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RESUMEN

Los requerimientos de las redes de computadoras modernas cambian sin parar.

Internet y sus aplicaciones han crecido de manera exponencial, obligando a

los operadores de red a innovar. Las redes deben poder adaptarse a nuevas

tecnoloǵıas, de manera escalable y cuidando los costos asociados. La program-

abilidad de la red le permite a los usuarios cambiar la funcionalidad de los

dispositivos de red, diseñando sus propios algoritmos de procesamiento de pa-

quetes sin depender de fabricantes. A su vez, existe la nueva tendencia de

computación “in-network computing”, donde se utiliza la programabilidad de

la red no solo para la conectividad, sino también para computación. De esta

manera, se deja de tratar al dispositivo de red como un simple dispositivo de

reenv́ıo, aprovechando sus capacidades y haciendo offload de tareas, aportando

a la descentralización y toma rápida de decisiones.

En este trabajo se presentan los principales conceptos de la programabili-

dad de la red, junto con las tecnoloǵıas, lenguajes y hardware que lo habilitan.

Luego, se presenta una solución en software compleja para demostrar su po-

tencial. En particular, se implementó un Intrusion Detection System (IDS)

que detecta anomaĺıas de tráfico a nivel de flujo en el dispositivo de red. Se in-

corpora Machine Learning (ML) desplegando un modelo sencillo en el switch,

para tomar decisiones rápidas sobre el tráfico en caso de tener confianza su-

ficiente, en caso contrario, se delega la decisión a un experto. Este será un

oracle con un modelo de ML más poderoso y más datos de entrenamiento.

Usando las decisiones del oracle, el dispositivo de red puede ser reentrenado,

buscando reducir la dependencia del oracle con el tiempo. Por último, para

validar la posible implementación de este problema en hardware, se realizó

una pequeña prueba de concepto. Para ambos casos se utilizó el lenguaje de

programación de plano de datos más popular: P4 (Programming protocol-

independent packet processors). Palabras claves:

Programación del Plano de Datos, Programabilidad de la red, P4.
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ABSTRACT

Modern computer networks must continually adapt to evolving requirements

driven by the exponential growth of the Internet and its applications. Net-

works must be able to adapt to new technologies in a scalable manner, while

maintaining cost efficiency. Network programmability allows users (typically

network operators) to modify the functionality of network devices, defining the

packet processing to their specific needs, without relying on vendor-provided

solutions. Furthermore, there is a new computing trend known as “in-network

computing”, which leverages network programmability not only for connec-

tivity but also for computation. In this way, the network devices stop being

treated as mere forwarding entities, taking advantage of their capabilities, con-

tributing to task offloading, decentralization and faster decision-making.

This work introduces the key concepts of network programmability, along

with the technologies, languages and hardware that make it possible. Then,

a complex software solution is introduced to demonstrate the potential and

complexity of applications enabled by this concept. In particular, an Intru-

sion Detection System (IDS) was implemented to detect abnormal traffic at

flow level directly on the network device. This approach incorporates Machine

Learning (ML) by developing a simple ML model on the switch, to make quick

decisions (at line-rate) about traffic, when there is sufficient confidence. Oth-

erwise, it defers to an external oracle that uses a more powerful ML model with

additional training data. Based on the oracle’s decisions, the network device

can go through the retraining process, with hopes of reducing reliance on the

oracle over time. Finally, to validate the potential hardware implementation

of this problem, a small proof-of-concept was carried out on. Both proof-of-

concepts were implemented using the most popular data plane programming

language: P4 (Programming protocol-independent packet processors).

Keywords:

Data Plane Programming, Network programability, P4.
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Chapter 1

Introduction

Over the past decade, the Internet and its applications have experienced un-

precedented growth, driving significant advancements in both network infras-

tructure and software development. With the rise of 5G mobile standards,

widespread cloud computing, ever-present IoT, and extensive machine learn-

ing and big data applications, operators must embrace entirely new approaches

to network architecture. This shift will make software-defined networking, edge

computing, network function virtualization, and service chaining the standard

practices. Upcoming applications will demand that NICs and network devices

like switches and routers support a continuously evolving and diverse array of

protocols and functions, building on the already extensive range of features

available today, such as L2/L3/L4 processing, tunneling and VPN protocols,

load balancing, congestion control and Quality of Service, firewalls, and intru-

sion detection systems [9].

Considering today’s applications and their requirements, traditional net-

works face several challenges. Firstly, it is necessary to have networks that

can adapt to the new technologies that emerge every day. Additionally, net-

works and their protocols need to be changeable in a scalable manner, while

also keeping deployment costs and times to a minimum. Typically, when a

network device needs to implement a new function, it involves manufactur-

ers, which naturally leads to higher costs and longer timelines. All of this

can be addressed using network programmability, allowing users to define the

algorithms to be executed directly on the network devices themselves.

Computation history has evolved from traditional parallel and grid com-

puting to cloud computing, which offers service models like IaaS, PaaS, and
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SaaS, providing scalability, on-demand resource provisioning, and a pay-as-

you-go pricing model. However, with the advent of 5G and beyond, new ap-

plications such as mobile video conferencing, connected vehicles, e-healthcare,

online gaming, and virtual reality require high data rates and ultra-low latency.

Cloud computing struggles to meet these evolving demands due to several chal-

lenges. The primary issue is the significant distance between cloud resources

and end devices. This connection relies on the Internet, and thus has latency

issues. Additionally, the processing power of cloud servers is insufficient for the

high data rates and massive traffic volumes generated by emerging applications

and IoT devices.

Edge computing was introduced to address cloud computing’s limitations

by bringing resources closer to end devices, thereby improving latency and

processing capacity. However, it may not sustain the growing traffic demands

long-term, and the latency still falls short for ultra-low-latency applications.

Distributed cloud computing improves upon these paradigms by utilizing the

computational and storage capacities of nearby intelligent devices, but it faces

challenges like computation and power limitations, device mobility, and secu-

rity concerns. A more secure, power-efficient, and stable computation infras-

tructure, such as in-network computing based on programmable data plane

technology, could significantly enhance processing capacity at the network

edge, complementing existing computational models.

Network elements such as switches and routers facilitate connectivity be-

tween end devices and edge infrastructure, as well as between edge and cloud

infrastructure. A new computing trend, known as in-network computing, uti-

lizes programmable network elements not just for connectivity but also for

computation. Modern programmable switches can handle billions of packets

per second with line-rate processing speeds, while maintaining sub-microsecond

packet processing delays. By using in-network computing, packets are pro-

cessed in real-time along their path before reaching edge or cloud servers.

This approach provides faster processing closer to end devices compared to

traditional edge or cloud computing models.

The in-network computing paradigm promotes the use of network devices,

in particular programmable switches, FPGAs, and SmartNICs for computa-

tional purposes. Programmable switches can be configured to analyze and

modify packet fields as they arrive. FPGAs are semiconductor devices that

allow for the programming of logical blocks to perform specific packet process-

2



ing tasks. Likewise, SmartNICs provide dedicated hardware acceleration and

customizable packet processing functions [54].

The problem to be addressed in this work is the need to leverage pro-

grammable network devices that adapt to the requirements of today’s appli-

cations. By viewing network devices as more than just “dumb” devices that

merely forward packets, and by empowering them, it is possible to offload

multiple network functions, contributing to decentralization and performance

improvements, enabling smarter traffic management, enhancing security fea-

tures, and reducing the load on centralized servers, ultimately leading to a

more efficient and resilient network infrastructure. The goal is to showcase

the capabilities and benefits of network programmability for both industry

and academia, highlighting how it can drive innovation, improve operational

efficiency, enable custom solutions, and support advanced research, ultimately

transforming the way networks are designed, managed, and optimized.

This thesis, therefore, has two main dimensions: first, an in-depth inves-

tigation into network programmability, including the technologies and devices

that enable it, and its applications. Additionally, a brief survey of machine

learning in networks is conducted. Secondly, a software proof of concept that

demonstrates the power of network programmability and how it can contribute

to in-network computing, whose results have been published originally in a

poster [14] and in an article [13], where more thorough tests were conducted.

Additionally, hardware basic implementations were conducted to showcase the

real-world applicability of network programmability. In particular, both proof-

of-concepts are carried out using the most popular language for data plane

programming: P4. The code is available at [17] and all the results are replica-

ble.

In the case of the software proof-of-concept, a complex scenario is demon-

strated where network programmability helps create applications tailored to

today’s needs. Specifically, an Intrusion Detection System (IDS) is designed to

detect traffic anomalies at the flow level. In this case, the network device can

make decisions about the traffic with a certain degree of confidence, granting it

more power than simple packet forwarding and thereby alleviating the load on

the control plane. The goal of this solution is to make quick decisions (at line-

rate) about traffic when there is sufficient confidence in the model’s output.

If the device cannot make an appropriate decision, it can delegate this task

to an expert (oracle). Furthermore, both the network device and the oracle
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use Machine Learning models, allowing them to handle large volumes of data

and enabling real-time retraining of the network device to adapt to changing

traffic patterns. The oracle, employs a more powerful ML model with access

to more training data than the switch that employs a simpler model. Based

on the oracle’s decisions, the network device can go through the retraining

process using the new labeled data, with hopes of reducing dependence on the

oracle over time. This is a clear example of how network programmability

can contribute to improve current networks by enabling customized applica-

tions, reducing loads, integrating Machine Learning models, and allowing for

dynamic adjustments during runtime. Finally, to validate the potential hard-

ware implementation of this problem, a small proof-of-concept was carried out

on a SmartNIC, where a simplified version of the ML model was deployed on

the switch, and its correct functionality was verified.

This document is organized as follows: Chapter 2 presents the state of the

art, detailing the concept of network programmability, with a particular focus

on the most popular language for this purpose, P4. It includes a comparison

of this language with other available options, a survey of different hardware

devices for programmability, an overview of various packet processing tech-

nologies, a review of various applications of programmable network devices

and a review of machine learning in networking. Chapter 3 presents the soft-

ware proof of concept, along with a variety of tests to measure its effectiveness.

Additionally, a small hardware proof of concept was conducted. This proof of

concept is supported by a survey of the available hardware devices that led to

the selection of the device used. Finally, Chapter 4 presents the conclusions of

this work.
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Chapter 2

Theoretical foundations

To achieve network programmability, it is essential to understand the enabling

technologies. This chapter explores the concept of network programmability

in depth, along with the various models that implement it. It also exam-

ines the programming languages associated with these models. Alternatives to

data plane programming languages, such as programmable packet processing

technologies and hardware solutions like SmartNICs, are discussed. Addi-

tionally, potential applications for data plane programming and offloading to

SmartNICs are introduced, concluding with a review of machine learning in

networking, focusing on traffic classification.

2.1 Data Plane Programming

Conventional network devices such as routers or switches integrate both the

control plane and the data plane within the same device. The control plane

is responsible for establishing packet processing policies, such as determining

where to forward a packet or how to change its header, and managing the

device’s operations. Conversely, the data plane is solely accountable for exe-

cuting the packet processing policy established by the control plane, namely, it

handles forwarding, hence often referred to as the forwarding plane. However,

forwarding is not the sole function that the data plane can implement [9].

In the traditional approach, routing algorithms determine the paths that

packets follow from their source to their destination, thereby defining the con-

tent of the forwarding tables within network devices. As illustrated in the

example depicted in Figure 2.1, each network device executes a routing algo-
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rithm, thereby possessing both routing and forwarding functionalities.

Figure 2.1: Traditional approach: control plane and data plane [57].

Therefore, network devices process packets using algorithms from both the

control plane and data plane. Users have some freedom to configure cer-

tain aspects of the control plane, such as functionalities or protocols, through

Command Line Interface (CLI)s, web interfaces, or management Application

Programming Interface (API)s. However, the underlying algorithms can only

be modified by the manufacturers. This results in a prolonged development

process for adding new features, causing some functionalities to be imple-

mented only when there is high demand, hindering innovation. Moreover, by

not allowing the modification of the control plane, all network protocols must

be factory-implemented, leading to inefficiencies, e.g. implemented protocols

that are not used.

In this context, programmability is defined as the ability of software or

hardware to execute an external processing algorithm. This differs from flex-

ible or configurable entities, which only allow changing certain parameters of

the internally defined algorithm that remains unchanged. Thus, network pro-

grammability refers to the ability to define the processing algorithm executed

in a network, particularly in the individual nodes such as switches and routers,

among others.

Network programmability entails the ability to specify and change algo-

rithms for both the control plane and data plane. In practice, this means

end-users can define these algorithms themselves without involving manufac-
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turers. For network infrastructure providers, network programmability means

defining data plane algorithms without needing to involve the original designers

of the Application-Specific Integrated Circuit (ASIC) for packet processing.

Therefore, network programmability enables manufacturers and end-users

to create networks that meet their specific needs more quickly and often at

lower costs, without compromising performance or equipment quality. Achiev-

ing full programmability of network devices requires both control plane and

data plane programmability [56][45].

Currently, telecommunications networks support numerous and heteroge-

neous use cases in order to support modern technological infrastructures. This

widespread use and diversity complicate the design of communication systems,

particularly their fundamental components: the network devices. On the one

hand, there is a trend towards specialization to optimize network devices for

specific tasks; on the other hand, there is a requirement for network devices to

be basic and general-purpose to reduce engineering costs. These contrasting

demands have driven the necessity (and definition) of programmable network

devices, enabling users (typically telecommunication operators) to alter device

functionality through a programming interface.

Software Defined Networking (SDN)s, the first and most popular attempt

at making the control plane programmable, aim to make the network de-

vices programmable by introducing an API that allows users to bypass built-in

control plane algorithms and replace them with their own. This is achieved

through the physical (and logical) separation of the control plane and data

plane. Typically, these algorithms are developed in software and run on an

SDN controller, which has a global view of the network. This remote controller

computes and distributes forwarding tables that each network device should

use. It is often deployed in a highly reliable and redundant remote datacenter,

managed by the Internet Service Provider (ISP) or another provider. In this

setup, the data plane functionality remains similar to the traditional approach,

with devices primarily handling forwarding tasks, while the remote controller

manages routing and other control functions, as depicted in Figure 2.2.

To enable communication between devices and the controller, it was decided

to provide a remotely callable API, giving rise to SDNs. Consequently, it be-

came feasible to implement control plane algorithms across the entire network

on a centralized controller. In various cases, such as large-scale datacenters,

these centralized algorithms were shown to be simpler and more efficient than
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Figure 2.2: SDN: Control plane and data plane [57].

traditional algorithms (e.g., BGP [81]) designed for decentralized control across

many autonomous networks. Standardizing this approach led to the develop-

ment of OpenFlow (OF) [64]. The hope was that once OF standardized the

API for controlling data plane functionality, SDN applications could leverage

these capabilities to implement network control. However, OF assumed certain

specific data plane functionality that was not formally specified and could not

be altered. This partly prompted the emergence of data plane programming.

Figure 2.3 illustrates the distinction between a traditional network device and

one with SDN capabilities.

So, SDNs allow users only to provide their own control plane, which pro-

vides the necessary forwarding information to the data plane, while the data

plane of different devices remains under manufacturers’ control. This limita-

tion is addressed through Data Plane Programming (DPP), enabling end users

to define data plane functionality and algorithms themselves. This significantly

shifts power to users, allowing them to build custom network equipment with-

out compromising performance, scalability, speed, or power efficiency. For

personalized networks, new control planes and SDN applications can be de-

signed, and end users can craft data plane algorithms that fit their exact needs.

DPP does not necessarily require APIs or support for external control planes,

as OF does. It should be noted that data plane algorithms are responsible
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Figure 2.3: Scope of network programmability in traditional network devices versus
SDN devices. Traditional network devices allow users to configure certain aspects
of the control plane, but the underlying algorithms remain fixed. SDN devices
offer a fully programmable control plane, while the data plane remains fixed in
functionality [45].

for processing all packets passing through a telecommunications system, thus

defining its functionality, performance, and scalability. Attempting to imple-

ment data plane functionalities in higher layers, such as the control plane,

typically results in performance degradation [45].

Data plane algorithms are typically expressed using standard programming

languages, although they often do not map well onto specialized hardware such

as high-speed ASICs. This discrepancy has led to the proposal of various data

plane programming models as abstractions for hardware. The programming

languages are tailored to these data plane models and provide abstract ways to

express algorithms. Subsequently, the resulting code is compiled for execution

on a specific device that supports the programmed data plane model.

Examples of data plane programming models include Data Flow Graph

Abstractions and PISA. In the case of Data Flow Graph Abstractions, packet

processing is described using a directed graph. Nodes in the graph repre-

sent simple and reusable primitives that can be applied to packets, such as

modifying a packet header. Directed edges in the graph depict the internal

flow of packets, where decisions about how to handle each packet are made

at the nodes. These decisions guide the packet’s traversal through the pro-

cessing graph. Figure 2.4 illustrates an example graph for forwarding IPv4

and IPv6 packets. Programming languages that implement this model include

Click [55], Vector Packet Processors [37], and BESS (Berkeley Extensible Soft-
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ware Switch) [89].

Figure 2.4: An example of a Data Flow Graph Abstractions model graph for IPv4
and IPv6 packet forwarding [45].

In the case of PISA, it is based on the concept of a programmable match-

action pipeline, which is well-suited to modern switching hardware. It consists

of a programmable parser, a programmable deparser, and between these two,

the programmable match-action pipeline itself, which includes multiple stages.

Figure 2.5 depicts the PISA model.

Figure 2.5: Protocol-Independent Switch Architecture [45].

The stages of PISA are as follows:

• Programmable parser: This allows programmers to declare arbitrary

headers along with a finite state machine that defines the order of these

headers in the packet to be processed. It converts serialized packets into

a well-structured form.

• Programmable match-action pipeline: This consists of multiple match-

action units, each containing one or more match-action tables. These

10



tables match an entry with one or more fields of a packet. Each table

entry specifies a particular action along with the data to provide, meaning

the action executed depends on the packet match. Most of a packet

processing algorithm is defined in the form of these tables. Each table

includes matching logic coupled with memory (Static Random-Access

Memory (SRAM) or Ternary Content-Addressable Memory (TCAM))

to store lookup keys and the corresponding action data. Action logic,

such as arithmetic operations or header modifications, is implemented by

Arithmetic Logic Unit (ALU)s. Other logic can be implemented using

stateful objects, such as counters, meters, or registers stored in SRAM.

A control plane manages the matching logic by writing entries to the

tables to influence the device’s behavior at runtime.

• Programmable deparser: Programmers declare how packets are serial-

ized.

PISA provides an abstract model that is applied in various ways to cre-

ate concrete architectures, allowing the specification of pipelines with differ-

ent combinations of programmable blocks. For example, a pipeline without

a parser or deparser, one with two parsers and two deparsers, and multiple

match-action units in between. It also supports the use of specialized compo-

nents required for advanced processing, such as checksum calculations or hash

functions.

In addition to PISA’s programmable components, typical switch architec-

tures also include configurable components with fixed functionality. For exam-

ple, input/output port blocks that receive or send packets, packet replication

engines that implement multicast or packet cloning/duplication, and traffic

managers responsible for packet buffering, queuing, and scheduling.

A packet processed by a PISA pipeline consists of the packet’s payload

and its metadata. PISA processes only the packet metadata (which travels

from the parser to the deparser), while the payload travels separately. The

metadata can be divided into:

• Packet headers: These are metadata corresponding to network protocol

headers, typically extracted in the parser and emitted in the deparser.

• Intrinsic metadata: These are metadata related to fixed-function com-

ponents. Programmable components can receive information from fixed-

function components by reading the intrinsic metadata they produce or
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control their behavior by configuring the intrinsic metadata they con-

sume. For example, the ingress port block generates metadata repre-

senting the ingress port number, which can be used in match-action

units. Conversely, to send a packet, match-action units generate intrin-

sic metadata representing the egress port number, which is consumed by

the traffic manager and/or the egress port block.

• User-defined metadata: Often simply referred to as metadata, this is

temporary storage similar to local variables in other programming lan-

guages. It allows developers to add information to packets that can be

used throughout the processing pipeline.

All metadata is discarded when the corresponding packet exits the processing

pipeline, for instance, when the packet is dropped or leaves the switch. Figure

2.6 depicts a typical switch architecture based on PISA. It includes a pro-

grammable ingress and egress pipeline and three fixed-function components:

an ingress block, an egress block, and a replication engine along with a traffic

manager between the ingress and egress pipelines.

Figure 2.6: Typical switch architecture based on PISA [45].

Including the aforementioned models, there are several approaches for data

plane programming, each with its own implementations and programming lan-

guages. P4 is currently the most widely adopted abstraction, programming

language, and programming concept for the data plane. It is part of the lan-

guages used to describe algorithms for PISA. First published as a research

paper in 2014 [11], P4 is now developed and standardized by the P4 Lan-
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guage Consortium1. It is supported by various software and hardware devices

and is widely used in academia and industry. Its specification is open and

public [45][62][9].

Other data plane programming languages for PISA include FAST [68],

OpenState [8], Domino [87], FlowBlaze [79], Protocol-Oblivious Forward-

ing [88], and NetKAT [3].

2.2 P4

P4 is a language for expressing how packets are processed by the data plane

of a programmable forwarding device, whether it be a software or hardware

switch, a network interface card, a router, or a network device. These devices

are known as targets, meaning a packet processing system capable of executing

a P4 program.

P4 allows the user to specify the format (headers) of the packets to be

recognized by network devices and the actions to be performed on incoming

packets (e.g., forwarding the packet, modifying headers, etc.). P4 also enables

the definition of stateful forwarding behaviors based on the use of memory

registers that can be accessed when processing a packet.

Many targets implement both the control plane and the data plane, but

the P4 program is designed to specify only the data plane functionality of the

target. P4 programs also partially define the interface through which the data

plane and control plane communicate, but they do not define the control plane

functionality. In Figure 2.7, the difference can be seen between a traditional

switch with fixed functionality (above) and a programmable switch with P4

(below), where in the traditional switch, it is the manufacturers who decide

the data plane functionality. The control plane controls the data plane by

managing entries in tables (e.g., forwarding tables), configuring specialized

objects, and processing control packets or asynchronous events, such as link

state changes. In contrast, in a programmable switch with P4, the data plane

functionality is not fixed beforehand; it is defined by the P4 program and thus

does not have knowledge of existing network protocols. Additionally, the data

plane communicates with the control plane using the same channels as in the

traditional switch, except that the set of tables and other data plane objects

1https://p4.org
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is no longer fixed, as they are defined by the P4 program.

Thus, the P4 program can define the format of the tables, which includes:

• The field (or set of fields) that will be the key of the table, for example,

the destination address of the Internet Protocol (IP) header, the Ethernet

header protocol, among others.

• The matching algorithm for table lookup, for example, Longest Prefix

Match (LPM).

• The possible actions to take on the packets, also defining the logic of

these actions and which parameters they will use.

The control plane is responsible for populating this table according to the

design specified by the P4 program. For example, if the key of the table

defined by the P4 program is the destination IP address, the control plane will

select for each IP which action will be taken (from those defined by the P4

program) and provide the parameter values for that action. If the P4 program

defined, for example, that there is a parameter representing the port through

which the packet should exit, the control plane provides the value for that

parameter.

Figure 2.7: Traditional switch vs programmable switch with P4. The traditional
switch has fixed data plane functionality, while the control plane manages forwarding
tables and handles control packets or events. The programmable switch defines its
data plane functionality through a P4 program. The communication between the
control and data planes remains similar, but the set of tables and objects is flexible,
as they are specified by the P4 program [23].

A set of programmable components with P4 and the data plane interfaces

between them will be called an architecture. The P4 architecture identifies

the P4 programmable blocks that can exist within a P4 program (defined for

that architecture). It can be considered a contract between the program and
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the target, which is why the manufacturer of the target must provide both a

compiler and a definition of the architecture for the target. P4 programs are

written for architectures and not for particular devices, as several devices can

use the same architecture.

The central abstractions provided by the P4 language are:

• Header Types: These describe the format (the set of fields and their

sizes) of each header within a packet. For example, the following code

defines the Ethernet header named ethernet t, with the fields dstAddr

of 48 bits, srcAddr of 48 bits, and etherType of 16 bits, in that order.

header ethernet_t {
bit<48> dstAddr

bit<48> srcAddr

bit<16> etherType

}

• Parsers: Describe the sequence of allowed headers in received packets,

how to identify those sequences, and which headers and fields to extract

from the packets. This way, it is possible to access the fields individually.

• Tables: Associate user-defined keys with actions and parameters. These

tables can be used to implement forwarding tables, flow tables, etc.

• Actions: Code fragments that describe how to manipulate the fields of

packet headers and metadata. They can also have data (parameters)

provided by the control plane at runtime.

• Match-Action Units: Construct lookup keys from packet fields or com-

puted metadata, then perform table lookups based on the constructed

key, selecting an action (including associated parameters) to execute, and

finally executing it.

• Control Flow: Expresses an imperative program that describes packet

processing in a target, including the sequence of match-action unit invo-

cations. It ultimately defines the execution sequence of tables, enabling

conditional executions.

• Extern Objects: Specific constructions of each P4 architecture that can

be manipulated by P4 programs through APIs. Their internal behavior

is hardwired, meaning they are not programmable using P4. An example

is checksum units. Different architectures have different extern objects.

• User-Defined Metadata: Metadata defined by the user associated with

each packet.
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• Intrinsic Metadata: Metadata provided by the architecture, associated

with each packet, such as the ingress port through which the packet was

received.

Figure 2.8 shows a typical tool workflow when programming a target using

P4. Manufacturers provide the hardware or software implementation frame-

work, an architecture definition, and a P4 compiler for the target. Program-

mers supply the P4 program, which must be designed for the specific archi-

tecture since the source code is not directly consumed by network devices and

therefore needs to be compiled. Compiling the program generates a data plane

configuration that implements the forwarding logic described in the input pro-

gram, and an API to manage the state of data plane objects from the control

plane, enabling communication between them [23].

Figure 2.8: Programming a target with P4 [23].

The P4 language has several elements [25]:

• Parsers are the main programmable blocks described in P4. They are

implemented as state machines, and their purpose is to extract headers

and indicate their order.

