FINITE ELEMENT APPROXIMATIONS OF THE
NONHOMOGENEOUS FRACTIONAL DIRICHLET
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ABSTRACT. We study finite element approximations of the nonhomoge-
neous Dirichlet problem for the fractional Laplacian. Our approach is
based on weak imposition of the Dirichlet condition and incorporating
a nonlocal analogous of the normal derivative as a Lagrange multiplier
in the formulation of the problem. In order to obtain convergence or-
ders for our scheme, regularity estimates are developed, both for the
solution and its nonlocal derivative. The method we propose requires
that, as meshes are refined, the discrete problems be solved in a family
of domains of growing diameter.

1. INTRODUCTION AND PRELIMINARIES

Anomalous diffusion refers to phenomena arising whenever the associated
underlying stochastic process is not given by Brownian motion. One striking
example of a nonlocal operator is the fractional Laplacian of order s (0 <
s < 1), which we will denote by (—A)*.

If the domain under consideration is the whole space R", then (—A)® is
a pseudodifferential operator with symbol |¢|?*. Indeed, for a function u in
the Schwartz class S, let

(1.1) (—A)Su=F (|¢*Fu),

where F denotes the Fourier transform. The fractional Laplacian can equiv-
alently be defined by means of the identity [19]

u(x) —u
(1.2) (=A)’u(x) = C(n,s) P.V. - |:£_)y|n+(2ys) dy,
where the normalization constant
2%s0(s + %)
7/27(1 — )
is taken in order to be consistent with definition .

(1.3) C(n,s) =
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In the theory of stochastic processes, this operator appears as the infini-
tesimal generator of a stable Lévy process [§]. Indeed, it is possible to obtain
a fractional heat equation as a limit of a random walk with long jumps [30].

There are two different approaches to the definition of the fractional
Laplacian on an open bounded set 2. On the one hand, to analyze pow-
ers of the Laplacian in a spectral sense: given a function u, to consider
its spectral decomposition in terms of the eigenfunctions of the Laplacian
with homogeneous Dirichlet boundary condition, and to take the operator
that acts by raising to the power s the corresponding eigenvalues. Namely,
if {1k, Ak bren C HE(Q) x Ry denotes the set of normalized eigenfunctions
and eigenvalues, then this operator is defined as

(~A)5ule) = S M) poe(@),  weQ.
k=1

On the other hand, there is the possibility to keep the motivation coming
from the stochastic process leading to the definition of (—A)® in R™. This
option leads to two different types of operators: one in which the stochastic
process is restricted to €2 and one in which particles are allowed to jump
anywhere in the space. The first of these two is the infinitesimal generator
of a censored stable Lévy process [10], we refer to it as regional fractional
Laplacian and it is given by

(1.4) (=A)du(z) = C(n,s,Q) P.V. /Q W dy, ©€Q.

The second of the two operators motivated by Lévy processes leads to
considering the integral formulation . Observe that, unlike the afore-
mentioned fractional Laplacians, the definition of this operator does not
depend on the domain ). In this work we deal with this operator, which
we denote by (—A)® and simply call it the fractional Laplacian. The pos-
sibility of having arbitrarily long jumps in the random walk explains why,
when considering a fractional Laplace equation on a bounded domain €2,
boundary conditions should be prescribed on Q¢ = R™ \ Q.

For an account of numerical methods for the fractional Laplacians men-
tioned above, we refer the reader to the recent survey [11]. Specific to the
numerical treatment of , we mention algorithms based on finite ele-
ments [I), 2 [4) 5 18], finite differences [26], Dunford-Taylor representation
formulas [12], Nystrom [3] and Monte Carlo [27] methods.

In this work we study finite element approximations to problem

(=A)u=f in Q,
(1.5) { u=g¢ in Q°,

where the functions f and g are data belonging to suitable spaces. Anal-
ysis of the homogeneous counterpart of ([1.5) was carried out in [2], where
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a numerical method was developed, theoretical error bounds were estab-
lished and numerical results in agreement with the theoretical predictions
were obtained. Solvability of a class of nonhomogeneous Dirichlet problems
for nonlocal operators —involving not necessarily symmetric or continuous
kernels— was studied in [22].

An important result for dealing with is the following integration by
parts formula for the fractional Laplacian [20]: for w,v smooth enough, it

holds
Cln) | (ole) ~uo) o)

:/Qv(x)(—A)su(x)dx—i—/cv(x)/\fsu(x) dx

where Ngu is the nonlocal normal derivative of u, given by

(1.6)

Nsu(z) = C(n,s)P.V. /QW dy, x € Q°,
and Q = (2 x R") U (R™ x Q).

The aim of this work is to build finite element approximations for both, the
solution u of as well as for its nonlocal derivative NVsu. In this regard,
we discuss briefly a standard direct approach in which the Dirichlet condition
g is strongly imposed. As it turns out, this simple and optimally convergent
method for the variable u, does not provide a computable approximation
of M;u. In order to overcome this limitation a mixed formulation of the
problem —in which AMsu plays the role of a Lagrange multiplier— is introduced
and numerically approximated. By means of this approach, which is the
main object of this paper, numerical approximations for both v and Nu
are delivered and optimal order of convergence is proved for them.

Throughout this paper, C' denotes a positive constant which may be dif-
ferent in various places.

1.1. Sobolev spaces. Given an open set  C R"™ and s € (0,1), the frac-
tional Sobolev space H*(2) is defined by

H*(Q) = {v e L*(Q): Jv|gs(0) < 0},

where | - |gs(q) is the Aronszajn-Slobodeckij seminorm

[o(@) —v@)* ,
MHS(Q) ‘xf ‘n+25 Y-

Naturally, H*(2) is a Hilbert space furnished with the norm || - H%S(Q) =
| - H%Q + - ]HS . We denote (-, -) s () the bilinear form

(u, v) s (2 //92 ))y(ﬂgz — V) dx dy, wu,ve H*(Q).
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Sobolev spaces of order greater than one are defined as follows. If s > 1
is not an integer, the decomposition s = m+ o, where m € N and o € (0, 1),
allows to define H*()) by setting

H*(Q) = {v e H™(Q): |D*|go(q) < oo for all @ s.t. o] =m}.
A space of interest in our analysis consists of the set
H*(Q) = {v e H*(R"): supp v C Q},
endowed with the norm
||/UH}~[S(Q) = ||77HH5(RR),

where v is the extension of v by zero outside 2. For simplicity of notation,
whenever we refer to a function in H 5(Q2), we assume that it is extended by
zero onto €.

Let s > 0. By using L?(f2) as a pivot space, we have that the duality
pairing between H*() and its dual H—5(Q) = (H*(Q))’ coincides with the
L2(€) inner product. Moreover, we denote the dual of H*(Q) by H*(€).

