

Facultad de Ciencias - Universidad de la República

Instituto de Ciencias Geológicas

Hidrodinámica y estudio de especies inorgánicas de arsénico en el Acuífero Raigón al sureste de Kiyú (San José, Uruguay)

Tesis de grado para optar por el título de Licenciada en Geología

Rebeca Panzl Di Leone

Tutora: Dra. Karina Pamoukaghlián

Co-tutora: Dra. Elena Alvareda

Montevideo, Uruguay

Diciembre, 2022

Agradecimientos

A mi tutora Dra. Karina Pamoukaghlián y a mi co-tutora Dra. Elena Alvareda por su guía, aportes y correcciones que aportaron significativamente a este trabajo y mi formación académica.

Al tribunal por sus correcciones y sugerencias enriquecedoras.

Al personal de la División Aguas Subterráneas de la Gerencia de Agua Potable de la Administración de Obras Sanitarias del Estado (O.S.E), en especial al Lic. Andrés Pérez ya que sin su apoyo este trabajo no hubiese sido posible. Otro especial agradecimiento a Arthur Osorio de la Regional San José por acompañarme y evacuarme dudas durante las salidas de campo y al igual que al equipo encargado de realizar el ensayo de bombeo.

A los vecinos de Kiyú quienes me abrieron amablemente las puertas de sus hogares.

Al Dr. Leonardo Sierra del Instituto de Hidrología de las Llanuras Azul (IHLLA), Argentina, por su gran amabilidad y disposición a la hora de responder mis consultas, enriqueciendo considerablemente las interpretaciones de este trabajo.

A mi madre, por su amor y por ser el soporte principal en mi vida, porque este logro también es de ella.

A mi hermana, por entender lo que es ser un estudiante universitario y alegrarse por cada meta alcanzada.

A mis compañeros de carrera y amigos quienes me acompañaron en el transcurso de estos años. En particular, un agradecimiento a mis compañeros del PAIE 2020, por acompañarme en la salida de reconocimiento y ayudarme en la toma de las primeras muestras.

Y a todos aquellos que ya no están, pero formaron parte de este camino.

Resumen

El arsénico (As) es un elemento natural de la corteza terrestre que en sus formas inorgánicas puede resultar tóxico para los seres humanos. Una de las principales fuentes de exposición al arsénico es el consumo de agua subterránea no tratada, problemática que se manifiesta en ciertos acuíferos uruguayos, como por ejemplo el Acuífero Raigón, donde se han detectado niveles superiores al sugerido por la OMS de 0,01 mg/L el cual Uruguay pretende adoptar en el 2023-2024. El objetivo principal de esta investigación fue estudiar la posible variación espacio temporal de los niveles de As y sus especies inorgánicas al SE de Kiyú y cómo estos contenidos podrían verse afectados con los caudales de extracción. Para ello, se realizaron estudios geológicos, geoquímicos, hidrodinámicos e hidroquímicos de los sedimentos y aguas subterráneas del Acuífero Raigón en esa área. En primer lugar, se efectuó un análisis mineralógico y geoquímico en detritos de perforación. Los resultados obtenidos sobre la composición mineralógica a través de la descripción de láminas delgadas fueron consistentes con trabajos previos sobre la composición de los sedimentos de las unidades geológicas del área de estudio. Por otra parte, se tomaron muestras de agua subterránea en dos períodos (invierno y primavera) para análisis de iones mayoritarios, alcalinidad, dureza, arsénico total y sus especies y medición de parámetros in situ (pH, CE, T, ORP, OD, turbidez y salinidad) con sonda multiparamétrica. Las aguas subterráneas del área de estudio se clasificaron como bicarbonatadas sódicas y bicarbonatadas cálcicas y/o magnésicas. Las relaciones iónicas y correlaciones efectuadas entre los elementos mayoritarios mostraron que los principales procesos que controlan la química del agua subterránea son el intercambio catiónico, disolución de carbonatos y aportes de iones a través de la Iluvia. Los niveles de As⊤ varían entre 0,012 y 0,020 mg/L durante el invierno y entre 0,015 y 0,019 mg/L en la primavera, mostrando que existe una variación espaciotemporal de los niveles de As disminuyendo las concentraciones en el mes más cálido y lluvioso. Por otra parte, la principal especie inorgánica del arsénico encontrada en las aguas subterráneas del área de estudio correspondió al arseniato (As(V)). El principal proceso de liberación del As a la fase acuosa posiblemente sea la desorción competitiva donde el Cl⁻ se comportaría como un ion competidor sobre la superficie de los óxidos cristalinos de Fe. Asimismo, se realizó un ensayo de bombeo escalonado prolongado de 96 horas con tomas de muestras durante el

transcurso de este. Durante el ensayo se constataron cambios en los niveles de As los cuales podrían deberse a que al bombear se logra acercar aguas con otro equilibrio químico además de que se identificó una variación temporal rápida de los niveles de As.. A su vez, al bombear con un mismo caudal, pero por un período de tiempo más prolongado se observó que los niveles aumentaban levemente, por lo que la sobreexplotación podría aumentar las concentraciones de As en el agua subterránea. Los resultados obtenidos durante este proyecto son fundamentales como puntapié para futuras investigaciones, ya que por primera vez en el país se obtuvieron datos relacionados con los posibles procesos de movilidad, minerales fuentes de As e incidencia de los caudales en la variabilidad de los contenidos de As en el Acuífero Raigón. Estos resultados son cruciales para determinar cuáles podrían ser los riesgos a la salud por la exposición a largo plazo de aguas con niveles de As elevados y el diseño e implementación de técnicas de tratamiento de agua ya que el As no es solamente un problema de salud pública sino también representa una problemática ambiental y para la gestión, generada por la restricción del uso del recurso hídrico como agua potable.

Tabla de contenido

Resumen	2
Lista de figuras	9
Lista de tablas	13
1. Introducción	15
1.1. Objetivos	16
1.1.1. Objetivo general	16
1.1.2. Objetivos específicos	16
2. Área de estudio	16
2.1. Ubicación y accesos	16
2.2. Geomorfología	17
2.3. Hidrología	18
2.4. Clima	19
2.5. Suelos y usos del suelo	19
3. Marco geológico	20
3.1. Contexto geológico regional	20
3.2. Contexto geológico local	22
3.2.1. Formación Fray Bentos (Oligoceno Tardío)	22
3.2.2. Formación Camacho (Mioceno Tardío)	23
3.2.3. Formación Raigón (Plioceno Temprano)	25
3.2.4. Formación Libertad (Pleistoceno)	26
3.2.5. Formación Dolores (Pleistoceno)	27
3.3. Geología del área de estudio	28
4. Marco hidrogeológico	30
4.1. Contexto hidrogeológico regional	30
4.2. Contexto hidrogeológico local	31
4.2.1. Sistema Acuífero Raigón (SAR)	31
4.2.1.1. Arsénico en el SAR	33

5. Arsénico	36
5.1. Características, toxicidad y límite recomendado	36
5.1.1. Propiedades generales	36
5.1.2. Exposición e incidencia en la salud humana	37
5.1.3. Normativa nacional vigente sobre calidad del agua según su uso	38
5.1.4. Objetivos para el Desarrollo Sostenible (ODS)	40
5.2. Origen de los altos niveles de arsénico en las aguas subterráneas	40
5.2.1. Fuentes naturales de arsénico	41
5.2.1.1. Minerales	42
5.2.1.2. Rocas, sedimentos y suelos	43
5.2.2. Pesticidas arsenicales en Uruguay	45
5.3. Hidrogeoquímica del arsénico en aguas subterráneas	46
5.3.1. Especiación del arsénico	46
5.3.2. Liberación y transporte del arsénico	48
5.4. Distribución mundial de arsénico en el agua subterránea	49
5.4.1. Países afectados	50
5.4.2. Arsénico en acuíferos uruguayos	53
6. Metodología	54
6.1. Análisis de antecedentes	54
6.1.1. Relevamiento de antecedentes y creación de base de datos	54
6.2.1. Topografía	54
6.2.2. Hidrografía	55
6.2.3. Geología	55
6.2.4. Geomorfología	55
6.3. Caracterización geológica de los sedimentos	55
6.3.1. Descripción de detritos de perforación	55
6.4. Caracterización geoquímica	57
6.4.1. Fluorescencia de rayos X	57
6.4.1. Hidrodinámica	58
6.4.1.1. Piezometría	58
6.4.1.2. Ensayo de bombeo	59

6.4.4. Hidroquímica	. 63
6.4.4.1. Muestreo de agua subterránea	. 64
6.4.4.2. Análisis de laboratorio	. 67
7. Resultados y discusión	. 68
7.1. Topografía e hidrología	. 68
7.2. Análisis de las unidades litológicas	. 69
7.2.1. Descripción de los detritos de perforación	. 69
7.3. Hidrodinámica	. 72
7.3.1. Niveles piezométricos	. 72
7.3.2. Ensayo de bombeo	. 72
7.4. Hidroquímica	. 77
7.4.1. Parámetros fisicoquímicos	. 77
7.4.2. Hidroquímica mayoritaria	. 79
7.4.2.1. Muestras de invierno	. 80
7.4.2.2. Muestras de primavera	. 82
7.4.2.3. Hidroquímica mayoritaria durante el ensayo de bombeo	. 85
7.4.2.4. Fuentes de los iones mayoritarios	. 88
7.4.2.5. Relaciones iónicas	. 89
7.4.3. Hidroquímica minoritaria y traza	. 94
7.4.3.1. Muestras de invierno	. 94
7.4.3.2. Muestras de primavera	. 96
7.4.3.3. Hidroquímica minoritaria y traza durante el ensayo de bombeo	. 98
7.4.5. Variación espaciotemporal de los niveles de arsénico	. 99
7.4.6. Correlación del arsénico con los parámetros fisicoquímicos	101
7.3.7. Correlación del arsénico con la hidroquímica mayoritaria y minoritaria.	103
7.4.8. Comportamiento del arsénico durante el ensayo de bombeo	106
8. Conclusiones y futuras líneas de investigación	110
9. Referencias bibliográficas	114
Anexo I – Base de datos	134
Anexo II – Caracterización de la fase sólida de las perforaciones de estudio	137
Anexo III – Datos geoquímicos completos	149

Anexo IV – Datos completos del ensayo de bombeo1	50
Anexo V – Datos hidroquímicos completos1	68
Cromatogramas de muestras invernales1	68
Cromatogramas de muestras primaverales1	73
Cromatogramas ensayo de bombeo1	77
Anexo VI – Mapas de precipitación acumulada (mm)1	87

Lista de figuras

Figura 3.3. Mapa geológico del área de estudio. El recuadro negro indica la zona de estudio y sus inmediaciones. Modificado del mapa geológico del tramo 7: Montevideo – Punta Jesús María (Montevideo – San José) a escala 1:50.000 (Goso, 2015b)... 29 Figura 4.1. Mapa hidrogeológico del Sistema Acuífero Raigón (SAR) a escala

Figura 7.5. Recuperación del ensayo de bombeo en la perforación Nº90.3.032. 73

Figura 7.17. Diagramas explicando los procesos de intercambio iónico en el agua subterránea del área de estudio en agosto de 2021 (puntos azules), noviembre de 2021 (puntos naranjas) y durante el ensayo de bombeo (puntos verdes). A) Diagrama de dispersión de Ca²⁺+Mg²⁺ vs SO₄²⁻+HCO₃⁻. B) Diagrama de dispersión de Ca²⁺+Mg²⁺-SO₄²⁻-HCO₃⁻ vs Na⁺-Cl⁻. C) CAI1 de las muestras de agua subterránea. D) CAI2 de las muestras de agua subterránea.

Figura 7.18. Diagramas de dispersión indicando fuentes de diferentes parámetros en el agua subterránea en agosto de 2021 (puntos azules), noviembre de 2021 (puntos naranjas) y durante el ensayo de bombeo (puntos verdes). A) Ca²⁺ vs Ca²⁺+SO₄²⁻. B) Ca vs Alcalinidad. C) Ca²⁺ + Mg²⁺ vs Na⁺+K⁺. D) Ca²⁺ vs HCO₃⁻. E) SO₄²⁻ vs Cl⁻. F) Na⁺ vs Cl⁻.

Figura 7.20. Gráfico de cajas y bigotes de los resultados analíticos de los elementos minoritarios y traza (en mg/L) detectados en las muestras de noviembre 2021. 98

Figura 7.21. Variación espacial de los niveles de arsénico total. A) Período agosto 2021 y; B) Período noviembre 2021100
Figura 7.22. Parámetros fisicoquímicos y As⊤ en función del tiempo transcurrido durante el ensayo de bombeo. CE = conductividad eléctrica; ORP = potencial redox; OD = oxígeno disuelto; TDS = sólidos totales disueltos; T = temperatura
Figura 7.23. Condiciones teóricas de especiación del As en diagrama de Pourbaix.
Figura 7.24. lones mayoritarios y As⊤ en función del tiempo transcurrido durante el ensayo de bombeo
Figura 7.25. Ensayo de bombeo escalonado con las muestras de As⊤ correspondientes
Figura 7.26. Niveles de arsénico en función de los diferentes caudales utilizados durante el ensayo de bombeo
Figura 7.27. Niveles de arsénico en función del tiempo transcurrido durante el ensayo de bombeo

Lista de tablas

Tabla 3.1. Columna estratigráfica del área de estudio. 22
Tabla 5.1. Categorías de agua para diferentes usos y sus respectivas concentraciones máximas de arsénico permitidas en Uruguay. Modificado de Uruguay (1979) 38
Tabla 5.2. Valores máximos admisibles para el As en agua para consumo humano según la normativa vigente
Tabla 5.3. Concentraciones típicas de arsénico en minerales más frecuentes de rocas y sedimentos y otras sustancias sólidas donde el arsénico no es un componente principal. Modificado de Smedley y Kinniburgh, (2013 y 2002)
Tabla 5.4. Lista de plaguicidas arsenicales utilizados en Uruguay
Tabla 7.3. Niveles piezométricos de los pozos muestreados en agosto y noviembre de 2021.
Tabla 7.4. Parámetros hidráulicos obtenidos para cada escalón del ensayo de bombeo escalonado
Tabla 7.5. Estadísticos descriptivos de los parámetros fisicoquímicos medidos <i>in situ</i> de las muestras de agosto 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1. CE: conductividad eléctrica; STD: sólidos totales disueltos; T: temperatura; ORP: potencial redox; OD: oxígeno disuelto
Tabla 7.6. Estadísticos descriptivos de los parámetros fisicoquímicos medidos <i>in situ</i> de las muestras de noviembre 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1. CE: conductividad eléctrica; STD: sólidos totales disueltos; T: temperatura; ORP: potencial redox; OD: oxígeno disuelto
Tabla 7.7. Estadísticos descriptivos de los parámetros fisicoquímicos medidos <i>in situ</i> de las muestras del ensayo de bombeo en noviembre 2021 en el pozo 90.3.032. CE: conductividad eléctrica; STD: sólidos totales disueltos; T: temperatura; ORP: potencial redox; OD: oxígeno disuelto
Tabla 7.8. Estadísticas básicas para los iones mayoritarios analizados en el

Tabla 7.13. Estadísticas básicas para las especies de arsénico obtenidas en las muestras de agosto 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1.

1. Introducción

Uno de los reservorios de agua más importantes del Uruguay es el Sistema Acuífero Raigón (SAR) ubicado al sur del país (Montaño et al., 2006; INIA, 2019). Este constituye la principal fuente de agua para poblaciones y zonas rurales de la región, así como para usos agropecuarios tales como riego, consumo del ganado y desarrollo industrial (Montaño et al., 2006; INIA, 2019). Actualmente, presenta numerosas perforaciones para diversos fines, por lo que es imprescindible que la calidad de sus aguas sea óptima según su uso. Uno de los problemas fundamentales que presenta el acuífero respecto a esta temática es el elevado contenido de arsénico (As) en algunos pozos (Machado et al., 2020; Mañay et al., 2013) cuyas formas inorgánicas pueden resultar muy tóxicas para los seres humanos (ATSDR, 2007b). En el SAR se han reportado valores de As de hasta 0,042 mg/L (Manganelli et al., 2007; Goso et al., 2008; Mañay et al., 2013; Garat y Pérez, 2018; Mañay et al., 2019; Bundschuh et al.,2020; Collazo et al., 2020; Machado et al., 2020; Wu et al., 2021); superando la normativa uruguaya vigente de 0,02 mg/L (VMP) (UNIT, 2008) para agua potable y el valor guía sugerido por la OMS de 0,01 mg/L (OMS, 2018) que Uruguay deberá adoptar en el 2023. El consumo prolongado de esta agua no tratada puede provocar diversas enfermedades dérmicas y carcinogénicas (OMS, 2018; Fowles et al., 2013), lo que representa una grave problemática ambiental ya que restringe el uso de este recurso hídrico como agua potable (Falchi et al., 2018).

De acuerdo con la revisión bibliográfica, se han encontrado diversos estudios que abordan la problemática, incluyendo trabajos en donde se describen mapas de riesgo para Uruguay, los cuales revelan zonas con alta probabilidad de encontrar niveles de As superiores a los 0,01 mg/L con una clara evidencia de la interdisciplina para poder comprender el problema y lograr discusiones más amplias (geología – química – hidroinformática) (Collazo *et al.*, 2020; Wu *et al.*, 2021). Por otro lado, si bien se tiene información sobre la caracterización química del SAR (Postiglione *et al.*, 2009; De los Santos y Hernández, 2013; Mañay *et al.*, 2014; MIEM, 2013, 2016 y 2018; INIA 2019; Machado *et al.*, 2020) se desconoce aún las posibles causas de la presencia de niveles elevados de As y si existe variación de estos durante el uso de los pozos (variaciones de caudal, nivel dinámico, etc). Cabe destacar que este conocimiento es clave a la hora de sugerir un plan de gestión para el uso adecuado y sustentable del

agua subterránea, siendo que el SAR es de importancia estratégica en el desarrollo sostenible de la producción agrícola y ganadera de ese sector del país, así como también una fuente de agua para consumo de la población que habita la zona y que a su vez será también de interés para el proveedor de agua potable de Uruguay, Obras Sanitarias del Estado (O.S.E).

1.1. Objetivos

1.1.1. Objetivo general

 Estudiar la posible variación espaciotemporal de los niveles de arsénico (As) y sus especies inorgánicas en un sector de Kiyú y cómo estos niveles podrían verse afectados con los caudales de extracción.

1.1.2. Objetivos específicos

- Caracterizar el agua subterránea de la unidad acuífera en sus diversos niveles permeables del área de estudio desde el punto de vista de iones mayoritarios y niveles de arsénico y sus especies As(III) y As(V).
- Identificar los principales procesos que controlan la química del agua subterránea en la unidad acuífera.
- Determinar la posible variación de los niveles de As y sus especies respecto a variaciones hidrodinámicas, realizando un ensayo de bombeo prolongado.

2. Área de estudio

2.1. Ubicación y accesos

El área de estudio abarca aproximadamente 5 km² y se localiza próxima a la localidad de Kiyú, en el departamento de San José, al suroeste del país (Figura 2.1). Para acceder a la zona se debe tomar la Ruta Nacional Nº1 hasta la ciudad de Libertad y posteriormente tomar el Camino Mauricio hasta llegar al balneario. Para acceder al área norte del área se debe tomar el Camino Sosa mientras que para arribar al área sur se debe tomar la calle Ibirapitá y tomar el Camino Juventus el cual atraviesa la zona de estudio.

Figura 2.1. Localización y acceso al área de estudio. (Sistema de coordenadas UTM zona 21S elipsoide WGS84). A) Ubicación geográfica de la República Oriental del Uruguay. B) Ubicación geográfica del departamento de San José donde se ilustra el área de estudio. C) Imagen satelital del área de estudio e inmediaciones donde se muestran localidades cercanas, cursos de agua y caminos rurales.

2.2. Geomorfología

La zona de estudio se ubica en la región morfoestructural denominada cuenca sedimentaria del suroeste (Panario, 1988). Según Spoturno *et al.* (2004) en este sector del departamento se reconocen dos regiones geomorfológicas: región de planicies y región de terrenos ondulados. La región de planicies está representada en el área por una planicie fluvial baja cuya mayor expresión ocurre entre los 5 y 20 msnm. Por el contrario, la región de terrenos ondulados está conformada por lomadas alargadas con pendientes suaves que tienden a la peneplanización. Estas presentan extensos interfluvios, planos a ligeramente convexos, laderas con pendientes planas muy suaves de tipo simétricas y asimétricas y valles extensos de tipo plano. Se caracterizan por no superar los 50 msnm. Por otra parte, Goso (2015a) identifica

lomadas suaves en la parte centro norte y una planicie alta en el sector centro sur del área (Figura 2.2).

Figura 2.2. Mapa geomorfológico del área de estudio. El recuadro negro indica la zona de estudio y sus inmediaciones. Modificado del mapa geomorfológico del tramo 7: Montevideo – Punta Jesús María (Montevideo – San José) a escala 1:50.000 (Goso, 2015a).

2.3. Hidrología

La red de drenaje superficial del área de estudio está conformada por un afluente (Cañada de los Manantiales) perteneciente al Arroyo Mauricio. Este arroyo se encuentra al E y a 4 km del área, corre con dirección N-S y desemboca en el Río de la Plata. En el área y sus alrededores se observa un patrón de drenaje de tipo dendrítico, caracterizado por la ramificación irregular de los cauces tributarios y por desarrollarse sobre un sustrato sedimentario relativamente uniforme. El control del diseño es esencialmente topográfico, es decir, los cursos adoptan la dirección de la pendiente del terreno.

2.4. Clima

Con lo que respecta al clima, el departamento de San José presenta un promedio anual de temperaturas que varían entre 16,5 y 17,5°C y precipitaciones medias de entre 1100 mm y 1200 mm (INUMET, s.f). Según la clasificación climática de Köppen (1930) el clima del departamento se clasifica como "Cfa" al igual que la mayoría del Uruguay. Esta clasificación alude a un clima templado, moderado, lluvioso, húmedo y con temperaturas del mes más cálido superiores a 22°C.

2.5. Suelos y usos del suelo

Las características del medio (geológicas, geomorfológicas y climatológicas) de la región permiten que se desarrollen suelos de alta y media fertilidad, lo que concuerda con una intensa producción agrícola de este sector del país, cuyo principal uso radica en el cultivo de papa, trigo, cebada y cebolla. De acuerdo la carta de reconocimiento de suelos del Uruguay a escala 1:1.000.000 del MAP (1976), los suelos predominantes de la zona son los brunosoles. Estos se asocian a sedimentos limo arcillosos y se caracterizan por presentar un alto contenido de materia orgánica.

Según la carta de suelos y aptitud general de uso del departamento de San José Zona Sur del MAP (1990), en el sector sur de la zona de estudio se desarrollan suelos profundos, pardo oscuro, de diferenciación media a máxima, texturas medias y fertilidad natural media, a veces hidromórficos y suelos profundos, pardo oscuro, de diferenciación máxima, de texturas medias, fertilidad natural media con evidencia de mal drenaje y alcalinidad. En el sector central se desarrollan principalmente suelos profundos, pardo oscuro, diferenciados, de texturas medias y pesadas y fertilidad natural media. A su vez es común la aparición de fase sódica. Por otra parte, se encuentran suelos profundos y moderadamente profundos, pardos, poco y medianamente diferenciados, de texturas medias y livianas y de fertilidad natural media. En el sector norte se desarrollan los mismos suelos que en el sector sur.

3. Marco geológico

3.1. Contexto geológico regional

Sobre el territorio uruguayo se reconocen tres cuencas sedimentarias ubicadas en el *on-shore*: Cuenca Norte, Cuenca Santa Lucía y Cuenca Laguna Merín (Figura 3.1). El área de estudio se encuentra ubicada en el sector SW de la Cuenca Santa Lucía cuyo basamento de edad Paleoproterozoico corresponde a rocas ígneas y metamórficas vinculadas a la orogenia Transamazónica (1800-2000 Ma) (Oyhantçabal *et al.* 2011; Bossi y Gaucher, 2014). Esta cuenca sedimentaria está temporal y espacialmente vinculada con el Lineamiento Santa Lucía – Aiguá – Merín (SaLAM), el cual es un sistema de graben-hemigraben que afectó al basamento cristalino sudoriental del Uruguay (Veroslavsky *et al.*, 2004).

Figura 3.1. Ubicación de la Cuenca Santa Lucía sobre la región sur oeste del Uruguay en el segmento sudoccidental del Lineamiento Santa Lucía – Aiguá – Merín (SaLAM). Modificado de Veroslavsky *et al.* (2004).

Según Veroslavsky *et al.* (2004) la cuenca sedimentaria corresponde a un *pull-apart* intracratónico, la cual se propagó a través de los principales planos de debilidad cortical del basamento con dirección ENE. Se apoya principalmente sobre los departamentos de Canelones y San José ocupando una superficie de aproximadamente 10500 km². Se encuentra limitada al Norte y al Sur por el basamento, al Este por la falla Sarandí del Yí - Piriápolis y hacia el Oeste no existe un consenso sobre dónde acaba. Una hipótesis es que se encuentre abierta y tenga posibles conexiones con la Cuenca del Salado en Argentina o, por otro lado, es posible que el Alto de Martín García se interponga entre ambas cuencas. La génesis de esta cuenca se asocia a un evento de rift continental abortado (aulacógeno) que dio lugar a la formación de las cuencas Santa Lucía y Laguna Merín, así como también a actividad volcánica en el corredor que se forma en la alineación entre las dos cuencas (Lineamiento SaLAM). Este evento habría sido precursor de la apertura del Océano Atlántico en el período Cretácico (Spoturno *et al.*, 2004; Veroskavsky *et al.*, 2004).

En una sección transversal, la cuenca muestra un perfil asimétrico conformado por un sistema conjugado de fallas normales lístricas de crecimiento sintéticas y antitéticas que definen grabens y pilares tectónicos sucesivos de diferentes escalas. Asimismo, esta puede ser dividida en dos subcuencas (Depresión del Norte y Depresión del Sur) con ámbitos de sedimentación independientes separadas por el Alto de Santa Rosa (Veroslavsky *et al.,* 2004).

De acuerdo con Veroslavsky (1999), el basamento cristalino de la Cuenca Santa Lucía está conformado por una asociación litológica típica de terrenos arqueanos – proterozoicos. Hacia el borde Sur, las rocas que predominan son del tipo granitognéissicas de medio a alto grado metamórfico, ocasionales relictos supracorticales e intrusiones tardi-post-tectónicas. En el borde Norte ocurren rocas metamórficas de bajo a medio grado metamórfico e intrusiones graníticas. En cambio, en el borde Este de la cuenca se encuentran rocas metamórficas de bajo grado metamórfico deformadas e intrusiones graníticas sintectónicas, de dirección N-S y paralelo a la Zona de Cizalla Sarandí del Yí. En cambio, el borde Oeste está recubierto por las aguas del Río de la Plata.

3.2. Contexto geológico local

Con base en los antecedentes geológicos del Sistema Acuífero Raigón (Bessouat *et al.*, 2000; MTOP *et al.*, 2005), el mapa geológico y de recursos minerales del departamento de San José a escala 1:100.000 (Spoturno *et al.*, 2004) y el mapa geológico a escala 1:50.000 del tramo Montevideo – Punta Jesús María (Montevideo – San José) (Goso, 2015b), se reconoce que registros de materiales sedimentarios de edad cenozoica cubren el área de estudio. Apoyadas sobre el escudo uruguayo Paleoproterozoico, se desarrollan sucesivamente, los depósitos terciarios de la Formación Fray Bentos, la Formación Camacho, y la Formación Raigón y los depósitos Cuaternarios de la Formación Libertad y la Formación Dolores (Tabla 3.1).

Edad		Unidades
Cuaternario	Pleistoceno	Fm. Dolores
		Fm. Libertad
PliocenoTerciarioMiocenoOligoceno	Fm. Raigón	
	Mioceno	Fm. Camacho
	Oligoceno	Fm. Fray Bentos

3.2.1. Formación Fray Bentos (Oligoceno Tardío)

Los primeros registros que mencionan a los depósitos de Fray Bentos se retoman al siglo XIX, pero es Lambert (1940) quien toma el nombre de Capas de Fray Bentos y posteriormente Goso (1966) la jerarquiza como Formación.

Litológicamente está conformada por areniscas finas, limolitas loéssicas, fangolitas y niveles conglomerádicos y diamictíticos. Asimismo, se hallaron trizas vítreas y procesos relativamente intensos de carbonatación y silicificación, así como de forma más restringida, areniscas medias a gruesas. Esta unidad tiene un color rosadomarrón rojizo (Preciozzi *et al.*, 1985; Pérez Peirano, 1991; Bessouat *et al.*, 2000; Spoturno *et* al., 2004; Ubilla, 2004). Los espesores varían en promedio entre 8 y 10 m en el departamento de San José (Spoturno *et al.*, 2004), sin embargo, en el SAR promedian entre 15 a 25 m (Bessouat *et al.*, 2000). En cuanto a las relaciones estratigráficas, se apoya discordantemente sobre el basamento cristalino y formaciones de edad Cretácica y sobreyace a la Formación Camacho y Formación Raigón (Preciozzi *et al.,* 1985; Pérez Peirano, 1991).

En el Departamento de San José la unidad aflora en los márgenes de algunos cursos de agua y en desmontes de la Ruta Nacional Nº1, desarrollándose en las cotas de mayor altimetría del área (Bessouat *et al.*, 2000; Spoturno *et* al., 2004).

En lo que respecta al contenido paleontológico en el departamento no se reconocen registros fósiles (Spoturno *et al.*, 2004), pero aquellos reconocidos en otros sectores permiten inferir que la edad de la unidad es Oligoceno Tardío (Mones y Ubilla, 1978; Herbst, 1980; Ubilla, 2004).

En cuanto al ambiente de sedimentación, se le atribuye a esta formación un ambiente continental bajo clima árido a semiárido, relacionado con procesos eólicos y gravitacionales. (Caorsi y Goñi, 1958; Bossi, 1966; Herbst, 1980; Preciozzi *et al.,* 1985; Spoturno *et al.*, 2004). Sin embargo, Pérez Peirano (1991) admite la presencia de corrientes de agua de tipo fluvial debido a que se han hallado estructuras sedimentarias del tipo laminación cruzada planar y ondulitas en areniscas muy finas.

3.2.2. Formación Camacho (Mioceno Tardío)

Las primeras menciones correspondientes a estos depósitos sedimentarios provienen de Darwin en el siglo XIX, sin embargo, numerosos autores le han asignado diferentes nombres. Kraglievich (1928) la denomina Transgresión Marina Enterriana, Frenguelli (1930) la nombra Enterriana, Walter (1931) la llama Piso de Paraná y Lambert (1939 y 1941) la denomina depósito de la Transgresión Enterriana. No fue hasta 1958 que Caorsi y Goñi las denominaron como "Areniscas fosilíferas de Camacho" otorgándoles por primera vez una localidad y sección tipo. Posteriormente, Goso y Bossi (1966) jerarquizan estos sedimentos a nivel de Formación con la misma denominación.

A grandes rasgos la Formación Camacho está conformada por sedimentos silicoclásticos que van desde arcillitas verdosas a conglomerados finos blanquecinos (Ugalde, 2019), sin embargo, de acuerdo con el estudio de los afloramientos es que Martínez (1994) divide la Formación Camacho en dos miembros con características disímiles: Miembro San Pedro y Miembro Cerro Bautista.

El Miembro San Pedro está compuesto por limolitas arenosas verde-grisáceas bioturbadas, con intercalaciones de niveles de areniscas delgados con un alto contenido de fósiles, el cual se expone en San José en las Barrancas de Kiyú, Arazatí y Mauricio. En tanto, el Miembro Cerro Bautista se distingue por la presencia de areniscas finas a muy finas, blancas, junto con niveles integrados por fracciones más gruesas, pero se hallan en superficie únicamente en el departamento de Colonia (Martínez, 1994). La definición de la Formación Camacho se basó principalmente en las litologías características de este miembro (Goso y Bossi, 1966).

En la base las relaciones de contacto son discordantes con el basamento cristalino o la Formación Fray Bentos. Por encima de la Formación Camacho se encuentran en concordancia la Formación Raigón y en discordancia la Formación Libertad o la Formación Dolores. (Bessouat *et al.,* 2000; Perea y Martínez, 2004). Diversos autores proponen que pudiera existir un pasaje gradual hacia las litologías de la Formación Raigón (Preciozzi *et al.,* 1985; Bessouat *et al.,* 2000; Perea y Martínez, 2004).

En San José, la unidad casi no tiene representación areal, aflorando únicamente en las barrancas de Kiyú, Arazatí y Mauricio, y se encuentra cubierta casi en su totalidad por la Formación Raigón (Spoturno *et al.,* 2004), pero en profundidad ocupa gran parte de la denominada Depresión del Sur (Spoturno, 1995). Según Spoturno (1995) la unidad, presenta una disposición geométrica en forma de cuña cuyos espesores mayores varían entre 30 a 35 m. De acuerdo con perforaciones en el área del SAR la Formación Camacho tiene espesores promedio de 20 m (Bessouat *et al.,* 2000).

La Formación Camacho se encuentra dentro de las más conspicuas del Uruguay debido a su riqueza paleontológica. Se caracteriza por la abundancia de icnofósiles, invertebrados y vertebrados marinos y algunos vertebrados continentales. Con base en las edades de los mamíferos continentales y los moluscos es la Formación Camacho fue asignada al Mioceno Tardío. (Figueiras y Broggi, 1976; Sprechmann, 1978; Mones, 1979; Sprechman, 1980; Sprechmann *et al.*, 1994; Perea y Martínez, 2004). Las rocas de esta Formación registran una transgresión marina rica en fósiles y con buenas exposiciones. Estas litologías están asociadas a un ambiente de plataforma marina somera con temperaturas subtropicales (Ugalde, 2019).

3.2.3. Formación Raigón (Plioceno Temprano)

Los primeros autores que hacen referencia a estos depósitos son Jones (1956), quien los agrupa en el "Pampeano" y Caorsi y Goñi (1958) los incluyen en la "Unidad Arazatí". Goso (1965) es quien separa y define con criterio litoestratigráfico y rango de Formación a estos sedimentos estableciendo a su vez la sección tipo en la Estación Raigón en el departamento de San José.

La unidad se compone de arcillas verdes, arenas finas y muy finas arcillosas verdes, arenas finas blancas, arenas medias blancas feldespáticas y cuarzo-feldespáticas, arenas gruesas y muy gruesas feldespáticas, gravillas gravas y cantos. Por otro lado, también se han reconocido en estado pulverulento y en pequeñas concreciones aisladas o en racimos carbonato de calcio en varias de las litologías. Litológicamente esta unidad presenta variaciones importantes. En la Depresión del Sur se observa en la porción Sur Oeste un predominio de las fracciones pelíticas y arenosas finas a medias, mientras que en la porción centro Este dominan las fracciones arenosas. En cambio, en la Depresión Norte ocurren arenas medias y gruesas a gravillosas con cantos con estructuras lenticulares de fracciones finas (Spoturno *et al.*, 2004). Bossi y Ortiz (2011) incluyen en el tope de la unidad un nivel de loess que autores anteriores lo consideraban como perteneciente a la Formación Libertad.

Esta unidad se encuentra ampliamente extendida en el departamento tanto en superficie como en profundidad, siendo los acantilados de San Gregorio, Kiyú, Mauricio y Ordeix la zona de afloramientos más importantes (Spoturno *et al.*, 2004). Las características de estas barrancas fueron estudiadas por diversos autores con foco en diferentes características de estas (Francis y Mones, 1965; Andreis y Mazzoni, 1967; Da Silva, 1988; De Santa Ana *et al.*, 1988; Le Haye, 1988; Pérez Peirano, 1991). En estas, la unidad está conformada por arenas de granulometría variable, color blanco amarillento, con lentes y niveles de arcillas verdes y conglomerados, pudiendo presentar concreciones calcáreas. Estos depósitos se disponen interdigitados y groseramente de forma rítmica, en niveles lentiformes con desarrollo de estratificaciones paralelas y cruzadas (Pérez Peirano, 1991).

Con respecto al espesor, presenta una potencia máxima en el departamento de 36 metros (Spoturno *et al.*, 2004). Sin embargo, en el SAR a nivel de afloramiento no

superan los 5 m y en perforaciones alcanza espesores promedios de 10 a 15 m (Bessouat *et al.*, 2000).

Desde el punto de vista de las relaciones estratigráficas, en la base se apoya de forma discordante con el basamento cristalino y la Formación Fray Bentos, mientras que algunos autores sugieren un pasaje transicional con la Formación Camacho. En el tope las relaciones de contacto son discordantes con unidades cuaternarias (Preciozzi *et al.*, 1985; Bessouat *et* al., 2000).

Las características litológicas, estructurales y paleogeomorfológicas permiten asignarle a la unidad una depositación en ambiente marino litoral y la instalación de sistemas continentales de condiciones de clima semiárido y árido. Esto está representado en la Depresión Sur, mientras que en la Depresión Norte pasa a un sistema continental con episodios fluviales (Spoturno *et* al., 2004).

Con respecto al contenido paleontológico, en la unidad se han encontrado pocos fósiles con significancia estratigráfica regional, pero a partir del contenido de mamíferos fósiles se le ha atribuido una edad Pliocena (Preciozzi *et al.*, 1985; Perea y Martínez, 2004).

3.2.4. Formación Libertad (Pleistoceno)

Originalmente se agrupó a este conjunto de sedimentos cuaternarios en la Formación Pampeana o Loess Pampeano (Jones, 1956) hasta que Caorsi y Goñi (1958) los designan como "Loess de Arazatí". Posteriormente fue definida y caracterizada por Goso (1965) quien le otorga la categoría de Formación y reproducida sin modificaciones relevantes en Goso y Bossi (1966).

Desde el punto de vista litológico está compuesta por lodos/fangos masivos, limos con contenido variable de arena y arcilla de colores pardos, loess de color pardo y arcillas grises verdosas con moteados marrones, incorporando carbonato de calcio multiforme. Otra característica menos relevante es la presencia de pequeñas concreciones de óxido de hierro y rosetas de yeso. (Preciozzi *et al.*, 1985; Martínez y Ubilla, 2004; Spoturno *et al.*, 2004) Acorde a observaciones geomorfológicas, se han sugerido dos episodios depositacionales denominados Libertad I y II, relativos a cambios climáticos (Goso, 1972).

La Formación Libertad se extiende en el sur del país, pero desarrolla escasos afloramientos, por lo que, en el departamento de San José, únicamente es posible identificarla en cárcavas, desmontes y cunetas de caminos (Bessouat *et al.*, 2000; Spoturno *et al.*, 2004). El espesor de la unidad varía entre 3 y 30 m (Spoturno *et al.*, 2004). En el SAR los espesores promedios rondan los 10 m, aunque en perforaciones se han observado espesores mayores de 15 m (Bessouat *et al.*, 2000).

Estratigráficamente se apoya en discordancia sobre Formaciones del Terciario, Cretácico y del Proterozoico. Hacia el tope la unidad es discordante con las Formaciones del Pleistoceno y Holoceno (Spoturno *et al.,* 2004).

Históricamente se le ha atribuido una gran riqueza fosilífera a la Formación Libertad, aunque no siempre con un control estratigráfico adecuado por lo que en la práctica no ha podido ser verificado (Ubilla y Perea, 1999). Las dataciones de ¹⁴C indican edades en el entorno de 30-20 ka, lo que enmarca a la unidad en el Pleistoceno (Ubilla y Martinez, 2016; Castiglioni *et al.*, 2022).

En cuanto al ambiente de depositación, se menciona un clima semiárido con períodos húmedos, condiciones diluviales, asociación a episodios glaciales. Libertad I estaría asociada a clima seco y frío (Panario y Gutiérrez, 1999) mientras que Libertad II se asocia al último máximo glacial hace 20 ka (Castiglioni *et al.*, 2022).

3.2.5. Formación Dolores (Pleistoceno)

La Formación Dolores fue definida por Goso (1972) al estudiar el sistema de terrazas en la barra del Río San Salvador en el Departamento de Soriano.

Desde el punto de vista litológico esta unidad se caracteriza por presentar una asociación de loess, limo-arcillas, arcillas y fangos de coloración pardo y gris verdosa. También se han descrito carbonatos como cemento y concreciones en los niveles arcillo limosos y fangolíticos (Martínez y Ubilla, 2004; Spoturno *et al*, 2004). Presenta una gran similitud con la Formación Libertad, pero se diferencia de ésta ya que Dolores genera superficies planas (Martínez y Ubilla, 2004).

Se encuentra expuesta principalmente en el sur del país con potencias de hasta 10 m, pero en San José los afloramientos naturales son poco comunes. Estos se restringen a las zonas de borde de terraza y en entalles de erosión importantes, por

lo que los mejores ejemplos en el departamento se observan en los valles de los ríos Santa Lucía Grande y San José, y en los arroyos Mauricio, Del Tigre, Pereyra, San Gregorio y Pavón (Spoturno *et al.*, 2004). En la zona de las barrancas donde presenta su mayor exposición, la potencia media de la unidad es de 1,5 a 3 m (Bessouat *et al.*, 2000).

Subyace en discordancia a la Formación Chuy y Barrancas y ocasionalmente a las Formaciones Camacho, Raigón y Fray Bentos. Hacia el tope normalmente está cubierta por un horizonte de suelo bien desarrollado por la Formación Villa Soriano (Bessouat *et al.*, 2000; Spoturno *et al.*, 2004).

En la literatura se hace mención de que se han encontrado en esta unidad tortugas, mamíferos característicos del Pleistoceno Tardío y moluscos de agua dulce en varios departamentos del Uruguay. Algunos de ellos son indicadores de condiciones semiáridas y frías, lo que apoyaría la teoría de que esta unidad está vinculada al último episodio glacial (Martínez y Ubilla, 2004), aunque recientemente se ha vinculado al episodio frío "Younger Dryas" (Castiglioni *et al.*, 2022). Ubilla y Martinez (2016) le otorgan una edad absoluta acotada entre 25 ka y 10,4 ka, con la mayoría de las edades ¹⁴C entre 11 y 10 ka, lo que enmarca a la unidad en el Pleistoceno Tardío – Holoceno Temprano.