• Control blocks are responsible for the main match-action processing. In

the control blocks, tables and their actions are defined and applied.

• Expressions: The implementation of parsers and control blocks is pro-

vided by the P4 programmer, who uses expressions and data types de-

fined in the language. These expressions can use basic operations and

operators, such as standard arithmetic and logical operations.

• Data types:

– Basic types, such as bit<n>, which represents an unsigned bit string

of size n, int<n> which represents a signed integer of size n, or

16



varbit<n>, which represents a variable-length bit string with a

maximum size of n.

– The header type, which is an ordered collection of members that

can contain the basic types mentioned. They are byte-aligned, can

be valid or invalid, and provide several operations to manipulate the

validity bit, such as isValid(), setValid() and setInvalid().

– The struct type, which consists of an unordered collection of mem-

bers without alignment restrictions. Generally, P4 programs com-

bine a collection of headers into a struct to use in programmable

blocks. It is important to recall that the parser determines the order

of the headers to be recognized in the packet.

– Header stack type, which represents an array of headers of the same

type.

– Header union type, which is an alternative to the previous type and

contains at most one of the different headers. For example, a header

union could be declared to consist of IPv4 and IPv6 headers if it is

expected that all packets contain only one of these and not both.

Note that with typedef an alternative name can be defined for a type,

const can be used to define constants, and the #define primitive can

also be used.

P4 is a domain-specific language designed to be implemented on a wide

variety of targets, including programmable network interface cards, FPGAs1,

software switches, and hardware ASICs. This is why the language is restricted

to constructions that can be efficiently implemented across all these platforms.

Some examples of hardware-based targets are Intel Tofino [50], FPGA [48],

Netronome Agilio smartNICs 2, Raspberry Pi [59], AMD Pensando Data Pro-

cessing Unit (DPU)3 and multiple compilers for these targets (or a variety of,

e.g. FPGAs). The Intel Tofino (formerly Barefoot Tofino)4 is the first Eth-

ernet switch ASIC that allows for user programmability. It is engineered to

deliver extremely high throughput of 6.5 Tbit/s (4.88 B packets per second),

supporting 65 ports operating at 100Gbit/s. Its next-generation version, the

1https://netfpga.org
2https://netronome.com/agilio-smartnics/
3https://community.amd.com/t5/corporate/amd-pensando-dpu-software/ba-p/

630282
4https://www.intel.la/content/www/xl/es/products/details/network-io/

intelligent-fabric-processors/tofino.html
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Intel Tofino 25, offers throughput rates of up to 12.8 Tbit/s, with ports capable

of running at up to 400Gbit/s. Tofino was originally developed by Barefoot

Networks, a startup that Intel acquired in 2019. The Tofino ASIC uses the

Tofino Native Architecture (TNA)6, a custom P4 architecture that significantly

enhances the Portable Switch Architecture (PSA). TNA offers support for ad-

vanced device capabilities needed to implement complex, high-performance

data plane programs. The device is equipped with either 2 or 4 independent

packet processing pipelines, each capable of serving 16 100Gbit/s ports. These

pipelines can run the same P4 program or operate independently with dif-

ferent programs. Additionally, the pipes can be interconnected, enabling the

creation of longer processing pipelines for more demanding applications [46].

Currently, Intel Tofino switches have been discontinued. However, they can

still be acquired, and support for them is available.

Software-based ones include Behavioral Model version 2 (BMv2) [24] (the

reference software switch for P4), P4OvS [75], P4rt-OVS [74] and PISCES [86].

P4c [26] is the reference compiler for P4, supporting both versions of the P4

language, P414 [30] (discontinued version but still supported on several targets)

and P416 [23]. This compiler includes different backends, meaning different

targets: simple switch, DPDK [34], EBPF [22], among others [26].

However, p4c is a modular compiler, making it easy to add different back-

ends. When compiling a P414 or P416 file, two files will be generated:

• A file with the extension .p4i, which is the result of executing the pre-

processor on the given P4 program.

• A file with the extension .json, which is the file format expected by the

target.

Additionally, it is possible to add a flag so that the compiler also creates

a text file in “P4Info” format, which contains a description of the tables and

other objects in the P4 program. This is useful for controlling the data plane.

The performance of programmable devices using P4 assumes a fixed cost

for table lookups and interactions with external objects. All P4 programs,

including parsers and controls, perform a constant number of operations per

byte of a packet received and analyzed. Although parsers can contain loops,

5https://www.intel.la/content/www/xl/es/products/details/network-io/

intelligent-fabric-processors/tofino-2.html
6https://github.com/barefootnetworks/open-tofino

18

https://www.intel.la/content/www/xl/es/products/details/network-io/intelligent-fabric-processors/tofino-2.html
https://www.intel.la/content/www/xl/es/products/details/network-io/intelligent-fabric-processors/tofino-2.html
https://github.com/barefootnetworks/open-tofino


as long as some header is extracted in each cycle, the packet itself limits the

parser’s total execution. This means the computational complexity of a P4

program is linear in the total size of all headers and does not depend on

accumulated state size during data processing (such as the number of flows

or the size of processed packets). These guarantees are necessary but not

sufficient for fast packet processing across various targets [23, 62]

Compared to modern packet processing systems (e.g., those using mi-

crocode on custom hardware), P4 offers several significant benefits [23]:

• Flexibility: P4 allows many forwarding policies to be expressed as pro-

grams, unlike traditional switches with fixed forwarding functions.

• Expressiveness: P4 can express sophisticated, hardware-independent

packet processing algorithms using only general-purpose operations and

table lookups. These programs are portable to other targets implement-

ing the same architecture.

• Resource Mapping and Management: P4 programs describe storage re-

sources abstractly, and compilers map these user-defined fields to avail-

able hardware resources, handling low-level details like scheduling and

allocation.

• Software Engineering: P4 programs offer benefits such as type verifica-

tion, information hiding, and software reuse.

• Component Libraries: Libraries provided by manufacturers can wrap

specific hardware functions in portable high-level P4 constructs.

• Decoupling Hardware and Software Evolution: Target manufacturers can

use abstract architectures to further decouple low-level architectural de-

tails from high-level processing.

• Debugging: Manufacturers can provide software models of an architec-

ture to aid in the development and debugging of P4 programs.

2.2.1 Architecture model

As mentioned earlier, the P4 architecture identifies the programmable blocks

and their data plane interfaces. The architecture does not need to expose the

entire programmable surface of the data plane. For instance, a manufacturer

might provide multiple definitions for the same device, each with different

capabilities, such as with or without multicast support.
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In Figure 2.9, there is a target with two programmable P4 blocks (P4 block

#1 and P4 block #2), showing the interfaces between these blocks. Each block

is programmed by a separate P4 code fragment. The target interacts with the

P4 program through a set of registers or control signals. Input controls pro-

vide information to the P4 program, such as the ingress port through which

a packet was received, while output controls can be written by the P4 pro-

gram to alter the target’s behavior, such as the egress port to which a packet

should be sent. Control registers or signals are represented in P4 as intrinsic

metadata. Additionally, P4 programs can store and manipulate data related

to each packet using user-defined metadata.

Figure 2.9: Interfaces of a P4 program [23].

The behavior of a P4 program can be entirely described in terms of trans-

formations that map bit vectors to bit vectors. To process a packet, the ar-

chitecture model interprets the bits written by the P4 program into intrinsic

metadata. For instance, to forward a packet to a specific output port, a P4

program might need to write the output port identifier into a dedicated con-

trol register. Similarly, to drop a packet, a P4 program might need to set a

“drop” bit in another dedicated control register. Note that the details of how

the intrinsic metadata is interpreted are architecture-specific.

P4 programs can invoke services implemented by external objects and func-

tions provided by the architecture. Figure 2.10 shows how a P4 program in-

vokes the services of a checksum calculation unit built into a target. The

implementation of the checksum unit is not specified in P4, but its interface

is. In general, the interface for an external object describes each operation it

provides, including its parameters and return types. These external blocks can

be viewed as a black box.

In general, P4 programs are not expected to be portable across different
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Figure 2.10: A P4 program calling the methods from a fixed function object [23].

architectures. For example, running a P4 program that performs a broadcast

of packets by writing to a custom control register will not work correctly on

a target that lacks such a control register. However, P4 programs written

for a given architecture should be portable across all targets that faithfully

implement the model, provided there are sufficient resources [23]. There are

several P4 architectures, such as Portable Switch Architecture (PSA)[42], Sim-

pleSumeSwitch[72], Portable NIC Architecture (PNA)[32] and V1Model[31].

2.2.2 P4Runtime

P4Runtime is another component of the P4 ecosystem. It is defined as a

standard, open, and hardware-independent API that enables runtime control

of P4 data planes. It is open, meaning it can be used to control any ASIC

switch, and it is extensible and customizable, allowing different networks to

use different protocols and functionalities with the same API [62].

The P4Runtime API allows control of the data plane elements of a device

as defined by a P4 program. To achieve this, it generates a controller that

can manage P4 devices. This controller can, among other things, manipulate

the tables defined by the P4 program (by creating, deleting, modifying, or

querying entries), query stateful elements, and change the forwarding pipeline

configuration (i.e., change the P4 program running on a switch), all at runtime.

The P4Runtime API defines the messages and the semantics of the interface

between the controller and the target it will control. The API is defined using

Protocol Buffers (protobuf) [33] files, which are an extensible, language- and

platform-independent mechanism for serializing structured data. Developed

by Google and open-source, protobuf allows one to define the structure of data

once and then use generated source code to easily write and read structured

data from and to various data streams and multiple languages. It currently

supports generated code in Java, Python, Objective-C, and C++. protobuf

was developed as an alternative to XML [27, 33, 41].

First, the structure of the data to be serialized must be defined in a proto
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file (a text file with the .proto extension). This data is structured as messages,

where each message is a small logical record of information containing a series

of name-value pairs called fields. Once the data structures are specified, the

protobuf compiler, called protoc, is used to generate data access classes in

the preferred programming language. These classes provide simple access to

each field, such as getters/setters, as well as methods to serialize/deserialize

the entire structure from/to raw bytes.

gRPC 1 is an open-source, high-performance framework for Remote Pro-

cedure Call (RPC) that can run in any environment, developed by Google.

gRPC can use protocol buffers as its Interface Definition Language (IDL) and

as its underlying message exchange format. In gRPC, a client application can

directly call a method on a server application running on a different machine as

if it were local, simplifying the creation of distributed applications and services.

As with many RPC systems, gRPC relies on defining a service by specifying

the methods that can be called remotely along with their parameters and re-

turn types. These gRPC services are defined in proto files, with RPC method

parameters and return types specified as protobuf messages. The server im-

plements this interface and runs a gRPC server to handle client calls, while

the client has a stub (simply called a client in some languages) that provides

the same methods as the server.

gRPC clients and servers can run and communicate with each other in a

variety of environments, from servers to personal computers, and can be writ-

ten in any of the languages supported by gRPC. For example, one can create a

gRPC server in Java with clients in Go, Python, or Ruby [4]. A communication

diagram between gRPC clients and servers can be seen in Figure 2.11.

The P4Runtime API is implemented by a program running a gRPC server.

This server is associated with an implementation of the P4Runtime service

interface (automatically generated). This program is called the “P4Runtime

Server.” [41]

In Figure 2.12, the reference architecture of P4Runtime is illustrated. The

device or target to be controlled is shown at the bottom (in dark purple), and

a controller is displayed at the top. There can be more than one controller,

but P4Runtime only grants write access to a primary controller for each en-

tity, whereas any controller can have read access. Controllers have a gRPC

client that remotely calls the methods provided by the gRPC server located

1https://grpc.io
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Figure 2.11: Example of a communication diagram between gRPC clients and
servers [4].

on the target. These methods are used to control P4 elements. For example,

to configure the P4 program of a target, the controller uses an RPC called

SetForwardingPipelineConfig.

Figure 2.12: P4Runtime reference architecture [41].

The controller can access the P4 entities declared in the P4Info file’s meta-

data. The structure of this file is defined by the p4info.proto file. The con-

troller can also modify the forwarding pipeline configuration, which involves

installing and running the compiled P4 program output and installing the as-

sociated P4Info metadata. Additionally, the controller can query the target to

obtain information about the device configuration and P4Info. In summary,

P4Runtime not only allows for loading different P4 programs onto devices but

also enables querying device configuration information (such as control plane

tables) and other objects (like counters), as well as modifying control plane
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rules, all at runtime [41].

2.2.3 Available Resources

The resources available for P4, catering to both beginners and experts, are

extensive. These include documentation, tutorials, sample code, videos, and

tools. The P4 community is active and consistently contributes to the ecosys-

tem.

• The official P4 website is available at 1. This site provides the latest up-

dates, relevant information, working communities, communication chan-

nels, events, publications, and more.

• The original P4 paper is available at [11].

• A P4 forum is available at 2. This forum covers a wide range of topics,

from advanced discussions to beginner-friendly ones. It is highly active,

featuring responses from experts, P4 members, and enthusiasts.

• The P4 language repository is available at 3. It contains multiple repos-

itories, among the following:

– The P4 programming language specifications repository 4. The P416

specification is available at [23] and the P414 specification is avail-

able at [30].

– The official P4 tutorial 5, that includes a virtual machine with all

necessary tools already installed and a set of different use cases.

The tutorial slides are available at 6. These are very comprehensive

and highly useful for anyone who is starting to explore the world of

P4.

– The behavioral model, the reference P4 software switch 7.

– The P4Runtime repository 8. Is specification is available at 9. It

also includes a shell10 for P4Runtime, easing its use.

1https://p4.org
2https://forum.p4.org
3https://github.com/p4lang
4https://github.com/p4lang/p4-spec
5https://github.com/p4lang/tutorials
6https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_

19poeLLDLadD5zLzrTkVc/edit?pli=1#slide=id.g37fca2850e_6_141
7https://github.com/p4lang/behavioral-model
8https://github.com/p4lang/p4runtime
9blob:https://p4.org/191510e9-32f6-4f15-a5ed-1e8ba0451225

10https://github.com/p4lang/p4runtime-shell
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– The reference compiler for P4 (p4c) repository 11.

• A repository1 containing extensive information about P4, including

scripts to install all the necessary tools for developing and testing P4

programs.

• A Mininet extension that allows the user to create and test virtual net-

works that can include P4 switches is available at2.

• The specification for the Portable Switch Architecture (PSA) is available

at 3, the specification for the P4 Portable NIC Architecture (PNA) is

available at 4 and the V1Model source code is available at 5.

• The P4 Language Cheet Sheet is available at 6.

• The P4 Language Consortium Youtube Channel is available at 7.

• Documents for multiple pasts events (including hackatons, workshops,

between others) are available at 8.

• P4 ONF’s blog is available at 9.

2.2.4 Applications

The applications of P4 are countless. P4 has been used in both hardware

and software versions to implement hundreds of solutions. An example of

several solutions using P4 can be found in section 3.1.1, which presents the

related work for the proof-of-concept software. In this section both software

and hardware solutions are presented, all implemented in P4. To illustrate,

here are a few interesting examples of P4 applications:

• NDP protocol: Re-architecting datacenter networks and stacks for low

latency and high performance [44]. This is a clear example for using P4

(and network programmability in general). The authors designed a new

protocol for the data center and implemented a switch in P4 that can

process packets in the format of the new protocol.

11https://github.com/p4lang/p4c
1https://github.com/jafingerhut/p4-guide
2https://nsg-ethz.github.io/p4-utils/introduction.html
3https://p4.org/p4-spec/docs/PSA.html
4https://p4.org/p4-spec/docs/PNA.html
5https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
6https://drive.google.com/file/d/1Z8woKyElFAOP6bMd8tRa_Q4SA1cd_Uva/view
7https://www.youtube.com/@p4languageconsortium267/videos
8https://p4.org/events/
9https://opennetworking.org/tag/p4/
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• SRv6 uSID implementation on P410. The SRv6 “micro segment” so-

lution, known as uSID, is an enhancement to the SRv6 Network Pro-

gramming model. It enables the representation of SRv6 segments in a

more compact and efficient manner, utilizing only two bytes for uSID

compared to the standard 16-byte IPv6 address used for regular SRv6

segments. The authors developed the SRv6 uSID solution using the P4

language.

• P4 LB: Load Balancing Using P4 in Software-Defined Networks [52].

This work implements a load balancer using P4, analyzing packet headers

and utilizing stateful objects to record data flow information, introducing

four packet scheduling schemes: connection hash, random, round-robin,

and weighted round-robin.

2.3 Other DPP Languages

Despite P4 being the most well-known and widely used language for data plane

programming, this alone is not a sufficient reason to use it. Therefore, it was

decided to evaluate the other available languages, assessing each one in terms

of its architecture, potential applications, available resources, and more.

2.3.1 Click

The Click Router [55] is introduced as a versatile, modular software architec-

ture designed for constructing routers. These routers are composed of packet

processing modules known as elements. The core interface of an element mainly

includes functions for initialization and packet handling, but it can be ex-

panded to support additional functionalities. To configure a router, the user

links various elements together in a directed graph, where the connections,

or edges, represent the different paths for packet forwarding. Users can also

enhance a configuration by creating new elements or by recombining existing

ones in various ways. Click was developed as an extension to the Linux kernel

on a general-purpose PC [55].

10https://netgroup.github.io/p4-srv6-usid/
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2.3.1.1 Architecture

A Click element, as previously described, is a packet processing module de-

signed for conceptually simple tasks, like decreasing an IP packet’s time to

live field, rather than more complex operations such as IP routing. A router

configuration is represented as a directed graph, where the elements serve as

vertices, and the edges between them indicate possible paths for packet trans-

fer. Every action performed by the software of a Click router, including device

handling, routing table lookups, queueing, and packet counting, is encapsu-

lated within an element. The user controls the behavior of a Click router by

selecting which elements to use and how they are interconnected.

Each element in Click is a C++ object that may maintain its own private

state, with connections (or edges) represented as pointers to these objects.

Passing a packet through a connection is implemented as a single virtual func-

tion call.

The key properties of an element include:

• Element class: Each element belongs to a specific class that defines the

code executed when processing a packet, as well as its initialization pro-

cedure and data structure.

• Ports: Elements can have multiple input and output ports, with connec-

tions defined between an output port of one element and an input port

of another. Ports can also have specific roles, for example, the second

output port is generally used to send erroneous packets.

• Configuration string: An optional string provided during router initial-

ization that can be used to set the element’s state or modify its behavior.

• Method interfaces: While every element supports the basic packet-

transfer interface, they can also create and export additional interfaces

for runtime communication, which may include both methods and data,

such as a queue exporting its length.

In summary, a Click element is a C++ object with defined ports and cus-

tomizable behavior through configuration strings and method interfaces, en-

abling modular packet processing within a router configuration.

Figure 2.13 shows a diagram of a sample element “Tee(2)”, including the

properties described before. “Tee” is the element class, which copies every

packet received through its input port (triangular port in the figure) and sends
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it to each output port (rectangular ports). The configuration string is repre-

sented by the string between the parenthesis. In this case, the string “2” is

interpreted by the class Tee as a request for two outputs. Last, method inter-

faces are not shown explicitly, as they are implied by the class. Figure 2.14

shows a router configuration (directed graph), that counts incoming packets

and then drops them all. This configuration is compound by three elements,

an element that receives the packet, passing it through an element that serves

as a counter, and finally passing it through an element that drops it.

Figure 2.13: A sample element “Tee(2)” [55].

Figure 2.14: A click router configuration diagram, that counts and then drops all
packets [55].

Click’s configuration language is straightforward, comprising two primary

constructs: declarations, which generate elements, and connections, which

specify the linking of these elements. The example below illustrates the cre-

ation of three elements and their connections.

// Declare three elements...

src :: FromDevice(eth0);

ctr :: Counter;

sink :: Discard;

//... and connect them together

src -> ctr;

ctr -> sink;

//Alternate definition using syntactic sugar

FromDevice(eht0) -> Counter -> Discard;

Users can also create what are known as compound elements, which allow

them to define custom element classes. A compound element is a fragment of a

router configuration that includes various connected elements, which can then

be used in the overall configuration just like a standard Click element class.
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There are two drivers available for running Click router configurations: a

Linux in-kernel driver and a user-level driver that interfaces with the network

using Berkeley Packet Filter (BPF) or similar packet socket mechanisms. The

user-level driver is particularly useful for profiling and debugging, whereas the

in-kernel driver is more suited for production use.

To install a Click router configuration, the user provides the configuration

file to the kernel driver via the Linux proc1 file system. Click operates as a

kernel thread within the Linux kernel, running the router driver, which contin-

uously processes tasks in a loop. There are two ways to modify a configuration

in Click without losing data:

• Handlers: They serve as access points for user interaction, and each

element can have multiple handlers. This method is ideal for making

changes that are specific to a single element. For example, a Click routing

table might offer “add route” and “del route” handlers.

• Hot swapping: This method is suitable for more extensive configuration

changes. The user can create a new configuration file and install it using

the hot-swapping option.

Additionally, element class definitions can be dynamically added or removed

from the Click kernel driver.

However, there are some limitations. Click’s elements may not be suitable

for all scenarios, as the system is primarily organized around packet flow. For

instance, complex protocols such as BGP do not naturally break into parts

(elements) among which packets flow. Click also lacks the ability to schedule

Central Processing Unit (CPU) resources per individual flow and does not

support variables, which can lead to information duplication [55].

There is an enhanced version of the Click Modular Router called

FastClick [6], which is backwards compatible with standard Click elements

and is designed as a high-speed userspace packet processor. FastClick intro-

duces features like batching, advanced multi-processing, and improved support

for Netmap [82] and DPDK [34].

2.3.1.2 Available resources

The available resources for Click include various tools and documentation to

assist users in building and configuring Click routers. These include:

1https://docs.kernel.org/filesystems/proc.html
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• The Click paper “The Click Modular Router” is available at [55], while

the previous version of Click has its own paper available at [67]. The

main difference includes more in-depth implementation details and per-

formance analysis.

• The Click modular router toolkit is available at 1, showing how to compile

and run a Click router.

• The FastClick code is available at 2, in conjunction with tutorials on

Click in general and how to achieve high throughput and low latency.

2.3.1.3 Applications

Regarding applications of the Click router, the following could be found, among

others:

• 5G-EmPOWER3. It proposes a mobile network operating system de-

signed for heterogeneous wireless/mobile networks. The Agent is

built using the Click modular router and implements a reference 5G-

EmPOWER WiFi Access Point.

• Hummingbird: a validation solution over fully dynamic paths [47]. Hum-

mingbird as well as a non-sampling Baseline is implemented using the

Click router.

• Hierarchical Multiresource Fair Queueing for Packet Processing [94]. The

authors present two new multi-resource fair queueing algorithms to sup-

port hierarchical scheduling, collapsed Hierarchical Dominant Resource

Fair Queueing (collapsed H-DRFQ) and dove-tailing H-DRFQ. The pro-

posed algorithms are implemented on the Click router.

2.3.1.4 Comparison with P4

Click was first introduced in 1999, making it an older technology that has

certainly influenced subsequent data plane programming languages. The most

recent commit to the Click modular router toolkit repository was in July 2022,

and the presence of many unresolved issues suggests that it may no longer be

actively maintained.

1https://github.com/kohler/click
2https://github.com/tbarbette/fastclick
3https://github.com/5g-empower/empower-lvap-agent

30

https://github.com/kohler/click
https://github.com/tbarbette/fastclick
https://github.com/5g-empower/empower-lvap-agent


Click supports several platforms, including Linux, macOS, BSD, and par-

tially Windows [35]. This compatibility allows Click to run on OpenWRT 4, a

specialized Linux distribution for wireless routers. However, unlike P4, Click

does not have the capability to map programs to various target hardware

switches [11].

Click is considered relatively easy to learn, thanks to its modular design,

which simplifies the composition of different elements. However, this modular-

ity can also have a negative impact on performance. As previously mentioned,

Click is well-suited for programs that align with packet flows, which excludes

certain protocols that do not match well.

Click is a fairly expressive language, ideal for defining how a CPU’s ker-

nel processes packets. However, it cannot map to the parse-match-action

pipelines on dedicated hardware. Moreover, Click is not designed for controller-

switch architectures, which means programmers cannot specify match-action

tables that can be dynamically filled with correctly-typed rules. Finally, Click

makes it difficult to determine dependencies that would limit concurrent exe-

cution [11].

2.3.2 BESS

BESS (Berkeley Extensible Software Switch) [43] (formerly known as SoftNIC)

introduces a new architecture aimed at enhancing NIC features, which often

fall short of application requirements and lack flexibility. BESS allows users to

develop features in software with minimal performance overhead. It operates

as a hybrid software-hardware architecture by adding a software shim layer

between the NIC hardware and the network stack, thereby extending NIC ca-

pabilities with software. This approach enables high-performance packet pro-

cessing in software while still leveraging hardware features. BESS is designed

to offer high performance, modularity, and backward compatibility with ex-

isting software. While BESS is based on Click [55], it aims to simplify and

extend the design choices of Click. According to the authors, it offers sim-

ilar hardware-level performance with the flexibility of software, allowing for

advanced NIC functionalities [43, 58].

4https://openwrt.org

31

https://openwrt.org


2.3.2.1 Architecture

Figure 2.15 illustrates the BESS architecture, where packet processing is de-

picted as a dataflow multigraph made up of modules. Each module represents a

NIC feature and carries out specific operations on the packets passing through

it. Ports fulfill the role of sources and destinations, with packets entering at one

port, flowing through the various modules in the graph, and exiting through

another port. The dataflow graph in BESS supports two types of ports:

Figure 2.15: BESS architecture [43].

• Virtual ports (vports): These ports serve as interfaces between BESS

and upper-layer applications. Vports connect BESS to a peer, which can

either be the BESS device driver (used for supporting legacy applications

that rely on the kernel’s TCP/IP stack) or a BESS-aware application that

bypasses the kernel. These peers can reside either on the host machine

or within a virtual machine.

• Pyshical ports (pports): These ports interface BESS with the NIC hard-

ware. Pports provide a set of hardware-implemented primitives, such as

checksum calculations.

