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A CRAMÉR–WOLD THEOREM FOR MIXTURES

RICARDO FRAIMAN, LEONARDO MORENO, AND THOMAS RANSFORD

Abstract. We show how a Cramér–Wold theorem for a family of mul-
tivariate probability distributions can be used to generate a similar the-
orem for mixtures (convex combinations) of distributions drawn from
the same family.

Using this abstract result, we establish a Cramér–Wold theorem for
mixtures of multivariate Gaussian distributions. According to this the-
orem, two such mixtures can be distinguished by projecting them onto a
certain predetermined finite set of lines, the number of lines depending
only on the total number Gaussian distributions involved and on the
ambient dimension. A similar result is also obtained for mixtures of
multivariate t-distributions.

1. Introduction

The Cramér–Wold device is the name given to a general technique for
analyzing multivariate probability distributions via their lower-dimensional
projections. The name originates from a classical theorem of Cramér and
Wold [3] to the effect that a probability measure in Euclidean d-dimensional
space is uniquely determined by its one-dimensional projections in all direc-
tions.

For certain classes of measures, one can do better. Indeed, in some cases,
just finitely many projections suffice to determine the measure. As an ex-
ample, we cite the case of elliptic measures in R

d (which includes that of
Gaussian measures), where just (d2+d)/2 suitably chosen projections suffice
(see [5]).

The central object of study in this article is that of mixtures, namely
convex combinations of probability measures. For example, suppose that
we already have a Cramér–Wold device for a certain family of probability
measures: can we then deduce a similar device for mixtures of measures
taken from that family? We give an affirmative answer to this question in
certain cases, including the very important one of Gaussian mixtures.

Here, in more detail, is a road-map of the article.
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Section 2 begins with a short introduction to the notion of the Cramér–
Wold device. We then establish a rather general abstract result, Theo-
rem 2.1, which shows how a Cramér–Wold theorem for a class of measures
can be used to generate a similar theorem for mixtures drawn from the same
class.

To apply Theorem 2.1, it is necessary to check that certain families of
probability distributions are linearly independent, or equivalently, that they
are identifiable. There is an extensive literature on techniques for proving
identifiability. In Section 3, we review results concerning the identifiability
of two particular families: the Gaussian distributions and the t-distributions.
We also derive what we believe to be a new criterion for identifiability, based
on a deep theorem in complex analysis due to Borel.

In Section 4, these ideas are applied to the important special case of
Gaussian measures and Gaussian mixtures. In particular, we derive a Cra-
mér–Wold theorem for Gaussian mixtures, Theorem 4.1, from the previously
known one for Gaussian measures. It says that, if the one-dimensional pro-
jections of two mixtures of ℓ and m normal distributions on R

d coincide on
a certain pre-determined set of (1/2)(l +m− 1)(d2 + d− 2) + 1 lines, then
the two distributions are the same. A similar result, Theorem 4.2, is also
established for mixtures of multivariate t-distributions.

We conclude in Section 5 with some remarks about potential applications
of these results.

2. A Cramér–Wold theorem for mixtures

2.1. Introduction. Given a Borel probability measure P on R
d and a vec-

tor subspace H of Rd, we write PH for the projection of P onto H, namely
the Borel probability measure on H given by

PH(B) := P (π−1
H (B)),

where πH : Rd → H is the orthogonal projection of Rd onto H.
According to a well-known theorem of Cramér and Wold [3], if P,Q are

two Borel probability measures on R
d, and if PL = QL for all lines L, then

P = Q.
There have been numerous refinements of the Cramér–Wold theorem. To

help describe these, it is convenient to introduce the following terminology.
Let P be a family of Borel probability measures on R

d and let H be a family
of vector subspaces of Rd (not necessarily all of the same dimension). We
say that H is a Cramér–Wold system for P if, for every pair P,Q ∈ P,

PH = QH (∀H ∈ H) ⇒ P = Q.