3.3. Geología del área de estudio

Los antecedentes geológicos más relevantes refieren al mapa geológico del departamento de San José a escala 1:100.000 (Spoturno *et al.*, 2004) y al mapa geológico a escala 1:50.000 del tramo Montevideo – Punta Jesús María (Montevideo – San José) (Goso, 2015b) (Figura 3.3).

Figura 3.3. Mapa geológico del área de estudio. El recuadro negro indica la zona de estudio y sus inmediaciones. Modificado del mapa geológico del tramo 7: Montevideo – Punta Jesús María (Montevideo – San José) a escala 1:50.000 (Goso, 2015b).

4. Marco hidrogeológico

4.1. Contexto hidrogeológico regional

De acuerdo con la conformación geológica del subsuelo, existen varias regiones donde es posible explotar los recursos hídricos subterráneos, por lo que Heinzen *et al.* (2003) y Montaño *et al.* (2006) crearon dos clasificaciones que facilitan su estudio.

Heinzen *et al.* (2003) elaboran el Mapa Hidrogeológico del Uruguay a escala 1:1.000.000 en donde dividen a los acuíferos según su litología y posibilidad de ocurrencia de agua subterránea. En esta clasificación se distinguen: acuíferos en rocas sedimentarias y sedimentos, con porosidad intersticial y alta o media prospectividad para agua subterránea, acuíferos en rocas sedimentaras y sedimentos, con porosidad intersticial y baja prospectividad para agua subterránea, acuíferos en rocas con porosidad por fracturas y/o niveles de alteración o disolución cárstica, con alta o media posibilidad para agua subterránea, acuíferos en rocas con porosidad intersticial o por fracturas de limitada amplitud, con baja prospectividad para agua subterránea y acuíferos prácticamente improductivos en rocas ígneas, metamórficas y sedimentos pelíticos. A su vez, de acuerdo con los autores arriba citados, estos acuíferos se subdividen en unidades hidrogeológicas.

Dentro de esta clasificación, el área de estudio forma parte de los acuíferos en sedimentos consolidados y no consolidados, con porosidad intersticial y alta o media porosidad para agua subterránea; y dentro de la subcategoría unidad hidrogeológica Raigón (Tr).

Por otra parte, Montaño *et* al. (2006) desarrollan una clasificación para los recursos hídricos subterráneos uruguayos que consiste en dividirlos en tres grandes Provincias Hidrogeológicas: Provincia Paranense, Provincia Meridional y Provincia Costera. A su vez, la Provincia Paranense puede dividirse en subprovincias en función del comportamiento hidrogeológico de los materiales del subsuelo a escala local.

El área de estudio está situada en la Provincia Hidrogeológica Costera, la cual incluye acuíferos constituidos por formaciones geológicas de edades cretácicas (Sistema Acuífero Juanicó) a cenozoicas (Sistema Acuífero Raigón y Sistema Acuífero Chuy).

4.2. Contexto hidrogeológico local

4.2.1. Sistema Acuífero Raigón (SAR)

El Sistema Acuífero Raigón (SAR) se define como el conjunto sedimentario que se desarrolla en la región occidental de la Cuenca Santa Lucía. Se ubica al sur del departamento de San José abarcando una superficie de 1800 km² y se caracteriza por comportarse como un acuífero confinado cuando es subyacente a la Formación Libertad y en otras ocasiones como un acuífero libre o aflorante (Postiglione *et al.*, 2009; De los Santos y Hernández, 2013; MIEM, 2018, 2016 y 2013; INIA, 2019).

Existen autores que establecen que el SAR es un sistema multicapa (Heinzen *et al.*, 2003), pero por otra parte De los Santos y Hernández (2013) consideran que a efectos prácticos el acuífero se comporta como una única unidad ya que la mayoría de las perforaciones atraviesan las capas arcillosas y captan agua de los diferentes estratos arenosos.

Este constituye una importante reserva de agua subterránea que abastece la zona agrícola y ganadera de los departamentos de Canelones, San José, Colonia y zona periurbana de Montevideo, (Montaño *et al.*, 2006), lo que le otorga la distinción de ser el acuífero más explotado del país. En el 2009, contaba con 517 pozos registrados que extraían agua para diferentes fines (DINAMIGE, 2009), aunque esta cifra se incrementó notoriamente en los últimos años. Este acuífero muestra una extracción anual de 6,6x10⁷ m³ con caudales promedio de 23,6 m³/h y representan un 30,0% de la extracción total de agua subterránea del país (DINAMIGE, 2009). El sistema se subdivide en dos subsistemas (Noreste y Sur) separados por la discontinuidad estratigráfica de la Formación Raigón originada por el entalle del Río San José. La zona noreste ocupa un área de 400 km² y su comportamiento es similar al de un acuífero libre o semiconfinado, a diferencia de la zona sur que ocupa una superficie de 1400 km² variando su comportamiento desde un acuífero libre a uno confinado. A

su vez, el subsistema sur se divide en tres regiones: oeste, central y este (MTOP *et al.*, 2005).

Según Heinzen *et al.* (2003), MTOP *et al.* (2005) y Montaño *et al.* (2006) el acuífero presenta los siguientes parámetros hidráulicos: transmisividad (T) varía entre 100 hasta 2200 m²/día, prevaleciendo valores entre 300 y 1400 m²/día; coeficiente de almacenamiento (S) 1×10^{-5} a 1×10^{-2} ; gradientes hidráulicos (i) oscila entre 0,001 y 0,004; caudal (Q) varía entre 2 a 5 m³/h al Sur de San José y entre 60 a 80 m³/h en las cercanías de la Ruta 1; Conductividad hidráulica (k) que varía entre 25 y 50 m/día; caudal específico (q) en torno a los 11 m³/h/m y con residuo seco medio de 440 mg/L. La profundidad de los pozos varía entre 30 y 40 m. De acuerdo con INIA (2019) se estima que la recarga promedio es de 93 mm (equivalente al 9% de la precipitación).

El mapa hidrogeológico más reciente disponible para el Acuífero Raigón corresponde al elaborado por INIA (2019) (Figura 4.1). Éste muestra regionalmente la productividad del acuífero (baja, regular, media y alta) y la piezometría, además de los principales cursos de agua en superficie, rutas y localidades.

Sobre la piezometría se puede observar que el sector ubicado al norte de la ruta 3 presenta un parteaguas en dirección N-S. Esta región descarga hacia el río San José en la zona norte y oeste, mientras que descarga al Río Santa Lucía hacia el este. En el sector al sur de la ruta 3, el eje conformado por las rutas 1 y 3 representa una divisoria subterránea hacia el río San José. Hacia el sur la descarga se produce hacia los arroyos Pavón, Luis Pereyra, San Gregorio y Mauricio, finalmente hacia el Río de la Plata (INIA, 2019).

Desde el punto de vista hidrogeoquímico, se clasifican como aguas bicarbonatadas sódicas, duras a muy duras, sin presentar anomalías respecto a sus propiedades fisicoquímicas ni a los elementos mayoritarios y minoritarios (Montaño *et al.,* 2006). Sin embargo, en cuanto a elementos traza, se han constatado niveles de arsénico (As) que superan la normativa vigente de 0,020 mg/L (UNIT, 2008) para consumo humano con máximos de hasta 0,042 mg/L (Garat y Pérez, 2018; Collazo *et al.,* 2020). A su vez, se detectaron valores anómalos de nitratos de origen antrópico (MTOP *et*

al., 2005). La dureza total tiene una media de 160 ppm con extremo de 60 a 380 ppm de CaCO₃ (Montaño *et al.*, 2006).

Figura 4.1. Mapa hidrogeológico del Sistema Acuífero Raigón (SAR) a escala 1:100.000. Tomado de INIA (2019).

4.2.1.1. Arsénico en el SAR

El primer estudio que menciona la problemática de la presencia de As en el agua subterránea del SAR se remonta a la década del 2000 con el trabajo de Manganelli *et al.* (2007), donde los autores manifiestan valores máximos de 0,019 y 0,012 mg/L en las localidades de Libertad (San José) y Canelones-Tala (Canelones) respectivamente. Con base en estos resultados, es posible inferir que los sedimentos distales del SAR en el departamento de San José presentan valores más elevados de As en comparación con las facies proximales del departamento de Canelones (Manganelli *et al.,* 2007). Posteriormente, Goso *et al.* (2008) reportan valores máximos de As en Raigón de 0,024 mg/L y proponen por primera vez la posible

incidencia de niveles de cenizas volcánicas suprayacentes a esta unidad como fuente de As.

Según Mañay *et al.* (2013), con base en el estudio de 37 muestras de agua subterránea obtenidas en los alrededores de la ciudad de Libertad y las localidades de Rafael Perazza, Rincón del Pino, Puntas de Valdéz y Kiyú encontraron que el 80% de las muestras analizadas exceden el valor guía para agua para consumo humano propuesto por la OMS de 0,01 mg/L y el 11% exceden la normativa uruguaya vigente para dicho uso del agua de 0,02 mg/L. En Kiyú, se analizaron 9 muestras de sedimento que arrojaron valores de As entre 9,82 y 1,18 mg/kg, los cuales presentan valores esperables en sedimentos (media de 4,1 mg/kg en arenas y 13 mg/kg en arcillas) (Smedley y Kinniburgh, 2002). En este trabajo, los autores manifiestan un posible origen antropogénico debido al uso prolongado de pesticidas arsenicales y herbicidas por el sector agropecuario.

Figura 4.2. Mapa de concentraciones de As en el Sistema Acuífero Raigón. Tomado de INIA (2019).

Los valores más elevados de As fueron reportados en el I Simposio de Arsénico en agua subterránea por Garat y Pérez (2018), quienes señalan valores máximos de As total en el agua subterránea de 0,042 mg/L. Por otra parte, Mañay *et al.* (2019) analizan datos ya existentes de As realizando una actualización del contexto y de la situación actual del país con relación al As en el ambiente y la salud, mientras que INIA (2019) mostraron un mapa de concentraciones de As (Figura 4.2), donde se ilustra que las concentraciones más elevadas se encontrarían en las inmediaciones del arroyo San Gregorio y Mauricio, considerada el área más productiva del SAR (INIA, 2019).

Algunos de los últimos trabajos asociados a este tema son por un lado, el de Bundschuh *et al.* (2020) donde realizaron una recopilación de antecedentes relacionadas al As en diferentes acuíferos de Latinoamérica, el estudio de Collazo *et al.* (2020) y de Pamoukaghlián *et al.* (2021) quienes publican los resultados preliminares de la fase inicial del proyecto multidisciplinario e interinstitucional "Arsénico en el agua subterránea de Uruguay y riesgo a la salud asociado" (AsURU). Asimismo, cabe mencionar el mapa de riesgos de Uruguay de Wu *et al.* (2021).

Por otra parte, entre 2020-2022 se desarrolló un proyecto, titulado "Mitigación de arsénico en agua subterránea", cuyas referentes son la Dra. Facchin y la Dra. Collazo, el cual busca evaluar la efectividad de un mecanismo de retención del arsénico abatiendo los altos niveles *in situ* utilizando diferentes metodologías geológicas y químicas. En este proyecto se realizaron estudios geoquímicos de sedimentos del SAR y del agua subterránea, cuyos resultados no han sido publicados hasta el momento.

Finalmente, cabe señalar que Wu *et al.* (2021) muestran claramente un mapa de riesgo elaborado mediante algoritmos del tipo *Machine Learning,* que la zona donde abarca mayormente al SAR en el mapa de Uruguay presenta la mayor probabilidad, el mayor riesgo de encontrar agua subterránea con niveles que superan los permitidos por la normativa uruguaya para consumo humano. (Wu *et al.,* 2021).

5. Arsénico

5.1. Características, toxicidad y límite recomendado

5.1.1. Propiedades generales

El arsénico (As) (del persa: zarnikh, 'amarillo u oro') es un elemento químico que se encuentra de manera ubicua en el ambiente (Fowles *et al.*, 2013). Pertenece a la categoría de los metaloides (o semimetales) y se encuentra en el grupo 15, periodo 4, bloque p de la tabla periódica (Levi, 2000). Su número atómico es 33, tiene una masa atómica de 74,92 (Rae, 2020) y solamente un isótopo estable (⁷⁵As) (Bowell *et al.*, 2014). Es el 47^{mo} elemento natural más abundante del planeta (1,7 mg/kg) (Henke, 2009), aunque es el 20^{vo} más abundante en la corteza terrestre superior (4,8 mg/kg) (Rudnick y Gao, 2014). Se presenta en cuatro estados de oxidación: -3, 0, +3, +5, permitiéndole acomplejarse con numerosos compuestos químicos y participar en diversos ciclos geoquímicos (Polya y Lawson, 2016; Sierra, 2019). Cuando el As se combina con carbono e hidrógeno se lo conoce como arsénico orgánico, mientras que si se combina con otros elementos como por ejemplo el oxígeno, cloro y azufre se lo conoce como arsénico inorgánico (ATSDR, 2007b).

El arsénico es también es conocido como el "rey de los venenos" ya que es un elemento altamente tóxico cuyas formas inorgánicas (arsenito (As(III)) más tóxico que arseniato (As(V)) ocupan el primer lugar en la Lista de Prioridades de Sustancias Peligrosas (Priority List of Hazardous Substances) de la Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR) (ATSDR, 2007a) y se ubica en el puesto número dos en la lista de las diez sustancias químicas que constituyen una preocupación para la salud pública según la Organización Mundial de la Salud (OMS, 2010). Asimismo, está clasificado como carcinógeno, mutágeno y teratógeno (Palma-Lara *et al.,* 2020). La Agencia Internacional para la Investigación del Cáncer (IARC) lo cataloga dentro del principal grupo de sustancias carcinogénicas para los seres humanos (IARC, 2012). Sin embargo, no existe un consenso científico sobre si el mismo juega un rol esencial dentro del ciclo de la vida (Hughes *et al.,* 2011).
5.1.2. Exposición e incidencia en la salud humana

El arsénico, tanto en sus formas inorgánicas como orgánicas, puede encontrarse de forma natural en el suelo, aire, agua y alimentos debido a su cualidad omnipresente en el medio ambiente (OMS, 2018; Chen y Costa *et* al., 2021). Aunque la mayoría de las exposiciones ambientales típicas al arsénico no representan un riesgo para la salud, varias áreas del mundo contienen arsénico de fuentes naturales (minerales, rocas, suelos, agua, emisiones volcánicas) o antropogénicas (minería, industria metalúrgica, productos agrícolas, productos farmacéuticos) en niveles que crean una preocupación toxicológica (Hughes *et al.*, 2011; Polya y Lawson, 2016).

Los compuestos orgánicos del As (ej. arsenobetaina y arsenocolina) que se encuentran comúnmente en los productos de mar son relativamente no tóxicos para los seres humanos y son rápidamente eliminados por el organismo (Byeon *et al.,* 2021). En cambio, los compuestos inorgánicos que se absorben fácilmente resultan muy tóxicos para el cuerpo (ATSDR, 2007b).

Los seres humanos pueden estar expuestos al As a través de la ingestión, inhalación y en menor medida por contacto dérmico. La ingestión ocurre principalmente a través de la dieta ya sea por medio de agua o alimentos contaminados, o mediante otras actividades (ej. nadar, baños, geofagia, toma de medicamentos). (Fowles *et al.*, 2013; Polya y Lawson, 2016). Por lo tanto, la vía de exposición más importante al As es el agua contaminada no tratada utilizada como agua de bebida, para elaborar alimentos o regar cultivos (Fowles *et al.*, 2013; Polya y Lawson, 2016; OMS, 2018). Esta problemática afecta potencialmente a cerca de 220 millones de personas a nivel mundial (Podgorski y Berg, 2020).

Los síntomas inmediatos de una intoxicación aguda suelen incluir vómitos, dolor abdominal y de esófago y diarrea con sangre. Sin embargo, se pueden observar una variedad de síntomas y signos que involucran los sistemas gastrointestinal, dérmico, nervioso, renal, hepático, hematopoyético, cardiovascular, respiratorio y oftálmico. En cambio, la exposición prolongada al arsénico desarrolla una enfermedad conocida como hidroarsenicismo crónico regional endémico (HACRE) o arsenicosis que generalmente se manifiesta mediante cambios de pigmentación y lesiones en la piel. Por otra parte, puede causar una variedad de cánceres que afectan la piel y órganos internos (Fowles *et al.*, 2013; OMS, 2018) y si se encuentra en concentraciones entre 1-3 mg/kg en el cuerpo humano adulto puede inducir la muerte (Ellenhorn *et al.*, 1997).

5.1.3. Normativa nacional vigente sobre calidad del agua según su uso

El Artículo 47 de la Constitución (Uruguay, 1967), modificado por Reforma Constitucional en el 2004, instaura que la gestión de los recursos hídricos es de competencia estatal estableciendo que "el acceso al agua potable y el acceso al saneamiento constituyen derechos humanos fundamentales".

Por otra parte, el régimen jurídico de las aguas uruguayas está regido por el Código de Aguas (Decreto-Ley Nº14.859) (Uruguay, 1978), del 15 de diciembre de 1978, modificado por la Reforma Constitucional del 2004. Sobre este Decreto, se aplican las disposiciones presentes en la Ley Nº18.610 (Uruguay, 2009), del 2 de octubre de 2009, donde se establecen los principios rectores de la Política Nacional de Aguas.

Con el fin de prevenir la contaminación ambiental mediante el control de las aguas, el 9 de mayo de 1979 se promulga el Decreto Nº253/79 (con las modificaciones de los Decretos 232/88, 698/89 y 195/91 incluidas) (Uruguay, 1979) el cual reglamenta el Título V - Capítulo 1 del Código de Aguas. Este dispone en su Artículo 3 una clasificación en cuatro clases de los cursos o cuerpos de agua del país según sus usos preponderantes actuales o potenciales y en su Artículo 5 manifiesta los valores máximos admisibles de arsénico para cada una de ellas (Tabla 5.1).

Tabla 5.1. Categorías de agua para diferentes usos y sus respectivas concentraciones máximas de arsénico permitidas en Uruguay. Modificado de Uruguay (1979).

Clase	Descripción
1	Agua con tratamiento convencional para suministro público de agua potable. Estándar para el As:
	0,05 mg/L
2a	Agua para riego de productos agrícolas consumidos directamente por la población cuyo sistema
	de riego provoca el mojado del producto. Estándar para el As: 0,05 mg/L
2b	Agua para recreación por contacto directo con el cuerpo humano. Estándar para el As: 0,005
	mg/L
3	Agua para la preservación de la flora y fauna hídrica, o agua para riego de productos agrícolas
	que no son consumidas directamente por la población y cuyo sistema de riego no provoca el
	mojado del producto. Estándar para el As: 0,005 mg/L
4	Agua perteneciente a cursos de agua que atraviesan zonas urbanas y suburbanas, y agua para
	riego de productos agrícolas que no son destinados para consumo humano. Estándar para el As:
	0,1 mg/L

El 5 de julio de 1994 se promulga el Decreto Nº315/994 (Uruguay, 1994) por el cual se aprueba el Reglamento Bromatológico Nacional, donde establece en su Sección 1 - AGUAS, que el agua destinada al riego de productos agrícolas debe cumplir con los parámetros establecidos para este fin por el Decreto Nº253/79 del Ministerio de Transporte y Obras Públicas (o sus modificaciones vigentes) y que el valor máximo admisible para el arsénico en agua potable es de 0,05 mg/L.

Sin embargo, en el 3 de noviembre de 2011 se aprueba el Decreto Nº375/011 (Uruguay, 2011), el cual modifica al Decreto Nº315/994 en su Sección 1 - AGUAS, atendiendo a la inquietud del Ministerio de Salud Pública quien propone una revisión de los parámetros que definen las características del agua potable y sus valores máximos admitidos, definidos en el Capítulo 25 del Reglamento Bromatológico Nacional, con el fin de adherirse a las recomendaciones de la OMS. Por lo tanto, en este Decreto se establece la adopción de la norma UNIT 833.2008 reimpresión corregida julio 2010 para definir los parámetros requeridos para el agua potable. Allí la normativa marca un valor máximo permitido (VMP) de 0,02 mg/L para el As (UNIT, 2008).

Cabe destacar que el límite actual deberá restringirse aún más para cumplir con el valor guía de la OMS de 0,01 mg/L de As (OMS, 2018), el cual se prevé será adoptado en Uruguay en el 2023.

Tabla 5.2. Valores máximos admisibles para el As en agua para consumo humano según la normativa vigente.

Elemento	Norma UNIT 833 (UNIT, 2008)	OMS (OMS, 2018)	EPA (EPA, 2001)	UE (EU, 2020)	Japón (Japan, 2004)	Argentina (RSA- CONICET, 2018)
Valor Máximo Permitido (mg/L)						
As	0,02	0,01	0,01	0,01	0,01	0,01

En la Tabla 5.2 se muestran los diferentes valores admisibles de As (mg/L) según la normativa vigente uruguaya para agua de bebida en comparación con los valores admisibles de algunos organismos internacionales y países. Si bien muchas autoridades nacionales están tratando de reducir sus límites de acuerdo con el valor guía de la OMS, muchos países todavía utilizan en la actualidad el estándar de 0,05

mg/L, en parte debido a la falta de instalaciones de prueba adecuadas para concentraciones más bajas (Smedley y Kinniburgh, 2002).

5.1.4. Objetivos para el Desarrollo Sostenible (ODS)

Tanto el Plan Nacional de Aguas (Decreto N°205/017) (Uruguay, 2017) como el Reglamento de Planes de Seguridad de Agua (Resolución 120/2018, Unidad Reguladora de Servicios de Energía y Agua) (URSEA, 2018) se encuentran alineados con la Agenda 2030 para el Desarrollo Sostenible de la Organización de las Naciones Unidas, buscando contribuir al logro de su objetivo N°6: "Garantizar la disponibilidad de agua, su gestión sostenible y el saneamiento para todos" de los Objetivos de Desarrollo Sostenible (ODS) (ONU, 2016). En esta línea, el gobierno uruguayo a través de estas resoluciones asume además el compromiso de que todos los sistemas de abastecimiento de agua deberán contar con su Plan de Seguridad del Agua (PSA) para el 2030.

En los PSA todos los peligros y eventos peligrosos que puedan afectar la seguridad de un abastecimiento de agua deben ser identificados desde la cuenca de captación hasta el punto de consumo, incluyendo al arsénico dentro de la categoría peligros químicos. Por lo cual, las acciones a llevar adelante en este ámbito no solo competen a la cantidad sino también a la calidad del agua.

5.2. Origen de los altos niveles de arsénico en las aguas subterráneas

Aunque la mayoría de las aguas subterráneas presentan valores basales de concentración de arsénico menores al valor guía para la OMS (<0,01 mg/L), no es inusual que se detecten concentraciones elevadas de este metaloide en acuíferos a nivel mundial. Las concentraciones altas no se restringen a determinadas condiciones o ambientes, sin embargo, la mayoría de los acuíferos afectados tienen un origen ligado a procesos geoquímicos naturales y suelen tener una extensión de carácter regional (Smedley y Kinniburgh, 2002; Sosa, 2018; Morales-Simfors *et al.,* 2020; Podgorski y Berg, 2020).

Las aguas subterráneas con alto contenido de arsénico surgen como resultado de una combinación de: (a) la presencia de material fuente adecuado que contenga arsénico; (b) procesos eficientes de liberación y transporte; y (c) falta de procesos rápidos de remoción de arsénico (Polya y Middleton, 2017).

5.2.1. Fuentes naturales de arsénico

Las especies químicas de arsénico que se conocen hasta el momento derivadas de fuentes naturales pueden ocurrir tanto en fase gaseosa, líquida como sólida (Polya y Lawson, 2016; Rae, 2020).

Con respecto a las fases gaseosas que tienen en su composición As, se encuentran restringidas a ambientes específicos como: sistemas geotérmicos naturales, de hidrocarburos termogénicos, de lodos de aguas residuales, y emisiones gaseosas de suelos y plantas de arroz. Un ejemplo es la arsina o hidruro de arsénico (AsH₃), compuesto gaseoso inorgánico, incoloro, de escasa abundancia, muy reactivo y altamente tóxico, particularmente en presencia de oxígeno (Polya y Lawson, 2016).

En las aguas subterráneas las especies acuosas de As inorgánico predominantes son el arsenito (As(III)) (H_xAsO₃(x⁻³), con x = 0 a 3) o el arseniato (As(V)) (H_xAsO₄(x⁻³), con

x = 0 a 3), dependiendo del pH, las condiciones redox y la actividad biológica. (Smedley y Kinniburgh, 2013; Polya y Lawson, 2016; Sierra, 2019). En ambientes ricos en materia orgánica y actividad microbiana natural o por contaminación industrial, son frecuentes los compuestos arsenicales metilados monometilarsénico y dimetilarsénico en sus formas químicas respectivas (MMA(III), MMA(V), DMA(III) y DMA(V)) (Polya y Lawson, 2016; Sierra, 2019). Por otra parte, en ambientes alcalinos el arsénico puede formar complejos acuosos con As (III) o As(V) con azufre reducido (H₂S o HS⁻) conocidos como tioarsenito o tioarseniato respectivamente, que pueden ser importantes en algunas aguas subterráneas (Polya y Lawson, 2016; Sierra, 2019). Si bien en la bibliografía se menciona la importancia de complejos acuosos con ligandos de carbonato, estos han sido desacreditados (Neuberger y Helz, 2005; Polya y Lawson, 2016). Las especies de arsénico orgánico producido por reacciones de metilación microbiológica rara vez está presente en las aguas subterráneas a excepción de casos locales de contaminación industrial o agrícola (Smedley y

Kinniburgh, 2013). En la sección 5.3. se detallan las características hidrogeoquímicas del As en el agua subterránea.

La ocurrencia de As en especies sólidas se concentra en su mayoría en el ciclo endógeno debido al carácter calcófilo del metaloide, sin embargo, es la movilidad dentro del ciclo exógeno que determina su impacto en el ambiente. Se puede encontrar en su forma natural (arsénico nativo), en minerales primarios o asociado a minerales por medio de sucesivas etapas de mineralogénesis (procesos geoquímicos de alta temperatura) o de procesos de interacción agua-roca (procesos geoquímicos de baja temperatura). En las siguientes secciones se detallan los minerales, rocas, sedimentos y suelos con niveles elevados de As.

5.2.1.1. Minerales

El arsénico ocurre como constituyente en cerca de 750 minerales (IMA, 2021), pero solo un 2% son comúnmente identificados en sedimentos, suelos y rocas de la corteza terrestre (Foster, 2003). Este porcentaje está representado por arsénico nativo, arsenosulfuros (arsenopirita, cobalita, oropimiento, realgar, gersdorfita, tenantita y enargita), arseniuros (nicolita y loellingita), arsenitos (arsenolita y claudetita) y arseniatos (escorodita, eritrina y farmacosiderita) (Henke y Hutchison, 2009; Polya y Lawson, 2016). En su mayoría estos están asociados a depósitos hidrotermales, a excepción de los arseniatos y arseniatos que son producto de meteorización (Smedley y Kinniburgh, 2013).

Por otra parte, el arsénico se presenta como un componente traza en varios minerales (Tabla 5.3), donde el As sustituye parcialmente a las estructuras cristalinas, generalmente por azufre (S) (Henke y Hutchison 2009), o como adsorbatos (Polya y Lawson, 2016). A pesar de la gran cantidad de minerales de As, el depósito más grande del metaloide en rocas corticales es la pirita arsenical (Fe(S,As)₂) (Tabla 5.3).

Tabla 5.3. Concentraciones típicas de arsénico en minerales más frecuentes de rocas y sedimentos y otras sustancias sólidas donde el arsénico no es un componente principal. Modificado de Smedley y Kinniburgh, (2013 y 2002).

Mineral	Grupo mineral	As (mg/Kg)	
Pirita	Sulfuros	100–77000	
Arsenopirita	Sulfuros	100000-	
Pirrotita	Sulfuros	5–100	
Marcasita	Sulfuros	20–126000	
Galena	Sulfuros	5–10000	
Esfalerita	Sulfuros	5–17000	
Calcopirita	Sulfuros	10-5000	
Cinabrio	Sulfuros	<5–12	
Calcosina	Sulfuros	95–225	
Molibdenita	Sulfuros	5–500	
Estibina	Sulfuros	5–500	
Hematita	Óxidos	<160	
Oxihidróxido de Fe (III)	Óxidos	<76000	
Magnetita	Óxidos	2.7–41	
Ilmenita	Óxidos	<1	
Pirocloro	Óxidos	<2	
Wolframita	Óxidos	<5	

Mineral	Grupo mineral	As (mg/Kg)
Tantalita-Columbita	Óxidos	<2
Cuarzo	Silicatos	0.4–1.3
Feldespato	Silicatos	<0.1–2.1
Biotita	Silicatos	1.4
Anfíbol	Silicatos	1.1–2.3
Olivino	Silicatos	0.08–0.17
Piroxeno	Silicatos	0.05–0.8
Calcita	Carbonatos	1–260
Dolomita	Carbonatos	<3
Siderita	Carbonatos	<3
Yeso/Anhidrita	Sulfatos	<1–6
Baritina	Sulfatos	<1–12
Jarosita	Sulfatos	34–1000
Scheelita	Sulfatos	<5
Apatita	Fosfatos	<1–1000
Halita	Haluros	<3–30
Fluorita	Haluros	<2

5.2.1.2. Rocas, sedimentos y suelos

El arsénico está presente en la mayoría de las rocas y sedimentos en una concentración de entre 1 y 10 mg/kg, donde las rocas sedimentarias y los sedimentos presentan concentraciones mayores a las rocas ígneas y metamórficas (Gerdelidani *et al.*, 2020) (Figura 5.1).

Las concentraciones de As en las rocas ígneas, donde los promedios varían entre 1,5 y 5,9 mg/kg, son semejantes a las de la corteza superior. Durante los procesos de cristalización magmática el As puede sustituir al Si, Al, Fe y Ti en minerales en contenidos traza. En este sentido suelen concentrarse en los fluidos magmáticos residuales y por lo tanto en rocas volcánicas (ej. andesita). Sin embargo, las concentraciones en los basaltos pueden alcanzar los 113 mg/kg debido a los procesos hidrotermales que se producen en la zona de dorsal meso-oceánica (Smedley y Kinniburgh, 2002; Sosa, 2018; Sierra, 2019).

En el caso de las rocas metamórficas, las concentraciones de As suelen representar la composición original de sus protolitos con concentraciones medias a bajas (<5

mg/kg) (Sierra, 2019). Las concentraciones más elevadas se encontrarían en rocas de grano fino (filitas) con un promedio de 18 mg/kg, seguidas de rocas de grano intermedio (esquistos verdes y anfibolitas) con un promedio de 6,3 mg/kg. (Smedley y Kinniburgh, 2002).

Desde el punto de vista de las rocas sedimentarias y sedimentos, las areniscas y arenas presentan los contenidos más bajos de As debido a la abundancia de minerales mayoritarios como cuarzo y feldespatos. En cambio, las rocas de grano fino y los depósitos limosos o arcillosos presentan un mayor contenido de As (promedio de 13 mg/kg) debido a la relativa abundancia de minerales como sulfuros y materia orgánica (pelitas negras), óxidos (limolitas) y arcillas. La concentración de As en el vidrio volcánico puede variar significativamente alcanzando valores de 47 mg/kg (Smedley y Kinniburgh, 2002; Sosa, 2018; Sierra, 2019).

En el caso de los suelos la concentración varía dependiendo de la mineralogía del material parental o de procesos antrópicos (minería, metalúrgica, actividades industriales, agricultura) que generan contaminación. El promedio de las concentraciones de As en suelos no contaminados varía entre 0,1 y 80 mg/kg. Los valores más bajos se encuentran en suelos arenosos y los más elevados en suelos ricos en materia orgánica o en sulfatos ácidos (Smedley y Kinniburgh, 2002; Sosa, 2018; Sierra, 2019).

Figura 5.1. Concentraciones medias de arsénico en rocas, sedimentos y suelos. Línea punteada: concentración promedio a nivel mundial del As (4,8 mg/kg) para la corteza continental superior (CCS). (Rudnik y Gaeo, 2014).

5.2.2. Pesticidas arsenicales en Uruguay

Otra de las posibles fuentes de As son los agroquímicos como los pesticidas y plaguicidas (Moreira *et al.,* 2021). En Uruguay, el control químico es el más utilizado a la hora de hacer frente a los organismos y/o plagas que atacan los cultivos.

Hasta la década del 70' se utilizaban pesticidas arsenicales, en diferentes presentaciones y con distintos ingredientes activos. Se tiene registro de 8 marcas que comercializaban este tipo de productos (Boroukhovitch y Mesa, 1972) (Tabla 5.4).

Nombre comercial	Ingrediente activo	Porcentaje (%)	Formulación	
Arsénico Quimur	Anhídrido arsenioso 99		Polvo	
Arseniato de plomo Lunevale	Arseniato de plomo	92	Polvo mojable	
Arseniato de plomo Quimur	Arseniato de plomo	90	Polvo mojable	
Arsenito de sodio D.B	Arsenito de sodio	23 – 24	Solución concentrada	
Arsenito de sodio Duperial	Arsenito de sodio	31,3	Solución concentrada	
Arsenito de sodio Emperador	Arsenito de sodio	26	Solución concentrada	
Arsenito de sodio Quimur	Arsenito de sodio	26	Solución concentrada	
	Acetoarsenito de cobre			
Varda da Daría Trabuasti	Arnhídrido arsenioso	50	Polvo soluble	
verue de Paris Trabucati	Óxido de cobre	30		
	Ácido acético	12		

Tabla 5.4. Lista de plaguicidas arsenicales utilizados en Uruguay.

Los productos que contenían arsenito de sodio eran utilizados como insecticidas, fungicidas, herbicida total y cebo tóxico. Si bien presentaban características deseables para el agro uruguayo, este producto es un arsenical soluble por lo que, al utilizarse sobre el suelo, ese podría infiltrarse en los acuíferos subyacentes. El Verde de París Trabucati contenía acetoarsenito de cobre y anhídrido arsenioso, empleándose para el control de insectos masticadores. Al presentar arsenito en su composición, este producto es soluble en agua. El Arsénico Quimur era utilizado como cebo tóxico, hormiguicida y para control de roedores siendo soluble en agua. Los pesticidas con arseniato de plomo se utilizaban contra insectos masticadores, por ejemplo, la pulguilla de la papa, pero a diferencia del resto de los productos este se

caracteriza por ser el arsenical menos soluble en agua. Por otro lado, varios de estos productos arsenicales eran mezclados con azufre (Boroukhovitch y Mesa, 1972).

Actualmente, estos plaguicidas se clasifican como Plaguicidas Altamente Peligrosos (PAP) (PAN, 2021) y su uso se encuentra prohibido en el Uruguay. Si bien hoy en día se utilizan plaguicidas de síntesis, el uso de pesticidas arsenicales no cesó de inmediato, y se mantuvo su uso por varios años incluso probablemente luego de su prohibición.

5.3. Hidrogeoquímica del arsénico en aguas subterráneas

5.3.1. Especiación del arsénico

En las aguas naturales, el arsénico se encuentra generalmente disuelto como arsenito trivalente (As⁺³) o arseniato pentavalente (As⁺⁵), que también se los puede encontrar con otra nomenclatura como As (III) y As (V) respectivamente, dependiendo de las condiciones de acidez (pH), las condiciones redox (potencial redox Eh) y la actividad microbiana de los ambientes acuáticos (Figura 5.2). Dentro del grupo de los metaloides pesados y los elementos formadores de oxianiones (ej. As, Se, Sb,Mo, V, Cr, U, Re), el As se caracteriza por su elevada capacidad de movilización en el rango típico de las aguas subterráneas (pH 6,5-8,5) y en condiciones tanto oxidantes como reductoras (Smedley y Kinniburgh, 2002; Salgado, 2013).

Figura 5.2. Diagramas Eh-pH indicando: (A) posiciones generales de algunos ambientes acuáticos y (B) especies acuosas de As en el sistema As-O₂-H₂O a 25 °C y a 1 bar de presión. Tomado de Sierra (2019).

Figura 5.3. Diagrama de especiación del As(III) (A) y del As(V) (B) en función del pH (fuerza iónica 0.01 M y condiciones redox dominantes de cada especie). Modificado de Smedley y Kinniburgh (2002).

En general, en ambientes oxidantes a levemente reductores predomina el estado de oxidación +5. A pH menores a 6,9 domina H₂AsO₄⁻ (aq) en comparación con HAsO₄²⁻ (aq) que domina en los valores de pH propios de las aguas subterráneas. H₃AsO₄ (aq)

y AsO₄³⁻ (aq) pueden encontrarse en condiciones extremas de acidez y alcalinidad respectivamente. En cambio, en ambientes reductores predomina el estado de oxidación +3, donde la especie H₂AsO₃ (aq) domina en condiciones de pH <9.2 y H₃AsO₃⁻ (aq) domina a condiciones de mayor alcalinidad. HAsO₃²⁻ (aq) pueden encontrarse en condiciones alcalinas extremas (Figura 5.3) (Smedley y Kinniburgh, 2002).

5.3.2. Liberación y transporte del arsénico

Las características que se han reconocido a nivel mundial asociadas a las concentraciones elevadas de As y otros elementos químicos nocivos en los acuíferos contaminados, es su ocurrencia sobre materiales geológicos jóvenes poco meteorizados, como fuentes de As, y la presencia de gradientes hidráulicos bajos que favorecen el desarrollo de reacciones de interacción agua-fase sólida (Smedley *et al.,* 2002; Sierra, 2019).

Los principales procesos involucrados en la liberación del As a las aguas subterráneas están relacionados con procesos de disolución/codisolución: (a) oxidación de sulfuros ricos en As (ej. oxidación de la pirita arsenical); (b) disolución de minerales primarios con trazas de As (ej. silicatos); y (c) disolución reductiva de oxi-hidróxidos de Fe (Al, Mn); y con procesos de adsorción-desorción (Smedley y Kinniburgh, 2002 y 2013; Sierra, 2019).

En el primer tipo de reacciones, estas, están controladas por la fisicoquímica de la solución (pH, T, Eh y concentración de especies acuosas) a diferencia de la desorción del arsénico adsorbido en la fase sólida está condicionada por los cambios de pH, ocurrencia de reacciones redox (reducción/oxidación), presencia de iones competitivos y cambios en la estructura cristalina de la fase sólida (Smedley y Kinniburgh, 2002).

Si bien los mecanismos mencionados anteriormente contribuyen a la liberación de arsénico de la fase sólida al agua subterránea, no son en sí mismos suficientes para dar cuenta de la distribución de elevados niveles de As en las aguas subterráneas de distintas partes del mundo. Para que existan altas concentraciones de As en el agua, éste no se debe haber perdido por transferencia (flujo) (dependiente del tiempo de

residencia del agua en el acuífero) o dilución. En este sentido, el régimen hidrogeológico y paleohidrogeológico del acuífero van a ser claves a la hora de estudiar el transporte del arsénico al agua (Smedley y Kinniburgh, 2002 y 2013).

A su vez, cabe destacar que los altos contenidos de As en las aguas de los acuíferos no siempre están asociados con materiales ricos en arsénico, sino que existen diversos procesos (ej.: disolución reductora, concentración por evaporación) que pueden producir soluciones con altos niveles de As a partir de rocas, sedimentos o suelos relativamente pobres en este elemento (Henke, 2009). Por ejemplo, estudios realizados en México muestran que se necesita solo 1 mg/kg para obtener 0,006 mg/L de As en las aguas de red de consumo (Bundschuh *et al.*, 2008). Por lo tanto, no existe un modelo geológico/hidrogeológico común para todas las ocurrencias identificadas a nivel global, sino que la presencia de arsénico es consecuencia de un ambiente geoquímico, condiciones climáticas e hidrogeológicas específicas para cada caso (Sosa, 2018).

5.4. Distribución mundial de arsénico en el agua subterránea

Los niveles de arsénico en el agua subterránea son muy variables: desde 0,001 mg/L hasta 0,01 mg/L, o incluso mayores a 2 mg/L en ambientes altamente contaminados. Su distribución depende tanto de procesos geológicos, biológicos y en algunos casos antropogénicos (Guo *et al.*, 2014; Polya y Lawson, 2016).

Los principales procesos que controlan el arsénico en las aguas subterráneas a nivel local involucran aportes de: (a) fluidos geotérmicos, (b) fuentes antropogénicas (minería, industria y pesticidas), o (c) de zonas mineralizadas. En cambio, a nivel regional los acuíferos contaminados se pueden diferenciar con base en las condiciones oxidantes o reductoras que condicionan los principales procesos hidrogeoquímicos de liberación y movilidad del As hacia el agua subterránea: (a) por desorción de As de minerales en acuíferos oxidantes y alcalinos; y (b) por disolución reductiva, en presencia de materia orgánica y mediada por microorganismos, de los óxidos e hidróxidos de Fe (Mn y AI) que contienen As en acuíferos (Figura 5.4) (Polya y Lawson, 2016; Sierra, 2019).

Figura 5.4. Ambientes y fuentes principales de As. Asimismo se indican los procesos que favorecen la disolución y movilización en aguas naturales contaminadas. Tomado de Sierra (2019).

5.4.1. Países afectados

En las últimas dos décadas la calidad del agua subterránea se ha convertido en foco de interés a nivel mundial, lo que ha llevado a que diversos estudios en acuíferos alrededor del planeta hayan reportado diversas problemáticas relacionadas a la mala calidad del agua o fala de aptitud para su uso. En este sentido, se han detectado niveles de As superiores a 0,05 mg/L (Ali *et al.*, 2019).

Figura 5.5. Distribución mundial de acuíferos documentados con concentraciones de As > 0,05 mg/L. La intensidad de la afección se muestra a través del tamaño de los puntos. Modificado de Shaji *et al.* (2021).

Esta problemática alcanza a una gran cantidad de naciones (Figura 5.5), entre los que se encuentran 10 de América del Sur, dentro de los cuales se halla Uruguay, 3 países de América del Norte, 10 de América Central y Las Antillas, 31 en Asia, 31 en Europa, 20 en África y 4 en Australia y Oceanía (Bundschuh *et al.*, 2020; Shaji *et* al., 2021).

Debido a que el arsénico no está normalmente incluido en el conjunto de parámetros estándar utilizados para testear la calidad del agua, y sumado a que no es detectable por los sentidos humanos, es de vital importancia seguir la tendencia actual de incluirlo en los análisis de control de aguas para consumo humano (Mayorga Moreno, 2013). Como consecuencia de esta incorporación, este metaloide es regularmente descubierto en nuevas áreas (Podgorski y Berg, 2020) por lo que cada año se deben modificar los mapas de distribución mundial.