Vports emulate an ideal NIC port, supporting all features required by their

connected peer. The modules within the dataflow pipeline are responsible for

implementing these features, using software, hardware, or a combination of

both. BESS thus creates a hardware abstraction layer, shielding peers from

the limitations of the underlying hardware. An explicit control channel al-

lows an external controller to provide forwarding policies, while BESS focuses

exclusively on the data plane. This control channel supports three types of

operations:
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• Updating the data path (e.g., adding or removing modules or ports).

• Configuring resource allocations (e.g., limiting CPU or bandwidth usage

for applications).

• Managing individual modules (e.g., updating flow tables or collecting

statistics).

Each module can produce certain metadata based on its function, which is

carried along the pipeline. Packets carry this metadata as a list of key-value

pairs. Modules specify the metadata fields they require as input and the fields

they produce as output. This specification is useful for error detection if a re-

quired field is not provided by an upstream module, and for discarding unused

metadata during configuration.

Figure 2.16 illustrates an example pipeline where packets are processed

through a switching service, TCP segmentation offload (TSO) if necessary,

and checksum offloading. In this scenario, the NIC lacks TSO capabilities and

only supports checksum offloading for TCP/IPv4 packets. From the peer’s

perspective, the vport appears as a fully functional NIC, providing all the

mentioned features. This example also demonstrates how BESS modules can

implement NIC features by offloading computations to hardware when needed.

The packet processing in the example shown in Figure 2.16 is carried out

as follows, with each rectangle in the figure representing a different module:

• vport inc: This module pulls a packet descriptor, creates a BESS packet

buffer containing the packet data, and adds metadata fields for the input

port ID (inc port) and checksum offloading description (csum sw).

• parser: This module inspects the packet’s headers from layers two to four

and records the results in the metadata field hdr info.

• switch: Using the metadata inc port and hdr info, this module per-

forms L2 switching. It then uses the destination address to determine

which output edge to send the packet to, in this case, the TSO module.

• TSO: This module checks whether the packet is a TCP packet larger than

the Maximum Transmission Unit (MTU) of the output port. If so, it

performs TSO, segmenting the packet into multiple MTU-sized packets,

copying all necessary metadata into each packet, and updating csum sw.

• checksum: Based on csum sw and hdr info, this module determines

whether the checksum needs recalculation and if it should be done in

software. If the NIC associated with out port can handle the checksum,
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the module sets csum sw to “on”; otherwise, it computes the checksum

in software.

• pport out: This module sends the packet to the NIC, with flags indicat-

ing whether the hardware should compute the checksum.

Figure 2.16: BESS example pipeline showing the metadata passing through the
pipeline [43].

2.3.2.2 Overview

The BESS prototype is implemented in 14,000 lines of C code and runs on un-

modified Linux and QEMU/KVM, with the expectation that supporting other

operating systems or virtualization platforms would be straightforward. BESS

operates as a user-mode program on the host, using one or more dedicated

cores to reduce the costs of context switching.

BESS pipeline components are:

• pports: Built on the Intel Data Plane Development Kit (DPDK) [34] for

high-performance packet I/O. Pports allow direct access to NIC hard-

ware without kernel intervention. Two module instances are associated

with each pport: pport out converts packet metadata into hardware-

specific offloading primitives, while pport in accepts incoming packets

and converts hardware-offload outcomes into metadata for other mod-

ules.

• vports: Vports consist of RX and TX queues with two one-way ring

buffers for transmitting packet buffers and receiving completion notifica-

tions. Ring buffers are allocated in shared memory between BESS and

the peer. The authors developed a device driver for traditional TCP/IP

applications as a Linux kernel module, which can be used by both hosts

and guests. This driver is designed with the expectation that it can

be easily ported to other operating systems. The kernel network stack

and applications remain unaffected, as the driver presents a vport as a
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standard Ethernet device. For applications that bypass the kernel and

use their own specialized or streamlined network stacks, the authors pro-

vide a user-level library, enabling direct access to vport queues with the

option of zero-copy support. However, when vports interface with the

kernel device driver, packet data must be copied, as implementing zero-

copy support within the kernel would require significant modifications.

BESS uses inter-core interrupts to notify peers when packets are trans-

mitted, although this notification is unnecessary when a peer sends a

packet, as BESS employs polling. Peers can choose to disable interrupts

temporarily or permanently.

The main components of BESS are illustrated in figure 2.17, which include:

• bessd: The core of the software switch, the “BESS daemon”, that trans-

fers packets between ports and modules.

• ports: Entry and exit points for packets in bessd, which can be connected

to network interfaces, virtual machines, containerized applications, or

user-space processes.

• modules: The building blocks of the packet processing.

• bessctl: The controller for bessd, allowing administrators to manage

port-module connections, monitor traffic flow, and execute administra-

tive commands through a CLI.

Figure 2.17: BESS main components [58].

BESS operates entirely in userspace and directly binds to network interfaces

using DPDK, bypassing the kernel. This kernel bypass is a key factor in BESS’s

high performance, as packets can be processed directly in userspace, avoiding
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the overhead of the kernel networking stack [58]. Figure 2.18, similar to Figure

2.17, illustrates this setup, highlighting the separation between kernel and

userspace.

Figure 2.18: BESS main components with kernel/user space division [58].

BESS scripts are essentially Python programs with some additional fea-

tures. Below is an example of a BESS configuration script for an Access

Control List (ACL):

import scapy.all as scapy

import socket

def aton(ip):

return socket.inet_aton(ip)

# Craft a packet with the specified IP addresses

def gen_packet(proto, src_ip, dst_ip):

eth = scapy.Ether(src=’02:1e:67:9f:4d:ae’, dst=’06:16:3e:1b:72:32’)

ip = scapy.IP(src=src_ip, dst=dst_ip)

udp = proto(sport=10001, dport=10002)

payload = ’helloworld’

pkt = eth/ip/udp/payload

return str(pkt)

packets = [gen_packet(scapy.UDP, ’172.16.100.1’, ’10.0.0.1’),

gen_packet(scapy.UDP, ’172.12.55.99’, ’12.34.56.78’),

gen_packet(scapy.UDP, ’172.12.55.99’, ’10.0.0.1’),

gen_packet(scapy.UDP, ’172.16.100.1’, ’12.34.56.78’),

gen_packet(scapy.TCP, ’172.12.55.99’, ’12.34.56.78’),

gen_packet(scapy.UDP, ’192.168.1.123’, ’12.34.56.78’),

]

fw::ACL(rules=[’src_ip’: ’172.12.0.0/16’, ’drop’: False])
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Source() -> Rewrite(templates=packets) -> fw -> Sink()

Modules are created by declaring module objects and assigning them a

name using :: (as in fw::ACL(... in the example above). The modules are

connected with arrows (->), representing the unidirectional flow of packets.

The final line of the code demonstrates a chain of four modules. The Source()

module generates all packets (initially empty), which are then passed to the

Rewrite module. This module takes a parameter (a packet “template”) and

fills each incoming packet with a copy of the specified template. Once the

packets are filled, they are sent to the fw module, which also takes param-

eters. By default, fw drops all packets, but with a rule that allows packets

(drop:False) where the src ip matches 172.12.0.0/16, packets from this prefix

are permitted through. These packets then reach the Sink() module, which

simply deletes any packet that enters it 1.

2.3.2.3 Available resources

The available resources for BESS include tools and documentation on instal-

lation, usage and configuration.

• The original BESS technical report “SoftNIC: A Software NIC to Aug-

ment Hardware” is available at [43]. This report presents the idea behind

BESS and evaluation of performance.

• The BESS website is available at 1. This website provides a brief overview

of BESS and centralizes all resources (code, papers, etc.).

• The BESS code is available at 2. This repository includes fairly detailed

documentation on how to install, use, and configure BESS.

2.3.2.4 Applications

Regarding applications of BESS, not many could be found. Both cases are

based on Network Function Virtualization (NFV), as BESS has been specifi-

cally optimized for NFV use cases [78]:

• E2 [77]. E2 is a framework for NFV applications, a scalable and

application-agnostic scheduling framework for packet processing.

1https://github.com/NetSys/bess/wiki/Writing-a-BESS-Configuration-Script
1https://span.cs.berkeley.edu/bess.html
2https://github.com/NetSys/bess
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• ParaBox: Exploiting Parallelism for Virtual Network Functions in Ser-

vice Chaining [95]. It proposes a packet processing architecture that,

whenever feasible, dynamically distributes packets to NFVs in parallel

and intelligently merges their outputs to ensure the preservation of cor-

rect sequential processing semantics.

2.3.2.5 Comparison with P4

BESS is built on the foundation of Click, but the authors assert that they do

not compromise performance for programmability. Instead, they aim to sim-

plify and extend Click’s design choices. In BESS, modules represent broader

actions, such as switching, whereas Click modules are designed for more gran-

ular tasks. The authors claim that this approach enhances performance by

reducing the need for transitions between modules. BESS also assumes that

each module internally manages its own queues as needed, which simplifies

scheduling and improves scalability.

BESS is positioned as an efficient framework for advancing and supporting

new networked systems, particularly those that aim to remove network policy

enforcement from the data plane. Traditional network stacks have often relied

on hardware techniques to implement NIC functionalities due to the challenges

they present. While making NIC hardware more programmable, such as with

FPGA, is an option, it still faces limitations in terms of programmability and

resource constraints. An alternative to BESS could involve placing a general-

purpose CPU on the NIC card as a bump-in-the-wire. However, the authors

argue that BESS’s approach, which reuses existing server resources, is supe-

rior in terms of resource efficiency, elasticity, and maintaining a system-wide

perspective [43].

As of today, the last commit on the BESS repository was in March 2022

(more than two years ago), with many open issues, suggesting that it is no

longer actively maintained. Additionally, BESS is more suitable for execution

in traditional servers and NFVs.

2.3.3 VPP

Vector packet processing is a widely used approach in high-performance packet

processing applications like VPP and DPDK. On the other hand, scalar-based

processing is typically employed by network stacks that do not have stringent
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performance requirements.

In a scalar packet processing stack, packets are handled one at a time: an

interrupt handling function takes a single packet from a network interface and

processes it through a series of functions. While this model is straightforward,

it can be inefficient in certain aspects.

Conversely, a vector packet processing stack handles multiple packets si-

multaneously by using a “vector of packets”. The interrupt handling function

passes this entire vector through the functions, allowing for optimizations such

as pipelining and prefetching. These techniques help reduce read latency on

table data and parallelize the packet processing workload [38].

2.3.3.1 Overview

The VPP platform is an adaptable framework that offers production-ready

switch and router functionality right out of the box. It is the open-source ver-

sion of Cisco’s Vector Packet Processing (VPP) technology, a high-performance

packet processing stack that can run on standard CPUs. The VPP platform

is a part of the Fast Data Project (FD.io)1.

VPP is built around the concept of a “packet processing graph”, which

makes the design modular and easily extendable. The nodes in this graph rep-

resent basic actions to be performed on packets, designed to be small, modular,

and loosely coupled. This structure facilitates the addition of new nodes or

changes to the connections between existing ones. New nodes can be intro-

duced, or the graph’s order can be modified, through the use of plugins. Plu-

gins can also be developed as standalone components and installed by simply

adding them to the plugins folder, allowing them to function as independent

components. These plugins are shared libraries that VPP loads at runtime.

At runtime, the VPP platform creates a vector of packets by collecting all

available packets from RX rings. The packet processing graph is then applied,

node by node, to the entire vector of packets. Figure 2.19 illustrates an example

of a packet processing graph with the packet vector as its input.

The VPP platform is versatile and its authors affirm it can be used to

develop any packet processing application. The engine operates entirely in

user space, so plugins can be created without modifying Linux kernel code.

These plugins are written in C.

1https://fd.io
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Figure 2.19: An example packet processing graph [38].

The VPP platform supports x86/64 and ARM-AArch64 architectures and

can be installed on Debian and Ubuntu [37, 38].

VPP is continually enhanced through the extensive use of plugins. A no-

table example of this is the Data Plane Development Kit (DPDK), which

provides essential drivers and functionalities for VPP [38].

VPP processes an entire vector of packets through one graph node before

proceeding to the next node. This process, illustrated in Figure 2.20, optimizes

performance. The first packet in the vector typically primes the instruction

cache, enabling the subsequent packets to be processed rapidly. The fixed

processing costs for the vector are distributed across the length of the vector,

resulting in very high and consistent performance. If VPP experiences a slight

delay, the next vector contains more packets, which allows the fixed costs to be

spread over more packets, reducing the average processing cost per packet and

enabling the system to catch up. As a result, both throughput and latency

remain relatively stable. If multiple cores are available, the graph scheduler

can assign (vector, graph node) pairs to different cores [36].

2.3.3.2 Available resources

The available resources for VPP include tools and extensive documentation,

between various use cases presented. These include:
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Figure 2.20: An example packet processing graph showing how VPP processes
an entire vector of packets through one graph node before proceeding to the next
node [36].

• VPP documentation is available at 1, where a general overview of VPP

is presented. Then, in 2, an exhaustive documentation is provided, in-

cluding a description of the language, multiple use cases, installation

and execution guides for VPP along with troubleshooting, development

documentation, and more.

• VPP’s code is available at 1.

• The FD.io website is available at 2. The Fast Data Project (FD.io) is an

open-source project aimed at providing fast and secure networking data

plane through Vector Packet Processing (VPP).

• The FD.io Youtube channel is available at 3. This channel includes

numerous videos, including tutorials, presentations, use cases, and more.

2.3.3.3 Applications

According to the FD.io website, there are multiple FD.io users. Commercial

solutions based on FD.io are offered by companies like Netgate, Cisco, PAN-

THEON.tech, among others. These users include:

1https://wiki.fd.io/view/VPP/What_is_VPP%3F
2https://s3-docs.fd.io/vpp/23.10/index.html
1https://github.com/FDio/vpp
2https://fd.io
3https://www.youtube.com/channel/UCIJ2OP6_i1npoHM39kxvwyg/videos
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• Cisco with the ASR 9000 Router4 that provides advanced programma-

bility and with the Carrier Grade Services Engine (CGSE). It provides

IPv6 translation and DDoS mitigation solution5.

• Alibaba Cloud does Network Service Optimization with the VPP Plat-

form1. VPP is used as the foundation to develop a product similar to a

VPN network gateway. The product is applied in scenarios such as hy-

brid cloud, retail chains, and the interconnection between a headquarters

and its branches.

• TNSR 2 from Netgate is a high-performance software router based on

FD.io’s Vector Packet Processing (VPP). By using VPP, DPDK and

other open-source technologies, they promise a high-performance router

for a low cost.

• Inocybe promises an Open Networking Platform that enables customers

to deploy integrated, cutting-edge networks3. It is based on FD.io, be-

tween other technologies.

• PANTHEON.tech with the StoneWork Enterprise solution4. It proposes

a performant and modular networking solution, integrating a VPP data-

plane, including multiple networking functionalities.

• Samsung’s 5G UPF (User Plane Function) [40] stack is built on top of

VPP. Samsung utilizes DPDK and VPP technologies, between others for

higher performance processing.

2.3.3.4 Comparison with P4

In the Alibaba application1, one of the aforementioned applications, the au-

thors assert that VPP is mainly suitable for proof-of-concept (POC) projects

and has several drawbacks. They argue that to use VPP for commercial pur-

poses, a deep understanding of the platform is necessary, and that it is far

from being a fully mature product.

Currently, the VPP repository is active, with commits made as recently

4https://www.cisco.com/c/en/us/products/routers/asr-9000-series-aggregation-services-routers/

index.html
5https://www.cisco.com/c/en/us/products/collateral/routers/

carrier-routing-system/data_sheet_c78-614893.html
1https://www.alibabacloud.com/blog/network-service-optimization-with-the-vpp-platform_

593985
2https://www.netgate.com/tnsr#get-to-know
3https://www.cengn.ca/project/case-studies/inocybe/
4https://pantheon.tech/products/stonework/
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as days ago. VPP runs on commodity CPUs rather than traditional switches.

While VPP is similar to Click and BESS, it leverages a packet processing

approach to enhance performance.

2.3.4 OpenState

The concept behind OpenState was to create a stateful data plane program-

ming abstraction, as opposed to the stateless OpenFlow match/action table,

with the goal of achieving high performance while aligning with vendors’ pref-

erences for closed platforms. The authors suggest using extended finite state

machines as an enhancement to the OpenFlow match/action model. They

argue that many stateful tasks involving only local states within individual

links or switches are unnecessarily centralized for easier management and pro-

grammability, primarily because these tasks cannot be implemented on local

OpenFlow devices without the explicit involvement of the controller for any

state updates. The authors propose that the “dumbness” of the data plane

is more a result of the limited capabilities of the OpenFlow data plane API

than a deliberate design choice or a fundamental principle of SDN. The pro-

posed solution is an abstraction that can formally describe the desired stateful

processing of flows within the device itself, without requiring the device to be

open-source or reveal its internal workings [8].

2.3.4.1 Abstraction

Figure 2.21 illustrates a state machine for a well-known use case called “port

knocking”, a technique used to open a port on a firewall. To model the desired

behavior, the state machine is linked to each host. Starting from a default

state, each correct port knock triggers a transition to intermediate states until

the final open state is reached. Any knock on an unexpected port will cause a

transition back to the default state. Once in the OPEN state, packets directed

to port 22 will be forwarded, while all other packets will be dropped without

resetting the state to default.

Every transition is caused by an event, which consists in a packet matching

some criteria (in this case a given port number), and every state transition is

associated to a forwarding action (in this case, forward or drop). We have two

new aspects (from the OpenFlow match/action rule):
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Figure 2.21: An example State Machine: port knocking [8].

• XFSM abstraction: The match that specifies an event not only depends

on the packet header, but also depends on the current state. This event,

not only causes an action, but also a transition to the next state. All

this can be modeled by a Mealy Machine. The abstraction is made

concrete (while maintaining platform independence) by restricting the

set of possible actions to those available in current OpenFlow devices,

and by restricting the set of events to OpenFlow matches on header fields

and metadata easily implementable in hardware platforms. The states

and transitions are left to the programmers’ freedom.

• State Management: The authors recommend separating the matches that

define events from the ones that define flows, meant as entities which are

attributed a state. There are two tables: the State Table, that is queried

with the packet header fields, in order to get the current state of the

flow. Then, the XFSM Table is queried, using the current state and the

headers, to find the action and next state that correspond. This next

state is updated in the State Table.

Figure 2.22 shows how the proposed approach supports the port knocking

example. The proposed abstraction misses a way to allow the update of states

for a given flow by events occurring on different flows. This models a subset of

important stateful operations, such as MAC learning, where the forwarding is

done using the destination MAC address, but the table is updated using the

source MAC address. Giving the programmer the ability to use an eventually

different header field in the two accesses to the State Table (lookup and update)

solves this problem. These are called lookup-scope and update-scope [8].

OpenState is an extension of OpenFlow, meaning that the implementation

and installation of tables can utilize standard OpenFlow match tables and flow

messages without requiring code changes. However, some additional modifica-

tions are necessary. This process is depicted in Figure 2.23, illustrating what
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Figure 2.22: State and XFSM Tables for port knocking example [8].

is is known as a stateful stage - a logical block that comprises a State Table

and an XFSM table, that implements the OpenState abstraction. The state

machines are directly executed inside the network device, offloading controllers.

Figure 2.23: Architecture of the stateful stage. The XFSM table is represented by
a standard Openflow table, while a SET STATE action is used to trigger updates
on the state table [8].

2.3.4.2 Available resources

The available resources for OpenState include some reduced tools and docu-

mentation. These are:

• The original paper is available at [8].
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• The specification is available at 1. The provided documentation is full of

to-do comments and questions.

• The code is available at 1.

• Other repositories from OpenState team are available at 2. These include

some use cases and other implementations (e.g. a controller).

2.3.4.3 Applications

Regarding applications of the OpenState, the following could be found, among

others:

• SPIDER: Fault Resilient SDN Pipeline with Recovery Delay Guaran-

tees [20]. This application comes from the OpenState authors. It pro-

poses a fault resilient SDN pipeline design with programmable failure

detection and recovery. This solution is implemented and experimen-

tally validated using OpenState.

• Detour planning for fast and reliable failure recovery in SDN with Open-

State [19]. The solution introduces a protection scheme against link or

node failure and aims for zero packet loss after failure detection, regard-

less of controller availability. The mechanism is built on OpenState, that

enables programmable, stateful forwarding rule adaptation, minimizing

dependence on remote controllers.

• StateSec: Stateful Monitoring for DDoS Protection in Software Defined

Networks [10]. The solution proposes an approach to protect end-hosts

based on in-switch processing capabilities to detect and mitigate DDoS

attacks.

2.3.4.4 Comparison with P4

As of today, last commit in the repository is from 2015, and the repository has

only 30 commits, suggesting that is the original code presented for the paper

and hasn’t been maintained or updated. Actions taken on a packet are limited

to the instructions defined in OpenFlow, thus fixed.

1https://github.com/OpenState-SDN/openstate-spec
1https://github.com/OpenState-SDN/ofsoftswitch13
2https://github.com/OpenState-SDN
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2.3.5 Other languages

Other languages include FAST[68], Domino[87], FlowBlaze[79], POF[88] and

NetKAT[3], all these used for programming PISA devices. These were also an-

alyzed, but compared to P4, all fall short. Some remarks about these languages

include:

• FAST: Abstractions seems compact, but it does not seem easy to write.

There is no publicly available code and actions taken on a packet are

limited to the instructions defined in OpenFlow. Also, the data plane

algorithms are compiled in the controller rather than in the device itself.

• Domino: Domino targets line-rate switches, thus it is more constrained

than other languages. The concept behind Domino seems overly compli-

cated. There are problems for which Domino isn’t a good fit, including

algorithms that perform various changes within a packet, performing a

variety of computations per packet, or algorithms that perform complex

computations for some packets, but not all. As of today, last commit in

the compiler’s repository is from 2019.

• FlowBlaze: It is based on Extended Finite State Machines (EFSM).

FlowBlaze is built on top of the NetFPGA open platform and both hard-

ware and software sources are publicly available. As of today, last commit

in the repository is from 2020, and the repository has only 27 commits,

suggesting that is the original code presented for the paper and hasn’t

been maintained or updated.

• Protocol Oblivious Forwarding (POF): The repository has only four com-

mits, from 2016 and the source code is not accessible anymore. POF

support is discontinued, confirmed by the authors.

• NetKAT: Is promoted as having reasoning based on a strong semantic

foundation, Kleene algebra with tests. NetKAT has a clear advantage

that is the ability to prove and answer questions about the desired be-

havior of the network and forwarding policies. Besides this, it seems to

be tedious to write programs, and restrictive to the available operations

and headers. In search of the programmability of the network, NetKAT

seems to be limited, and useful for cases where is of utmost necessity

to guarantee the correct functionality of the policies. As of today, last

commit on the repository was on July 2020, suggesting that it is not

currently being maintained.
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2.3.6 Remarks

P4 benefits from a large and active community, with several working groups

dedicated to various aspects (Language Design, API, Architecture, Applica-

tions, and Education). Its key repositories, such as the compiler, tutorials,

p4runtime, and behavioral model, are well-maintained with frequent updates

and responses to open issues. The P4 ecosystem is extensively documented,

with numerous tutorials and videos, offering far more comprehensive resources

compared to other languages, which often lack sufficient documentation be-

yond the original paper. It is also one of the few, if not the only, that is

actively maintained. P4 is highly expressive, enabling the implementation of

a wide range of network protocols, and its code is easy and intuitive to write.

Additionally, it has a powerful controller, P4Runtime, which allows for dy-

namic changes to the P4 program during runtime. Many experts regard P4 as

the de facto language for data plane programming.

2.4 Programmable packet processing tech-

nologies

Several technologies are specifically designed for programmable network packet

processing, and can be used for accelerating the data plane. These technolo-

gies aim to process packets with high efficiency, optimizing resource utilization.

Software-based data plane acceleration solutions enhance packet processing

capabilities, either in user space or within the kernel. In addition, there are

kernel-level technologies for packet processing and filtering, which are opti-

mized for handling packets at high speed. Among these are Berkeley Packet

Filter (BPF) [63], eXpress Data Path (XDP)1, and Data Plane Development

Kit (DPDK)2.

2.4.1 BPF

BPF (Berkeley Packet Filter) is a highly flexible and efficient virtual machine-

like construct in the Linux kernel allowing to execute bytecode at various

hook points in a safe manner. BPF has the original version, called “classic”

1https://www.iovisor.org/technology/xdp
2https://www.dpdk.org
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BPF (cBPF), which is mostly obsolete. The other version is called extended

BPF (eBPF). Nowadays, the Linux kernel runs eBPF only. BPF is a general

purpose RISC instruction set. Although the name suggests that BPF’s purpose

is packet filtering, the instruction set is generic and flexible enough to allow

for many more use cases [22].

2.4.1.1 cBPF

Initially, the code for an application was passed from the user space to the

kernel, where it would be checked in order to guarantee safety and avoid kernel

failures. After passing this check, the program would be attached to a socket

and it would be executed for every packet that arrived. BPF emerged as a

way to filter packets the earliest possible, avoiding the need to copy the packets

from the kernel space to the user space in order to filter them through network

monitoring tools from the user space. In this way, packet filtering performance

was significantly improved, in comparison to existing solutions. BPF allows to

add a filter to any socket from a program in the user space. BPF also defines a

packet-based memory model, two registers: accumulator (A) and index register

(X), an implied program counter, and a temporary auxiliary memory [90, 91].

BPF is a kernel architecture for packet capturing, which led to an important

improvement of the performance in comparison to existing packet capturers of

the time. Consequently, BPF is the packet filter language used by tools such

as tcpdump and its successors [22]. This performance increase derives from

two principal improvements in the architecture:

• BPF uses a “filter machine” based on registers that can be effi-

ciently implemented on today’s register based RISC CPUs. CSPF

(CMU/Standford Packet Filter) [65] uses a filter machine based on mem-

ory stack, that doesn’t work well with modern bottle-necked CPUs.

• BPF uses a simple, non-shared buffer model, that is possible thanks to

today’s larger address spaces. This model is very efficient for the “usual

cases” of packet capture.