Remark 1.1 (Duality pairs). In order to keep the notation as clear as pos-
sible, along the following sections we write fQ pv for p € H and v € H.
However, if the duality needs to be stressed we use (u,v) instead.

We state some important theoretical results regarding the space H* Q)
(see e.g., [2, Proposition 2.4]).

Proposition 1.2 (Poincaré inequality). Given a domain Q2 and s > 0, there
exists a constant C' such that, for all v € H*(Q)),

(1.7) vl 22y < Clo|gs@n)-

Remark 1.3. Analogously to integer order Sobolev spaces, an immediate
consequence of the Poincaré inequality is that the H*-seminorm is equivalent
to the full H*-norm over H*()). Observe that, given v € H*(2), its H*-
seminorm is given by

1
[0 s @y = [0l () + 2/9 jo(x)? /Q mdyd%

Definition 1.4. Given a (not necessarily bounded) set € with Lipschitz
continuous boundary and s € (0,1), we denote by wg, : & — (0,00) the
function given by

1
1.8 & = —dy.
(18) wb(o) = [
Denoting §(z) = d(z, 092), the following bounds hold
0< - <u@) <2 vpeq,

o(x)?s — ~ 2s6(x)%s
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where o,,_1 is the measure of the n—1 dimensional sphere and C' > 0 depends
on 2. For the lower bound above we refer to [24], formula (1.3.2.12)], whereas
the upper bound is easily deduced by integration in polar coordinates.

Proposition 1.5 (Hardy inequalities, see [21, 24]). Let Q be a bounded
Lipschitz domain, then there ezists ¢ = ¢(2,n,s) > 0 such that

s

@I, < cl[v]|2ei Vv € H(Q) if0<s<1/2
 0(z)? N He (@) ’

/ G co)2eien Vv € HYQ) if1/2 < s < 1.
q 0(z)2s = "ITIH>(Q)
Corollary 1.6. If0 < s < 1/2, then there exists a constant ¢ = ¢(Q,n, s) >
0 such that

[0 ey < cllvllmsi@) Vo € H(Q).
On the other hand, if 1/2 < s < 1 there exists a constant ¢ = ¢(2,n,s) > 0
such that

”Q}HHs(Rn) < C”U’Hs(g) Yv € HS<Q)

Remark 1.7. When s = 1/2, since Hardy’s inequality fails, it is not possible
to bound the H'/?(R")-seminorm in terms of the H'/2(Q)-norm for functions
supported in Q. However, for the purposes we pursue in this work, it suffices
to notice that the estimate

||v||H1/2(]Rn) < C‘U|H1/2+E(Q)
holds for all v € HY/2t(Q), where & > 0 is fixed.

An important tool for our work is the extension operator given by the
following (see [19, Theorem 5.4] and [33]).

Lemma 1.8. Given 0 > 0 and 2 a (not necessarily bounded) Lipschitz
domain, there exists a continuous extension operator £ : H?(2) — H?(R™).
Namely, there is a constant C(n,o,Q) such that, for all u € H? (),

| Eull grorny < Cllul| o ()

Remark 1.9. During the next sections we need Lemma [1.8| for Q¢, although
we prefer to state it in the more natural fashion, that is, in terms of €2 itself.

1.2. Fractional Laplacian and regularity of the Dirichlet homoge-
nous problem. The operator (—A)® may be defined either by or
. The latter is useful to cope with problems involving the operator in
a variational framework, and therefore to perform finite element analysis
of such problems. On the other hand, definition allows to study the
operator from the viewpoint of pseudodifferential calculus. The equivalence
between these two definitions can be found, for example, in [19]. Using the
definition , it is easy to prove the following.
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Proposition 1.10. For any s € R, the operator (—A)® is of order 2s, that
is, (—=A)% : HY(R™) — H25(R") is continuous for any £ € R.

From the previous proposition, it might be expected that, given a bounded
smooth domain Q, if u € H*(Q) satisfies (—A)*u = f for some f € H!(),
then u € H H25(9). However, this is not the case. Regularity of solutions
of problems involving the fractional Laplacian over bounded domains is a
delicate issue. Indeed, consider for instance the homogeneous problem

Ay = i
(1.10) feonzl o

In [25], regularity results for are stated in terms of Hormander p—spaces.
These mix the features of supported and restricted Sobolev spaces by means
of combining certain pseudodifferential operators with zero-extensions and
restriction operators. We refer to that work for a definition and further de-
tails. In terms of standard Sobolev spaces, the results therein may be stated
as follows (see also [31]).

Proposition 1.11. Let f € H"(Q) for r > —s and u € H*(Q2) be the solu-
tion of the Dirichlet problem . Then, the following regularity estimate
holds

| grsta@ny < C(n, )| fllar@)-
Here, a = s+r ifs+r < % and o = %—5 if s+r > %, with € > 0 arbitrarily
small.

Remark 1.12. We emphasize that assuming further Sobolev regularity for
the right hand side function f does not imply that the solution u will be
any smoother than what is given by the previous proposition.

2. STATEMENT OF THE PROBLEM

Throughout the remaining sections of this work we are going to denote
by V the space V. = H*(R"), furnished with its usual norm. The domain
Q is assumed to be bounded and smooth and therefore (due to the latter
condition) it is an extension domain for functions in H*(2) (and of course
for functions in H*(2¢)). This fact is used in some parts of the presentation
without further comments.

Multiplying the first equation in ((1.5)) by a suitable test function v and
applying ((1.6)), we obtain

| 0(722,8) //Q (U(x)_u(y))(v(x)—v(y))dwdy_/‘y(a;)./\fsu(a:) dx

(2 ) |$ _y|n+25

Q(‘
= [ f(z)v(z)dx.
Q

In order to write a weak formulation for our problem we assume f € H5(€2),
g € H*(Q°) and introduce the bilinear and linear forms a: V x V. — R,
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F: VSR,
o)~ S22 f] 0le) o) ol

|z — y[r 2

Fw = [ f@)u(a)da.
Q
which are needed in the sequel.

Remark 2.1. The form a satisfies the identity
C(n,s)
2
This, in turn, implies the continuity of @ in V', that is

a(u,v) =

((u, ) sy — (u, V) gra(ey) Yu,v € V.

|a(u, )| < C(n, 8)[ul g @) |0 s @n),
and the fact that over the set H*(), a(v,v) coincides with %’14%{5([@71)'

2.1. Direct formulation. Our first approach is based on the strong im-
position of the Dirichlet condition. From ([2.1)) we obtain at once the weak
formulation: find u € Vj, such that

(2.2) a(u,v) = F(v) Yve ﬁS(Q),
where V; = {w € V: w =g in Q°}.

