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Abstract. In [2], a complete n-dimensional finite element analysis of
the homogeneous Dirichlet problem associated to a fractional Lapla-
cian was presented. Here we provide a comprehensive and simple 2D
MATLAB R© finite element code for such a problem. The code is accom-
panied with a basic discussion of the theory relevant in the context. The
main program is written in about 80 lines and can be easily modified to
deal with other kernels as well as with time dependent problems. The
present work fills a gap by providing an input for a large number of
mathematicians and scientists interested in numerical approximations
of solutions of a large variety of problems involving nonlocal phenomena
in two-dimensional space.

1. Introduction

The Finite Element Method (FEM) is one of the preferred numerical tools
in scientific and engineering communities. It counts with a solid and long
established theoretical foundation, mainly in the linear case of second or-
der elliptic partial differential equations. These kind of operators, with the
Laplacian as a canonical example, are involved in modeling local diffusive
processes. On the other hand, nonlocal or anomalous diffusion models have
increasingly impacted upon a number of important areas in science. Indeed,
non-local formulations can be found in physical and social contexts, model-
ing as diverse phenomena as human locomotion in relation to crime diffusion
[7], electrodiffusion of ions within nerve cells [12] or machine learning [14].

The Fractional Laplacian (FL) is among the most prominent examples of
a non-local operator. For 0 < s < 1, it is defined as

(1.1) (−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy,
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where

C(n, s) =
22ssΓ(s+ n

2 )

πn/2Γ(1− s)
is a normalization constant. The FL, given by (1.1), is one of the simplest
pseudo-differential operators and can also be regarded as the infinitesimal
generator of a 2s-stable Lévy process [5].

Given a function f defined in a bounded domain Ω, the homogeneous
Dirichlet problem associated to the FL reads: find u such that

(1.2)

{
(−∆)su = f in Ω,

u = 0 in Ωc.

In contrast to elliptic PDEs, numerical developments for problems involv-
ing this non-local operator, even in simplified contexts, are seldom found in
the literature. The reason for that is related to two major challenging tasks
usually involved in its numerical treatment: the handling of highly singu-
lar kernels and the need to cope with an unbounded region of integration.
This is precisely the case of (1.2), for which just a few numerical methods
have been proposed. Effectively implemented in one space dimension, we
mention, for instance: a finite difference scheme by Huang and Oberman
[11], a FE approach developed by D’Elia and Gunzburger [8] that relies on
a volume-constrained version of the non-local operator and a simple one-
dimensional spectral approach [3]. We refer the reader to [2] for a more
detailed account of these schemes and a discussion on other fractional diffu-
sion operators on bounded domains and their discretizations.

To the best of the authors’ knowledge, numerical computations for (1.2)
in higher dimensions have become available only recently [2]. In that paper
a complete n-dimensional finite element analysis for the FL has been car-
ried out, including regularity of solutions of (1.2) in standard and weighted
fractional spaces. Moreover, the convergence for piecewise linear elements
is proved with optimal order for both uniform and graded meshes.

In that work there are presented error bounds in the energy norm and
numerical experiments (in 2D), demonstrating an accuracy of the order of

h1/2 log h and h log h for solutions obtained by means of uniform and graded
meshes, respectively.

The present article can be seen as a complementary work to [2], provid-
ing a short and simple MATLAB R© FE code coping with the homogeneous
Dirichlet problem (1.2).