En ausencia de una cobertura de datos global completa, los modelos de distribución potencial de As juegan un papel fundamental a la hora de reconocer nuevas áreas contaminadas (Amini *et al.*, 2008). En concreto, los modelos desarrollados por Amini *et al.* (2008) permiten explicar la variación del contenido de As en un 77% para ambientes reductores y en un 68% en zonas oxidantes y alcalinas (Figura 5.6). Los mapas de probabilidad basados en estos modelos se corresponden correctamente

con las regiones contaminadas ya conocidas a nivel mundial y delimitan nuevas áreas no probadas que tienen una alta probabilidad de contaminación por este metaloide.

Figura 5.6. Mapa global de probabilidad de la concentración de As geogénico en aguas subterráneas para (a) condiciones reductoras y (b) condiciones oxidantes y alcalinas. Modificado de Amini *et al.* (2008).

Para el caso de Uruguay, existe un modelo de distribución del As en las aguas subterráneas con un grado muy alto de precisión (Figura 5.7), el cual es consistente con zonas conocidas con alto riesgo de As en agua subterránea. Estas áreas se encuentran principalmente en el suroeste del país, incluidos los departamentos de Paysandú, Río Negro, Soriano, Colonia, Flores, San José, Florida, Montevideo y Canelones, donde se encuentran los principales acuíferos Mercedes, Cuaternario Oeste, Raigón y Cretácico (Wu *et al.,* 2021).

Figura 5.7. A) Mapa de probabilidad de niveles de As en agua subterránea superiores a 0,01 mg/L y: B) mapa de áreas de alto riesgo de As en aguas subterráneas. Modificado de Wu *et al.* (2021).

5.4.2. Arsénico en acuíferos uruguayos

Los primeros datos relacionados con la presencia de niveles elevados de arsénico en el agua subterránea de Uruguay se han reportado desde el 2006 (Goso et al., 2006; Manganelli et al., 2007; Goso et al., 2008; Gastmans et al., 2010; Mañay et al., 2013; Falchi et al., 2018; Garat y Pérez, 2018; Mañay et al., 2019; Bundschuh et al., 2020; Collazo et al., 2020; Machado et al., 2020; Wu et al., 2021). Dentro de los acuíferos uruguayos que han presentado concentraciones de As por encima del valor guía sugerido por la OMS (<0,01 mg/L) se encuentran: el Sistema Acuífero Guaraní, Mercedes, Chuy y Raigón. El Sistema Acuífero Guaraní (SAG) presenta concentraciones de As > 0,1 mg/L producto de la desorción de este elemento a partir de óxidos/hidróxidos de hierro, debido a los valores de pH de sus aguas del tipo bicarbonatadas sódicas (Gastmans et al., 2010). Por otra parte, en el Sistema Acuífero Mercedes (SAM) han detectado niveles de As que varían entre 0.009 y 0.023 mg/L (T 17,1°C, pH 7,4) en Young y entre 0,001 y 0,058 mg/L (T 21,1°C, pH 7,4) en Nueva Palmira (Manganelli et al., 2007), cuya posible fuente son los niveles de ceniza volcánica suprayacente a él (Goso et al., 2008). Por otro lado, en el Sistema Acuífero Chuy, Manganelli et al. (2007) hallaron concentraciones de As que varían entre 0,01 y 0,041 mg/L (T 21,3°C, pH 7,9). En el caso del Sistema Acuífero Raigón (SAR), se desarrolló en profundidad el tema en la sección 4.2.1.1.

6. Metodología

6.1. Análisis de antecedentes

6.1.1. Relevamiento de antecedentes y creación de base de datos

En primer lugar, se realizó una revisión de antecedentes bibliográficos con el objetivo de recopilar datos geológicos, hidroquímicos e hidráulicos de las perforaciones del área de estudio generados por instituciones estatales como Obras Sanitarias del Estado (O.S.E), Dirección Nacional de Aguas (DINAGUA) y Dirección Nacional de Minería y Geología (DINAMIGE), además de mapas de isópacas, mapas potenciométricos y mapas piezométricos del SAR. Esta información fue almacenada en una base de datos ya que representan el principal antecedente hidrogeológico de la zona de estudio. En este catálogo se registraron los datos disponibles de 6 perforaciones: coordenadas, nombre, fecha de construcción, profundidad del pozo, profundidad del filtro, profundidad del prefiltro, nivel estático, nivel dinámico, nivel de succión, nivel de As en mg/L, operador, nombre del establecimiento y/o propietario, caudal y otras observaciones (Tabla 1, Anexo I). A su vez, se realizó un registro de fotografías y observaciones en las inmediaciones de la perforación (Figura 1, Anexo I).

6.2. Caracterización del medio físico

6.2.1. Topografía

Para la caracterización topográfica del área se utilizó como base el modelo digital del terreno hidrológicamente consistente (MDTHC), cobertura nacional, imagen L28CC3 de 5x5 km, que cubre la zona de estudio. La imagen presenta una resolución de 250 cm (IDE, 2019). La imagen se procesó en el software QGis® versión 3.16.4 Hannover. Del MDT se extrajeron las curvas de nivel del área de estudio cada 5 m.

6.2.2. Hidrografía

La red de drenaje se extrajo a partir del *shape* del INE de cursos de agua. No se calculó la red de drenaje por geoprocesamiento en el software QGis® debido a que la precisión del MDT para el área de estudio no es suficiente.

6.2.3. Geología

Dado que en el área de estudio no fue posible identificar afloramientos, y no existen canteras o cursos de agua importantes en donde se puedan observar las diferentes formaciones, se utilizaron como base el mapa geológico a escala 1:50.000 del tramo Montevideo – Punta Jesús María (Montevideo – San José) (Goso, 2015b) y el mapa geológico del departamento de San José a escala 1:100.000 (Spoturno *et al.*, 2004). Por otra parte, se tomaron en cuenta las descripciones litológicas históricas de los pozos de O.S.E de la zona de estudio y el MDT confeccionado para el área.

6.2.4. Geomorfología

Desde el punto de vista geomorfológico, se tomó en cuenta el mapa geomorfológico a escala 1:50.000 del tramo Montevideo – Punta Jesús María (Montevideo – San José) (Goso, 2015a). A su vez, se consideraron las descripciones de las regiones descritas por Spoturno *et al.* (2004) y los datos planialtimétricos, hidrográficos, geológicos de superficie y de suelos para constatar el mapa. Se utilizaron imágenes satelitales Sentinel 2 con diferentes combinaciones de banda que acentuaran los rasgos geomorfológicos y diferentes grados de humedad superficial.

6.3. Caracterización geológica de los sedimentos

6.3.1. Descripción de detritos de perforación

A partir de los detritos de perforación de los pozos 30.3.029, 30.3.030, 30.3.031 y 30.3.032 provistos por O.S.E se describieron en detalle los diferentes niveles muestreados mediante lupa binocular Olympus® con aumento máximo de 40x y oculares 10x en las oficinas de O.S.E en la sección de Aguas Subterráneas (Figura 6.1). Con los datos obtenidos se confeccionaron 4 perfiles litológicos.

En la descripción se consideró la granulometría, morfometría y selección de acuerdo con cartillas de referencia, color basado en la carta de Munsell®, mineralogía, reacción con ácido clorhídrico (carbonatos: HCl 10% v/v) y agua oxigenada (para la determinación de la posible presencia de materia orgánica: H₂O₂, 10% v/v).

Figura 6.1 A) Lupa binocular Olympus®, carta de color de Munsell® y cartilla de referencia de granulometría, morfología y selección. B) De izquierda a derecha: detritos de las perforaciones 30.3.029, 30.3.030, 30.3.031, 30.3.032.

Con base en la descripción de los detritos de la perforación 30.3.032, donde se realizó el ensayo de bombeo, se seleccionaron dos muestras para confección de frotis petrográfico en el Laboratorio de Corte y Molienda del Instituto de Ciencias Geológicas con el fin de identificar en detalle la mineralogía de las unidades con litologías más gruesas.

El análisis de los frotis petrográficos se realizó utilizando un microscopio petrográfico NikonEclipse 5iPoL el cual cuenta con cámara fotográfica acoplada Nikon Ds-Fi-1 y software *NIS-Elements F 3.0* para el procesamiento de imágenes, cartillas de referencia y el libro "Mineralogía Óptica" (Kerr, 1965). Con toda la información recolectada se elaboraron perfiles estratigráficos. Debido a que estos están realizados con base en detritos de perforaciones, no se puede obtener información sobre los tipos de contactos entre las unidades (gradacional, erosivo, neto), la variabilidad del tamaño de grano en los estratos (ej. gradación normal o inversa), la geometría, las estructuras sedimentarias, la presencia de bioturbación y/o la presencia de fósiles.

Por otra parte, para determinar la variabilidad lateral y vertical de las unidades se realizaron dos cortes geológicos: uno con dirección NE-SW de dirección E-W con los perfiles estratigráficos correspondientes a las perforaciones 90.3.030 y 90.3.32; y uno N-S con el perfil estratigráfico de la perforación 90.3.032 y las descripciones de los sedimentos de la perforación 90.3.022 brindadas por O.S.E. Los colores utilizados en los cortes para las unidades geológicas se corresponden con los proporcionados por la tabla cronoestratigráfica internacional v2022/02 (www.stratigraphy.org) de acuerdo a las edades antecedentes de las formaciones. Las descripciones provistas por O.S.E realizadas por perforistas son poco adecuadas para su aplicación en este tipo de trabajos debido a que no tienen un formato en común entre todos los pozos y suelen ser muy breves. Por otra parte, las barrancas de Kiyú quedan alejadas de la zona de estudio y los perfiles confeccionados por Pérez Peirano (1991) no presentan las coordenadas exactas dificultando su ubicación a lo largo de la línea de costa.

6.4. Caracterización geoquímica

6.4.1. Fluorescencia de rayos X

La fluorescencia de rayos X (FRX) es una técnica analítica multielemental rápida, económica y no destructiva que se utiliza para determinar los elementos químicos de una sustancia desde partes por millón hasta el 100% al ser expuesta a una radiación de rayos X (Gutiérrez-Ginés y Ranz, 2010).

En este caso, se utilizó el equipo S1 TITAN 600 Bruker® otorgado por el Área Geología-DINAMIGE, el cual permite analizar de forma inmediata los diferentes elementos de las muestras seleccionadas de los detritos de perforación. Se trata de un analizador elemental de fluorescencia de rayos X, portátil, manual y de una sola

pieza, que utiliza como fuente de excitación un tubo de rayos X de 15-50kV, un detector CUBE[™] SDD y con rango de análisis del Mg hasta el U (Figura 6.2).

Figura 6.2. A) Analizador portátil de FRX S1 TITAN 600 Bruker® en funcionamiento. B) Imagen ilustrativa del equipo de FRX portátil.

6.4. Caracterización hidrogeológica

6.4.1. Hidrodinámica

6.4.1.1. Piezometría

Se pretendió elaborar mapas potenciométricos y de dirección de flujo subterráneo dominante de la zona de estudio. Para esto se planificaron dos campañas: 1) agosto del 2021 y 2) noviembre de 2021, con la finalidad de medir de niveles de agua de las perforaciones del área con un piezómetro. Para su creación, en primera instancia se calcularon los niveles piezométricos a partir de los valores de profundidad de agua medidos en el campo y de las cotas del terreno obtenidas a partir del MDT generado para la zona. Sin embargo, a la hora de trazar las isopiezas los puntos relevados

fueron muy escasos debido a que muchos pozos se encontraban tapados o abandonados, lo que imposibilitó la creación de los mapas correspondientes.

6.4.1.2. Ensayo de bombeo

Debido a que se desea saber si los niveles de As son estables o si estos cambian con el caudal y el tiempo, se decidió realizar un ensayo de bombeo escalonado de larga duración.

El ensayo de bombeo escalonado consiste en efectuar varios bombeos sucesivos continuos de igual duración a caudales crecientes y constantes para cada intervalo o escalón. En esta oportunidad se optó por realizar un ensayo escalonado sin recuperación, lo que implica que no hubo necesidad de interrumpir la prueba al término de cada cambio de caudal. Por lo tanto, los descensos medidos son los originados por cada uno de los caudales.

Se realizó un ensayo de bombeo de 96 horas de duración y 1 hora de recuperación en la perforación Nº 90.3.032 de O.S.E – Regional Litoral Sur, San José (ver plano en Figura 2, Anexo I) (Figura 6.3A). El ensayo se comenzó con un caudal bajo y este se incrementó sucesivamente cada 24 horas, sin apagar la bomba entre cada intervalo. Se realizaron cuatro escalones en total (900 L/h, 2700 L/h, 5500 L/h y 7200 L/h), con caudales distribuidos aproximadamente por igual (2000 L/h) entre los caudales mínimo y máximo. El caudal en el escalón final fue superior al caudal operativo cuando el pozo está completamente en funcionamiento (aproximadamente 5000 L/h).

El nivel del agua fue medido y registrado automáticamente con un Diver® (Figura 6.3B) cada 5 minutos durante toda la duración del ensayo, sin embargo, también se midieron los niveles de agua mediante un piezómetro y se completaron manualmente planillas para determinar cuándo se estabilizó el nivel de agua.

Asimismo, se tomó la perforación Nº 90.3.031 como pozo de observación. Esta se encuentra a 5 metros del pozo Nº 90.3.032. Se obtuvieron medidas manuales de las primeras 24 hs del ensayo de bombeo y posteriormente se colocó un Driver® que registró los niveles del agua hasta el término del ensayo de bombeo.

Figura 6.3. A) Perforación Nº 90.3.032 vista desde dentro de la casilla. Se observa el pozo semisurgente con el piezómetro y Driver® instalados. B) Driver®.

Durante el ensayo realizado en este trabajo se conoció el comportamiento del acuífero ante el bombeo (caudal y descensos), por lo que fue posible calcular ciertos parámetros hidráulicos del acuífero. Debido que el nivel estático se estabilizó en el tiempo, se interpretó el ensayo de bombeo según las fórmulas de Thiem para régimen permanente explicadas a continuación (Villanueva Iglesias, 1984; Custodio y Llamas, 1983).

En primer lugar, se elaboró la curva característica del pozo representada por el caudal (*Q*) en función del descenso (*s*) para determinar la existencia de pérdidas de carga.

Cada descenso (s) se calculó según la siguiente expresión:

s = nivel dinámico - nivel estático

A partir de los caudales utilizados (Q) y descensos provocados (s) se calcularon los caudales específicos (q) a partir de la siguiente expresión:

$$q = \frac{Q}{s}$$

De las fórmulas propuestas por Thiem y los datos obtenidos en este trabajo se puede relacionar las depresiones, caudales, transmisividad y distancia al punto de bombeo. Para esto, con los datos obtenidos durante este trabajo se utilizó la fórmula:

$$s = \frac{Q}{2\pi T} . Ln \frac{R}{r}$$

Donde *s* es el descenso de la captación, Q es el caudal, *T* la transmisividad, *r* es el radio de la captación y R el radio de influencia.

Para el cálculo de la transmisividad y radios de influencia se contó con un sondeo abierto en el mismo acuífero que se está bombeando a 8 metros del pozo donde se realizó el ensayo de bombeo. Para obtener estos parámetros, se plotearon en un gráfico semilogarítmico los descensos estabilizados vs el logaritmo de la distancia. Para poder trazar la recta correspondiente se dispuso de dos pares de valores (r, d) (radio del pozo, descenso del pozo y distancia al pozo de observación, descenso del pozo de observación).

Con base en la fórmula anterior, se puede establecer que:

$$s = -\frac{Q}{2\pi T}$$
. Ln $r + \frac{Q}{2\pi T}$. Ln R

Si se toma *Ln r* como variable, la expresión anterior representará una recta de la forma

$$y = -mx + n$$

Donde

$$y = d$$
$$x = \operatorname{Ln} r$$

$$m = \frac{Q}{2\pi T}$$
$$n = cte = \frac{Q}{2\pi T} . \ln R$$

El radio de influencia se define como la distancia entre el punto de bombeo y aquel para el cual la depresión es cero. Es por tanto, que la intersección de la recta con el eje de las abscisas da el valor del radio de influencia para cada caso.

A su vez, a partir de este gráfico y las fórmulas que se desprenden del mismo es posible calcular la transmisividad a partir de la siguiente expresión:

$$T = \frac{Q}{2\pi m}$$

Donde Q es el caudal y *m* es la pendiente.

Para calcular la pendiente de cada recta se utilizó la ecuación:

$$m = \frac{\Delta y}{\Delta x} = \frac{\Delta s}{\Delta \ln r}$$

Otra forma de estimar la transmisividad del acuífero es a través del caudal específico. Teniendo en cuenta la definición del radio de influencia, es posible calcular la transmisividad a partir de la ecuación:

$$T = \frac{Q}{s} \left(\frac{1}{2\pi} . Ln \frac{R}{r} \right)$$

Donde Q/s el caudal específico, r es el radio de la captación y R el radio de influencia.

Este procedimiento fue realizado para cada escalón del ensayo de bombeo.

Por otra parte, se calculó la transmisividad a partir de los datos proporcionados por el ensayo de recuperación. Para esto se grafican los resultados de los descensos obtenidos durante el ensayo en función del tiempo. Debido a que el tiempo en este tipo de ensayos es menor que en el de bombeo se utiliza la expresión:

$$\frac{t+t'}{t'}$$

Donde t es el tiempo de bombeo en min y t' es el tiempo de recuperación en min.

Debido a que el ensayo de recuperación se realizó luego de un bombeo escalonado, se utilizó la *corección de Horner* mediante la expresión:

$$Th = \frac{V_t}{Q_f}$$

Donde *Th* es el tiempo de Horner, V_t es el volumen total y Q_f es el caudal final.

El volumen total se calcula como la sumatoria de los volúmenes de agua bombeados en cada escalón (en este caso cuatro escalones):

$$V_t = (Q_1 \cdot t_1) + (Q_2 \cdot t_2) + (Q_3 \cdot t_3) + (Q_4 \cdot t_4)$$

Este tiempo se emplea en el eje de las abscisas en el gráfico semilogarítmico:

$$\frac{Th+t'}{t'}$$

La transmisividad se calculó con base en la expresión:

$$T = 0,183 \frac{Q_f}{\Delta s}$$

Donde Qf es el caudal final y Δs es el descenso residual medido en la recta de recuperación y es el descenso que corresponde a un ciclo semilogarítmico.

6.4.4. Hidroquímica

El muestreo y análisis químico del agua subterránea se efectuó en dos etapas: 1) para definir el pozo donde se llevó a cabo el ensayo de bombeo se realizó un *screening* de los niveles de As_T, As(III) y As(V) y se determinaron iones mayoritarios para determinar la química del agua y alcalinidad de los pozos de O.S.E del área de estudio. Asimismo, se registraron *in situ* parámetros fisicoquímicos por sonda

multiparámetrica. 2) A partir de los resultados del *screening*, se seleccionó el pozo de O.S.E con mayor nivel de As⊤ al cual se le realizó un ensayo de bombeo escalonado prolongado donde se midieron niveles de As⊤, As(III), As(V), iones mayoritarios y alcalinidad a diferentes caudales. A su vez se muestrearon nuevamente los pozos de la etapa 1 para análisis de iones mayoritarios, alcalinidad y de arsénico y sus especies para observar una posible variación temporal del metaloide.

Con los resultados obtenidos de los análisis de agua se realizaron representaciones gráficas en el programa EASYQUIM (Vazquez-Suñé, 2001) donde se obtuvieron los diagramas de Piper correspondientes (Piper, 1944). Por otro lado, se realizó el mismo tratamiento estadístico descrito en la sección 7.4.1.

Para poder calcular la especiación teórica del As⊤ mediante los valores de Eh y pH, se utilizó el potencial de óxido-reducción (ORP) para calcular los valores de Eh de las aguas subterráneas. Esto se realizó mediante los factores de corrección definidos por Nordstrom y Wilde (2005) y que tienen en cuenta el tipo de electrodo utilizado (Ag/AgCl), la concentración de cloruro de potasio (3 M KCl) y la temperatura de cada muestra extraída. La corrección se realiza mediante la ecuación:

$$Eh = emf + E_{ref}$$

Donde *Eh* es el potencial en mV de la solución de la muestra en relación con el electrodo de hidrógeno estándar, *emf* es el potencial o fuerza electromotriz en mV del agua medida a la temperatura de la muestra y E_{ref} es el potencial del electrodo de referencia de la solución de *ZoBell* corregido para la temperatura de la muestra.

Por otra parte, se realizaron mapas de variación temporal del As_T y se analizaron los valores de As_T en función del caudal y del tiempo durante el ensayo de bombeo.

6.4.4.1. Muestreo de agua subterránea

Antes de efectuar el muestreo se limpió con un hisopo humedecido la boca de salida del agua del pozo. Posteriormente, se encendió la bomba eléctrica y se purgó el pozo con un mínimo de tres volúmenes antes de recolectar las muestras en caso de que el pozo no estuviera en funcionamiento. Luego de este procedimiento se recolectó una

muestra en una botella de PET de 1,5 L previamente enjuagada tres veces con el agua de pozo (Figura 6.4A y 6.4B). Esta muestra colectada se repartió en tres alícuotas donde dos de ellas fueron repartidas en frascos de 250 mL de PET con cierre a rosca hermético y esterilizados. Al momento de utilizar los envases en el muestreo estos fueron debidamente rotulados y enjuagados 3 veces con el agua de pozo. Ambas muestras fueron tomadas sin dejar cámara de aire, sin filtrar ni acidificar. Las muestras fueron almacenadas en ausencia de luz y refrigeradas a ≤4°C en heladera con geles refrigerantes en el campo (Figura 6.4C) hasta llevarlas a los laboratorios correspondientes donde son almacenadas en cámara de frío hasta que son analizadas. La primera se recolectó para análisis de iones mayoritarios, dureza y alcalinidad en el Laboratorio de Agua y Suelos del Departamento del Agua, CENUR Litoral Norte (UdelaR) mientras que la segunda alícuota se recolectó para análisis de arsénico total y sus especies en el Laboratorio del Área Química Analítica de la Facultad de Química, UdelaR.

Complementariamente, con el agua restante de la botella se determinaron los parámetros fisicoquímicos *in situ* de: pH, conductividad eléctrica (CE), temperatura (T), potencial redox (ORP) sólidos totales disueltos (TDS), turbidez, salinidad y oxígeno disuelto (OD) a través de la sonda marca Hanna modelo HI 9829 (Figura 6.4D) perteneciente a la Sección de Recursos Hídricos del Instituto de Ciencias Geológicas de Facultad de Ciencias.

Además, se realizó una evaluación visual de la presencia de desechos sólidos (por ejemplo, plásticos), efluentes, color del agua, presencia de curso de agua cerca del pozo, industrias cercanas, cultivos, viviendas, entre otros.

Figura 6.4. A y B) Toma de muestra durante el ensayo de bombeo. C) Heladera para preservación de las muestras. D) Sonda multiparámetrica Hanna HI 9829.

En el caso de las muestras durante el ensayo de bombeo, estas fueron tomadas una hora después de estabilizado el caudal y luego a las 23 horas de estar bombeando con el mismo caudal. Debido a la posible interferencia con perforaciones en funcionamiento de vecinos, los caudales de 2700 L/h y 5500 L/h no se estabilizaron en el correr del día. Por lo tanto, las muestras fueron tomadas 8 horas después de haber empezado a bombear con cada uno de esos caudales.

6.4.4.2. Análisis de laboratorio

Las muestras de agua subterránea se analizaron en el Laboratorio de Toxicología del Área de Química Analítica de Facultad de Química, Udelar y en el Laboratorio de Agua y Suelos del Departamento del Agua, CENUR Litoral Norte.

La mayor parte de los análisis de agua se realizaron en el Laboratorio de Agua y Suelos del Departamento del Agua, CENUR Litoral Norte según la metodología de referencia "Métodos estándares para análisis de agua y aguas residuales" (APHA, 2017). Los análisis incluyeron análisis fisicoquímicos completos, como el análisis de iones mayoritarios y minoritarios por cromatografía iónica (Ca²⁺, Mg²⁺, Na⁺, K⁺, Cl⁻, SO4²⁻, HCO^{3-,} CO3²⁻, NO3⁻, Li⁺, F⁻, Br⁻, NO2⁻) (APHA 4110B), dureza total por complejometría (APHA 2340B) y alcalinidad por titulación ácido-base (APHA 2320B). La determinación de arsénico se realizó mediante una metodología desarrollada y validada en el Laboratorio de Toxicología del Área Química Analítica de la Facultad de Química, UdelaR. El arsénico total se obtuvo por espectrometría de emisión atómica con plasma inducido por microondas acoplado a la generación de hidruros (HG-MIP OES) y las especies a través de HG-MIP OES con cartuchos aniónicos SAX-SPE tomando como base el método de normalizado APHA 3114B. El límite de detección del arsénico es 0,013 mg/L.

El error de balance iónico o eléctrico del análisis químico utilizado se realizó mediante la expresión (Appelo y Postma, 2005):

Balance iónico (%) =
$$\frac{(\Sigma \text{ cationes} - \Sigma \text{ aniones})}{(\Sigma \text{ cationes} + \Sigma \text{ aniones})} x 100$$

Donde el error admisible según la conductividad eléctrica obtenida para las muestras es <10% (Custodio y Llamas, 2001).

7. Resultados y discusión

7.1. Topografía e hidrología

La topografía obtenida del modelo digital de terreno (MDT) (Figura 7.1) no tiene por objetivo realizar un análisis específico del relieve y la orografía de la superficie de estudio, sino que se utilizó como base para el dibujo de la red de drenaje y como base para otros mapas temáticos del área de estudio.

Figura 7.1. Mapa topográfico e hidrográfico de la zona de estudio.

7.2. Análisis de las unidades litológicas

7.2.1. Descripción de los detritos de perforación

Se realizaron descripciones detalladas de los detritos recuperados de las perforaciones 90.3.029, 90.3.030, 90.3.031 y 90.3.032 (Tablas 1, 2, 3 y 4, Anexo II), descripciones petrográficas (Figura 1 y 2, Anexo II), perfiles sedimentarios (Figura 3, 4, 5 y 6 Anexo II y cortes geológicos correspondientes (Figura 7, Anexo II). A continuación, se indica un resumen de las características litológicas de las unidades identificadas:

La Formación Libertad en el área de estudio, presenta una textura limo arcillosa con presencia de arena y grava de color marrón oscuro a claro. Estas granulometrías gruesas son de cuarzo y feldespato y se encuentran dispersas en la matriz fina, clasificando a los sedimentos como fangos o lodos. Presenta carbonato de calcio disperso tanto como cemento y en concreciones, materia orgánica y clastos con pátinas de óxido de Fe. El espesor máximo de la unidad son 20 m. Hacia el tope se desarrollan los suelos actuales y se apoya sobre la Formación Raigón.

La Formación Raigón se encuentra constituida por diferentes litologías: arenas gravillosas líticas y subarcósicas clastosoportadas de color amarillento a rosados, con niveles limo-arcillosos amarillentos a amarillentos verdosos. Las arenas son inmaduras desde el punto de vista textural y mineralógico. Los clastos son subangulosos a subredondeados, de esfericidad media y mal a moderadamente seleccionados. Está conformada por cuarzo, feldespato y de manera subordinada se distinguen clastos de epidoto e ilmenita. Presenta materia orgánica, carbonato de calcio tanto disperso como en concreciones y clastos de cuarzo y/o feldespato con pátinas de óxidos de Fe. El color de las arenas de la unidad oscila entre beige y beige verdoso, mientras que los niveles arcillosos son marrones. La potencia máxima de la unidad es 30 m, manteniéndose homogénea en toda el área de estudio. Esta unidad sobreyace a la Formación Camacho y subyace a la Formación Libertad, otorgándole al acuífero un carácter confinado en el área.

No se describe las características de la Formación Camacho ya que se posee una única muestra.

7.2.2. Caracterización geoquímica de los sedimentos

Los análisis geoquímicos por fluorescencia de rayos X (FRX) con analizador portátil presentan ciertas limitaciones, sin embargo, permiten tener una noción preliminar de las concentraciones de los elementos Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Ba, La, Hf, Ta, W, Pt, Au, Hg, Tl, Pb, Bi, Ce, Th y U en las muestras estudiadas. Este método se aplicó sobre los detritos de las perforaciones 90.3.030 (n=20) y 90.3.032 (n=17) (Anexo III, Tabla 1).

Durante el transcurso del tratamiento de los datos se detectó que los datos obtenidos a través del analizador portátil de FRX presentaron un gran error. Los elementos mayoritarios deberían sumar cerca del 100% expresados como sus óxidos en la proporción comúnmente encontrada en unidades de porcentaje más el CO₂ (pérdida por ignición o LOI) que dependiendo de la muestra puede ser más o menos significativa. Si bien el equipo no detecta la concentración de todos los elementos mayores como el Na₂O ni el CO₂, solamente esto no explica que la suma de los elementos mayores sea tan baja (<50%), presentándose casos donde esta llega a ser del 25%. Normalmente, para el caso de análisis geoquímicos por FRX con equipos portátiles la sumatoria puede ser menor al 100% debido a que ciertos elementos pueden no ser detectados por el equipo, sin embargo, para este caso estos porcentajes tan bajos se deben a varios errores sistemáticos. En primer lugar, el equipo utilizado no se encontraba calibrado y había presentado errores durante análisis anteriores a los de este trabajo, fallas que no fueron informadas al equipo de trabajo antes de realizar los análisis. Por otra parte, se recomienda realizar los análisis acompañados por análisis de muestras control como materiales de referencia certificados o muestras de composición y preparación (roca, polvo, pellet, etc) igual a las muestras de estudio. De esa manera, se corrobora que el equipo para esa matriz, en ese método y para esa forma de preparación está arrojando valores que son aceptables para los fines para los cual se quieren utilizar esos datos. En el caso de los análisis efectuados para este trabajo, no se contó con estas muestras de control.

Asimismo, en el caso de los óxidos de los elementos mayores, es muy probable que los elementos livianos estuviesen siendo medidos con cierto error significativo, como suele ocurrir con este tipo de equipos portátiles (ej. Mg, Al, Si).

Adicionalmente, se realizaron diagramas de dispersión con datos confidenciales proporcionados por el proyecto "Mitigación de arsénico en el agua subterránea" (referentes Dra. Facchin y Dra. Collazo) entre algunos elementos traza obtenidos por FRX portátil y el en laboratorio (ej. As, Ba). Este proyecto fue llevado a cabo en una perforación de la escuela Nº65 en Kiyú, San José, a unos 5 km del área de estudio de este trabajo y se utilizó el mismo analizador portátil de FRX en las mismas condiciones que se utilizó en este trabajo. Estos diagramas arrojaron que los datos presentan una correlación nula (sin correlación), donde las gráficas no siguen ningún tipo de tendencia y los datos se encuentran dispersos.

Debido a que existieron inconvenientes con el analizador portátil durante el transcurso de este trabajo y no pudo ser reparado antes de la finalización de este no se pudieron realizar los análisis sobre los detritos de la perforación 90.3.029 y 90.3.31 ni repetirse los análisis para las perforaciones 90.3.030 y 90.3.032.

Por estos motivos, no pudo realizarse una comparación de las concentraciones de los elementos mayoritarios y la Corteza Continental Superior (Rudnik y Gao, 2014) ni analizarse la distribución del As en la columna estratigráfica. Por otra parte, no pudo realizarse un tratamiento estadístico descriptivo (media, mediana, máximo, mínimo y desviación estándar) de las variables químicas analizadas ni la matriz de correlación correspondiente (Spearman o Pearson, dependiendo de si se distribuyen normalmente o no las muestras) con el objetivo de identificar preliminarmente las principales relaciones entre los elementos químicos y tener una aproximación de los posibles minerales fuente de As.

7.3. Hidrodinámica

7.3.1. Niveles piezométricos

A continuación, se muestran los niveles piezométricos calculados para los pozos muestreados en agosto y noviembre 2021.

Pozo	Mes de muestreo	X	Y	Tipo de pozo	Nivel estático (m)	Topografía (m)	Nivel piezométrico (msnm)
90.3.018	Agosto	524731	6162504	Semisurgente	28,8	39,2	10,4
90.3.022	Agosto	524632	6161282	Semisurgente	18,3	23,0	4,7
90.3.030	Agosto	524985	6163307	Semisurgente	23,4	33,2	9,8
90.3.031	Agosto	5224613	6163453	Semisurgente	19,4	33,0	13,6
90.3.032	Agosto	524615	6163448	Semisurgente	20,7	31,7	11,0
P1	Agosto	524455	6161168	Brocal	20,3	24,7	4,4
P2	Agosto	524430	6161157	Semisurgente	20,9	24,9	4,0
P3	Agosto	524916	6161643	Brocal	13,7	20,9	7,2
90.3.018	Noviembre	524731	6162504	Semisurgente	24,3	39,2	14,9
90.3.022	Noviembre	524632	6161282	Semisurgente	19,2	23,0	3,8
90.3.30	Noviembre	524985	6163307	Semisurgente	24,2	33,2	9,0
90.3.031	Noviembre	5224613	6163453	Semisurgente	20,5	33,0	12,5
90.3.032	Noviembre	524615	6163448	Semisurgente	20,3	31,7	11,4
P1	Noviembre	524455	6161168	Brocal	20,4	24,7	4,3
P3	Noviembre	524916	6161643	Brocal	14,3	20,9	6,6
P4	Noviembre	525029	6161292	Semisurgente	16,1	21,9	5,8
P5	Noviembre	525269	6163302	Semisurgente	25,6	37,0	11,4

Tabla 7.3. Niveles piezométricos de los pozos muestreados en agosto y noviembre de 2021.

7.3.2. Ensayo de bombeo

Los datos completos del ensayo de bombeo y el ensayo de recuperación en el pozo Nº90.3.032 y del pozo de observación (Nº90.3.031) se encuentran en el Anexo IV, Tablas 1 y 2.

El ensayo de bombeo escalonado prolongado arrojó una gráfica donde se puede observar que en cada escalón el nivel dinámico se mantiene constante en el tiempo alcanzando la condición de equilibrio (Figura 7.4).
Una vez cesado el bombeo, se realizó una recuperación de una hora, sin embargo, los niveles del agua no lograron estabilizarse por lo que el acuífero no logró recuperar su nivel piezométrico en el tiempo que duró el ensayo de recuperación (Figura 7.5).

Figura 7.4. Ensayo de bombeo escalonado en la perforación №90.3.032.

Figura 7.5. Recuperación del ensayo de bombeo en la perforación №90.3.032.

Se obtuvo la curva característica del pozo donde se representó el caudal en función del descenso para determinar la existencia de pérdidas de carga. En la Figura 7.6 se observa que el caudal es directamente proporcional al descenso donde la recta pasa por el origen, siendo esta curva característica de un acuífero confinado y sin pérdidas de carga.

Figura 7.6. Curva característica del pozo Nº90.3.032.

Con las parejas de valores de caudal-descenso se calcularon los caudales específicos para cada escalón (Tabla 7.4). Estos valores son inferiores $(0,8 - 1 \text{ m}^3/\text{h/m})$ en comparación con los esperados para la zona de estudio $(2 - 5 \text{ m}^3/\text{h/m})$ (Figura 4.2).

Los radios de influencia se obtuvieron a partir del gráfico semilogarítmico descensos vs Ln distancia. Para cada escalón se realizó el gráfico correspondiente (Figura 7.7).

Figura 7.7. Radio de influencia. A) radio de influencia para el caudal 900 L/h; B) radio de influencia para el caudal 2700 L/h; C) radio de influencia para el caudal 5500 L/h; D) radio de influencia para el caudal 7200 L/h.

Los radios de influencia son pequeños y presentan variaciones pequeñas entre el generado por el caudal a 900 L/h en comparación con el generado por el caudal a 7200 L/h (Tabla 7.4). Estos radios de influencia son concordantes con la baja transmisividad obtenida.

El cálculo de la transmisividad se realizó tanto por el método gráfico (pendiente de los gráficos de la Figura 7.7) como analítico descrito en sección 7.5.1.2 para los datos obtenidos durante el ensayo de bombeo y el pozo de observación. En ambos casos, los valores obtenidos fueron iguales como es de esperarse ya que la gráfica y las ecuaciones están intrínsecamente relacionadas.

Asimismo, se calculó la transmisividad con los datos obtenidos en el ensayo de recuperación (Figura 7.8):

$$T = 0,183. \frac{172,8 \, m^3/dia}{0,95 \, m} = 33,3 \, m^2/dia$$

Este gráfico (Figura 7.8) también muestra que el bombeo no afecta a las reservas del acuífero (efecto de vaciado o efecto de recarga) ya que la recta pasa por el origen.

Figura 7.8. Recta de recuperación para el pozo Nº90.3.032.

La transmisividad obtenida por ambos métodos con los datos del ensayo de bombeo y el pozo de observación varía entre 15,4 y 18,2 m²/día (Tabla 7.4), mientras que el obtenido a partir del ensayo de recuperación es de 33,3 m²/día. Los valores calculados mediante los tres métodos son del mismo orden de magnitud e indican que la transmisividad del acuífero estudiado debe estar entre 15 y 35 m²/día. Los valores de transmisividad calculados con los descensos medidos en el propio pozo durante el ensayo de bombeo parecerían subestimar la capacidad real del acuífero para

transmitir el agua, pudiéndose deber a que los valores se obtuvieron a través de la medición en una única perforación de observación lo cual no es especialmente aconsejable. Sin embargo, todos son valores muy bajos en comparación con los valores típicos de transmisividad del SAR, los cuales oscilan entre 100 y 2200 m²/día. Según el IGME (1984) la transmisividad obtenida se clasifica como baja.

Por otra parte, en un contexto ideal los valores de transmisividad deberían ser iguales en todos los escalones al igual que los caudales específicos cuando el descenso no sobrepasa el techo del acuífero (efecto de drenaje), aun así, se observan variaciones que pueden atribuirse a que durante un ensayo de bombeo en campo los supuestos básicos posiblemente no se ajusten en su totalidad a la realidad afectando posteriormente a los cálculos.

Escalón	Caudal (m ³ /día)	Descenso (m)	Caudal específico (m³/día/m)	Radio de influencia (m)	Transmisividad (m²/día)
1	21,6	0,9	24,0	9,0	18,2
2	64,8	3,1	20,9	9,5	16,1
3	132	6,3	21,0	11,0	16,6
4	172,8	8,8	19,9	10,5	15,4

7.4. Hidroquímica

7.4.1. Parámetros fisicoquímicos

Las propiedades fisicoquímicas del agua de los pozos de la zona de estudio se encuentran dentro de los parámetros establecidos por la normativa vigente uruguaya (UNIT, 2008) tanto para las muestras tomadas en agosto, noviembre y durante el ensayo de bombeo (Tabla 1, Anexo V). La única excepción se observa en la turbidez, donde en agosto las perforaciones 90.3.032, 90.3.022 y P1 superan ampliamente los valores máximos permitidos en la norma. En noviembre la perforación 90.3.022 es la única que presentó valores que no son esperables para el agua de consumo humano. Durante el ensayo de bombeo se registraron valores que superan el valor máximo permitido. Estos valores elevados de turbidez pueden deberse que a ciertos caudales el pozo 90.3.032 levanta arena del fondo debido a una mala construcción de este. El pozo 90.3.022 es un pozo que no se encontraba operativo al momento de la toma de

la muestra. Si bien se dejó purgar, este tiempo tal vez no fue el suficiente para disminuir la presencia de los sólidos en suspensión. El P1 es un brocal por lo que esa podría ser la razón de los niveles elevados de turbidez en agosto.

Con base en las estadísticas básicas de los parámetros fisicoquímicos (Tabla 7.5, 7.6 y 7.7) se puede observar que la conductividad eléctrica en las tres familias de datos se encuentra en el rango bajo natural para el agua subterránea (hasta 2000 μ S/cm). El pH es levemente alcalino, sin embargo, en agosto se registraron valores más elevados, aunque siempre dentro del rango establecido para el agua potable (6,5 a 8,5). La turbidez en general es acorde con lo esperado con algunas excepciones como se mencionó anteriormente. De acuerdo con los valores medios obtenidos de dureza, se considera que el agua es dura. La temperatura se encuentra dentro de lo esperable para el agua subterránea, variando unos centígrados en noviembre concordando con el aumento de la temperatura atmosférica. Por otra parte, los valores positivos del potencial redox indican un ambiente oxidante. La media de oxígeno disuelto en estas aguas es de ≈ 6 ppm. Estas concentraciones son elevadas en comparación con el promedio en las aguas subterráneas (0 a 3 ppm) sugerido por Younger (2007). La salinidad presentó valores medios ≈ 400 ppm, esperables en agua dulce potable.

