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LOOPS, HOLONOMY AND SIGNATURE

JUAN ALONSO, JUAN MANUEL BURGOS, AND MIGUEL PATERNAIN

Abstract. We show that there is a topology on certain groups of loops in
euclidean space such that these group are embedded in a Banach Lie group
which is the structural group of a principal bundle with connection whose
holonomy coincides with the Chen signature map. We also give an alternative
geometric new proof of Chen signature Theorem and a generalization of this
theorem in classes strictly containing the one originally considered by Chen.

1. Introduction

This paper is about the intimate relationship between two theories that
developed almost independently of each other. In topology and differential
geometry, it traces back to the well known theory of representations of the
fundamental group and constructions of local systems over a manifold by the
holonomy map of a principal bundle with a flat connection. A natural question is
how to extend this construction to arbitrary connections. This question leads
directly to the loop space of the manifold, an object that will be defined shortly 1.
In contrast to the fundamental group of a manifold, that is a purely topological
object, the loop space we are referring here will be not. Specifically, while the
fundamental group of manifold coincides with the one calculated in the smooth
category of curves, the loop space of the manifold and therefore the results
concerning this space will depend on the category of curves where it is defined.

Consider a point p in a manifold M . Although there are several frameworks of
loops based at p that could be chosen a priori, in order to get the group structure the
first requirement for a particular class to be concatenable; that is the concatenation
of two loops in the class belongs to the class. Examples of classes with this property
are the class of piecewise smooth loops Ωps(M,p) or the proper class of piecewise
analytic loops Ωpa(M,p). Examples not having this property are the smooth and
analytic classes.

Identifying loops of a concatenable class by reparameterization, we obtain
associativity of the operation but in general αα−1 6= c where c denotes the
constant loop. A further equivalence relation is needed. Considering the problem
before, the natural relation is the one finitely generated by αaa−1β ∼ αβ. This
will be called the retrace relation. Considering the original problem instead, the
natural relation is the one which identifies a pair of loops if, given a Lie group G,
their holonomies coincide for every G-principal bundle with connection. This
relation will be called the G-holonomy relation.

2020 Mathematics Subject Classification. Primary: 53C29, 55P10, 51H25; Secondary: 81Q70.
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1Do not confuse this space with the one defined in algebraic topology. The ambiguity in the

names will disappear after we introduce the right notation.
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It turns out that in general the resulting groups under the retrace and
G-holonomy relation are not isomorphic. However, as it was shown in [Sp], it is
quite remarkable that for every connected and non-solvable Lie group G, these
groups are isomophic in the class of piecewise analytic loops,

(1) L pa,ret(M,p) ∼= L pa,G(M,p), G connected and non− solvable.

In [Tl], Tlas proves a similar result in the concatenable class of C1 loops based
at p with zero derivative at p. He proves that if the Lie group G is semisimple then
a pair of loops in this class are G-holonomy related if and only if they are related
by a rank one homotopy. In the class of piecewise smooth loops, Tlas result is
equivalent to the following isomorphism under thin homotopy relation (see remark
4 in [Me])

(2) L ps,thin(M,p) ∼= L ps,G(M,p), G semisimple.

Along the lines of this result, Meneses in [Me] comments that the analog result
of (1) claimed in [Sp] is not valid in the class of piecewise smooth loops and he
gives a counterexample of a thin and non-retreacable loop, hence

(3) L ps,ret(M,p) 6∼= L ps,G(M,p), G semisimple.

One of the difficulties with piecewise smooth loops, in contrast with piecewise
analytic ones, is that they can intersect in very complicated ways. This led Baez
and Sawin in [BS] to consider instead the class of piecewise smoothly immersed
loops Ωpsi(M,p). In this class they develop the technology of tassels and webs. A
careful inspection into the work in [Sp], which uses the technology developed in [BS],
shows that the claimed result holds for the class of piecewise smoothly immersed
loops. That is, for a connected and non-solvable Lie group G, it is proved in [Sp]
the isomorphism 2

(4) L psi,ret(M,p) ∼= L psi,G(M,p), G connected and non− solvable.

All of these loop spaces equivalences have in common some sort of factorization.
In [Tl], Tlas associates a transfinite word for every loop in the class described
before and identifies a pair of loops if they have the same reduced word. A loop
whose reduced word is trivial is called a whisker by him. In [Sp], Spallanzani uses
the technology of tassels and webs developed by Baez and Sawin [BS] to factorize
smoothly immersed loops. The factorization in the piecewise analytic class follows
almost directly by definition.