In this terminology, the original Cramér–Wold theorem says simply that the
family of all lines in R

d is a Cramér–Wold system for the family of Borel
probability measures on R

d. Here are some other examples.
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• If P is the family of compactly supported Borel probability measures
on R

2, then any infinite set of lines in R
2 is a Cramér–Wold system

for P (Rényi [17, Theorem 1]).
• If P is the family of probability measures on R

d whose supports
contain at most k points, and if H = {H1, . . . ,Hk+1} is any family
of k + 1 subspaces of Rd such that H⊥

i ∩H⊥
j = {0} whenever i 6= j,

then H is a Cramér–Wold system for P (Heppes, [11, Theorem 1′]).
• If P is the family of probability measures P on R

d whose moments

mn :=
∫
Rd ‖x‖n dP (x) are finite and satisfy

∑
nm

−1/n
n = ∞, and ifH

is any family of subspaces such that ∪H∈HH has positive Lebesgue
measure in R

d, then H is a Cramér–Wold system for P (Cuesta-
Albertos et al [4, Corollary 3.2]).

• If P is the family of elliptical distributions on R
d and if L is the set

of lines 〈ei + ej〉 (1 ≤ i ≤ j ≤ d), where {e1, . . . , ed} is any basis

of Rd, then L is a Cramér–Wold system for P (Fraiman et al, [5,
Theorem 1]).

Further results of this kind may be found in [1, 6, 7, 8, 10].

2.2. Mixtures. Let d ≥ 1 and let P be a family of Borel probability mea-
sures on R

d.
We say that P is linearly dependent if there exist distinct P1, . . . , Pn ∈ P

and non-zero λ1, . . . , λn ∈ R such that
∑n

j=1 λjPj = 0. Otherwise P is
linearly independent.

A P-mixture is a convex combination of measures from P, in other words,
a measure of the form

∑n
j=1 λjPj , where P1, . . . , Pn ∈ P and λ1, . . . , λn ≥ 0

with
∑n

j=1 λj = 1.
Our aim in this section is to establish the following Cramér–Wold theorem

for P-mixtures.

Theorem 2.1. Let P be a family of Borel probability measures on R
d, let

H be a collection of vector subspaces of Rd, and let ℓ,m ≥ 1. Suppose that:

(i) For each H ∈ H, the distinct measures in the set {PH : P ∈ P} are

linearly independent.

(ii) Each partition of H into ℓ+m−1 subsets contains at least one Cramér–

Wold system for P.

Let P and Q be convex combinations of ℓ and m measures from P respec-

tively. If PH = QH for all H ∈ H, then P = Q.

Proof. We argue by contradiction. Suppose that PH = QH for all H ∈ H,
but that P 6= Q. Then the difference P − Q can be written as P − Q =∑k

j=1 λjPj , where P1, . . . , Pk ∈ P are distinct, where λ1, . . . , λk ∈ R are
non-zero, and where k ≤ ℓ+m. Set

Hj := {H ∈ H : (P1)H = (Pj)H} (j = 2, . . . , k).

Clearly no Hj is Cramér–Wold system for P. If we had ∪k
j=2Hj = H, then

we could construct a partition of H into k − 1 sets (perhaps some of them
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empty) none of which is a Cramér–Wold system for P, contradicting the
assumption (ii) on H. We conclude that ∪k

j=2Hj 6= H, so there exists an

H0 ∈ H such that (P1)H0
6= (Pj)H0

(j = 2, . . . , k).
By assumption (i), the distinct measures in the set {(Pj)H0

: j = 1, . . . d}
are linearly independent. In particular, since (P1)H0

6= (Pj)H0
(j = 2, . . . , k),

it follows that (P1)H0
is not in the span of {(Pj)H0

: j = 2, . . . d}. On the
other hand, we have

k∑

j=1

λj(Pj)H0
=

( k∑

j=1

λjPj

)
H0

= (P −Q)H0
= PH0

−QH0
= 0.

Since λ1 6= 0, this is a contradiction. �

3. Linear independence and identifiability

3.1. Introduction. Condition (i) in Theorem 2.1 begs the question as to
how one determines whether a set of measures on a subspace H of Rd is
linearly independent.

In the statistical literature, the notion of linear independence of measures
is synonymous with that of identifiability. We say that a family P of Borel
probability measures on R

d is identifiable if it is impossible to express any P-
mixture as two different convex combinations of elements of P. It is easy to
see that P is identifiable if and only if it is linearly independent (see e.g. [19,
Theorem 3.1.1]). There is an extensive literature concerning techniques for
proving identifiability/linear independence. A useful background reference
is the book [19].