Tabla 7.5. Estadísticos descriptivos de los parámetros fisicoquímicos medidos *in situ* de las muestras de agosto 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1. CE: conductividad eléctrica; STD: sólidos totales disueltos; T: temperatura; ORP: potencial redox; OD: oxígeno disuelto.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
pН		8,22	8,38	8,23	0,06	6,5 - 8,5
CE	µS/cm	681	782	716,40	39,06	2000
STD	ppm	341	391	358,40	19,32	1000
Turbidez	NTU ~ FNU	0,20	12,20	6,76	6,01	1
Dureza	CaCO ₃ /L	229,20	279,00	244,34	21,48	500
Т	°C	18,23	19,28	18,60	0,48	-
ORP	mV	53,40	178,60	137,38	51,10	-
OD	ppm	6.30	7.35	6,72	0,39	-
Salinidad	PSU	0,33	0,38	0,35	0,19	-

*PSU = Unidades prácticas de salinidad

Tabla 7.6. Estadísticos descriptivos de los parámetros fisicoquímicos medidos *in situ* de las muestras de noviembre 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1. CE: conductividad eléctrica; STD: sólidos totales disueltos; T: temperatura; ORP: potencial redox; OD: oxígeno disuelto.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
рН		7,03	7,34	7,22	0,12	6,5 - 8,5
CE	µS/cm	772,00	865,00	813,00	35,74	2000
STD	ppm	386,00	430,00	406,20	17,04	1000
Turbidez	NTU ~ FNU	0,20	2,30	0,88	0,83	1
Dureza	CaCO ₃ /L	419,55	491,13	439,83	29,30	500
Т	°C	19,18	20,50	19,93	4,20	-
ORP	mV	123,10	165,90	147,40	15,76	-
OD	ppm	5,85	6,33	6,06	0,20	-
Salinidad	PSU	0,38	0,43	0,40	0,02	-

*PSU = Unidades prácticas de salinidad

Tabla 7.7. Estadísticos descriptivos de los parámetros fisicoquímicos medidos *in situ* de las muestras del ensayo de bombeo en noviembre 2021 en el pozo 90.3.032. CE: conductividad eléctrica; STD: sólidos totales disueltos; T: temperatura; ORP: potencial redox; OD: oxígeno disuelto.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
рН		7,10	7,51	7,29	0,12	6,5 – 8,5
CE	µS/cm	788,00	822,00	810,13	10,43	2000
STD	ppm	394,00	408,00	405,50	5,45	1000
Turbidez	NTU ~ FNU	0,60	2,10	1,26	0,57	1
Dureza	CaCO ₃ /L	417,56	445,40	592,84	54,83	500
Т	°C	19,35	21,92	20,34	0,97	-
ORP	mV	54,90	175,00	131,80	35,73	-
OD	ppm	4,53	6,31	5,52	0,61	-
Salinidad	PSU	0,39	0,40	0,40	0,004	-

*PSU = Unidades prácticas de salinidad

7.4.2. Hidroquímica mayoritaria

Se determinaron los niveles de los iones extrayéndolos de sus respectivos cromatogramas (Figura 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 y 17, Anexo V) Las muestras de la zona de estudio (n=17) presentan un error de balance iónico (ϵ) menor o igual al 10 % en un 94,1% de los puntos (n=16). La muestra tomada en agosto de 2021 para la perforación P1 presenta un error del 42%. Este error es muy alto, el laboratorio repitió los análisis y obtuvo el mismo resultado. La razón por la cual el error iónico de esta muestra supera el 10% (límite que asegura el buen desempeño analítico), podría sugerir que hubo algún cambio químico alguna descomposición o contaminación de la muestra durante el tiempo de transporte de la misma desde su

colecta en el pozo hasta el laboratorio. Esto provoca que cuando se analiza, exista algún ion que no está siendo valorado correctamente. También podría deberse a interferencias con otro tipo de compuesto iónico, coloide o restos de sedimentos presentes que hagan que los iones mayoritarios sean sobre o subvalorados. Lo ideal en estos casos es volver a muestrear, pero este trabajo no fue posible. Se considerará esto a futuro. De todas maneras, debido al escaso número de perforaciones muestreadas, y para tener un panorama hidroquímico espacial de la zona, a priori se tomó la decisión de incluir dicha muestra con error, para los análisis estadísticos y de caracterización del agua ya que no se pudo encontrar la razón exacta por la cual debería ser descartada este *outlier*.

7.4.2.1. Muestras de invierno

En la Tabla 7.8. se presentan los valores máximos, mínimos, media y desviación estándar correspondiente a cada uno de los parámetros analizados para las muestras tomadas en agosto 2021.

Tabla 7.8. Estadísticas básicas para los iones mayoritarios analizados en el laboratorio de las perforaciones seleccionadas del área de estudio para agosto 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
Alcalinidad	CaCO ₃ /L	316,70	364,50	334,00	19,08	
Cl	mg/L	7,76	38,91	26,00	13,06	250
HCO ₃ -	mg/L	386,40	444,70	407,50	23,27	-
NO ₃ ⁻	mg/L	13,21	71,15	44,62	23,59	50
SO4 ²⁻	mg/L	10,39	22,46	16,02	4,37	400
Na⁺	mg/L	49,67	99,25	76,66	21,53	200
K⁺	mg/L	4,18	18,95	13,87	5,68	-
Ca ²⁺	mg/L	17,13	35,51	27,16	7,26	-
Mg ²⁺	mg/L	8,59	19,52	15,12	4,54	-

Los iones mayoritarios analizados que son de interés para caracterizar al agua potable (Na⁺, K⁺ y SO₄²⁻, NO₃⁻) no superaron los valores máximos permitidos (VMP) establecido por la normativa nacional (UNIT, 2008) para agua potable (Tabla 7.8), a excepción de los nitratos en las perforaciones 90.3.030, 90.3.018 y P1 que se encontraron por encima del VMP (50 mg/L) (Tabla 2, Anexo V). Los valores elevados de nitrato posiblemente se encuentren asociados a filtraciones de pozos sépticos

(Gamazo *et al.*, 2018) y/o uso de fertilizantes químicos (Bolaños-Alfaro, *et al.*, 2017). Se descarta que estos niveles elevados provengan de crías de animales ya que en el área de estudio los campos se utilizan para cultivo.

Las aguas subterráneas predominantes en la zona de estudio en agosto del 2021 se muestran en el diagrama de Piper (Figura 7.9). De acuerdo con este diagrama, se identificaron aguas del tipo bicarbonatadas sódicas representadas por las perforaciones 90.3.032, 90.3.030, 90.3.018 y P1. Asimismo, se reconoció una única perforación (Nº90.3.022) que presenta aguas del tipo bicarbonatadas cálcicas y/o magnésicas.

Figura 7.9. Diagrama de Piper de las muestras de agua subterránea tomadas en agosto de 2021 de las perforaciones del área de estudio.

La composición química general del agua subterránea se resume en la Figura 7.10. Los constituyentes más abundantes fueron consistentemente HCO₃⁻ y Na⁺ con valores de media y mediana >75 mg/L. El ion mayoritario dominante en las aguas de la zona fue el HCO₃⁻ (mediana = 408,6 mg/L). Otros parámetros como el Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻, K⁺ se presentaron en concentraciones bajas (mediana < 30 mg/L).

El NO₃⁻ en este caso se considera un elemento mayoritario (mediana <50 mg/L) ya que se presenta en concentraciones >1 mg/L. Aunque para algunos acuíferos este no es un componente natural, sino que su presencia se debe a contaminación orgánica, como en el caso del Acuífero Raigón según antecedentes (INIA, 2019).

Figura 7.10. Gráfico de cajas y bigotes de los resultados analíticos de los elementos mayoritarios (en mg/L) de las muestras de agosto de 2021.

7.4.2.2. Muestras de primavera

En la Tabla 7.9. se presentan los valores máximos, mínimos, media y desviación estándar correspondiente a cada uno de los parámetros analizados tanto *in situ* como en el laboratorio de las muestras tomadas en noviembre 2021.

Dentro de los iones mayoritarios que forman parte de los requisitos de UNIT 833 (UNIT, 2008) para el agua apta para consumo humano, tanto los cloruros, sulfatos y potasio se encontraron dentro de la norma. En el caso de las perforaciones 90.3.030, 90.3.018 y P1, los nitratos superaron el VMP establecido en la normativa uruguaya

(UNIT, 2008) mientras que las perforaciones 90.3.032 y 90.3.022 son aptas para consumo humano. Los casos de NO_3^- elevados concuerdan con los obtenidos en agosto, por lo que se asume la misma fuente de contaminación antrópica.

Tabla 7.9. Estadísticas básicas para los iones mayoritarios analizados en el laboratorio de las perforaciones seleccionadas del área de estudio para noviembre de 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
Alcalinidad	CaCO ₃ /L	436,30	619,30	509,00	72,11	
Cl	mg/L	14,98	32,55	24,46	7,43	250
HCO ₃ -	mg/L	532,20	755,50	620,98	87,96	-
NO ₃ -	mg/L	24,24	61,91	44,50	16,64	50
SO4 ²⁻	mg/L	11,22	20,96	17,25	3,62	400
Na⁺	mg/L	119,45	158,51	138,18	14,81	200
K+	mg/L	15,65	26,07	19,04	4,20	-
Ca ²⁺	mg/L	70,70	151,75	92,84	33,27	-
Mg ²⁺	mg/L	21,51	33,17	25,13	4,59	-

Figura 7.11. Diagrama de Piper de las muestras de agua subterránea tomadas en noviembre de 2021 de las perforaciones del área de estudio.

Las aguas subterráneas predominantes en la zona de estudio en noviembre del 2021 de acuerdo con el diagrama de Piper son del tipo bicarbonatadas cálcicas y/o magnésicas representadas por las perforaciones 90.3.032, 90.3.030, 90.3.018 y 90.3.022. La perforación P1 por otro lado presenta aguas del tipo bicarbonatadas sódicas (Figura 7.11).

La composición química general del agua subterránea se resume en la Figura 7.12. Los constituyentes más abundantes fueron HCO_3^- , Na⁺ y Ca²⁺, con valores de media y mediana >75 mg/L. El ion mayoritario dominante en las aguas de la zona fue el HCO_3^- (mediana = 408,6 mg/L). Otros parámetros como el Mg²⁺, Cl⁻, SO₄²⁻, K⁺ se presentaron en concentraciones bajas (mediana < 30 mg/L).

El NO₃⁻ en este caso, al igual que en las muestras de agosto de 2021, se considera un elemento mayoritario (mediana <50 mg/L) ya que se presenta en concentraciones >1 mg/L, aunque teniendo en cuenta que su presencia se debe a contaminación orgánica (INIA, 2019).

Figura 7.12. Gráfico de cajas y bigotes de los resultados analíticos de los elementos mayoritarios (en mg/L) de las muestras de noviembre de 2021.

7.4.2.3. Hidroquímica mayoritaria durante el ensayo de bombeo

En la Tabla 7.10. se presentan los valores máximos, mínimos, media y desviación estándar correspondiente a cada uno de los parámetros analizados para las muestras tomadas durante el ensayo de bombeo en noviembre de 2021.

Tabla 7.10. Estadísticas básicas para los iones mayoritarios analizados en el laboratorio para las muestras tomadas durante el ensayo de bombeo en el pozo 90.3.032.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
Alcalinidad	CaCO ₃ /L	457,6	619,30	427,50	8,37	
Cl	mg/L	27,40	34,71	31,38	2,21	250
HCO ₃ -	mg/L	558,30	755,50	723,26	66,89	-
NO ₃ -	mg/L	22,48	37,43	30,93	4,45	50
SO4 ²⁻	mg/L	11,12	12,04	11,38	0,36	400
Na⁺	mg/L	134,79	147,62	139,97	4,19	200
K+	mg/L	14,88	22,92	18,58	2,91	-
Ca ²⁺	mg/L	74,88	153,95	141,48	27,01	-
Mg ²⁺	mg/L	20,79	23,93	22,67	1,26	-

Todos los iones que son de interés para caracterizar al agua potable (Na⁺, K⁺ y SO₄², NO₃⁻) se encuentran dentro de la normativa nacional (UNIT, 2008).

Las aguas subterráneas predominantes en la perforación 90.3.032 durante el ensayo de bombeo son del tipo bicarbonatadas cálcicas y/o magnésicas, representadas por las muestras Nº1 al 7. La última muestra (Nº8) presenta aguas del tipo bicarbonatadas sódicas (Figura 7.13).

La composición química general del agua subterránea se resume en la Figura 7.14. Los constituyentes más abundantes fueron HCO_3^- , Na^+ y Ca^{2+} , con valores de media y mediana >135 mg/L. El ion mayoritario dominante en las aguas de la zona fue el HCO_3^- (mediana = 744,9 mg/L). Otros parámetros como el Mg²⁺, Cl⁻, SO₄²⁻, K⁺ se presentaron en concentraciones bajas (mediana < 32 mg/L).

El NO₃⁻ en este caso, al igual que en las muestras de agosto de 2021, se considera un elemento mayoritario (mediana <50 mg/L) ya que se presenta en concentraciones >1 mg/L, aunque no es un componente natural, sino que su presencia se debe a contaminación orgánica. Por otro lado, se analizaron mediante un gráfico los valores obtenidos de los iones mayoritarios en función del tiempo transcurrido durante el ensayo de bombeo (Figura 7.15). Los valores se mantienen relativamente estables en casi todos los casos, a excepción del bicarbonato y el calcio que disminuyen considerablemente en la última muestra tomada el 13 de noviembre de 2021, lo que podría explicarse que durante el bombeo se está extrayendo aguas de otro nivel con otra composición hidroquímica.

Figura 7.13. Diagrama de Piper de las muestras de agua subterránea tomadas durante el ensayo de bombeo.

Figura 7.14. Gráfico de cajas y bigotes de los resultados analíticos de los elementos mayoritarios (en mg/L) de las muestras del ensayo de bombeo.

Figura 7.15. lones mayoritarios en función del tiempo transcurrido durante el ensayo de bombeo.

7.4.2.4. Fuentes de los iones mayoritarios

Para identificar el origen de los iones mayoritarios en las aguas subterráneas se realizó un análisis de correlación de Spearman con los datos obtenidos en los tres muestreos. Los resultados de esta correlación muestran en la Tabla 7.11.

En esta tabla se observa una correlación positiva fuerte (r=0,61) entre el Ca²⁺ y Mg²⁺, indicando que la disolución de la calcita y/o dolomita podría ser la fuente del calcio y magnesio. Existe una fuerte correlación positiva entre el Ca²⁺ y HCO₃⁻ (r=0,91) y una correlación positiva moderada entre Mg²⁺ y HCO₃⁻ (r=0,50) demostrando una fuente en común (calcita y en menor proporción dolomita) que proveerían al agua subterránea de estos iones.

Por otra parte, existe una correlación negativa moderada a débil entre el SO_4^{2-} y Ca^{2+} (r=-0,40) mostrando que la disolución de yeso no contribuiría en la presencia de estos iones en el agua subterránea, concordando con que la contribución del calcio proviene de otras fuentes (calcita y dolomita).

La correlación entre el Na⁺ y Ca²⁺ (r=0,53) y Na⁺ y Mg²⁺ (r=0,54) sugerirían que el intercambio catiónico podría ser uno de los procesos que están llevándose a cabo dentro del acuífero.

Tampoco existe una correlación entre el Na⁺ y SO₄²⁻ (r=-0,24), por lo que la disolución de minerales de sulfato de sodio no proporciona sodio al agua, ni entre Na⁺ y Cl⁻ (r=0,04) lo que descartaría un aporte de estos iones por disolución de halita o por procesos de evaporación.

	Na⁺	Ca ²⁺	Mg ²⁺	K⁺	HCO ₃ ⁻	Cl	SO ₄ ²⁻	NO₃ ⁻
Na⁺	1							
Ca ²⁺	0,53	1						
Mg ²⁺	0,54	0,61	1					
K⁺	0,20	0,42	0,79	1				
HCO ₃ ⁻	0,68	0,91	0,50	0,21	1			
CI ⁻	0,26	0,02	-0,29	-0,57	0,34	1		
SO 4 ²⁻	-0,24	-0,40	0,05	0,12	-0,40	-0,49	1	
NO ₃ ⁻	-0,35	-0,20	-0,14	-0,16	-0,26	0,20	0,61	1

Tabla 7.11. Coeficientes de correlación de Spearman entre los iones mayoritarios de las muestras de agosto y noviembre 2021 y del ensayo de bombeo. Las muestras se encuentran en mg/L.

Otra forma de analizar los resultados es mediante el diagrama de Gibbs (Gibbs, 1970), que es un diagrama simple y efectivo que puede utilizarse para identificar factores que influyen en la hidroquímica del agua subterránea. De acuerdo con el diagrama realizado con la totalidad de las muestras, el proceso que está ocurriendo dentro del acuífero es el intemperismo (interacción agua – roca) (Figura 7.16).

Los STD del área se presenta en un rango acotado entre 341 – 391 ppm, y el radio entre Na⁺/(Na⁺+Ca²⁺) y Cl⁻/(Cl⁻+HCO₃⁻) se encuentra entre 0,628 – 0,801 y 0,019 – 0,087 respectivamente. Esto muestra que el agua está caracterizada por un alto contenido de Na⁺ y Ca²⁺ además de sugerir un fuerte intercambio catiónico en el sistema del agua subterránea.

Figura 7.16. Diagrama de Gibbs para las muestras de agosto de 2021 (puntos azules), noviembre de 2021 (puntos naranjas) y durante el ensayo de bombeo (puntos verdes).

7.4.2.5. Relaciones iónicas

Los procesos de intercambio iónico y disolución pueden reconocerse usando el gráfico Ca²⁺+ Mg²⁺ vs HCO₃⁻+SO₄²⁻ (Figura 7.17A) (Mahmoudi *et al.*, 2017). Las muestras ubicadas sobre la línea 1:1 representan la disolución de calcita, dolomita y yeso. Las muestras que caen en el sector inferior corresponden a intercambio iónico

mientras que las que se ubican en el sector superior corresponden a intercambio iónico inverso. En el caso de las muestras estudiadas, la mayoría cae en el campo de intercambio iónico. Asimismo, en la figura se observa un exceso de HCO₃⁻+SO₄²⁻ respecto de Ca²⁺+ Mg²⁺. Esto podría ser debido a que argilominerales adsorban Ca²⁺ y Mg²⁺, generando una subsaturación en calcita con el consecuente aumento del pH e incremento de la capacidad de estas aguas de disolver carbonatos.

Por otro lado, se graficó Ca²⁺+ Mg²⁺-SO₄²⁻-HCO₃⁻ vs Na⁺-Cl⁻ (Figura 7.17B) (Mahmoudi *et al.*, 2017). En esta gráfica se asume que todo el Cl deriva de la disolución de la halita, por lo que el exceso de Na⁺ en (Na⁺-Cl⁻) indica un origen diferente a este proceso. En la figura la mayoría de las muestras se ubican en la cercanía de la línea recta con pendiente -1, indicando que se encuentran influenciadas por procesos de intercambio iónico.

Los índices cloro alcalinos (CAI) propuestos por Schoeller (1977) son utilizados para estudiar el intercambio iónico y se expresan según las siguientes fórmulas:

$$CAI1 = \frac{[Cl - (Na + K)]}{Cl}$$
$$CAI2 = \frac{[Cl - (Na + K)]}{Cl + HCO_3 + SO_4 + NO_3}$$

Durante la reacción de intercambio iónico, el Na⁺ y K⁺ disponible en la fase sólida del acuífero se intercambia con el Ca²⁺ y Mg²⁺ del agua subterránea. En consecuencia, el Na⁺ en el agua subterránea aumenta con respecto al Cl⁻. Sin embargo, durante el intercambio iónico inverso, el Ca²⁺ y Mg²⁺ en el material del acuífero es reemplazado por Na⁺ del agua salina. En consecuencia, el Ca²⁺ en el agua aumenta, mientras que Na⁺ en el agua disminuye respecto al Cl⁻. Los índices calculados para las muestras de agua subterránea se trazan en dos diagramas (Figura 7.17C y 7.17D). El 100% de las muestras muestran valores negativos para ambos índices, lo que indica que el intercambio iónico es la principal reacción que afecta la composición de las aguas subterráneas.

Figura 7.17. Diagramas explicando los procesos de intercambio iónico en el agua subterránea del área de estudio en agosto de 2021 (puntos azules), noviembre de 2021 (puntos naranjas) y durante el ensayo de bombeo (puntos verdes). A) Diagrama de dispersión de Ca²⁺+Mg²⁺ vs SO₄²⁻+HCO₃⁻. B) Diagrama de dispersión de Ca²⁺+Mg²⁺-SO₄²⁻-HCO₃⁻ vs Na⁺-Cl⁻. C) CAI1 de las muestras de agua subterránea. D) CAI2 de las muestras de agua subterránea.

Para comprobar si existe disolución de carbonatos y/o yeso, se analizaron las relaciones de Ca²⁺/(Ca²⁺+SO₄²⁻) (Figura 7.18A) y Ca vs Alcalinidad (Figura 7.18B) (Asante *et al.*, 2018). La relación Ca²⁺/(Ca²⁺+SO₄²⁻) \cong 1, junto con las muestras graficadas, indicarían una fuente de calcio debido a la disolución de carbonatos sin influencia de disolución de yeso. El aporte bajo de SO₄²⁻ provendría de la evaporación del agua de lluvia que recarga el ambiente. Esto es concordante con el ambiente oxidante del área (ORP positivo), descartando la posibilidad de que existan procesos de reducción del yeso aportando SO₄²⁻ al agua (Asante *et al.*, 2018).

Por otro lado, el gráfico Ca²⁺ vs alcalinidad indicaría que predomina la disolución de la dolomita en el área, contribuyendo en los niveles de calcio y magnesio en el agua subterránea. Los metales alcalinotérreos (Ca²⁺ y Mg²⁺) y los metales alcalinos (Na⁺ y K⁺) generalmente se producen a partir de la meteorización y erosión de minerales carbonatados y silicatos, teniendo una capacidad de disolución en diferentes condiciones ambientales. En el gráfico de Ca²⁺+Mg²⁺ vs Na⁺+K⁺ (Figura 7.18C) (Kumar *et al.*, 2019) las muestras que se encuentran por debajo de la línea 1:1 indicarían un mayor impacto de la meteorización de los minerales de silicatos en comparación con los carbonatos. Por otro lado, la relación Ca²⁺/HCO₃⁻ (Figura 7.18D) (Pincetti-Zúniga *et al.*, 2020) en su mayoría es baja (0,1 a 0,6) sugiriendo el impacto de la meteorización de silicatos. Si bien es de esperarse aporte de iones Ca²⁺, Mg²⁺ y HCO₃⁻ al agua por disolución de carbonatos como indican las Figuras 7.18A y 7.18B, al contrario de lo que indican estas relaciones, los valores bajos obtenidos por estas son asociables a procesos de intercambio catiónico de tipo Ca²⁺/Na⁺, concordando con lo anteriormente descrito.

La relación SO₄²⁻/Cl⁻ (Figura 7.18E) (Sierra, 2019) presentan valores bajos (entre 0,2 y 1,8) lo que podría indicar que, en la totalidad de las muestras de agua, la recarga a través de la lluvia es el principal factor que contribuye a la transferencia de iones SO₄²⁻ y Cl⁻ de los suelos superficiales a las aguas subterráneas.

La relación entre Cl⁻/Br⁻ de las muestras de agosto varía entre 6 y 75. La relación típica de las precipitaciones oscila entre 50 y 150, con valores menores debido a que el Br⁻ podría adsorberse en las arcillas (Thyne *et al.*, 2017).

La relación Na⁺/Cl⁻ (Figura 7.18F) (Kumar *et al.*, 2019) es elevada, mostrando un exceso de Na⁺ con respecto al Cl⁻. Esta relación donde Na⁺>>Cl⁻ en el agua subterránea, concuerda con los procesos de intercambio iónico y descartarían, a priori, la influencia de disolución de la halita. Esta última suposición coincide con lo demostrado por la Figura 7.17B.

Se considera que el carácter bicarbonatado del agua se podría deber a que el material geológico del área ha sufrido de un proceso de diluciones y reacciones bicarbonatadas al entrar en contacto con el agua. Los niveles que presentan contenido de carbonatos se resumen en los primeros metros, correspondientes al suelo y a la Formación Libertad. Esto concuerda con que el agua en el suelo es ácida

por la reacción del CO₂ con el agua, característica que hace que el agua sea agresiva con los carbonatos. Por otro lado, el sodio provendría del intercambio catiónico de las arcillas donde existe un intercambio de Ca²⁺ y Mg²⁺ (proveniente de la disolución de los carbonatos) y liberación del Na⁺.

Figura 7.18. Diagramas de dispersión indicando fuentes de diferentes parámetros en el agua subterránea en agosto de 2021 (puntos azules), noviembre de 2021 (puntos naranjas) y durante el ensayo de bombeo (puntos verdes). A) Ca²⁺ vs Ca²⁺+SO₄²⁻. B) Ca vs Alcalinidad. C) Ca²⁺ + Mg²⁺ vs Na⁺+K⁺. D) Ca²⁺ vs HCO₃⁻. E) SO₄²⁻ vs Cl⁻. F) Na⁺ vs Cl⁻.

El leve corrimiento hacia las aguas bicarbonatadas cálcicas y/o magnésicas visualizado en los diagramas de Piper (Figura 7.9 y 7.11) se podría deber a que durante las salidas, se constató que los campos circundantes son utilizados con fines agrícolas, predominando los cultivos de verano, lo que supone un aumento en el uso de los pozos por parte de los productores de la zona, lo que podría estar favoreciendo la disolución de ciertos iones (bicarbonato, sodio, calcio) e influyendo en las variaciones de la hidroquímica mayoritaria. A su vez, en el trimestre de junio a agosto del 2021 la precipitación acumulada varió entre 200-250 mm para el acuífero, mientras que en el trimestre de setiembre a noviembre del 2021 varío entre 250-300 mm (Anexo VI, Tabla 1). Asimismo, se registraron lluvias durante la semana previa al muestreo (INUMET, 2021), por lo que no se descarta una posible influencia por parte de las precipitaciones en la hidroquímica mayoritaria. Sin embargo, no se puede concluir ya que son muy pocas muestras, por lo que se necesitaría continuar con los análisis de manera más frecuente para poder realizar un estudio estadístico adecuado.

7.4.3. Hidroquímica minoritaria y traza

Se determinaron los iones minoritarios F⁻, Br⁻, NO₂⁻, PO₄³⁻, Li⁺ y NH₄⁺ junto con los iones mayoritarios por cromatografía. Dentro de estos 6 iones, el amonio (NH₄⁺) no fue detectado en ninguna de las muestras analizadas. El arsénico total fue detectado en todas muestras al igual que su especie inorgánica As(V).

7.4.3.1. Muestras de invierno

En la Tabla 7.12. se presentan los valores máximos, mínimos, media y desviación estándar correspondiente a los iones minoritarios, traza y As_T detectados para las muestras de agosto 2021.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
NO ₂ ⁻	mg/L	1,01*				0,2
PO43-	mg/L	0,0006	1,71	0,57	0,98	-
As⊤	mg/L	0,012	0,020	0,016	0,003	0,02**
F⁻	mg/L	0,29	0,66	0,42	0,15	1,5
Br	mg/L	0,41	1,29	0,71	0,37	-
Li ⁺	mg/L	0,009	0,098	0,062	0,765	-

Tabla 7.12. Estadísticas básicas para diferentes iones minoritarios, traza y As⊤ en las muestras de agosto 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1.

*único valor

**valor objetivo de 0,01 mg/L

Los iones minoritarias y elementos traza analizados que son de interés para caracterizar al agua potable son el F⁻, NO₂⁻ y As_T (UNIT, 2008). El F⁻ se encuentra por debajo del VMP (1,5 mg/L) establecido por UNIT 833:2008 (UNIT, 2008). La perforación 90.3.022 es la única que presenta niveles de nitritos (NO₂⁻) superando el VMP (0,02 mg/L) según ÚNIT 833:2008 (UNIT, 2008). Por otra parte, el valor medio de As_T supera el valor objetivo propuesto por la OMS (0,01 mg/L), aunque se encuentra dentro de la normativa nacional vigente (UNIT, 2008). Si bien se han detectado ambas especies de As inorgánico en las muestras, la forma oxidada (As(V)) es la predominante con una media de 0,014 mg/L (Tabla 7.13).

Tabla 7.13. Estadísticas básicas para las especies de arsénico obtenidas en las muestras de agosto 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar
As ⁺⁵	mg/L	0,010	0,018	0,014	0,003
As ⁺³	mg/L	0,001	0,002	0,002	0,0004

Los niveles de Br⁻ encontrados (media = 0,71 mg/L) en las muestras son mayores a las esperadas en el agua dulce (0,01 mg/L) (Custodio y Llamas, 1983), lo que podría estar sugiriendo una influencia del agua de mar o del aerosol marino incorporado a la precipitación atmosférica (Custodio y Herrera, 2000).

Los valores elevados de nitrito y fosfato en la perforación 90.3.022 (Tabla 2, Anexo V) llaman la atención, pudiéndose deber a una posible contaminación ya sea de efluentes agrícolas o de alguna fosa séptica en la zona que esté filtrando hacia el agua subterránea (Gamazo, *et al.*, 2018; Bolaños-Alfaro, *et al.*, 2017) Para tener una conclusión definitiva es recomendable realizar más análisis, un relevamiento y

analizar el uso de la tierra con el fin de caracterizar todas las fuentes contaminantes. Por otro lado, se debe determinar la distancia de los pozos ciegos a las perforaciones de abastecimiento.

Según la Figura 7.19, no se observa una gran variabilidad en los valores de Br⁻ y F⁻, encontrándose en concentraciones relativamente altas en todas las muestras (valores de mediana de 0,51 y 0,37 mg/L respectivamente). En el caso del As_T, las concentraciones presentan una mediana de 0,017 mg/L. El Li⁺ también se presenta en concentraciones bajas con una mediana de 0,014 mg/L. Por otra parte, en general, se encontraron concentraciones muy bajas de PO₄³⁻ en la mayoría de las aguas subterráneas estudiadas, con una mediana de 0,01 mg/L.

Figura 7.19. Gráfico de cajas y bigotes de los resultados analíticos de los elementos minoritarios y traza (en mg/L) detectados en las muestras de agosto 2021. (*) Conjunto de datos incompletos para PO4⁻³.

7.4.3.2. Muestras de primavera

En la Tabla 7.14. se presentan los valores máximos, mínimos, media y desviación estándar correspondiente a los iones minoritarios, traza y As⊤ detectados para las muestras de noviembre 2021.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
NO ₂ ⁻	mg/L	0,59*				0,2
As _{T y} As ⁺⁵	mg/L	0,014	0,019	0,016	0,002	0,02**
F [−]	mg/L	0,33	0,50	0,38	0,70	1,5
Li+	mg/L	0,008	0,059	0,024	0,020	-

Tabla 7.14. Estadísticas básicas para diferentes iones minoritarios, traza y As⊤ en las muestras de noviembre 2021 de los pozos 90.3.018, 90.3.022, 90.3.030, 90.3.032 y P1

*único valor

**valor objetivo de 0,01 mg/L

Dentro de los iones minoritarios y traza de interés para caracterizar el agua potable, el F⁻ se encuentra por debajo del VMP (1,5 mg/L) establecido por UNIT 833:2008 (UNIT, 2008). En lo que concierne al As_T, éste supera el valor objetivo propuesto por la OMS (0,01 mg/L), sin embargo, se encuentra dentro de la normativa nacional vigente (UNIT, 2008). En todas las muestras se detectó únicamente la especie de As(V). La perforación 90.3.022 es la única que presenta niveles de nitritos (NO₂⁻) superando el VMP (0,2 mg/L) según UNIT 833:2008 (UNIT, 2008).

Con lo que respecta a la alta concentración de nitritos en la perforación 90.3.022, se supone la misma hipótesis para la fuente según lo establecido en la sección 8.2.3.1.

Según la Figura 7.20, no se observa una gran variabilidad en los valores de F⁻, encontrándose en concentraciones relativamente altas en todas las muestras (mediana 0,37 mg/L). En el caso del As_T, las concentraciones presentan una mediana de 0,016 mg/L. El Li también se presenta en concentraciones con una mediana de 0,016 mg/L.

Figura 7.20. Gráfico de cajas y bigotes de los resultados analíticos de los elementos minoritarios y traza (en mg/L) detectados en las muestras de noviembre 2021.

7.4.3.3. Hidroquímica minoritaria y traza durante el ensayo de bombeo

En la Tabla 7.15. se presentan los valores máximos, mínimos, media y desviación estándar correspondiente a los iones minoritarios, traza y As⊤ detectados para las muestras tomadas durante el ensayo de bombeo.

Tabla 7.15. Estadísticas básicas para diferentes iones minoritarios, traza y As⊤ en las muestras recolectadas durante el ensayo de bombeo en el pozo 90.3.032.

Parámetro	Unidad	Mínimo	Máximo	Media	Desviación estándar	UNIT 833:2008
NO ₂ ⁻	mg/L	0,059	0,073	0,066	0,007	0,2
As _{T y} As ⁺⁵	mg/L	0,015	0,018	0,017	0,001	0,02**
F ⁻	mg/L	0,229	0,366	0,306	0,040	1,5
Li+	mg/L	0,008	0,306	0,133	0,138	-

Dentro de los iones minoritarios y traza de interés para caracterizar el agua potable, el F⁻ se encuentra por debajo del VMP (1,5 mg/L) establecido por UNIT 833:2008 (UNIT, 2008). El NO₂⁻ se encuentra dentro del VMP (0,2 mg/L) fijado por la normativa nacional vigente (UNIT, 2008). El As_T supera el valor objetivo de la OMS (0,01 mg/L), sin embargo, se encuentra dentro de la normativa uruguaya vigente (UNIT, 2008). En todas las muestras se detectó únicamente la especie de As(V).

Figura 7.21. Gráfico de cajas y bigotes de los resultados analíticos de los elementos minoritarios y traza (en mg/L) detectados en las muestras recolectadas durante el ensayo de bombeo.

Según la Figura 7.21, no se observa una gran variabilidad en los valores de F⁻, encontrándose en concentraciones relativamente altas en todas las muestras (mediana 0,312 mg/L). El Li presenta una gran variabilidad con una mediana de 0,062 mg/L. El NO₂⁻ se presenta en concentraciones relativamente bajas con una mediana de 0,067 mg/L. En el caso del As_T, las concentraciones presentan una mediana de 0,017 mg/L.

7.4.5. Variación espaciotemporal de los niveles de arsénico

La distribución espaciotemporal del As se muestra en la Figura 7.21. En el período de análisis (agosto y noviembre de 2021) se observa que existen variaciones en los niveles de As_T en toda el área de estudio. Para el mes de invierno se observa que todas las perforaciones a excepción de la 90.3.022 disminuyen sus concentraciones

del elemento. La perforación 90.3.022 aumenta sus niveles de As⊤, pasando de 0,012 mg/L en agosto a 0,015 mg/L.

Figura 7.21. Variación espacial de los niveles de arsénico total. A) Período agosto 2021 y; B) Período noviembre 2021.

A priori, estas diferencias encontradas entre los niveles de As podrían deberse a que las condiciones químicas del agua subterránea estuvieran produciendo la desorción del As de las fases minerales. Por ejemplo, en agosto se detectaron pH levemente más alcalinos con respecto a los pH con tendencia neutra de noviembre, concordando con la situación pluvial. Al comparar la precipitación acumulada entre los trimestres junio-agosto y setiembre-noviembre se observa un aumento de un 4,5% en las lluvias hacia la primavera (Anexo VI, Figura 1). El aumento de las precipitaciones podría disminuir el pH del agua subterránea ya que el agua de lluvia es más ácida y por ende disminuiría los niveles de As, ya que el pH neutro favorecería la adsorción del As, como en el caso de las muestras de primavera. A su vez, no se debe descartar la

posible ocurrencia de reacciones redox en el sistema del agua subterránea ya que los niveles de potencial redox también varían.

7.4.6. Correlación del arsénico con los parámetros fisicoquímicos

A nivel bibliográfico, la mayoría de las asociaciones con los parámetros fisicoquímicos se estudian en la dirección del flujo y a mayor escala. A pesar de esto, es frecuente observar heterogeneidades en la distribución de las concentraciones del As_T y estos parámetros (Sierra, 2019; Sosa, 2018). Por lo tanto, a nivel del área de estudio de este trabajo es esperable que no se observe una relación o tendencia clara de los parámetros fisicoquímicos que acompañen el comportamiento del As_T.

Tabla 7.16. Matriz de correlación de Spearman para los parámetros fisicoquímicos y arsénico total para las muestras de agosto y noviembre de 2021 y del ensayo de bombeo.

	CE	рН	Т	ORP	STD	Turbidez	Salinidad	OD	Ast
CE	1								
рН	-0,74	1							
т	0,51	-0,65	1						
ORP	-0,13	0,19	-0,14	1					
STD	0,99	-0,71	0,53	-0,11	1				
Turbidez	0,04	1,00E-03	-0,27	-0,59	0,02	1			
Salinidad	0,94	-0,83	0,65	-0,15	0,94	0,07	1		
OD	-0,65	0,61	-0,69	0,38	-0,65	-0,07	-0,7	1	
Ast	0,17	0,08	0	0,31	0,19	0,24	0,19	-0,01	1

Se realizó un análisis de correlación entre las variables hidroquímicas medidas y los niveles de As_T (n=18) con el fin de identificar los parámetros fisicoquímicos relacionados con la liberación del As al agua subterránea. La CE (r=0,17), ORP (r=0,31), STD (r=0,19), Turbidez (r=0,24) y Salinidad (r=0,19) presentan una correlación débil con el As_T mientras que el pH (r=0,08), T (r=0) y OD (r=-0,01) presentan una correlación nula con el As_T (Tabla 7.16).

Por otra parte, si observamos la tendencia del As⊤ y los parámetros físicoquímicos en función del tiempo transcurrido durante el ensayo de bombeo, se puede deducir que

no existe tendencia de ningún parámetro que acompañe el comportamiento del elemento (Figura 7.22).

Figura 7.22. Parámetros fisicoquímicos y As_T en función del tiempo transcurrido durante el ensayo de bombeo. CE = conductividad eléctrica; ORP = potencial redox; OD = oxígeno disuelto; TDS = sólidos totales disueltos; T = temperatura.

Sin embargo, los parámetros fisicoquímicos del acuífero brindan información sobre las condiciones de éste y permiten inferir los posibles procesos que pueden estar vinculados a la liberación y movilización del As al agua subterránea. El estado de oxidación del arsénico y por tanto su movilidad, están controlados fundamentalmente por las condiciones redox y pH.

Con base en lo descrito en la sección 6.4.5. se calcularon los valores de Eh a partir de los de ORP. Los resultados muestran valores positivos de Eh que varían entre 243,4 y 368,6 mV.

En la Figura 7.23. se muestra el modelo basado en el diagrama de Pourbaix del sistema As-agua, predice que el arseniato (HasO4²⁻) sería la forma termodinámicamente más estable de arsénico inorgánico en el agua subterránea, lo

que es concordante con las aguas oxidantes determinadas por los valores de oxígeno disuelto detectados.

Figura 7.23. Condiciones teóricas de especiación del As en diagrama de Pourbaix.

7.3.7. Correlación del arsénico con la hidroquímica mayoritaria y minoritaria

Se realizó un análisis de correlación de Spearman entre las variables hidroquímicas medidas y los niveles de As (n=18) con el fin de identificar los procesos hidrogeoquímicos relacionados con la liberación del As al agua subterránea (Tabla 7.17). No se consideraron los iones PO₄⁵⁻, Br⁻ y NO₂⁻ ya que no se detectaron en la totalidad de las muestras.

Las perforaciones estudiadas presentan una correlación positiva fuerte entre el As_T y Cl⁻ (r=0,64), débil entre el As_T y Ca²⁺ (r=-0,11), Mg²⁺ (r=-0,22), K⁺ (r=-0,27), HCO₃⁻ (r=0,06), SO₄²⁻ (r=-0,20), NO₃⁻ (r=0,20), Li⁺ (r=0,22) y F⁻ (r=-0,24) y nula entre el As_T y Na⁺ (r=0,01) (Tabla 7.16).

	Na⁺	Ca ²⁺	Mg ²⁺	K⁺	HCO ₃ -	Cl-	SO 4 ²⁻	NO₃ ⁻	Li⁺	F [.]	As _T
Na⁺	1										
Ca ²⁺	0,53	1									
Mg ²⁺	0,54	0,61	1								
K⁺	0,20	0,42	0,79	1							
HCO₃ ⁻	0,68	0,91	0,50	0,21	1						
Cl [.]	0,26	0,02	-0,29	-0,57	0,34	1					
SO4 ²⁻	-0,24	-0,40	0,05	0,12	-0,40	-0,49	1				
NO ₃ -	-0,35	-0,20	-0,14	-0,16	-0,26	-0,2	0,61	1			
Li+	-0,02	0,27	0,34	0,48	0,12	-0,08	0,12	0,29	1		
F [.]	-0,26	-0,35	-0,10	0,03	-0,30	-0,45	0,74	0,42	-0,16	1	
Ast	0,01	-0,11	-0,22	-0,27	0,06	0,64	-0,20	0,20	0,22	-0,24	1

Tabla 7.17. Matriz de correlación de Spearman para los iones mayoritarios, minoritarios y As⊤ para las muestras tomadas en agosto y noviembre 2021 y durante el ensayo de bombeo.

La composición química de las aguas es importante en los fenómenos de movilidad del arsénico. La presencia de aniones competitivos como el fosfato, sulfato, bicarbonato, silicato, cloruro y también la materia orgánica puede disminuir la capacidad de adsorción del arsénico sobre minerales de hierro, ya que estos también buscan una ubicación en sitios disponibles de adsorción (Ramirez y Rangel, 2017; Wilson *et al.*, 2009; Storniolo *et al.*, 2005; Kuan *et al.*, 2004).

De los aniones que pueden influir en los niveles de As en el agua subterránea debido al proceso de desorción competitiva, el HCO_3^- y As_T (r=0,06) y el $SO_4^{2^-}$ y As_T (r=-0,2), no presentan correlación, lo que descartaría la influencia de estos aniones en la desorción del As de la superficie de oxihidróxidos y óxidos de Fe por competencia iónica. En cambio, el Cl⁻ (r=0,64) presenta una fuerte correlación positiva con el As_T mostrándolo como un posible anión competidor en la desorción del metaloide.

Debido a que el área de muestreo es una zona costera, la incorporación del Cl⁻ a través del agua de lluvia es el principal proceso de aporte como se demostró en la sección 7.4.2.4. Es posible que este ion al infiltrarse en el acuífero compita por los

mismos sitios de adsorción en los óxidos de Fe que el As, aumentando la geodisponibilidad de este metaloide en el agua subterránea.

El Ca²⁺ y Mg²⁺ no presentan una correlación con el As_T (r=0,-0,11 y -0,22 respectivamente), lo que indicaría que estos cationes no están influyendo en la adsorción del As como ocurre en otros acuíferos (Kanematsu *et al.*, 2010 y 2013; García *et al.*, 2014). Cabe mencionar que la desorción del As(V) en presencia de estos cationes ocurre mayormente a pH > 7 sin embargo es poco significativo para el As(III) (Kanematsu *et al.*, 2013).

El Na⁺ y K⁺ no presentan relación con el As_T (r=0,01 y -0,27 respectivamente). Esto es concordante con los hallazgos encontrados en la zona de estudio, donde estos cationes provienen del intercambio iónico con las arcillas descartando el aporte de estos por procesos de meteorización de silicatos y/o disolución de vidrio volcánico.