Another natural question is, given a manifold, how to reconstruct the principal
bundle with connection from its holonomy map. This led to an abstract formulation
of holonomy both in mathematics [Mi, La, Te1, Te2] and theoretical physics as well
[Ba, BS, GT, Lo]. We recommend the recent paper [Me] by Meneses for references
and historical account of the theory.

Independently, in the fifties Chen defined a map in the space of paths in the
euclidean space R

n, the signature map

(5) Θ(γ) = 1 +

∞∑

p=1

n∑

i1, i2, ..., ip =1

∫

γ

dxi1dxi2 . . . dxipXi1Xi2 . . .Xip

taking values in the ring of the formal power series with the non-commutative
variables X1, . . . , Xn. Chen proved that this map is a faithful representation of the

2We do not know why Spallanzani did not write the piecewise immersion hypothesis.
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group of loops L psi,ret(Rn, p) [Ch1, Ch2, Ch3]. In recent years, this theory had
a resurgence in the context of stochastic processes [Ly], bounded variation paths
[HL] and rough paths [Ly, BGLY].

In this paper, we construct a principal bundle with connection whose holonomy
coincides with the Chen signature map on the group of loops L psi,ret(Rn, p) in
euclidean space. In other words, we show that the Chen signature map on this loop
space is the holonomy map of a principal bundle with connection. In particular,
this holonomy map is a monomorphism.

In view of the mentioned counterexample given by Meneses in [Me] of a non-
retreacable thin loop in the class of piecewise smoothly loops showing in particular
that the group L ps,ret(M,p) is a proper extension of L ps,thin(M,p), we show that
no such counterexample is possible in the class of piecewise smoothly immersed
loops. Actually, in section 3 we prove the following proposition.

Proposition 1.1. In the class of piecewise smoothly immersed curves based at a
point p in M , the retrace and thin homotopy relations coincide. That is, there is a
natural isomorphism

L psi,ret(M,p) ∼= L psi,thin(M,p).

From now on, when the manifold M is understood, unless otherwise specified
we will denote these groups simply by Lp. The following is the main result of the
paper, for M = R

n.

Theorem 1.2. There is a Banach Lie group Ĝ and a Ĝ-principal bundle with
connection (E, Rn, Ĝ, π, ∇) such that for any p in R

n, the holonomy map is a
monomorphism

Hol∇, p : Lp →֒ Ĝ

and it coincides with the Chen signature map (6) on Lp. Moreover, the closure
of its image is characterized by those elements verifying the shuffle relation (see
section 2.2) with vanishing degree one terms.

The structural group Ĝ is a connected and simply connected infinite
dimensional Banach Lie group. It is the completion under the pro-nilpotent
topology of the infinite dimensional Lie group G whose Lie algebra is freely
generated in n independent generators. These groups have an exponential map
and will be constructed in section 4. The problem of finding such a group is not
trivial and is described in (section 1.2.1, Differential equations on matrix groups,
p. 225 in [Ly]), where an heuristic motivational argument is given assuming its
existence. In this paper we solve this problem and this is the content of
Proposition 4.1. After this work was completed, we noticed the recent result in
[Ner] which is similar to Proposition 4.1. On the other hand, the purpose of our
main result, Theorem 1.2, is to establish the relationship between the signature
and holonomy map.

As an immediate corollary we have an alternative proof of Chen Theorem [Ch2].

Corollary 1.3. The logarithm of the Chen signature is a Lie element.

There is a C∞-topology on the group of based loops Lp such that it becomes
a topological group [Te1, Te2]. However, this group is not a Lie group and Chen
developed a theory of differentiable spaces [Ch4, Ch5], a generalization of manifolds,
to deal with this problem. Here, we show that there is a topology on the group of
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loops giving it the structure of a a topological group with the property that it can
be embedded in Lie group. Identifying the group of loops with its image under the
holonomy map in Theorem 1.2, we have another corollary of the theorem.

Corollary 1.4. Consider p in R
n. There is a topology τ on Lp and a proper closed

normal Lie subgroup H ⊳ Ĝ verifying the following:

(1) H contains an embedded copy of the space (Lp, τ) as a topological subgroup;
i.e. Lp ⊂ H.

