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Short Title of the Article

Highlights
• A methodology for calibrating building thermal simulation models is presented
• Considers convection coefficients and thermal and solar absorptivity in the models
• Includes the minimization of errors in surface temperatures and air temperatures
• The accuracy of a detailed calibration is compared to a simple calibration with RMSE
• The detailed calibration greatly reduces RMSE of air and surface temperatures
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A B S T R A C T
Building energy simulation models are indispensable tools for predicting thermal and energy per-
formance and evaluating building energy efficiency. However, in the calibration and sensitivity
analysis of these models, most studies focus on air temperatures or energy consumption, typically
not taking into account critical parameters such as surface temperatures, convective heat transfer
coefficients, and thermal and solar absorptivities. In this context, this work complements prior studies
by incorporating these critical parameters, including convection coefficients and thermal and solar
absorptivity, enhancing both the reliability and completeness of building simulation models. Using
a monitoring period, air and surface temperature data were collected under free-floating conditions
and supplemented with meteorological records from an on-site station. Optimization was performed
using the root mean square error (RMSE) metric to minimize discrepancies between measured and
simulated values of zone air and surface temperatures. The results demonstrate that the detailed
calibration strategy, which considers convective coefficients and material absorptivities as design
variables and minimizes errors in both air and surface temperature predictions, significantly enhances
model accuracy. This approach reduces the RMSE of air temperature predictions by 60% and the
RMSE of surface temperature predictions by 73% (walls), 79% (inner roof), 42% (outer roof), and 82%
(floor). Further analysis of heat gains and losses emphasizes the critical role of these parameters in
the accuracy in the modeling of building-environment interactions. This detailed and robust approach
ensures a more precise and reliable simulation model, highlighting the critical role of advanced
calibration techniques in optimizing building energy performance simulations.

1. Introduction
The current global energy crisis, defined by rising de-

mand and the need to reduce greenhouse gas emissions,
has spurred the development of “green” technologies [30].
Among the key contributors to energy consumption, build-
ing construction stands out due to its significant impact
during both execution and use. Addressing this requires
effective design and the application of efficient construc-
tion techniques, materials, and air conditioning systems. In
this context, building energy simulation (BES) models have
emerged as indispensable tools for predicting thermal and
energy performance and evaluating energy efficiency strate-
gies [37]. However, reliable results demand the calibration
of parameters with high uncertainty or unknown values,
narrowing the “performance gap” between measurements
and simulations [8] and enhancing model accuracy [43].

The computational models used to evaluate thermal and
energy performance integrate data on geometry, materials,
user behavior, equipment, lighting and weather conditions.
These factors determine thermal loads, airflows from infil-
tration and ventilation, and Heating, Ventilation, and Air
Conditioning (HVAC) system performance. Popular tools
for these simulations include EnergyPlus [18], TRNSYS

∗Corresponding author
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[50], and DOE2 [14]. However, uncertainties in building
data quality, quantity, and inherent model simplifications
often lead to discrepancies between simulations and reality,
emphasizing the need for robust calibration methods [51].

Model calibration aims to determine characteristics or
parameters of the building envelope, occupancy patterns,
or HVAC systems by minimizing the difference between
simulation results and measured data. This process gener-
ally involves four steps: (i) data collection and uncertainty
assessment for building-related parameters (e.g., geometry,
orientation, material properties, infiltration rates, and soil
properties), occupancy-related parameters (e.g., schedules,
equipment, lighting, and HVAC systems), and air condition-
ing equipment properties; (ii) defining adjustment param-
eters, often guided by sensitivity analysis techniques like
the Morris method [49, 34, 55, 54], SOBOL [4, 5], Monte
Carlo simulations [23], and Pearson’s chi2 test [9]; (iii)
determining parameter values through calibration methods
such as manual [45, 15, 25, 10] or automated approaches
[9, 52, 49, 1, 55, 43, 4, 5], Bayesian calibration [8], optimiza-
tion algorithms (e.g., Genetic Algorithms (GA) [49, 55, 39,
43, 4, 32, 44, 10, 5], pattern-based searches [54], and hybrid
algorithms [34]), or metamodel-based techniques [29]; and
(iv) validation using metrics like coefficient of variation of
the root mean square error (CV RMSE), normalized mean
bias error (NMBE), root mean square error (RMSE), R-
squared (𝑅2), mean absolute error (MAE), and goodness of
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List of abbreviations
BES Building energy Simulation
TMY Typical meteorological year
RMSE Root mean square error
CV(RMSE)Coeff. of variation of the root mean square error
NMBE Normalized mean bias error
MAE Mean absolute error

List of symbols
𝑅𝑖 Air gap thermal resistance of facade 𝑖
𝜌𝑏𝑟𝑖𝑐𝑘 Brick Density
𝑘𝑏𝑟𝑖𝑐𝑘 Brick thermal conductivity
𝛼𝑇 Thermal absorptance
𝛼𝑆 Solar absorptance
𝜌𝐺𝑆 Ground Solar reflectance
𝑘𝐸𝑃𝑆 Insulation material conductivity (EPS)
𝜌𝐸𝑃𝑆 Insulation material density (EPS)
𝐶𝑖𝑛𝑓 Correct. coeff. for the air permeability of the house
𝐹𝑓𝑙𝑜𝑜𝑟 Correct. coeff. for the ground thermal resistance
𝐷𝑔𝑙𝑎𝑠𝑠 Glass Dirty Coefficient
𝑚 Mc Adams coeff. for external convection correlation
𝑛 Mc Adams coeff. for external convection correlation
ℎ𝑠𝑖 Internal convection coefficient walls
ℎ𝑤𝑖 Internal convection coefficient windows
ℎ𝑟𝑖 Internal convection coefficient roof
𝑇𝐴𝑖𝑟 Zone air temperature
𝑇𝐹 𝑙𝑜𝑜𝑟 Inner floor surface temperature
𝑇𝑊 𝑎𝑙𝑙 Inner wall surface temperature
𝑇 𝐼𝑛𝑛𝑒𝑟
𝑅𝑜𝑜𝑓 Inner roof surface temperature

𝑇𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 Outer roof surface temperature

𝑇𝑑𝑏 Dry bulb temperature
𝑇𝑠 Simulated temperature
𝑇𝑚 Measured temperature
(𝑇𝑚) Mean of measured temperature
𝐼𝑅ℎ Infrared radiation
𝜀𝑠𝑘𝑦 Sky emissitivity
𝜎 Stefan-Boltzman constant
𝜃 Angle between surface and direction of wind
𝑉𝑤𝑖𝑛𝑑 Wind velocity
𝑉𝑙𝑜𝑐 Local wind velocity
Δ𝑃 Pressure difference

fit function (GOF), following standards such as ASHRAE
Guideline 14 [27], IPMVP [19], or Federal Energy Manage-
ment Program guidelines [17].