La correlación del F⁻ con el As_T es negativa débil (r=-0,24) lo que permite inferir que no existiría un origen común de estos elementos como se ha observado en otras partes del mundo como por ejemplo Argentina (Sierra, 2019). Lo mismo ocurre entre el Li⁺ y el As_T (r=0,22), lo que descartaría la misma fuente geológica como ocurre en Argentina (Concha *et al.,* 2010) o asociadas a la disolución de cenizas volcánicas como en Estados Unidos (Yeko Portratz, 1980).

El NO₃⁻ y el As_T presentan una correlación positiva débil (r=0,20) por lo que en el caso del área de estudio los nitratos no ejercen una influencia en el ciclo del arsénico como lo hacen en otros acuíferos mundiales. El NO₃⁻ promueve la aparición de partículas de oxi-hidróxidos de Fe debido a la oxidación de óxidos de Fe(III) que pueden adsorber As y generar la forma más oxidada (As(V)) (Senn y Hemond, 2002). Los procesos de reducción de los nitratos (químicos o biológicos) promueven la adsorción de As en los óxidos de hierro de los sedimentos disminuyendo su contenido en el agua subterránea. (Weber *et al.,* 2001; Hoeft *et al.,* 2002; Senn y Hemond, 2002; Smedley y Kinninburg, 2002; Álvarez-Benedi *et al.,* 2003; Rhine *et al.,* 2007; Sun *et al.,* 2008).

Por otra parte, en la Figura 7.24 se observa la tendencia de los iones mayoritarios y el arsénico en función del tiempo transcurrido durante el ensayo de bombeo.

Figura 7.24. Iones mayoritarios y As⊤ en función del tiempo transcurrido durante el ensayo de bombeo.

7.4.8. Comportamiento del arsénico durante el ensayo de bombeo

Durante las primeras 24 horas de bombeo a 900 L/h, se tomaron dos muestras cuando los niveles freáticos se encontraban en 20,5 m y 21,1 m respectivamente. De acuerdo con el perfil geológico proporcionado por O.S.E (Figura 2, Anexo I) y el realizado con los detritos de perforación (Figura 6, Anexo II) se puede observar que el pozo toma agua del nivel superior de arena gruesa a gravosa del Acuífero Raigón donde los niveles de As_T varían entre 0,015 y 0,016 mg/L. Posteriormente, se tomaron dos muestras cuando el caudal era de 2700 L/h y los niveles freáticos se encontraban en 21,5 m y 23,6 m respectivamente. A esta profundidad el nivel freático se encuentra cerca de litologías finas y los niveles de As_T aumentan a 0,018 mg/L. Durante el bombeo a 5500 L/h se tomaron otras dos muestras cuando los niveles freáticos se encontraban en

0,016 y 0,017 mg/L mostrando una disminución con respecto a las muestras anteriores. A esta profundidad los niveles freáticos se encuentran cerca de sedimentos de arena gruesa a gravillosa. Finalmente, las últimas dos muestras se tomaron a un caudal de 7200 L/h cuando los niveles freáticos se encontraban en 29,5 y 29,3 m respectivamente. La concentración de As_T varía entre 0,017 y 0,018 mg/L. A esta profundidad los niveles freáticos se encuentran cerca de un nivel gravilloso. Es por tanto que se puede deducir que los niveles de As en el agua subterránea aumentan al acercarse a litologías arcillosas (litologías posiblemente reactivas) y disminuyen cuando se acercan a litologías arenosas-gravosas.

Estos cambios en los niveles de As⊤ durante el ensayo de bombeo podrían deberse a que al bombear se pudo haber generado una migración hacia abajo, hacia arriba o lateral de aguas subterráneas químicamente diferentes hacia la perforación de estudio, causando la mezcla de aguas de diferente geoquímica cerca del pozo (McArthur *et al.*, 2010; Ayotte *et al.*, 2011; Erickson *et al.*, 2019). La mezcla de agua provoca un desequilibrio químico y desencadena la liberación del As (y otros metales y/o metaloides) debido a reacciones redox (McArthur *et al.*, 2010; Wallis y Pichler, 2018).

Por otra parte, los niveles de As aumentan con el uso del pozo como se ha visto en otras partes del mundo (McArthur *et al.*, 2010), lo que indicaría que la sobreexplotación de este provocaría el aumento de las concentraciones de As en el agua subterránea debido a que cambian las condiciones geoquímicas (condiciones redox, pH, iones competidores) (Figura 7.25). Cuando el acuífero sedimentario no se perturba, el agua subterránea dentro de él fluye principalmente de forma horizontal a través de los sedimentos más permeables, como arenas y gravas que generalmente presentan niveles de arsénico bajo. Sin embargo, cuando existe un bombeo excesivo, los gradientes hidráulicos verticales provocan que se extraiga un mayor volumen de agua de los niveles más finos, que normalmente presentan concentraciones de arsénico (Erban *et al.* 2013; Smith *et al.*, 2018; Plank, 2019).

107

A su vez, se graficaron los niveles de arsénico obtenido en función de los caudales (Figura 7.26) y del tiempo transcurrido durante el ensayo de bombeo (Figura 7.27).

Figura 7.25. Ensayo de bombeo escalonado con las muestras de As⊤ correspondientes.

Figura 7.26. Niveles de arsénico en función de los diferentes caudales utilizados durante el ensayo de bombeo.

Figura 7.27. Niveles de arsénico en función del tiempo transcurrido durante el ensayo de bombeo.

8. Conclusiones y futuras líneas de investigación

Este estudio se ha abordado a partir de la integración de diferentes disciplinas y metodologías (estudio de aspectos geológicos, hidrodinámicos e hidroquímicos) con el fin de identificar si existe una variación espaciotemporal de los niveles de As y sus especies en el área de estudio y cómo estos niveles podrían verse afectados con los caudales de extracción. Los resultados obtenidos se restringen al área de estudio (5 km²) la cual no contempla en su totalidad la influencia del Acuífero Raigón en la zona. Teniendo en cuenta esto y la alta movilidad del As, es posible que exista aportes litológicos de otras capas, del basamento, de niveles no reconocidos y/o de fuentes antrópicas. A continuación, se presentan las principales conclusiones obtenidas en este trabajo.

- 1. Desde el punto de vista litológico y mineralógico:
 - 1.1.Los resultados obtenidos a partir de las descripciones de los detritos de perforación concuerdan con la bibliografía.
 - 1.2. La Formación Libertad se apoya sobre la Formación Raigón en el sector de estudio, confiriéndole un carácter de acuífero.
- 2. Desde el punto de vista hidrodinámico:
 - 2.1. Los niveles piezométricos varían entre 4,0 y 13,6 msnm en invierno y oscilan entre 3,8 y 15,9 msnm en primavera.
 - 2.2. El ensayo de bombeo escalonado y prolongado fue exitoso, pudiéndose realizar 4 escalones bien diferenciados. Se determinó que no existen pérdidas de carga en el pozo, el caudal específico varía entre 0,8 y 1 m³/h/m, los radios de influencia oscilan entre 9 y 11 m y la transmisividad se encuentra entre 15 y 35 m²/día.
- 3. Desde el punto de vista hidroquímico:
 - 3.1. Las aguas subterráneas del área de estudio son bicarbonatadas sódicas y bicarbonatadas cálcicas y/o magnésicas, duras, neutras a levemente alcalinas y oxidantes, las cuales presentan anomalías en los niveles de As.

- 3.2. De los parámetros fisicoquímicos del agua subterránea del área de estudio medidos *in situ* y en el laboratorio, el pH, la conductividad eléctrica, los sólidos totales disueltos y la dureza se encuentran dentro de los parámetros establecidos por la normativa uruguaya para agua potable (UNIT, 2008) a excepción de la turbidez que en invierno el 60% y en primavera el 20% de las perforaciones superan ampliamente los valores máximos permitidos.
- 3.3. Los niveles de sodio, potasio, sulfato y fluoruro no superan los valores máximos permitidos por la normativa nacional para agua potable (UNIT, 2008), mientras que los nitratos superan el valor máximo permitido en el 60% de las perforaciones tanto en invierno como primavera y los nitritos presentan valores superiores en el 20% de las perforaciones en invierno.
- 3.4. El As⊤ presenta un rango de 0,012 a 0,020 mg/L en las perforaciones muestreadas del área de estudio superando el límite guía por la OMS (0,01 mg/L) el cual Uruguay pretende adoptar en el 2023.
- 3.5. Las relaciones iónicas y correlaciones efectuadas entre los elementos mayoritarios sugieren que la química del agua subterránea está controlada principalmente por procesos de intercambio catiónico y disolución de carbonatos además del aporte pluvial de iones.
- 3.6. La principal especie inorgánica del arsénico encontrada en las aguas subterráneas del área de estudio corresponde a la forma oxidada arseniato (As(V)), que si bien es menos tóxica que el arsenito (As(III)), este puede a nivel del cuerpo humano, sustituir al fosfato y puede inhibir el proceso metabólico fosforilación oxidativa y/o entrar a las células a través del sistema de transporte del fosfato (Rangel *et al.*, 2015).
- 3.7. Debido a las condiciones oxidantes dadas por los valores de Eh y el pH neutro o con tendencia a la alcalinidad, la forma teórica predominante del As es el HAsO4²⁻.
- 3.8. Los niveles de As⊤ varían entre 0,012 y 0,020 mg/L durante el invierno y entre 0,015 y 0,019 mg/L en la primavera, mostrando que existe una variación espaciotemporal de los niveles de As disminuyendo las concentraciones en el mes más cálido y lluvioso.

- 3.9. Los valores elevados de As en la zona de estudio concuerdan con zonas propuestas en los modelos de distribución del As tanto para Uruguay (Wu *et al.*, 2021) como a nivel mundial (Amini *et al.*, 2008).
- 3.10. El principal proceso de liberación del As a la fase acuosa se podría considerar que es la desorción competitiva donde el Cl⁻ se comportaría como un ion competidor sobre la superficie de los óxidos cristalinos de Fe.
- 3.11. Durante el ensayo de bombeo se constató que existe una aparente variación temporal rápida de los niveles de As.
- 3.12. Los cambios en los niveles de As durante el ensayo podrían deberse a que al bombear se logra acercar aguas con otro equilibrio químico. A su vez, al bombear con un mismo caudal, pero por un período de tiempo más prolongado se observó que los niveles aumentaban levemente (<10%), por lo que la sobreexplotación podría aumentar las concentraciones de As en el agua subterránea, aunque se debe continuar estudiando.
- 3.13. Los caudales recomendados en la perforación de estudio con los menores niveles de As son los de 900 L/h y 5500 L/h, que aunque superan el valor guía sugerido por la OMS (OMS, 2018) mostraron los niveles menores. Se recomienda seguir con el procedimiento de mezcla de agua o implementar técnicas de remoción del As como ósmosis inversa, alúmina activada, intercambio iónico, arcillas activadas, coagulación con cloruro férrico, entre otros.

En función de los resultados obtenidos en este trabajo se proponen las siguientes líneas de investigación:

- Caracterizar nuevamente de forma detallada la mineralogía de los detritos de perforación tanto por fluorescencia de rayos X, difractometría de rayos X y/o por microscopio electrónico de barrido (SEM) con el fin de identificar las fases portadoras de arsénico y los niveles donde se encuentran.
- Realizar análisis químicos sistemáticos del agua subterránea durante un período de tiempo prolongado en las perforaciones de estudio, con el fin de obtener un panorama más claro sobre aquellos factores que favorecen la movilidad y

transporte del As en diferentes épocas del año, incluyendo análisis de hierro (posible disolución reductiva) y materia orgánica (posible ion competidor).

- 3. Efectuar un mayor número de ensayos de bombeo en el acuífero para determinar con mayor precisión la influencia del uso del pozo sobre los niveles de As y los niveles donde se alcanzan aguas con otro equilibrio que favorezcan alguno de los principales procesos involucrados en la liberación del As al agua subterránea.
- Ampliar el área de estudio y el número de muestras para los estudios hidrogeoquímicos de manera de confirmar o descartar las hipótesis planteadas y resultados obtenidos.

9. Referencias bibliográficas

- Ali, W., Rasool, A., Junadi, M. y Zhang, H. (2019) "A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario", *Environmental Geochemistry and Health*, 41, pp. 737–760.
- Álvarez-Benedí, J., Bolado Rodríguez, S., Cancillo Carro, I., Calvo Revuelta, C. (2003) "Dinámica de adsorción- desorción de arsénico (V) en suelos de cultivo en Castilla y León", *Estudios de la Zona no Saturada del Suelo*, VI, pp. 331-338.
- Amini, M., Abbaspour, K.C., Berg, M., Winkel, L., Hug, S. J., Hoehn, E., Yang, H. y Johnson, C.A. (2008) "Statistical modeling of global geogenic arsenic contamination in groundwater", *Environmental Science and Technology*, 42 (10), pp. 3669-3675.
- Andreis, R.R. Mazzoni, M.M. (1967) "Sedimentología de las Formaciones Kiyú y San José, departamento de San José, R.O. del Uruguay", *Revista Museo La Plata*, 6(41), pp. 41-96.
- APHA (2017) Estándar Methods for the Examination of Water and Wastewater. 23th. Edition. Washington: American Public Health Association
- Appelo, C. and Postma, D. (2005) *Geochemistry, Groundwater and Pollution*. Rotterdam: Balkema
- Asante, J., Dotson, S., Hart, E., Kreamer, D.K. (2018) "Water circulation in kart systems: comparing physicochemical and environmental isotopic data interpretation", *Environmental Earth Sciences*, 77(421).
- ATSDR. (2007a) 2007 CERCLA Priority List of Hazardous Substances. Atlanta:Agency for Toxic Substances and Disease Registry, Department of Health andHumanServices.https://www.atsdr.cdc.gov/spl/previous/07list.html [Consultado 12-01-2021]

- ATSDR. (2007b). Toxicological Profile for Arsenic. Atlanta: Agency for Toxic Substances Control and Disease Registry, Department of Health and Human Services, Public Health Service. Disponible en: https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf [Consultado 23-11-2020]
- Ayotte, J.D., Szabo, Z.; Focazio, M.J.; Eberts, S.M. (2011) "Effects of human.induced alteration of groundwater flow on concetrations of naturally-occurring trace elements at water-suply wells", *Applied Geochemistry*, 26, pp. 747-762.
- Bessouat, C., De Souza, S., Oleaga, A. Pacheco, F. (2000) "Acuífero Raigón Parte
 1: Caracterización geohidrológica", XI Congresso Brasileiro de Aguas
 Subterráneas.
 http://aguassubterraneas.abas.org/subterraneas/art
 icle/view/23496
 [Consultado 07-02-2021]
- Bolaños-Alfaro, J.D., Cordero-Castro, G., Segura-Araya, G. (2017) "Determinación de nitritos, nitratos, sulfatos y fosfatos en agua potable como indicadores de contaminación ocasionada por el hombre, en dos cantones de Alajuela (Costa Rica)", *Revista Tecnología en Marcha*, 30(4), pp. 15-27.
- Boroukhovitch, M., Mesa, L.F. (1972) Primera lista de insecticidas, acaricidas, nematicidas, molusquicidas, raticidas y sustancias auxiliares de empleo en sanidad vegetal registrados en el Uruguay. Montevideo: Centro de Investigación en Sanidad Vegetal.
- Bossi, J. y Navarro, R. (1988) *Geología del Uruguay*. Montevideo: Universidad de la República
- Bossi, J., Gaucher, C. (2014) *Geología del Uruguay. Tomo 1 predevónico.* Montevideo: Universidad de la República
- Bowell, R.J., Alpres, C.N., Jamieson, H.E., Nordstrom, D.K. y Majzlan, J. (2014) "The environmental geochemistry of arsenic an overview -", *Reviews in Mineralogy & Geochemistry*, 79, pp. 1-16.

- Bundschuh, J., Armienta, M.A, Morales-Simfors, N., Ayaz Alam, M., López, D.L, Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Parra, L.M, Altamirano Espinoza, M., Guimarães Guilherme, L.R., Sosa, N.N, Khan Niazi. N., Tomaszewska, B., Lizama Allende, K., Bieger. K., Alonso, D.L., Brandão, P.F.B, Bhattacharya, P., Litter, M.I. y Ahmad, A. (2020) "Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020", *Critical Reviews in Environmental Science and Technology*, DOI:10.1080/10643389.2020.1770527
- Bundschuh, J., Carrera, A.P., Litter, M. (2008) *Distribución del arsénico en las regiones Ibérica e Iberoamericana.* Buenos Aires: CYTED IBEROARSEN
- Byeon, E., Kang, H.M., Yoo, C., Lee., J.S. (2021) "Toxicity mechanisms of arsenic compounds in aquatic organisms", *Aquatic Toxicology*, 231, 105901.
- Carosi, J.H. y Goñi, J.C. (1958) "Geología uruguaya", *Boletín del Instituto Geológico de Uruguay*, 37, pp. 1-73.
- Castiglioni, E., Gaucher, C., Perillo, G.M.E., Sial, A.N. (2022) "Marine deposits of the Chuy Formation (Late Pleistocene) and isostatic readjustments in the area of Laguna de Rocha (Uruguay)", *Agrociencia Uruguay*, 26 (NE1), 799.
- Chen, Q.Y. y Costa, M. (2021) "Arsenic: a global environmental challenge", *Anual Review of Pharmacology and Toxicology*, 61, pp. 47-63.
- Collazo, P., Pamoukaghlián, K., Buhl, V., Pizorno, P. y Mañay, N. (2020) "Arsénico en agua subterránea de Uruguay y riesgo a la salud asociado: resultados preliminares", Revista ALHSUD, pp. 45-56.
- Concha, G., Broberg, K., Grandér, M., Cardozo, A., Palm, B., Vahter, M. (2010) "Highlevel exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of northern Argentina", *Environ. Sci. Technol*, 44(17), pp. 6875-80.

Custodio, E. y Llamas, R. (2001) Hidrología subterránea. Barcelona: Omega

- Custodio, E., Llamas, R. (1983) *Hidrología Subterránea Tomo 1*. Barcelona: Hidrología Subterránea
- Custorio, E., y Herrera, C. (2000) "Utilización de la relación Cl/Br como trazador hidrogeoquímico en hidrología subterránea", *Boletín geológico minero*, 111(4), pp. 49-58.
- Da Silva, J.S. (1988) *Micropaleontología de las barrancas del departamento de San José Uruguay*. Informe interno. Montevideo: DINAMIGE
- De los Santos, J. y Hernández, G. (2013) "Modelación numérica de un acuífero mediante dos esquemas representativos: Raigón, Uruguay", *Tecnología y Ciencias del Agua*, IV (4), pp. 151-158.
- De Santa Ana, H., Veroslavsky, G., Martinez, S., Perea, S., Ubilla, M. (1988) *Estudio* estratigráfico preliminar de la Secuencia Mio-Pliocena del suroeste del Uruguay. Salto: Actas del 6º Panel de Geología del Litoral y la Reunión de Geología del Uruguay, pp. 62-67.
- DINAMIGE (2009) Estimación de la extracción de agua subterránea. Principales acuíferos del Uruguay. Montevideo: DINAMIGE
- Ellenhorn, M.J. (1997) *Ellenhorns' Medical Toxicology: Diagnosis and Treatment of Human Poisoning*. Baltimore: Williams & Wilkins
- EPA (2001) "Drinking Water Standard for Arsenic Fact Sheet", U.S. Environmental Protection Agency. Disponible en: [https://nepis.epa.gov/Exe/ZyPdf.cgi?Dockey=20001XXC.txt] [Consultado 27-06-2022]
- Erban, L., Gorelick, S.M., Zebker, H.A., Fendorf, S. (2013) "Realese of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence", *Environmental Sciences*, 110(43), pp. 13751-13756.
- Erickson, M.L., Malenda, H.F., Berquist, E.C., Ayotte, J.D. (2019) "Arsenic concentrations after drinking water well installation: Time-varying effects on arsenic mobilization", *Science of the Total Environment*, 679, pp. 681-691.

- EU (2020) "Quality of water intended for human consumption (recast)", *European Union*, pp. 1-62. Disponible en: [http://data.europa.eu/eli/dir/2020/2184/oj] [Consultado 27-06-2022]
- Falchi, L., Pizzorno, P., Iaquinta, F. y Cousillas, A. (2018) "Relevamiento de la concentración de arsénico total en agua proveniente de varias fuentes en una zona arrocera del Uruguay", revista del laboratorio tecnológico del Uruguay. Disponible en: https://ojs.latu.org.uy/index.php/INNOTEC/article/view/480/966 [Consultado 13-01-2021]
- Figueiras, A., y Broggi, J. (1976) "Nuevas especies de gastrópodos marinos de la Formación Camacho (Enterriana), (Mioceno Superior del Uruguay)", Com. Paleont. Mus. Hist. Nat, 1(6), pp. 135-150.
- Foster A. (2003) "Spectroscopic investigations of arsenic species in solid phases". En: Welch A. y Stollenwerk K. Eds. Arsenic in Ground Water, Geochemistry and Occurrence. Massachusetts: Kluwer Academic.
- Fowles, J., Weinstein, P. y Tseng, C-H. (2013) "Environmental medicine". En: Selinus,O. *et al.* Eds. *Essentials of medical geology*. Springer: Dordrecht.
- Francis, J.C. y Mones, A. (1995) "Contribución a la geología y paleontología de las barrancas de San Gregorio, Departamento de San José, República Oriental del Uruguay", *Kragleviana*, 1(2), pp. 55-85.
- Freguelli, J. (1930) Apuntes de geología uruguaya. Montevideo: Inst. Geol. Perf.
- Gamazo, P., Victoria, M., Schijven, J.F., Alvareda, E., Tort, L.F.L., Ramos, J., Burutaran, L., Olivera, M., Lizasoain, A., Sapriza, G., Castells, M., Colina, R. (2018) "Evaluation of bacterial contamination as an indicator or viral contamination in a sedimentary aquifer in Uruguay", *Food and Environmental Virology*, 10, 305-315.
- Garat, S. y Pérez, A. (2018) Puntos de vista de O.S.E. respecto al problema del Arsénico en Agua Subterránea. I Simposio de Arsénico en Agua Subterránea en Uruguay. Disponible en:

http://icgeologicas.fcien.edu.uy/2018/10/10/proyecto-asuru-arsenico-uruguay/ [Consultado 23-01-2021]

- García, M.G., Borgnino, L., Bia, G., Depetris, P.J.J. (2014) "Mechanisms of arsenic and fluoride release from Chacopampean sediments (Argentina)", *International Journal of Environment and Health*, 7(1), pp. 41-57.
- Gastmans, D., Veroslavsky, G., Chang, H.K., Marmisolle, J. y Oleaga, A. (2010) "Influence of hydrostratigraphic framework in arsenic occurrence in groundwater along the Uruguay River thermal corridor (Argentina-Brazil-Uruguay)", *Geociencias*, 29, pp. 105–120.
- Gerdelidani, A.F., Towfighi, H., Shahbazi, K., Lamb, D.T., Choppala, G., Abbasi, S., Rahman, M.M. (2021) "Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils", *Journal of Hazardous Materials*, 403, 123931.
- Gibbs, R.J. (1970) "Mechanisms Controlling World Water Chemistry", *Science*, 170, pp. 1088-1090.
- Goso, C. (2015a) "Mapa geomorfológico del tramo 7: Montevideo Punta Jesús María (Montevideo San José) a escala 1:50.000" En: Alvez, C. y Goso, C. Eds.
 Vulnerabilidad a la erosión y sedimentación dunar en la costa platense y atlántica de Uruguay. Montevideo: MVOTMA Facultad de Ciencias
- Goso, C. (2015b) "Mapa geológico del tramo 7: Montevideo Punta Jesús María (Montevideo San José) a escala 1:50.000" En: Alvez, C. y Goso, C. Eds.
 Vulnerabilidad a la erosión y sedimentación dunar en la costa platense y atlántica de Uruguay. Montevideo: MVOTMA Facultad de Ciencias
- Goso, C., Fernández-Turiel, J.L., Guérèquiz, R., García Vallés, M., Gimeno, D.,
 Mañay, N. y Manganelli, A. (2008) "Arsénico en algunos acuiferos del Uruguay", *Nota Breve. Revista SUG*, 15, pp. 98–99.

- Goso, C., Manganelli, A., Fernández-Turiel, J.L., García Vallés, M., Gimeno, D. y Perez, C. (2006) "Contaminación por arsénico en aguas del acuífero Mercedes (Uruguay)", *Nota Breve, Revista SUG*, 13, pp. 65–66.
- Goso, H. (1965) El Cenozoico en el Uruguay. Montevideo: Ed. Mimeogr.
- Goso, H. (1972) "El Cuaternario uruguayo. Proyecto Estudio Levantamiento de Suelos", Ed. Mimeogr., pp. 12.
- Goso, H. y Bossi, J. (1996) "Cenozoico" En: Bossi, J. Ed. *Geología del Uruguay*. Montevideo: Departamento de Publicaciones de la Universidad de la República
- Guo, H., Wen, D., Liu, Z., Jia, Y., Guo, Q. (2014) "A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes", *Applied Geochemistry*, 41, pp. 196-217.
- Gutiérrez-Ginés, M., y Ranz, I. (2010) "Utilización de un equipo portátil de fluorescencia de rayos X para el estudio de metales pesados en suelos: puesta a punto y aplicación a vertederos" En: Bartolomé, C., y Hernández, A.J. Eds. *Estudio multidisciplinar de vertederos sellados: caracterización y pautas de recuperación.* Alcalá: Universidad de Alcalá
- Heinzen, W., Carrión, R., Massa, E., Pena, S. y Stapff, M. (2003) *Mapa Hidrogeológico a escala 1:1.000.000*. Montevideo: DINAMIGE
- Henke, K.R. (2009) "Arsenic in natural environments". En: Henke, K.R. Ed. Arsenic.Environmental chemistry, health threats and waste treatment. New Jersey:John Wiley & Sons, Inc.
- Henke, K.R. y Hutchison, A. (2009) "Arsenic chemistry". En: Henke, K.R. Ed. Arsenic.Environmental chemistry, health threats and waste treatment. New Jersey:John Wiley & Sons, Inc.
- Herbst, R. (1980) "Consideraciones estratigráficas y litológicas sobre la Formación Fray Bentos (Oligoceno Inferior-Medio) de Argentina y Uruguay", *Rev. Asoc. Geol. Arg,* XXXV (3), pp. 308-317.

- Hoeft. S.E., Lucas. F., Hollibaugh. J.T., Oremland. R.S. (2002) "Characterization of microbial arsenate reduction in anoxic bottom waters of Mono Lake. California", *Geomicrobiology Journal*, 19, pp. 23-40.
- Hughes, M.F., Beck, B.D., Chen, Y., Lewis, A.S. y Thomas, D.J. (2011) "Arsenic exposure and toxicology: a historical perspective", *Toxicological Science*, 123 (2), pp. 305-332.
- IARC (2012) Arsenic, metals, fibres, and dusts. Volume 100 C. A review of human carcinogens. Lyon: International Agency for Research on Cancer.
- Villanueva, M. y Iglesias, A. (1984) Pozos y acuíferos. Técnicas de evaluación mediante ensayos de Bombeo. Madrid: IGME
- IMA (2021) List of minerals. Disponible en: https://www.imamineralogy.org/Minlist.htm [Consultado 12-01-2021]
- InfoStat (2008). InfoStat, versión 2008. Manual del Usuario. Córdoba: Brujas Argentina
- INIA (2019) Gestión Ambiental del Sistema Acuífero Raigón. Montevideo: INIA
- INUMET (s.f.) *Características climáticas.* Disponible en: https://www.inumet.gub.uy/clima/estadisticas-climatologicas/caracteristicasclimaticas [Consultado 17-05-2022]
- Japan (2004) Drinking Water Quality Standards. Tokyo: Japan
- Jones, G. (1956) "Memoria explicativa y Mapa Geológico de la Región Oriental del departamento de Canelones", *Instituto Geológico del Uruguay*, 34, pp. 193.
- Kanematsu M., Young T. M., Fukushi K., Green P. G. and Darby J. L. (2010) "Extended triple layer modeling of arsenate and phosphate adsorption on a goethite-based granular porous adsorbent", *Environ. Sci. Technol*, 44, pp. 3388–3394.
- Kanematsu, M., Young, T. M., Fukushi, K., Green, P.G., Darby, J.L. (2013). "Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of

major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence", *Geochimica et Cosmochimica Acta*, 106, pp. 404–428.

Kerr, P. (1965). Mineralogía Óptica. Madrid: Ediciones del Castillo S.A

- Köppen, W. (1930) "Die Klimagebiete nach Köppens Klassifikation" En: Knoch, K. Ed. *Klimakunde von Sudamerika vol 2. Handbucj der Klimatologie*. Berlin: Köppen,
 W, Greiger R.
- Kraglievich, L. (1928) "Apuntes para la geología y paleontología de la República Oriental del Uruguay", *Rev. Soc. Amigos de la Arqueología,* II, pp. 5-61.
- Kuan S. N., Ujang Z., Le-Clech P. (2004) "Arsenic removal technologies for drinking water treatment", *Environmental Science Bio/Technology*, 3, pp. 43-53.
- Kumar, P., Kumar Mahajan, A., Kumar, A (2019) "Groundwater geochemical facie: implication of rock-water interaction at the Chamba city (HP), northwest Himalaya, India", *Environmental Science and Pollution Research*, 27, pp 9012-9026.
- La Haye, J. (1980) Géologie de Cénozoique du Bassin de Santa Lucía, Uruguay. Cartographie et Sédimentologie. Mémoire de matrise. Montreal: Université du Québec é Montréal
- Lambert, R. (1939) "Observaciones geológicas en la región sudoeste del Uruguay. (Departamento de Soriano y Colonia)", *Rev. De Ing,* 12, pp. 377-385.
- Lambert, R. (1940) *Memoria Explicativa de una Carta Geológica de Reconocimiento del departamento de Río Negro*. Montevideo: Instituto Geológico del Uruguay
- Lambert, R. (1941) Estado actual de nuestros conocimientos sobre la geología de la República Oriental del Uruguay. Montevideo: Inst. Geol. Uruguay
- Levi, P. (2000) "The periodic table", Penguin Classics.
- M.T.O.P., M.V.O.T.M.A., M.I.E.M., M.G.A.P, O.S.E, Facultad de Ciencias (2005). Informe del proyecto "Gestión Sostenible del Acuífero Raigón – Uruguay".

Proyecto regional de cooperación técnica RLA/8/031- Manejo integrado y sostenible de aguas subterráneas en América Latina, financiado por OIEA. Disponible en: https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/076/41076192.p df?r=1&r=1 [Consultado 07-02-2021]

- Machado, I., Falchi, L., Bühl, V. y Mañay, N. (2020) "Arsenic levels in groundwater and its correlation with relevant inorganic parameters in Uruguay: A medical geology perspective", *Science of the Total Environment*, 721, pp. 1.7.
- Mahmoudi, N., Nakhaei, M., Porhemmat, J. (2017) "Assessment of hydrogeochemistry and contamination of Varamin deep aquifer, Tehran Province, Iran", *Enviorn Earth Sci,* pp. 76(370).
- Mañay, N., Goso Aguilar, C., Pistón, M., Fernández-Turiel, J.L., García Vallés, M., Rejas, M. y Guérèquiz, R. (2013) "Groundwater arsenic content in Raigon aquifer system (San Jose, Uruguay)", *Revista SUG*, 18, pp. 20–38.
- Mañay, N., Pistón, M., Cáceres, M., Pizzorno, P. y Bühl, V. (2019) "An overview of environmental arsenic issues and exposure risks in Uruguay", *Science of the Total Environment*, 686, pp. 590–598.
- Mañay, N., Pistón, M., Goso, C. (2014) "Arsenic environmental and health issues in Uruguay: a multidisciplinary approach". In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R. Eds. One century of the discovery of arsenicosis in Latin America (1914–2014). London: CRC Press
- Manganelli, A., Goso Aguilar, C., Guérèquiz, R., Fernández Turiel, J. L., García Vallés,
 M., Gimeno, D. y Perez, C. (2007) "Groundwater arsenic distribution in Southwestern Uruguay", *Environmental Geology*, 53 (4), pp. 827–834.
- MAP (1976) Carta de reconocimiento de suelos del Uruguay a escala 1:1.000.000. Montevideo: MAP
- MAP (1990) Carta de suelos y aptitud general de uso del departamento de San José zona sur a escala 1:100.000. Montevideo: MAP

- Martínez, S. (1994) *Bioestratigrafía (invertebrados) de la Formación Camacho (Mioceno, Uruguay)*. Tesis de doctorado. Buenos Aires: Facultad de Ciencias Exactas y Naturales, UBA
- Martínez, S. y Ubilla, M. (2004) "El Cuaternario de Uruguay". En: Veroslavsky, G., Ubilla, M. y Martínez, S. Eds. Cuencas sedimentarias de Uruguay – Geología, paleontología y recursos naturales – Cenozoico. Montevideo: DIRAC
- Mayorga Moreno, M.P. (2013) Arsénico en aguas subterráneas: su transferencia al suelo y a la planta. Tesis de doctorado. Universidad de Valladolid
- McArthur, J.M.; Banerjee, D.M.; Sengupta, S.; Ravenscroft, P.; Klump, S.; Sarkar, A.; Disch, B.; Kipfer, R. (2010) "Migration of As, and 3H/3He ages, in groundwater form West Bengal: implications for monitoring", *Water Res*, 44, pp. 4171-4185.
- MIEM (2013) Monitoreo Acuífero Raigón, Departamento de San José Uruguay. Montevideo: Dirección Nacional de Minería y Geología
- MIEM (2016) Monitoreo Acuífero Raigón, Departamento de San José Uruguay. Montevideo: Dirección Nacional de Minería y Geología
- MIEM (2018) Monitoreo Acuífero Raigón, Departamento de San José Uruguay. Montevideo: Dirección Nacional de Minería y Geología
- Mones, A. (1979) "Terciario del Uruguay. Síntesis geopaleontológica", *Rev. Fac. Hum. Cienc,* 1, pp. 27.
- Montaño, J., Gagliardi, S. y Montaño, M. (2006) "Recursos hídricos subterráneos del Uruguay", *Boletín Geológico Minero*, 117(1), pp. 201–222.
- Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A.T., Tapia, J., Erlingtton Apaza Choquehuayta, F., Armienta, M.A., Ormachea, M., Joseph, E. y López, D.L. (2020) "Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences", *Science of the Total Environment*, 716, pp. 135564.

- Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., de Paula, E.C., Amaral, M.C.S. (2021)
 "Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes", *Process Safety and Environmental Protection*, 148, pp. 604-623.
- Neuberger, C.S y Helz, G.R. (2005) "Arsenic(III) carbonate complexing", *Applied Geochemistry*, 20, pp. 1218–1225.
- Nordstrom, D.K., Wilde, F.D. (2005) "Reduction- 6.5 Oxidation Potential (Electrode Method)". En: U.S. Geological Survey. Ed. Book 9. Handbooks for Water-Resources Investigations. Reston: U.S. Geological Survey.
- Nriagu, J.O., Bhattacharya, P., Mukherjee, A.B., Bundschuh, J., Zevenhoven, R., Leoppert, R.H. (2007) "Arsenic in soil and groundwater: an overview" In: Bhattacharya, P., Mukherjee, A.B., Bundschuh, J., Zevenhoven, R., Leoppert, R.H. Eds. Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation. Amsterdam: Elsevier Press
- OMS (2010) Diez sustancias químicas que constituyen una preocupación para la salud pública. Disponible en: https://www.who.int/ipcs/assessment/public_health/chemicals_phc/es/ [Consultado 13-01-2021]
- OMS (2018) Arsénico. Disponible en: https://www.who.int/es/news-room/factsheets/detail/arsenic [Consultado 13-01-2021]
- ONU (2016) Agenda para el año 2030 sobre el Desarrollo Sostenible. Objetivos para el Desarrollo Sostenible. Disponible en: https://www.un.org/sustainabledevelopment/es/water-and-sanitation/ [Consultado 05-12-2020]
- Ortiz, A y Bossi, J. (2011) Geología del Holoceno. Montevideo: Departamento de Publicaciones, Unidad de Comunicación de la Universidad de la República (UCUR)

- Oyhantçabal, P., Siegesmund, S., Wemmer, K. (2011) "The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature", *International Journal of Earth Sciences*, 100(2-3), pp. 201-220
- Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J.C., Arellano-Mendoza, M.G., Tamay-Cach, F., Valenzuela-Limón, O.L., Hernández-Zavala, A. (2020)
 "Arsenic exposure: A public health problem leading to several cancers", *Regulatory Toxicology and Pharmacology*, 110, 104539.
- Pamoukaghlián, K., Collazo, P., Alvareda., E., Mañay, N (2021) "Report about advances and challenges during the first steps of the proyect: arsenic in Uruguayan groundwater and associated health risk", 47th IAH Congress. San Pablo, 22-26 agosto 2021.
- PAN (2021) Lista de plaguicidas altamente peligrosos de PAN internacional. Hamburgo: PAN
- Panario, D. (1988) *Geomorfología del Uruguay*. Montevideo: Departamento Publicaciones - Facultad de Humanidades y Ciencias, Universidad de la República
- Panario, D. y Gutiérrez, O. (1999) "The continental uruguayan Cenozoic: an overview", *Quaternary International*, 62, pp. 75-84.
- Perea, D. y Martínez, S. (2004) "Estratigrafía del Mioceno-Pleistoceno en el litoral suroeste de Uruguay" En: Veroslavsky, G., Ubilla, M. y Martínez, S. Eds. *Cuencas sedimentarias de Uruguay – Geología, paleontología y recursos naturales – Cenozoico.* Montevideo: DIRAC
- Pérez-Peirano, M. (1991) Sedimentología y estratigrafía de las Formaciones Raigón y Libertad (Plio-Pleistoceno) del Sudoeste de San José – Cuenca del Santa Lucía – Uruguay. Tesis de maestría. Montreal: Université du Québec a Montréal
- Piper, A. M. (1944) "A graphic procedure in the geochemical interpretation of wateranalyses". *Eos, Transactions American Geophysical Union*, 25(6), pp. 914-928.

- Plank, E (2019) The dynamics and speciation of arsenic in drinking water wells in Eastern Wisconsin. Theses and Dissertations. Winsconsin: University of Winsconsin Milwaukee
- Podgorski, J. y Berg, M. (2020) "Global threat of arsenic in groundwater", *Science*, 368, pp. 845-850.
- Polya, D. A. y Middleton, D. R. (2017) "Arsenic in drinking water: sources y human exposure". En: Bhattacharya, P., Polya, D. y Jovanovic, D. Eds. *Best Practice Guide on the Control of Arsenic in Drinking Water*. London: IWA Publishing.
- Polya, D.A. y Lawson, M. (2016) "Geogenic and anthropogenic arsenic hazard in groundwaters and soils: distribution, nature, origin, and human exposure routes". En: States, J.C. Ed. Arsenic: Exposure Sources, Health Risks, and Mechanisms of Toxicity. New Jersey: John Wiley & Sons, Inc.
- Postiglione, M., Batista, L., Costa, D., Chao, R., Gorfain, J., Ledesma, J., Pérez, F., Sordo, A., Vignale, D., Carrión, R., Masa, E., Pena, S., Stapff, M., Bico, J., Caristo, R., Decoud, P., Roma, M.T., Guerequiz, R., Montaño, J., Peel, E. (2009) "Gestión sostenible del Acuífero Raigón (Uruguay)" IAEA. Ed. *Estudios de Hidrología Isotópica en América Latina 2006*. Vienna: OIEA
- Preciozzi, F., Spoturno, J., Heinzen, W. y Rossi, P (1985) *Memoria explicativa de la carta geológica del Uruguay a escala 1:500.000.* Montevideo: DINAMIGE
- Rae, I. D. (2020) "Arsenic: its chemistry, its occurrence in the earth and its release into industry and the environment", *ChemTexts*, 6(4), pp. 1-11.
- Ramirez, K., Rangel, J.R. (2017) "Evaluación de minerales de hierro naturales como posibles colectores de arsénico y fluoruro", *Revista Mexicana de Ingeniería Química*, 16(2), pp. 605-616.
- Rangel, E.A., Montañez, L.E., Luévanos, M.P., Balagurusamy, N. (2015) "Impacto del arsénico en el ambiente y su transformación por microorganismos", *Terra Latinoamericana*, 33(2).

- Rhine, E.D., Ni Chadhain, S.M., Zylstra, G.J., Young, L.Y. (2007) "The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers", *Biochem Biophys Res Commun.* 354(3), pp. 662–667.
- RSA-CONICET (2018) Arsénico en agua Informe final. Grupo ad hoc: arsénico en agua. Buenos Aires: Red de Seguridad Alimentaria - Consejo Nacional de Investigaciones Científicas y Técnicas.
- Rudnick, R.L. y Gao, S. (2014) "Composition of the Continental Crust". En: Holland,H.D. y Turekian, K.K. Eds. *Treatise on Geochemistry*. EE. UU: Elsevier Science.
- Salgado, S. (2013) Estudios de especiación de arsénico y acumulación de metales en muestras de interés medioambiental. Tesis doctoral. Madrid: Universidad Politécnica de Madrid
- Senn, D., Hemond. (2002) "Nitrate controls on iron and arsenic in an urban lake", *Science*, 296, pp. 2373-2376.
- Shaji, E., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, V. y Divya, B.V. (2021)"Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula", *Geoscience frontiers*, 12(3), pp. 1-18.
- Shapiro, S.S. y Wilk, M.B. (1965) "An analysis of variance test for normality: complete samples", *Biometrika*, 52, pp. 591-611.
- Sierra, L. (2019) Nuevas metodologías en la exploración del agua subterránea en base a la investigación del origen y la movilidad del arsénico en el acuífero pampeano. Tesis de doctorado. Córdoba: Universidad Nacional de Córdoba
- Smedley, P. L., Nicolli, H. B., Macdonald, D. M., Barros, A. J. y Tullio, J. O. (2002) "Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina". *Applied geochemistry*, 17, pp. 259-284.