BPF has to main components: the network tap and the packet filter. The

network tap gathers copies of the packets form network device drivers and

delivers them to listening applications. The filter decides if a packet should

be accepted and if it is the case, how much of the packet should be copied to

the listening application. Figure 2.24 shows the BPF interface with the rest
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of the system. Normally, when a packet arrives at a network interface, the

link level device driver sends it to the protocol stack. Instead, when BPF is

listening on this interface, the driver first calls BPF, which gives the packet

to every filter of each participating process. These filters (defined by the

user) decide if the packet should be accepted or not, and how many bytes of

every packet should be saved. For every filter that accepts the packet, BPF

copies the solicited amount of data to the buffer associated with that filter.

Then the device driver regains control. If the packet wasn’t destined to the

local host, the driver returns from the interrupt, otherwise normal protocol

processing proceeds. It is not possible to make a read system call for every

packet, since a process could want to watch every packet in the network and

time between packets could be of a few microseconds. Because of this, BPF

should gather data from various packets, and return them as an unit when the

monitoring application makes a read. In order to maintain packet boundaries,

BPF encapsulates the information of every captured packet with a header that

includes a timestamp, length and offset.

Figure 2.24: BPF Overview [63].

Packet filter When monitoring a network, normally only a small set of

network traffic is wanted. There is an important performance improvement

by filtering not wanted packets in the interrupt. To minimize memory traffic,

the packet should be filtered “in place” rather than copying it to some other

kernel buffer before filtering. So, when a packet is not accepted only those

bytes needed for filtering are referenced by the host.
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There are other designs, like SunOS’s STREAMS NIT (Network Interface

Tap) [49] which copies the packets before filtering resulting in performance

degradation. This design is modular, being the packet filter module on top of

the packet filter module. Authors claim that while a STREAMS-like design

might appear to be elegant, there is very little design advantage in factoring the

packet filter into a separate streams module, but great performance advantage

in integrating the packet filter and the tap into a single unit.

The Filter Model Assuming a reasonable design of the buffering model,

this will be the dominant cost of the accepted packets, while the packet fil-

ter computation will be the dominant cost for the dropped packets. Most

applications of packet capture drop more packets than they accept, so the

good performance of the packet filter is critical to overall good performance.

A packet filter is a boolean function evaluated on a packet. If the value is

true, the kernel copies the packet to the application, if it is false, the packet is

ignored. Traditionally, there has been two approaches to the filter abstraction:

• A boolean expression tree: in this model every node represents a boolean

operation, while the leaves represent test predicates on packet fields. The

edges represent operator-operand relationships.

• A directed acyclic control flow graph (CFG), which is the model used by

BPF. In this model every node represents a packet field predicate while

the edges represent control transfers.

In figure 2.25 we can see both models with a filter that recognizes an ARP or IP

packet over Ehternet. These models are computationally equivalent, meaning

any filter that can be expressed in one model can be expressed in the other.

However, regarding implementation, they are very different: the tree model

maps naturally to code for a stack machine, while CFG model maps naturally

to a register machine.

BPF uses the CFG filter model since it has a significant performance ad-

vantage over the expression tree model. While the tree model may need to re-

dundantly parse a packet many times, the CFG models “remembers” a parsed

packet state in the graph. In order to reach a particular node, you know what

paths you must have traversed, so a graph can be organized in a way that once

a subexpression is evaluated, the value is used only at nodes that follow the

original computation, so it does not need to be recomputed.

The BPF Pseudo-Machine The BPF machine abstraction consists of
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(a) Tree model. (b) CFG model.

Figure 2.25: Filter function representations [63].

an accumulator, an index register (x), a scratch memory store, and an implicit

program counter. The operations on these elements can be categorized into

the following groups:

• Load instructions: they copy a value into the accumulator or index reg-

ister.

• Store instructions: they copy either the accumulator or index register

into the scratch memory store.

• ALU instructions: they perform arithmetic or logic operations on the

accumulator using the index register or a constant as an operand.

• Branch instruction: they alter the flow of control, based on comparison

tests.

• Return instructions: they terminate the filter and indicate what portion

of the packet to save.

• Miscellaneous instructions: comprise everything else.

The fixed length instruction format is defined as opcode: 16 | jt:8 | jf:8

| k:32 where:

• The opcode field: indicates the instruction type and addressing modes.

• The jt and jf fields: are used by the conditional jump instructions and

are the offests from the next instruction to the true and false targets.

• The k field: generic field used for various purposes.

Figure 2.26 shows the entire BPF instruction set, using the “assembler syntax”

as a means of illustrating. The actual encodings are defined with C macros.

The following example code shows how packet filters can be expressed using

the BPF instruction set. This filter accepts all IP packets.
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Figure 2.26: BPF instruction set [63].

ldh [12]

jeq #ETHERTYPE_IP, L1, L2

L1: ret #TRUE

L2: ret #0

The first instruction loads the Ethernet type field, then it compares it to the

IP type. If the comparison fails, zero is returned and the packet is rejected. If

it is successful, TRUE is returned and the packet is accepted (TRUE is some

non-zero value that represents the number of bytes to save) [63].

2.4.1.2 eBPF

Although BPF is very useful for packet filtering, other areas can benefit from

its ability to program the kernel. Many enhancements were made to BPF

to make it a universal in-kernel virtual machine. This new version is called

eBPF. Several aspects of the architecture were changed, with the addition of

some important functionalities such as the ability to persist data between ex-

ecutions, and to share information between these and the user space, and the

option of being able to call functions that run inside the kernel. Programs can

also be changed, modified or reload at execution time. Function calls were also

added to the architecture, in which parameters are passed through registers,

just like in native hardware. This makes it possible to map an eBPF function
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call to a hardware instruction, resulting in almost no overhead. That’s to why

cBPF instructions are internally translated to eBPF instructions, improving

performance. In sum, eBPF provides an instruction set and an execution envi-

ronment within the Linux kernel and can be used to modify packet processing,

as well as allowing programming of network devices. In order to achieve this,

a programmer develops an application in C restricted language and compiles

it to eBPF [91].

The program shown in Figure 2.27 illustrates the structure of a simple

eBPF program that drops all received packets, as soon as it arrives at the

network interface.

Figure 2.27: eBPF program that drops all packets [91].

One application of eBPF is The Case for Pluginized Routing Protocols [92].

Traditional routing protocols like BGP and OSPF/IS-IS have not been replaced

by newer technologies such as SDN. While standardization ensures interoper-

ability between routers from different vendors, it also slows down innovation

since the process of standardizing protocols can take decades. The solution

proposed to allow network operators to create custom extensions for the tradi-

tional protocols, was integrating a modified eBPF Virtual Machines (VM) into

FRRouting1. This VM enables the execution of operator-supplied bytecode at

various points within the FRRouting code, allowing for the implementation of

extensions for both OSPF and BGP [80, 92].

2.4.1.3 uBPF

Last, there is the the user-space BPF (uBPF) Virtual Machine, which re-

implements the virtual machine based on the eBPF kernel. While BPF was

originally designed to allow safe execution of code in the kernel, the uBPF

1https://frrouting.org
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project makes it possible to run BPF programs in user space. Therefore, the

uBPF virtual machine can be easily integrated with applications that bypass

the kernel (for example, DPDK and XDP) [76].

2.4.2 XDP

In computer networks, hooks are used to intercept packets before or during a

system call. The Linux kernel exposes various hooks to which one can attach

eBPF programs, enabling data gathering and personalized event handling.

Two of these hooks are the XDP (eXpress Data Path) and the Traffic Control

(TC), which together enable packet processing near the NIC, enabling the

creation and development of multiple network applications.

Packets processed by the operating system are processed through various

layers in the kernel; the Socket Layer, the TCP (Transmission Control Proto-

col) Stack, Netfilter, TC, XDP and the Network Interface, as shown in Figure

2.28. XDP is the lowest layer from Linux kernel network stack. It is only found

Figure 2.28: Linuk kernel network stack [91].

in the Receive (RX) path of a device’s network driver and enables packet pro-

cessing at the very beginning of the network stack, even before the operating

system allocates memory. It exposes a hook to which eBPF programs can be

attached. Programs can make arbitrary changes to arriving packets at these

hooks and make quick decisions about them, avoiding the overhead imposed

by the processing at the kernel. This makes XDP the hook with best perfor-

mance in terms of speed for applications. After processing a packet, an XDP

program returns an action, that represents the decision regarding what should

be done to the packet after program exit. These actions include: dropping

the packet (silently or raising an exception), allowing further processing by

the kernel stack, transmit from the interface it came from and transmit from
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another interface (another NIC, another CPU for further processing, or an

AF XDP socket for userspace processing) [91].

If the example shown in Figure 2.27 was saved in a dropworld.c file, that

code can be compiled into an ELF object file using the clang compiler:

$ clang -target bpf -02 -c dropworld.c -o dropworld.o

The ip tool can load the object file into the kernel, using the following com-

mand:

# ip -force link set dev [DEV] xdp obj dropworld.o sec .text

Since there is no section tag in the example code, the generated bytecode is

located in the default section (.text) of the ELF object file. The -force pa-

rameter indicates that the program should be loaded even if there’s another

program loaded on that interface, therefore getting replaced. The [DEV] pa-

rameter should be the corresponding interface [91].

2.4.2.1 Traffic Control Hook

XDP can only handle ingress traffic, so in order to process egress traffic, the

closest layer to the NIC that has access to the whole Ethernet frame is the

Traffic Control (TC) layer. On Linux, this layer is in charge of carrying out

traffic control policies. In it, the network administrator can add filters to

modify or drop packets as well as configure various queuing disciplines (qdisc)

for the various packet queues that are present in the system. The TC has

a special queuing discipline called clsact. It exposes a hook that enables

eBPF programs to specify queue processing activities. The configured eBPF

software receives pointers to the packet to be processed as part of its input

context. This structure is a UAPI (Userspace API) for specific fields that the

program is permitted to access from the kernel’s socket buffer internal data

structure. The kernel has already processed the packet at the TC level to

extract protocol metadata, which accounts for the greater context information

supplied to the eBPF program compared to the XDP case. The input packet

may be modified while the program is running, and the return value tells

TC what should be done about it. One can load a program on the TC hook

using the tc tools, available in the iproute2 package. The following command

shows how to create the clsact qdisc and load and eBPF program to process

packets on interface eth0, where <direction> indicates which direction the
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program should follow (ingress or egress), <ebpf-obj> and <section> are the

names of the file containing the compiled eBPF code and the section to load

the program, respectively [91].

# tc qdisc add dev eth0 clsact

# tc filter add dev eth0 <direction> bpf da obj <ebpf-obj> sec <section>

Similar uses for both hooks (XDP and TC) include DDoS mitigation, tun-

neling, and managing link layer information. However, XDP can achieve better

throughput values than programs on TC since it executes before any socket

buffer allocation occurs. However, by being the lowest layer on TX, TC can

take advantage of additional parsed data and run eBPF programs for both

incoming and outgoing traffic [91].

2.4.3 DPDK

DPDK is an optimized data plane open source software solution created by

Intel for its multi-core processors. The goal is to give programmers a straight-

forward and comprehensive framework for quick packet processing. According

to their requirements, users can utilize this method to build prototypes or add

their own protocol to the stack [7]. In sum, DPDK is a user space library that

is in charge of giving functions that enables to intercept packets before they

pass through the kernel and process them in accordance with the programmer

demands, hence accelerating processing. All resources must be allocated before

calling data plane programs in the DPDK run-to-completion model for packet

processing. These data plane applications are running as execution units in

logical processing cores, or lcores. Polling is used to access all devices in order

to avoid using interrupts due to the performance overhead they cause [34].

In figure 2.29 traditional packet processing can be seen on the left, whereas

packet processing with DPDK can be seen on the right. In the latter, it can be

seen that all interactions with the NIC are done through special drivers and

libraries [93]. DPDK can be used to implement the host stack needed to be

able to comprehend a new user-defined protocol.

The framework generates a collection of libraries tailored to specific envi-

ronments by creating an Environment Abstraction Layer (EAL). This layer

can be customized for different modes of Intel architecture (32-bit or 64-bit),

Linux user space compilers, or particular platforms. These environments are

built using make files and configuration files. Once the EAL library is gener-
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Figure 2.29: Traditional packet processing vs packet processing with DPDK [93].

ated, users can link it with their own applications. In addition to the EAL,

other libraries like Hash, Longest Prefix Match (LPM), and rings are provided.

The EAL manages access to low-level resources like hardware and memory. It

offers a standardized interface that abstracts the details of the underlying envi-

ronment from applications and libraries. The initialization routine is in charge

of determining how to allocate these resources, including memory, PCI devices,

timers, consoles, and other components [34].

2.4.4 Remarks

These technologies, while not solutions for network devices themselves, can be

utilized in certain use cases for efficient custom packet processing. They can

be deployed on servers, hosts, or network devices that support Linux.

In particular, BPF relies on the Linux kernel, which can be either an advan-

tage or a disadvantage since it doesn’t require specialized hardware. However,

it is limited in the logic it can implement compared to P4. In the case of

XDP, it also shares the dependency on the Linux kernel and device limita-

tions. DPDK allows bypassing the kernel stack and is compatible with various
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devices such as CPUs, NICs, SmartNICs, among others1. However, it is sig-

nificantly more complex than P4 when it comes to writing programs, but it is

possible to access the whole packet with DPDK (including payload).

The technology to be used largely depends on the use case. When ultra-

customized processing on network devices is required, P4 can be very useful.

On the other hand, if packet processing is done on a traditional server, using

technologies like DPDK or BPF may be beneficial due to their fast packet pro-

cessing capabilities. It can be said that these technologies serve as alternatives

to P4.

2.5 SmartNICs

In 1965, Gordon Moore predicted that the number of transistors on a chip

would double annually, later revising this to every two years [66]. In 1974,

Robert Dennard observed that power density remained constant as transistor

size decreased, allowing for enhanced performance of integrated circuits by

packing more transistors per chip. However, by 2003, Dennard scaling reached

its limits, reducing the rate of processor performance improvement. This led

to the development of multi-core processors, which improved performance but

have also faced limitations due to Amdahl’s Law [2], which highlights con-

straints of parallelism in computing, as applications also have tasks that must

be executed sequentially.

In today’s world, most data reaches computing locations as network pack-

ets. The traditional link between networks and hosts is the NIC. Histori-

cally, NICs were basic hardware devices that received packets from the net-

work and stored them in the host’s memory, where they would wait for the

general-purpose processor to handle them. While this approach worked well

for many years, it now faces several challenges in modern environments. With

the conclusion of Moore’s Law and Dennard scaling, adding more processing

power to handle increasing traffic is no longer feasible. A substantial portion

of processor tasks now involve infrastructure-related functions (rather than

user application-related) like TCP/IP operations, encryption, and compres-

sion, which consume processing cycles that could otherwise be dedicated to

user applications. Traditional software approaches to managing these packet-

1https://core.dpdk.org/supported/
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related tasks are inefficient in terms of throughput, latency, and energy use.

While hardware advancements previously compensated for these inefficiencies,

today’s solutions can no longer depend on future processor performance im-

provements. Moreover, the rapid increase in network traffic, alongside signifi-

cant enhancements in the physical layer and bandwidth capacity, has outpaced

processors’ ability to keep up, widening the gap between processing power and

network speed.

With the end of Dennard scaling and no further increases in the energy

budget, many believe that the best way to improve energy efficiency, perfor-

mance, and cost is by using domain-specific processors instead of power-hungry

general-purpose processors. SmartNICs are seen as a groundbreaking technol-

ogy designed to tackle these challenges by integrating various domain-specific

processors that are specialized for specific infrastructure tasks, such as com-

pression/decompression, programmable pipelines, and encryption/decryption.

These SmartNICs also include general-purpose processors to manage the sys-

tem, assist the domain-specific processors, and allow users to run control-plane

applications. In this context, domain-specific processors are often referred to

as accelerators or engines. The development of domain-specific processors has

already proven successful in areas like graphics with Graphics Processing Unit

(GPU)s in the 2000s, machine learning with Tensor Processing Unit (TPU)s

in the mid-2010s, networking with Network Processing Unit (NPU)s following

the PISA model in the late 2010s, and genomic analysis in 2018.

The growing adoption of SmartNICs is evident across the global IT land-

scape. Hyperscalers like Google, Amazon, and Microsoft are developing their

own SmartNICs to handle infrastructure tasks and enhance performance and

revenue. Companies such as Intel, NVIDIA, and AMD are focusing on cre-

ating SmartNICs for a wide market, offering Systems on a Chip (SoCs) with

programmable, domain-specific processors for security, networking, storage,

and telemetry. Projects like VMware’s Monterey are redefining cloud architec-

tures by incorporating SmartNICs to manage storage, network, and security

services, significantly improving performance and freeing up processor cycles

for user applications. Research and education networks (RENs), like the En-

ergy Sciences Network (ESnet), are upgrading their infrastructure with Smart-

NICs to support data-intensive science. Software vendors are also leveraging

SmartNICs; for instance, VMware’s ESXi, vCenter, and NSX components for

virtualizing High Performance Computing (HPC) environments can now be
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efficiently offloaded onto SmartNICs. Palo Alto Networks introduced the “In-

telligent Traffic Offload” service, offloading firewall functions to SmartNICs,

and Juniper Networks has enabled its virtual router/firewall to do the same.

Telecommunication operators are increasingly shifting core services to Smart-

NICs, and workloads in serverless and edge computing, including Machine

Learning (ML) training and inference, can be accelerated using SmartNICs.

Testbeds such as FABRIC [5] and the GÉANT project1, used globally for

fundamental research, rely on SmartNICs and other programmable devices to

allow experimenters to program data path behavior and process network traffic

at line rate in innovative ways [53].

In order to achieve the high parallelism required to achieve high-speed

network packet processing, current SmartNICs rely on multiple hardware ar-

chitectures including (i) ASIC (e.g., Netronome NFP); (ii) System-on-Chip

(e.g., Nvidia BlueField); and (iii) FPGA (e.g., Xilinx Alveo).

SmartNICs are often referred to as DPUs or Infraestructure Processing

Unit (IPU)s. Although there have been efforts, primarily marketing-driven,

to differentiate these terms technically, a widely accepted distinction is not

established [61]. FPGA stands for Field Programmable Gate Array. FPGAs

are semiconductor integrated circuits where much of the device’s functionality

can be modified; this can be done by the design engineer, during the Printed

Circuit Board (PCB) assembly process, or even after a product has been de-

ployed. Changes are made by altering which electrical inputs and outputs are

connected, which logic gates and flip-flops are implemented, and how these

gates are interconnected. An FPGA consists of a grid of configurable logic,

known as Adaptive Logic Modules (ALMs), and specialized blocks such as

Digital Signal Processing (DSP) blocks and Random Access Memory (RAM)

blocks. These programmable blocks are combined through configurable rout-

ing interconnections to implement complete digital circuits1.

2.5.1 Evolution of SmartNICs

There are three main generations of NICs: traditional NICs, offload NICs, and

SmartNICs. Figure 2.30 illustrates a simplified diagram of the three NICs.

1https://geant.org
1https://www.intel.la/content/www/xl/es/support/programmable/

support-resources/fpga-training/getting-started.html
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Figure 2.30: Key functional components of (a) traditional NICs, (b) offload NICs,
and (c) SmartNICs.

2.5.1.1 Traditional NIC

Traditional NICs (Figure 2.30 (a)) are devices that handle basic services at

the physical and data-link layers. These services include tasks like serializ-

ing/deserializing frames, managing link access, and providing error detection.

These functions are typically carried out by a fixed-function component on

a specialized chip within the NIC. On the transmission side, this component

takes a datagram from the host, encapsulates it in a link-layer frame, and trans-

mits the frame through the communication link according to the link-access

protocol. On the receiving side, the component receives the frame and for-

wards it to the host via a Peripheral Component Interconnect Express (PCIe)

card [53].

2.5.1.2 Offload NIC

Offload NICs (Figure 2.30 (b)) integrate hardware, such as ASICs and/or

FPGAs, to handle basic “infrastructure” functions (tasks that facilitate data

movement to the host and do not involve application data) that were tradition-

ally managed by the host CPU. The aim is to free up the host CPU’s processing

power for user applications rather than infrastructure tasks. Examples of these

functions include:

• Basic packet processing, such as parsing and reassembling IP datagrams,

computing IP checksums, and encapsulating and de-encapsulating TCP

segments.

• Managing TCP connections on the NIC, including connection establish-

ment, checksum and sequence number calculations, TCP Offload Engine

(TOE) functions, sliding window calculations for segment acknowledg-
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ment, and congestion control.

• Additional functions that modify TCP/IP header fields to perform basic

filtering and traffic classification.

Offload NICs enable users to perform pre-programmed functions on the NIC

but do not allow for the creation and execution of custom applications directly

on the NIC. Even with complete transport layer offload, application protocols

must still be implemented on the host processor [53].

2.5.1.3 SmartNIC

The definition of a SmartNIC is not universally agreed upon. One can consider

a SmartNIC being a programmable NIC. Historically, NICs that handled tasks

beyond basic packet processing were termed SmartNICs. The term SmartNIC

can be used to refer to the latest generation of NICs, which are also known as

SoC SmartNICs, IPUs, DPU, and Auxiliary Processing Units (xPUs).

SmartNICs offer varying degrees of programmability. Some vendors enable

the complete rewriting of the hardware description, as seen with FPGA-based

SmartNICs, while others allow the offloading of only specific networking tasks

to computing units, typical of SoC-based SmartNICs. To accommodate this

level of programmability, SmartNICs often depend on diverse hardware plat-

forms and programming languages, such as P4, Micro-C, and VHDL/Verilog.

However, programming, debugging, and operating SmartNICs continue to be

challenging tasks [61].

Figure 2.30 presents a simplified diagram of a SmartNIC. The SmartNIC in-

cludes a Traffic Manager (TM) or a NIC switch that handles Quality of Service

(QoS) and directs traffic to the NIC execution engines. These engines consist of

a combination of processors specialized in custom packet processing and other

domain-specific tasks. Some SmartNICs, like NVIDIA’s BlueField-2 DPU1,

use a multi-core CPU for custom packet processing, while others, like AMD’s

Pensando DSC2, utilize embedded flow engines with a P4 programmable ASIC

pipeline. Additionally, some SmartNICs, such as AMD’s Xilinx SN10003, em-

ploy FPGAs for custom packet processing. The domain-specific processors are

designed for high-performance and energy-efficient processing of specific tasks,

1https://network.nvidia.com/files/doc-2020/pb-bluefield-2-dpu.pdf
2https://www.amd.com/system/files/documents/pensando-dsc-200-product-brief.

pdf
3https://docs.amd.com/v/u/en-US/ds989-sn1000
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(a) Traditional NIC. (b) SmartNIC.

Figure 2.31: In a deployment using a traditional NIC (a), the host CPU cores
handle both infrastructure functions and user applications. However, with Smart-
NICs (b), the host CPU cores are dedicated entirely to running user applications,
while the SmartNIC’s CPU cores work alongside other accelerators to manage the
infrastructure functions [53].

such as cryptography. The execution engines typically feature a memory hier-

archy that includes an L1 cache, scratchpad, L2 cache, and DRAM.

SmartNICs also have general-purpose CPU cores for executing control

plane functions, enabling them to operate independently with their own oper-

ating system, separate from the host system. The programmable components

of a SmartNIC allow it to handle infrastructure functions without relying on

the host CPU. As shown in 2.31, in a deployment with a traditional NIC (a),

the host CPU cores manage both infrastructure functions (such as network,

security, and storage) and user applications. In contrast, with SmartNICs (b),

the host CPU cores focus solely on running user applications, while the Smart-

NIC’s CPU cores, along with other domain-specific accelerators, manage the

infrastructure functions.

Custom Packet Processing: SmartNICs allow developers to create cus-

tom packet processing routines on their execution engines, which can be imple-

mented using CPU cores, FPGAs, or programmable ASIC pipelines. Regard-

less of the hardware architecture employed, the packet processing engines of

SmartNICs typically include a programmable parser, a programmable match-

action pipeline, and a programmable deparser—components that closely re-

semble those in the PISA architecture. Although different vendors have their

own approaches to programming these pipelines, there is a shared industry

goal to make them P4-programmable. P4, initially designed as a domain-
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specific language for programmable data plane switches, has become popular

for programming packet data paths due to its simplicity and flexibility.

Domain-specific Packet Processing: Infrastructure tasks can generally

be divided into network functions, security functions, and storage functions.

Given the repetitive nature of these tasks, it is efficient to hardcode them into

hardware. For example, hardware-based crypto processors, which have been in

use for some time, are domain-specific processors integrated into SmartNICs.

Other examples of domain-specific processors include those used for regular ex-

pression (RegEx) tasks in Deep Packet Inspection (DPI), Non-Volatile Memory

Host Controller over Fabrics (NVMe-oF) for remote storage, data compression,

data deduplication, and Remote Direct Memory Access (RDMA) [53].

Control Plane and Management: SmartNICs include CPU cores ded-

icated to running control plane functions and managing the SmartNIC. These

CPU cores can also be utilized to implement functions that cannot be accom-

modated within the ASIC or FPGA execution engines. Incorporating CPU

cores within a SmartNIC offers several advantages [53]:

• SmartNIC CPU cores can handle specific infrastructure functions, such

as key distribution for TLS sessions, reducing the load on the host CPU

and allowing it to focus on user applications.

• Running infrastructure functions on SmartNIC CPU cores is more ef-

ficient since they are isolated from the compute-intensive workloads of

user applications.

• Security is enhanced by completely isolating infrastructure functions

from the host system.

• While ASIC/FPGA engines are limited in handling complex operations

due to the need for high-speed packet processing, the SmartNIC’s CPU

cores can manage these tasks, though this may increase latency.

2.5.1.4 SmartNIC benefits

SmartNICs provide a variety of features and advantages that address modern

network challenges:

• Infrastructure offloads: Data center infrastructure tasks currently con-

sume up to 30% of processing capacity, a phenomenon known as the

Data Center Tax. Offloading these tasks to SmartNICs frees up this
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30%, making it available for user applications, which can significantly

boost revenue for cloud providers. This is a key reason why hyperscalers

(large companies that provide cloud computing and data management

services at a massive scale1) are among the first to adopt this technology.