Calibration methodologies often focus on variables like
energy consumption [52, 31, 53, 1, 8, 33, 46, 28] and air
temperature [48, 2, 23, 6, 16, 55, 43, 25, 24, 44, 36]. Some
studies extend this to include relative humidity or CO2generation [45, 34, 35]. Adjustment parameters typically
target building envelope properties (e.g., thickness, conduc-
tivity, density, specific heat, U-value of glazing, and solar
heat gain coefficient), user behavior (e.g., schedules, equip-
ment, and lighting loads), and HVAC characteristics. While
these approaches improve simulation accuracy, the inclusion
of numerous variables amplifies uncertainty in the results.
Other works prioritize temperature and relative humidity as
calibration variables [9, 49, 15, 3, 39, 4, 10, 32, 5]. In such
cases, air temperature is often the primary comparison vari-
able, and the surface temperatures of the building envelope
are generally not taken into account, leaving a significant gap
in improving the reliability of thermal models.

Few investigations address calibration using tempera-
tures under free-floating conditions, and these are typically

limited to air temperatures in the zones. Most thermal cal-
ibration studies prioritize adjustments related to building
envelope properties, such as density, thermal conductivity,
U-value of glazing, and solar heat gain coefficient (SHGC).
Air infiltration rates and convective models are occasionally
considered to refine simulations. To date, no studies have
incorporated the convective heat transfer coefficient (h) or
the thermal and solar absorptivity of materials as design
variables, which significantly reduces the accuracy of ther-
mal models [20, 26, 22].

Building on these observations, this study aims to ad-
dress the critical gaps identified in prior research by adopting
a novel approach that incorporates surface temperatures and
additional material properties, such as thermal and solar
absorptivity and convective coefficients, into the calibration
process. This expanded methodology is applied to a res-
idential building in Sauce, Uruguay, providing a compre-
hensive evaluation of its effectiveness. The study compares
two distinct calibration methodologies: the first employs a
single-objective optimization model focused solely on air
temperature, while the second extends the scope by incor-
porating a multi-objective optimization that simultaneously
optimizes air and surface temperatures. Employing a Genetic
Algorithm for its robust handling of numerous variables,
speed, and flexibility, the second approach offers an efficient
and precise solution to the challenges highlighted in previous
studies.

This manuscript is organized as follows: Section 2 de-
scribes the methodology, including the case study, the mon-
itoring system, the computational model, and the calibration
methodology. Section 3 presents the numerical results and
the discussion of those results. Finally, Section 4 provides
the conclusions of the study.

2. Methodology
Based on the outlined approach, the general method-

ology of the study involves the following steps: (i) select-
ing the house for analysis, reviewing architectural plans,
and conducting on-site verification of construction details;
(ii) monitoring indoor air temperature, interior and exterior
surface temperatures of walls, roof, and floor, as well as
air permeability through a blower door test; (iii) creating
a weather file using monitored ambient temperature, solar
irradiation (on vertical and horizontal planes), and wind data
(speed and direction) from a nearby meteorological station;
(iv) developing the computational model in EnergyPlus; (v)
implementing and comparing two calibration strategies, one
simple and one detailed, both based on Genetic Algorithms;
and (vi) analyzing and discussing the results.
2.1. Case study

The case study focuses on a residential house located
in a rural neighborhood in Sauce, Uruguay (34°39’27.5"S,
56°03’45.1"W), as shown in Figure 2. The house includes
a living room and kitchen area, three bedrooms, and one
bathroom, with its facade oriented to the northwest, as
detailed in the floor plan and a 3D view in Figure 3. The
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building envelope consists of an exterior vertical wall, and a
gabled roof, as depicted in Figure 4.

Fig. 2: Satellite image of the cite during construction.

The interior layer includes a 12 cm clay brick, followed
by a 1 cm waterproofing layer composed of sand, Port-
land cement with waterproofing additives, and a bituminous
emulsion. This is covered by 3 cm of expanded polystyrene
insulation (EPS), a 1 cm air gap, and a 5.5 cm exterior clay
brick layer. Interior walls are constructed from 12 cm clay
bricks with a rough white finish on both sides.

The building envelope features an exterior vertical wall
assembly composed of a 22 cm double-wall structure. The
lower 1.10 m of the exterior surface consists of exposed
brick, while the area above that height has a rough white
finish. The roof is gabled, with the ridge centered over
the house and a slight slope towards the front and rear
facades. It consists of a panel made of double-layer white
metal sheeting with a 15 cm core of expanded polystyrene
insulation. The floor comprises a 12 cm thick concrete slab
finished with white granite-patterned ceramic tiles featuring
gray veining. The bathroom ceiling is formed by a 10 cm
thick concrete slab, finished with white paint.

Regarding openings, the kitchen-living area features a
sliding window on the facade measuring 1.80 m in height
and 1.60 m in width, and another window on the rear facade
measuring 1.15 m in height and 1.50 m in width. The
bedrooms have sliding windows measuring 1.15 m in height
and 1.50 m in width, equipped with roller blinds for shading.
The bathroom features an awning window measuring 1.15
m in height and 0.40 m in width. All openings are made of
aluminum with 3 mm thick clear glass. The main entrances
to the house, located on the facade and rear facade of the
kitchen-living area, are aluminum doors. One door measures
0.95 m in width and 2.05 m in height, with a side panel of
glass, while the other measures 0.80 m in width and 2.05 m
in height, featuring a 3 mm clear glass panel in the upper
half. Interior doors are wooden panels measuring 0.80 m in
width and 2.05 m in height.
2.2. Monitoring System

The house was monitored over 17 days, from September
7, 2023, to September 23, 2023, immediately after con-
struction was completed but before being occupied. During
the measurement period, the house remained unoccupied,
with blinds raised, interior doors open, and windows closed,

meaning the indoor temperature depended solely on the en-
velope materials and their interaction with the environment.
Figure 5 shows the approximate placement of the sensors.

