps of AIG and Fannie Mae from 2000 to 2021. The inset
is zoomed in on the corresponding fractions of both companies (filled) and the FSMC predictions
(dashed and dotted). $ corresponds to USD.

The MAE and MAPE increase monotonically with TV. In fact, for TV = 252 days, the
MAPEs of most of the companies are between 10% and 15%, while for AIG and Fannie
Mae, they are >100%.

Likewise, the GMAE and GMAPE also increase monotonically with TV, as shown in
Table 2.
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Table 2. GMAPE for the different TV values considered.

TV (Days) GMAE GMAPE

21 6.00 × 10−4 5.4%
63 1.10 × 10−3 10.1%

126 1.60 × 10−3 15.4%
252 2.50 × 10−3 24.3%

4. Discussion

Natural selection in biology is backed by rigorous explanatory power and quantita-
tively verifiable predictions (e.g., recent quantitate predictions for COVID-19 dynamics can
be found in ref. [26]). Conversely, its economic counterpart has not garnered much empiri-
cal support [7,27]. As previously observed, a significant limitation lies in estimating fitness
from empirical market data. One possibility involves the concept of frequency-dependent
selection [15,19,23], where the fitness of a firm depends on its interactions with all other
firms. A common approach to implementing such frequency-dependent selection is the
Replicator Dynamics Equation (RDE) [28]. But, to compute the N fitness {fi}, the RDE
requires an N × N “payoff matrix”, whose entry i-j corresponds to the payoff obtained by
firm i when interacting with firm j. Estimating this payoff matrix is far from trivial. For a
method to undertake this for a set of firms and a discussion of its drawbacks, we refer the
reader to ref. [29].

Here, we propose a more straightforward method for estimating the fitness of com-
panies using the time-series data of their market capitalizations. The resulting fluctuating
selection from market caps (FSMC) method offers quantitative, testable predictions based
on natural-selection-like concepts in relation to companies.

A main finding is that the FSMC method, when applied to a dataset of America’s top
revenue companies considering daily market capitalizations from 2000 to 2021, performs
well in forecasting their proportions of total market capitalization. This was a necessary
first check of the method to subsequently address a significant challenge for evolutionary
economic models, namely to generate and explain empirical observations as emergent
properties stemming from the fluctuating forces driving markets [30]. Examples of the
observed results that need to be explained include the distribution of firm growth rates
and firm size distribution, both closely related to key aspects of market structure, like firm
concentration. In fact, the dynamics of concentration derived from firm fitness will be
examined using the FSMC method in a separate paper [31].

It is worth noticing that a limitation of the method is its difficulty to quantitatively
reproduce catastrophic changes, such as those experienced by AIG and Fanny Mae during
the Great Recession. However, the FSMC method is a useful tool to dissect the effects of the
business cycle on the dynamics of companies and the market’s structure [31].
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