• Application acceleration: With hardware-based accelerators, SmartNICs

offer better performance per watt than host-based applications, resulting

in lower latency and increased overall efficiency.

• Agility and reprogrammability: Developing new silicon is a lengthy,

costly process that requires extensive testing. By the time this cycle

is complete, rapid technological advancements may render the hardware

outdated. SmartNICs address this issue by providing programmable

components, enabling adaptability and timely updates to meet evolv-

ing technological demands.

• Security isolation: SmartNICs improve security by isolating infrastruc-

ture function execution from the server’s execution environment.

2.5.2 SmartNICs development tools and frameworks

Figure 2.32 illustrates a taxonomy that classifies the development tools and

frameworks used for programming SmartNICs, based on the specific compo-

nent within the SmartNIC being targeted.

2.5.2.1 Programmable pipeline

Packet processing logic is typically implemented using ASICs or FPGAs, and

the development of offloaded applications depends on the hardware architec-

ture and the vendor’s Software Development Kits (SDKs) [53].

• P4 Language: Initially designed to program the data plane of PISA-based

switches, the P4 language has proven versatile for programming data

planes in various packet processing devices. Although different vendors

use varied programming models, there is a unified goal to make their

pipelines programmable in P4.

• FPGA Programming: FPGAs consist of configurable logic blocks and

programmable interconnects, enabling users to tailor the chip’s function-

ality to their application needs. FPGA-based SmartNICs use similar

1https://www.redhat.com/en/topics/cloud-computing/what-is-a-hyperscaler
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Figure 2.32: Taxonomy of SmartNIC development tools and frameworks, cat-
egorized by component-specific technologies and software development environ-
ments [53].

programming workflows to traditional FPGAs. This means that devel-

opment tools, methodologies, and languages used for traditional FPGA

programming, such as Integrated Development Environments (IDEs) and

compilers that convert Hardware Description Languages (HDLs) such as

VHDL and Verilog into FPGA configuration files, are also applicable to

SmartNICs.

• P4-FPGA: Programming FPGAs with VHDL or Verilog can be complex

and time-consuming, especially for beginners. To simplify this, frame-

works have been developed to translate P4 code into FPGA bitstreams.

P4, being a high-level and user-friendly language for programming dat-

apaths, provides a faster and more efficient alternative for FPGA pro-

gramming. However, challenges remain in creating a compiler that can

effectively translate P4 code into VHDL or Verilog. Issues include the

use of low-level libraries in FPGA programming that are not portable

across devices and the difficulty of generating an efficient implementation

from diverse P4 programs and varying architectural trade-offs. The com-

munity is actively working on developing P4 FPGA compilers to address

these challenges.
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2.5.2.2 CPU Cores

User applications run on CPU cores, whether on the SmartNIC’s cores or

the host’s cores. The process for an application to handle a packet from the

NIC are: when a packet arrives, the NIC generates an interrupt to notify the

operating system of the packet’s memory location. The OS then moves the

packet to the network stack, which triggers system calls from the OS kernel to

forward the packet to the appropriate user-level application. These procedures

introduce overheads that significantly reduce bandwidth throughput. Modern

NICs ports linerate now exceed 200Gbps, and as NIC speeds increase, the

time available for processing each packet decreases. For example, at 200Gbps,

the interval between consecutive 1500-byte packets is just 60 nanoseconds (ns),

making the standard network stack insufficient to handle such high traffic rates

effectively [53].

• Data Plane Development Kit (DPDK) [34]: DPDK is a suite of libraries

and drivers designed to boost packet processing efficiency by bypassing

the kernel and operating within user space. Instead of linking NIC ports

to the kernel driver, DPDK uses a compatible driver that disconnects

them from the kernel. Unlike traditional packet processing, which relies

on kernel stack interrupts, the DPDK driver functions as a Poll Mode

Driver (PMD), continually polling for incoming packets. This approach,

along with kernel bypass, significantly improves packet processing perfor-

mance. DPDK provides APIs for use in C programs. Initially developed

by Intel, DPDK is now an open-source project with an expanding com-

munity. It supports all major CPU and NIC architectures from various

vendors.

• eXpress Data Path (XDP)1 and extended Berkeley Packet Filter

(eBPF) [22]: While DPDK improves performance by bypassing the ker-

nel, this results in the loss of networking functionalities provided by the

kernel, requiring user-space applications to re-implement these features.

XDP addresses this problem by integrating eBPF programs into the ker-

nel’s network stack. XDP introduces an early hook in the RX (receive)

path, specifically within the NIC driver after interrupt handling. This

hook allows the execution of a user-defined eBPF program, enabling

decisions to be made before the Linux networking stack processes the

1https://www.iovisor.org/technology/xdp

68

https://www.iovisor.org/technology/xdp


packet.

• P4 Backends: Developing P4 programs is typically seen as easier than

writing DPDK or BPF/XDP code. As a result, there have been ini-

tiatives to convert P4 programs into these other code formats. The

P4 compiler (p4c) includes backends specifically for generating DPDK,

BPF/XDP, and Userspace BPF (uBPF) code.

2.5.2.3 NIC Switch

The NIC switch manages QoS traffic control and directs traffic to the NIC exe-

cution engines. SmartNICs often use the Open vSwitch (OvS) specifications to

implement this switch. OvS, initially designed to facilitate communication be-

tween VMs, comprises two main components: the control plane (ovs-switchd)

and the data plane, also referred to as the datapath.

The OvS control plane is traditionally executed on the host in the

userspace. With SmartNICs, the OvS control plane is executed on the CPU

cores of the SmartNICs.

The standard OvS switch’s datapath is situated in the kernel, which strains

CPU resources and degrades the performance. To address these issues, many

SmartNICs offer support for offloading OvS into their NIC switch. When this

feature is utilized, the OvS datapath is moved to the hardware, resulting in

superior performance compared to the software-based versions [53].

2.5.2.4 Vendor specific SDKs targeting ASIC-based and FPGA-

based SmartNICs / Vendor agnostic

The following SDKs are proprietary and target ASIC-based SmartNICs.

NVIDIA’s DOCA: The Data Center-on-a-Chip Architecture (DOCA)1 is a

software development framework created by NVIDIA for its BlueField DPUs2.

This framework includes a range of components such as libraries, service

agents, and reference applications. Applications built with DOCA are devel-

oped in C and support DPDK, providing developers with access to all DPDK

APIs for efficient packet processing. DOCA also features its own libraries to

facilitate interactions with the SmartNIC’s components. Other ones include:

1https://developer.nvidia.com/blog/programming-the-entire-data-center-infrastructure-with-the-nvidia-doca-sdk/
2https://network.nvidia.com/files/doc-2020/pb-bluefield-2-dpu.pdf
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OCTEON SDK3, AMD Pensando SSDK4, Intel P4 Studio (formerly Barefoot

SDE)5. These SDKs facilitate programming, interaction with SmartNIC com-

ponents, access to resources, among other functionalities. In general, they

simplify the compilation and testing of programs, sometimes even including

the ability to compile without the hardware and test using a provided simula-

tor. Additionally, they often provide use cases and a Graphical User Interface

(GUI) that, for example, in the case of Intel P4 Studio, offers a comprehensive

insight into resource utilization, such as tables, hash, TCAM/SRAM, etc. In

some cases, acquiring these SDKs requires signing an Non-Disclose Agreement

(NDA) [53].

The following SDKs are proprietary and target FPGA-based SmartNICs:

Vitis Networking P41, Intel P4 Suite for FPGA2, Achronix Tool Suite3, Nap-

atech Link Toolkit4 and Open FPGA Stack (OFS) with Open Programmable

Acceleration Engine (OPAE) SDK5. Similarly, these SDKs simplify the process

of creating programs and their compilation, including pre-built functions and

in-system debugging, among other features [53].

The following are vendor agnostic abstraction frameworks: Open Pro-

grammable Infrastructure (OPI)6, Infrastructure Programmer Development

Kit (IPDK)7, SONIC-DASH8. Instead of relying on vendor-specific SDKs, de-

velopers can use vendor-agnostic SDKs that can be used in the same way,

abstracting the complexities associated with vendor-specific SDKs. Some func-

tionalities may not be implemented, so it is still possible to complement them

with vendor-provided functions. All of these SDKs are open source, focusing

on various objectives such as infrastructure offload, management tasks, cloud

3https://www.marvell.com/content/dam/marvell/en/public-collateral/

embedded-processors/marvell-octeon-tx2-sdk-solutions-brief.pdf
4https://community.amd.com/t5/corporate/amd-pensando-dpu-software/ba-p/

630282
5https://www.intel.la/content/www/xl/es/products/details/network-io/

intelligent-fabric-processors/p4-studio.html
1https://www.xilinx.com/products/intellectual-property/ef-di-vitisnetp4.

html
2https://www.intel.com/content/www/us/en/software/programmable/

p4-suite-fpga/overview.html
3https://www.achronix.com/product/fpga-design-tools-achronix
4https://www.napatech.com/products/link-capture-software/
5https://www.intel.com/content/www/us/en/products/details/fpga/

platforms/open-fpga-stack.html
6https://opiproject.org
7https://ipdk.io
8https://plvision.eu/offerings/sonic-dash-api-implementation
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services, among others. Some of these platforms can also be used for other

devices like switches or CPUs [53].

2.5.3 DPUs/GPUs/CPUs/FPGAs

Other devices that enable parallel data processing, including networking, ma-

chine learning, and general computation, and also allow offloading tasks from

the CPU, include GPUs, DPUs, TPUs, and FPGAs.

Integrated circuits (ICs) are commonly referred to as “chips”. They imple-

ment very small electronic circuits on a silicon substrate. CPUs, GPUs, and

FPGAs are all types of integrated circuits1.

A DPU is a new type of programmable processor that integrates three es-

sential components. First, it features a system on a chip (SoC) that includes

an industry-standard, high-performance, software-programmable, multi-core

CPU, usually based on the widely used ARM architecture, which is closely

integrated with other SoC elements. Second, it includes a high-performance

network interface capable of parsing, processing, and efficiently transferring

data at line rate—the speed of the broader network—to GPUs and CPUs.

Third, it offers a comprehensive set of flexible and programmable accelera-

tion engines designed to offload and enhance application performance in areas

such as AI and machine learning, zero-trust security, telecommunications, and

storage. These DPU capabilities are crucial for establishing an isolated, bare-

metal, cloud-native computing platform which can contribute to substantially

modifying the future of cloud-scale computing.

The DPU can function as an independent embedded processor, though it

is more commonly integrated into a SmartNIC, serving as a key component

in next-generation servers2. A DPU-based SmartNIC is a NIC that offloads

processing tasks that the system CPU would normally handle. Using its own

onboard processor, the DPU-based SmartNIC may be able to perform any

combination of encryption/decryption, firewall, TCP/IP, and HTTP process-

ing. SmartNICs are ideally suited for high-traffic web servers3.

GPU-accelerated computing is the use of a GPU alongside a CPU to speed

up the performance of applications in deep learning, analytics, and engineer-

1https://www.intel.la/content/www/xl/es/support/programmable/

support-resources/fpga-training/getting-started.html
2https://blogs.nvidia.com/blog/whats-a-dpu-data-processing-unit/
3https://developer.nvidia.com/blog/choosing-the-best-dpu-based-smartnic/
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ing. GPUs began as specialized ASICs designed for specific tasks, such as

accelerating 3D rendering. Over time, these fixed-function engines have be-

come more programmable and flexible. While their primary function remains

focused on graphics and increasingly realistic visual elements in games, GPUs

have evolved into more general-purpose parallel processors, handling a growing

range of applications, including AI4,5. The GPU excels at parallel processing

and efficiently handles complex mathematical tasks that general-purpose CPUs

struggle with without the need for emulation. These capabilities make GPUs

particularly valuable for visualization tasks, such as computer games, math-

intensive applications, and 3D rendering tools like AutoCAD. Since GPUs lack

basic instructions, they are typically paired with CPUs within the same com-

puter system. However, a GPU is not merely a CPU with additional instruc-

tions; it represents a fundamentally different approach to addressing specific

computing challenges. The GPU’s limited range of functions allows for much

smaller cores, but its highly parallel architecture enables thousands of cores

to tackle massive parallel computing tasks and achieve high data through-

put. Despite this, GPUs are not well-suited for multitasking and generally

have restricted memory access. GPUs are particularly effective for handling

demanding machine learning (ML) models.

A TPU is a specialized application-specific integrated circuit (ASIC) cre-

ated to expedite the high-volume mathematical and logical computations com-

monly associated with machine learning (ML) tasks. Unlike general-purpose

processors, a TPU is more similar to an ASIC, offering a limited set of math-

ematical functions, mainly focused on matrix processing specifically for ML

applications. It is known for delivering exceptional throughput and paral-

lelism, similar to GPUs, but optimized and pushed to the limits in its design.

TPUs are specially useful for machine learning, data analytics, edge computing

and cloud computing1.

All of these technologies enable task offloading, and which one to use will

depend on the nature of the application. GPUs, DPUs and TPUs are more

oriented towards ML, graphics, and similar applications. On the other hand,

FPGAs are very useful for networking tasks.

4https://www.nvidia.com/es-la/drivers/what-is-gpu-computing/
5https://www.intel.la/content/www/xl/es/products/docs/processors/

cpu-vs-gpu.html
1https://www.techtarget.com/whatis/definition/tensor-processing-unit-TPU

72

https://www.nvidia.com/es-la/drivers/what-is-gpu-computing/
https://www.intel.la/content/www/xl/es/products/docs/processors/cpu-vs-gpu.html
https://www.intel.la/content/www/xl/es/products/docs/processors/cpu-vs-gpu.html
https://www.techtarget.com/whatis/definition/tensor-processing-unit-TPU


2.6 Applications

There are numerous applications where data plane programming can be useful

due to the capabilities that it provides. These include QoS, Monitoring, Traf-

fic Management and Congestion Control, Routing and Forwarding, Network

Security, among others. In particular, there is a direct application in network

monitoring. This can range from simple monitoring with statistics deployment,

including stateful processing, to monitoring with security actions.

SmartNICs enhance the performance of a wide range of infrastructure ap-

plications, which can be broadly categorized into security, networking, and

storage functions. They also accelerate various computational workloads, such

as AI/ML inference and training, caching (like key-value stores), transaction

processing, serverless functions, and more.

Below are a series of applications for both SmartNIC offload (based on

the taxonomy presented at [53]) and data plane programmability, which often

intersect in various ways. Each of these applications showcases how offloading

to SmartNICs and leveraging data plane programmability can enhance network

performance, security, and flexibility.

2.6.1 Security

The nature of data center traffic has significantly evolved with the advent

of cloud-hosted applications and microservices. Traditionally, traffic patterns

were dominated by North-South (NS) flows, which move between internal and

external devices and are safeguarded by perimeter security appliances like fire-

walls, as shown in 2.33(a). However, over the past decade, there has been a

shift towards East-West (EW) flows, which occur between devices within the

data center and now constitute up to 80% of total data center traffic. Un-

like North-South traffic, East-West traffic was largely unprotected. To address

this, a common solution was to route EW traffic through a centralized secu-

rity appliance for inspection, as depicted in 2.33(b). This approach causes the

traffic to pass through intermediary devices, such as switches, twice, thereby

increasing both network load and latency for the two hosts involved. This has

led to the rise of Zero Trust and microsegmentation architectures, which focus

on decentralizing security functions and bringing them closer to the resources

that need protection. Data centers and cloud providers have transitioned to us-

ing software-based security functions to safeguard East-West traffic, as shown
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in 2.33(c). While this approach offers benefits in terms of deployment ease and

cost-effectiveness, it also has certain limitations:

• Performance: Packets must pass through the regular network stack to

be processed by security functions on general-purpose CPUs, increasing

latency and reducing throughput.

• Scalability: CPU cores often struggle to handle high traffic inspection

rates, especially without software accelerators like DPDK, leading to

increased packet drop rates.

• Isolation: All traffic, including potentially malicious traffic, is sent to the

host, which poses security risks due to a lack of isolation.

• CPU usage: Security functions consume a significant portion of CPU

processing power, particularly during high traffic periods, causing per-

formance bottlenecks and service degradation for end-user applications.

Figure 2.33: (a) Perimeter-based security: The appliance inspects only North-
South traffic. (b) Centralized security: The appliance is capable of inspecting
East-West traffic, but it results in significant bandwidth overhead. (c) Distributed
software firewall: Software-based appliances are deployed on servers to inspect East-
West traffic, but their performance is limited. (d) Distributed hardware firewall: The
appliances are offloaded to SmartNICs on the servers, allowing high-performance in-
spection of East-West traffic [53].

To address these challenges, SmartNICs have been utilized to offload secu-

rity functions from general-purpose CPUs, as shown in 2.33(d). Specifically,

SmartNICs have been employed to offload firewall functions, IDS/IPS, DPI,

and encryption for both data in motion and data at rest [53].
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2.6.1.1 Firewall

A firewall monitors network traffic, both incoming and outgoing, and allows or

blocks packets based on a set of predefined rules. Firewalls typically operate

up to layer 4, handling basic Access Control List (ACL) tasks. This enables

them to match traffic against network layer information (such as source and

destination IP addresses) and transport layer information (like source and

destination port numbers).

Software-based firewalls are widely used, particularly in cloud environ-

ments. They are often implemented alongside a virtual switch (e.g., OvS).

In these setups, the traffic is inspected using the CPU cores of the host where

the firewall is deployed, which can lead to reduced performance and increased

CPU resource consumption.

As SmartNICs come with a programmable pipeline or an embedded switch,

this allows the definition of match-action rules. This capability enables the

direct implementation of firewalls with basic ACLs in hardware, operating at

line rate. While developers can build firewall functionality from the ground

up, this approach requires implementing several features, such as connection

tracking for stateful inspection, flow caching, and aging.

Alternatively, the hardware-offloaded switch on SmartNICs can be used to

implement firewall functions. In this approach, switch rules can be offloaded

to the hardware transparently, and the developer only needs to specify traffic

allow/block rules. The connection tracking feature of the switch can also be

used to enable stateful inspection. For instance, VMware allows the offload-

ing of firewall functions from its NSX distributed switch to the SmartNIC,

specifically for L2-L4 inspection and firewalling [53].

In the case of pure data plane programmability, it enables customized

packet processing, including the insertion of dynamic rules that can be modi-

fied at runtime, which is clearly useful in a firewall. Additionally, it allows for

latency reduction by executing these programs on hardware devices rather than

software, as is typically done, enabling inline packet inspection and filtering.

2.6.1.2 Intrusion Detection/Prevention System

IDS and Intrusion Prevention System (IPS) are cybersecurity tools aimed at

protecting networks and hosts from unauthorized access, malicious actions, and

security threats. An IDS observes and analyzes network or system events to
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detect unusual patterns or anomalies, offering real-time alerts or logs for deeper

analysis. An IPS not only detects these activities but also takes immediate

action to prevent or block unauthorized actions in real-time.

IDS and IPS are typically run on the host’s general-purpose CPUs, but

SmartNICs have started offloading these functions to boost data processing.

These include offloading the bypass function, Deep Packet Inspection (DPI),

custom functions, IPSec offload, TLS offload and more. In the case of pure

data plane programmability, it once again allows for the creation of dynamic

rules and policies that can be changed at runtime, as well as customized traffic

inspection. As will be discussed later, it also enables the integration of Ma-

chine Learning models for anomaly detection. Additionally, it supports inline

filtering or anomaly detection, contributing to the decentralization of network

tasks [53].

Other applications include Port Knocking, DDoS attack mitigation, con-

nection security, between others [46].

2.6.2 Network Offloads

SDN and NFV are transformative technologies that have dramatically changed

how networks are designed, deployed, and managed. Virtual switches are essen-

tial for providing the flexibility, scalability, and efficiency required by modern

networks, particularly in connecting VMs. However, implementing networking

functions as NFVs on servers places a significant burden on the CPU, espe-

cially in high-traffic networks. To address this, SmartNICs have recently been

employed to offload these network functions from general-purpose CPUs, tak-

ing on tasks such as switching/routing, tunneling, measurement, telemetry,

and more.

2.6.2.1 Switching

Virtual switching was developed to address the need for hypervisors to effi-

ciently connect VMs to external networks. Initially, virtual switches operated

within the hypervisor as software-based solutions. However, this method was

demanding on CPU resources, leading to reduced system performance and in-

efficient bandwidth use. Software switches not only handle traditional layer

2 switching and layer 3 routing but also enable rule matching across different

packet fields and support a variety of actions on packets, such as forwarding,
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dropping, and marking.

SmartNICs use hardware components like lookups and ALUs to perform

match-action functions for packet switching. Instead of creating new switching

functions from scratch, many SmartNICs can offload the datapath from exist-

ing software switches, such as OvS or proprietary switches. Beyond packet

switching, virtual switches on SmartNICs can also manage tasks like Net-

work Address Translation (NAT), tunneling, and QoS functions, including

rate limiting, policing, and scheduling [53]. Clearly, all this applies for data

plane programming, allowing for aggregated functionalities to the pure switch-

ing/routing.

2.6.2.2 Tunneling and Overlay

Tunneling is a method that encapsulates one network protocol within another

for transportation. It’s frequently used in virtualized environments to estab-

lish isolated channels between VMs or between different parts of a virtualized

network. This technique addresses the constraints of the physical network and

allows for the creation of virtual networks that extend beyond physical limits.

Several tunneling protocols, such as Virtual Extensible LAN (vxlan) among

others, are employed in network virtualization. vxlan adds an extra layer of

packet processing at the hypervisor level, which increases CPU overhead. As

the number of flows grows, the CPU can become overloaded with encapsula-

tion and decapsulation tasks, causing performance issues in throughput and

latency. SmartNICs can offload these tunneling functions from the host CPU

to their embedded NIC switch or programmable pipeline, reducing the load on

the CPU. The control plane tasks, such as defining tunnels, are managed by

the SmartNIC’s CPU cores in software. This approach enhances throughput,

reduces latency, and allows the host CPU to handle other tasks [53]. Data

plane programmability enables the dynamic configuration of tunnels and the

implementation of various (and potentially new) tunneling protocols, adapting

to the requirements of each network.

2.6.2.3 Observability - Monitoring and Telemetry

Observability refers to the capability to gather and analyze telemetry data.

During a network outage, effective observability aids in diagnosing and resolv-

ing issues. It also plays a crucial role in detecting malicious activities and
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pinpointing network performance bottlenecks. Traditionally, packet observ-

ability solutions are implemented in hardware located outside the server.

SmartNICs support traditional packet observability methods. They also

offer local monitoring and aggregation to reduce excessive traffic exports and

can implement complex telemetry features, such as streaming algorithms and

Bloom Filters, for detailed analysis. SmartNICs can provide additional teleme-

try data about the host system, including CPU, memory, and disk usage, en-

hancing overall system monitoring. SmartNICs can monitor traffic between

VMs or containers within the same server, which traditional external ap-

proaches cannot. This offloads the monitoring burden from the host CPU,

especially in high-traffic scenarios [53].

Data plane programming allows for detailed monitoring with customized

inspection and granularity at the packet or flow level, adapting to specific

needs. It also enables the inspection of non-traditional protocols. Monitoring

applications within data plane programming, specifically P4, include: detec-

tion of heavy hitters, flow monitoring, in-band network telemetry, between

others [46].

2.6.2.4 Load Balancing

Load balancers are essential in cloud environments for efficiently distributing

network requests across servers in data centers. While traditional load bal-

ancers used specialized hardware, software-based solutions are now more com-

mon among cloud providers due to their flexibility and on-demand provisioning

capabilities, despite higher operational and provisioning costs. Software-based

load balancers offer more customization but increase expenses related to server

acquisition and energy consumption. It is possible to offload load balancing

to SmartNICs, including the distribution of incoming network traffic across

multiple CPU cores (Receive Side Scaling) [53]. Data plane programmability

allows for the implementation of load balancing functions directly in hardware,

enhancing performance. It also enables dynamic application of load balancing,

allowing changes at runtime [53].

2.6.3 Other categories for data plane programming

Other categories of applications for data plane programming, in particular

using P4, include [46]:
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2.6.3.1 Traffic Management and Congestion control

These include data center switching, congestion notification, traffic schedul-

ing, traffic aggregation, Active Queue Management, and Traffic Offloading.

The field of traffic management and congestion control takes advantage of

three key features of P4: customizable packet headers, flexible header pro-

cessing, and target-specific packet header processing functions. Data center

switching typically focuses on parsing packet headers from standard protocols

like IPv4/v6. However, more advanced protocols can be implemented using

P4’s flexible header processing capabilities. Target-specific packet processing

functions are extensively used with many works leveraging externs such as

metering and marking, though these may not be available on all hardware.

A similar situation is observed where many approaches depend on priority

queues. Since floating-point operations are not native to P4, some targets

may provide externs to handle them. Many solutions bypass this limitation

by using approximations or defining their own software-based externs [46].

2.6.3.2 Routing and Forwarding

These include Source Routing, Multicast, Publish/Subscribe Systems, between

others. The field of routing and forwarding significantly benefits from P4’s

key features. First, the ability to define and utilize custom packet headers al-

lows network administrators to tailor headers to specific use cases. Examples

include source routing and multicast, where custom headers are used to im-

plement lightweight mechanisms based on extra packet information not found

in standard protocols. Although many of this kind of projects are developed

for the BMv2 software switch, they should be easily portable to hardware

platforms, as they do not rely on complex, target-specific operations.

Second, P4 enables flexible packet header processing based on the packet’s

header contents, which supports systems such as publish/subscribe networks,

named data networks, and data plane resilience. Custom actions and condi-

tional application of multiple match-action tables allow for adaptable packet

processing tailored to specific scenarios. As with custom headers, most projects

in this area were developed for BMv2 and should be transferable to hardware

if target-specific actions are avoided.

Third, many works on data plane resilience rely on target-specific packet

processing functions. For example, registers are often used to store the sta-
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tus of egress ports (up/down) to trigger backup actions when needed. These

projects are frequently implemented on the Tofino hardware platform, making

the implementations highly target-dependent. Porting these to other platforms

depends heavily on the hardware’s capabilities and the externs used [46].