(2) It is simple relative to Lp: there are no proper closed normal subgroups
H ′ ⊳H such that Lp ⊂ H

′.
(3) The Lie algebra of H contains an infinitely generated free Lie algebra.

(4) The codimension of H in Ĝ is at least n.

We do not know if the group H coincides with [Ĝ, Ĝ] in corollary 1.4.
In section 5 we give a geometric alternative new proof of the Chen signature

theorem as a corollary of either the Tlas result in [Tl] or the holonomy theorem
in [Sp]. A verbatim argument gives a generalization of this theorem either in the
class of piecewise smooth loops under thin homotopy relation. We state this in the
following theorem.

Theorem 1.5. Consider the formal power series ring R = R[[X1, . . . Xn]] with
the non-commutative variables X1, . . . Xn. Then, the Chen map (5) is a faithful
representation of the group of loops in the class of piecewise smooth loops under
thin homotopy relation L ps,thin(Rn, p).

As an immediate corollary of the previous theorem, we have the following
complement to the main Theorem 1.2.

Corollary 1.6. Theorem 1.2 and its corollaries hold also for the group of loops in
the class of piecewise smooth loops under thin homotopy relation L ps,thin(Rn, p).

2. Preliminaries

2.1. Loops and Holonomy. Let I be the unit interval andM a smooth manifold.
We begin by recalling some standard notations. A path in M is a continuous
function from I to M , and we say that two paths a, b : I → M are equivalent
modulo reparametrization if there is an orientation preserving homeomorphism σ :
I → I such that a◦σ = b. Denote by O0(M) the quotient set under this equivalence
relation. If a(1) = b(0) we define ab and a−1 as follows: ab (t) = a (2t) if t ∈ [0, 1/2]
and ab (t) = b (2t − 1) if t ∈ [1/2, 1]; a−1(t) = a (1 − t) for every t ∈ [0, 1]. Let
ep ∈ O0(M) be the constant path at the point p, i.e. ep(t) = p for every t ∈ [0, 1].

We need to consider another preliminary equivalence, which amounts to collapse
constant sub-paths. Let a be a non-constant path in M . We shall define a minimal
form ar for a as follows: let Ii ⊂ I be the family of maximal subintervals in which
a is constant, and let σ : I → I be a surjective non-decreasing continuous function,
constant in each Ii and strictly increasing in I −

⋃
i Ii. Then there is ar : I → M

such that a = ar ◦ σ, which is non-constant on any subinterval of I (this map is
obtained by a universal property of quotients). Different choices of the function
σ give rise to minimal forms that are equivalent modulo reparametrization, and
moreover, if two paths a and b are equivalent, so are any of their minimal forms ar
and br. This allows us to define the minimal class of an element of O0(M) (as the
class of any minimal form of any representative), and take a quotient O1(M) where
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we identify two elements of O0(M) if they have the same minimal class (extending
the definition to constant paths in the trivial way). The product and inverse are
well defined on O1(M), and the classes of constant paths are units for the product.

Let Opsi(M) ⊂ O1(M) be the set of classes of either constant paths or paths that
are piecewise smoothly immersed, i.e. a finite concatenation of smooth immersions.
Notice that for α ∈ Opsi(M) there are well defined notions of endpoints α(0) and
α(1). Throughout the paper we will abuse of notation and refer to the elements
α ∈ Opsi(M) also as curves, and say that α is a closed curve if α(0) = α(1).

In the set Opsi(M), consider the equivalence relation finitely generated by the
identifications αaa−1β ∼ αβ. This is called the retrace relation. With the formal
definition in hand, we recall the concepts from the introduction: Let E(M) denote
the quotient set of Opsi(M) under retrace relation, and let L psi,ret(M,p) ⊂ E(M)
be the projection under the quotient map of the set of closed curves starting and
ending at the point p. Note that L psi,ret(M,p) is a group under concatenation
whose neutral element is the equivalence class of ep, the constant path at p.

Now, consider the class Ωpsi(M,p) of piecewise smoothly immersed closed curves
based at the point p. Another equivalence relation in this class is given by the finite
composition of thin homotopies. A thin homotopy between two curves α and γ is
a homotopy η : [0, 1]2 → M such that its image is contained in the union of the
images of the curves, that is

η
(
[0, 1]2

)
⊆ α ([0, 1]) ∪ β ([0, 1]) .