- Smedley, P.L. y Kinniburgh, D.G. (2002) "A review of the source, behaviour and distribution of arsenic in natural waters", *Applied Geochemistry*, 17 (5), pp. 517–568.
- Smedley, P.L. y Kinniburgh, D.G. (2013). "Arsenic in groundwater and the environment". En: Selinus, O. *et al.* Eds. *Essentials of medical geology*. Springer: Dordrecht.
- Smedley, P.L.P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M., Alonso, M.S.M.S. (2005) "Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina", *Appl. Geochemistry*, 20, pp. 989-1016.
- Smith, R., Knight, R., Fendorf, S. (2018) "Overpumping leads to California groundwater arsenic threat", *Nature Communications*, 9, pp. 1-6.
- Sosa, N. (2018) Análisis del contenido de arsénico en los depósitos terciarios y cuaternarios de la Llanura Pampeana: factores litogénicos que determinan su concentración en las aguas subterráneas. Tesis de doctorado. Buenos Aires: Universidad Nacional de la Plata
- Spearman, C. (1904) "The proof and measurement of association between two things", *American Journal of Psychology*, 15(1), pp. 72-101.
- Spoturno J. (1995) "Batimetría de la Formación Fray Bentos e Isópacas de las Formaciones Camacho Raigón y Libertad en la región Sur del Departamento de San José" En: PRENADER. INYSA. Eds. *Proyecto Sistema Acuífero Raigón.* Montevideo: PRENADER – INYPSA
- Spoturno, J., Oyhantçabal, P., Aubet, N., Cazaux, S. y Morales, E. (2004) *Memoria explicativa del mapa geológico y de recursos minerales del departamento de San José a escala 1/100.000.* Montevideo: MIEM
- Sprechmann, P. (1978) "The paleoecology and paleogeography of the Uruguayan costal area during the Neogene and Quaternary", *Zittelania*, 4, pp. 3-72.

- Sprechmann, P. (1980) Paleoecología, paleogeografía y estratigrafía de la región costera del Uruguay, durante el Neogeno y Cuaternario. Buenos Aires: Actas II Congr. Arg. Paleont. Bioestr., y I Congr. Latinoamericano Paleont. Asoc. Paleont. Arg. Pp. 237-256.
- Sprechmann, P., Martinez, S., Gaucher, C. (1994) "Paleoecología y sedimentología de la Formación Camacho en el Departamento de Colonia (Mioceno Medio- Superior, Uruguay)", *Paleociencias del Uruguay*, 2, pp. 21-24.
- Storniolo A, Martín R, Thir M, Cortes J, Ramirez A, Mellano F, Bundschuh J, Bhattacharya P (2005) "Disminución del contenido de arsénico en el agua mediante el uso de material geológico natural". En: Galindo G, Fernández-Turiel JL, Parada MA, Gimeno Torrente D. Eds. Arsénico en aguas: origen, movilidad y tratamiento. Río Cuarto: IV Congreso Hidrogeológico Argentino
- Sun, W.J., Sierra, R., Field, J.A. (2008) "Anoxic oxidation of arsenite linked to denitrification in sludges and sediments", *Water Res*, 42(17), pp. 4569–4577
- Thyne, G.D., Tağa, H., Yildirim, Ü. (2017) "Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey)", *Geofluids*, 2017(2), pp. 1-22.
- Ubilla, M. (2004) "La Formación Fray Bentos (Oligoceno Tardío) y los mamíferos más antiguos de Uruguay". En: Veroslavsky, G., Ubilla, M. y Martínez, S. Eds. *Cuencas sedimentarias de Uruguay – Geología, paleontología y recursos naturales – Cenozoico.* Montevideo: DIRAC
- Ubilla, M. y Martínez, S. (2016) "Geology and Paleontology of the Quaternary of Uruguay", Springer briefs in Earth System Sciences, South America and the Southern Hemisphere, pp. 1-77.
- Ubilla, M. y Perea, D. (1999) "Quaternary vertebrates of Uruguay: bioestratigraphic, biogeographic and climatic overview", *Quaternary of South America and Antartic Peninsula*, 12, pp. 75-90.

- Ugalde, R. (2019) Petrografía, quimioestratigrafía y proveniencia sedimentaria de la Formación Camacho (Mioceno), Uruguay. Tesis de maestría. Montevideo: Universidad de la República
- UNIT (2008) UNIT 833: Agua potable-Requisitos. Montevideo: UNIT. Reimpresión 2010.
- URSEA (2018) Reglamento de Planes de Seguridad del Agua. Montevideo: Unidad Reguladora de Servicios de Energía y Agua
- Uruguay (1967) "Constitución de la República Artículo 47", Dirección Nacional de Impresiones y Publicaciones Oficiales. Disponible en: [https://www.impo.com.uy/bases/constitucion/1967-1967/47] [Consultado 27-06-2022]
- Uruguay (1978) "Código de Aguas Nº14859", *Dirección Nacional de Impresiones y Publicaciones Oficiales.* Disponible en: [https://www.impo.com.uy/bases/codigo-aguas/14859-1978] [Consultado 27-06-2022]
- Uruguay (1979) "Normativa para prevenir la contaminación ambiental, a través del control de las aguas, *Dirección Nacional de Impresiones y Publicaciones Oficiales.* Disponible en: [https://www.impo.com.uy/bases/decretos/253-1979/19] [Consultado 27-06-2022]
- Uruguay (1994) "Reglamento Bromatológico Nacional", *Dirección Nacional de Impresiones y Publicaciones Oficiales.* Disponible en: [https://www.impo.com.uy/bases/decretos/315-1994] [Consultado 27-06-22]
- Uruguay (2009) "Ley de Política Nacional de Aguas. Principios Rectores", *Dirección Nacional de Impresiones y Publicaciones Oficiales*. Disponible en:
 [https://www.impo.com.uy/bases/leyes/18610-2009] [Consultado 27-06-2022]
- Uruguay (2011) "Modificación al Reglamento Bromatológico Nacional", *Dirección Nacional de Impresiones y Publicaciones Oficiales.* Disponible en: [https://www.impo.com.uy/bases/decretos/375-2011] [Consultado 27-06-2022]

- Uruguay (2017) "Plan Nacional de Aguas", *Dirección Nacional de Impresiones y Publicaciones Oficiales.* Disponible en: [https://www.impo.com.uy/bases/decretos/205-2017] [Consultado 27-06-2022]
- Vásquez-Suñe, E. (2001) *Mini-Manual de Easy-Quim*. Barcelona: Universitat Politècnica de Catalunya
- Veroslavsky, G. (1999) *Geología da Bacia de Santa Lucia Uruguai*. Tese de Doutoramento. São Paulo: Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista
- Veroslavsky, G., De Santa Ana, H. y Rosello, E. (2004) "Depósitos del Jurásico y Cretácico Temprano de la región meridional de Uruguay – El lineamiento Santa Lucía-Aiguá-Merín". En: Veroslavsky, G., Ubilla, M. y Martínez, S. Eds. *Cuencas sedimentarias de Uruguay – Geología, palentología y recursos naturales – Mesozoico*. Montevideo: DIRAC – SUG
- Wallis, I. y Pichler, T. (2018) "Generating false negatives and false positives for As and Mo concentrations in groundwater due to well installation", *Science of The Total Environment*, 631-632, pp. 723-732.
- Walther, K. (1931) Sedimentos gelíticos clastogelíticos del Cretáceo Superior y Terciario uruguayos. Observaciones referentes a algunos productos desintegración moderna del país. Montevideo: Inst. Geol. Pref.
- Weber, K.A., Picardal, F.W., Roden, E.E. (2001) "Microbially catalyzed Nitratedependent oxidation of biogenic solid-phase Fe (II) compounds", *Environ. Sci. Technol.*, 35, pp. 1644-1650.
- Wilson S., Lockwood P., Ashley P., Tighe M. (2009) "The chemistry and behavior of antimony in the soil environment with comparisons to arsenic: A critical review", *Environmental Pollution*, 158, pp. 1169-81.
- Wu, R., Alvareda, E.M., Polya, D.A., Blanco, G., y Gamazo, P. (2021) "Distribution of Groundwater Arsenic in Uruguay Using Hybrid Machine Learning and Expert System Approches", *Water*, 12(4), pp. 527.

- Yeko Potratz, V. (1980) *Groundwater geochemistry of the Ogallala aquifer in the Southern High Plains of Texas and New Mexico*. Master Thesis. Texas: Texas Tech University
- Younger, P.L. (2007) Groundwater in the environment: an introduction. London: Blackwell

Anexo I – Base de datos

Pozo	X (m)	Y (m)	Z (mnbt)	Nombre	Fecha const.	Prof. Pozo (mnbt)	Prof. Filtro (mnbt)	Prof. Pre-filtro (nmbt)	NE (m)	ND (m)	NS (m)	Q (m³/h)	As (mg/L)	Operador	Propietario	Obs
1	524731	6162504	39	90.3.018	2005	40,0	22,0 – 26,0 y 35,0 – 38,0	22,0 – 27,0 y 32,0 – 40,0	26,3	29,9	31,0	26,0	0,018	O.S.E.	I.M.S.J.	
2	524632	6161282		90.3.022 (1614)	2013	37,0	24,0 – 28,0 y 31,0 – 34,0		16,0		30,0		0,020	O.S.E.		
3	523232	6162352		90.3.023 (1534)	2012	46,0	32,0 - 40,0	12,0 - 46,0	30,0		40,0	3,0 – 3,5	0,024	O.S.E.	I.M.S.J.	Escuela 77
4	524985	6163307	31	90.3.030	2016	45,0	28,0 - 32,0	23,0 - 36,0	22,0	26,0	34,0	10,0	0,014	O.S.E.	Diego Sosa	
5	5224613	6163453	31	90.3.031	2016	42,0	26,0 - 30,0	21,0 - 36,0	20,0	26,0	32,0	2,0		O.S.E.	Victor Sosa	
6	524615	6163448	30	90.3.032	2016	53,0	44,0 - 49,0	40,0 - 53,0	22,0	35,0	41,0	10,0	0,017	O.S.E.	Victor Sosa	

Tabla 1. Censo de perforaciones antecedentes y química de las aguas subterráneas.

Figura 1. Fotografías de las perforaciones donde se tomaron las muestras para análisis químicos de iones mayoritarios y especies de arsénico. A) perforación Nº90.3.32 y Nº90.3.031; B) perforación Nº90.3.030; C) perforación Nº90.3.018; D) perforación 90.3.022; E) perforación P1.

Figura 2. Plano de la perforación Nº90.3.032.

Anexo II – Caracterización de la fase sólida de las perforaciones de estudio

Intervalo	Color seco	Color húmedo	Descripción litológica	Formación geológica
0-2 m	10YR 4/2	10YR 3/2	Muestra compactada. Limo arcilloso. Posiblemente perteneciente al suelo.	Suelo
2-7 m	7.5YR 6/4	7.5YR 5/4	Muestra compactada. Limo arcilloso con carbonatos diseminados y en concreciones. También se distinguen minerales máficos y materia orgánica.	Fm. Libertad
7-12 m	2.5Y 6/2	2.5Y 5/2	Muestra compactada. Limo arcilloso con carbonatos diseminados y en concreciones. También se distinguen minerales máficos de tamaño arena fina y materia orgánica.	Fm. Libertad
12-15 m	10YR 7/3	7.5YR 5/4	Muestra compactada. Limo arcilloso con carbonatos diseminados.	Fm. Libertad
15-16 m	7.5YR 6/3	7.5YR 5/4	Muestra compactada. Limo arcilloso con carbonatos diseminados y en concreciones. También se distingue materia orgánica y clastos de cuarzo con pátinas de óxidos negros de tamaño arena fina.	Fm. Libertad
16-18 m	2.5Y 6/2	2.5Y 6/3	Limo arcilloso con carbonatos, materia orgánica y máficos diseminados de tamaño arena fina.	Fm. Libertad
18-19 m	10YR 7/3	10YR 6/4	Arena gravillosa subarcósica (65% Qz, 20% Fd, 15% FL). Se observan clastos de ilmenita y epidoto. Se observa cuarzo con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
19-20 m	10YR 7/3	10YR 6/4	Arena gravillosa subarcósica (65% Qz, 20% Fd, 15% FL). Se observa cuarzo con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
20-21 m	10YR 7/3	10YR 6/4	Arena gravillosa subarcósica (65% Qz, 20% Fd, 15% FL). Se observan clastos de ilmenita. Se observa cuarzo con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
21-23 m	2.5Y 7/2	2.5Y 6/2	Muestra compactada. Limo arenoso de composición cuarzo feldespática (80% Qz, 20% Fd) y máficos de forma subordinada (<1%). Se observa presencia de materia orgánica. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
23-26 m	2.5Y 7/2	2.5Y 6/2	Muestra compactada. Limo arenoso de composición cuarzo feldespática (80% Qz, 20% Fd) y máficos de forma subordinada (<1%). Se observa presencia de materia orgánica. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
26-29 m	10YR 7/2	2.5Y 6/3	Muestra compactada. Limo arenoso de composición cuarzo feldespática (80% Qz, 20% Fd) y máficos de forma subordinada (<1%). Se observa presencia de materia orgánica. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
29-30 m	10YR 7/2	2.5Y 6/3	Muestra compactada. Arena media y fina de composición subarcósica (60% Qz, 20% Fd, 20% FL) y máficos (<1%) de forma subordinada, con arcilla y clastos de tamaño grava de composición granítica. Se distinguen clastos de ilmenita.	Fm. Raigón

Tabla 1. Descripción litológica de las muestras de los detritos de la perforación №90.3.029.

			Se observa presencia de materia orgánica y carbonatos. Se observan cuarzos con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y muy mal seleccionados.	
30-31 m	10YR 7/2	2.5Y 6/3	Muestra compactada. Arena media y fina de composición subarcósica (60% Qz, 20% Fd, 20% FL) y máficos (<1%) de forma subordinada, con arcilla y clastos de tamaño grava de composición granítica. Se distinguen clastos de ilmenita. Se observa presencia de materia orgánica y carbonatos. Se observan cuarzos con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y muy mal seleccionados.	Fm. Raigón
31-32 m	10YR 7/2	2.5Y 6/3	Muestra compactada. Arena media y fina de composición subarcósica (60% Qz, 20% Fd, 20% FL) y máficos (<1%) de forma subordinada, con arcilla y clastos de tamaño grava de composición granítica. Se distinguen clastos de ilmenita. Se observa presencia de materia orgánica y carbonatos. Se observan cuarzos con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y muy mal seleccionados.	Fm. Raigón
32-35 m	10YR 7/2	2.5Y 6/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón

Tabla 2. Descripción litológica de las muestras de los detritos de la perforación Nº90.3.030.

Intervalo	Color seco	Color húmedo	Descripción litológica	Formación geológica
0-1 m	10YR 4/2	10YR 2/2	Muestra compactada. Limo arcilloso. Posiblemente correspondiente al suelo.	Suelo
1-5 m	7.5YR 4/3	7.5YR 3/3	Muestra compactada. Limo arcilloso con materia orgánica.	Fm. Libertad
5-7 m	7.5YR 5/4	7.5YR 4/4	Muestra compactada. Limo arcilloso con materia orgánica y carbonatos diseminados.	Fm. Libertad
7-9 m	7.5YR 5/4	7.5YR 4/3	Muestra compactada. Limo arcilloso con materia orgánica y carbonatos diseminados.	Fm. Libertad
9-12 m	2.5Y 6/2	2.5Y 5/2	Limo arcilloso con carbonato diseminado y en concreciones y materia orgánica.	Fm. Libertad
12-16 m	7.5YR 6/4	7.5YR 4/4	Limo arcilloso con carbonatos diseminados.	Fm. Libertad
16-18 m	7.5YR 6/3	7.5YR 5/4	Limo arcilloso con carbonatos diseminados y materia orgánica.	Fm. Libertad
18-19 m	7.5YR 6/3	7.5YR 5/4	Arena gravillosa de composición subarcósica (65% Qz, 20% Fd, 15% FL). Se observan cuarzos con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y moderadamente seleccionados.	Fm. Raigón
19-21 m	7.5YR 6/3	7.5YR 5/4	Arena gravillosa de composición subarcósica (65% Qz, 20% Fd, 15% FL). Se observan cuarzos con patinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y moderadamente seleccionados.	Fm. Raigón
21-22 m	2.5Y 7/2	2.5Y 6/2	Limo arenoso con clastos de tamaño sábulo y grava fina, de composición cuarzo feldespática (80% Qz, 20% Fd). Se observa presencia de materia orgánica. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
22-27 m	2.5Y 6/3	2.5Y 5/3	Limo arenoso con clastos de tamaño sábulo y grava fina, de composición cuarzo feldespática (80% Qz, 20% Fd). Se observa presencia de materia orgánica. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón

27-28 m	2.5Y 7/2	2.5Y 5/3	Limo arenoso con clastos de tamaño sábulo y grava fina, de composición cuarzo feldespática (80% Qz, 20% Fd). Se observa presencia de materia orgánica. Los clastos son subredondeados a subangulosos, de esfericidad media y mal seleccionados.	Fm. Raigón
28-30 m	2.5Y 7/2	2.5Y 5/3	Arena gravillosa de composición lítica (55% Qz, 10% Fd%, 35% FL). Se observan cuarzos con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y moderadamente seleccionados.	Fm. Raigón
30-32 m	2.5Y 7/2	2.5Y 5/3	Arena gravillosa de composición lítica (55% Qz, 10% Fd%, 35% FL) Se observan cuarzos con pátinas de óxidos negros. Los clastos son subredondeados a subangulosos, de esfericidad media y moderadamente seleccionados.	Fm. Raigón
32-35 m	10YR 6/3	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de arena fina. Se observa presencia de materia orgánica.	Fm. Raigón
35-37 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de arena fina. Se observa presencia de materia orgánica.	Fm. Raigón
37-40 m	10YR 6/3	10YR 5/4	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
40-41 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
41-43 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
43-45 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón

Tabla 3. Descripción litológica de las muestras de los detritos de la perforación Nº90.3.031.

Intervalo	Color seco	Color húmedo	Descripción litológica	Formación geológica
0-6 m	10YR 5/3	7.5YR 4/3	Muestra compactada. Limo arcilloso.	Fm. Libertad
6-9 m	10YR 7/3	10YR 6/3	Muestra compactada. Limo arcilloso con presencia de carbonatos diseminados.	Fm. Libertad
9-12 m	7.5YR 6/3	7.5YR 4/4	Limo arcilloso.	Fm. Libertad
12-16 m	10YR 6/3	10YR 5/3	Limo arcilloso con clastos de arena fina con presencia de carbonato diseminado y en concreciones y de materia orgánica. Se observan clastos de cuarzo subredondeados, de esfericidad media y bien seleccionados.	Fm. Libertad
16-21 m	10YR 6/3	10YR 6/4	Arena gravillosa de composición subarcósica (65% Qz, 20% Fd, 15% FL) y máficos subordinados (<1%). Los clastos son subangulosos a subredondeados, de esfericidad media y moderadamente seleccionados. Se observan cuarzos con pátinas de óxidos negros. Se observan carbonatos diseminados y materia orgánica.	Fm. Raigón
21-26 m	2.5Y 6/3	10YR 7/2	Limo arenoso de composición cuarzo feldespática (80% Qz, 20% Fd) y máficos subordinados (<1%). Los clastos son subangulosos a subredondeados, de esfericidad media y moderadamente seleccionados.	Fm. Raigón
26-28 m	10YR 6/3	10YR 5/3	Arena gravillosa de composición lítica (55% Qz, 10% Fd%, 35% FL) y máficos de forma subordinada (<1%). Los clastos son subredondeados a subangulosos, de esfericidad media y moderadamente seleccionados.	Fm. Raigón

28-30 m	10YR 6/3	10YR 5/3	Arena gravillosa de composición lítica (55% Qz, 10% Fd%, 35% FL) y máficos de forma subordinada (<1%). Se distinguen clastos de epidoto. Los clastos son subredondeados a subangulosos, de esfericidad alta y moderadamente seleccionados. Hay clastos aglutinados y cuarzos con pátina de óxidos negros.	Fm. Raigón
30-32 m	10YR 6/3	10YR 5/3	Muestra compactada. Arena gravillosa de composición lítica (55% Qz, 10% Fd%, 35% FL) y máficos diseminados (<1%). Los clastos son subangulosos a subredondeados, de esfericidad media a alta y moderadamente seleccionados. Hay clastos aglutinados.	Fm. Raigón
32-34 m	10YR 6/3	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de cuarzo tamaño arena fina.	Fm. Raigón
34-37 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de cuarzo tamaño arena fina y carbonatos diseminados.	Fm. Raigón
37-39 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de cuarzo tamaño arena fina y carbonatos diseminados.	Fm. Raigón
39-41 m	2.5Y 7/2	2.5Y 5/3	Muestra compactada. Limo arcilloso.	Fm. Raigón

Tabla 4. Descripción litológica de las muestras de los detritos de la perforación Nº90.3.032.

Intervalo	Color seco	Color húmedo	Descripción litológica	Formación geológica
0-7 m	10YR 5/4	7.5YR 4/3	Muestra compactada. Limo arcilloso.	Fm. Libertad
7-14 m	10YR 5/3	7.5YR 4/4	Muestra compactada. Limo arcilloso. Presencia de carbonatos diseminados y materia orgánica.	Fm. Libertad
14-16 m	10YR 6/3	10YR 5/3	Limo arcilloso con clastos de tamaño arena fina con carbonatos diseminados y presencia de materia orgánica. Los clastos son principalmente cuarzosos y de forma subordinada se distinguen feldespatos. Estos son subredondeados, de esfericidad media y moderadamente seleccionados.	Fm. Libertad
16-18 m	10YR 7/3	10YR 5/3	Arena gravillosa subarcósica (65% Qz, 20% Fd, 15% FL) y de forma subordinada máficos (<1%). Los clastos son redondeados a subredondeados, de esfericidad media y mal seleccionados. Se observa cuarzo con pátina de óxidos negros.	Fm. Raigón
18-20 m	10YR 7/3	10YR 5/3	Arena gravillosa subarcósica (65% Qz, 20% Fd, 15% FL) y de forma subordinada máficos (<1%). Los clastos son redondeados a subredondeados, de esfericidad media y mal seleccionados. Se observa cuarzo con pátina de óxidos negros.	Fm. Raigón
20-26 m	10YR 7/2	2.5Y 5/2	Limo arenoso con carbonatos diseminados y presencia de materia orgánica. Los clastos son de composición cuarzo feldespática (80% Qz, 20% Fd) y de forma subordinada máficos (<1%). Estos son subredondeados, de esfericidad media y mal seleccionados.	Fm. Raigón
26-28 m	10YR 7/3	10YR 6/4	Arena gravillosa lítica (55% Qz, 10% Fd%, 35% FL) y de forma subordinada máficos (<1%). Los clastos son redondeados a subredondeados, de esfericidad media y mal seleccionados. Se observa cuarzo con pátina de óxidos negros.	Fm. Raigón
28-30 m	10YR 7/3	10YR 6/4	Arena gravillosa lítica (55% Qz, 10% Fd%, 35% FL) y de forma subordinada máficos (<1%). Los clastos son redondeados a subredondeados, de esfericidad media y mal seleccionados. Se observa cuarzo con pátina de óxidos negros.	Fm. Raigón
30-32 m	10YR 6/3	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de arena fina. Se observa presencia de materia orgánica.	Fm. Raigón

32-35 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de arena fina. Se observa presencia de materia orgánica.	Fm. Raigón
35-37 m	10YR 7/2	10YR 5/3	Muestra compactada. Limo arcilloso con clastos de arena fina. Se observa presencia de materia orgánica.	Fm. Raigón
37-41 m	2.5Y 7/2	2.5Y 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
41-44 m	2.5Y 7/2	2.5Y 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
44-48 m	2.5Y 7/2	2.5Y 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
48-49 m	2.5Y 7/2	2.5Y 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
49-50 m	2.5Y 7/2	2.5Y 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
50-52 m	2.5Y 7/2	2.5Y 5/3	Muestra compactada. Limo arcilloso. Se observa presencia de materia orgánica.	Fm. Raigón
52-53 m	5Y 5/1	5Y 4/1	Muestra compactada. Arcilla.	Fm. Camacho

Láminas delgadas perforación 90.3.032

Niveles 16 – 20 m

Arena gravillosa subarcósica. Mineralógicamente está conformada por microclina, ortosa, plagioclasa, cuarzo y de manera subordinada hornblenda y epidoto. Se observa cuarzo policristalino y feldespatos sericitizados. Los fragmentos líticos son de tamaño grava fina de composición granítica, además de presentar inclusiones de epidoto. Los clastos son subredondeados a angulosos, de esfericidad baja a media y mal seleccionados.

Figura 1. Microfotografías de arena gravillosa subarcósica de la Formación Raigón (nivel 16 – 20 m en perforación 90.3.032). A y B) Presencia de clastos de horblenda (Hbl) y fragmento lítico (FL) de 2 mm. C y D) Inclusión de epidoto (Ep) en fragmento lítico (FL). Aumento 10x.

Nivel 26 - 30 m

Arena gravillosa lítica. Mineralógicamente está conformada por plagioclasa, microclina, cuarzo y de forma subordinada hornblenda y epidoto. Se observa cuarzo policristalino, feldespatos sericitizados y clastos muy fragmentados. Se observa un 30-35% de fragmentos líticos de composición granítica. Los clastos son subredondeados a angulosos, de esfericidad baja a media y mal seleccionados.

Figura 2. Microfotografías de la Formación Raigón (nivel 26 – 30 m en perforación 90.3.032). A y B) cuarzo policristalino o cuarcita (Qz) y plagioclasa sericitificada (PI). C y D) Epidoto (Ep) y fragmento lítico (FL). Aumento 10x.

Referencias litológicas

_ _ _ _ _ _ Gradacional

Figura 3. Perfil estratigráfico de la perforación Nº 90.3.029.

Figura 4. Perfil estratigráfico de la perforación Nº 90.3.030.

Figura 5. Perfil estratigráfico de la perforación Nº 90.3.031.

Figura 6. Perfil estratigráfico de la perforación Nº 90.3.032.

Figura 7. Cortes geológicos del área de estudio.

Anexo III – Datos geoquímicos completos

Tabla 1. Datos geoquímicos completos obtenidos por fluorescencia de rayos X.

	MgO (%)	Al ₂ O ₃ (%)	SiO ₂ (%)	P ₂ O ₅ (%)	S (mg/kg)	CI (mg/kg)	K ₂ O (%)	CaO (%)	TiO ₂ (%)	V (mg/kg)	MnO (%)	Fe ₂ O ₃ (%)	Ni (mg/kg)	Cu (mg/kg)	As (mg/kg)	Rb (mg/kg)	Sr (mg/kg)	Y (mg/kg)	Zr (mg/kg)	Nb (mg/kg)	Mo (mg/kg)	Ag (mg/kg)	Sn (mg/kg)	Ba (mg/kg)	Pb (mg/kg)
0 - 7 m	1,1214	2,4875	15,5441			730,0	0,5674	0,3866	0,31399	55,0	0,3770	2,7200			10,5	223,0	237,0	71,0	76,0	33,0	32,0	62,0		518,0	
7 - 14 m	1,5560	3,5598	23,4195			336,0	0,7136	0,6826	0,4425	82,0	0,7190	3,6662	19,0	51,0	9,5	259,0	375,0	116,0	157,0	42,0	28,0			626,0	13,0
14 - 16 m	1,3850	3,4781	25,7849			1760,0	0,5545	0,892	0,3900	77,0	0,5970	2,2666				159,0	561,0	47,0				57,0		909,0	
18 - 20 m	0,9000	4,9327	44,6264			315,0	0,9113	0,8437	0,73	111,0	0,1100	0,7643				108,0	717,0	9,0				37,0		1156,0	
20 - 26 m	0,9546	3,113	39,438			237,0	0,8358	0,6554	0,398		0,1440	0,3817				90,0	459,0	5,0				35,0		1158,0	
26 - 28 m	1,6160	3,6733	27,6727			772,0	0,5635	0,7692	0,3510	84,0	0,6690	2,4732	16,5	43,5		176,0	511,0	53,0		27,0			171,0	886,0	
28 - 30 m	0,8956	3,979	31,677			3443,0	0,4444	0,7266	0,8200	63,0	0,1700	0,6564				87,0	470,0	16,0			26,0			673,0	
30 - 32 m	1,6900	4,5813	43,9599			121,0	0,477	0,6571	0,1235		0,4330	0,897				39,0	399,0	14,0			24,0	59,0		948,0	
32 - 35 m	1,8380	4,386	27,5556			584,0	0,5598	0,8238	0,3192	103,0	0,4900	2,2817			6,5	136,0	489,0	37,0		20,0		73,0		610,0	
35 - 37 m	1,1176	4,892	33,2523			193,0	0,7313	0,7361	0,4778	52,0	0,6160	3,3772	20,0		14,0	205,0	454,0	55,0		30,0		70,0		666,0	
37 - 41 m	1,2857	3,5763	26,4266			290,0	0,7528	0,8671	0,3565	97,0	0,2830	2,7548			12,0	201,0	392,0	67,0		31,0	22,0			511,0	
41 - 44 m	1,5300	3,7185	26,4693			569,0	0,7460	0,7580	0,3684	85,6	0,7920	3,399			11,0	223,0	366,0	70,0			24,0	59,0	169,0	588,0	
44 - 48 m	1,1670	4,111	29,2831			189,0	0,7493	0,8249	0,3686	95,0	0,4500	2,6600			11,0	263,0	391,0	65,0		23,0				682,0	
48 - 49 m	1,9510	3,149	24,4288			388,0	0,6635	0,7274	0,3155	66,0	0,1919	2,2540			10,0	187,0	406,0	57,0		20,0				786,0	
49 - 50 m	1,1115	3,1800	25,418			164,0	0,5775	0,7321	0,213	81,0	0,1164	1,8332				173,0	472,0	53,0		36,0	32,0	72,0		696,0	
50 - 52 m	1,1421	3,8284	26,971		266,0	152,0	0,7318	0,7763	0,371	58,0	0,2100	2,7320				211,0	363,0	62,0		28,0		49,0		558,0	
52 - 53 m	1,4390	3,4252	24,464		2339,0	629,0	0,7689	0,7841	0,694	120,0	0,1500	4,1490			22,0	233,0	215,0	67,0	69,0	33,0		44,0		273,0	<u> </u>
0 - 1 m	0,8321	6,4426	45,5545	0,2820	193,0	119,0	1,2375	0,7625	0,7392	83,5	0,1113	3,5814		41,5	12,0	263,0	332,0	84,5	436,5	36,5	42,5	77,5		727,0	17,0
1 - 5 m	1,1550	3,9846	22,5720			699,0	0,7429	0,4866	0,4635	72,5	0,4870	3,1332			14,0	235,0	247,5	60,5	177,0	27,0	32,5			414,5	12,5
5 - 7 m	0,9810	5,9454	33,8248			747,0	1,7385	0,8564	0,5943	121,5	0,5265	3,6782	27,0	16,0		235,0	310,0	101,5	378,0	38,5	33,5	72,5		824,0	15,0
7 - 9 m	1,1695	8,3580	26,9255			475,0	0,7115	0,7886	0,4540	104,0	0,3245	2,4149		42,5	7,5	188,5	271,0	68,5	176,5	28,0	29,0	66,0		553,0	
9 - 12 m	1,2335	3,9410	24,6250			295,0	0,7256	0,8799	0,4612	94,5	0,6350	2,9640		45,0	7,0	196,5	290,5	56,5	72,5	33,0				457,5	
12 - 16 m	1,1125	4,3920	25,4223	0,6900		181,8	0,9360	3,6100	0,5278	112,0	0,4915	3,7645				175,5	356,5	66,0			19,5	49,0		495,0	
16 - 18 m	1,2400	4,4916	26,9950			176,8	0,8482	1,7615	0,5428	107,0	0,5850	3,9169				233,0	346,5	69,5	127,0	25,0				523,5	<u> </u>
18 - 19 m	0,9194	3,3775	27,1515	0,1300		2558,5	0,5376	0,7610	0,1113	136,5	0,1400	0,8620				84,0	627,5	20,5				63,0	194,0	924,5	
19 - 21 m	0,9578	3,3644	27,3388	0,1690	-	2444,5	0,5290	0,7854	0,1678	60,0	0,1310	0,9243				138,0	591,5	17,5				50,0		764,5	-
21 - 22 m	1,1112	2,7236	2,9530			120,0	0,4827	0,6390	0,3439	93,5	0,3825	3,2630			14,5	161,5	426,5	66,0		33,5	24,0			608,5	
22 - 27 m	1,3779	11,3850	53,7397	0,3265		1745,5	1,4360	1,4752	0,8349	12,5	0,4530	4,2859	23,5	21,5	11,0	123,5	409,0	52,5	199,5	19,0		34,0		772,5	
27 - 28 m	1,6870	3,1856	21,4300	-		129,0	1,5180	0,4936	0,7740	63,0	0,3950	1,9145				223,0	688,5	53,5		19,5	25,0	64,5		2610,0	15,5
28 - 30 m	0,9963	3,6554	33,3926	-	88,0	763,5	0,9596	0,6593	0,1155	117,5	0,9175	0,8525				155,0	487,0	14,5				42,5		1177,0	
30 - 32 m	1,7685	3,3715	29,9952	-	100,0	957,5	0,9386	0,9822	0,9970	140,0	0,5710	0,6245				135,5	747,0	18,0						967,5	
32 - 35 m	1,8960	2,2493	21,8123			825,0	0,4328	0,4999	0,3480	95,0	0,1118	2,2445		37,0	9,5	142,5	2/3,5	/4,5		05.0				611,0	<u> </u>
35 - 37 m	1,1417	3,5642	26,6665			915,0	0,6587	0,6588	0,3919	86,0	0,1350	2,8396			11,0	240,0	347,5	/3,0	11,0	35,0	24,0	54,5		/40,0	<u> </u>
37 - 40 m	1,1465	4,1//6	26,2878			235,0	0,6243	1,1245	0,3115	96,5	0,8795	2,8675			8,5	174,0	461,5	62,0	40.0	26,5	20.5	co 5		497,0	<u> </u>
40 - 41 m	1,1187	3,8497	29,1368			811,0 574.0	0,7464	0,7529	0,3934	90,0	0,1134	2,5695		10.5		174,0	336,5	53,0	49,0	27,5	33,5	00,5		1050.0	10.0
41 - 43 m	1,5430	9,4843	52,3/6/			5/1,0	1,5/32	1,3216	0,7665	113,5	0,2337	3,4798		10,5	10.0	138,5	340,5	50,0	190,5	18,5	20,0	28,5		1059,0	18,0
43 - 45 m	1,5593	1,2620	54,6194			2394,0	1,5810	1,4753	0,8397	97,5	0,5665	3,7310		31,5	16,0	123,5	300,0	48,5	248,5	15,0	21,0	26,0		977,0	18,0

Anexo IV – Datos completos del ensayo de bombeo

	-				Ensayo	de bombeo	-	· ·					Recu	peración	
	24 h			48 h			72 h			96 h				1 h	
Tiempo (min)	Nivel del agua (m)	Descenso (m)	Tiempo (min)	Nivel del agua (m)	Descenso (m)	Tiempo (min)	Nivel del agua (m)	Descenso (m)	Tiempo (min)	Nivel del agua (m)	Descenso (m)	Tiempo (t') (min)	Nivel del agua (m)	Descenso residual (m)	(Th+t')/t'
0	20,461	0	1445	21,4583	0,9973	2890	23,5867	3,1257	4330	26,8767	6,4157	0	29,2301	8,7691	
5	20,4718	0,0108	1450	21,453	0,992	2895	23,6037	3,1427	4335	26,8541	6,3931	5	29,2014	8,7404	623
10	20,4615	0,0005	1455	21,4601	0,9991	2900	23,607	3,146	4340	26,8656	6,4046	10	23,111	2,65	312
15	20,4723	0,0113	1460	21,4481	0,9871	2905	23,5955	3,1345	4345	26,8756	6,4146	15	22,7053	2,2443	208,3
20	20,4551	-0,0059	1465	21,4608	0,9998	2910	23,6004	3,1394	4350	26,872	6,411	20	22,5451	2,0841	156,5
25	20,4587	-0,0023	1470	21,4724	1,0114	2915	23,5968	3,1358	4355	26,8669	6,4059	25	22,4237	1,9627	125,4
30	20,4647	0,0037	1475	21,4632	1,0022	2920	23,6134	3,1524	4360	26,8744	6,4134	30	22,3418	1,8808	104,7
35	20,463	0,002	1480	21,4823	1,0213	2925	23,6006	3,1396	4365	26,8802	6,4192	35	22,272	1,811	89,9
40	20,4627	0,0017	1485	21,4823	1,0213	2930	23,6214	3,1604	4370	26,8959	6,4349	40	22,2214	1,7604	78,8
45	20,4622	0,0012	1490	21,4724	1,0114	2935	23,6277	3,1667	4375	26,8959	6,4349	45	22,1758	1,7148	70,1
50	20,461	0	1495	21,4752	1,0142	2940	23,6383	3,1773	4380	26,8985	6,4375	50	22,1357	1,6747	63,2
55	20,4575	-0,0035	1500	21,4906	1,0296	2945	25,8765	5,4155	4385	28,5592	8,0982	55	22,1047	1,6437	57,5
60	20,4754	0,0144	1505	23,0936	2,6326	2950	26,0846	5,6236	4390	28,6263	8,1653	60	22,0776	1,6166	52,8
65	21,0554	0,5944	1510	23,6654	3,2044	2955	26,1376	5,6766	4395	28,6765	8,2155				
70	21,0577	0,5967	1515	23,1601	2,6991	2960	26,2307	5,7697	4400	28,7267	8,2657				
75	21,0582	0,5972	1520	23,1505	2,6895	2965	26,2725	5,8115	4405	28,7569	8,2959				
80	21,0797	0,6187	1525	23,188	2,727	2970	26,3234	5,8624	4410	28,7947	8,3337				
85	21,0845	0,6235	1530	23,194	2,733	2975	26,3473	5,8863	4415	28,8401	8,3791				
90	21,1103	0,6493	1535	23,2249	2,7639	2980	26,3639	5,9029	4420	28,8545	8,3935				
95	21,0893	0,6283	1540	23,2377	2,7767	2985	26,3831	5,9221	4425	28,8437	8,3827				
100	21,1186	0,6576	1545	23,2459	2,7849	2990	26,4123	5,9513	4430	28,8842	8,4232				
105	21,1204	0,6594	1550	23,0422	2,5812	2995	26,4205	5,9595	4435	28,9033	8,4423				
110	21,1211	0,6601	1555	23,262	2,801	3000	26,4492	5,9882	4440	28,8985	8,4375				
115	21,1293	0,6683	1560	23,3022	2,8412	3005	26,4499	5,9889	4445	28,8858	8,4248				
120	21,124	0,663	1565	23,3045	2,8435	3010	26,458	5,997	4450	28,906	8,445				
125	21,1235	0,6625	1570	23,3104	2,8494	3015	26,4886	6,0276	4455	28,9012	8,4402				
130	21,1401	0,6791	1575	23,32	2,859	3020	26,4544	5,9934	4460	28,9071	8,4461				
135	21,1273	0,6663	1580	23,3156	2,8546	3025	26,4837	6,0227	4465	28,9189	8,4579				
140	21,1232	0,6622	1585	23,3575	2,8965	3030	26,4945	6,0335	4470	28,9297	8,4687				
145	21,1591	0,6981	1590	23,3442	2,8832	3035	26,5176	6,0566	4475	28,9512	8,4902				
150	21,1573	0,6963	1595	23,3594	2,8984	3040	26,5319	6,0709	4480	28,9663	8,5053				
155	21,1519	0,6909	1600	23,3855	2,9245	3045	26,5361	6,0751	4485	28,9793	8,5183				
160	21,1548	0,6938	1605	23,3872	2,9262	3050	26,5665	6,1055	4490	28,993	8,532				
165	21,1512	0,6902	1610	23,4011	2,9401	3055	26,5625	6,1015	4495	28,9727	8,5117				
170	21,1405	0,6795	1615	23,3908	2,9298	3060	26,5676	6,1066	4500	29,0216	8,5606				

Tabla 1. Datos completos del Driver® colocado en la perforación Nº 90.3.032 durante el ensayo de bombeo y el ensayo de recuperación.