3.2. Linear independence of Gaussian and t-distributions. We shall
need two results in particular. The first concerns the family of Gaussian
distributions, with densities

(1) fµ,σ(x) =
1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
(x ∈ R).

Theorem 3.1. The family of Gaussian distributions {fµ,σ : µ ∈ R, σ > 0}
on R is linearly independent.

Proof. This result is well known. See for example [19, Example 3.1.4]. �

The second result treats the identifiability/linear independence of the fam-
ily of t-distributions. Recall that a t-distribution on R with ν degrees of
freedom is a Borel measure with density of the form

fν,µ,σ(x) = cν,µ,σ

(
1 +

(x− µ)2

νσ2

)−(ν+1)/2
,

where ν is a positive integer, µ ∈ R and σ > 0. The constant cν,µ,σ is chosen
to ensure that

∫
R
fν,µ,σ(x) dx = 1. This distribution has mean µ (if ν > 1)

and variance σ2ν/(ν − 2) (if ν > 2).
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Theorem 3.2. The family of t-distributions {fν,µ,σ : ν ∈ Z
+, µ ∈ R, σ > 0}

is linearly independent.

Special cases of this result have previously been obtained by Otiniano et

al. (case µ = 0), see [16, Proposition 4], and by Ho–Nguyen (case ν odd),
see [12, Theorem 3.4(b)]. However, we have not been able to find the general
case elsewhere in the literature, so we present a proof here.

Proof. Suppose, on the contrary, that there is a linear relation of the form

(2)
n∑

j=1

λjfνj ,µj ,σj
(x) = 0 (x ∈ R),

where the triples (νj , µj, σj) are distinct and the coefficients λj 6= 0. Re-
ordering the triples, we may further suppose that ν1 ≥ νj for all j ≥ 2.

If all the νj are odd integers, then we may argue as follows. Each function
fνj,µj ,σj

extends to a function in the complex plane C

fνj ,µj ,σj
(z) = c

(
1 +

(z − µj)
2

νjσ2
j

)−(νj+1)/2
,

which is holomorphic on C except for poles at the two points µj ± iσj
√
νj.

Moreover, the order of the poles at these points is exactly (νj + 1)/2. In
particular, it follows that, if j ≥ 2, then either fνj,µj ,σj

has no singularity at
µ1 + iσ1

√
ν1, or it has a pole there of order strictly less than ν1. Thus

fνj ,µj ,σj
(z)

fν1,µ1,σ1
(z)

→ 0 as z → (µ1 + iσ1
√
ν1) (2 ≤ j ≤ n).

Now, by the identity principle, the relation (2) extends to

n∑

j=1

λjfνj,µj ,σj
(z) = 0 (z ∈ C, z 6= µj ± iσj

√
νj).

Dividing both sides by fν1,µ1,σ1
(z) and then letting z → µ1 + iσ1

√
ν1, we

deduce that λ1 = 0, contrary to hypothesis.
If some of the νj are even integers, then the argument needs to be adjusted

slightly, since the presence of square roots means that the holomorphic ex-
tensions of fνj,µj ,σj

are multivalued. The problem is fixed as follows. We
construct a finite set of non-intersecting half-lines terminating at the points
µj ± iσj

√
νj and not crossing the real axis. The complement of these half-

lines is then a simply connected domain D containing R whose boundary
contains each point µj ± iσj

√
νj. Each function fνj ,µj ,σj

has a single-valued
holomorphic extension to D, and we can now argue exactly as before. �

3.3. Linear independence of measures via Borel’s theorem. Theo-
rems 3.1 and 3.2 above are just two examples of a large class of theorems
asserting the identifiability of various families of distributions. The proofs of
many of these results are very similar, and indeed our proof of Theorem 3.2
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relies on the same ideas. There is even an abstract formulation of the general
method due to Teicher [18, Theorem 2].

In this subsection we present a further general result on identifiabil-
ity/linear independence, based on a completely different principle, namely
a classic result in complex analysis due to Borel [2]. We have not seen this
theorem used elsewhere in the statistical literature, and we believe that the
following application may be of interest.