During this time, indoor air temperature and relative
humidity in the kitchen-living area were monitored using
two Hobo UX100-003 sensors, placed at a height of 170
cm above the floor and distributed within the room. These
sensors were configured to collect data every 15 minutes and
have an uncertainty of ±0.21°C for temperature and ±3.5%
for relative humidity. To compare the zone temperature
obtained from the model with the measurements, a single
calibration temperature (𝑇𝐴𝑖𝑟), representing the average of
the sensor readings, was considered. This approach is valid
because the temperature difference between sensors is less
than 1ºC and only occurs at peak values.

Simultaneously, surface temperatures of selected enve-
lope components were recorded, including 𝑇𝐹 𝑙𝑜𝑜𝑟, 𝑇𝑊 𝑎𝑙𝑙,
𝑇 𝐼𝑛𝑛𝑒𝑟
𝑅𝑜𝑜𝑓 , and 𝑇𝑂𝑢𝑡𝑒𝑟

𝑅𝑜𝑜𝑓 . These were measured with platinum re-
sistance sensors (PT1000, ±0.25°C uncertainty) connected
to a DataTaker DT 80M datalogger.

Reliable and complete data were obtained during the
measurement period for the weather station, Hobo sensors,
and wall and floor thermocouples. However, roof tempera-
ture measurements were only available from September 7,
2023, to September 14, 2023.

Air permeability was determined through a blower door
test performed at the main entrance of the house. The test
followed ISO 9972:2015 standards, using a TEC Minneapo-
lis Blower Door Model 4 in depressurization mode. Ten data
points of airflow and pressure differential (ranging from 18
to 85 Pa) between the interior and exterior were recorded.
The test indicated an airflow of 756 m2h−1 (±4,2%) at a pres-
sure difference of 50 Pa, corresponding to an air exchange
rate (𝑛50) of 5.21 h−1.

To generate the climate file, a weather station was in-
stalled near the study house. The station monitored dry-
bulb temperature (using PT1000 sensors with ±0.25°C un-
certainty) and global solar radiation on horizontal and ver-
tical planes oriented north (measured with a Licor 200R
photovoltaic sensor with ±5% uncertainty). Data acquisition
was performed with a DataTaker DT 80M datalogger. Wind
data (speed and direction) and wet-bulb temperature were
obtained from nearby third-party meteorological stations
managed by state authorities. Missing data were supple-
mented with records from nearby meteorological stations
(San Jacinto and Carrasco) between August 1, 2023, and
September 6, 2023, to avoid simulation errors caused by
thermal inertia effects.

Infrared radiation was calculated to complete the meteo-
rological file using the model proposed in the EnergyPlus
documentation (Equation 1), where 𝑇𝑑𝑏 is the dry bulb
temperature, (𝑇𝑑𝑝) is the dew point temperature, 𝜎 is the
Stefan-Boltzmann constant, and 𝜀𝑠𝑘𝑦 is the sky emissivity
determined by Clark and Allen (Equation 2).

𝐼𝑅ℎ = 𝜀𝑠𝑘𝑦𝜎𝑇
4
𝑑𝑏 (1)
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Fig. 3: Geometry of the building under study.

Fig. 4: Exterior envelope of the building under study.

Fig. 5: Sensor distribution. Blue markers indicate Hobo sensors
measuring 𝑇𝑎𝑖𝑟, and red markers indicate thermocouples mea-
suring 𝑇𝑠𝑢𝑟𝑓 .

𝜀𝑠𝑘𝑦 = 0.787 + 0.764 ln
(𝑇𝑑𝑝
273

)
(2)

2.3. Computational Model
The thermal simulation model is created and configured

to run on EnergyPlus v.23.2. Based on technical docu-
mentation and on-site measurements, the geometry is de-
fined, and appropriate materials are assigned to each ele-
ment. To ensure the simulation is as accurate and repre-
sentative as possible, each space is assigned to a separate
zone: ZONE 1: kitchen-living area; ZONE 2: bedroom 1;

ZONE 3: bedroom 2; ZONE 4: bedroom 3; ZONE 5: bath-
room; ZONE 6: bathroom ceiling; and ZONE 7: corridor.
Since the house features an exposed brick baseboard and
white-painted walls, external surfaces are divided into two
sections to account for their differing behaviors. Similarly,
to consider the temperature increase caused by radiation
entering through the window, the kitchen floor is divided
into two sections, as the sensor is positioned to avoid direct
exposure to the radiation.

Fig. 6: Computational model.

Regarding algorithms, the ConductionTransferFunction
is used for heat transfer in walls and roofs, while the F-Factor
method is applied for heat transfer between the ground and
the floor, where the surface temperature is taken from the
weather file.

Air infiltration flow is configured using the results from
the blower door test. The flow for each component 𝑖 is based
on Equation 3:

�̇�𝑖(𝑘𝑔∕𝑠) = 𝐶𝑖Δ𝑃 𝑛
𝑖 (3)

where coefficients 𝐶𝑖 and 𝑛𝑖 are initially based on the-
oretical values proposed by [42]. These values are adjusted
using a proportionality factor to ensure that the total flow
for a pressure difference of Δ𝑃 = 50𝑃𝑎 matches the
measured value from the test. The adjusted coefficients are
then integrated into the model using the “AirFlowNetwork”
block, which considers air inflow through these spaces and
the interaction between zones.