The treatment for this formulation is standard. Since ¢ is an extension
domain we may find g¥ € Vg, ¢¥ := E(g), such that [|g”]ly < Cllgllsqe),

with C depending on Q. Using that a(u,v) is continuous and coercive in

H*(Q) (see Remark , existence and uniqueness of a solution ug € H*(Q2)
of the problem

a(ug,v) = F(v) —a(¢®,v) Yo e H(Q),

is guaranteed, thanks to the continuity of the right hand side. Considering
u = ug + g¥ we deduce the following.

Proposition 2.2. Problem (2.2) admits a unique solution u € Vg, and there
exists C > 0 such that the bound

lllv < € (11170 + lgll =)
is satisfied.

2.2. Mixed formulation. The idea behind this formulation dates back to
Babuska’s seminal paper [7]. We define the set A = (H*(Q°))' = H%(Q°),
furnished with its usual norm, and introduce the bilinear and linear forms

b: VXA—-RG:A—-R,

Mmmz/ymmmm,



8 G. ACOSTA, J.P. BORTHAGARAY AND N. HEUER

and
GO = [ gl) M@)o
which are obviously continuous.
The mixed formulation of (1.5)) reads: find (u,\) € V' x A such that

a(u,v) —b(v,\) = F(v) Yv eV,

blu,p) = G(p) V€A
Remark 2.3. As can be seen from the above considerations, the Lagrange
multiplier A, which is associated to the restriction u = ¢ in 2¢, coincides with

the nonlocal derivative N u in that set. In order to simplify the notation,
in the following we will refer to it as A.

(2.3)

Notice that the kernel of the bilinear form b agrees with H* (Q), that is,

(2.4) K={veV:blv,u)=0VueA}=HQ).
Recalling Remarks [1.3] and it follows that
(2.5) o3 < C|v|%IS(Rn) = Ca(v,v) YveK.

We are now in a position to prove the inf-sup condition for the form b.

Lemma 2.4. For all p € A, it holds that

b(u, p)
ueV HUHV
where C' > 0 is the constant from Lemma[1.8

1
(2.6) > Sllulla;

Proof. Let u € A. Recalling that A = (H*(92¢)) and taking into account
the extension operator given by Lemma [I.8 we have

bv.p)  _ b(Ev, 1) _ b b(u, p)

sup 2t < .
vers(Qe) |[Ev[lv wev |Jullv

lpalla = sup
,UEHS(QC) H’UHHS(QC)

O

Due to the ellipticity of a on the kernel of b (2.5)) and the inf-sup condition
(2.6)), we deduce the well-posedness of the continuous problem by means of
the Babuska-Brezzi theory [9].

Proposition 2.5. Problem (2.3) admits a unique solution (u,\) € V x A,
and there exists C' > 0 such that the bound

lully + 128 < € (1w + o=
is satisfied.

Remark 2.6. Considering test functions v € K, the first equation of ([2.3)
implies that u solves ([2.2]), while the second equation of (2.3 enforces the
condition u € V.
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3. REGULARITY OF SOLUTIONS

Since the maximum gain of regularity for solutions of the homogeneous
problem is “almost” half a derivative, from this point on we assume f €
H'/?75(Q)). Moreover, we require the Dirichlet condition g to belong to
Hs+1/2 (Qc)

As described in §2.1, we consider an extension g € H*t!/2(R™) and
consider the homogeneous problem with right hand side function equal
to f — (~A)°g":

{ (—=A)%uo

Ug

f - (_A)SgE in Qa
0 in Q°.

Due to Proposition m it follows that (—A)*g® € HY/?=5(R"), with
1(=2)°" | r1/2-s gny < Cllg" |12y < Cllgll grerirz ey,
so that the right hand side function f — (—=A)*g” belongs to HY/?~5(Q).
Applying Proposition [1.11] (see also [25] 31]), we obtain that the solution
ug € HH1/2-¢(Q) for € > 0, with
[[wol| grs+1/2-<(gny < C(€) <HfHH1/2—S(Q) + H(_A)SQEHHUQ—S(Q)) :
Moreover, as the solution of (1.5)) is given by u = ug + g¥, we deduce that
u € H*t1/275(R"), and
BY gy < OE) (IFlmme) + Il
We have proved the regularity of solutions of ((1.5)).

Theorem 3.1. Let f € HY/?>75(Q) and let g € H*T/2(Q°). Letu € H*(R™)
be the solution of (L.5). Then, for all e > 0, u € H*t/2=(R™) and there
exists C= C(e) > 0 such that

HuHHsH/%s(Rn) <C (HfHHl/%s(Q) + HgHHS+1/2(QC)> :

Regularity of the nonlocal normal derivative of the solution is deduced
under an additional compatibility hypothesis on the Dirichlet condition.
Namely, we assume that (—A)&.g € H/?75(Q°), where (—A)g,. denotes the
regional fractional Laplacian operator in Q°.

Theorem 3.2. Assume the hypotheses of Theorem[3.1}, and in addition let g
be such that (—A)g.g € HY/275(Q°). Then, for alle > 0, u € H1/27¢(R"),
and its nonlocal normal derivative \ € H~51/27¢(Q°).  Moreover, there
exists C= C(e) > 0 such that

lull rst1r2-<@ny + Al g=st1/2-2 ey £ CEfg,
where

(3:2)  Xpg = llmre-so) + 19l msrr20e) + (= 2)0egl /25 (e
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Proof. We only need to prove that A € H=5t1/2-¢(Q¢). Let v € H¥~1/2t¢(Qc).
Since A = (—A)°u — (—A){eg in Q°, we write

/ AV
Qc

Using Proposition [1.10, we deduce

/)\v

and taking supremum in v we conclude that A\ € H—51/27¢(Q°), with

< (=AY ullg-ers/z-c(ey + (= AWoetlr-or12-<0 ) 10l rems e ey

< C (Jullgesssoeqny + (= 2)aegllg-e1/2-200) ) 10ll o121

HAHHferl/Zfs(Qc) S Czﬂg,
where we have used (3.1]) in the last inequality and the notation (3.2). O

Remark 3.3. In view of Proposition [1.10] it might seem true that for ev-
ery £ € R and g € H(Q°) it holds that (—A)§.g € H~25(Q°), which in
turn would imply that the hypothesis (~A)&.g € H'Y/?75(Q°) is superflu-
ous. However, we have not been able neither to prove nor to disprove this
claim. As an illustration on what type of additional hypotheses are utilized
to ensure this type of behavior of the restricted fractional Laplacian, we
refer the reader to [32, Lemma 5.6].