2.6.3.3 Advanced Networking

These include Cellular Networks (4G/5G), Internet of Things (IoT), Industrial

Networking, Time-Sensitive Networking and NFV. Since the field of advanced

networking encompasses a variety of topics, nearly all of P4’s core features

are utilized. The cellular networks domain heavily benefits from the ability

to define and use custom packet headers, as many works rely on tunneling

technologies. Additionally, flexible packet header processing enables the im-

plementation of new 5G concepts. Some scenarios still require offloading tasks

to specialized hardware or software using P4’s target-specific packet header

processing functions. NFV gains from the flexible development and deploy-

ment of network functions (NFs), allowing them to be replaced or relocated

during operation. Furthermore, new protocols and extensions to existing ones

leverage both custom packet headers and flexible packet header processing for

their implementation [46].

2.6.4 Previous work use cases

In previous work [16], two use cases were proposed: monitoring and load bal-

ancing. In the monitoring case, a proof of concept was presented where a P4

program forwards packets appropriately while extracting useful data, export-

ing it to a P4Runtime controller to generate representative graphics with the

obtained data. This use case successfully obtained useful data, demonstrating

its easy accessibility, and enabled offline analysis (also testing the connection

with the controller), generating graphical and representative results that con-

tribute to the easy and quick understanding of the data. P4 allows for the

complete “disassembly” of a packet, which makes this monitoring completely

customizable and detailed. For example, statistics can be obtained by pro-

tocol (or other criteria) simply by inspecting this data in the packet header.

Comparing this approach with a traditional one, such as the use of Simple Net-

work Management Protocol (SNMP) [21], it can be seen that monitoring with

P4 is not limited to existing protocols and can monitor networks that do not
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use the Internet stack. Eventually, more personalized data inspection using

SNMP may require more development, if the operating system is modifiable;

otherwise, one must work with what the operator has implemented. However,

SNMP allows the monitoring of some hardware aspects.

In the load balancing case, a proof of concept was presented where there

are two P4 programs: a Round Robin (RR) load balancer and another load

balancer that decides the destination according to the transport layer protocol

(TCP or UDP). There is a P4Runtime controller that changes the P4 program

running on the switch at runtime based on the average packet size. In the RR

load balancing case, it was observed how state can be maintained within the

switch between packets (keeping the last destination) and how this value can

be queried and used for decision-making. This proof of concept demonstrated

that it is possible to change both the P4 program and the control plane rules at

runtime, showing the ability to make real-time decisions. Furthermore, these

decisions can be based on monitoring data collected with the P4 program, in

real time, and with the ease provided by a program written in Python (con-

troller). Compared to a traditional approach, personalizing the forwarding

algorithm would require implementing it in the operating system kernel if it is

open-source. Otherwise, one would depend on the device manufacturer’s im-

plementation, meaning the desired algorithms would need to be incorporated.

Lastly, it is not possible to change the execution algorithm in real-time on a

traditional switch.

NDP [44] is a protocol that seeks to address the lack of transport proto-

cols for data centers that provide high capacity and low latency. Creating a

new protocol involves the need for network devices capable of handling packets

defined under this new protocol. To achieve this without relying on vendor-

provided solutions, network device programmability becomes highly valuable.

This is what the developers of NDP did, providing an implementation of their

protocol for network devices through data plane programming. The NDP pro-

tocol includes an implementation of an NDP switch using P4 and an NDP

host using DPDK. In previous work [15], it was possible to run the implemen-

tation of an NDP host on Linux after making certain code modifications. This

implementation uses DPDK to bypass the default stack and enable packet

processing on the host, appropriate for the new protocol.

81



2.7 Machine Learning for networking

ML allows a system to analyze data, derive knowledge, and improve its under-

standing over time through experience. The latest developments in machine

learning have increased the adaptability and robustness of these techniques,

making them applicable across a wide range of real-world situations. The

abundance of data in contemporary networks, which is expected to expand

further with emerging networks like the Internet of Things (IoT), encourages

the utilization of ML. This use goes beyond identifying hidden patterns, but

also encompasses learning and understanding the processes responsible for gen-

erating the data. Classifying traffic is essential for network operators to carry

out various tasks related to network operation and management. Recent ad-

vancements in machine learning have made these techniques adaptable and

robust, allowing them to be applied to a wide range of real-world situations,

from the exceptional to the ordinary.

Recent computing advancements provide the storage and processing power

necessary for training and testing machine learning models on large datasets.

However, network operations and management remain challenging, with faults

often caused by human error. These faults can result in financial losses and

damage to the reputation of network providers. As a result, there is signifi-

cant interest in developing autonomic networks that are self-configuring, self-

healing, self-optimizing, and self-protecting to enhance resilience. Although

there is a critical need for cognitive control in network operation and man-

agement, it presents specific challenges for machine learning. Each network is

unique, and the lack of standardization means that patterns effective in one

network might not work in another. Additionally, the constantly evolving na-

ture of networks makes it difficult to apply a fixed set of operational patterns.

The rapid growth in the number of applications and types of connected devices

makes manual network administration nearly impossible to maintain.

Recent technological advancements in networking, like SDN, enhance the

potential for applying ML in this field. While ML has been widely used in

areas like pattern recognition, speech synthesis, and outlier detection, its use

in network operations and management has been limited due to challenges

in collecting data from and controlling legacy network devices. SDN helps

overcome these challenges by allowing network programmability. The insights

gained from ML can assist in automating network management tasks, making
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the application of ML to networking a complex yet promising research area.

This requires a deep understanding of both ML techniques and networking

issues.

There are four main categories of problems that can benefit from ML: clus-

tering, classification, regression, and rule extraction. Clustering aims to group

similar data points together while maximizing the separation between different

groups. In classification and regression, the objective is to map new input data

to a set of discrete outputs or continuous values, respectively. Rule extraction

problems differ in that they focus on identifying statistical relationships within

the data. ML is particularly well-suited for solving problems when there is a

large representative dataset available. ML techniques are designed to uncover

and leverage hidden patterns in data to: 1. describe outcomes by grouping

data in clustering problems, 2. predict the outcomes of future events in classi-

fication and regression problems, and 3. assess the outcomes of a sequence of

data points in rule extraction problems.

Networking issues can be framed as problems that benefit from machine

learning. For instance, a classification problem in networking might involve

predicting the type of security attack, such as Denial-of-Service (DoS), User-

to-Root (U2R), Root-to-Local (R2L), or probing, based on network conditions.

In contrast, a regression problem could involve predicting when a future fail-

ure is likely to occur. While there are various categories of problems that

benefit from machine learning, there is a general approach to developing ML-

based solutions. The essential components in designing these solutions for

networking are: Data collection, which involves gathering, generating, or defin-

ing the dataset and the classes of interest. Feature engineering, that aims to

reduce data dimensionality and identify key features that decrease computa-

tional costs and improve accuracy. Finally, ML techniques are used to analyze

the complex relationships within the data and learn a model for predicting

outcomes.

Machine learning encompasses four learning paradigms: supervised, unsu-

pervised, semi-supervised, and reinforcement learning. These paradigms affect

how data is collected, how features are engineered, and how ground truth is

established. The goal is to infer an outcome based on a dataset, often referred

to as training data. If the data description is known, labels are associated with

the training data. The outcome is typically viewed as identifying membership

in a particular class of interest. Supervised learning involves using labeled
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training datasets to build models that identify patterns or behaviors based on

known data. This method is typically applied to classification and regression

problems to predict discrete or continuous outcomes. In cases where there

is partial or incomplete labeling, semi-supervised learning techniques can be

used. Unsupervised learning, on the other hand, uses unlabeled datasets to cre-

ate models that differentiate between patterns in the data, making it suitable

for clustering problems. For example, in networking, unsupervised learning

can be used for detecting outliers or estimating density by grouping similar

types of attacks. Reinforcement learning (RL) is an iterative, agent-based ap-

proach to decision-making problems. Unlike traditional learning methods that

rely on training examples, RL involves an agent interacting with its environ-

ment, learning through exploration and feedback rather than predefined data.

The agent receives rewards or penalties based on its actions, with the goal of

discovering the best sequence of actions or “policy” to maximize cumulative

rewards. This approach is well-suited for tasks like decision-making, planning,

and scheduling, as it can prioritize long-term rewards over immediate gains.

The choice of learning paradigm is closely tied to the nature of the training data

and the problem at hand; if supervised learning isn’t feasible due to insufficient

data knowledge, other learning paradigms may be more appropriate [12].

2.7.0.1 Data collection

Machine learning techniques need representative, unbiased data to create ef-

fective models for networking problems. Data collection is crucial and can be

done in two phases: offline and online. Offline data collection involves gather-

ing a large amount of historical data for training and testing models, often from

various repositories. Online data collection involves real-time network data,

which can be used for model feedback or re-training. Monitoring and mea-

surement tools are key for both types of data collection, offering control over

aspects like sampling rate, monitoring duration, and location. These tools use

network monitoring protocols and can be either active or passive. Active mon-

itoring introduces additional traffic to the network for data collection, while

passive monitoring avoids this overhead by analyzing existing network traffic,

though it requires extra devices for data analysis.

After collecting data, it is typically divided into training, validation (or

development), and test datasets. The training set is used to determine the

84



best parameters for a machine learning model, such as the weights in a neural

network. The validation set helps in selecting the optimal model architecture

or choosing among different models, though if the model and architecture

are already chosen, validation may not be necessary. The test set is used to

evaluate the model’s unbiased performance.

Validation and testing can be done using either the holdout method, where

a portion of the dataset is reserved for validation or testing, or k-fold cross-

validation, where the dataset is split into k subsets, and each subset is used

for validation or testing in turn, with results averaged across all rounds.

Common dataset splits include 60/20/20% for training, validation, and

testing, or 70/30% if validation is not used. For larger datasets, more extreme

splits are also valid. It’s important to ensure that the training, validation, and

test datasets are independent and represent the same distribution to avoid

skewness, which can lead to model overfitting or underfitting [12].

2.7.0.2 Feature engineering

Raw data collected for machine learning can be noisy or incomplete, so it

must be pre-processed to clean it before use. Feature extraction is another

crucial step where features are selected to help in learning and inference. In

networking, features can be categorized by their granularity: 1. Packet-level

features: derived from individual packets, such as packet size statistics and

time series information. These are robust to sampling variations. 2. Flow-level

features: calculated from flow statistics like mean flow duration and packet

counts. 3. Connection-level features: extracted from transport layer details,

including throughput and TCP window size. These offer high-quality data but

may involve computational overhead and are sensitive to sampling and routing

changes.

Feature engineering involves both feature selection and extraction. Selec-

tion removes irrelevant or redundant features to reduce computational costs

and prevent overfitting, while extraction creates new features from existing

ones using methods like entropy, Fourier transform, and principal component

analysis (PCA). Tools can aid in this process, but specialized methods—filter,

wrapper, and embedded techniques—are often used for optimal feature selec-

tion. Filtering eliminates irrelevant features, wrapper techniques iteratively

test different subsets, and embedded methods integrate selection into model
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training.

When performing feature engineering, it’s crucial to consider the specific

characteristics of the task. For example, in network traffic classification to

identify streaming applications, features such as average packet size and packet

inter-arrival times are important. Average packet size tends to be consis-

tent, and inter-arrival times help distinguish between bulk data transfers and

streaming. However, factors like fragmentation, encryption, and queuing can

affect these features. Additionally, streaming applications may resemble bulk

data transfers in behavior. Thus, understanding the types of applications being

classified is essential for selecting the most relevant features.

Last, it is crucial to choose features that align with the assumptions of the

problem being addressed. In traffic classification, for instance, features from

multi-modal application classes may exhibit non-Gaussian behavior, which can

conflict with assumptions like independent, Gaussian-distributed feature dis-

tributions. Proper feature extraction and selection are essential to ensure the

effectiveness of machine learning models [12].

2.7.0.3 Establishing ground truth

Establishing ground truth involves assigning formal labels to classes of in-

terest, often through hand-labeling by experts, deep packet inspection (DPI),

pattern matching (like application signatures), or unsupervised machine learn-

ing techniques. For traffic classification, ground truth can be established using

application signatures based on features like average packet size and flow dura-

tion. These signatures need to be updated regularly, especially for encrypted

traffic.

Alternatively, statistical and structural content models can describe

datasets and infer classes. For example, these models can classify a protocol

using the label from a single instance of that protocol and derive correlations

from unlabeled training data. Accurate ground truth is crucial for machine

learning model performance, as imbalances in training data across classes can

affect model accuracy. Addressing class imbalance may require techniques such

as under-sampling, over-sampling, or ensemble methods to ensure fair training

and effective model performance [12].

86



2.7.0.4 Performance metrics and model validation

After building an ML model and establishing ground truth, it’s essential to

evaluate the model’s performance. There isn’t a single“best” learning algo-

rithm, and error rates can’t be universally compared across different appli-

cations. Performance metrics assess various aspects of the model, including

reliability, robustness, accuracy, and complexity. Accuracy validation involves

error analysis, where the difference between actual and predicted values is

calculated.

For classification, error metrics like binary and categorical cross-entropy are

used, while regression uses Mean Absolute Error (MAE) and Mean Squared Er-

ror (MSE). In classification tasks, accuracy is a common metric, defined as the

proportion of correct predictions among all predictions. However, accuracy can

be misleading with imbalanced data. To address this, metrics from a confusion

matrix are used: 1. True Positive (TP): Correctly predicted positive instances.

2. True Negative (TN): Correctly predicted negative instances. 3. False Pos-

itive (FP): Incorrectly predicted positive instances. 4. False Negative (FN):

Incorrectly predicted negative instances. These metrics help in evaluating and

comparing different models, as well as tuning model parameters to balance

recall and precision, leading to more reliable performance assessments [12].

2.7.1 ML applications in networking

There are various machine learning applications within computer networks,

including: traffic prediction, traffic classification, traffic routing, congestion

control, resource management, fault management, QoS and QoE management

and network security. Network traffic prediction is essential for managing the

complexity and diversity of modern networks. In this work, we will primar-

ily focus on traffic classification, concentrating our analysis on this specific

category.

2.7.1.1 Traffic Classification

Classifying traffic is crucial for network operators to perform various opera-

tional and management tasks. Traditionally, this has been done by associating

Internet Assigned Numbers Authority (IANA) registered port numbers with

applications. However, this simplistic method of using port numbers does not
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support learning and has become outdated. Relying solely on port numbers

is ineffective due to issues like dynamic port negotiation, tunneling, and the

misuse of well-known application port numbers to disguise traffic and bypass

firewalls. Despite this, many classifiers still use port numbers along with other

techniques. Payload-based traffic classification serves as an alternative to port-

based methods. Nevertheless, as it involves scanning the payload for recognized

application signatures, it results in increased computational and storage ex-

penses. Additionally, manual upkeep and adjustment of signatures becomes

challenging due to the continuous growth in the number of applications and

their dynamic nature. Moreover, concerns regarding security and privacy have

led to the encryption of payload, with restricted access due to privacy laws.

Consequently, deducing a signature for an application class using payload be-

comes intricate. The host behavior-based traffic classification uses the inherent

behavioral traits of hosts within the network to anticipate the relevant classes.

These classifiers operate on the premise that applications exhibit distinct com-

munication patterns. For instance, a Peer-to-Peer (P2P) host might establish

connections with multiple peers, employing a unique port number for each

peer, while a web server could be accessed by various clients using the same

port. The accuracy of traffic classification based on host behavior largely de-

pends on where the monitoring system is placed. This is particularly important

because routing asymmetries in the network core can influence the observed

communication patterns. Differing from classifiers that rely on payload or host

behavior for traffic analysis, classifiers based on flow features take a distinct

approach. They adopt a broader viewpoint by examining a communication ses-

sion, comprising a pair of complete flows. A complete flow denotes a one-way

sequence of successive packets exchanged on the network between a port at one

IP address and another port at a different IP address, utilizing a specific ap-

plication protocol. The quintuple <srcIP, destIP, srcPort, destPort, protocol>

identifies a flow. A feature is an attribute representing a unique characteristic

of a flow, such as packet length, inter-arrival time, flow duration, and packet

count. Flow feature-based classification uses these features to categorize flows,

leveraging the unique traffic patterns generated by different applications. This

technique has the potential to overcome several limitations of other methods,

such as unregistered port numbers, encrypted payloads, routing asymmetries,

and high storage and computational overhead. Fundamentally, traffic classi-

fication based on flow features takes advantage of the variety and discernible
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attributes present in the traffic patterns produced by various applications.

However, it remains to be seen if flow feature-based classifiers can match the

accuracy of payload-based classifiers. Flow feature-based traffic classification

is a well-studied technique that utilizes both supervised and unsupervised ma-

chine learning for classifying network traffic. In supervised learning, methods

like kernel estimation, neural networks, and support vector machines (SVM)

are used to achieve high accuracy. However, network operators often lack

complete information about all network applications, making it unrealistic to

have prior knowledge of every application for traffic classification. Therefore,

unsupervised machine learning techniques are employed for practical traffic

classification using flow features. Both hard and soft clustering techniques

are explored in unsupervised learning. Given that application flow features

can be quite similar, hard clustering is not suitable for detailed classification.

Soft clustering, particularly density-based clustering, offers the required gran-

ularity and is faster to train than expectation-maximization (EM)-based soft

clustering.

Depending on the conclusion of a flow for traffic classification not only

results in prolonged training time and increased memory usage for classifiers

but also causes delays in making time-sensitive classification decisions. Conse-

quently, early traffic classification can be done using the initial packets, rather

than the complete flow.

Supervised machine learning provides high accuracy for traffic classifica-

tion, while unsupervised techniques offer greater robustness. Consequently,

combining supervised and unsupervised ML for traffic classification has proven

successful. Semi-supervised classifiers are not only resilient but can also be eas-

ily adapted to detect zero-day traffic and retrained to improve accuracy against

previously unknown applications. Recent advances in networking, such as SDN

and NFV, present new opportunities for traffic classification, particularly in

identifying applications and QoS classes. Although some initial studies in this

area have achieved high accuracy, further evaluation is needed to assess their

resilience, temporal and spatial stability, and computational overhead. It is

also crucial to determine the feasibility of these technologies for making time-

sensitive traffic classification decisions [12].
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2.8 Final Remarks

This chapter outlined the theoretical foundations necessary for understanding

and applying network programmability. It examined the enabling technologies

and various hardware devices that support it, with a particular focus on the P4

language, concluding that P4 is the most suitable language for this work. Addi-

tionally, the chapter explored various applications of network programmability

and provided an overview of machine learning in networking.
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Chapter 3

Proof of concept

In order to test the complexity of applications that leverage network pro-

grammability, particularly using the P4 language, this chapter explores the

implementation of a complex solution involving network programmability and

machine learning. It presents a software solution along with its architecture,

components, and corresponding tests. Subsequently, a scaled-down hardware

version of this solution is introduced to demonstrate its potential real-world

implementation. All the code developed is available at [17].

3.1 HALIDS - A Software solution

A promising idea is to do traffic classification as early as possible, that is,

on network devices. Nevertheless, their resources have been traditionally con-

strained, encompassing limitations in terms of memory, processing capacity,

available operations, and more. Consequently, these devices are tradition-

ally treated as “dumb” regarding Network Traffic Monitoring and Analysis

(NTMA), performing only the essential functions required for the network to

operate. The emergence of new data plane architectures raises the hope that

network devices will perform functions beyond simple traffic forwarding. By

doing so, the burden on the control and management planes is alleviated, and

a portion of the processing is decentralized. Additionally, processing within

the network device occurs more expeditiously, reducing the need for offloading

to the control plane.

In Figure 3.1, we can see a traditional deployment (in red) where decisions

are made by an external server, adding latency and not leveraging the capabil-
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Figure 3.1: Traditional ML classification using external servers vs in-network clas-
sification using programmable hardware [96].

ities of a programmable network device. In blue, we can observe an in-network

machine learning deployment, where the network device can make decisions at

line rate.

It is here that traffic classification intersects with enhanced data plane

and machine learning. We introduce HALIDS, a Hardware-Assisted Machine

Learning IDS for in-Network Monitoring at forwarding speed. In this sense, the

scenario presented in this application involves the creation of an IDS, wherein

the network device can make a decision (regarding traffic) with a high level of

confidence, or delegate this decision to an expert (oracle).

Both the network device and the oracle use AI/ML models for intelligent

traffic classification. While the AI/ML model running at the network device is

simpler, in order to fit the limited processing capabilities and memory of pro-

grammable devices, and runs at in-line rate, the oracle model is more complex

and can be deployed off-band at an external server with significantly higher

resources for AI/ML-driven analysis.

The HALIDS concept revolves around leveraging the fast processing power

of switches to quickly process traffic at in-line rate, while also taking into ac-

count their limitations. In this case, the device is allowed to classify incoming

traffic if the confidence in this decision is high. Otherwise, this classification

is delegated to an “expert” (oracle), which, by having significantly more re-

sources, can provide a more accurate decision. Specifically, this decision entails

determining whether a packet is malicious or not, a task that the network de-

vice can perform to a limited extent due to the aforementioned constraints.

The idea is that the network device can identify if a packet is evidently mali-

cious. In the case of the device, the model is trained with fewer data points

than the oracle’s model due to memory limitations, privacy issues, between
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other possibilities.

Figure 3.2: HALIDS general architecture. The programmable network device
runs an ML model that classifies packets. If the confidence in the decision does not
surpass a defined threshold, it queries an oracle (servers). If it is confident in its
decision, it acts accordingly.

In Figure 3.2, we can see the general architecture of the HALIDS solution.

We have a programmable network device that contains a ML model (in this

case, a Random Forest (RF)) capable of making decisions at line rate when it

has sufficient confidence in the model’s classification, and act accordingly. If

the classification does not surpass a confidence threshold, the switch can query

an oracle, which has a more complex model and more training data. Once the

oracle provides the classification, the switch can act based on it. When the

oracle is queried, the original packet is sent to the oracle with a new header

that includes the necessary features for class determination. Naturally, this

introduces a delay in the action taken on the packet, as it must return from

the oracle with a classification before any action can be performed. If the

oracle returns a classification of malware, the flow is flagged, and appropriate

actions are taken at the switch (e.g. drop), ceasing further queries to the

oracle. Otherwise, the packets will continue to be classified at the switch and

forwarded to the oracle in cases of low confidence.

P4 provides us with the ability program this behaviour in the network

device. Following state of the art [1, 18, 60], HALIDS implements standard

Decision Tree (DT)s and RF models within the programmable data plane,

which easily map to the match-action pipeline by associating each level of the

tree with a table. Ideally deployed on a server, the oracle’s model can not

only be significantly more complex and heterogeneous – e.g., relying on deep-

learning, ensemble architectures, or even foundation models, but also trained

with massive amounts of data to enhance the accuracy of its predictions.
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HALIDS also relies on active learning principles [84] to enable model re-

training at the programmable device, relying on the oracle model as tutor

providing the required ground-truth labels. Model retraining is crucial for

AI/ML-driven analysis to adapt to changing network traffic. Once a prede-

fined retraining policy rule is reached, such as after offloading a specific number

of packets to the oracle, the network device will undergo retraining using de-

cisions made by the oracle. Consequently, as the traffic pattern evolves, the

model at the network device is expected to reach decisions that may not be

sufficiently reliable. By retraining with more accurate decisions from the or-

acle, the network device aims to dynamically adapt to the evolving traffic

conditions. Since the match-action pipeline associates each level of the tree

with a table, retraining the switch simply involves rewriting the tables from

the control plane.

3.1.1 Related Work

Several works addressing different parts of the raised issue have been found,

all using P4. Firstly, SwitchTree [60] proposes the integration of RF into the

data plane for abnormal traffic identification. It extracts flow-level features

with early detection (calculating the features in each packet) and incorporates

RF as tables. In this case, the code is not automated and is limited to acting

only on the switch. pForest [18] introduces a similar idea, but various RF are

trained for different phases of the flow, additionally proposing a confidence

percentage for decision-making. Despite seeming like an innovative idea, the

code is not currently available. CML-IDS [39], the work most similar to ours,

proposes an RF in the data plane, and an oracle used to provide more accurate

decisions in case of a lack of confidence in the switch’s decision. This work

seems to have a strong focus on providing more powerful algorithms in the

oracle and does not involve switch re-training. The aforementioned solutions

are all implemented in software. Marina [85] is a hardware-based solution

where the network device extracts the necessary (more complex than those

used in other solutions) features and sends them to an ML server with a pow-

erful prediction model. Flowrest [1] and Leo [51] propose a solution designed

for hardware implementation, integrating RFs and DTs into the data plane.

NetBeacon [97] proposes an idea similar to pForest, implemented in hardware.

Regarding background on Active Learning (AL) [84], the paradigm aims
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to increase the performance of an AI/ML model by interactively querying an

oracle – e.g., a human user or some other expert source of information, to label

new data instances for subsequent model (re)training. In the context of com-

munication networks, AL facilitates the practical implementation of AI/ML

solutions by empowering users to make crucial administrative decisions and

incorporating expert insights into the monitored data. When the model en-

counters unseen samples or lacks confidence in its predictions, it defers the

decision to the expert administrator for further review and reclassification,

using this additional knowledge for retraining. This process ensures that the

model remains up-to-date and enables it to adjust to changes in the network

over time, thereby addressing issues such as concept drift and zero-shot classi-

fications (e.g., for zero-day attacks). Conventional AL methods generally focus

on retraining the model after each queried sample, which can be impractical

and inefficient. Indeed, continuously training and deploying new models may

not be viable. To address this, batch-mode AL is usually applied, wherein the

model is retrained after a pre-defined group of samples has been labeled by

the oracle.

3.1.2 Solution

We choose SwitchTree [60] as the basis for HALIDS’ programmable switch im-

plementation, while the communication mechanism with the oracle is inspired

by CML-IDS [39].

SwitchTree implementation comprises the P4 implementation of a Ran-

dom Forest, along with the scripts (hardcoded) for training. For training

the Random Forest, the UNSW-NB15 dataset[69, 70, 71, 83]1 is employed.