Considering the monitoring conditions and dust deposits
carried by the wind during construction, a corresponding dirt
value is applied to the glazing properties.
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Value range
Acronym Case 2 Case 3

𝛼𝑠 – 0.01 - 0.99
𝛼𝑡 – 0.01 - 0.99

𝐷𝑔𝑙𝑎𝑠𝑠 0.50 - 1.00 0.50 - 1.00
𝜌𝑏𝑟𝑖𝑐𝑘(𝑘𝑔∕𝑚3) – 800 - 2000
𝑘𝐸𝑃𝑆 (𝑊 ∕𝑚𝐾) 0.01 - 0.10 0.01 - 0.10
𝜌𝐸𝑃𝑆 (𝑘𝑔∕𝑚3) 5.00 - 15.00 5.00 - 15.00
𝑅𝑖(𝑚2𝐾∕𝑊 ) 0.01 - 1.00 0.01 - 1.00

𝐶𝑖𝑛𝑓 0.00- 2.00 0.00 - 2.00
𝐹𝑓𝑙𝑜𝑜𝑟 0.1 - 2.00 0.1 - 2.00
𝜌𝐺𝑆 0.01 - 0.5 0 .01 - 0.5

𝑚𝑤𝑎𝑙𝑙 – 1.00 - 10.00
𝑛𝑤𝑎𝑙𝑙 – 1.00 - 10.00
𝑚𝑟𝑜𝑜𝑓 – 1.00 - 10.00
𝑛𝑟𝑜𝑜𝑓 – 1.00 - 10.00

ℎ𝑖(𝑊 ∕𝑚2𝐾) – 0.10 - 20.00

Table 1
Parameters and variation ranges.

Given the handcrafted nature of the construction, dis-
crepancies between theoretical and actual values for material
properties and air gaps in walls are addressed by defining air
thermal resistances.

Based on these considerations, the following three cases
are defined:

Case 1. This case uses thermal and optical material
properties obtained from the literature. Air thermal resis-
tances (𝑅𝑖) are set to 1𝑚2𝐾∕𝑊 , and the dirt coefficient for
glazing is set to 1, corresponding to clean glass. Infiltration
coefficients from the blower door test are applied, and the
“Adaptive Convection Algorithm” is used to calculate both
interior and exterior convective coefficients.

Case 2. Based on Case 1, this model incorporates cali-
bration of material thermal properties,𝑅𝑖,𝐷𝑔𝑙𝑎𝑠𝑠, infiltration
coefficients adjusted using 𝐶𝑖𝑛𝑓 , 𝜌𝐺𝑆 , and floor conductivity
adjusted by 𝐹𝑓𝑙𝑜𝑜𝑟. Each parameter is constrained within the
ranges shown in Table 1. In this case, calibration minimizes
the differences between measured and simulated 𝑇𝐴𝑖𝑟 in the
zone using single-objective optimization.

Case 3. Also based on Case 1, this model considers
the adjustment variables mentioned in Case 2, modifies the
convection models, and incorporates additional calibration
parameters. These include internal convective coefficients
(ℎ𝑤𝑎𝑙𝑙, ℎ𝑟𝑜𝑜𝑓 , ℎ𝑓𝑙𝑜𝑜𝑟) and ℎ𝑔𝑙𝑎𝑠𝑠, and external coefficients
(calculated using the McAdams model [38]), as well as the
thermal and solar absorptivity (𝛼𝑇 and 𝛼𝑆 ) of walls, floors,
and roofs, both interior and exterior, within the ranges shown
in Table 1.

The inclusion of convective coefficients in the calibration
process is justified by the findings of [26], which demon-
strate the significant impact of these coefficients on the
thermal performance of buildings, particularly for the same
typology and climate as the present study. On the other hand,
the consideration of thermal and solar absorptivity param-
eters is based on the results of [23, 22]. Specifically, the
sensitivity analysis presented in [22] highlights absorptivity

as a key parameter influencing the thermal behavior of the
studied typology.

Unlike Case 2, this calibration adopts a multi-objective
approach, minimizing not only the differences in 𝑇𝐴𝑖𝑟 but
also 𝑇𝐹 𝑙𝑜𝑜𝑟, 𝑇𝑊 𝑎𝑙𝑙, 𝑇 𝐼𝑛𝑛𝑒𝑟

𝑅𝑜𝑜𝑓 , and 𝑇𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 simultaneously.

For the internal convective coefficients (ℎ𝑤𝑎𝑙𝑙, ℎ𝑟𝑜𝑜𝑓 ,
ℎ𝑓𝑙𝑜𝑜𝑟 and ℎ𝑔𝑙𝑎𝑠𝑠), constant values are assumed within a
range shown in Table 1. For external surfaces, the convective
coefficient is calculated using the McAdams model [38], as
expressed in Equation 4:

ℎ𝑒𝑥𝑡 = 𝑚𝑉𝑙𝑜𝑐 + 𝑛 (4)
This model accounts for surface geometry, roughness,

angle relative to wind direction, and local wind velocity
(𝑉𝑙𝑜𝑐). For roofs with an inclination of less than 45◦, 𝑉𝑙𝑜𝑐is taken as the wind velocity. For walls, 𝑉𝑙𝑜𝑐 depends on
orientation.

For surfaces facing the wind, where 0◦ < 𝜃 ≤ 10◦:

𝑉𝑙𝑜𝑐 =
⎧⎪⎨⎪⎩

0.15𝑉𝑤𝑖𝑛𝑑 for 𝑉𝑤𝑖𝑛𝑑 ≤ 1𝑚∕𝑠,
0.5𝑚∕𝑠 for 1 < 𝑉𝑤𝑖𝑛𝑑 ≤ 2𝑚∕𝑠,
0.25𝑉𝑤𝑖𝑛𝑑 otherwise.

(5)

or, where 10◦ < 𝜃 ≤ 90◦:

𝑉𝑙𝑜𝑐 = 𝑉𝑤𝑖𝑛𝑑 sin 𝜃 (6)
and, when 90◦ < 𝜃 ≤ 180◦:

𝑉𝑙𝑜𝑐 = 0.25𝑉𝑤𝑖𝑛𝑑 sin 𝜃 (7)
The coefficients 𝑚 and 𝑛 (for both roofs and walls) are

proposed as adjustment variables within a range shown in
Table 1.
2.4. Calibration Methodology

The calibration of Cases 2 and 3 is performed using an
automated, iterative inverse model coupled with EnergyPlus
for thermal simulation. This approach is complemented by
a stochastic optimizer, specifically a Genetic Algorithm,
aimed at identifying the optimal set of variables that mini-
mize the discrepancies between air temperatures in the zones
and the surface temperatures, both interior and exterior, of
walls and roofs.