Denote the quotient under this relation by L psi,thin(M,p) and note that, as before,
it is a group under concatenation whose neutral element is the equivalence class of
ep, the constant path at p.

As it was mentioned at the introduction, in general the retrace and thin relations
are not equivalent. However, in the class of piecewise smoothly immersed closed
curves considered in this paper, they are. In section 3, we will prove Proposition
1.1 which states the existence of a natural isomorphism

L psi,ret(M,p) ∼= L psi,thin(M,p).

In view of this isomorphism, we will simply denote these groups by L(M,p).
Other possible identification is, given a Lie group G, identify two closed curves

α and β in Ωpsi(M,p) if they have the same holonomy for any G-principal bundle
with connection over M . This relation is the G-holonomy relation. The group
obtained this way is called the group of hoops based at p and will be denoted by
HG(M,p) 3. The following is Theorem 1.7 from [Sp] and will be referred to as the
holonomy theorem throughout the paper.

Theorem 2.1. If G is a connected and non-solvable Lie group, then there is a
natural isomorphism L(M,p) ∼= HG(M,p) for every point p in M .

In the case where the manifold M is the euclidean space Rn, the case considered
in this paper, from now on we will simply denote by Lp the group L(Rn, p).

2.2. Iterated Integrals and Signature. If ω1, ω2, . . . , ωq are one forms in a
manifold M and γ : I →M is a piecewise regular path, define the iterated integral
by the formula

3This is the group denoted by L psi,G(M, p) in the introduction.
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∫

γ

ω1ω2 . . . ωq =

∫

t>t1>...>tq

ω1(γ
′(t1))ω2(γ

′(t1)) . . . ωq(γ
′(tq))dtq . . . dt1.

If γ is a piecewise regular curve γ, Chen [Ch3] defines the formal power series

(6) Θ(γ) = 1 +

∞∑

p=1

n∑

i1, i2, ..., ip =1

∫

γ

dxi1dxi2 . . . dxipXi1Xi2 . . .Xip

in the noncommutative indeterminates X1, . . . , Xn. This will be called the Chen
signature map. Chen signature theorem can be stated as follows.

Theorem 2.2. If Θ(γ) = 1, then γ is trivial in E(Rn).

The reconstruction of the path from its signature is a non trivial task and an
active research area [BGLY, HL, LX, WLC]. The shuffle product is a commutative
associative product on the tensor algebra of coordinates

T ∗ = T (X∗
1 , X

∗
2 , . . . , X

∗
n), X∗

i (Xj) = δij ,

defined on monomials as the sum of all possible ways of writing two given monomials
together while preserving their orders. For example:

X∗
1 ·sh X∗

2X
∗
3 = X∗

1X
∗
2X

∗
3 + X∗

2X
∗
1X

∗
3 + X∗

2X
∗
3X

∗
1 .

The tensor algebra T ∗ acts linearly on the graded completed algebra

T̂ = ¤�T (X1, X2, . . . , Xn)

and we say that an element θ in T̂ verifies the shuffle relation if

f(θ) g(θ) = (f ·sh g) (θ), ∀ f, g ∈ T ∗.

The Chen signature of every path verifies the shuffle relation and we have the

following partial result by Chow [WLC]. Recall that the completed algebra T̂ has a

natural ascending filtration by grading. For a natural n let T̂n be the ideal generated
by the monomials of degree at least n.

Theorem 2.3. For every θ in T̂ verifying the shuffle relation and every natural n,
there is a piecewise linear path γ such that Θ(γ) = θ modulo T̂n.

3. Retrace and thin relation on the piecewise immersed class

Next we prove Proposition 1.1 which states the existence of a natural
isomorphism

L psi,ret(M,p) ∼= L psi,thin(M,p).

That is to say that for piecewise smoothly immersed curves, thin homotopy is the
same as retrace equivalence. We will use the concept of tree-like paths of Hambly
and Lyons [HL], in the equivalent formulation introduced in [BGLY] and [HL2]:

Definition 3.1. A path γ : [a, b] → M is tree-like if there is an R-tree T and
continuous functions φ : [a, b] → T and ψ : T → M such that γ = ψ ◦ φ and
φ(a) = φ(b).
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Namely, a tree-like path is a loop that factors through a loop in an R-tree. In [Le],
Lévy shows that for bounded variation curves, being a tree-like path is equivalent to
being thin homotopic to the constant path. Also, for C1 loops with zero derivative
at the endpoints, Tlas [Tl] shows directly the equivalence between Definition 3.1
and being thinly homotopic to a constant path. Note that a piecewise smoothly
immersed path is of bounded variation, and also can be reparametrized to be C1

with zero derivative at its endpoints, so these results apply to them.
Proposition 1.1 follows immediately from the previous remarks and the following

lemma:

Lemma 3.2. Let γ : [a, b] → M be a tree-like path that is piecewise smoothly
immersed. Then γ is retraceable (i.e. retrace equivalent to a constant path).