In [4] a MATLAB R© implementation for linear finite elements and local
elliptic operators is presented in a concise way. We tried to emulate as much
as possible that spirit in the non-local context. Notwithstanding that and
in spite of our efforts, some intrinsic technicalities make our code inevitably
slightly longer and more complex than that. Just to give a hint about it,
we take a glimpse in advance at the nonlocal stiffness matrix K. It involves
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expressions of the type

(1.3)

ˆ
R2

ˆ
R2

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy,

where ϕi, ϕj are arbitrary nodal basis functions associated to a triangulation
T . Two difficulties become apparent in the calculation of (1.3). First, at
the element level, computing (1.3) leads to terms like

(1.4)

ˆ
T

ˆ
T̃

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy,

for arbitrary pairs T, T̃ ∈ T . If T and T̃ are not neighboring then the inte-
grand in (1.4) is a regular function and can be integrated numerically in a

standard fashion. On the other hand, if T ∩ T̃ 6= ∅ an accurate algorithm
to compute (1.4) is not easy to devise. Fortunately, (1.4) bears some re-
semblances to typical integrals appearing in the Boundary Element Method
[15] and we extensively exploit this fact. Indeed, a basic and well known
technique in the BEM community is to rely on Duffy-type transforms. This
approach leads us to the decomposition of such integrals into two parts:
a highly singular but explicitly integrable part and a smooth, numerically
treatable part. We use this method to show how (1.4) can be handled with
an arbitrary degree of precision (this is carefully treated in Appendices A.1,
A.2, A.3, A.4).

Yet another difficulty is hidden in the calculation of K. Although Ω is
a bounded domain and the number of potential unknowns is always finite,
(1.3) involves a computation in R2 ×R2. In particular, in the homogeneous
setting, we need to accurately compute the function

(1.5)

ˆ
Ωc

1

|x− y|2+2s
dy,

for any x ∈ Ω. That, of course, can be hard to achieve for a domain with a
complex boundary. Nonetheless, introducing an extended secondary mesh,
as it is explained in Section 3, it is possible to reduce such problem to a
simple case in which ∂Ω is a circle. We show that in this circumstance a
computation of (1.5) can be both fast and accurately delivered (see also
Appendix A.5). Remarkably, this simple idea applies in arbitrary space
dimensions.

Regarding the code itself, our main concern has been to keep a com-
promise between readability and efficiency. First versions of our code were
plainly readable but too slow to be satisfactory. In the code offered here
many computations have been vectorized and a substantial speed up gained,
sometimes at the price of losing (hopefully not too much) readability.

Last but not least, the full program is available from the authors upon
request, so that the reader can avoid retyping it. Small modifications of
the base code may make it usable for dealing with many different problems.
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It has been successfully used in several contexts such as eigenvalue compu-
tations and time dependent problems (considering semi and full fractional
settings), among others.

The paper is organized as follows. In Section 2, we review appropriate
fractional spaces and regularity results for (1.2). Section 3 deals with basic
aspects of the FE setting. The data structure is carefully discussed in Section
4 and the main loop of the code is described in Section 5. Section 6, in
turn, shows a numerical example for which a nontrivial (i.e. with a non
constant source term f) solution is explicitly known. Moreover, the e.o.c. in
L2(Ω) is presented for some values of s. These numerical results are in very
good agreement with those expected by using standard duality arguments
together with the theory given in [2]. Appendix A may be found rather
technical for people not coming from the Boundary Element community
and deals with the quadrature rules used in each singular case. Appendices
B and C describe respectively auxiliary functions and data used along the
program. Finally, the full code, including the line numbers, is exhibited in
Appendix D.

2. Function spaces and regularity of solutions

Given an open set Ω ⊂ Rn and s ∈ (0, 1), define the fractional Sobolev
space Hs(Ω) as

Hs(Ω) =
{
v ∈ L2(Ω): |v|Hs(Ω) <∞

}
,

where | · |Hs(Ω) is the Aronszajn-Slobodeckij seminorm

|v|2Hs(Ω) =

¨
Ω2

|v(x)− v(y)|2

|x− y|n+2s
dx dy.

It is evident that Hs(Ω) is a Hilbert space endowed with the norm ‖·‖Hs(Ω) =
‖ · ‖L2(Ω) + | · |Hs(Ω). Moreover, consider the bilinear form 〈·, ·〉 on Hs(Ω),

(2.1) 〈u, v〉Hs(Ω) =

¨
Ω2

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy.