For Case 2, a single-objective optimization is pro-
posed using the algorithm proposed by Deep [13], im-
plemented within Distributed Evolutionary Algorithms in
Python (DEAP) [21]. The optimization process starts with a
random sample using the design variables from Section 2.3
with the ranges detailed in the second column of the Table
1. The thermal performance is evaluated using EnergyPlus.
This data set is fed to GA, which evaluates the results
and generates a new data set. This sequence is repeated
iteratively until the algorithm converges.
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For the multi-objective optimization used in Case 3, the
Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
[11, 12] implemented in pyOpt v1.2.0 [47] has been used.
NSGA-II is an evolutionary multi-objective optimization
algorithm designed to identify optimal solutions in problems
where multiple fitness functions must be minimized. It starts
with a random population, using the design variables from
Section 2.3 with the ranges detailed in the third column
of the Table 1, which obtains the thermal efficiency with
EnergyPlus. This sample is evaluated using the dominance
criterion that establishes that a solution is superior to another
if it is equal or better in all objectives and strictly better in
at least one. It calculates a crowding distance to maintain
diversity. Solutions are selected favoring those with the best
result and greatest separation. New solutions are generated
that are combined with the previous population. The pro-
cess is repeated until a well-distributed optimal solution is
reached.

To avoid local minima in both mono-objective and multi-
objective optimization, variation and recombination opera-
tors are applied to the population throughout the optimiza-
tion process. These operators include mutation, which intro-
duces modifications to selected solutions; crossover, which
combines elements from different solutions to generate new
candidates; and reproduction, where selected solutions are
carried forward without alteration. These mechanisms en-
sure diversity within the population and enhance the algo-
rithm’s ability to explore the design space effectively.

With the aim of penalizing large errors and avoiding
deviations of the model from reality [7], the RMSE index
(root mean square error, see Eq. 8) is used to quantify
this difference, with calibration considered precise when
the RMSE value is below 1ºC. In Case 1, the optimization
is single-objective, minimizing 𝑇𝐴𝑖𝑟, whereas in Case 2, it
is multi-objective, simultaneously minimizing 𝑇𝐴𝑖𝑟, 𝑇𝐹 𝑙𝑜𝑜𝑟,
𝑇𝑊 𝑎𝑙𝑙, 𝑇 𝐼𝑛𝑛𝑒𝑟

𝑅𝑜𝑜𝑓 , and 𝑇𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 .

𝑅𝑀𝑆𝐸 =

√∑
(𝑇𝑠 − 𝑇𝑚)2

𝑛
(8)

To complete the evaluation of results uses CV(RMSE)
Eq. 9, NMBE Eq. 10, and MAE Eq. 11, which provide
insights into the accuracy of the calibration.

𝐶𝑉 (𝑅𝑀𝑆𝐸) = 100

√∑
(𝑇𝑠−𝑇𝑚)2

𝑛

𝑇𝑚
(9)

𝑁𝑀𝐵𝐸 = 100
∑
(𝑇𝑠 − 𝑇𝑚)

𝑛𝑇𝑚
(10)

𝑀𝐴𝐸 =
∑|𝑇𝑠 − 𝑇𝑚|

𝑛
(11)

In all indicators, 𝑇𝑠 represents the simulated temperature,
𝑇𝑚 the measured temperature, 𝑇𝑚 the mean of measured

Case Zone Wall Inner Roof Outer Roof Floor
Case 1 1.17 2.24 2.33 5.44 1.91
Case 2 0.36 0.88 1.30 5.40 0.50
Case 3 0.47 0.60 0.48 3.17 0.34

Table 2
RMSE (ºC)

Case Zone Wall Inner Roof Outer Roof Floor
Case 1 7.45 14.62 16.04 44.43 12.65
Case 2 2.33 5.78 8.98 44.08 3.34
Case 3 3.00 3.92 3.29 25.78 2.28

Table 3
CV(RMSE) %

Case Zone Wall Inner Roof Outer Roof Floor
Case 1 6.55 13.73 13.60 29.07 10.14
Case 2 -0.04 4.73 4.22 29.92 2.42
Case 3 -1.82 2.80 0.28 12.87 0.06

Table 4
NMBE %

Case Zone Wall Inner Roof Outer Roof Floor
Case 1 1.04 2.10 1.97 3.94 1.52
Case 2 0.31 0.74 0.89 3.92 0.41
Case 3 0.38 0.49 0.38 2.23 0.30

Table 5
MAE(ºC)

temperatures, and 𝑛 the number of measurements. According
to ASHRAE Guideline 14 [40], a model is considered cali-
brated when the NMBE is within ±10% and the CV(RMSE)
is within ±30% for hourly values [41].

3. Results and Discussion
This section presents and discusses the results obtained

using the proposed error metrics and the comparison be-
tween measured and simulated temperatures for each case
after calibration. Additionally, the values of the adjustment
variables are detailed, and the cases are compared. Finally, a
heat flow balance is performed, and the observed differences
are analyzed.
3.1. Error Metrics

This subsection presents and analyzes the results for
Cases 1, 2, and 3, comparing the simulation outputs with
the measurements recorded by the sensors. The comparisons
are made using the statistical indicators RMSE (Table 2),
CV(RMSE) (Table 3), NMBE (Table 4), and MAE (Table
5), whose values are detailed below.

Based on the results obtained from post-calibration sim-
ulations and considering the RMSE values, the metric used
for optimizations, it is evident that temperature differences
are significantly reduced after both calibrations. This in-
dicates that the temperatures calculated by the calibrated
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models are more accurate compared to Case 1. When an-
alyzing the RMSE values for 𝑇𝐴𝑖𝑟, Case 2 achieves an
error of 0.36ºC, and Case 3 an error of 0.47ºC, while for
Case 1, the error is 1.17ºC. This demonstrates that after
calibration, the accuracy in predicting 𝑇𝐴𝑖𝑟 improves. For
surface temperatures, as shown in Table 2, the RMSE values
for Case 2 are higher than those for Case 3, particularly for
𝑇𝐹 𝑙𝑜𝑜𝑟, 𝑇 𝐼𝑛𝑛𝑒𝑟

𝑅𝑜𝑜𝑓 , and 𝑇𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 . This behavior suggests that the

Case 3 model provides a more accurate representation of the
building, significantly improving temperature predictions.