Naturally, the homogeneous case g = 0 satisfies the assumptions of The-
orem

Corollary 3.4. Let Q be a smooth domain and f € HY?=5(Q). Let u €
H?3(Q) be the solution of (L.10)) and \ be its nonlocal normal derivative.
Then, for all € > 0, it holds that A\ € H=*1/2=¢(Q°) and

HAHHferl/275(Qc) S C(n, S, Q, E)HfHHl/Qfs(Q).

Remark 3.5. We illustrate the sharpness of the regularity estimate for the
nonlocal derivative from Theorem (or from Corollary with the fol-
lowing simple example. Let Q = (—1,1) and consider the problem

(=A)u=1 1in (—1,1),
u=0 inR\(-1,1),
whose solution is given by u(z) = ¢(s)(1 — 2?)%. for some constant c(s) > 0
(see, for example, [23]). We focus on the behavior of Nsu near the boundary

of ; for instance, let x € (1,2). Basic manipulations allow to derive the
bound
C(s)

(x— 1)
Next, given o € (0,1), observe that (z — 1) € H(1,2) if and only if
{ < o+ 1/2. Thus, by duality, we conclude that Nyu ¢ H'/275(1,2).

The reduced regularity of the nonlocal normal derivative near the bound-
ary does not happen as an exception but is what should be expected in

Nsu(e)| >
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general. Indeed, following [3], let f : (—=1,1) — R be a function such that
its coeflicients f; (in the expansion with respect to the basis of the so-called

Gegenbauer polynomials {C’](-SH/ 2)}) satisfy either

fiJ! s+1/2 fiJ! (s+1/2)
: 1 .
Zr2s+g+1) #Oorzrzs+g+)cﬂ () #0

Then, the solution to is given by u(z) = (1 — 2?)%.¢(z), where ¢ is
a smooth function that does not vanish as |x| — 1 (cf. [3, Theorem 3.14]).
Therefore, the same argument as above applies: the nonlocal derivative of
the solution of the homogeneous Dirichlet problem belongs to H~5t1/2=¢(R\
(—=1,1)), and the € > 0 cannot be removed.

We remark that in the limit s — 1, the nonlocal normal derivatives con-
centrate mass towards the boundary of the domain, so that [20]

du n
ll_)H% QCNuv - e Yu,v € C2(R™).

This estimate also illustrates the singular behavior of N u near the boundary
of Q.

4. FINITE ELEMENT APPROXIMATIONS

In this section we begin the study of finite element approximations to
problem . Here we assume the Dirichlet datum g to have bounded sup-
port. This assumption allows to simplify the error analysis of the numerical
method we propose in this work, but it is not necessary. In the next section,
estimates for data not satisfying such hypothesis are deduced.

4.1. Finite element spaces. Given H > 1 big enough, we denote by Qp
a domain containing 2 and such that

4.1 cH < min d(z,y) < ma; d(z,y) < CH

(4.1) = 2€a0), yedy (@) < mean,yé(aQH (y) < ’

where ¢, C' are constants independent of H. We set conforming simplicial
meshes on Q and Qg \ ©Q, in such a way that the resulting partition of
Qg remains admissible. Moreover, to simplify our analysis, we assume the
family of meshes to be globally quasi-uniform.

Remark 4.1. The parameter H depends on the mesh size A in such a way
that as h goes to 0, H tends to infinity. The purpose of Qg is twofold: in
first place, to provide a domain in which to implement the finite element
approximations. In second place, the behavior of solutions may be controlled
in the complement of Q. Assuming g to have bounded support implies that,
for h small enough, the domain € contains the support of the Dirichlet
datum g. Moreover, since there is no reason to expect A to be compactly
supported, taking H depending adequately on h ensures that the decay of
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the nonlocal derivative in Q¢ is of the same order as the approximation
error of u and A within Q.

We consider nodal basis functions

Pl PNints PNine+1s - -y PNing+Newt )

where the first N;;,; nodes belong to the interior of ) and the last Nyt to
Qp \ Q. The discrete spaces we consider consist of continuous, piecewise
linear functions:

Vi = span {@1, ..., N+ Newr 1
K, =span {¢1,...,¢nN,,,},
Ap = span {QN, 41, - -+ PNins+Newr }-
The spaces Vj, and Aj are endowed with the || - ||y and || - ||s norms,

respectively. We set the discrete functions to vanish on 9y, so that
Vi, C H3/27€(QH).

4.2. The mixed formulation with a Lagrangian multiplier. The dis-
crete problem reads: find (up, A\p) € Vi X Ay such that
aup, vp) — b(vp, Ap) = F(vp) Yop € Vi,
b(un, pin) = G(un) Yn € Ap.
Notice that the space K} coincides with the kernel of the restriction of b

to Ay, and consists of piecewise linear functions over the triangulation of {2
that vanish on 02

To verify the well-posedness of the discrete problem (4.2]), we need to
show that the bilinear form a is coercive on K} and that the discrete inf-sup
condition for the bilinear form b holds.

(4.2)

Lemma 4.2. There exists a constant C > 0, independent of h and H, such
that for all vy, € Ky,

(4.3) a(vp,vn) = Cllonlff-

Proof. Observe that K} is a subspace of the continuous kernel K given by
(2.4). The lemma follows by the coercivity of a on K. O

In order to prove the discrete inf-sup condition, we utilize a projection
over the discrete space. Since V}, C ﬁS/Q*E(QH) for all € > 0, it is possible
to define the L2-projection of functions in the dual space of H3/27¢(Qp).
Namely, we consider P, : H 7(Qy) — V, for 0 < o < 1, the operator
characterized by

/ (w — Phw) vpb =0 VYo, € V},.
Qn

The following property will be useful in the sequel.
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Lemma 4.3. Let 0 < 0 < 1, and assume the family of meshes to be quasi-
uniform. Then, there exists a constant C, independent of h and H, such
that

| Prwl| 7o) < Cllwll e @)
for all w € H? ().
Proof. The proof follows by interpolation. On the one hand, the L?-stability
estimate
[Prwll 2@,y < llwllrzq)
is obvious. On the other hand, the H' bound
| Prwll 10y < Cllwll gy

is a consequence of a global inverse inequality (see, for example [6]). Since
Py, commutes with dilations, it is easy to see, by a scaling argument, that C
can be taken independent of H. [l

Remark 4.4. The global quasi-uniformity hypothesis could actually be weak-
ened and substituted by the ones from [I3], 14, [I7]. In these works, meshes
are required to be just locally quasi-uniform, but some extra control on the
change in measures of neighboring elements is needed as well.