Proof. Let a = t0 < t1 < · · · < tk = b be a partition so that γ|[ti,ti+1] is a smooth
embedding for i = 0, . . . , k − 1. Consider the R-tree T and the maps φ : [a, b]→ T
and ψ : T →M as in Definition 3.1. Notice that φ|[ti,ti+1] must be injective, so its
image is the unique geodesic in T with endpoints φ(ti) and φ(ti+1). Then the image
of φ is the convex hull of finitely many points, namely φ(ti) for i = 0, . . . , k. In an
R-tree, the convex hull of finitely many points is (isometric to) a finite simplicial tree
(this fact can be obtained by straightforward induction on the number of points).
Moreover, each injective path φ|[ti,ti+1] can be reparametrized to be the geodesic
between φ(ti) and φ(ti+1). After such reparametrization, φ is a closed edge-path
in a simplicial tree, which is retraceable, and then so is γ = ψ ◦ φ.

�

4. Holonomy and Signature

In this section we construct a principal bundle with connection whose holonomy
is a monomorphism and coincides with the Chen signature map on loops. The
main step towards this goal is the construction of a Lie group with a free Lie
algebra generated on finite elements. As we mentioned in the introduction, this
group was treated heuristically in (section 1.2.1, Differential equations on matrix
groups, p. 225 in [Ly]) for motivational purposes.

Denote by g the real Lie algebra freely generated by the elements
X1, X2, . . . , Xn, that is

g = Lie (X1, X2, . . . , Xn).

Because this Lie algebra is infinite dimensional, the Lie algebra/Lie group
correspondence is not assured by Lie’s third Theorem. Even so, it may happen
that the corresponding exponential map does not cover a neighbourhood of the
neutral element as it occurs with the Witt group of vector fields of the circle.
Moreover, even covering a neighbourhood of the neutral element, in the case of a
non-compact Lie group the exponential may not be surjective as it happens with
SL(2, R).

We shall construct a Lie group G whose Lie algebra is g in the next Proposition.
Before going into details, we will give an illustrative examples of the essence of the
idea.

Example 1. Suppose that we want to understand the group Z of integers but for
some reason we can only understand finite groups. Is there a way to approximate
the group of integers by finite groups? The simple answer is just no. However,
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there are bigger groups containing a copy of Z which have this property. A simple
example is the well known Cantor dyadic group Z2 which is the inverse limit of the
finite dyadic quotients

Z2 = lim
←−
n∈N

Z / 2nZ.

These quotients are residually finite; i.e. for every non-zero x in Z2, there is a
natural n such that the respective class of x in the quotient Z / 2nZ is non-zero as
well. In particular, there is an embedded copy of Z in Z2 where the latter group can
be approximated by finite groups.

Proposition 4.1. There is a connected and simply connected Lie group G whose
Lie algebra is g and the exponential map is bijective and continuous with respect to
the pro-nilpotent topology.

Proof. Consider the Lie algebra g and its nilpotent completion ĝ; i.e. the one
induced by the lower central series ( gn )n∈N

of the algebra

ĝ = lim
←−
n∈N

g / gn, g1 = g, gm+1 = [g, gm] .

We say that the completed Lie algebra ĝ is a pro-nilpotent Lie algebra. Note that
since g is a rational free Lie algebra, its nilpotent completion coincides with its
graded completion as well as with its Malcev completion.

Since the quotients πn : g→ g/gn are residually finite, that is for every non-zero
element x 6= 0 there is a natural n such that πn(x) 6= 0, there is a monomorphism
of g into its completion

(7) ϕ : g →֒ ĝ.