175	21 14	0.679	1620	23 4244	2 9634	3065	26 5898	6 1288	4505	29.0534	8 5924		
173	21,14	0,075	1625	23,7277	2,0054	3070	26,5011	6,1200	4510	20,0354	8 5857		
185	21,1435	0,0023	1620	23,420	2,907	3075	20,3911	6 1455	4510	29,0407	8,5654		
100	21,1499	0,0009	1635	23,422	2,301	3080	20,0003	6 1328	4515	29,0204	8 5613		
190	21,1075	0,7003	1640	23,4340	2,9730	3085	20,5950	6 1328	4520	29,0223	8,5015		
195	21,175	0,714	1645	23,4441	2,9031	3085	20,5850	6,1328	4525	29,0308	0,5090		
200	21,1940	0,7330	1650	23,4477	2,9007	3090	20,0310	6 1008	4530	29,0438	8 5803		
203	21,1004	0,7074	1655	23,4745	3,0105	3100	20,0010	6 167	4555	29,0413	8 5810		
210	21,1057	0,7247	1660	23,4713	3,0103	3105	26,020	6 1862	4540	29,0429	8 585		
213	21,1858	0,7240	1665	23,4702	3,0032	3103	26,6547	6 1937	4550	29,040	8,6006		
220	21,200	0,742	1670	23,4051	3,0345	3115	26,6672	6 2062	4555	29,0691	8 6081		
223	21,179	0,710	1675	23,4355	3,0343	3120	26,0072	6 2183	4560	29,0091	8 6524		
235	21,1000	0,7000	1680	23,4732	3,0102	3125	26,6697	6 2087	4565	29,1134	8 6667		
233	21,132	0,001	1685	23,4903	3,0361	3120	26,6064	6 2354	4570	29,1277	8 6613		
245	21,1643	0,7213	1690	23,4966	3,0356	3135	20,0304	6 251	4575	29,1223	8 6642		
250	21,1040	0 735	1695	23 49	3 029	3140	26 7126	6 2516	4580	29 1395	8 6785		
255	21,1768	0 7158	1700	23 4996	3.0386	3145	26 7174	6 2564	4585	29,1000	8 6637		
260	21,1760	0 7243	1705	23,5175	3 0565	3150	26 7107	6 2497	4590	29 1498	8 6888		
265	21,1725	0.7115	1710	23,5211	3,0601	3155	26,7082	6,2472	4595	29,1431	8,6821		
270	21,1553	0.6943	1715	23,5079	3,0469	3160	26,7117	6,2507	4600	29.139	8.678		
275	21,1553	0.6943	1720	23,5254	3.0644	3165	26.7124	6.2514	4605	29,1443	8.6833		
280	21,1833	0.7223	1725	23,5362	3.0752	3170	26.7452	6.2842	4610	29.1777	8,7167		
285	21,1983	0.7373	1730	23,5259	3.0649	3175	26.738	6.277	4615	29.1711	8,7101		
290	21,1876	0,7266	1735	23,5623	3,1013	3180	26,7296	6,2686	4620	29,1782	8,7172		
295	21,19	0,729	1740	23,5444	3,0834	3185	26,7189	6,2579	4625	29,1806	8,7196		
300	21,1935	0,7325	1745	23,5647	3,1037	3190	26,7363	6,2753	4630	29,1883	8,7273		
305	21,1952	0,7342	1750	23,5688	3,1078	3195	26,7509	6,2899	4635	29,2205	8,7595		
310	21,1912	0,7302	1755	23,5675	3,1065	3200	26,7558	6,2948	4640	29,2098	8,7488		
315	21,1625	0,7015	1760	23,567	3,106	3205	26,7784	6,3174	4645	29,2241	8,7631		
320	21,1784	0,7174	1765	23,5747	3,1137	3210	26,788	6,327	4650	29,2356	8,7746		
325	21,1856	0,7246	1770	23,5914	3,1304	3215	26,7724	6,3114	4655	29,2057	8,7447		
330	21,1844	0,7234	1775	23,5768	3,1158	3220	26,7927	6,3317	4660	29,2344	8,7734		
335	21,179	0,718	1780	23,5609	3,0999	3225	26,782	6,321	4665	29,2617	8,8007		
340	21,1682	0,7072	1785	23,5705	3,1095	3230	26,795	6,334	4670	29,2622	8,8012		
345	21,1778	0,7168	1790	23,5945	3,1335	3235	26,7974	6,3364	4675	29,2407	8,7797		
350	21,1794	0,7184	1795	23,5752	3,1142	3240	26,8101	6,3491	4680	29,261	8,8		
355	21,1698	0,7088	1800	23,5828	3,1218	3245	26,8065	6,3455	4685	29,2157	8,7547		
360	21,1681	0,7071	1805	23,584	3,123	3250	26,7986	6,3376	4690	29,2653	8,8043		
365	21,1514	0,6904	1810	23,5853	3,1243	3255	26,8487	6,3877	4695	29,2592	8,7982		
370	21,1697	0,7087	1815	23,6008	3,1398	3260	26,826	6,365	4700	29,27	8,809		
375	21,1867	0,7257	1820	23,6003	3,1393	3265	26,8363	6,3753	4705	29,2713	8,8103		
380	21,1812	0,7202	1825	23,6129	3,1519	3270	26,8307	6,3697	4710	29,3	8,839		
385	21,1781	0,7171	1830	23,5914	3,1304	3275	26,8363	6,3753	4715	29,2736	8,8126		

390	21 1717	0 7107	1835	23 5909	3 1299	3280	26 835	6.374	4720	29 2807	8 8197		
395	21,174	0.713	1840	23,6218	3 1608	3285	26,8399	6 3789	4725	29,2007	8 8443		
400	21,174	0.6987	1845	23,5983	3 1373	3290	26,8314	6 3704	4730	29,3035	8 8365		
405	21,1858	0,7248	1850	23,6091	3 1481	3295	26,0014	6 374	4735	29,2693	8 8083		
403	21,1846	0,7240	1855	23,5001	3 1381	3300	26,000	6 3722	4740	29,2033	8 8529		
415	21,1040	0,7250	1860	23,6002	3 1392	3305	26,8399	6 3789	4745	29,3135	8 8615		
420	21,1301	0,7331	1865	23,0002	3 15	3310	26,0000	6 408	4750	20,3223	8 8672		
425	21,1001	0.72	1870	23 5947	3 1337	3315	26,8697	6 4087	4755	29,3033	8 8423		
420	21,101	0.7228	1875	23,5947	3 1381	3320	26,8567	6 3957	4755	29,3033	8 8474		
435	21,1862	0,7252	1880	23,6218	3 1608	3325	26,8738	6 4128	4765	29,3004	8 8692		
440	21,1685	0,7075	1885	23,6217	3 1607	3330	26,8942	6 4332	4770	29,3237	8 8627		
445	21,1005	0.714	1890	23,6182	3 1572	3335	26,8917	6 4307	4775	20,0207	8 862		
450	21,170	0 7254	1895	23,6421	3 1811	3340	26,8854	6 4244	4780	29,3289	8 8679		
455	21,1001	0,7102	1900	23,6099	3 1489	3345	26,8854	6 4244	4785	29 3318	8 8708		
460	21,1694	0 7084	1905	23 633	3 172	3350	26 8917	6 4307	4790	29,3289	8 8679		
465	21,1844	0.7234	1910	23.6157	3.1547	3355	26,8953	6,4343	4795	29.3584	8.8974		
470	21,1813	0.7203	1915	23.6181	3,1571	3360	26,8948	6,4338	4800	29.3282	8.8672		
475	21,1832	0.7222	1920	23.6424	3,1814	3365	26,9085	6.4475	4805	29.352	8.891		
480	21,1891	0,7281	1925	23,6468	3,1858	3370	26,9163	6,4553	4810	29,3587	8,8977		
485	21,1752	0,7142	1930	23,6455	3,1845	3375	26,9097	6,4487	4815	29,3484	8,8874		
490	21,1635	0,7025	1935	23,6527	3,1917	3380	26,9383	6,4773	4820	29,3699	8,9089		
495	21,1915	0,7305	1940	23,6473	3,1863	3385	26,9217	6,4607	4825	29,3892	8,9282		
500	21,1788	0,7178	1945	23,6634	3,2024	3390	26,9427	6,4817	4830	29,3738	8,9128		
505	21,2011	0,7401	1950	23,6555	3,1945	3395	26,9439	6,4829	4835	29,3523	8,8913		
510	21,1714	0,7104	1955	23,6683	3,2073	3400	26,9468	6,4858	4840	29,3743	8,9133		
515	21,1987	0,7377	1960	23,6611	3,2001	3405	26,9582	6,4972	4845	29,3842	8,9232		
520	21,1701	0,7091	1965	23,6724	3,2114	3410	26,9488	6,4878	4850	29,3909	8,9299		
525	21,1828	0,7218	1970	23,6688	3,2078	3415	26,9463	6,4853	4855	29,3909	8,9299		
530	21,2048	0,7438	1975	23,676	3,215	3420	26,954	6,493	4860	29,402	8,941		
535	21,1828	0,7218	1980	23,6706	3,2096	3425	26,9355	6,4745	4865	29,3904	8,9294		
540	21,1949	0,7339	1985	23,6854	3,2244	3430	26,9511	6,4901	4870	29,4017	8,9407		
545	21,1902	0,7292	1990	23,6926	3,2316	3435	26,9595	6,4985	4875	29,4052	8,9442		
550	21,1787	0,7177	1995	23,7044	3,2434	3440	26,4877	6,0267	4880	29,4163	8,9553		
555	21,1846	0,7236	2000	23,6842	3,2232	3445	26,9034	6,4424	4885	29,4065	8,9455		
560	21,2081	0,7471	2005	23,6921	3,2311	3450	26,9397	6,4787	4890	29,4221	8,9611		
565	21,2022	0,7412	2010	23,7069	3,2459	3455	26,9408	6,4798	4895	29,4357	8,9747		
570	21,2116	0,7506	2015	23,6854	3,2244	3460	26,9536	6,4926	4900	29,4419	8,9809		
575	21,1878	0,7268	2020	23,7041	3,2431	3465	26,9549	6,4939	4905	29,4106	8,9496		
580	21,181	0,72	2025	23,6862	3,2252	3470	26,9477	6,4867	4910	29,4149	8,9539		
585	21,1842	0,7232	2030	23,7212	3,2602	3475	26,9525	6,4915	4915	29,4323	8,9713		
590	21,1966	0,7356	2035	23,7077	3,2467	3480	26,9717	6,5107	4920	29,448	8,987		
595	21,2179	0,7569	2040	23,7118	3,2508	3485	26,9625	6,5015	4925	29,4482	8,9872		
600	21,1832	0,7222	2045	23,7225	3,2615	3490	26,9566	6,4956	4930	29,4336	8,9726		

605	21 2320	0 7719	2050	23 7077	3 2467	3495	26 9776	6 5166	1035	29 4042	8 9/32			
610	21,2323	0,7713	2050	23,7077	3,2407	3500	20,9770	6,5087	4955	29,4042	8.9452			
615	21,2257	0,7047	2000	23,7165	3,2575	3505	20,9097	6,5087	4940	29,4077	8 0731			
620	21,2000	0,7430	2000	23,7250	3,2040	3500	20,9012	6,5242	4945	29,4341	8,9731			
625	21,2340	0,7758	2005	23,7134	3,2044	3510	20,9032	6 5171	4950	29,4492	8,9667			
620	21,229	0,708	2070	23,7273	3,2003	3515	20,9701	6,5171	4955	29,4217	8,9007			
635	21,2308	0,7720	2013	23,7304	3,2734	3520	20,9901	6,524	4900	29,4237	0,9047			
640	21,2500	0,7038	2000	23,734	3,275	3520	20,905	6 5275	4903	29,4004	9,0054			
640	21,2554	0,7944	2000	23,719	2,200	3530	20,9900	6,5375	4970	29,4377	0,9707			
643	21,2005	0,7993	2090	23,7297	3,2007	3535	20,9957	6,5547	4975	29,4430	0,9640			
650	21,2493	0,7883	2095	23,7417	3,2007	3540	27,0104	6,5534	4900	29,4369	0,9779			
655	21,2004	0,8074	2100	23,7579	3,2909	3545	27,0140	6,5536	4960	29,4409	0,9809			
665	21,2009	0,8059	2105	23,7494	3,2004	3550	27,0100	6,5543	4990	29,4497	0,9667			
670	21,2707	0,8137	2110	23,7559	3,2949	3555	27,0117	0,5507	499 <u>0</u>	29,4552	0,9942			
670	21,2795	0,8185	2115	23,7499	3,2009	3560	27,009	6,546	5000	29,4561	0,9971			
675	21,2010	0,8208	2120	23,7471	3,2001	3505	27,0209	6,5599	5005	29,4401	0,9871			
695	21,289	0,828	2120	23,7543	3,2933	3570	27,034	6,573	5010	29,473	9,014			
600	21,295	0,834	2130	23,7584	3,2974	3575	27,0245	6,5055	5015	29,4073	9,0003			
690	21,2895	0,8283	2133	23,7607	3,2997	3380	27,0345	6,5755	5020	29,4037	9,0027			
700	21,3149	0,8559	2140	23,7564	2 2022	3585	27,0490	6,5880	5020	29,4010	9,0200			
700	21,317	0,8562	2140	23,7543	3,2933	3590	27,0512	6,5902	5035	29,409	9,008			
703	21,3172	0,8362	2150	23,7007	3,2997	3595	27,0509	0,3899	5055	29,4013	9,0003			
710	21,3330	0,8740	2100	23,7934	3,3324	3600	27,0605	6,5975	5040	29,4714	9,0104			
715	21,3240	0,8805	2100	23,7543	3,2933	3605	27,000	6,5995	5045	29,4913	9,0303			
720	21,3415	0,8803	2100	23,7799	2 2091	3010	27,0514	6,5904	5050	29,4809	9,0239			
723	21,3201	0,8804	2170	23,7091	3,3001	3013	27,0007	6,5957	5055	29,5145	9,0535			
730	21,3504	0,8894	2175	23,7647	2,3237	3020	27,0039	6,6029	5000	29,5155	9,0343			
733	21,3504	0,0894	2100	23,799	2,000	3625	27,0397	6,5987	5005	29,3008	9,0438			
740	21,3091	0,9081	2100	23,783	3,322	3635	27,0749	6,6139	5070	29,4838	9,0248			
743	21,3400	0,0838	2190	23,769	3,320	3640	27,0900	6,610	5075	29,4901	9,0351			
750	21,3732	0,9122	2195	23,0020	2 2 2 2 2 7	3645	27,00	6,6110	5085	29,5001	9,0451			
755	21,3743	0,9133	2200	23,7847	3,3237	3650	27,0129	6,6202	5000	29,5217	9,0007			
765	21,3003	0.0176	2203	23,7003	3 33180	3655	27 0807	6 6107	5090	23,5145	9,0000 0 0315			
705	21,3700	0,9170	2210	23,7 920	3 3424	3660	27,0007	6.641	5100	29,4923	9,0313			
775	21,4017	0,9407	2213	23,8015	3 3405	3665	27,102	6 6448	5105	29,4930	9,0320			
780	21,3905	0,9355	2220	23,8034	3 3424	3670	27,1030	6 653	5110	29,5104	9,0434			
785	21,4025	0.0520	2223	23,0034	3 2522	3675	27,114	6 6627	5115	23,5101	0 0679			
703	21,4143	0,3033	2230	23,0133	3 2115	3680	21,1237	6 652	5120	23,0200	0 NRE2			
790	21,4205	0.05/7	2200	23,0000	3 2267	3685	27,114	6 631	5120	23,3202	3,0032 0.0427			
800	21,4137	0,00718	2240	23,1011	3 3516	3600	27,092	6 6/2	5120	23,3037	9,0427			
805	21,4320	0.0726	2240	23,0120	3 3572	3605	27,104	6 6522	5130	23,3227	0 NE3			
810	21,4305	0,0720	2250	23,0150	3 25/17	3700	27,1132	6 6/6	51/0	23,324	0.0676			
010 01 <i>F</i>	21,4303	0,9093	2200	23,0137	3 2626	3705	27,107	6 6540	5140 51 <i>1</i> 5	23,0200	9,0070			
013	21,4012	0,3102	2200	20,0240	5,5050	5705	21,1152	0,0042	5145	29,020	9,000			1

820	21 4216	0.9606	2265	23 8169	3 3559	3710	27 1035	6 6425	5150	29 5199	9 0589	1		
825	21,4210	0,9706	2200	23,805	3 344	3715	27,1000	6,6462	5155	29,5796	9,0686			
830	21,4310	0.9814	2270	23,83	3 369	3720	27,1072	6 6324	5160	29,5191	9.0581			
835	21,4265	0.9655	2280	23,8312	3 3702	3725	27,0004	6 6511	5165	29,5344	9.0734			
840	21,4205	1 0005	2200	23,8169	3 3559	3730	27,1121	6,6457	5170	20,538	9.077			
845	21,4015	0.9826	2200	23,8431	3 3821	3735	27,1007	6,6403	5175	29,5342	9.0732			
850	21,4450	0,9941	2200	23,8364	3 3754	3740	27,1013	6 6452	5180	20,0042	9.068			
855	21,4001	1 012	2300	23,8169	3 3559	3745	27,1002	6 6385	5185	20,5311	9.0701			
860	21,475	0.9905	2305	23,8265	3 3655	3750	27,0000	6,0000	5190	29,5385	9.0775			
865	21,4010	1 0281	2310	23,8425	3 3815	3755	27,0000	6 6528	5195	29,5497	9.0887			
870	21 451	0.99	2315	23,829	3 368	3760	27 0892	6,6282	5200	29,5416	9.0806			
875	21,4772	1 0162	2320	23,8241	3 3631	3765	27,0002	6 6186	5205	29,5414	9 0804			
880	21,4816	1,0206	2325	23,8198	3,3588	3770	27.0927	6,6317	5210	29,5301	9,0691			
885	21,4522	0.9912	2330	23,8121	3.3511	3775	27.0771	6,6161	5215	29,5419	9,0809			
890	21,4767	1.0157	2335	23.8026	3.3416	3780	27.0862	6.6252	5220	29.5401	9.0791			
895	21,4545	0.9935	2340	23.8193	3.3583	3785	27.0796	6.6186	5225	29.544	9.083			
900	21,4796	1,0186	2345	23,8077	3,3467	3790	27,0743	6,6133	5230	29,5191	9,0581			
905	21,4755	1,0145	2350	23,8126	3,3516	3795	27,0484	6,5874	5235	29,5381	9,0771			
910	21,476	1,015	2355	23,8162	3,3552	3800	27,0842	6,6232	5240	29,525	9,064			
915	21,4492	0,9882	2360	23,8003	3,3393	3805	27,0533	6,5923	5245	29,5035	9,0425			
920	21,4599	0,9989	2365	23,8138	3,3528	3810	27,064	6,603	5250	29,5078	9,0468			
925	21,4742	1,0132	2370	23,8008	3,3398	3815	27,0694	6,6084	5255	29,4807	9,0197			
930	21,4617	1,0007	2375	23,7875	3,3265	3820	27,0497	6,5887	5260	29,5161	9,0551			
935	21,4436	0,9826	2380	23,8085	3,3475	3825	27,0479	6,5869	5265	29,5156	9,0546			
940	21,4455	0,9845	2385	23,8006	3,3396	3830	27,0246	6,5636	5270	29,501	9,04			
945	21,4598	0,9988	2390	23,7727	3,3117	3835	27,0277	6,5667	5275	29,4898	9,0288			
950	21,4526	0,9916	2395	23,7799	3,3189	3840	27,0432	6,5822	5280	29,4934	9,0324			
955	21,4554	0,9944	2400	23,7576	3,2966	3845	27,0318	6,5708	5285	29,4813	9,0203			
960	21,459	0,998	2405	23,7857	3,3247	3850	27,0445	6,5835	5290	29,4562	8,9952			
965	21,4554	0,9944	2410	23,7504	3,2894	3855	27,0366	6,5756	5295	29,4627	9,0017			
970	21,4495	0,9885	2415	23,7719	3,3109	3860	27,0182	6,5572	5300	29,4658	9,0048			
975	21,4554	0,9944	2420	23,7671	3,3061	3865	27,0151	6,5541	5305	29,4609	8,9999			
980	21,4518	0,9908	2425	23,7804	3,3194	3870	27,0271	6,5661	5310	29,4335	8,9725			
985	21,4549	0,9939	2430	23,7719	3,3109	3875	27,0205	6,5595	5315	29,4264	8,9654			
990	21,4411	0,9801	2435	23,7499	3,2889	3880	27,021	6,56	5320	29,4215	8,9605			
995	21,4419	0,9809	2440	23,7344	3,2734	3885	27,0104	6,5494	5325	29,4287	8,9677			
1000	21,4419	0,9809	2445	23,7313	3,2703	3890	26,9969	6,5359	5330	29,4338	8,9728			
1005	21,4419	0,9809	2450	23,7427	3,2817	3895	26,9956	6,5346	5335	29,4267	8,9657			
1010	21,4567	0,9957	2455	23,7349	3,2739	3900	26,9848	6,5238	5340	29,4131	8,9521			<u> </u>
1015	21,4347	0,9737	2460	23,7277	3,2667	3905	26,9729	6,5119	5345	29,4226	8,9616			
1020	21,424	0,963	2465	23,7356	3,2746	3910	27,002	6,541	5350	29,4183	8,9573			
1025	21,4292	0,9682	2470	23,7349	3,2739	3915	26,9956	6,5346	5355	29,4129	8,9519			
1030	21,4372	0,9762	2475	23,7129	3,2519	3920	27,0007	6,5397	5360	29,3927	8,9317			

1035	21,4372	0.9762	2480	23,717	3,256	3925	26,9936	6.5326	5365	29.3867	8.9257		
1040	21,4348	0.9738	2485	23,7074	3,2464	3930	26,9848	6,5238	5370	29.407	8,946		
1045	21,1010	0.9682	2490	23 7123	3 2513	3935	26 9787	6 5177	5375	29 3735	8 9125		
1050	21,4305	0,9695	2495	23 723	3 262	3940	26,9644	6 5034	5380	29,3991	8 9381		
1055	21 427	0.966	2500	23 7082	3 2472	3945	26,9649	6 5039	5385	29,3979	8 9369		
1060	21 4062	0.9452	2505	23 7159	3 2549	3950	26,9577	6 4967	5390	29,3795	8 9185		
1065	21,4169	0.9559	2510	23,6939	3.2329	3955	26,9542	6,4932	5395	29.3907	8.9297		
1070	21,4169	0.9559	2515	23.6823	3.2213	3960	26,9525	6,4915	5400	29.3715	8.9105		
1075	21,4174	0.9564	2520	23.6831	3.2221	3965	26,9481	6.4871	5405	29.38	8.919		
1080	21,421	0.96	2525	23,6747	3,2137	3970	26,9386	6,4776	5410	29,3513	8,8903		
1085	21,4246	0,9636	2530	23,6752	3,2142	3975	26,9517	6,4907	5415	29,362	8,901		
1090	21,4187	0,9577	2535	23,6724	3,2114	3980	26,9709	6,5099	5420	29,3436	8,8826		
1095	21,433	0,972	2540	23,6693	3,2083	3985	26,9422	6,4812	5425	29,3405	8,8795		
1100	21,4248	0,9638	2545	23,6521	3,1911	3990	26,9335	6,4725	5430	29,3233	8,8623		
1105	21,4207	0,9597	2550	23,6503	3,1893	3995	26,9335	6,4725	5435	29,3103	8,8493		
1110	21,4327	0,9717	2555	23,6605	3,1995	4000	26,9531	6,4921	5440	29,331	8,87		
1115	21,4219	0,9609	2560	23,6559	3,1949	4005	26,9423	6,4813	5445	29,3167	8,8557		
1120	21,4092	0,9482	2565	23,6622	3,2012	4010	26,928	6,467	5450	29,3233	8,8623		
1125	21,408	0,947	2570	23,6415	3,1805	4015	26,9324	6,4714	5455	29,3282	8,8672		
1130	21,402	0,941	2575	23,6515	3,1905	4020	26,9145	6,4535	5460	29,3007	8,8397		
1135	21,3895	0,9285	2580	23,638	3,177	4025	26,9101	6,4491	5465	29,3092	8,8482		
1140	21,3943	0,9333	2585	23,5655	3,1045	4030	26,9121	6,4511	5470	29,281	8,82		
1145	21,4092	0,9482	2590	23,6116	3,1506	4035	26,9241	6,4631	5475	29,3056	8,8446		
1150	21,3979	0,9369	2595	23,6187	3,1577	4040	26,9002	6,4392	5480	29,3176	8,8566		
1155	21,3956	0,9346	2600	23,6145	3,1535	4045	26,8967	6,4357	5485	29,277	8,816		
1160	21,3912	0,9302	2605	23,5996	3,1386	4050	26,8925	6,4315	5490	29,2679	8,8069		
1165	21,4028	0,9418	2610	23,6187	3,1577	4055	26,8734	6,4124	5495	29,2679	8,8069		
1170	21,3813	0,9203	2615	23,6008	3,1398	4060	26,8626	6,4016	5500	29,2723	8,8113		
1175	21,3758	0,9148	2620	23,6146	3,1536	4065	26,871	6,41	5505	29,2795	8,8185		
1180	21,389	0,928	2625	23,6146	3,1536	4070	26,883	6,422	5510	29,2715	8,8105		
1185	21,3782	0,9172	2630	23,6087	3,1477	4075	26,8795	6,4185	5515	29,2728	8,8118		
1190	21,3746	0,9136	2635	23,5843	3,1233	4080	26,8766	6,4156	5520	29,2723	8,8113		
1195	21,3615	0,9005	2640	23,5908	3,1298	4085	26,8807	6,4197	5525	29,262	8,801		
1200	21,3843	0,9233	2645	23,5795	3,1185	4090	26,8694	6,4084	5530	29,2585	8,7975		
1205	21,3712	0,9102	2650	23,601	3,14	4095	26,8825	6,4215	5535	29,2561	8,7951		
1210	21,3755	0,9145	2655	23,6099	3,1489	4100	26,8815	6,4205	5540	29,2574	8,7964		
1215	21,3732	0,9122	2660	23,6017	3,1407	4105	26,8748	6,4138	5545	29,2108	8,7498		
1220	21,3911	0,9301	2665	23,597	3,136	4110	26,8796	6,4186	5550	29,2395	8,7785		
1225	21,3732	0,9122	2670	23,5714	3,1104	4115	26,8612	6,4002	5555	29,2238	8,7628		
1230	21,3673	0,9063	2675	23,5635	3,1025	4120	26,8576	6,3966	5560	29,2569	8,7959		
1235	21,3626	0,9016	2680	23,5743	3,1133	4125	26,86	6,399	5565	29,245	8,784		
1240	21,3555	0,8945	2685	23,5683	3,1073	4130	26,8468	6,3858	5570	29,224	8,763		
1245	21,3475	0,8865	2690	23,5744	3,1134	4135	26,8397	6,3787	5575	29,2371	8,7761		

1250	21,3595	0,8985	2695	23,5667	3,1057	4140	26,864	6,403	5580	29,244	8,783			
1255	21,3513	0,8903	2700	23,5716	3,1106	4145	26,8617	6,4007	5585	29,2588	8,7978			
1260	21,3448	0,8838	2705	23,5442	3,0832	4150	26,8773	6,4163	5590	29,2611	8,8001			
1265	21,3676	0,9066	2710	23,5585	3,0975	4155	26,835	6,374	5595	29,2296	8,7686			
1270	21,3491	0,8881	2715	23,5449	3,0839	4160	26,8422	6,3812	5600	29,2324	8,7714			
1275	21,3558	0,8948	2720	23,5348	3,0738	4165	26,8565	6,3955	5605	29,1974	8,7364			
1280	21,348	0,887	2725	23,5397	3,0787	4170	26,8363	6,3753	5610	29,2106	8,7496			
1285	21,3384	0,8774	2730	23,533	3,072	4175	26,8435	6,3825	5615	29,1932	8,7322			
1290	21,3608	0,8998	2735	23,5409	3,0799	4180	26,822	6,361	5620	29,1855	8,7245			
1295	21,3467	0,8857	2740	23,5199	3,0589	4185	26,8475	6,3865	5625	29,204	8,743			
1300	21,3559	0,8949	2745	23,5398	3,0788	4190	26,8375	6,3765	5630	29,2111	8,7501			
1305	21,3421	0,8811	2750	23,547	3,086	4195	26,8368	6,3758	5635	29,2016	8,7406			
1310	21,3631	0,9021	2755	23,5427	3,0817	4200	26,8232	6,3622	5640	29,231	8,77			
1315	21,3589	0,8979	2760	23,547	3,086	4205	26,8416	6,3806	5645	29,2179	8,7569			
1320	21,3482	0,8872	2765	23,5463	3,0853	4210	26,8316	6,3706	5650	29,2407	8,7797			
1325	21,3382	0,8772	2770	23,5483	3,0873	4215	26,797	6,336	5655	29,2264	8,7654			
1330	21,3495	0,8885	2775	23,5544	3,0934	4220	26,8047	6,3437	5660	29,2197	8,7587			
1335	21,3597	0,8987	2780	23,5519	3,0909	4225	26,8006	6,3396	5665	29,222	8,761			
1340	21,343	0,882	2785	23,5403	3,0793	4230	26,8203	6,3593	5670	29,2305	8,7695			
1345	21,3502	0,8892	2790	23,526	3,065	4235	26,8377	6,3767	5675	29,1989	8,7379			
1350	21,3639	0,9029	2795	23,5463	3,0853	4240	26,8174	6,3564	5680	29,2209	8,7599			
1355	21,3627	0,9017	2800	23,5268	3,0658	4245	26,8187	6,3577	5685	29,1994	8,7384			
1360	21,3699	0,9089	2805	23,5201	3,0591	4250	26,8282	6,3672	5690	29,1887	8,7277			
1365	21,3675	0,9065	2810	23,5296	3,0686	4255	26,8174	6,3564	5695	29,2085	8,7475			
1370	21,3688	0,9078	2815	23,5423	3,0813	4260	26,8378	6,3768	5700	29,1887	8,7277			
1375	21,3587	0,8977	2820	23,528	3,067	4265	26,8358	6,3748	5705	29,1953	8,7343			
1380	21,37	0,909	2825	23,5257	3,0647	4270	26,8092	6,3482	5710	29,2278	8,7668			
1385	21,3749	0,9139	2830	23,5602	3,0992	4275	26,8192	6,3582	5715	29,248	8,787			
1390	21,3725	0,9115	2835	23,5436	3,0826	4280	26,8204	6,3594	5720	29,1971	8,7361			
1395	21,3935	0,9325	2840	23,5679	3,1069	4285	26,8235	6,3625	5725	29,1859	8,7249			
1400	21,3832	0,9222	2845	23,5597	3,0987	4290	26,8468	6,3858	5730	29,2086	8,7476			
1405	21,3924	0,9314	2850	23,5461	3,0851	4295	26,8391	6,3781	5735	29,2229	8,7619			
1410	21,3937	0,9327	2855	23,5513	3,0903	4300	26,8562	6,3952	5740	29,211	8,75			
1415	21,3901	0,9291	2860	23,5663	3,1053	4305	26,8491	6,3881	5745	29,2301	8,7691			
1420	21,4265	0,9655	2865	23,5651	3,1041	4310	26,869	6,408	5750	29,2229	8,7619			
1425	21,4144	0,9534	2870	23,5822	3,1212	4315	26,8587	6,3977	5755	29,2449	8,7839			
1430	21,4177	0,9567	2875	23,5574	3,0964	4320	26,8882	6,4272	5760	29,2301	8,7691			
1435	21,4244	0,9634	2880	23,5627	3,1017	4320	26,8882	6,4272	5765	29,2014	8,7404			
1440	21,4184	0,9574	2885	23,5963	3,1353	4325	26,8524	6,3914						

					Ensayo	de bombeo					
	24 hs			48 hs			72 hs			96 hs	
Tiempo (min)	Nivel del agua (m)	Descenso (m)									
0	20,24	0	1445	20,2980567	0,05805667	2890	20,3479333	0,10793333	4330	20,6442	0,4042
5			1450	20,29974	0,05974	2895	20,35472	0,11472	4335	20,6431267	0,40312667
10			1455	20,30175	0,06175	2900	20,35443	0,11443	4340	20,6443733	0,40437333
15			1460	20,3120667	0,07206667	2905	20,3537067	0,11370667	4345	20,6443333	0,40433333
20			1465	20,3062267	0,06622667	2910	20,36635	0,12635	4350	20,6467467	0,40674667
25			1470	20,31471	0,07471	2915	20,3645	0,1245	4355	20,6469033	0,40690333
30			1475	20,3186067	0,07860667	2920	20,3690667	0,12906667	4360	20,6495667	0,40956667
35			1480	20,3292667	0,08926667	2925	20,3742533	0,13425333	4365	20,6411	0,4011
40			1485	20,3235833	0,08358333	2930	20,3736233	0,13362333	4370	20,65075	0,41075
45			1490	20,32621	0,08621	2935	20,3786233	0,13862333	4375	20,6421367	0,40213667
50			1495	20,3332067	0,09320667	2940	20,3783467	0,13834667	4380	20,6514067	0,41140667
55			1500	20,3308	0,0908	2945	20,4034633	0,16346333	4385	20,6563033	0,41630333
60			1505	20,3740167	0,13401667	2950	20,4076533	0,16765333	4390	20,6658333	0,42583333
65			1510	20,3817267	0,14172667	2955	20,4184567	0,17845667	4395	20,6696667	0,42966667
70			1515	20,3856667	0,14566667	2960	20,4318333	0,19183333	4400	20,6716067	0,43160667
75			1520	20,3928833	0,15288333	2965	20,4344833	0,19448333	4405	20,6657267	0,42572667
80			1525	20,3944067	0,15440667	2970	20,4408767	0,20087667	4410	20,66465	0,42465
85			1530	20,3933167	0,15331667	2975	20,4397333	0,19973333	4415	20,6645833	0,42458333
90			1535	20,3920667	0,15206667	2980	20,4480667	0,20806667	4420	20,67225	0,43225
95			1540	20,4092267	0,16922667	2985	20,4491833	0,20918333	4425	20,66605	0,42605
100			1545	20,4012167	0,16121667	2990	20,4535567	0,21355667	4430	20,6709333	0,43093333
105			1550	20,41114	0,17114	2995	20,4512167	0,21121667	4435	20,6755667	0,43556667

Tabla 2. Datos completos de la perforación de observación (Nº90.3.031).

110		1555	20,4085167	0,16851667	3000	20,4510833	0,21108333	4440	20,6793567	0,43935667
115		1560	20,4092933	0,16929333	3005	20,4556267	0,21562667	4445	20,6723167	0,43231667
120		1565	20,4158167	0,17581667	3010	20,4588133	0,21881333	4450	20,6768167	0,43681667
125		1570	20,4164833	0,17648333	3015	20,46056	0,22056	4455	20,6755667	0,43556667
130		1575	20,4190667	0,17906667	3020	20,47219	0,23219	4460	20,6673833	0,42738333
135		1580	20,4221233	0,18212333	3025	20,4766267	0,23662667	4465	20,673	0,433
140		1585	20,42445	0,18445	3030	20,46325	0,22325	4470	20,6768333	0,43683333
145		1590	20,4279667	0,18796667	3035	20,4671067	0,22710667	4475	20,6717933	0,43179333
150		1595	20,4285433	0,18854333	3040	20,467	0,227	4480	20,6725667	0,43256667
155		1600	20,4223833	0,18238333	3045	20,4718267	0,23182667	4485	20,67179	0,43179
160		1605	20,43349	0,19349	3050	20,47524	0,23524	4490	20,6710167	0,43101667
165		1610	20,43311	0,19311	3055	20,47486	0,23486	4495	20,6718167	0,43181667
170		1615	20,4335567	0,19355667	3060	20,47294	0,23294	4500	20,6789433	0,43894333
175		1620	20,4386	0,1986	3065	20,4773767	0,23737667	4505	20,6813067	0,44130667
180		1625	20,4386667	0,19866667	3070	20,4786	0,2386	4510	20,6767667	0,43676667
185		1630	20,4456	0,2056	3075	20,48205	0,24205	4515	20,6801933	0,44019333
190		1635	20,43251	0,19251	3080	20,48769	0,24769	4520	20,68135	0,44135
195		1640	20,4312333	0,19123333	3085	20,4875833	0,24758333	4525	20,6764	0,4364
200		1645	20,4311667	0,19116667	3090	20,4894767	0,24947667	4530	20,6739667	0,43396667
205		1650	20,4385733	0,19857333	3095	20,4979833	0,25798333	4535	20,67194	0,43194
210		1655	20,4300767	0,19007667	3100	20,4895167	0,24951667	4540	20,6809433	0,44094333
215		1660	20,4287333	0,18873333	3105	20,4965167	0,25651667	4545	20,6859333	0,44593333
220		1665	20,41525	0,17525	3110	20,4896733	0,24967333	4550	20,6829233	0,44292333
225		1670	20,42455	0,18455	3115	20,49551	0,25551	4555	20,68585	0,44585
230		1675	20,4228567	0,18285667	3120	20,4966	0,2566	4560	20,6801667	0,44016667
235		1680	20,4191767	0,17917667	3125	20,4997667	0,25976667	4565	20,6823433	0,44234333
240		1685	20,4130733	0,17307333	3130	20,5017733	0,26177333	4570	20,6834567	0,44345667

245		1690	20,4107767	0,17077667	3135	20,50285	0,26285	4575	20,6738333	0,43383333
250		1695	20,41314	0,17314	3140	20,5058267	0,26582667	4580	20,6771933	0,43719333
255		1700	20,4193667	0,17936667	3145	20,5011	0,2611	4585	20,6829167	0,44291667
260		1705	20,4195	0,1795	3150	20,50739	0,26739	4590	20,68339	0,44339
265		1710	20,4156667	0,17566667	3155	20,5088833	0,26888333	4595	20,6829433	0,44294333
270		1715	20,4018	0,1618	3160	20,5128667	0,27286667	4600	20,6884067	0,44840667
275		1720	20,4143267	0,17432667	3165	20,50571	0,26571	4605	20,67655	0,43655
280		1725	20,4049167	0,16491667	3170	20,5158067	0,27580667	4610	20,6793267	0,43932667
285		1730	20,4015567	0,16155667	3175	20,5158333	0,27583333	4615	20,67725	0,43725
290		1735	20,4025767	0,16257667	3180	20,5223167	0,28231667	4620	20,6779833	0,43798333
295		1740	20,4024167	0,16241667	3185	20,5126667	0,27266667	4625	20,6822233	0,44222333
300		1745	20,3974	0,1574	3190	20,5121933	0,27219333	4630	20,6860833	0,44608333
305		1750	20,4035567	0,16355667	3195	20,5110067	0,27100667	4635	20,6784167	0,43841667
310		1755	20,3928167	0,15281667	3200	20,51585	0,27585	4640	20,68225	0,44225
315		1760	20,3999433	0,15994333	3205	20,5193	0,2793	4645	20,6867933	0,44679333
320		1765	20,3965567	0,15655667	3210	20,5196167	0,27961667	4650	20,6779833	0,43798333
325		1770	20,3858167	0,14581667	3215	20,5243167	0,28431667	4655	20,6855833	0,44558333
330		1775	20,38795	0,14795	3220	20,53265	0,29265	4660	20,6805667	0,44056667
335		1780	20,3934767	0,15347667	3225	20,52875	0,28875	4665	20,6809733	0,44097333
340		1785	20,3924	0,1524	3230	20,5275667	0,28756667	4670	20,681	0,441
345		1790	20,3851167	0,14511667	3235	20,5244	0,2844	4675	20,6874833	0,44748333
350		1795	20,3898167	0,14981667	3240	20,5319767	0,29197667	4680	20,6886	0,4486
355		1800	20,3809233	0,14092333	3245	20,5320833	0,29208333	4685	20,6805267	0,44052667
360		1805	20,3742667	0,13426667	3250	20,52754	0,28754	4690	20,6953833	0,45538333
365		1810	20,3697667	0,12976667	3255	20,5370833	0,29708333	4695	20,6875833	0,44758333
370										
		1815	20,3806	0,1406	3260	20,5339833	0,29398333	4700	20,6887667	0,44876667

380			1825	20,3684067	0,12840667	3270	20,5315233	0,29152333	4710	20,6914833	0,45148333
385			1830	20,3780833	0,13808333	3275	20,53331	0,29331	4715	20,6914167	0,45141667
390			1835	20,37186	0,13186	3280	20,53415	0,29415	4720	20,6851933	0,44519333
395			1840	20,3764	0,1364	3285	20,5391	0,2991	4725	20,6863733	0,44637333
400			1845	20,36869	0,12869	3290	20,5379833	0,29798333	4730	20,6810567	0,44105667
405			1850	20,3724167	0,13241667	3295	20,54175	0,30175	4735	20,6887733	0,44877333
410			1855	20,3731267	0,13312667	3300	20,5338233	0,29382333	4740	20,6958367	0,45583667
415			1860	20,3727167	0,13271667	3305	20,53536	0,29536	4745	20,6829967	0,44299667
420			1865	20,3706667	0,13066667	3310	20,5434733	0,30347333	4750	20,6889033	0,44890333
425			1870	20,3723233	0,13232333	3315	20,54421	0,30421	4755	20,6807533	0,44075333
430			1875	20,3750433	0,13504333	3320	20,54735	0,30735	4760	20,6849033	0,44490333
435			1880	20,3801	0,1401	3325	20,54479	0,30479	4765	20,6856267	0,44562667
440			1885	20,3727833	0,13278333	3330	20,5490333	0,30903333	4770	20,6849567	0,44495667
445			1890	20,3799667	0,13996667	3335	20,5468	0,3068	4775	20,6722333	0,43223333
450			1895	20,37515	0,13515	3340	20,5473767	0,30737667	4780	20,6791233	0,43912333
455			1900	20,3731667	0,13316667	3345	20,5550833	0,31508333	4785	20,6721267	0,43212667
460			1905	20,3770233	0,13702333	3350	20,5467067	0,30670667	4790	20,6843767	0,44437667
465			1910	20,3737933	0,13379333	3355	20,5543333	0,31433333	4795	20,6829967	0,44299667
470			1915	20,37265	0,13265	3360	20,55386	0,31386	4800	20,68365	0,44365
475			1920	20,3661233	0,12612333	3365	20,5531233	0,31312333	4805	20,6907767	0,45077667
480			1925	20,3725433	0,13254333	3370	20,56721	0,32721	4810	20,6835567	0,44355667
485	30,0660567	9,82605667	1930	20,36565	0,12565	3375	20,5600567	0,32005667	4815	20,6835833	0,44358333
490	20,3361367	0,09613667	1935	20,3655833	0,12558333	3380	20,5600833	0,32008333	4820	20,6852867	0,44528667
495	20,2644567	0,02445667	1940	20,3634067	0,12340667	3385	20,5651	0,3251	4825	20,6837	0,4437
500	20,26224	0,02224	1945	20,3656767	0,12567667	3390	20,5589433	0,31894333	4830	20,6876667	0,44766667
505	20,2668767	0,02687667	1950	20,3706233	0,13062333	3395	20,56585	0,32585	4835	20,68239	0,44239
510	20,2712	0,0312	1955	20,3724767	0,13247667	3400	20,5613733	0,32137333	4840	20,6874567	0,44745667