Regarding CV(RMSE), following the RMSE trend, the
CV(RMSE) for 𝑇𝐴𝑖𝑟 in Cases 2 and 3 are 2.33% and 3.00%,
respectively, compared to 7.45% for Case 1. Moreover, these
values are well below the limits established by ASHRAE
Guideline 14.0 (±30%), indicating that all three models are
good representations of reality, with Cases 2 and 3 offering
higher precision. For CV(RMSE) corresponding to surface
temperatures, as shown in Table 3, the errors are up to five
times lower than those of Case 1, with Case 3 achieving
errors around 3%, except for 𝑇𝑂𝑢𝑡𝑒𝑟

𝑅𝑜𝑜𝑓 , making it the most
precise case.

When examining the NMBE and MAE indicators de-
tailed in Tables 4 and 5, a consistent trend with the pre-
viously analyzed errors is observed: while Case 2 shows a
lower error for zone temperatures, Case 3 achieves signifi-
cant improvements in predicting surface temperatures.

In summary, the results suggest that using RMSE as an
optimization criterion allows for satisfactory calibration out-
comes. Furthermore, it is concluded that the Case 3 model
demonstrates greater precision and reliability in thermal
simulation, as it exhibits the lowest errors for both air and
surface temperatures.
3.2. Temperature Comparisons

The air and surface temperatures obtained for each case
during the calibrated periods mentioned in Section 2.4 are
compared below.

Fig. 7: Comparison of 𝑇𝐴𝑖𝑟.

Analyzing 𝑇𝐴𝑖𝑟 as shown in Figure 7, the simulation
results for Case 1 overestimate the measured air temperature,
while Cases 2 and 3 provide a closer approximation.

For 𝑇𝑊 𝑎𝑙𝑙, as shown in Figure 8, the temperatures from
Case 1 exceed measured values by an average of 2ºC,
whereas the results from the calibrated cases are more
accurate, with Case 3 offering the highest precision. This
behavior is similarly observed for 𝑇𝐹 𝑙𝑜𝑜𝑟, shown in Figure 9.

When comparing 𝑇 𝐼𝑛𝑛𝑒𝑟
𝑅𝑜𝑜𝑓 , the values obtained in Cases 1

and 2, as shown in Figure 10, fail to accurately reproduce

Fig. 8: Comparison of 𝑇𝑊 𝑎𝑙𝑙.

Fig. 9: Comparison of 𝑇𝐹 𝑙𝑜𝑜𝑟.

Fig. 10: Comparison of 𝑇 𝐼𝑛𝑛𝑒𝑟
𝑅𝑜𝑜𝑓 .

.

Fig. 11: Comparison of 𝑇 𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 .

the measured temperatures, with differences exceeding 4ºC
at peak values. In contrast, Case 3 exhibits much greater
accuracy, effectively capturing the building’s thermal am-
plitudes.

Examining 𝑇𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 in Figure 11, a similar trend to 𝑇 𝐼𝑛𝑛𝑒𝑟

𝑅𝑜𝑜𝑓is observed, with temperature differences exceeding 10ºC.
The results for Cases 1 and 2 are nearly identical, while Case
3 achieves higher precision, mirroring its performance for
interior temperatures.

Figures 12, 13, 14, 15, and 16 show the differences
between the measured and simulated temperatures for Cases
1, 2, and 3 within the considered time interval. It is observed
that, except for specific moments, these differences remain
within a range of ±1°C for 𝑇𝐴𝑖𝑟, 𝑇𝑊 𝑎𝑙𝑙, 𝑇𝐹 𝑙𝑜𝑜𝑟, and 𝑇 𝐼𝑛𝑛𝑒𝑟

𝑅𝑜𝑜𝑓 ,
and within ±5°C for 𝑇𝑂𝑢𝑡𝑒𝑟

𝑅𝑜𝑜𝑓 . This represents an improvement
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Fig. 12: Error of 𝑇𝐴𝑖𝑟.

Fig. 13: Error of 𝑇𝑊 𝑎𝑙𝑙.

Fig. 14: Error of 𝑇𝐹 𝑙𝑜𝑜𝑟.

Fig. 15: Error of 𝑇 𝐼𝑛𝑛𝑒𝑟
𝑅𝑜𝑜𝑓 .

Fig. 16: Error of 𝑇 𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 .

compared to the errors obtained in Case 2, especially for the
roof.

Figure 12 shows a significant reduction in the error of
𝑇𝐴𝑖𝑟 from Case 1 to Cases 2 and 3, although the errors in
Case 3 are slightly higher by 0.2°C compared to Case 2.
Regarding 𝑇𝑊 𝑎𝑙𝑙 and 𝑇𝐹 𝑙𝑜𝑜𝑟, Figures 13 and 14 indicate that
the errors in Cases 2 and 3 are considerably lower than in

Parameters Case 1 Case 2 Case 3
𝑘𝐸𝑃𝑆 (𝑊 ∕𝑚𝐾) 0.04 0.0694 0.0629
𝜌𝐸𝑃𝑆 (𝑘𝑔∕𝑚3) 15 6.9895 13.6355
𝑘𝑏𝑟𝑖𝑐𝑘(𝑊 ∕𝑚𝐾) 1300 1300 1335.6
𝑅1(𝑚2𝐾∕𝑊 ) 1 0.4917 1.0200
𝑅2(𝑚2𝐾∕𝑊 ) 1 0.2377 0.2593
𝑅3(𝑚2𝐾∕𝑊 ) 1 0.3334 1.0527
𝑅4(𝑚2𝐾∕𝑊 ) 1 0.2482 1.3571

𝐶𝑖𝑛𝑓 1 1.2931 2.2578
𝐷𝑔𝑙𝑎𝑠𝑠 1 0.6038 0.6578
𝐹𝑓𝑙𝑜𝑜𝑟 0.50 0.2491 0.4680
𝜌𝐺𝑆 0.26 0.015 0.1717

𝑚𝑟𝑜𝑜𝑓 – – 6.05
𝑛𝑟𝑜𝑜𝑓 – – 5.29
𝑛𝑤𝑎𝑙𝑙 – – 6.19
𝑛𝑤𝑎𝑙𝑙 – – 5.72

ℎ𝑤𝑎𝑙𝑙(𝑊 ∕𝑚2𝐾) – – 7.34
ℎ𝑓𝑙𝑜𝑜𝑟(𝑊 ∕𝑚2𝐾) – – 9.71
ℎ𝑟𝑜𝑜𝑓 (𝑊 ∕𝑚2𝐾) – – 7.31
ℎ𝑔𝑙𝑎𝑠𝑠(𝑊 ∕𝑚2𝐾) – – 10.33

Table 6
Values obtained for the parameters after calibration

Case 1. Additionally, for almost the entire analyzed period,
the errors in Case 3 are 0.5°C lower than those in Case 2.