For every natural n, denote the quotient by hn = g / gn. This is a finite
dimensional nilpotent Lie algebra hence by Lie’s third Theorem, there is a Lie
group Hn with Lie algebra hn and exponential map exp : hn → Hn. Moreover,
this correspondence is functorial and we have the following commutative diagram

(8) hn
expn //

πn,m

��

Hn

π′

n,m

��
hm

expm // Hm

, m ≤ n

where πn,m denotes the projection induced by the inclusion gn E gm and π′
n,m

denotes the corresponding one on the Lie groups.
Since hn is a finite dimensional nilpotent Lie algebra, the exponential map

expn is a homeomorphism. We will prove this claim by explicitly constructing the
exponential map along with the corresponding Lie group. As a set, define
Hn = hn and the exponential simply as the identity map where the group
product is given by the Baker-Campbell-Hausdorff formula

x · y = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[y, [y, x]] + . . . .

This is well defined since hn is nilpotent hence there is only a finite amount of terms
in the sum. Adding a deformation parameter, the group product can be seen as a
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non-commutative continuous deformation of the addition in hn
4. This proves the

claim.
Taking the inverse limit of the inverse system (8) gives a Lie group and an

exponential map

ĝ = lim
←−
n∈N

hn
‘exp
−−→ lim

←−
n∈N

Hn = Ĝ.

Because expn is a homeomorphism for every natural n, the exponential map êxp

is so. We have proved that there is a Lie group Ĝ whose Lie algebra is ĝ and the
exponential map êxp : ĝ→ Ĝ is a homeomorphism.

This construction can be seen in the context of Malcev Lie algebras (Definition
2.1, [PS]) since ĝ is a Malcev Lie algebra hence it has an associated Lie group

Ĝ (Definition 2.2, [PS]). It can also be seen in the category of pro-nilpotent Lie
algebras, see (Remark V.1.3 (e) in [Nee]).

Now, consider the Lie algebra g with the initial topology of the morphism (7).
This is a coarser topology and will be called the pro-nilpotent topology. The Lie
algebra with this new topology will be denoted by gp.n. and we have that

(9) id : g→ gp.n.

is continuous. In particular, gp.n. is connected and simply connected since g is so.
Because the exponential êxp is a homeomorphism, the image of its restriction on
gp.n. gives a subgroup G < Ĝ, that is the following diagram commutes

G
�

� // Ĝ

g
id //

88

gp.n.

exp

OO

�

� // ĝ

‘exp

OO

and it is clear that the exponential map exp is a homeomorphism. In particular, G
is connected and simply connected and the composition of the exponential exp with
the map (9) gives the claimed bijective continuous exponential map, the pointed
arrow in the diagram above. We have the result. �

Remark 1. We have proved that the exponential map

exp : gp.n. → G

is a homeomorphism with respect to the pro-nilpotent topology. The family of sets

U(ε, n) = B(0; ε) + gn

generate this topology under translations on the Lie algebra and also on the Lie
group via the exponential map. This is the topology of the Lie group G.

Now, consider the trivial principal bundle E = R
n×Ĝ with connection ∇ whose

associated one-form is

ω∇ =
n∑

i=1

Xi dx
i, ω∇ ∈ Ω1(Rn, g).

This is well defined [Va].

4This may be a little bit confusing at first. The new product is no longer commutative in
general although the neutral element e of this new group corresponds to the zero element under
this correspondence.
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Proof of Theorem 1.2. We prove that the holonomy Hol∇, x coincides with the

Chen signature map (6) on loops. Because G < Ĝ = ĝ, where the last equality is
at the level of sets, it will be enough to show that the universal enveloping algebra
of the Lie algebra ĝ is isomorphic to the graded completion of the tensor algebra
in the generators X1, X2, . . . , Xn,

(10) U(ĝ) ∼= ¤�T (X1, X2, . . . , Xn).

Then, the result follows immediately by the path-ordering exponential
representation of the holonomy map [Lo].

The universal enveloping algebra functor U is left adjoint hence it preserves
inverse limits. Since g is the free Lie algebra generated by X1, X2, . . . , Xn, its
universal enveloping algebra is isomorphic to the tensor algebra of these generators

U(g) ∼= T (X1, X2, . . . , Xn).