515	20,2644	0,0244	1960	20,3706667	0,13066667	3405	20,5658767	0,32587667	4845	20,68311	0,44311
520	20,2605	0,0205	1965	20,37114	0,13114	3410	20,5709333	0,33093333	4850	20,6830833	0,44308333
525	20,2623933	0,02239333	1970	20,3635	0,1235	3415	20,5743833	0,33438333	4855	20,6814033	0,44140333
530	20,2610567	0,02105667	1975	20,3711667	0,13116667	3420	20,5747233	0,33472333	4860	20,6922067	0,45220667
535	20,2625267	0,02252667	1980	20,3369267	0,09692667	3425	20,5685267	0,32852667	4865	20,68114	0,44114
540	20,2579333	0,01793333	1985	20,34114	0,10114	3430	20,5696833	0,32968333	4870	20,6773333	0,43733333
545	20,2565333	0,01653333	1990	20,3469167	0,10691667	3435	20,5766833	0,33668333	4875	20,6814033	0,44140333
550	20,2636233	0,02362333	1995	20,3407167	0,10071667	3440	20,5741	0,3341	4880	20,67853	0,43853
555	20,2624	0,0224	2000	20,3417667	0,10176667	3445	20,5684167	0,32841667	4885	20,6836	0,4436
560	20,2603933	0,02039333	2005	20,3406267	0,10062667	3450	20,56889	0,32889	4890	20,6791233	0,43912333
565	20,2559333	0,01593333	2010	20,34689	0,10689	3455	20,5761333	0,33613333	4895	20,68197	0,44197
570	20,26064	0,02064	2015	20,3430833	0,10308333	3460	20,57406	0,33406	4900	20,6828633	0,44286333
575	20,2625167	0,02251667	2020	20,3380433	0,09804333	3465	20,57535	0,33535	4905	20,6836267	0,44362667
580	20,26062	0,02062	2025	20,3438333	0,10383333	3470	20,5696667	0,32966667	4910	20,68511	0,44511
585	20,2627967	0,02279667	2030	20,33354	0,09354	3475	20,5804333	0,34043333	4915	20,6901	0,4501
590	20,26372	0,02372	2035	20,3303767	0,09037667	3480	20,57785	0,33785	4920	20,6846533	0,44465333
595	20,2637633	0,02376333	2040	20,3347233	0,09472333	3485	20,5798567	0,33985667	4925	20,6863467	0,44634667
600	20,2591833	0,01918333	2045	20,3424167	0,10241667	3490	20,5847667	0,34476667	4930	20,6856233	0,44562333
605	20,2587767	0,01877667	2050	20,3342767	0,09427667	3495	20,5805267	0,34052667	4935	20,6836667	0,44366667
610	20,2645	0,0245	2055	20,3380833	0,09808333	3500	20,57979	0,33979	4940	20,6771833	0,43718333
615	20,2633167	0,02331667	2060	20,33425	0,09425	3505	20,58046	0,34046	4945	20,6913767	0,45137667
620	20,26661	0,02661	2065	20,3385567	0,09855667	3510	20,5867233	0,34672333	4950	20,6914167	0,45141667
625	20,2707233	0,03072333	2070	20,3397667	0,09976667	3515	20,58675	0,34675	4955	20,6837733	0,44377333
630	20,2579467	0,01794667	2075	20,3381767	0,09817667	3520	20,5860167	0,34601667	4960	20,6867667	0,44676667
635	20,2625433	0,02254333	2080	20,3354333	0,09543333	3525	20,5898933	0,34989333	4965	20,6849167	0,44491667
640	20,2659433	0,02594333	2085	20,3386233	0,09862333	3530	20,5931233	0,35312333	4970	20,6913767	0,45137667
645	20,2678567	0,02785667	2090	20,33475	0,09475	3535	20,58996	0,34996	4975	20,6957233	0,45572333

650	20,2634433	0,02344333	2095	20,3359333	0,09593333	3540	20,5969567	0,35695667	4980	20,6868767	0,44687667
655	20,2569333	0,01693333	2100	20,3381767	0,09817667	3545	20,5911433	0,35114333	4985	20,6919567	0,45195667
660	20,26708	0,02708	2105	20,3369	0,0969	3550	20,5917233	0,35172333	4990	20,69381	0,45381
665	20,26222	0,02222	2110	20,33229	0,09229	3555	20,5955833	0,35558333	4995	20,6893733	0,44937333
670	20,2614567	0,02145667	2115	20,3334333	0,09343333	3560	20,5962933	0,35629333	5000	20,6900433	0,45004333
675	20,2602333	0,02023333	2120	20,33421	0,09421	3565	20,6032667	0,36326667	5005	20,6955733	0,45557333
680	20,264	0,024	2125	20,33425	0,09425	3570	20,5964	0,3564	5010	20,6951933	0,45519333
685	20,2589833	0,01898333	2130	20,3385567	0,09855667	3575	20,5936833	0,35368333	5015	20,6894167	0,44941667
690	20,2605733	0,02057333	2135	20,3412333	0,10123333	3580	20,6026233	0,36262333	5020	20,6913333	0,45133333
695	20,2704867	0,03048667	2140	20,3385167	0,09851667	3585	20,6032933	0,36329333	5025	20,6910733	0,45107333
700	20,26333	0,02333	2145	20,33811	0,09811	3590	20,60189	0,36189	5030	20,69261	0,45261
705	20,2654033	0,02540333	2150	20,33354	0,09354	3595	20,59496	0,35496	5035	20,69954	0,45954
710	20,2639733	0,02397333	2155	20,3339733	0,09397333	3600	20,5993067	0,35930667	5040	20,69756	0,45756
715	20,264	0,024	2160	20,33807	0,09807	3605	20,6012267	0,36122667	5045	20,6969567	0,45695667
720	20,25515	0,01515	2165	20,3385567	0,09855667	3610	20,5956067	0,35560667	5050	20,69545	0,45545
725	20,2670333	0,02703333	2170	20,3443333	0,10433333	3615	20,60726	0,36726	5055	20,7001267	0,46012667
730	20,26454	0,02454	2175	20,3397667	0,09976667	3620	20,6014167	0,36141667	5060	20,69515	0,45515
735	20,2568333	0,01683333	2180	20,3436667	0,10366667	3625	20,6061733	0,36617333	5065	20,69939	0,45939
740	20,2613767	0,02137667	2185	20,34201	0,10201	3630	20,6051267	0,36512667	5070	20,69511	0,45511
745	20,26454	0,02454	2190	20,34045	0,10045	3635	20,60519	0,36519	5075	20,6943733	0,45437333
750	20,2676	0,0276	2195	20,33604	0,09604	3640	20,6089167	0,36891667	5080	20,6936	0,4536
755	20,25955	0,01955	2200	20,3321667	0,09216667	3645	20,6050833	0,36508333	5085	20,7051667	0,46516667
760	20,2644333	0,02443333	2205	20,3350067	0,09500667	3650	20,6117567	0,37175667	5090	20,7085267	0,46852667
765	20,2525267	0,01252667	2210	20,33687	0,09687	3655	20,6059533	0,36595333	5095	20,70585	0,46585
770	20,2582733	0,01827333	2215	20,3329167	0,09291667	3660	20,60943	0,36943	5100	20,7028167	0,46281667
775						0005	20 6424067	0.07040667	E10E		0.45555667
	20,2523933	0,01239333	2220	20,3345733	0,09457333	3665	20,6134867	0,37348667	5105	20,6955567	0,45555667

785	20,2644067	0,02440667	2230	20,3322067	0,09220667	3675	20,60972	0,36972	5115	20,7061133	0,46611333
790	20,2613767	0,02137667	2235	20,33529	0,09529	3680	20,6106133	0,37061333	5120	20,69372	0,45372
795	20,2614167	0,02141667	2240	20,3316533	0,09165333	3685	20,60636	0,36636	5125	20,7041967	0,46419667
800	20,26454	0,02454	2245	20,3352633	0,09526333	3690	20,6075167	0,36751667	5130	20,6944533	0,45445333
805	20,26521	0,02521	2250	20,3402667	0,10026667	3695	20,5998933	0,35989333	5135	20,7029467	0,46294667
810	20,26764	0,02764	2255	20,3348433	0,09484333	3700	20,6086133	0,36861333	5140	20,7039467	0,46394667
815	20,2626267	0,02262667	2260	20,3364067	0,09640667	3705	20,6096133	0,36961333	5145	20,7049467	0,46494667
820	20,2603	0,0203	2265	20,3264433	0,08644333	3710	20,6048867	0,36488667	5150	20,6963867	0,45638667
825	20,26329	0,02329	2270	20,3348167	0,09481667	3715	20,60507	0,36507	5155	20,7042367	0,46423667
830	20,2555833	0,01558333	2275	20,33475	0,09475	3720	20,6055567	0,36555667	5160	20,7013633	0,46136333
835	20,2574767	0,01747667	2280	20,3321	0,0921	3725	20,6101267	0,37012667	5165	20,7014167	0,46141667
840	20,26454	0,02454	2285	20,336	0,096	3730	20,60799	0,36799	5170	20,7050133	0,46501333
845	20,253	0,013	2290	20,32405	0,08405	3735	20,61549	0,37549	5175	20,70881	0,46881
850	20,26521	0,02521	2295	20,33014	0,09014	3740	20,6077033	0,36770333	5180	20,70558	0,46558
855	20,2614167	0,02141667	2300	20,33206	0,09206	3745	20,6080567	0,36805667	5185	20,7057367	0,46573667
860	20,25375	0,01375	2305	20,3309833	0,09098333	3750	20,60832	0,36832	5190	20,7119733	0,47197333
865	20,25924	0,01924	2310	20,32299	0,08299	3755	20,6080967	0,36809667	5195	20,7053033	0,46530333
870	20,2605167	0,02051667	2315	20,33146	0,09146	3760	20,61239	0,37239	5200	20,7165133	0,47651333
875	20,2617667	0,02176667	2320	20,3303167	0,09031667	3765	20,6062167	0,36621667	5205	20,7294433	0,48944333
880	20,2625433	0,02254333	2325	20,32954	0,08954	3770	20,61065	0,37065	5210	20,7361133	0,49611333
885	20,2561233	0,01612333	2330	20,3309433	0,09094333	3775	20,6170667	0,37706667	5215	20,73451	0,49451
890	20,26136	0,02136	2335	20,32635	0,08635	3780	20,61506	0,37506	5220	20,7346533	0,49465333
895	20,2644567	0,02445667	2340	20,3252333	0,08523333	3785	20,60989	0,36989	5225	20,7329867	0,49298667
900	20,25675	0,01675	2345	20,33404	0,09404	3790	20,60826	0,36826	5230	20,73255	0,49255
905	20,2562767	0,01627667	2350	20,3294333	0,08943333	3795	20,6093733	0,36937333	5235	20,7336	0,4936
910	20,2548067	0,01480667	2355	20,3314167	0,09141667	3800	20,617	0,377	5240	20,7375	0,4975
915	20,2589267	0,01892667	2360	20,3313933	0,09139333	3805	20,6181833	0,37818333	5245	20,73821	0,49821

920	20,255	0,015	2365	20,3269567	0,08695667	3810	20,624	0,384	5250	20,7306067	0,49060667
925	20,2588333	0,01883333	2370	20,3242667	0,08426667	3815	20,6165933	0,37659333	5255	20,7319433	0,49194333
930	20,26049	0,02049	2375	20,3258	0,0858	3820	20,6181567	0,37815667	5260	20,7314433	0,49144333
935	20,2608667	0,02086667	2380	20,32136	0,08136	3825	20,6165933	0,37659333	5265	20,72543	0,48543
940	20,2551767	0,01517667	2385	20,32829	0,08829	3830	20,6200733	0,38007333	5270	20,7287767	0,48877667
945	20,2589167	0,01891667	2390	20,32896	0,08896	3835	20,6196933	0,37969333	5275	20,7383333	0,49833333
950	20,2550833	0,01508333	2395	20,3194167	0,07941667	3840	20,6151	0,3751	5280	20,7275667	0,48756667
955	20,2543733	0,01437333	2400	20,32829	0,08829	3845	20,6144567	0,37445667	5285	20,7236667	0,48366667
960	20,2485833	0,00858333	2405	20,3277767	0,08777667	3850	20,61631	0,37631	5290	20,7287067	0,48870667
965	20,24475	0,00475	2410	20,32439	0,08439	3855	20,61954	0,37954	5295	20,7281933	0,48819333
970	20,2459333	0,00593333	2415	20,32825	0,08825	3860	20,6151933	0,37519333	5300	20,7212333	0,48123333
975	20,24865	0,00865	2420	20,3194	0,0794	3865	20,6194733	0,37947333	5305	20,72235	0,48235
980	20,2485833	0,00858333	2425	20,3217	0,0817	3870	20,61685	0,37685	5310	20,7224167	0,48241667
985	20,25386	0,01386	2430	20,32065	0,08065	3875	20,6140767	0,37407667	5315	20,7212333	0,48123333
990	20,2485567	0,00855667	2435	20,32011	0,08011	3880	20,6182233	0,37822333	5320	20,7211667	0,48116667
995	20,24546	0,00546	2440	20,3227333	0,08273333	3885	20,6179667	0,37796667	5325	20,7250233	0,48502333
1000	20,25125	0,01125	2445	20,32314	0,08314	3890	20,62846	0,38846	5330	20,723	0,483
1005	20,2455	0,0055	2450	20,3238767	0,08387667	3895	20,6215667	0,38156667	5335	20,72371	0,48371
1010	20,2498067	0,00980667	2455	20,3232067	0,08320667	3900	20,6234167	0,38341667	5340	20,7283167	0,48831667
1015	20,2455267	0,00552667	2460	20,327	0,087	3905	20,6203167	0,38031667	5345	20,7237067	0,48370667
1020	20,2416667	0,00166667	2465	20,3181267	0,07812667	3910	20,6130567	0,37305667	5350	20,7296767	0,48967667
1025	20,2471567	0,00715667	2470	20,3232067	0,08320667	3915	20,62146	0,38146	5355	20,7269333	0,48693333
1030	20,24221	0,00221	2475	20,3265267	0,08652667	3920	20,6157733	0,37577333	5360	20,72435	0,48435
1035	20,2518333	0,01183333	2480	20,3193067	0,07930667	3925	20,6118333	0,37183333	5365	20,7309	0,4909
1040	20,2491833	0,00918333	2485	20,3186	0,0786	3930	20,61756	0,37756	5370	20,7200667	0,48006667
1045	20,25119	0,01119	2490	20,31985	0,07985	3935	20,62105	0,38105	5375	20,7262233	0,48622333
1050	20,2446	0,0046	2495	20,3295	0,0895	3940	20,619	0,379	5380	20,7212333	0,48123333

1055	20,2485	0,0085	2500	20,3290267	0,08902667	3945	20,6118067	0,37180667	5385	20,72836	0,48836
1060	20,2357933	-0,00420667	2505	20,3294733	0,08947333	3950	20,6156667	0,37566667	5390	20,7288067	0,48880667
1065	20,24925	0,00925	2510	20,3251933	0,08519333	3955	20,6195	0,3795	5395	20,72765	0,48765
1070	20,2454167	0,00541667	2515	20,3244567	0,08445667	3960	20,61401	0,37401	5400	20,7249333	0,48493333
1075	20,24589	0,00589	2520	20,3251267	0,08512667	3965	20,61704	0,37704	5405	20,7211667	0,48116667
1080	20,24975	0,00975	2525	20,32015	0,08015	3970	20,6201	0,3801	5410	20,7211667	0,48116667
1085	20,244	0,004	2530	20,3205567	0,08055667	3975	20,6170667	0,37706667	5415	20,7206933	0,48069333
1090	20,2375167	-0,00248333	2535	20,3155433	0,07554333	3980	20,61435	0,37435	5420	20,7192233	0,47922333
1095	20,24525	0,00525	2540	20,3160567	0,07605667	3985	20,6201667	0,38016667	5425	20,71996	0,47996
1100	20,2437833	0,00378333	2545	20,3206267	0,08062667	3990	20,61631	0,37631	5430	20,7211833	0,48118333
1105	20,2472767	0,00727667	2550	20,3223233	0,08232333	3995	20,62025	0,38025	5435	20,72054	0,48054
1110	20,2446	0,0046	2555	20,31811	0,07811	4000	20,6219067	0,38190667	5440	20,7224167	0,48241667
1115	20,2504167	0,01041667	2560	20,32045	0,08045	4005	20,6181667	0,37816667	5445	20,7200267	0,48002667
1120	20,2427733	0,00277333	2565	20,3198733	0,07987333	4010	20,6124167	0,37241667	5450	20,7231	0,4831
1125	20,2453167	0,00531667	2570	20,3147933	0,07479333	4015	20,6188767	0,37887667	5455	20,7186	0,4786
1130	20,24835	0,00835	2575	20,31604	0,07604	4020	20,6150833	0,37508333	5460	20,71985	0,47985
1135	20,24676	0,00676	2580	20,31671	0,07671	4025	20,6086233	0,36862333	5465	20,72614	0,48614
1140	20,2459333	0,00593333	2585	20,3237067	0,08370667	4030	20,6162267	0,37622667	5470	20,7199433	0,47994333
1145	20,24264	0,00264	2590	20,3231933	0,08319333	4035	20,6156	0,3756	5475	20,7249333	0,48493333
1150	20,2460267	0,00602667	2595	20,3193333	0,07933333	4040	20,6130167	0,37301667	5480	20,7238167	0,48381667
1155	20,2529333	0,01293333	2600	20,3186233	0,07862333	4045	20,6130833	0,37308333	5485	20,7254067	0,48540667
1160	20,24654	0,00654	2605	20,3085267	0,06852667	4050	20,61209	0,37209	5490	20,7255	0,4855
1165	20,2491267	0,00912667	2610	20,3096833	0,06968333	4055	20,6110667	0,37106667	5495	20,7166267	0,47662667
1170	20,24725	0,00725	2615	20,3155	0,0755	4060	20,6148333	0,37483333	5500	20,72625	0,48625
1175	20,2508233	0,01082333	2620	20,31259	0,07259	4065	20,6217667	0,38176667	5505	20,7217067	0,48170667
1180	20,2478167	0,00781667	2625	20,31275	0,07275	4070	20,6211	0,3811	5510	20,7171	0,4771
1185	20,2439167	0,00391667	2630	20,3101	0,0701	4075	20,6211667	0,38116667	5515	20,7166933	0,47669333

1190	20,2400833	8,3333E-05	2635	20,3242933	0,08429333	4080	20,6180433	0,37804333	5520	20,72289	0,48289
1195	20,2489333	0,00893333	2640	20,31404	0,07404	4085	20,62239	0,38239	5525	20,72675	0,48675
1200	20,2406	0,0006	2645	20,3135267	0,07352667	4090	20,6219433	0,38194333	5530	20,72985	0,48985
1205	20,2380167	-0,00198333	2650	20,3173333	0,07733333	4095	20,6169	0,3769	5535	20,7291833	0,48918333
1210	20,2426267	0,00262667	2655	20,3151567	0,07515667	4100	20,6230333	0,38303333	5540	20,72925	0,48925
1215	20,24385	0,00385	2660	20,3233667	0,08336667	4105	20,62364	0,38364	5545	20,7215833	0,48158333
1220	20,2400833	8,3333E-05	2665	20,3201167	0,08011667	4110	20,6267667	0,38676667	5550	20,7242333	0,48423333
1225	20,2439167	0,00391667	2670	20,32361	0,08361	4115	20,62061	0,38061	5555	20,72871	0,48871
1230	20,2451	0,0051	2675	20,3228733	0,08287333	4120	20,6244167	0,38441667	5560	20,7311167	0,49111667
1235	20,2437	0,0037	2680	20,3228333	0,08283333	4125	20,62515	0,38515	5565	20,73364	0,49364
1240	20,24	0	2685	20,3240167	0,08401667	4130	20,6205167	0,38051667	5570	20,7229	0,4829
1245	20,2469567	0,00695667	2690	20,3187833	0,07878333	4135	20,6205833	0,38058333	5575	20,7239933	0,48399333
1250	20,2404333	0,00043333	2695	20,3222767	0,08227667	4140	20,61604	0,37604	5580	20,7265567	0,48655667
1255	20,2428667	0,00286667	2700	20,3176833	0,07768333	4145	20,6210167	0,38101667	5585	20,7292333	0,48923333
1260	20,24371	0,00371	2705	20,3246833	0,08468333	4150	20,6280167	0,38801667	5590	20,7260433	0,48604333
1265	20,2526	0,0126	2710	20,3209167	0,08091667	4155	20,6230433	0,38304333	5595	20,7253733	0,48537333
1270	20,24784	0,00784	2715	20,32494	0,08494	4160	20,61925	0,37925	5600	20,7260433	0,48604333
1275	20,2475267	0,00752667	2720	20,32396	0,08396	4165	20,6230833	0,38308333	5605	20,7322833	0,49228333
1280	20,24459	0,00459	2725	20,3251833	0,08518333	4170	20,6242667	0,38426667	5610	20,73289	0,49289
1285	20,2423833	0,00238333	2730	20,3257233	0,08572333	4175	20,6243333	0,38433333	5615	20,7266933	0,48669333
1290	20,2560933	0,01609333	2735	20,32646	0,08646	4180	20,6205	0,3805	5620	20,7290567	0,48905667
1295	20,2436733	0,00367333	2740	20,3269733	0,08697333	4185	20,6190567	0,37905667	5625	20,7329167	0,49291667
1300	20,2511433	0,01114333	2745	20,32506	0,08506	4190	20,6255433	0,38554333	5630	20,7341	0,4941
1305	20,2498067	0,00980667	2750	20,3309167	0,09091667	4195	20,62104	0,38104	5635	20,7310433	0,49104333
1310	20,2416933	0,00169333	2755	20,32829	0,08829	4200	20,62171	0,38171	5640	20,73035	0,49035
1315	20,2445067	0,00450667	2760	20,3212933	0,08129333	4205	20,6203067	0,38030667	5645	20,7335167	0,49351667
1320	20,2523333	0,01233333	2765	20,32829	0,08829	4210	20,61721	0,37721	5650	20,7316667	0,49166667

1325	20,24921	0,00921	2770	20,3224767	0,08247667	4215	20,6184333	0,37843333	5655	20,73789	0,49789
1330	20,24589	0,00589	2775	20,3287833	0,08878333	4220	20,6228067	0,38280667	5660	20,7329	0,4929
1335	20,25311	0,01311	2780	20,32655	0,08655	4225	20,62811	0,38811	5665	20,7282667	0,48826667
1340	20,2542667	0,01426667	2785	20,3257067	0,08570667	4230	20,6259067	0,38590667	5670	20,7386267	0,49862667
1345	20,25625	0,01625	2790	20,33525	0,09525	4235	20,62936	0,38936	5675	20,7353067	0,49530667
1350	20,25909	0,01909	2795	20,3283167	0,08831667	4240	20,6305167	0,39051667	5680	20,7391667	0,49916667
1355	20,25615	0,01615	2800	20,3397267	0,09972667	4245	20,6356	0,3956	5685	20,743	0,503
1360	20,2560833	0,01608333	2805	20,33264	0,09264	4250	20,6344833	0,39448333	5690	20,74326	0,50326
1365	20,2534333	0,01343333	2810	20,3314833	0,09148333	4255	20,6305833	0,39058333	5695	20,7429067	0,50290667
1370	20,2585167	0,01851667	2815	20,3313933	0,09139333	4260	20,63295	0,39295	5700	20,7444433	0,50444333
1375	20,2592933	0,01929333	2820	20,3334167	0,09341667	4265	20,63119	0,39119	5705	20,7422167	0,50221667
1380	20,25214	0,01214	2825	20,3326833	0,09268333	4270	20,6291433	0,38914333	5710	20,7450667	0,50506667
1385	20,2571833	0,01718333	2830	20,3334833	0,09348333	4275	20,6323733	0,39237333	5715	20,74429	0,50429
1390	20,2546	0,0146	2835	20,32885	0,08885	4280	20,63735	0,39735	5720	20,7399433	0,49994333
1395	20,2580267	0,01802667	2840	20,3282067	0,08820667	4285	20,6369433	0,39694333	5725	20,7411	0,5011
1400	20,2623067	0,02230667	2845	20,3305333	0,09053333	4290	20,6385733	0,39857333	5730	20,7373333	0,49733333
1405	20,2642267	0,02422667	2850	20,33521	0,09521	4295	20,64011	0,40011	5735	20,7399833	0,49998333
1410	20,2616833	0,02168333	2855	20,3352733	0,09527333	4300	20,6336233	0,39362333	5740	20,73535	0,49535
1415	20,2770833	0,03708333	2860	20,3301267	0,09012667	4305	20,6335833	0,39358333	5745	20,7411667	0,50116667
1420	20,27564	0,03564	2865	20,3385667	0,09856667	4310	20,64506	0,40506	5750	20,7454733	0,50547333
1425	20,2764	0,0364	2870	20,3339567	0,09395667	4315	20,63989	0,39989	5755	20,73736	0,49736
1430	20,2832433	0,04324333	2875	20,3451333	0,10513333	4320	20,6367933	0,39679333	5760	20,7411667	0,50116667
1435	20,2886933	0,04869333	2880	20,3436767	0,10367667	4320	20,6425833	0,40258333	5765	20,6867667	0,44676667
1440	20,28985	0,04985	2885	20,3505167	0,11051667	4325	20,6418733	0,40187333	5770	20,6573733	0,41737333

Anexo V – Datos hidroquímicos completos

Cromatogramas de muestras invernales

Figura 1. Cromatogramas correspondientes a: A) cationes de la muestra del pozo 90.3.018 y B) aniones de la muestra del pozo 90.3.018.

Α	Chromatogram and Resul	ts		B Chromatogram and Results					
Injection Details				Injection Details					
Injection Name:	KIYU Pozo 1614 caudal 5900 L/h	Run Time (min):	34.00	Injection Name:	Kiyu 1614 caudal 5900	Run Time (min):	12.00		
Vial Number:	74	Injection Volume:	25.00	Vial Number:	58	Injection Volume:	25.00		
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1		
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.		
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.		
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000		
Injection Date/Time:	13/sep/21 11:10	Sample Weight:	1.0000	Injection Date/Time:	30/sep/21 09:35	Sample Weight:	1.0000		

Figura 2. Cromatogramas correspondientes a: A) cationes de la muestra del pozo 90.3.022 y B) aniones de la muestra del pozo 90.3.022.

Α	Chromatogram and	Results		В	Chromatogram a	nd Results	
Injection Details				Injection Details			
Injection Name:	KIYU Pozo 030 caudal 9700 L/h	Run Time (min):	34.00	Injection Name:	Kiyu 032 caudal 9700	Run Time (min):	12.00
Vial Number:	73	Injection Volume:	25.00	Vial Number:	62	Injection Volume.	25.00
Injection Type:	Unknown	Channel:	ECD Total	Injection Type:	Unknown	Channel:	ECD_1
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.
Instrument Method:	Cationes Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000
Injection Date/Time:	13/sep/21 10:36	Sample Weight:	1.0000	Injection Date/Time:	30/sep/21 10:29	Sample Weight:	1.0000
	·						

Figura 3. Cromatogramas correspondientes a: A) cationes de la muestra del pozo 90.3.030 y B) aniones de la muestra del pozo 90.3.030.

Α	A Chromatogram and Results									
Injection Details										
Injection Name:	KIYU Pozo 032 caudal 6500 L/h	Run Time (min):	34.00							
Vial Number:	72	Injection Volume:	25.00							
Injection Type:	Unknown	Channel:	ECD_Total							
Calibration Level:		Wavelength:	n.a.							
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.							
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000							
Injection Date/Time:	13/sep/21 10:01	Sample Weight:	1.0000							

В	Chromatogram and	l Results		
Injection Details				
Injection Name:	Kiyu 032 caudal 6500	Run Time (min):	12.00	
Vial Number:	64	Injection Volume:	25.00	
Injection Type:	Unknown	Channel:	ECD_1	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.	
Processing Method:	Basic Quantitative	Dilution Factor:	1.0000	
Injection Date/Time:	30/sep/21 10:58	Sample Weight:	1.0000	

Figura 4. Cromatogramas correspondientes a: A) cationes de la muestra del pozo 90.3.032 y B) aniones de la muestra del pozo 90.3.032.

Figura 5. Cromatogramas correspondientes a: A) cationes de la muestra del pozo P1 y B) aniones de la muestra del pozo P1.

Cromatogramas de muestras primaverales

Figura 6. Cromatogramas correspondientes a: A) cationes de la muestra del pozo 90.3.018 y B) aniones de la muestra del pozo 90.3.018.

А	Chromatogram and Results					Chromatogram	and Results		
Injection Details					Injection Details				
Injection Name:	1614B	Run Time (min):	35.00		Injection Name:	1614b	Run Time (min):	12.00	
Vial Number:	26	Injection Volume:	25.00		Vial Number:	18	Injection Volume	25.00	
Injection Type:	Unknown	Channel:	ECD_Total		Injection Type:	Unknown	Channel:	ECD 1	
Calibration Level:		Wavelength:	n.a.		Calibration Level:		Wavelength:	n.a.	
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.		Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.	
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000		Processing Method:	Basic Quantitative	Dilution Factor:	1.0000	
Injection Date/Time:	30/nov/21 12:10	Sample Weight:	1.0000		Injection Date/Time	16/nov/21 13:00	Sample Weight	1,0000	

Figura 7. Cromatogramas correspondientes a: A) cationes de la muestra del pozo 90.3.022 y B) aniones de la muestra del pozo 90.3.022.

Α	Chromatogram and Results			B Chromatogram and Results			
Injection Details				Injection Details			
Injection Name:	30B	Run Time (min):	35.00	Injection Name:	30b	Run Time (min):	12.00
Vial Number:	24	Injection Volume:	25.00	Vial Number:	16	Injection Volume:	25.00
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000
Injection Date/Time:	30/nov/21 10:53	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 12:36	Sample Weight:	1.0000

Figura 8. Cromatogramas correspondientes a: A) cationes de la muestra del pozo 90.3.030 y B) aniones de la muestra del pozo 90.3.030.

А	Chromatogram and Results			B Chromatogram and Results					
Injection Details					Injection Details				
Injection Name:	072B	Run Time (min):	35.00		Injection Name:	072b	Run Time (min):	12.00	
Vial Number:	25	Injection Volume:	25.00		Vial Number:	17	Injection Volume	25.00	
Injection Type:	Unknown	Channel:	ECD_Total		Injection Type:	Unknown	Channel:	ECD_1	
Calibration Level:		Wavelength:	n.a.		Calibration Level:		Wavelength:	n.a.	
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.		Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.	
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000		Processing Method:	Basic Quantitative	Dilution Factor:	1.0000	
Injection Date/Time:	30/nov/21 11:35	Sample Weight:	1.0000		Injection Date/Time:	16/nov/21 12:48	Sample Weight:	1.0000	

Figura 9. Cromatogramas correspondientes a: A) cationes de la muestra del pozo P1 y B) aniones de la muestra del pozo P1.

Cromatogramas ensayo de bombeo

Figura 10. Cromatogramas correspondientes a: A) cationes de la muestra 1 del ensayo de bombeo y B) aniones de la muestra 1 del ensayo de bombeo.

Α	Chromatogram and Results			В	Chromatogram and Results			
Injection Details				Injection Details				
Injection Name:	2B	Run Time (min):	35.00	Injection Name:	2b	Run Time (min):	12.00	
Vial Number:	14	Injection Volume:	25.00	Vial Number:	9	Injection Volume:	25.00	
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1	
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.	
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.	
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000	
Injection Date/Time:	26/nov/21 10:43	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 10:59	Sample Weight:	1.0000	

Figura 11. Cromatogramas correspondientes a: A) cationes de la muestra 2 del ensayo de bombeo y B) aniones de la muestra 2 del ensayo de bombeo.

А	Chromatogram and Results			В	Chromatogram and Results			
Injection Details				Injection Details				
Injection Name:	3B	Run Time (min):	35.00	Injection Name:	3b	Run Time (min):	12.00	
Vial Number:	15	Injection Volume:	25.00	Vial Number:	10	Injection Volume:	25.00	
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1	
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.	
Instrument Method:	Cationes Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.	
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000	
Injection Date/Time:	26/nov/21 11:20	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 11:12	Sample Weight:	1.0000	

Figura 12. Cromatogramas correspondientes a: A) cationes de la muestra 3 del ensayo de bombeo y B) aniones de la muestra 3 del ensayo de bombeo.

Α	Chromatogram and Results			B Chromatogram and Results			
Injection Details				Injection Details			
Injection Name:	4B	Run Time (min):	35.00	Injection Name:	4b	Run Time (min):	12.00
Vial Number:	16	Injection Volume:	25.00	Vial Number:	11	Injection Volume:	25.00
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD 1
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000
Injection Date/Time:	26/nov/21 11:55	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 11:32	Sample Weight:	1.0000

Figura 13. Cromatogramas correspondientes a: A) cationes de la muestra 4 del ensayo de bombeo y B) aniones de la muestra 4 del ensayo de bombeo.
А	Chromatogram and Resu	lts		B Chromatogram and Results							
Injection Details				Injection Details							
Injection Name:	5B	Run Time (min):	35.00	Injection Name:	5b	Run Time (min):	12.00				
Vial Number:	17	Injection Volume:	25.00	Vial Number:	12	Injection Volume:	25.00				
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1				
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.				
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.				
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000				
Injection Date/Time:	26/nov/21 12:31	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 11:45	Sample Weight:	1.0000				

Figura 14. Cromatogramas correspondientes a: A) cationes de la muestra 5 del ensayo de bombeo y B) aniones de la muestra 5 del ensayo de bombeo.

Α	Chromatogram and Resu	lts		B Chromatogram and Results							
Injection Details				Injection Details							
Injection Name:	6B	Run Time (min):	35.00	Injection Name:	6b	Run Time (min):	12.00				
Vial Number:	18	Injection Volume:	25.00	Vial Number:	13	Injection Volume:	25.00				
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1				
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.				
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.				
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000				
Injection Date/Time:	26/nov/21 13:06	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 11:57	Sample Weight:	1.0000				

Figura 15. Cromatogramas correspondientes a: A) cationes de la muestra 6 del ensayo de bombeo y B) aniones de la muestra 6 del ensayo de bombeo.

А	Chromatogram and Resul	ts		B Chromatogram and Results							
Injection Details				Injection Details							
Injection Name:	7B	Run Time (min):	35.00	Injection Name:	7b	Run Time (min):	12.00				
Vial Number:	19	Injection Volume:	25.00	Vial Number:	14	Injection Volume:	25.00				
Injection Type:	Blank	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1				
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.				
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.				
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000				
Injection Date/Time:	26/nov/21 13:42	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 12:10	Sample Weight:	1.0000				

Figura 16. Cromatogramas correspondientes a: A) cationes de la muestra 7 del ensayo de bombeo y B) aniones de la muestra 7 del ensayo de bombeo.

А	Chromatogram and Resul	lts		B Chromatogram and Results							
Injection Details				Injection Details							
Injection Name:	8B	Run Time (min):	35.00	Injection Name:	8b	Run Time (min):	12.00				
Vial Number:	22	Injection Volume:	25.00	Vial Number:	15	Injection Volume:	25.00				
Injection Type:	Unknown	Channel:	ECD_Total	Injection Type:	Unknown	Channel:	ECD_1				
Calibration Level:		Wavelength:	n.a.	Calibration Level:		Wavelength:	n.a.				
Instrument Method:	Cationes _ Instrument Method	Bandwidth:	n.a.	Instrument Method:	New Instrument Method 7-8-20	Bandwidth:	n.a.				
Processing Method:	6-Cation Retention Time Std	Dilution Factor:	1.0000	Processing Method:	Basic Quantitative	Dilution Factor:	1.0000				
Injection Date/Time:	30/nov/21 09:42	Sample Weight:	1.0000	Injection Date/Time:	16/nov/21 12:23	Sample Weight:	1.0000				

Figura 17. Cromatogramas correspondientes a: A) cationes de la muestra 8 del ensayo de bombeo y B) aniones de la muestra 8 del ensayo de bombeo.

Pozo	X (m)	Y (m)	Fecha medidas campo	Hora muestreo (hs)	Caudal (L/h)	NE	CE campo (µS/cm)	pH campo	T campo (⁰C)	ORP campo (mV)	TDS campo (ppm)	Turbidez campo (FNU)	Salinidad campo (PSU)	OD campo (ppm)	OD campo (%)
90.3.032	524615	6163448	28/08/2021	14:00:00	4500	20,7	707	8,24	19,28	130,4	354	12,2	0,35	6,69	72,4
90.3.030	524985	6163307	28/08/2021	13:00:00	9700	23,4	681	8,29	18,27	176,5	341	0,2	0,33	6,69	76
90.3.018	524731	6162504	28/08/2021	13:20:00	14600	28,8	695	8,38	18,3	178,6	348	0,3	0,34	7,35	79
90.3.022	524632	6161282	28/08/2021	13:30:00	5600	18,3	717	8,28	18,23	53,4	358	9,7	0,35	6,56	69
P1	524455	6161168	28/08/2021	15:45:00	12000	20,3	782	8,22	18,93	148	391	11,4	0,38	6,3	70
90.3.032	524615	6163448	08/11/2021			20,5	820	7,31	20,5	149,2	411	0,6	0,4	5,85	65,4
90.3.030	524985	6163307	08/11/2021	11:15:00	9700	24,2	772	7,34	20,47	144,4	386	0,4	0,38	6,33	71
90.3.018	524731	6162504	08/11/2021	11:30:00	14600	24,3	788	7,25	19,78	154,4	394	0,2	0,39	6,1	67,1
90.3.022	524632	6161282	08/11/2021	11:45:00	5600	19,2	820	7,19	19,18	123,1	410	2,3	0,4	6,15	67,8
P1	524455	6161168	08/11/2021	12:00:00	12000	20,4	865	7,03	19,7	165,9	430	0,9	0,43	5,88	64,9
EB1	524615	6163448	08/11/2021	9:30:00	900		810	7,2	21,4	54,9	405	2,1	0,4	4,53	53
EB2	524615	6163448	08/11/2021	11:50:00	900		810	7,1	21,92	115,5	405	0,8	0,4	4,96	57
EB3	524615	6163448	09/11/2021	9:40:00	2700		788	7,38	19,35	148,2	394	1,8	0,39		65,8
EB4	524615	6163448	09/11/2021	18:35:00	2700		814	7,28	20,8	144,7	407	0,6	0,4	5,36	60,2
EB5	524615	6163448	10/11/2021	9:30:00	5500		822	7,27	19,5	142,1	411	1,1	0,4	5,8	65
EB6	524615	6163448	10/11/2021	18:00:00	5500		820	7,31	20,5	149,2	411	0,6	0,4	5,85	65,4
EB7	524615	6163448	11/11/2021	9:30:00	7200		806	7,27	19,74	175	403	1,6	0,4	6,31	66,5
EB8	524615	6163448	11/11/2021	13:25:00	7200		811	7,51	19,54	124,8	408	1,5	0,4	5,82	64,7

Tabla 1. Parámetros fisicoquímicos de las muestras tomadas en invierno, primavera y durante el ensayo de bombeo.

Pozo	Fecha toma de muestra	Ca⁺ (mg/L)	Mg²+ (mg/L)	Na²+ (mg/L)	K+ (mg/L)	Cl ⁻ (mg/L)	NO₃ ⁻ (mg/L)	SO₄²- (mg/L)	CO ₃ ⁻ (mg/L)	HCO ₃ ⁻ (mg/L)	Alcalinidad (mgCaCO ₃ /L)	Dureza (mgCaCO₃/L)	Li⁺ (mg/L)	NO ₂ ⁻ (mg/L)	F ⁻ (mg/L)	Br ⁻ (mg/L)	PO4 ³⁻ (mg/L)	As _T (mg/L)	As(V) (mg/L)	As(III) (mg/L)	ε (%)
90.3.032	28/08/2021	22,583	12,6846	94,7747	14,1813	38,9135	28,4595	10,3947		408,6	334,9	225,2	0,0103		0,2913	0,8649	0,0006	0,019	0,017	0,002	-9
90.3.030	28/08/2021	30,1375	18,8559	99,2467	15,6991	17,8242	60,3471	16,7192		386,4	316,7	249,1	0,0138		0,3673	0,5100	0,0100	0,015	0,013	0,002	4
90.3.018	28/08/2021	30,4311	15,93	79,6453	16,3315	29,2123	49,9017	16,2287		389,2	319	239,2	0,1820		0,3224	0,4131		0,017	0,015	0,002	-6
90.3.022	28/08/2021	35,5109	19,5219	59,9698	18,954	7,7589	13,2142	14,3238		408,6	334,9	279	0,0091	1,0094	0,4645	1,2872	1,7071	0,012	0,01	0,001	-5
P1	28/08/2021	1,7127	8,5897	49,6722	4,1829	36,2538	71,1541	22,4579		444,7	364,5	229,2	0,0967		0,6577	0,4828		0,02	0,018	0,002	42
90.3.032	08/11/2021	151,7501	21,5083	141,4933	15,65	32,5479	29,8579	11,2165		755,5	619,3	423,526631	0,0079	0,0592	0,3259			0,017	0,017		8
90.3.030	08/11/2021	83,1337	23,4402	119,4532	15,9736	14,9814	61,915	18,4764		569	466,4	491,131821	0,0163		0,4951			0,014	0,014		7
90.3.018	08/11/2021	77,3303	23,8747	129,0223	18,6129	25,6411	49,5317	17,4768		532,3	436,3	429,491795	0,0124		0,3267			0,016	0,016		10
90.3.022	08/11/2021	81,2909	33,1715	142,4328	26,0749	18,8935	24,244	18,1294		657,7	539,1	419,549855	0,0583		0,3696			0,015	0,015		8
P1	08/11/2021	70,6993	23,676	158,5143	18,9123	30,2456	56,9307	20,9594		590,4	483,9	435,456959	0,0265		0,3967			0,019	0,019		8
EB1	08/11/2021	148,7453	23,8078	147,6167	18,1883	34,71	22,4816	11,179		749,4	614,3	427,503407	0,0439		0,3104			0,015	0,015		9
EB2	08/11/2021	153,1338	23,5547	138,5976	19,7139	27,3973	37,4252	12,0415		746,4	611,8	431,480183	0,2788		0,3663			0,016	0,016		10
EB3	09/11/2021	152,9816	23,9331	134,7899	22,9175	29,8604	32,8002	11,8529		743,3	609,3	427,503407	0,3069	0,0667	0,2289			0,018	0,018		10
EB4	09/11/2021	153,9469	23,766	136,6057	22,1928	30,0664	33,5829	11,1185		752,5	616,8	445,398899	0,3058		0,3259			0,018	0,018		9
EB5	10/11/2021	147,9997	22,4768	137,3051	18,4527	31,9866	33,3274	11,2439		740,3	606,8	425,515019	0,0793		0,2873			0,016	0,016		8
EB6	10/11/2021	151,7501	21,5083	141,4933	15,65	32,5479	29,8579	11,2165		755,5	619,3	423,526631	0,0079	0,0592	0,3259			0,017	0,017		8
EB7	11/11/2021	148,3895	20,7883	143,8363	14,8829	32,5349	28,7265	11,2005		740,3	606,8	417,561467	0,0220	0,0732	0,2892			0,017	0,017		9
EB8	11/11/2021	74,88	21,5335	139,5305	16,6538	31,9127	29,2085	11,1635		558,3	457,6	421,538243	0,0156		0,3138			0,018	0,018		8

Tabla 2. Análisis de iones mayoritarios, minoritarios y traza de las muestras tomadas en invierno, primavera y durante el ensayo de bombeo.

Anexo VI – Mapas de precipitación acumulada (mm)

Figura 1. Precipitación acumulada (mm) durante el trimestre: Izquierda) junio a agosto de 2021 y Derecha) setiembre a noviembre de 2021.