This dataset categorizes attacks into 9 categories and encompasses 49 fea-

tures. SwitchTree’s focus is not on detecting the specific type of attack but

rather on discerning whether it is a normal flow or not. To achieve this, 12

features are selected from the available set, as utilizing all features would de-

mand excessive switch memory, especially for stateful features. To identify the

most important features, the authors trained a Random Forest without depth

or tree number limits, systematically discarding features based on impurity

until achieving an F1-score≥ 0.95. Concerning the number of trees, a higher

count allows for greater generalization but necessitates more switch memory.

1https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Considering precision, recall, and F1 metrics, the authors conclude that the

ideal number is 3 trees. Additionally, the authors constrain the tree depth to

10 levels [60].

SwitchTree consists of a P4 program responsible for extracting and calcu-

lating features for each packet and processing them with the previously trained

RF. The classification is done by the RF, which is embedded in tables within

the switch. In Figure 3.3, a Decision Tree embedded in a match-action pipeline

is illustrated. Each level of the tree is mapped to a match-action stage, where

a feature is checked at each level. Depending on whether the condition is sat-

isfied or not, processing proceeds to the next level. As it is a Decision Tree,

the obtained result is carried forward. This process continues until reaching a

leaf, where a decision is made, and a class is assigned to the packet. Figure 3.4

exemplifies the table structure at the nth level within the P4 code. As shown,

the table key comprises the unique node ID, the ID of the previously evaluated

feature, and the previous result (whether the condition evaluated to true or

false). The possible actions to be taken include:

• CheckFeature: Responsible for evaluating the condition described by

the parameters received from the control plane. In this case, it receives

the ID of the next node, the threshold to be evaluated (value at the node

in the Decision Tree against which it is compared), and the ID of the

feature with which it should be compared.

• SetClass: Tasked with assigning the corresponding class. This action

maps to a leaf in the tree. In this instance, the control plane parameters

include the ID of the next node (useful for advancing to the next Decision

Tree in case of a Random Forest) and the class to be assigned.

• NoAction: The default action when a packet does not match any key.

For instance, considering the Decision Tree depicted in Figure 3.3, the

initial examination involves the condition dpkts ≤ 0 at level 1. Each feature

evaluation should have a rule structured as follows:

Key(node id, prevFeature, isTrue) −→
CheckFeature(next node id, next feature id, threshold)

Therefore, the level 0 will have the following entry:

Key(node id, 0, 1) −→ CheckFeature(next node id,

dpkts feature id, 0)

In this case, the initial state of the key has some particularities, such as the
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Figure 3.3: An instance embedding of a tree within the Random Forest is illus-
trated in the switch. The features evaluated include dpkts (number of packets sent
from destination to source), ct state ttl (a function involving source TTL and
destination TTL where TTL stands for time to live), TTL and class representing the
ultimate packet classification [60].

Figure 3.4: An illustration of a P4 table designed to encapsulate a node at the nth
level of a Decision Tree [60]

previous feature being 0 (i.e., none), and it is marked as true. Subsequently,

the condition to evaluate is dpkts ≤ 0, as the next feature specified in the

parameter is dpkts with a threshold of 0.

Next, the table at level 1 will have the following entries:

Key(node id, dpkts feature id, 1) −→ CheckFeature(next node id,

ct state ttl feature id, 1)

Key(node id, dpkts feature id, 0) −→ CheckFeature(next node id,

TTL feature id, 250)

The first rule represents the scenario where the condition dpkts ≤ 0 evalu-

ates to true (indicated by the isTrue value of 1), leading to the evaluation of

97



the upper part of the tree, where ct state ttl ≤ 1 is assessed. The second rule

illustrates the case where the condition dpkts ≤ 0 evaluates to false (indicated

by the isTrue value of 0), triggering the evaluation of the lower part of the

tree, where ttl ≤ 250 is examined.

Ultimately, upon reaching a leaf, the corresponding key will be generated to

execute the SetClass action and assign the appropriate class. Each feature eval-

uation should have a rule structured as follows: Key(node id, prevFeature,

isTrue)−→SetClass(next node id, class to be set) In the example, af-

ter the condition ttl ≤ 0 evaluates to false, the class 0 is set, result-

ing in the following rule at the last level: Key(node id, ttl feature id,

1)−→SetClass(next node id, 0)

The tables for each label with the aforementioned rules are illustrated in

Figure 3.5.

table MyIngress.level1

key(node_id, 
prevFt, isTrue)

action params (nxt_n, 
next_ft_id, th)

node_id, 
dpkts_ft_id, 1

CheckFt nxt_n, 
ct_state_ttl_ft_id, 

1

node_id, 
dpkts_ft_id, 0

CheckFt nxt_n, ttl_ft_id, 
250

table MyIngress.level2

key(node_id, 
prevFt, isTrue)

action params 
(nxt_n, class)

node_id, 
ttl_ft_id, 1

SetClass nxt_n, 0

table MyIngress.levelN

key(node_id, 
prevFt, isTrue)

action params (nxt_n, 
next_ft_id, th)

node_id, 0, 1 CheckFt nxt_n, dpkts_ft_id, 
0

…

Figure 3.5: An illustration of the mapping between each table and the match-
action pipeline. At each table it can be seen the key, action to be taken and the
parameters for the action. prevFt refers to the key field prevFeature, params refers to
the parameters for the action, where nxt node refers to the next node id, next ft id
refers to the next feature id, and th to the threshold to compare. CheckFt refers to
the CheckFeature action and xxx ft id refers to the feature id for the corresponding
feature.

In conclusion, multiple Decision Trees can be integrated into various match-

action stages, functioning either as serial stages within a single pipeline or as
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parallel stages across parallel pipelines, depending on the switch’s capabilities.

In the case of multiple DTs, meaning a RF, one would have tables for each

level, for each tree. Figure 3.6 illustrates how to embed a RF in a pipeline.

Similarly to the DT, we have a table for each level, but this time for also for

each tree.

table MyIngress.level1_1 table MyIngress.level1_2

Decision Tree 1

…

Decision Tree 2 Decision Tree 3

Random Forest

table MyIngress.level1_3 table MyIngress.level1_n

table MyIngress.level2_1 table MyIngress.level2_2

…
table MyIngress.level2_3 table MyIngress.level2_n

table MyIngress.level3_1 table MyIngress.level3_2

…
table MyIngress.level3_3 table MyIngress.level3_n

Figure 3.6: An illustration of a Random Forest embedded in a match-action
pipeline.

A concluding stage assesses the outcomes from all the Decision Trees and,

based on the implemented algorithm, generates the final classification. The

SwitchTree implementation employs a voting algorithm, determining the final

class as the one favored by the majority of the Decision Trees. Lastly, the

implementation includes P4 code for both single-tree and three-tree scenarios

within the Random Forest [60].

Regarding the features in SwitchTree, some are stateless (such as desti-

nation port), while others are stateful (such as flow duration), requiring the

storage of information for each flow in the switch. Most of the latter are

approximated since they involve floating-point operations or division, which

P4 does not support. Traffic classification in SwitchTree occurs at flow level,

performing early detection, meaning it does not wait for the flow to complete

before classifying it. It computes features using packets received up to the

current moment of the flow. To maintain flow records, registers and hashing
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are employed, using the quintuple as a key to identify each flow.

For each packet arriving at the switch, a hash is applied using the standard

quintuple <source IP, destination IP, source port, destination port, protocol>

as a key to identify each flow. For every incoming packet, both type of features

are calculated, and a decision is made for each packet, based on the flow infor-

mation obtained up to that moment. As the flow progresses, more information

is gathered (more packets arrive), and if a packet from the flow is eventually

detected as malware, the remaining packets of the flow are marked accordingly.

In Figure 3.7, we can see this behavior in action. First, a packet (pkt 1) from

flow X arrives. For this flow (calculating the hash), we update the features;

in this example, we update the flow duration. Then, we check for malware by

running the model with the newly calculated features. If the flow is identified

as malware, it is marked accordingly, and any subsequent packets from this

flow will be considered malware, meaning no further feature calculation will

be performed. Assuming the first packet is not marked as malware, the sec-

ond packet from the flow (pkt 2) will arrive. With this new information, we

update the features again, by subtracting the arrival time of the first packet

from that of the second, to calculate the flow duration. Once all the features

are updated, we check for malware and mark it accordingly. The same process

applies to the next packet, packet 3 from the flow (pkt 3). We update the flow

duration and other features and check again.

3.1.3 HALIDS System

Figure 3.8 illustrates the HALIDS architecture. We have made several im-

provements to SwitchTree. First, the entire process of training the switch

is now automated. Mininet is no longer utilized, and virtual interfaces are

adopted. This shift is necessitated by the fact that within the BMv2 varia-

tions, Mininet only launches the Simple Switch target (default version). In

the proposed solution, we employ the SimpleSwitchGrpc [29], a version of the

Simple Switch with P4Runtime support. P4Rutnime is used for the commu-

nication between the switch and the Oracle, encompassing packet exchange,

configuration, and switch retraining. Therefore, the compilation and deploy-

ment of interfaces, switches, etc., are automated.

Second, we introduce the concept of an oracle. This Oracle is a Python

program that implements a machine learning model, specifically a RF, which
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Figure 3.7: Illustration of how early detection at flow level for every packet is
performed. Features are updated with every incoming packet from a flow, then it is
checked for malware and marked accordingly.

initially conducts its training using the scikit-learn library1. This RF has

a significantly greater number of levels and trees compared to the switch.

Furthermore, it trains with all available data.

Subsequently, the Oracle establishes a connection with the switch via

P4Runtime and installs the P4 program. It also trains the switch for the first

time using a reduced set of available data and a smaller Random Forest. For

this, it trains the model, generates the rules, and writes them into the switch’s

table. Then, for each packet received by the Oracle, it executes a function that

predicts the label, explained later on. The Oracle is trained with all available

data and designed with greater complexity than the switch model. When the

oracle receives a packet, it extracts the features received in the packet and

then processes them with the RF model to predict a label, which is then sent

back to the switch. The workflow logic of HALIDS is explained in detail in

1https://scikit-learn.org/stable/
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Figure 3.9.

in-band 
P4 programmable switch

Student AI/ML-driven IDS

pkti

if Pin-switch < DCT :
export Xi to Oracle 

Coracle ( pkti )

Active Learning Logic Path
periodic re-train with Oracle labels 
P4Runtime API

off-band AI/ML server
Oracle AI/ML-driven IDS

1

2

3

Figure 3.8: HALIDS architecture for in-band/off-band traffic classification, an
eventual re-training through Active Learning. Pin−switch refers to the decision con-
fidence at the switch, Xi to the features, Coracle to the packet classification at the
oracle.

in-band 
P4 programmable switch
Student AI/ML-driven IDS

pkti

❶ get and store flow ID f-ID

▪ if f-ID is already tagged as attack :
o assign pkti to class attack and discard

▪ else:
o update stateless/stateful features Xi from flow f-ID
o apply in-band AI/ML-driven IDS to Xi (cf., Fig. 1)
o get class (benign/attack) and probability {P0 , P1}

▪ pre-label pkti with Cin-switch = class-max {P0 , P1}

▪ if Cin-switch = attack → pre-block pkti 

▪ let Pin-switch = max {P0 , P1} be the decision confidence

▪ if Pin-switch < DCT (Decision Confidence Threshold)
o export Xi to oracle for labeling
o get Coracle ( pkti )
o assign pkti to class Coracle 

▪ if Coracle = benign → release pkti

o else: assign pkti to class attack and discard

▪ move on to pkti+1 → go to    1

Figure 3.9: HALIDS traffic analysis workflow.

In the case of the switch, the confidence percentage of the decision made by

the tree is incorporated. To achieve this, these values must be obtained during

the training stage. These percentages are calculated as the number of samples

of the label (0 or 1) divided by the number of samples reaching a leaf. Subse-

quently, these percentages are added to the rules (i.e., the tables), becoming

an additional parameter of the SetClass action. In the scenario of having a

single tree in the RF, the code of the SetClass action is modified to evaluate

this confidence percentage and compare it with a defined threshold. If the
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percentage surpasses the threshold, the normal forwarding is executed, taking

into account the class predicted by the tree. If not, the packet is marked to be

sent to the Oracle, allowing for a more secure class assignment. When three

trees (or eventually more than one) are present, a SetClass action is desig-

nated for each tree (SetClass1, SetClass2, SetClass3). Each of these actions

stores the confidence percentage and the class predicted by the corresponding

tree. Instead of a simple majority vote, these percentages are weighted by

the number of trees, and the classification is determined by the one with the

highest value. The subsequent steps mirror those when a single tree in place

to determine the packet’s destination.

To send the packet to the Oracle, packet IO support from the P4Runtime

shell [28] is employed. In this context, the goal is to transmit to the Oracle the

necessary features for class determination, along with some data required for

feature approximation. To achieve this, a header (of type controller header)

is added to the packet. The required data is then appended to this header,

and the port indicating that it should be directed to the Oracle is set. The

Oracle receives this packet, extracts the features, predicts the classification

using the trained RF, and sends the classification back to the switch. It is es-

sential to note that as the switch approximates some features due to its limited

capabilities, the Oracle must also perform these approximations to obtain the

classification. This can, of course, be improved in the future by sending differ-

ent features or complementary information to achieve better approximations,

as Python is not as limited in terms of operations. When the switch receives

the packet from the Oracle (identifiable by the header), it simply sets the ob-

tained class and proceeds to forward the packet to the appropriate destination

based on the obtained class. This behavior is illustrated in Figure 3.10.

To enable retraining, the oracle stores the corresponding features and the

classification obtained for each packet. Once a defined criteria is met, for ex-

ample, when the number of packets received from the switch exceeds a certain

threshold, retraining will proceed. For this, the model in the oracle is retrained

using the desired training data. These can vary, for instance:

• all the training data can be used, with new classifications added;

• old data can be replaced with new data, using different metrics and

techniques for replacement;

• only the new data can be used,

103



…

1

3

4

contains classification

5

act accordingly

2 ft1=x,ft2=y,...

[ft]
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act according to the classification from the switch or 
the oracle
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3

4

5

Switch

Oracle

Figure 3.10: An illustration of a packet being sent to the oracle. Pin switch refers to
the confidence classification at the switch, and DCT to the threshold for comparing
the confidence.

among other options. Once the model is retrained, P4Runtime is used to over-

write the tables with the corresponding retraining information during runtime.

This behavior is illustrated in Figure 3.11. Once a packet arrives at the oracle,

the corresponding counter is incremented. Then, the class is obtained, and the

features and obtained class are saved for retraining. If the counter surpasses

the threshold, we retrain the switch via P4Runtime. Note that the focus in this

solution is to provide a closed loop, where a switch can make quick decisions

with a certain degree of confidence using a simple machine learning model in

the data plane. In cases where the confidence level is not sufficiently high, the

decision is offloaded to the Oracle, which possesses a more powerful model.

The Oracle returns the decision made about the packet to the switch, which

acts accordingly. Simultaneously, with the decisions made by the Oracle, the

switch is retrained to keep it adaptive to changing traffic. This completes the

closed loop. Emphasis is placed on the approach of automating this entire

process and communications, rather than seeking the best models, methods,

performance, etc. This is beyond the scope of this work and can be consid-

ered as future work, given its significant importance. There is also a focus on

generating an implementation adaptable to potential improvements.
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Figure 3.11: An illustration of how the switch is retrained by the oracle.

3.1.4 Evaluation

We implement and deploy HALIDS using the SimpleSwitchGrpc version of

BMv2 [29], employing virtual interfaces. There are for virtual interfaces which

will be associated with the switch at compilation. One of these interfaces will

serve as the port through which incoming packets will arrive. Another will

be designated for forwarding packets classified as malware, a third for those

classified as normal, and the remaining interface for unclassified packets (non-

IPv4 packets).

Traffic traces are injected using TCP-replay1. Training and validation of

the ML models is done using the well-known UNSW-NB15 dataset, whereas

testing is performed on top of actual packet traces from the same dataset.

The data training consists of 700.000 data-labeled instances, each one with the

49 features from the dataset, and the corresponding associated attack. The

packet trace used corresponds to data captured the day 22/01/2015 between

22-01-2015 11:49:36 and 22-01-2015 12:05:04 UTC. This capture has a total

of 1.800.680 packets, with an average of 1900 packets/s approx. This dataset

was chosen as it is a well known and widely used dataset, with a substantial

1https://tcpreplay.appneta.com
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amount of data. It reflects modern traffic patterns, including a variety of

different attack types and diverse features. It is also the dataset used by

SwitchTree to obtain the features for the DT and for testing, so it is used also

used in order to compare the results obtained.

It is important to note that the BMv2 is not designed to be a production

grade switch, and therefore, it is not ideal to evaluate performance using this

setup. Nevertheless, it can be observed that the packet loss is significantly

high with such a large trace. Consequently, the debugging mode of the BMv2,

which causes substantial packet loss, was disabled. Additionally, the testing

environment was transitioned from a virtual machine to a physical machine,

significantly reducing packet loss. Then, tests were conducted on a machine

with 16GB RAM and 8 CPU cores.

3.1.4.1 Toy example: Small traffic and small model

We begin the analysis of HALIDS performance taking a so-called toy example,

using as testing data a small traffic trace of 1.000 packets from the mentioned

dataset.

In this study, we evaluate the operation of HALIDS under two distinct

configurations. Initially, we confirm that the in-switch student model and the

oracle model achieve identical performance when integrating the same model,

ensuring the correct implementation of HALIDS. This scenario is called the

baseline. The implementation is validated by processing all test packets either

through the switch or the oracle. In both cases, the student and oracle machine

learning models are trained on the entire training dataset using the same DT

architecture with a depth of five levels. The detection of malware flows in this

toy example is, in both cases (using only the switch or only the oracle) perfect,

meaning 100% of malware flows are detected (in this case 10 malware flows).

As of this, the results at packet level for both scenarios are the following:

1. True Positive (TP) packets: 85 2. False Positive (FP): 0 3. False Negative

(FN): 99 4. True Negative (TN): 792 Particularly, there are less than 1000

packets, because of non-IPv4 packets. As expected, the results obtained at

the switch and oracle are identical, verifying the implementation. This test

was very useful, as initially, the results were not the same; there was a small

difference between the True Positive and False Negative values. This issue

was caused by a common problem in networks—a delayed response from the
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oracle. In this case, the solution involved checking whether a flow had already

been marked as malware when the oracle’s response returned.

Building on the baseline detection performance, we then assess HALIDS

as a functional detection system. Here, the in-switch student model is trained

with only 50% of the training dataset while maintaining a tree depth of five,

whereas the oracle is trained on the full training dataset using a significantly

more complex architecture, consisting of 100 trees with a depth of 15. We

then evaluate the detection performance at three different decision confidence

thresholds (DCTs) of 80%, 90%, and 95%. In brief, a higher DCT results

in more packets being classified by the oracle. Setting a confidence threshold

of 80%, the results are the following: 1. TP: 61 2. FP: 0 3. FN: 123 4. TN:

792. In the case of setting the threshold to 90%, the TP packets increase to

93, and the FN decrease to 91. Similarly, when setting the threshold to 95%,

the TP packets increase to 97, and the FN decrease to 87. This demonstrates

a trend towards improved classification as the confidence threshold is raised,

thereby delegating decisions to the oracle. Conversely, when lower confidence

thresholds are set, such as 80%, all packets are classified at the switch, indi-

cating that the confidence percentage set during training is elevated. Figure

3.12 shows the results, normalized to baseline performance. With DCT set to

80%, all packets are classified in-band at the switch, leading to a significant

performance drop of nearly 30% due to the reduced training data compared

to the baseline. As the DCT thresholds increase, more packets are sent to

the oracle, and detection performance improves compared to the baseline—by

approximately 10% for DCT = 90% and nearly 20% for DCT = 95%.
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Figure 3.12: Detection performance gain using HALIDS.
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3.1.4.2 Multi-model Assessment with Larger Traces

We then evaluate HALIDS using a larger testing dataset, consisting of the

1GB traffic trace mentioned before. Three different model implementations

are deployed at the switch:

• model M1, which is the same single Decision Tree of depth five, used in

the toy example, but this time it will be tested with the bigger trace.

• model M2, a small Random Forest composed of three Decision Trees,

each with a depth of five. In this test, we evaluate an actual RF, since

in the toy test we only evaluated a DT.

• model M3, a single Decision Tree with a depth of ten. The goal of tests

performed using this scenario is to evaluate how the depth of the tree

affects performance, as there are more tables.

Once again, we train all in-switch models with only 50% of the training

data and evaluate HALIDS using various DCT thresholds, including 80%,

85%, 90%, and 95%. The oracle is trained on the full training dataset. The

baseline scenario involves classifying all packets at the switch without utilizing

the oracle.

The percentage of correctly detected malware flows in the baseline scenario

is around 97%. However, as the DCT increases, even though packet-level clas-

sification improves, counterintuitively, flow-level classification drops by two to

three percentage points, depending on the case. This clearly doesn’t make

sense, as packet-level classification is improving and both models (switch and

oracle) are trained on the same data. The flow detection rate should at least

remain constant, because if it does but packet-level metrics improve, it would

mean that the same flows were detected as malware with fewer packets. This

is because once a packet is detected as malware, all subsequent packets corre-

sponding to that flow are marked as malware.

Upon encountering this issue, we investigated and concluded that it is due

to a problem with how flows are identified, meaning the hash. The way flows

and packets are measured for correct classification is in the switch, using the

hash id (flow id) and prior knowledge of what is malware and what is not. In

this case, due to the large trace of flows, this hash mapping quickly becomes

overwhelmed, requiring the release of entries for new flows. With so many

packets being processed at such high speeds, this creates a delay when packets

are sent to the oracle, while simultaneously flow data is being deleted from the
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switch. In summary, the issue is that flow data is being overwritten with new

flow data (with the same hash ID but different flow), which leads to nonsensical

flow-level classification percentages. Attempts were made to fix this, but it was

not possible as it requires a much deeper analysis. Some improvements were

made, but they are not reflected in these tests. Therefore, all graphs and tests

presented later are based on packet-level data.

Figure 3.13 presents the results for the three models. Figure 3.13(a) illus-

trates that the detection performance of M1 remains stable at DCT = 80%,

but improves by over 20% compared to the in-switch model baseline as the

DCT increases, showing even better results than in the toy example.

80 % 85 % 90 % 95 %

DCT

0

20

40

60

80

100

120

140

D
e
te

c
ti
o
n
 P

e
rf

o
rm

a
n
c
e
 G

a
in

 (
%

)

M
1

80 % 85 % 90 % 95 %

DCT

0

20

40

60

80

100

120

D
e

te
c
ti
o

n
 P

e
rf

o
rm

a
n

c
e

 G
a

in
 (

%
)

M
2

M
3

(a) M1 model. (b) M2 and M3 models.

Figure 3.13: Detection performance gain for different in-switch models.

Figure 3.13(b) shows the results forM2 andM3. For both models, detection

performance remains consistent across all DCT thresholds, indicating that

they already exhibit strong classification performance and high confidence in

their decisions. Notably, M2 shows an 11% improvement over the baseline.

However, M3 maintains the same performance as the baseline, implying that

oracle support has minimal impact. As shown later, approximately 0.3% of the

testing samples (about 6,000 packets) are queried in the case of M2, almost

no packets are sent to the oracle when using M3, which also supports the

fact that both cases already have a high performance. Finally, Figure 3.14

presents the F1 scores for detecting malware packets for all three models at

the highest DCT threshold of 95%. M1 and M2 initially perform poorly, but

the oracle significantly boosts their performance by 20% and 10%, respectively.

M3 delivers the best results, nearing 100%, which explains the minimal number
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of packets sent to the oracle.
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Figure 3.14: Detection performance using HALIDS models and highest DCT.

3.1.4.3 Querying Rate and Packet Loss

Figure 3.15 illustrates the fraction of packets sent to the oracle experienced by

HALIDS during the testing of the three models. It is shown that the fraction

of packets sent to the oracle is quite small across all three models, remaining

below 0.4% for all models and DCT values. As expected, the oracle querying

rate increases with higher DCT values. While M1 and M2 rely on the oracle

for improved classifications, M3 generates almost no queries when deployed at

the switch.

Figure 3.16 illustrates the end-to-end packet loss experienced by HALIDS

during the testing of the three models. Figure 3.16(a) demonstrates that packet

loss remains consistent across different DCT values and matches the loss rates

observed when no oracle is used, indicating that offloading to the oracle has

minimal impact on packet loss. Packet losses for M2 are notably higher due

to the increased complexity of implementing the RF in the data plane, where

tables are executed sequentially, leading to queue congestion and more packet

discards. For completeness, Figure 3.16(b) presents packet loss results from

additional tests conducted in a virtualized environment (‘@virtual’) instead

of on physical hardware—all other tests in the paper were performed on a

standard laptop with 16GB RAM and 8 CPU cores (‘@hardware’, as seen in

Figure 3.16(b)). Although virtualization is not practical in this context, we

observe an impact on resource utilization due to the oracle offloading logic.

It is important to note that the BMv2 model is not intended for production-

grade switching, making it less suitable for performance evaluation in a virtual
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setup. As a practical tip, disabling the debugging mode on the BMv2 switch

also helps reduce packet loss.
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Figure 3.15: Oracle querying rate for the different in-switch models tested in
HALIDS. M1 and M2 rely on the oracle for better classifications, but querying rates
are very low, below 0.4% of the testing data.
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(a) Packet loss. (b) Packet loss compared to virtualized environment.

Figure 3.16: Packet loss for the different in-switch models tested in HALIDS.
Packet losses for M2 are significantly higher, but testing at better hardware deploy-
ments strongly reduces degradation.

We also compared the delay incurred when using the oracle, as the packet

must be sent to the oracle and returned before taking action on it. First, the

test was performed with the Toy Example, where the traffic takes 7.940433505

seconds when not using the oracle, and when forwarding all packets to the

oracle, it incurs a time of 8.026289907 seconds. In other words, a difference of
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less than 0.1 seconds. For the 1GB traffic capture, it was decided to compare

the performance by passing all the traffic through the switch only, and then

using a 90% confidence threshold, as one would typically use this threshold

and never send 100% of the packets to avoid significant delay. In the first case,

the time is 898.719299188 seconds, and in the second case (sending a total

of 7,839 packets to the oracle), the incurred time is 899.004010317 seconds,

meaning a difference of less than 0.3 seconds. Clearly, this measurement is

not accurate, as the switch is not intended to be a production switch, and in

a real environment, the controller could be located farther away, adding more

latency. Nonetheless, it is interesting to analyze the incurred delay.