Theorem 3.3. Let P be a family of Borel probability measures on R
d. Sup-

pose that the characteristic function of every measure in P is the the restric-

tion to R
d of a nowhere-vanishing holomorphic function on C

d. Then P is

linearly independent.

Remarks. (i) This result immediately yields an alternative proof of Theo-
rem 3.1, since the characteristic functions of the Gaussian distributions (1)
have the form φ(ξ) = exp(iµξ − σ2ξ2/2).

(ii) There is a well-known criterion for the characteristic function of P to
be the restriction to R

d of a holomorphic function on C
d: this happens if and

only if the moments mn :=
∫
Rd ‖x‖n dP (x) are finite and satisfy m

1/n
n = o(n)

as n → ∞ (see e.g. [14, Theorem 4.2.2]).
(iii) Suppose that characteristic function of P is the restriction to R

d of
a holomorphic function f on C

d. A sufficient condition for f to be zero-free
on C

d is that P be infinitely divisible. This follows from [13, Theorem 3.1]
and [15, Theorem 4].

(iv) The following simple example shows that the nowhere-vanishing con-
dition in Theorem 3.3 cannot be omitted. Let P0 and P1 be the Dirac
measures on R concentrated at 0 and 1 respectively, and let P2 := (1/3)P0+
(2/3)P1. The characteristic functions are the Pj are given by φP0

(ξ) = 1 and

φP1
(ξ) = eiξ and φP2

= (1/3)(1+2eiξ ). All three are nowhere-zero on R and
all three extend to be holomorphic on C. However, the set {P0, P1, P2} is
clearly linearly dependent. Theorem 3.3 does not apply in this case, because
the holomorphic extension of φP2

has zeros in C (namely at i log 2+2πn for
each integer n).

As mentioned above, the proof of Theorem 3.3 is based on a theorem of
Borel. The precise version that we need is due to Green [9, p.98]:

Lemma 3.4. Let g1, . . . , gn : Cd → C be holomorphic functions such that

exp(g1) + · · · + exp(gn) ≡ 0.

Then, for some distinct j, k, the function gj − gk is constant.

Proof of Theorem 3.3. We argue by contradiction. Suppose that P is lin-
early dependent, so there exist distinct P1, . . . , Pn ∈ P and non-zero scalars
λ1, . . . , λn such that

∑n
j=1 λjPj = 0. Then the characteristic functions φPj

of the Pj satisfy
∑n

j=1 λjφPj
(ξ) = 0 for all ξ ∈ R

d. By assumption, each φPj

is the restriction to R
d of a nowhere-vanishing holomorphic function on C

d.
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Thus we may write λjφPj
= exp gj |Rd , where gj : C

d → C is a holomorphic

function on C
d, and

∑n
j=1 exp gj(ξ) = 0 for all ξ ∈ R

d. By the identity

principle, a holomorphic function on C
d that vanishes on R

d is identically
zero on C

d. Therefore
∑n

j=1 exp gj(ζ) = 0 for all ζ ∈ C
d. We now invoke

Lemma 3.4, to deduce that gj−gk is constant for some pair of distinct indices

j, k. This implies that φPj
/φPk

is constant on R
d. As Pj , Pk are probability

measures, we have φPj
(0) = φPk

(0) = 1. Therefore φPj
= φPk

on R
d. By

the uniqueness theorem for characteristic functions, it follows that Pj = Pk.
This contradicts the fact that Pj and Pk are distinct measures. �

Remark. Theorem 3.3 actually implies a stronger form of itself, as follows.
Given A ∈ Md(R) (the set of d × d matrices) and b ∈ R

d, let us write PA,b

for the Borel probability measure on R
d defined by

(3) PA,b(B) := P
(
{x ∈ R

d : Ax+ b ∈ B}
)
.