By duality, it is possible to obtain stability estimates in negative-order
norms:

Lemma 4.5. Let 0 < o < 1, and assume the family of meshes to be quasi-
uniform. Then, there is a constant C, independent of h and H, such that

1Paolroienyy < Clollr oy
for allw e H™"(Qy).

Proof. Consider v € H?(Qy). Since P, is self-adjoint, it holds that

/ Pyww :/ w Ppv < H'LUHI“{’_O.(QH)||PhU||Ho’(QH).
Qy Qy
The proof follows by the H?-stability of Pj,. ([

Remark 4.6. For simplicity, the previous lemma was stated for functions
defined in Qy7, but clearly it is also valid over Qg \ €2

(4.4) 1Phwll -0 @) < Cllwllg-o@,ng) Yo € H(Qm\ Q).

Proposition 4.7. Let s # % Then, there exists a constant C, independent
of h and H, such that the following discrete inf-sup condition holds:

b(vn, pin
(4.5) sup blon, tn) > Cllpnlln Yun € Ap,.
vRLEVR ||’Uh||V
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Proof. In first place, let E' be the extension operator given by Lemma [1.8
(replacing Q with Q¢ there) and P}, the L?-projection considered in this
section. For simplicity of notation, we write, for v € H*(Q°), P,(Ev) =

Py, ((EU)’QH> . Taking into account the fact that P,(Ev) € H*(Qp) and
the continuity of these operators, it is clear that

[1Ph(EV)[lv = [[Ph(EV)l| sy < Cllvllas ey Vo € H (),

which in turn allows us to use P,(Ev) as a Fortin operator.
Indeed, let pp € Ay, v € H*(Q€) and write

b(vn, pn) S b(Py(Ev), pin) e b(v, pn)
weve vnllv = [Pa(BEV)lv -~  [vllgsoe)

Using the fact that v is arbitrary together with (2.6), we deduce (4.5). O

Remark 4.8. The previous proposition is the basis for the stability of the
mixed numerical method we propose in this paper. The proof works only for
s # % and thus from this point on we asume that to be the case. However,
we relmark that the experimental orders of convergence we have obtained for

s = 5 agree with those expected by the theory by taking the limit s — %,

supporting the fact that this drawback is a mere limitation of our proof.

Due to the standard theory of finite element approximations of saddle
point problems [9], we deduce the following estimate.

Proposition 4.9. Let (u,\) € V- x A and (up, Ap) € Vi X Ay, be the respec-
tive solutions of problems (2.3)) and (4.2). Then there exists a constant C,
independent of h and H, such that

(4.6) Hu — uth + H/\ — )\hHA <C ( inf Hu — Uth + inf H)\ — NhHA) .
v €V HREAR

In order to obtain convergence order estimates for the finite element ap-
proximations under consideration, it remains to estimate the infima on the
right hand side of . Within gz, this is achieved by means of a quasi-
interpolation operator [16, [29]. We denote such an operator by I1;; depend-
ing on whether discrete functions are required to have zero trace or not,
II could be either the Clément or the Scott-Zhang operator. For these
operators, it holds that (see, for example, [15])

4.7 - HhUHHt(Q) < Cha_t||v||HU(Q) Yoe H°(Q), 0<t<o<2.

Since this estimate is applied later to Qg \ € it is important to stress that
the constant can be taken independent of the diameter of €2. This is indeed
the case due to the fact that is obtained by summing local estimates
on stars (see e.g., [2 [15]).
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Lemma 4.10. Given v € L*(Qx \ Q) and 0 < o < 1, the following estimate
holds:

(4.8) [0 = Provll -0 0 < ChNI0IE20000)-
The constant C' is independent of h and H.

Proof. Let v € L*(Qy \ Q). Given ¢ € H(Qp \ Q), considering the quasi-
interpolation operator IIj, and taking into account that (v — Ppv) L V},

Joma @ = P)e fo,\a(v = Phv)(e — Thp)
lellge@me) el 7o @\0)

e — Hrell 2 \0)
||<PHHU(QH\Q) '

< |lv = Pyl 20

Combining well-known approximation properties of Il with the trivial es-
timate [[v — Pyl r2,\0) < Ivll22(4\0), we conclude the proof. O

For the following we need to define restrictions in negative order spaces.
Let o € (0,1) and choose a fixed cutoff function n € C*°(Q2€) such that

(4.9) 0<n<1, supp(n) CQyg\Q, nx)=1 in Qy 1\

Define the operator T}, : H?(Qg \ Q) — H? () that multiplies by n any
extension to Q¢ of functions in H?(Qp \ ), that is, T, (¢) := . We have
1T (D) | ooy < CllWll o u\0), With a constant that does not depend on
H (use interpolation from the obvious cases 0 = 0 and o = 1).

Then, T}, can be extended to negative-order spaces, T}, : H Q) —

H=7(Qp \ Q). Consider an element y € H~?(€), and define T, by means
of

The continuity ||T77(iu)||ﬁ—0(QH\Q) < C’||u||ﬁ_o(gc), follows easily from the

continuity in positive spaces. Notice that similar considerations hold for
Ti—y: H7(Q°) — H™7(2%_1). A localization estimate for negative-order
norms using these maps reads as follows.

Lemma 4.11. The following identity holds for all u € I:T*U(QC):

H/J’Hﬁ*o’(QC) < HTn(N)Hﬁw(QH\Q) + HTl—U(M)HH*O(Q%il)'
Proof. We first notice that, for every ¢ € H?(Q°), it holds that
V=T (Ylo,ne) + Tion (o, )

1Ty (@lg,) oo < 18]o,allie@ne),
17 (¥l ) laroe < I

and that

0%, HH"(Q%_I)-
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So, given p € H=7(Q°), it follows that

<u, ’lp) < <TT](/*L)71MQH\Q> n <T1_"7(H)7’¢
[l @) ~ W] ollae@mey ¥

Q%_1>

(4.10)

Q5 ”H‘T(Q%71)
for all v € H?(Q¢). The proof follows by taking suprema in both sides of
the inequality above. O

Remark 4.12. From (4.10)), it is apparent that, if u € fI*”(QC) and v €
H=7(Qg \ ), then

[ — V”ﬁw(gc) < HTn(N) - VH]TI*G(QH\Q) + ||T1—77(M)||fjfo(9;[71)‘

In order to simplify notation, in the sequel we just write nu and (1 —n)u
for T, (p) and Th—,(p), respectively.

Next, we estimate the approximation errors within the meshed domain.
Proposition 4.13. The following estimates hold:
4.11 inf |ju— , < Ch'/?ex,
(4.11) o Jlu—vnll ) < f.9

. - _ 1/2—¢
(4.12) #;gghum il s o) S ChT Xy,

where X¢ 4 is given by (3.2)) and n is the cutoff function in (4.9).