For 𝑇 𝐼𝑛𝑛𝑒𝑟
𝑅𝑜𝑜𝑓 , Figure 15 shows that Case 3 keeps errors

within the range of ±1°C and reduces error peaks from 4°C
to values close to 0.5°C. In the case of 𝑇𝑂𝑢𝑡𝑒𝑟

𝑅𝑜𝑜𝑓 , no significant
differences in errors are observed between Cases 1 and 2;
however, in Case 3, there is a reduction in error peaks, with
differences ranging from 5°C to 15°C compared to Cases 1
and 2.

These observations are consistent with the temperatures
presented in Figures 7, 8, 9, 10, and 11, where Case 2
provides a better estimation of 𝑇𝐴𝑖𝑟 since the calibration
focuses on minimizing the gap in this variable. In contrast,
Case 3 more accurately captures not only 𝑇𝐴𝑖𝑟 but also the
surface temperatures 𝑇𝑊 𝑎𝑙𝑙, 𝑇𝐹 𝑙𝑜𝑜𝑟, 𝑇 𝐼𝑛𝑛𝑒𝑟

𝑅𝑜𝑜𝑓 , and 𝑇𝑂𝑢𝑡𝑒𝑟
𝑅𝑜𝑜𝑓 , re-

sulting in a more precise computational model. Furthermore,
Case 3 better represents the shape of the temperature curves,
accurately capturing the amplitude variations observed in
the measured data. This improved representation suggests
that the model can reproduce not only average values but
also thermal dynamics more faithfully. This trend is reflected
in the RMSE and other error metrics, such as CV(RMSE),
NMBE, and MAE, where the simulated temperatures after
each calibration show significant improvements compared
to Case 1, approaching the measured values. In particular,
Case 3 consistently demonstrates greater accuracy compared
to Case 2.
3.3. Adjustment Variables

Table 6 shows the differences in the adjustment variable
values common to all three cases, comparing the initial
values from Case 1 with those obtained after calibration for
Cases 2 and 3.
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Case 𝛼𝐼𝑤𝑎𝑙𝑙
𝑇 𝛼𝑂𝑤𝑎𝑙𝑙 𝑟𝑒𝑑

𝑇 𝛼𝑂𝑤𝑎𝑙𝑙 𝑤ℎ𝑖𝑡𝑒
𝑇 𝛼𝐼𝑓𝑙𝑜𝑜𝑟

𝑇 𝛼𝐼𝑟𝑜𝑜𝑓
𝑇 𝛼𝑂𝑟𝑜𝑜𝑓

𝑇
Cases 1 y 2 0.93 0.93 0.93 0.90 0.25 0.25

Case 3 0.35 0.49 0.49 0.51 0.52 0.41

Table 7
Thermal absorptivity values

Case 𝛼𝐼𝑤𝑎𝑙𝑙
𝑆 𝛼𝑂𝑤𝑎𝑙𝑙 𝑟𝑒𝑑

𝑆 𝛼𝑂𝑤𝑎𝑙𝑙 𝑤ℎ𝑖𝑡𝑒
𝑆 𝛼𝐼𝑓𝑙𝑜𝑜𝑟

𝑆 𝛼𝐼𝑟𝑜𝑜𝑓
𝑆 𝛼𝑂𝑟𝑜𝑜𝑓

𝑆
Cases 1 y 2 0.55 0.55 0.55 0.45 0.40 0.40

Case 3 0.40 0.54 0.37 0.32 0.51 0.31

Table 8
Solar absorptivity values

Case ℎ𝑤𝑎𝑙𝑙
𝑖𝑛𝑡 ℎ𝑤𝑎𝑙𝑙

𝑒𝑥𝑡 ℎ𝑟𝑜𝑜𝑓
𝑖𝑛𝑡 ℎ𝑟𝑜𝑜𝑓

𝑒𝑥𝑡
Case 1 1.02 6.16 0.56 11.63
Case 2 0.96 6.08 0.67 11.62
Case 3 7.34 11.62 7.31 32.97

Table 9
Mean convection coefficients comparison.

Analyzing the properties related to heat conduction in
the surfaces, as shown in Table 6, it is observed that the 𝑘𝐸𝑃𝑆obtained from the calibrations for Cases 2 and 3 is approxi-
mately 50% higher than in Case 1. Regarding the 𝑅𝑖 values,
those from Case 2 are below 0.5 𝑚2𝐾∕𝑊 , contrasting with
Case 3, which exhibits values around 1.20 𝑚2𝐾∕𝑊 , except
for 𝑅2 on the façade. For the floor, 𝐹𝑓𝑙𝑜𝑜𝑟 in Case 2 is half
the value obtained in Case 3. These results indicate that the
obtained values lead to a lower overall thermal resistance,
particularly in Case 2, which tends to reduce temperatures.

Regarding air exchange with the external environment,
the 𝐶𝑖𝑛𝑓 in Case 3 is double that of Cases 1 and 2, contribut-
ing to increased cooling of the house.

For 𝐷𝑔𝑙𝑎𝑠𝑠, both calibrations yield similar values, ap-
proximately 0.6, suggesting that dust accumulation on the
glazing reduces the radiation entering the room, thereby
limiting the heating of the zone air. Neglecting this effect
would overestimate temperature calculations.

Finally, according to Table 6, the 𝜌𝐺𝑆 value in Case 2 is
significantly lower than that obtained in Case 3, indicating
that Case 2 aims to further reduce 𝑇𝐴𝑖𝑟 compared to Case 3
by limiting heat gain from radiation.

Tables 7 and 8 compare the theoretical and calibrated
values of 𝛼𝑇 and 𝛼𝑆 for the surfaces.

Comparing the values obtained for Case 3, the 𝛼𝑆 coef-
ficients are significantly lower than those in Cases 1 and 2.
This indicates that the heat absorbed in Case 3 is reduced
compared to the other cases, leading to lower model temper-
atures and better replicating the house’s behavior.