Suppose that the characteristic function of each measure in P is the re-
striction to R

d of a nowhere-vanishing function on C
d. Then, not only

is P linearly independent, but even the distinct measures in the family
{PA,b : P ∈ P, A ∈ Md(R), b ∈ R

d} are linearly independent. Indeed, a
simple calculation shows that

φPA,b
(ξ) = eib·ξφP (A

T ξ) (ξ ∈ R
d),

so, if φP is the restriction to R
d of a nowhere-vanishing holomorphic function

on C
d, then the same is true of φPA,b

. Theorem 3.3 now gives the result.

4. Gaussian mixtures

4.1. Introduction. A Gaussian measure P on R
d is one whose density has

the form

(4)
1

(2π det(Σ))d/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(x ∈ R

d),

where µ ∈ R
d, and where Σ is a real d × d positive-definite matrix. A

Gaussian mixture is a measure on R
d that is a finite convex combination of

Gaussian measures.
Mixtures of multivariate Gaussian distributions have several nice proper-

ties. In particular, in Titterington et al. [19], it is shown that Gaussian ker-
nel density estimators can approximate any continuous density given enough
kernels (universal consistency). It is well known that Gaussian mixtures are
weak*-dense in the space of all Borel probability measures on R

d. They
also have numerous applications in statistics; for more on this, see Section 5
below.
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4.2. A Cramér–Wold theorem for Gaussian mixtures. In this section
we consider the problem of testing for equality for two Gaussian mixtures by
looking at a finite number of projections. The basic theorem underlying this
approach has two ingredients. One is the abstract result Theorem 2.1. The
other is a characterization of Cramér–Wold systems for Gaussian measures
in R

d (and, more generally, for elliptical distributions) established in [5,
Theorems 1 and 2], which we now recall.

Let S be a set of vectors in R
d. Then the corresponding set of lines

{〈x〉 : x ∈ S} is a Cramér–Wold system for the Gaussian measures in R
d if

and only if S has the property that the only real symmetric d× d matrix A
satisfying xTAx = 0 for all x ∈ S is the zero matrix. A set S with this
property is called a symmetric-matrix uniqueness set (or sm-uniqueness set

for short).
It was shown in [5] that an sm-uniqueness set for Rd spans Rd and that it

contains at least (d2 + d)/2 vectors. We shall call S a strong sm-uniqueness

set if every subset of S containing (d2 + d)/2 vectors is an sm-uniqueness
set. We can now state our Cramér–Wold theorem for Gaussian mixtures.

Theorem 4.1. Let P and Q be convex combinations of ℓ and m Gaussian

measures on R
d respectively. Let S be a strong sm-uniqueness set for R

d

containing at least (1/2)(ℓ +m− 1)(d2 + d − 2) + 1 vectors. If P〈x〉 = Q〈x〉

for all x ∈ S, then P = Q.

Proof. We apply Theorem 2.1 with P equal to the set of Gaussian measures
on R

d and H := {〈x〉 : x ∈ S}. All we need to do is to check that P and H
satisfy the hypotheses (i) and (ii) in Theorem 2.1.

Concerning hypothesis (i), the projection of a multivariate Gaussian mea-
sure onto a line is just a Gaussian measure on that line. We have already
seen in Theorem 3.1 that the set of all one-dimensional Gaussian measures
is a linearly independent family. So hypothesis (i) holds.

As for hypothesis (ii), we argue as follows. If S is partitioned into ℓ+m−1
sets, then one of them, S0 say, must contain at least (d2 + d)/2 vectors
(otherwise S would contain at most (1/2)(ℓ + m − 1)(d2 + d − 2) vectors,
contrary to assumption). As S is a strong sm-uniqueness set, it follows that
S0 is an sm-uniqueness set. In summary, if S is partitioned into ℓ+m − 1
sets, then at least one of them is an sm-uniqueness set. In other words, if H
is partitioned into ℓ+m−1 sets, then at least one of them is a Cramér–Wold
system for the family of Gaussian measures. Thus hypothesis (ii) holds, and
we are done. �

4.3. A Cramér–Wold theorem for t-mixtures. We now establish an
analogue of Theorem 4.1 for mixtures of multivariate t-distributions, thereby
allowing heavy-tailed distributions. A t-distribution on R

d is a measure with
density of the form

fν,µ,Σ(x) = cν,µ,Σ

(
1 +

(x− µ)TΣ−1(x− µ)

ν

)−(ν+d)/2
(x ∈ R

d),
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where ν is a positive integer, µ is a vector in R
d, and where Σ is a positive-

definite d × d matrix. Once again, the constant cν,µ,Σ is chosen to ensure
that

∫
Rd fν,µ,Σ(x) dx = 1.