Moreover, under the previous isomorphism, U(gn)) is isomorphic to Tn, where gn
and Tn are the ideals generated by the elements of degree greater than or equal to n
in the respective algebras. In particular, the universal enveloping algebra commutes
with the graded completion

U(ĝ) = U

Ç
lim
←−
n∈N

g / gn

å
∼= lim
←−
n∈N

U(g / gn) ∼= lim
←−
n∈N

U(g) / Tn = ‘U(g)

and we have proved the identity (10).
By Chen signature Theorem 2.2, the holonomy is Hol∇, x is a monomorphism

and by Chow Theorem 2.3 (see remark 1) the closure of its image consist of those
elements verifying the shuffle relation with vanishing degree one terms. This
concludes the proof. �

Proof of Corollary 1.4. By Theorem 1.2, the holonomy is a monomorphism and
we can take the initial topology on Lx. This gives an embedding Lx ⊂ Ĝ as a
topological group.

We can think about the smallest closed normal subgroup H E Ĝ such that Lx ⊂
H . This subgroup exists by a standard Zorn lemma argument. By definition, it is
simple relative to Lx.

The Lie subgroup H E Ĝ is normal hence its Lie subalgebra h E ĝ is actually
an ideal. It is clear that h is not trivial since otherwise the Lie group H would be
trivial as well but this is absurd since it contains the non-trivial loop group Lx.
Since g is a free Lie algebra and h is a non-trivial ideal of ĝ, g ∩ h is an infinitely
generated free Lie algebra [Ek] contained in h.

Since the holonomy map coincides with the Chen signature map by Theorem 1.2
and the degree one terms of this map vanish on the loop group Lx, it is clear that
H must be contained in the closed Lie subgroup generated via the exponential by
the Lie subalgebra ĝ2 = [ĝ, ĝ]. In particular hE ĝ2 < ĝ giving

[h : ĝ] ≥ [ĝ2 : ĝ] = n.

Taking the exponential gives the respective codimension result on the Lie groups
and this concludes the proof. �
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Definition 4.2. Consider x in R
n. The Lie group H and the topology τ in

Corollary 1.4 will be called the Lie group generated by Lx and the embedded
topology on Lx respectively.

Question: Is h = [ĝ, ĝ]? or equivalently, is H = [Ĝ, Ĝ]?

5. Geometric proof of Chen Signature Theorem

5.1. Main lemma. The content of the following Lemma is similar to the
Fundamental Lemma 3.5 in [Ch3]. We show that it can be derived from Theorem
2.1 giving in the next subsection a geometric proof Theorem 2.2.

Lemma 5.1. If γ ∈ Ω is not trivial in E(Rn), then there are compactly supported
one forms ω1, . . . , ωq such that

∫

γ

ω1ω2 . . . ωq 6= 0.

Proof. Let γ be a non trivial class in E and set x = γ(0). Assume first that γ is
closed; i.e. γ is not trivial in Lx(R

n). We consider the trivial bundle Rn×SL(2, R).
Since SL(2, R) is simple, then Theorem 2.1 applies, that is, there is a connection

A in the bundle R
n × SL(2,R), such that its holonomy HA(γ) is not trivial. This

can also be deduced from Tlas result [Tl] and Proposition 1.1 as follows: since
every whisker in the piecewise smooth class is a thin loop (see remark 4 in [Me]),
by Proposition 1.1 it is a retreacable loop in the piecewise smoothly immersed class.
In particular, γ is not a whisker and by Tlas result we have the same conclusion as
before.

The holonomy can be expressed (see [Lo], p. 1416) as

HA(γ) = I +
∑

n>0

(−1)n
∫

t>t1>...>tn

A(γ′(t1)) . . . A(γ
′(tn)) dtn . . . dt1.

Since HA(γ) is not the identity, there is q > 0 such that
∫

t>t1>...>tq

A(γ′(t1)) . . . A(γ
′(tq)) dtq . . . dt1 6= 0.

Write A = (aij) where ai,j are real valued one-forms. Note that the (i, j)- entry of
∫

t>t1>...>tq

A(γ′(t1)) . . . A(γ
′(tq)) dtq . . . dt1

is given by
∫

t>t1>...>tq

∑

k1,...kq−1

aik1
(γ′(t1)) ak1k2

(γ′(t2)) . . . akq−1j(γ
′(tq)) dtq . . . dt1.

Then, there are indexes i, j and a (q − 1)-tuple k1, . . . , kq−1 such that
∫

t>t1>...>tq

aik1
(γ′(t1)) ak1k2

(γ′(t2)) . . . akq−1j(γ
′(tq)) dtq . . . dt1 6= 0,

i.e. there are q real one-forms ω1, . . . , ωq such that
∫

t>t1>...>tq

ω1(γ
′(t1))ω2(γ

′(t2)) . . . ωq(γ
′(tq)) dtq . . . dt1 6= 0,
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that is ∫

γ

ω1 ω2 . . . ωq 6= 0.