Proof. Estimate (4.11)) is easily attained by taking into account that u van-
ishes on €2, (because we are assuming that the support of g is bounded), and
applying the regularity estimate (3.1)) jointly with approximation identities
for quasi-interpolation operators.

In order to prove (4.12)), in first place we assume s < 1/2, so that
n\ € L2(Qy \ Q) by Theorem Set pup = Pp(nA), then applying (4.8]), ap-
proximation properties of P, and the continuity of 75, : H —sH1/2=e(Qp\Q) —
H—+1/2¢(Q°), we obtain ([#.12) immediately.

Meanwhile, if s > 1/2, considering o = s in (4.4) and (4.8)), we obtain:

lw = Pl v ey < Clwl -2

lw = Phwll - @,n0) < CP7lIwl L2 0)-

Interpolating these two identities, recalling the regularity of A given by The-
orem and the continuity of T, we deduce that

17X = Pa(iM)| -y < CP* Il g-st1/2-c ey < CRYP 8.
([

As the norms in both V and A involve integration on unbounded domains
and the discrete functions vanish outside g, in order to estimate the infima
in , we need to rely on identities that do not depend on the discrete
approximation but on the behavior of u and A. For the term corresponding to
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the norm of u, Corollary |1.6] suffices (as long as supp(g) C Qg ), whereas for
the nonlocal derivative contribution it is necessary to formulate an explicit
decay estimate.

Proposition 4.14. Let Qg be such that supp(g) C Q. Then, there exists
a constant C, independent of f, g and H, such that the estimate

(1 - U)/\’\ﬁfs(g%il) < I Mlzz@s, )
< CH 2 (£ gmsajagay + lgllges1/2(e) )

holds, where n is the cutoff function from (4.9).

Proof. 1t is evident that
1= DM o < 1@ =DMz, ) < [Nz, )
Given z € Q% _,, it holds that

o)1 < € | [ ety oo [ ).

and therefore

2
2 \U(y)\
B y<C| [ ([ ) ao

(4.13) o )
fy 07 () ]

We estimate the two integrals in the right hand side above separately. As
for the first one, consider the auxiliary function w : Q — R,

1/2
=]
w - ;
Qe | ‘iE _ y’2(n+2s)

integrating in polar coordinates and noticing that (H—1)~("/2+2s) < ¢ H—("/2+2s)
we deduce

wiy)l < CH-M22) 1wy e
and so, [[w||2(q) < CH~("/2+25)  Ag a consequence, applying Minkowski’s
integral inequality, the Cauchy-Schwarz inequality and the previous estimate
for [|wl|z2(q), We obtain

by </Q%dyydx<C<Alu<y>|\w<y>|dy)2

H-1
< CH72(n/2+23) HUH%?(Q)

Finally, the L?-norm of u is controlled in terms of the data (see, for example,

(3-1))-
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As for the second term in the right hand side in (4.13]), it suffices to notice
that for z € Qf;_,, it holds

1
— — _dy< CH_(n+28).
/Q |z —y|t2e

This implies that

1 ? — n S
/Qc lg(@)I? (/Q|:Ey|n+25dy> de < CH*" | g|Ta0e ),
H-1

and concludes the proof. O

Remark 4.15. As the finite element approximation uy to u in Qg has an
H#-error of order hY/27¢, we need the previous estimate for the nonlocal
derivative to be at least of the same order. Thus, we require H~(%/2+25) <
ChY/2, that is, H > Ch~1/(nt4s),

Collecting the estimates we have developed so far, we are ready to prove
the following.

Theorem 4.16. Let Q be a bounded, smooth domain, f € HY/?>=%(Q) and
g€ H5+1/2(QC). Moreover, assume that g has bounded support and consider
Qpr according to , with H 2 h=Y/ (" +48) - Eor the finite element approz-
imations considered in this work and h small enough, the following a priori
estimates hold:

(4.14) u — uplly < ChY*72%,,
(4.15) A= Anlla < ChY272% .

for a constant C depending on e but independent of h, H, f and g, and Xy 4
defined by (3.2).

Proof. In order to obtain the above two inequalities, it is enough to estimate
the infima in (4.6). Since g is boundedly supported and H — oo as h — 0, if

h is small enough then supp(g) C Qg. So, u— vy € fNIS(QH) for all v, € V},
and thus we may apply Corollary (or Remark if s = 1/2) together

with (4.11)):

inf llu— <C inf fu— vyl geay) < ChY*E%;,.
U;Ié‘/h”u opllv < U;rethHu Oh |l s () < 1.9

The infimum involving the nonlocal derivative is estimated as follows.
Consider the cutoff function 7 from (4.9). Since py, vanishes in Q%;, using

Remark [£.12] we have
nf A= mnlla < i AInA = pnll s g 0) + 10 = DA Focgag, -

The first term on the right hand side is bounded by means of estimate (4.12)),
whereas for the second one we apply Proposition and notice that the
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choice of H implies that H—("/2+2s) < ChY/2 Tt follows that

inf [|A— palla < CRY27EN,,
nrEAR
and the proof is completed. O

4.3. The Direct Method. As it is already mentioned in the introduction,
in this work we mainly focus on the mixed formulation. Nonetheless, here we
provide some details regarding the direct discrete formulation. We consider
the discrete problem: find w; € V} 4, such that

(4.16) a(uh,vh) = F(Uh) Yop € Ky,

where V}, 4, is the subset of V}, of functions that agree with gy in Qg \ .
The function gy is chosen as an approximation of g; for instance, we may

consider gn, = II;(g). As a consequence, it holds that |lg — gnllfs(e) <

Chl/z_eHgHHer1/2(Qc). Let u and u™ be the solutions of the continuous

problem with right hand side f and Dirichlet conditions g and gy, respec-
tively. Using Proposition we deduce that

lu = ™ ly < CRY25 gl gesrsaaey-

Therefore, in order to bound |u — up||y it is enough to bound |ul® —
up|lv. However, if supp(g) C Qp, then u®) —u), € K = H*(Q) and due to
the continuity and coercivity of a in K we deduce the best approximation
property,
[u™ —uplly < C inf [Ju™ — o)y
vp€Vyy,

Taking v, = II;(u) and using the triangle inequality we are led to bound
|u™ — u|ly and |lu — I (u)|ly. A further use of interpolation estimates
allows to conclude

Theorem 4.17. Let Q be a bounded, smooth domain, f € H‘S+1/2(Q),
g € H*T2(Q°) for some e > 0, and assume that supp(g) C Q. For the
finite element approximations considered in this subsection, it holds that

e = unlly < CRY27= (1l gg-ragy + gl

for a constant C' depending on e but independent of h, H, f and g.