Theorem 4.2. Let P and Q be convex combinations of ℓ and m multivariate

t-distributions on R
d respectively. Let S be a strong sm-uniqueness set for

R
d containing at least (1/2)(ℓ+m−1)(d2+d−2)+1 vectors. If P〈x〉 = Q〈x〉

for all x ∈ S, then P = Q.

Proof. This is virtually identical to the proof of Theorem 4.1. Once again,
we apply Theorem 2.1, and we need to check that the hypotheses (i) and
(ii) of that theorem hold.

Hypothesis (i) holds because the one-dimensional projection of a multi-
variate t-distribution is a univariate t-distribution, and by Theorem 3.2 the
family of all univariate t-distributions is a linearly independent set.

Hypothesis (ii) holds for the same reason that it did before. Indeed,
[5, Theorem 1] applies to all elliptical distributions, which includes t-dist-
ributions as well as Gaussian ones. �

4.4. Strong sm-uniqueness sets. Theorems 4.1 and 4.2 beg the question
as to whether there exist strong sm-uniqueness sets of arbitrarily large car-
dinality. The following result provides an affirmative answer, and suggests
a realistic method for generating them.

Theorem 4.3. Let d ≥ 2, let k ≥ (d2 + d)/2, and let

V :=
{
(v1, . . . , vk) ∈ (Rd)k : {v1, . . . , vk} is a strong sm-uniqueness set

}
.

Then V is an open subset of Rdk, and R
dk \ V has Lebesgue measure zero.

Thus, if v1, . . . , vk are independent random vectors in R
d with distribu-

tions given by densities on R
d, then, with probability one, the set {v1, . . . , vk}

is a strong sm-uniqueness set for R
d. To test whether a specific family

{v1, . . . , vk} is a strong sm-uniqueness set, one can use the following cri-
terion for sm-uniqueness sets, which is also an ingredient in the proof of
Theorem 4.3.

Let d ≥ 2 and set D := (d2 + d)/2. Given x = (t1, . . . , td) ∈ R
d, let x̂ be

the upper triangular d × d matrix with entries x̂ij := titj (1 ≤ i ≤ j ≤ d),
but viewed as a column vector in R

D.

Lemma 4.4. A D-tuple (x1, . . . , xD) of vectors in R
d is an sm-uniqueness

set if and only if x̂1, . . . , x̂D are linearly independent vectors in R
D, in

other words, if and only if the determinant of the D × D block matrix

(x̂1|x̂2| · · · |x̂D) does not vanish.

Proof. This is [5, Corollary 5]. �
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Proof of Theorem 4.3. By Lemma 4.4, the set Rdk \ V can be expressed as
the union

⋃

1≤j1<j2<···<jD≤k

{
((v1, . . . , vk) ∈ (Rd)k : det

(
v̂j1 |v̂j2 | · · · |v̂jD

)
= 0

}
.

For each choice of (j1, j2, . . . , jD), the map (v1, . . . , vk) 7→ det(v̂j1 |v̂j2 | · · · |v̂jD)
is a polynomial in the entries of (v1, . . . , vk) that is not identically zero, so
its zero set is a closed subset of Rdk of Lebesgue measure zero. As Rdk \ V
is a finite union of such sets, it too is a closed subset of Rdk of Lebesgue
measure zero. �

5. Concluding remarks

Gaussian-mixture models have been shown to be very effective in mod-
eling different real data, see for instance Titterington et al. [19] for a deep
study of their properties. They provide flexible and general models, and rele-
vant applications can be found in the literature in different fields like density
estimation, machine learning and clustering, among others. The estimation
of these models is quite involved, in particular for high-dimensional data,
typically using Markov-chain Monte-Carlo methods in a Bayesian frame-
work. We believe that the Cramér–Wold device may well have a role to
play in this circle of ideas, in particular through Theorems 3.1 and 3.2. We
intend to explore this in a future paper.
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