3.1.4.4 Model Retraining and Impact in Detection Performance

Concerning the retraining of the in-switch model, we tested a scenario where

the M1 model is trained with only 5% of the training data (approximately

30,000 packets), with the DCT set to 90%. The testing was conducted using

the same 1GB trace as in previous evaluations. In this scenario, just over 5,000

packets are sent to the oracle for classification. The oracle receives packets from

the switch and, upon reaching 5,000 packets, retrains the switch using the

newly generated labels (i.e., oracle classifications). We tested three different

retraining strategies: (i) adding the new 5,000 labels to the existing training

data, resulting in +17% new training samples (increasing the training size to

35,000 packets); (ii) replacing the first 5,000 labels in the training dataset with

the newest 5,000 classifications from the oracle (keeping the training size at

30,000 packets); and (iii) using only the newly generated 5,000 labels (i.e., only

17% of the original training data). The baseline scenario involves processing

all packets through the switch without oracle support.

Figure 3.17 presents the results for these three retraining strategies. In-

corporating new samples classified by the oracle into the in-switch model re-

training significantly enhances detection performance, with an improvement of

nearly 50%. The results are similar for both adding or replacing labels. This

is a highly encouraging outcome, demonstrating that the HALIDS approach

can greatly improve performance when a pre-trained AI/ML model faces high

uncertainty in its decisions. A typical example might involve concept drift or

the classification of previously unseen data distributions. However, retraining

using only the newest samples, which excludes over 80% of the training data,
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results in worse-than-baseline performance. Nonetheless, as strategy (ii) sug-

gests, retraining with a broader time window of samples could be the optimal

approach.
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Figure 3.17: Detection performance using HALIDS retraining.

3.1.4.5 Conclusions and Future Work

We developed and evaluated HALIDS, a software prototype for adaptive, in-

band AI/ML-IDS using P4, enhanced by off-band oracles that improve model

classification and retraining. We conducted various tests, including setups

with different resources and different densities of the models, evaluating both

the performance of malware packet detection and packet loss, which is also an

important factor to consider when deciding whether to use a solution of this

kind or not. Overall, the evaluations suggest a promising direction for utiliz-

ing the combined in-band and off-band network traffic classification approach,

leveraging active learning principles for model retraining.

A closed loop was successfully implemented, providing the network device

with “intelligence” beyond the usual. Now, the device can make decisions when

confidence thresholds are high, and if not, it can delegate the decisions to an

oracle. Additionally, it can improve its future decisions through retraining

based on the oracle’s decisions.

The emphasis on this work is placed on the approach of automating the en-

tire process and communications, while introducing the re-training capability,

enabling dynamic adaptation of the model, rather than seeking the best mod-

els, methods, performance, etc. This is beyond the scope of this work and can

be considered as future work, given its significant importance. There was also

a focus on generating an implementation adaptable to potential improvements.

The toy tests served as proof of concept for HALIDS; still, upon more

elaborate testing with more traffic, the solution was evaluated in greater depth,
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determining the need to improve the implementation.

Within the future work, there are several possible enhancements. As men-

tioned earlier, the emphasis in this work was not on these improvements, but

rather on ensuring their easy integration into the provided implementation.

Particularly, the following clear enhancements are envisioned:

• Evaluate other models for the switch, where considerations must be taken

regarding its capabilities, and especially for the Oracle. The decision

was made to choose a simple model (but with more elements than the

switch model) with the aim of focusing on the closed loop. In particular,

the Oracle could feature a considerably more complex model or multiple

models, as is the case with CML-IDS [39]. This would be straightforward

to integrate since the Oracle is a Python program. For the switch, a

model that naturally maps to the pipeline must be identified.

• Send all the features to the Oracle. In particular, one should evaluate

the benefit of having these features for the prediction versus the cost of

calculating them. Implementing this can be as simple as calculating the

features and adding them to the header sent to the Oracle.

• Evaluate other criteria for switch retraining. Currently, a simple crite-

rion is in place, such as the number of received packets, but the possi-

bilities are endless for deciding when to retrain the switch. This is as

straightforward as implementing in the Python program the algorithm

that determines when to initiate retraining.

• Consider alternative confidence metrics for the RF labels. This is as

simple as incorporating this data during the training phase.

• It is straightforward to add levels or quantities of trees both in the switch

and the Oracle.

• Evaluate if a better approximation of some features can be achieved by

sending different data to the Oracle. This could be due to the fact that

the Oracle does not have limitations on operations or data types.

3.2 Experimenting with Netronome - Hard-

ware

As part of a joint research project, it was decided to explore the possibili-

ties of developing P4 code on hardware. Among the options considered, tak-
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ing into account constraints such as cost, accessibility, and active support,

the Netronome Agilio SmartNICs1 were identified. As previously mentioned,

SmartNICs can be programmed to meet user-specific needs. Specifically, the

datapath of the Netronome SmartNICs can be programmed using eBPF, C,

and P4.

The Agilio SmartNICs provide high-performance solutions for server-based

networking tasks, including network virtualization, security, load balancing,

quality of service, and telemetry. These SmartNICs utilize Netronome’s Net-

work Flow Processors (NFP-4000 and NFP-6000 series) to achieve their capa-

bilities.

In particular, the chosen SmartNIC is the Agilio CX 2x10GbE SmartNIC.

It has 2 10GbE interfaces, with NFP-4000 processors. A PC compatible with

the SmartNIC must meet the following requirements:

• A motherboard with a PCIe slot compatible with Gen3 x8.

• Support for Single Root I/O Virtualization (SR-IOV). SR-IOV is a hard-

ware reference that allows a single PCI Express (PCIe) endpoint to be

used as multiple independent devices.

• Support for Alternate Routing ID (ARI).

• Virtualization Technology for Directed I/O (VT-d).

As illustrated in the figure 3.18, the Network Flow Processor (NFP) con-

tains several internal blocks designed for networking datapath configuration

and programmability. The NFP processing elements are organized into “is-

lands” spread across the chip. The number of islands within an NFP varies

depending on the chip model (NFP-4000 or NFP-6000).

The Flow Processing Cores (FPCs) are the primary programmable com-

ponents of the NFP. Each island containing Flow Processing Cores (FPCs)

can be programmed using one or more of the following languages: P4, C,

or Microcode. These FPCs can handle packet classification and modification

operations that extend beyond basic 5-tuple classification.

NFP-based Agilio SmartNICs support the following programming models:

• Host API-based Programming Model: Utilizing Agilio Software-

supported APIs.

• User Datapath Programming Model: C-based programming with config-

uration APIs.
1https://netronome.com/agilio-smartnics/
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Figure 3.18: NFP programming architecture [73].

• User Datapath Programming Model: P4 and C-based programming with

configuration APIs.

• User Datapath Programming Model: Incorporating a C (or P4) sandbox

or plug-in application into the Agilio Software datapath.

P4 and C-based Programming with Configuration APIs programming

model is designed for users who want to program the datapath in a hardware-

agnostic manner, meaning they don’t need to understand the specifics of the

underlying NFP architecture. The packet-processing model introduced by the

P4 language is illustrated in Figure 3.19. Users can write the datapath for

a network device in P4 without needing any knowledge of the target hard-

ware. The P4 toolchain, developed by the device vendor, converts the P4 pro-

gram into device-specific firmware. Additionally, the P4 toolchain generates

a runtime API (similar to the OpenFlow model) that allows for modification

of match-action tables. To enable extensions to P4-based programmability,

Netronome provides the ability to extend P4 datapath features with C-based

custom applications. This is also referred to as application of C-based sandbox

or plugins to a P4-defined datapath [73].

3.2.1 Netronome Programming Framework

Netronome was the first vendor to adopt P4 as the primary language for pro-

gramming the SmartNIC data plane. While Netronome supports both P414

and P416 versions, much of the development framework is still centered around

P414. The P4 development process on Netronome boards follows an architec-

ture similar to the V1Model reference, enabling seamless translation of P4 code

116



Figure 3.19: Packet processing model using P4 [73].

into the SmartNIC architecture. In addition to P4 programming, Netronome

allows users to write low-level Micro-C code, which can be implemented as P4

externs or as standalone data plane applications.

The Netronome SmartNIC is supported by a Linux Run Time Environment

(RTE) service, which offers flexible interaction with the SmartNIC application

from the operating system level. This allows tasks such as populating Match-

Action tables or developing more advanced Control Plane applications.

Besides enabling the data plane firmware to be programmed from scratch,

Netronome also provides Linux drivers with native support for eBPF/XDP.

This feature allows for hardware programmability when offloading eBPF/XDP

instructions to the SmartNIC for execution [61].

3.2.1.1 Compiling, Building and Running a P4 program

The NFP includes a Software Development Kit (SDK) that features a compiler

and linker within an Integrated Development Environment (IDE) with a GUI

for Windows OS. Additionally, the SDK provides a CLI for the same tasks.

Once a P4 program is built, one can see the graphs that represent the parser,

ingress and egress at the IDE. Some examples of these are shown in Figures

3.20 (a) and (b), showing the egress and ingress graphs of a l3 basic forwarding

program.

After building, the IDE also provides an easy way for writing the tables

rules. As seen in Figure 3.21, to the top left are the tables. When selected the

rules are displayed at the bottom left (if there are any). When selected, we can

write the values for the fields for matching, in this case the field is the ingress

port, and the value given for it is port p0. Then below we can select the action
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(a) Parser graph of a basic l3 forwarding. (b) Ingress graph of a basic l3 forwarding.

Figure 3.20: Graphs from different stages of the pipeline created by the Netronome
IDE.

to be taken, in this case forward, and fill the corresponding parameters for

this action. In this case the only parameter is the port, and the value given is

the port v0.0. One can also see other statistics of interest, such as how many

packets matched each action, counters from the P4 program, system counters

(RX/TX), data from the last packet seen (metadata and headers) and others.

Figure 3.21: Viewing and editing tables in the Netronome IDE.

3.2.2 Testing basic programs

Basic tests were conducted on the hardware due to the adaptation curve re-

quired to effectively utilize the SmartNICs. The primary objective is to test

some fundamental programs, leaving the evaluation of more complex programs

as a task for future work.
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The setup for testing these basic programs, consisting of two SmartNICs

(with their own pc) connected, is shown in Figure 3.22. Each SmartNIC has

two physical ports (p0 and p1 in the figure). Once the firmware is installed on

the SmartNIC, the virtual interfaces can be viewed from the host operating

system. Note that the number of virtual interfaces can be configured. It is also

possible to use the SmartNIC in “non-programmable” mode, in which case the

physical interfaces will be visible.

Figure 3.22: Setup for testing basic programs with two SmartNICs connected by
physical port p0.

The programs tested included a basic wire program, a l3 basic forwarding,

a l2 basic forwarding (namely a hub, a router and a switch). When attempting

to develop more complex programs, it was discovered that the P4 architecture

used (the SmartNIC employs the same architecture as BMv2, specifically the

V1Model architecture) is restricted compared to its normal capabilities. For

example, it is not possible to modify values associated with the device’s queues,

among other limitations. In conjunction with this, and knowing that it was

possible to combine P4 code with C code (P4 Sandbox), it was decided to

investigate how this integration works. Clearly, writing code in C is more

complex than in P4, especially when it comes to accessing packet headers and

information. An example of a C program that is called from a P4 program

can be seen in the code below.

P4 program

control MyIngress(...) {
apply {

if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();

// C Sandbox

primitive_basic();

}
}

}
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Below is the code for the mentioned C program. When the function is called,

it retrieves the ipv4 headers, then it accesses the value of the diffserv field,

modifies it, and then returns to the normal execution of the P4 program. This

way, it is possible to cover some functionalities for which the architecture is

limited.

C program

// Required includes

uint8_t v_global = 4;

int pif_plugin_primitive_basic (EXTRACTED_HEADERS_T *headers, MATCH_DATA_T *match_data){
PIF_PLUGIN_ipv4_T *ipv4_header;

if (! pif_plugin_hdr_ipv4_present(headers)){
return PIF_PLUGIN_RETURN_DROP;

}

ipv4_header = pif_plugin_hdr_get_ipv4(headers);

if (v_global != ipv4_header->diffserv){
PIF_HEADER_SET_ipv4___diffserv(ipv4_header, v_global);

}
return PIF_PLUGIN_RETURN_FORWARD;

}

3.2.3 Testing a basic Decision Tree

It was also decided to test a small version of a decision tree in hardware, as

a proof of concept. Specifically, to maintain the general idea of HALIDS, a

small three-level tree was implemented, which retrieves data from the incoming

packet and classifies it. The tree embedded in the pipeline can be seen in

Figure 3.23, along with the corresponding tables and rules for each level. At

the first level, the protocol (hdr.ipv4.protocol) is evaluated, particularly if

it is less than 6. In the case under evaluation (TCP or UDP traffic), this

means that TCP packets will proceed to the upper part of the tree, while

UDP packets will proceed to the lower part. Then, if the protocol condition

evaluates negatively (UDP), the tree reaches a leaf where class 1 (malware)

is set. If the protocol condition evaluates positively, the TTL (hdr.ipv4.ttl) is

then evaluated, specifically if it is less than 250. If true, the traffic is classified

as normal; otherwise, it is classified as malware.

To test the correct functionality of the program, only one SmartNIC was

used, creating namespaces for each virtual interface. Traffic, both TCP and
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table MyIngress.level1

key(node_id, 
prevFt, isTrue)

action params 

1,0,1 CheckFt (nxt_n, nxt_ft_id, 
th): 3,1,250

1,0,0 SetClass (nxt_n, class): 2,1

table MyIngress.level2

key(node_id, 
prevFt, isTrue)

action params 
(nxt_n, class)

3,1,1 SetClass 5,0

3,1,0 SetClass 4,1

table MyIngress.level3

key(node_id, 
prevFt, isTrue)

action params (nxt_n, 
nxt_ft_id, th)

0, 0, 1 CheckFt 1,0,6

yes

no

no

yes

proto 
<= 6

node1

C = 1

node2

TTL 
<= 250

node3

C = 1

node4

C = 0

node5

Figure 3.23: Small decision tree implemented in the Netronome SmartNIC.

UDP, was then generated from interface v1 to v0 using the iperf tool1. After-

ward, a table was added where traffic classified as malware is forwarded out of

the switch through interface v3, and normal traffic through interface v2.

As a first test, UDP traffic was generated from interface v1. Figure 3.24

shows the outgoing UDP traffic from interface 1 and how it is forwarded

through interface 3, as it is classified as malware.

Figure 3.24: Traffic captures on interfaces v1, v2, and v3. Outgoing UDP traffic
from interface v1 is forwarded to interface v3 as it is classified as malware.

1https://iperf.fr
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Then, TCP traffic was generated from interface v1. All these packets have

a TTL of 64, meaning it is classified as normal traffic. Figure 3.25 shows the

outgoing TCP traffic from interface 1 and how it is forwarded through interface

2.

Figure 3.25: Traffic captures on interfaces v1, v2, and v3. Outgoing TCP traffic
from interface v1 is forwarded to interface v2 as it is classified as normal traffic,
because the TTL does not surpass the predefined threshold.

To test the negative evaluation of the TTL, the corresponding parameter in

the table rules was modified. Specifically, the condition was changed to TTL

≤ 30. In this case, the traffic should then be classified as malware. Figure

3.26 shows the outgoing TCP traffic from interface 1 and how it is forwarded

through interface 3, as it is classified as malware.

Lastly, it was decided to test changing the TTL evaluation parameter at

runtime. First, it is evaluated against 250, and then this value is changed to

30. As shown in Figure 3.27, outgoing TCP traffic from interface 1 is first

forwarded through interface 2 (as TTL ≤ 250 evaluates true), so the traffic is

classified as normal. Then, the condition is changed and traffic starts to be

forwarded through interface 3 (as TTL ≤ 30 evaluates true), so the traffic is

classified as malware.

3.2.4 Conclusions and Future Work

The goal of this proof of concept was to successfully execute P4 code, no

matter how basic, on hardware. Although P4 promises to be a simple and
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Figure 3.26: Traffic captures on interfaces v1, v2, and v3. Outgoing TCP traffic
from interface v1 is forwarded to interface v3 as it is classified as malware, because
the predefined threshold for compraing the TTL was lowered.

flexible language tailored to the user’s needs, the available targets (especially

hardware) are quite limited. Many network devices either do not offer pro-

grammability with P4 or only offer partial implementations. This creates a

significant gap between what P4 promises and what can actually be achieved

on real devices. Additionally, the most promising hardware devices tend to be

difficult to access, both in terms of availability and cost. This is why testing

on these SmartNICs was promising, as they are relatively affordable and also

allow the functionalities of P4 to be complemented with C code.

By performing the basic tests mentioned, it was at least possible to ensure

the basic programmability of these SmartNICs with P4. It was also possible

to test a small version of a decision tree in hardware, demonstrating how

these can be properly adapted to the programmable hardware pipeline. This

suggests that it would be feasible to increase the complexity of the features

used (to the level of HALIDS complexity), with the main limitation being the

architecture of the SmartNIC. Additionally, it was shown that it is indeed

possible to change the switch rules at runtime on a real device, observing how

these changes take effect on live traffic without needing to restart the device.

An interesting observation that emerged from this implementation is that the

most complex process is writing tables, which was automated in the full version

of HALIDS.
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Figure 3.27: Traffic captures on interfaces v1, v2, and v3. Outgoing TCP traffic
from interface v1 is first forwarded to interface v2. At runtime the threshold for the
TTL was lowered, so then the traffic begins being forwarded to interface v3.

Additionally, once the learning curve of installing the board and running

the programs was overcome, we are left with a highly useful IDE, facilitating

the easy installation of programs and rules on the board, as well as debugging

more complex programs. It was observed that the implemented architecture is

restricted, as is often the case with devices that implement programmability

with P4. However, it is promising to be able to complement these limitations

with C code.

As future work, more complex programs need to be implemented to ex-

plore the limitations within the architecture provided by the SmartNIC more

thoroughly. Additionally, it is necessary to investigate the possibility of us-

ing P4Runtime to potentially implement HALIDS in hardware in the future.

Lastly, further testing of the integration with C programs is needed, as the

scope of the tests conducted was very limited, focused solely on achieving in-

tegration between P4 and C code. It remains to be explored how powerful

packet inspection in C can be and to evaluate any performance degradation.
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Chapter 4

Final Remarks

Firstly, a thorough survey of network programmability was conducted, along

with the technologies and devices that enable it, providing a comprehensive

understanding of its potential and the tools necessary for effective implementa-

tion. In particular, the analysis of various data plane programming languages

led to the conclusion that the best path forward is to use P4. Not only is

it the most widely used language, with a strong community backing it, but

it is also one of the few, if not the only, that is actively maintained, easy to

deploy, and highly functional. Its versatility and widespread adoption make it

the preferred choice for the development of modern network applications.

Various applications of data plane programmability were also investigated,

including its use in network optimization, implementation of customized secu-

rity policies, enhancement of traffic performance, and enabling new function-

alities such as network segmentation and dynamic resource management. This

research highlights the potential of data plane programmability to transform

how modern networks are designed and managed.

It was also possible to analyze the different devices that enable network

programmability, such as programmable switches, SmartNICs, FPGAs, DPUs,

etc., identifying the differences between them, their benefits, and the various

applications for which they are most suitable. This analysis provides a clear

understanding of how each device can be leveraged to meet different needs and

scenarios within network infrastructure.

Various packet acceleration, processing, and filtering techniques such as

DPDK, XDP, and BPF were also analyzed, and how they complement network

programmability by providing additional capabilities to enhance performance,
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flexibility, and efficiency in data handling at the network level. Each of these

technologies offers specific advantages that can be used in conjunction with

network programmability to optimize packet processing and adapt networks

to particular needs.

Lastly, the applications of Machine Learning in networks were analyzed,

exploring how these techniques can enhance traffic management, anomaly de-

tection, performance optimization, and automated decision-making. It was

highlighted how can Machine Learning be integrated with network programma-

bility to develop smarter and more adaptive solutions that dynamically respond

to changing network conditions.

Then, two proof-of-concept demonstrations were presented to illustrate the

applicability of data plane programmability. Specifically, in the software pro-

totype, HALIDS was implemented: a prototype for adaptive, in-band AI/ML

IDS using P4, enhanced by off-band oracles that improve model classification

and retraining. Various tests were conducted to demonstrate its effectiveness,

and future work for this prototype was outlined. This proof of concept high-

lights the power of network programmability, showing how it can empower

network devices and decentralize computing. In this way, network devices

can contribute to network management, alleviating loads on other devices. A

closed-loop system was successfully implemented, adaptable to changes. Ad-

ditionally, network programmability was complemented by an emerging tech-

nique, Machine Learning, opening doors to new possibilities.

Next, a small proof of concept was also successfully implemented in hard-

ware with P4, aimed at bringing some of the proposed ideas into the real world.

This test included running basic programs and an additional test to evaluate

integration with C code. The full potential of these implementations remains

to be determined due to the limitations of the used architecture. A smaller

version of a decision tree was successfully tested in hardware, demonstrating

its adaptability to the programmable hardware pipeline. This indicates that

it is feasible to scale up the complexity of features (to HALIDS levels), with

the primary constraint being the SmartNIC architecture. Furthermore, it was

confirmed that switch rules can be modified at runtime on an actual device,

allowing for real-time changes to be observed in live traffic without requiring

a device restart. It will be necessary to assess whether it will eventually be

possible to run more complex applications as a whole, such as HALIDS, on

this hardware setup.
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Network programmability was driven by the growing need for adaptability

in today’s applications. It provides unprecedented flexibility in network man-

agement, allowing users—whether network operators, researchers, enterprises,

application developers, among others—to create customized solutions that

quickly adapt to ever-changing needs. In addition to enabling near-complete

customization, it achieves this without the need to involve manufacturers, re-

ducing time and costs, and often improving performance.

Combining Machine Learning techniques with data plane programmability

introduces new opportunities for network automation and real-time adapta-

tion. This synergy promises the development of more intelligent networks that

can learn and adjust to shifting conditions instantly, enhancing both their

resilience and operational efficiency. In conclusion, data plane programmabil-

ity not only revolutionizes network infrastructure but also establishes a new

benchmark for innovation and efficiency in network management, becoming a

vital element for the future of telecommunications and distributed computing.

However, it is necessary to provide an objective critique of both network

programmability and the P4 language in particular. Network programmability

faces significant limitations due to the lack of the devices that enable it. Pro-

gramming these devices without high-level programming languages involves

considerable difficulty and a steep learning curve. Therefore, it is ideal to

use programmable devices that support data plane programming languages.

However, these devices are limited in number and have restricted support.

In the specific case of P4, there is a notable gap between the promised ca-

pabilities and what can actually be achieved. Many devices do not implement

or only partially implement P4 architectures, and several that previously did

have ceased support and distribution. The most promising devices are often

very expensive and difficult to access, due to restrictive licenses, high associ-

ated costs, or limited availability in smaller markets. Given this clear lack of

maturity in real-world devices, using SmartNICs, FPGAs, and similar devices

for network programming is considered as an alternative, taking into account

the associated difficulties and limitations of these options.

Although network programmability and P4 offer a promising vision for the

future of networking, they also face a number of significant challenges. Col-

laboration between academia and industry is essential to realize the effective

implementation of these technologies. Academia can contribute through re-

search and the development of new techniques and approaches, while industry
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can provide the infrastructure, resources, and practical knowledge needed to

implement and scale these solutions. Together, they can address current lim-

itations, advance standardization, and facilitate the widespread adoption of

network programmability, thus achieving a significant evolution in how net-

works are designed and managed.
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ucación, 2017. isbn: 978-84-9035-528-2.

[57] James F. Kurose and Keith W. Ross. Computer Networking: A Top-

Down Approach. 7th ed. Boston, MA: Pearson, 2016. isbn: 978-0-13-

359414-0.

134

http://www.bitsavers.org/pdf/sun/sunos/4.1/800-3827-10A_SunOS_Reference_Manual_Vol1_199003.pdf
http://www.bitsavers.org/pdf/sun/sunos/4.1/800-3827-10A_SunOS_Reference_Manual_Vol1_199003.pdf
https://www.intel.es/content/www/es/es/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.es/content/www/es/es/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.es/content/www/es/es/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.usenix.org/conference/nsdi24/presentation/jafri
https://www.usenix.org/conference/nsdi24/presentation/jafri
https://api.semanticscholar.org/CorpusID:230656678
https://api.semanticscholar.org/CorpusID:230656678
https://doi.org/10.1109/ACCESS.2024.3437203
https://doi.org/10.1109/ACCESS.2024.3437203
https://doi.org/10.1109/COMST.2022.3213237
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874


[58] The Berkeley NetSys Lab. BESS Overview. https : / / github . com /

NetSys/bess/wiki/BESS-Overview. [Online; Accessed: July 2024].

[59] Sándor Laki et al. “P4Pi: P4 on Raspberry Pi for Networking Educa-

tion”. In: SIGCOMM Comput. Commun. Rev. 51.3 (July 2021), pp. 17–

21. issn: 0146-4833. doi: 10.1145/3477482.3477486. url: https:

//doi.org/10.1145/3477482.3477486.

[60] Jong-Hyouk Lee and Kamal Singh. “SwitchTree: In-network Computing

and Traffic Analyses with Random Forests”. In: Neural Computing and

Applications (Nov. 2020). doi: 10.1007/s00521-020-05440-2.

[61] M. Caggiani Luizelli et al. “SmartNICs: The Next Leap in Networking”.

In: SMARTNICS AT NETSOFT AND SBRC 2024. Brazil: IEE, 2024.

[62] Pilar Manzanares-Lopez, Juan Muñoz-Gea, and Josemaria Malgosa.
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[75] Tomasz Osiński. P4-OvS - Bringing the power of P4 to OvS! https:

//github.com/osinstom/P4-OvS. [Online; Accessed: July 2024].
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