5. VOLUME CONSTRAINT TRUNCATION ERROR

The finite element approximations performed in the previous section re-
fer to a problem in which the Dirichlet condition g has bounded support.
Here, we develop error estimates without this restriction on the volume con-
straints. However, as it is not possible to mesh the whole support of g, we
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are going to take into account the Dirichlet condition in the set Qp consid-
ered in the previous section. We compare u, the solution to ([L.5)) to @, the
solution to

(=A)*u=f inQ,
(5-1) { i=g inQ°
where § = ng, and 7 is the cutoff function (4.9)). This allows to apply the
finite element estimates developed in Section [4] to problem ({5.1)), because
supp(g) C Q. The objective of this section is to show that choosing H in

the same fashion as there, namely H > Ch~/("+45) leads to the same order
of error between the continuous truncated problem and the original one.

Since the problems under consideration are linear, without loss of gener-
ality we may assume that g > 0 (otherwise split g = g4+ — g— and work with
the two problems separately).

Proposition 5.1. The following estimate holds:
(5.2) [u — | gs () < CH_(n/2+28)||9||L2(Q;I),

for a constant C' independent of H and g.

Proof. Denote ¢ = u — @ the difference between the solutions to equations

(L.5) and (5.1). Then,
(=A)¥p =0 in Q,
p =g—g=>0 1in Q°
We emphasize that ¢ is nonnegative (because of the comparison principle),
s—harmonic in 2 and vanishes in Qg1 \ Q.

Moreover, let us consider ¢ = @yq. As ¢ € Hst1/2¢ (R™) vanishes in
Qu_1\Q, it is clear that ¢ € H*t1/27¢(Q), and applying the integration by
parts formula (|1.6)):

a(p. 3) = /Q H(—A)p =0,

The nonlocal derivative term in last equation is null because ¢ vanishes
in Q¢ Splitting the integrand appearing in the form a and recalling the
definition of wg (1.8]), we obtain

(5.3)
ol =2 | Pe)wp@ o+ [ o ( / W@) dz

c
H

<9 /Q o) < /Q N féyz . ) dy) d.

Applying the Cauchy-Schwarz inequality in the integral over Q%; ; and tak-
ing into account that ¢ — § < g and that (H — 1)~ ("/2+2s) < 0 H—(n/2+25)
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it follows immediately that
(5.4) |<P\%1S(Q) <C(n, S)Hi(n/2+25)HSOHLl(Q)HgHLQ(Q;Fl)-

We need to bound [|¢| 11 (o) adequately. Let ¢ € H*(R™) be a function that
equals 1 over 2. Multiplying (—A)®p by v, integrating on 2 and applying
(1.6)), since ¢ is s-harmonic in €2, we obtain

= a(p, ) — . Nso(y) ¥ (y) dy,

or equivalently,

0=C ns//c |x_)‘)n(i2s_w(y))dydx

—C(n,s)/c (/Qsmdx) »(y) dy.

This implies that
/ / p(r) — o(y) dydi = 0.
aJae |z —y[ntes

Recalling that ¢ is zero in Qg1 \  and that g — § < g, from the previous
identity it follows that

g(y) *f](y) —(n/2+2
:cwsxda::// DRI T gy de < C H—(/2+2s) N
/Qso( ) wi () S P T Yy l9llr2(0z,_ )

Recall that the function wg, is uniformly bounded in €2 and that ¢ > 0. We
deduce

(5.5) lellpiy < CH™ W“?S’Hgnp Qc

Q1)

and combining this bound with (5.4 . yields (5 . O

As a byproduct of the proof of the previous proposition, we obtain the
following

Lemma 5.2. There is a constant C such that the bound

(5.6) lu — @l r20) < CH 29| g|l 12

Hl)

holds, for a constant C' independent of H and g.

Proof. As before, we write ¢ = u — @. From the first line in (5.3)),

s 9(y) — 9(y)
2/Qg02(x)wﬂ(x)d:z§/ﬂ<p(x) (/ |x_y|n+2$dy> dr <

< CH_(n/2+2S)||SOHL1 gl z2cac

Q1)

Combining this estimate with (5.5)), we deduce

| Paiia) da < CH Ny, .
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where the function wg, is given by Definition The lower uniform bound-
edness of wg) implies (5.6) immediately. O

Given 4, the solution to , let us denote A = N, @ its nonlocal normal
derivative.
Proposition 5.3. There is a constant C' such that
(5.7) IA=Xla < CH™22ig p2ge ),
for a constant C' independent of H and g.

Proof. Let ¢ € H?(Q°), according to Lemma we consider an extension
E¢ € H*(R") such that ||E¢[ gswn)y < Cl@[ s (qey- By linearity, it is clear
that A — 5\ = Nsp, where ¢ = u — 4. Applying the integration by parts
formula and recalling that ¢ is s—harmonic in 2,

C(n,s (E¢>( ) — E¢(y))
/C(/\ Ao = // = dx dy.
Since ¢ vanishes in Qg1 \Q, it is sunple to bound
[ o-Res<
Qc

) |

The first term on the right hand side above is bounded by C|¢|gs(0)[|9] s (¢,

C<|<%E¢>Hsm)|+ [ (el o)

|z — gyt

and Proposition|5.1|provides the bound |¢|gsq) < CH™ (n/2+42s) lgllzzs, -
For the second term, splitting the integrand 1t is simple to obtain the esti-

martes:

| eta)Eo < / H|_;|+dy> o
/990(90) (/%_1 %dy) dx
/QEqﬁ(a:) </ %@) dx

H-1

[, )

The terms on the right hand sides of the inequalities above are estimated
applying Lemma and Proposition as well as recalling the continuity
of the extension operator and of the inclusion L?(2) C L'(€2). We obtain

< Cllellzz@l1Edll 220

< CH 229 jo| Il r2as, )

< CH P29 Egl| 1)@l 20, ),

< CH™ "]l 205 0l 220, -

A= N)o . -
M < CH "PP|gllpaqs, ) Vo € HY(QO),
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Taking supremum in ¢, estimate ([5.7)) follows. O

Combining the estimates obtained in this section, we immediately prove
the following result.