In the proof of Theorem 7.1 of [Sp] it is assumed that the support of A is
compact, hence the supports of ω1, ω2, . . . ωq are compact as well. If γ is not closed,
i.e. γ(0) 6= γ(1), we consider a compactly supported real smooth function f such
that f(γ(0)) 6= f(γ(1)) and therefore obtain

∫
γ
df 6= 0. �

5.2. Proof of Theorem 2.2. Now, the kernel of the signature can be obtained
as in [Ch3]. Since the supports of ω1 . . . ωq are compact, there are ω̄1, . . . , ω̄q with
polynomial coefficients such that

∫

γ

ω̄1 ω̄2 . . . ω̄q 6= 0.

By additivity, we may assume that ω̄i have monomial coefficients, namely, there
are monomials g1, . . . , gq such that

∫

γ

g1dxj1 g2dxj2 . . . gqdxjq 6= 0.

We have to show that this expression is a linear combination of elementary iterated
integrals, i.e. integrals of the form

∫

γ

dxi1dxi2 . . . dxip ,

and then one of those integrals has to be non zero, finishing the theorem.
The claim follows by induction in q as in Lemma 4.1 of [Ch3]. Assume that

q = 1. Since g1 is a monomial we have g1 = xm1

1 . . . xmn
n . Let γt be the restriction

of γ to [0, t]. Hence we have

xi(γ(t)) =

∫

γt

dxi + xi(γ(0)),

and thus
∫

γ

g1dxj1 =

∫ 1

0

Ç∫
γt

dx1 + x1(γ(0))

åm1

. . .

Ç∫
γt

dxn + xn(γ(0))

åmn

dxj1 (γ
′(t))dt

which gives a linear combination of integrals
∫ 1

0

Ç∫
γt

dxi1dxi2 . . . dxik

å
dxj1(γ

′(t))dt =

∫

γ

dxi1dxi2 . . . dxikdxj1 .

For the induction step, note that
∫

γ

g1dxj1g2dxj2 . . . gqdxjq =

∫ 1

0

Ç∫
γt

g1dxj1g2dxj2 . . . gq−1dxjq−1

å
gq(γ(t))dxjq (γ

′(t))dt.

By the induction hypothesis,
∫

γt

g1dxj1g2dxj2 . . . gq−1dxjq−1

is a linear combination of integrals of the form
∫

γt

dxi1dxi2 . . . dxik .
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Applying the base step we have that∫

γ

g1dxj1g2dxj2 . . . gqdxjq

is a linear combination of integrals of the form
∫ 1

0

Ç∫
γt

dxi1dxi2 . . . dxik

∫

γt

dxik+1
dxik+2

. . . dxik+r

å
dxjq (γ

′(t))dt.

which is a linear combination of elementary integrals. This assertion follows from
the following definition and lemma from [Ch3] which we include for the sake of
completeness.

Definition 5.2.∫ b

a

f1(t)dt . . . fp(t)dt =

∫ b

a

Å∫ s

a

f1(t)dt . . . fp−1(t)dt

ã
fp(s)ds.

The following is Lemma 2.1 in [Ch3].

Lemma 5.3. The product
∫ b

a
f1(t)dt . . . fi(t)dt

∫ b

a
fi+1(t)dt . . . fp(t)dt is a linear

combination of integrals
∫ b

a
fi1(t)dt . . . fip(t)dt.

Proof. The cases p = 1, p = i, i = 0 are trivial so assume that p ≥ 2 and 0 < i < p.
Set

g(s) =

∫ s

a

f1(t)dt . . . fi(t)dt

∫ s

a

fi+1(t)dt . . . fp(t)dt,

h1(s) =

∫ s

a

f1(t)dt . . . fi−1(t)dt

∫ s

a

fi+1(t)dt . . . fp(t)dt,

h2(s) =

∫ s

a

f1(t)dt . . . fi(t)dt

∫ s

a

fi+1(t)dt . . . fp−1(t)dt.

Observe that

g(b) =

∫ b

a

g′(t)dt =

∫ b

a

h1(t)fi(t)dt+

∫ b

a

h2(t)fp(t)dt.

The Lemma is finished applying the induction hypothesis to h1 and h2. �
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