For 𝛼𝑇 , a similar trend is observed, although its influence
on temperature is less pronounced compared to 𝛼𝑆 .

Tables 9 show that the average convective coefficients
obtained through calibration in Case 3, both interior and
exterior, are significantly higher than those in Cases 1 and 2,
which contributes to reducing temperatures. This compari-
son highlights the importance of calibrating this parameter,

as it better adjusts surface temperatures, particularly those of
the roof, both interior and exterior, achieving greater accu-
racy in capturing thermal amplitudes. These results suggest
that the correlations proposed in EnergyPlus underestimate
convective coefficients.

Analyzing the overall results, it can be concluded that
the detailed calibration strategy, which includes both the
consideration of convective coefficients and thermal and
solar absorptivities, as well as the minimization of errors
in surface temperatures in addition to air temperatures (as
implemented in Case 3), leads to more accurate temperature
predictions compared to the simpler approach in Case 2.
This is also reflected in the values of variables common to
both models. In Case 2, the global trend is to reduce overall
thermal resistance and solar gain through radiation, while in
Case 3, these adjustments are more precise. This improve-
ment underscores the enhanced accuracy in temperature
calculations achieved with Case 3 compared to Case 2. The
results further illustrate the interdependence of parameters:
in Case 2, the adjustment variables are constrained to reduce
temperatures, whereas in Case 3, incorporating additional
variables and altering model constraints yields values that
are more precise and representative of reality.
3.4. Thermal load balance

To further analyze the differences between the models
obtained using two distinct calibration methodologies, Case
2 and Case 3, an annual simulation was performed for both
models. The simulation incorporated an HVAC system with
a heating setpoint of 21°C and a cooling setpoint of 24°C,
modeled using the EnergyPlus IdealLoadsHVAC system.
Climatic data was based on the Typical Meteorological Year
(TMY) for Montevideo, with calibration months adjusted to
reflect measured data.

Thermal load balances were conducted for summer and
winter periods, corresponding to December through Febru-
ary and June through August, respectively, in the Southern
Hemisphere. These balances provide an in-depth analysis of
heat gains and losses across the dwelling components.

During the summer period, the thermal energy required
to maintain a temperature of 24°C is relatively similar be-
tween the two cases, with Case 3 requiring 11% more HVAC
energy compared to Case 2. Despite the similarity in HVAC
loads, significant differences are observed in heat transfer
patterns: heat gains through windows in Case 3 are 65%
higher than in Case 2, while heat gains through the roof in
Case 2 are nearly ten times greater than those in Case 3.
These differences result in heat losses through the floor being
69% higher in Case 3 (see Fig. 17).

During the winter period, the thermal energy required to
maintain a temperature of 21°C is 30% higher in Case 3 than
in Case 2. This difference is attributed to 74% greater losses
through infiltration, double the losses through the floor, and
29% greater losses through the roof in Case 3. Conversely,
heat losses through walls are 20% higher in Case 2 than in
Case 3 (see Fig. 18).
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Fig. 17: Thermal loads during summer.

Fig. 18: Thermal loads during winter.

Anually, Case 3 requires 33% more energy from the
HVAC system to maintain the setpoint temperatures than
Case 2. The contrasting thermal load balances between
Case 2 and Case 3 highlight the sensitivity of calibrated
building energy models to the chosen methodology. These
differences underscore how calibration approaches influence
the representation of heat exchange dynamics with the sur-
rounding environment. Accurately capturing these dynamics
is essential for various applications of the model, including
evaluating energy efficiency measures and predicting ther-
mal performance under diverse conditions.

4. Conclusion
This study addressed the calibration of the thermal sim-

ulation model of a residential building located in Sauce,
Uruguay, using an iterative inverse model that combines
thermal simulation in EnergyPlus with a Genetic Algorithm
(GA) to minimize the discrepancies between measured and
simulated temperatures. Over a 17-day period, air and sur-
face temperatures of the building envelope were monitored
under free-floating conditions, complemented by meteoro-
logical data from an on-site station to generate the climate
file.

Two calibration approaches were evaluated: a simple ap-
proach (Case 2), commonly used in the literature, focused on
adjusting variables related to material properties, air thermal
resistances, infiltration, and glass dirtiness; and a detailed
approach (Case 3), which incorporated internal and external

convection coefficients, advanced convection models, and
the thermal and solar absorptivities of exposed materials.
Optimization was conducted using the root mean square
error (RMSE) metric, considering only zone air temperature
in Case 2 and both air and surface temperatures (roof, floor,
and walls) in Case 3.

The results demonstrate that incorporating surface tem-
peratures, convective heat transfer coefficients, and thermal
and solar absorptivities as design variables, along with the
use of multi-objective optimization, significantly improves
model accuracy. In Case 2, the RMSE of air temperature
predictions decreases by 69%, while the RMSE of surface
temperatures predictions decreases by 60% (walls), 45%
(inner roof), 1% (outer roof), and 84% (floor). Case 3,
representing the more detailed model, achieves even greater
accuracy, with RMSE reductions in surface temperature pre-
dictions of 73% (walls), 79% (inner roof), 42% (outer roof),
and 82% (floor). However, for air temperature predictions,
Case 2 outperforms Case 3, with a 69% RMSE reduction
compared to 60% in the latter. This difference arises because
Case 2 employs a single-objective optimization focused
exclusively on air temperature, whereas Case 3 adopts a
multi-objective optimization approach that simultaneously
considers air temperature, surface temperatures, convective
heat transfer coefficients, and thermal and solar absorp-
tivities. All of the above suggests that Case 3 is a more
detailed representation of the thermal interactions between
the building and its environment.

The comparative analysis of thermal load balances be-
tween Case 2 and Case 3 highlights the significant impact of
calibration methodologies on the representation of building
energy dynamics. This finding underscores the importance
of selecting appropriate calibration approaches to ensure
reliable predictions of thermal performance and energy de-
mand. Accurate capture of heat exchange behavior is vital
for model applications, such as optimizing energy efficiency
measures, evaluating design modifications, and supporting
decision making for sustainable building operations.

In conclusion, implementing a detailed calibration that
minimizes errors in both surface and zone temperatures,
along with precise adjustments of thermal and convective
properties, results in a more accurate and reliable model.
These findings underscore the importance of advanced cali-
bration methodologies for optimizing energy simulations in
buildings.
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