Theorem 5.4. Let (u, \) be the solution of problem , and consider § as
in the beginning of this section. Moreover, let (upn, A\p) be the finite element
approrimations of the truncated problem , defined on Qp, where H
behaves as h=Y(+4s) - Then,

(5.8) Hu—uhHHs(QHA) < Ch1/2_6 Ef,g
and
(5.9) 1A= Anlla < CRV2E w2,

for a constant C' depending on € but independent of h, H, f and g, and ¥y 4
defined by (3.2)).
Proof. Applying the triangle inequality, we write

Hu — uhHHs(QHA) < ||U - aHHS(QH,l) + Hﬁ - uhHHs(QH—l)'

The second term above is bounded by ||& — upl|ly, which is controlled by
(4.14). As for the first one, recall that v =@ in Qg_1 \ 2, so that

lu—=all3e g,y =

1
~112 ~ 2
U — || 77s +2/ux —u(z / dy | dz.
Ju = ey +2 | ) — o) (QHl\Q PEEET

The integral above is bounded by means of Hardy-type inequalities from

Proposition (or by Remark if s = 1/2) because (u — u)yxq belongs
to H*(§2). So, resorting to Proposition |5.1/ and Lemma

lu — @l ooy ) < Cllw— @l oy < CH™ /229,

which —taking into account the behavior of H— is just (5.2]) and (5.6).
Estimate (5.9)) is an immediate consequence of the triangle inequality, the

dependence of H on h and equations (5.7]) and (4.15). Indeed,
A= Anlla < 1A= Xla + 13 = Ay < CRY2 5,
[l

Remark 5.5. We point out that estimates the error in the H*(Qp_1)-
norm. Since it is only possible to mesh a bounded domain, there is no hope
in general to obtain convergence estimates for ||u — up||y, unless some extra
hypothesis on the decay of the volume constraint is included.
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6. NUMERICAL EXPERIMENTS

We display the results of the computational experiments performed for the
mixed formulation of . The scheme utilized for these two-dimensional
examples is based on the code introduced in [I], where details about the
computation of the matrix having entries a(y;, ¢;) can be found.

We point out that our convergence estimates (Theorems and are
expressed in terms of fractional-order norms, and thus their computation
is out of reach. However, the examples we provide give evidence of the
convergence of the scheme towards the solution u both for Dirichlet data
with bounded and unbounded support. We compute orders of convergence
in L?-norms.

Also, as stated in Remark although the possibility s = % was excluded
from our analysis, the numerical evidence we present here indicates that the
same estimates hold in such a case as for s # %

Our first example is closely related to Remark Indeed, using the
solution considered there as a starting point, a function with constant frac-
tional Laplacian and supported in the n-dimensional unit ball can be built
straightforwardly. In this example, however, we shrink the domain so that

we produce a nonhomogeneous volume constraint with bounded support.
Namely, for Q = B(0,1/2) C R? we study

6.1) (—A)Pu =1 in Q,

' u = g1 P)% in Qe
The exact solution of this problem is u(z) = m(l — |z[?)5. We
carried out computations for s € {0.1,...,0.9} on meshes with size h €

{0.045,0.037,0.03,0.025}. The auxiliary domains considered were Qp =
B(0, H +1/2) with H = Ch~Y2+4%) and C' = C(s) was such that H would
equal 1 if h was set to 0.15.

We estimate the L?-norms of the finite element errors inside the domain
Q2 and in the whole space. In every case, the auxiliary domains were taken
in such a way that supp(g) C Qp. So, errors in L?(2y) coincide with errors
in L?(R™).

Our results are summarized in Table[Il Since the exact solution is smooth
in Q (see Figure , a fast convergence is observed in that domain; an order
of convergence 2 is expected. The situation in R™ is quite different, because
the solution belongs to Ht1/2—¢ (R™) for any € > 0; in general, we observe
convergence with order approximately s+ 1/2 in the L?(R")-norm.

We next display two examples where the Dirichlet condition has un-
bounded support, posed in the two-dimensional unit ball. The Poisson
kernel for this domain is known [28, Chapter 1], and thus it is simple to
obtain an explicit expression for the solutions of problems as the two we
analyze next. More precisely, let Q = B(0,7) C R™ for some r > 0 and let
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s | Order uy (L%(Q)) | Order uy (L*(R™))
0.1 1.9212 0.6322
0.2 2.2540 0.7338
0.3 2.4332 0.8226
0.4 2.0137 0.9174
0.5 2.0518 1.0236
0.6 2.0849 1.1134
0.7 2.2134 1.2408
0.8 1.9691 1.3334
0.9 1.8033 1.4392

TABLE 1. Computational results for Example The sup-
port of the volume constraint was contained in every auxiliary
domain Qg.

FiGURE 1. Discrete solutions to example with s = 0.2,
computed on a mesh with size h = 0.03 in an auxiliary do-
main Qp = B(0,H), H = 1.39. Left panel displays the
solution in g, while in the right panel the solution in €2 is
highlighted. Notice that although the solution is not smooth
in R”, it is smooth in Q.

g : ¢ — R. Then, a solution to

(—A)*u =0 in ©Q,
(6.2) { uw=g¢g in Q°,
is given by
(63) u(e) = [ 9(w) Play)dy,
where

I'(n/2)sin(ws) <7‘2 — |x|?

S
1
P(z,y) = ey e r2> Pl € ye .

25
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We compute numerical solutions to (6.2)) in the two-dimensional unit ball
with two different functions

ofa) = exp(—laf’) and gla) = .

In the experiments performed, we set Qi = B(0, H+1) with H = Ch~1/(2+4s)
and C = C(s) such that H = 1 for h = 0.1. We considered discretizations for
s € {0.1,...,0.9} on meshes with size h € {0.1,0.082,0.067,0.055,0.045}.
Table [2| shows the computed orders of convergence in L?() for these two
problems, and Figure [2| displays the computed L?-errors for some values of s
and g(z) = ﬁ Unlike the previous example, solutions are not smooth up to
the boundary of 2. So, the observed convergence with orders approximately
s+ 1/2 is expected.

s | g(@) = exp(—[2) | g(2) =
0.1 0.6355 0.5505
0.2 0.7774 0.6417
0.3 0.8559 0.7423
0.4 0.9052 0.8929
0.5 0.9720 1.0320
0.6 1.1535 1.1367
0.7 1.2742 1.1553
0.8 1.3152 1.2571
0.9 1.3742 1.4017

TABLE 2. Observed orders of convergence in L?() for (6.2)
with Dirichlet data with unbounded support.

=4 M,,e—””/@
—
2z
o
o
-6 /

-3.2 -3 -2.8 -2.6 -2.4 =2.2
log(h)

FIGURE 2. Computed L2-errors for s = 0.1 (green), s = 0.5
(red) and s = 0.9 (blue) for problem (6.2) with g(z) =
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Moreover, since we cannot mesh the support of the volume constraint,
as h decreases the actual region where we measure the error is expanded.
According to Remark in these experiments we have considered H =
Ch~1/(4+25) " Nevertheless, the computational cost of solving for H
large is extremely high. In practice, we have worked with small values of
the constant C that relates H with h, especially for s small.
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