Let us also define the space of functions supported in Ω,

H̃s(Ω) =
{
v ∈ Hs(Rn) : supp v ⊂ Ω̄

}
.

This space may be defined through interpolation,

H̃s(Ω) =
[
L2(Ω), H1

0 (Ω)
]
s
.

Moreover, depending on the value of s, different characterizations of this

space are available. If s < 1
2 then H̃s(Ω) coincides with Hs(Ω), and if s > 1

2
it may be characterized as the closure of C∞0 (Ω) with respect to the | · |Hs(Ω)

norm. In the latter case, it is also customary to denote it by Hs
0(Ω). The
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particular case of s = 1
2 gives raise to the Lions-Magenes space H

1
2
00(Ω),

which can be characterized by

H
1
2
00(Ω) =

{
v ∈ H

1
2 (Ω):

ˆ
Ω

v(x)2

dist(x, ∂Ω)
dx <∞

}
.

Note that the inclusion H
1
2
00(Ω) ⊂ H

1
2
0 (Ω) = H

1
2 (Ω) is strict. We also need

to introduce the dual space of H̃s(Ω), denoted with the standard negative
exponent H−s(Ω).

It is apparent that the form 〈·, ·〉Hs(Rn) (recall (2.1)) induces a norm on

H̃s(Ω), because of the following well known result.

Proposition 2.1 (Poincaré inequality). There is a constant c = c(Ω, n, s)
such that

‖v‖L2(Ω) ≤ c|v|Hs(Rn) ∀v ∈ H̃s(Ω).

Finally, Sobolev spaces of order grater than 1 are defined in the following
way: given k ∈ N, then

Hk+s(Ω) =
{
v ∈ Hk(Ω): |Dαv| ∈ Hs(Ω) ∀α with |α| = k

}
,

furnished with the norm

‖v‖Hk+s(Ω) = ‖v‖Hk(Ω) +
∑
|α|=k

|Dαv|Hs(Ω).

Weak solutions of (1.2) are straightforwardly defined multiplying by a
test function and integrating by parts. Indeed, the weak formulation of

(1.2) reads: find u ∈ H̃s(Ω) such that

(2.2)
C(n, s)

2
〈u, v〉Hs(Rn) =

ˆ
Ω
fv, v ∈ H̃s(Ω).

Notice that the inner product

(2.3) 〈u, v〉Hs(Rn) =

¨
Rn×Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy.

involves integrals in Rn.

From now on, we assume f ∈ Hr(Ω) for some r ≥ −s. Existence and

uniqueness of solutions in H̃s(Ω) and well-posedness of problem (2.2) are im-
mediate consequences of the Lax-Milgram lemma. Moreover, the following
regularity result is valid [10, 16]:

Theorem 2.2. Let u ∈ H̃s(Ω) be the solution to (2.2). If ∂Ω is of C∞

class, then

u ∈

{
H2s+r(Ω) if s+ r < 1/2,

Hs+1/2−ε(Ω) ∀ε > 0 if s+ r ≥ 1/2.
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Remark 2.3. The previous theorem implies that, independently of the reg-
ularity of the right hand side function f , solutions should not be expected
to have derivatives of order greater than s + 1/2 in L2(Ω). This is a con-
sequence of the behavior of solutions near the boundary of Ω: the quotient
u(x)/d(x, ∂Ω)s can be shown to be finite for x ∼ ∂Ω (see, for example
[13]). Knowledge of this singularity was exploited in [2], where problem
(2.2) was set up in the framework of weighted Sobolev spaces and solutions
were proved to have 1+s−ε derivatives in a suitable space if the right hand
side function belongs to C1−s(Ω). See that work for further details.

3. FE setting

Consider an admissible triangulation T of Ω consisting of NT elements.
For the discrete space Vh, we take standard continuous piecewise linear
elements over T . With the usual notation, we introduce the nodal basis
{ϕ1, . . . , ϕN} ⊂ Vh corresponding to the internal nodes {x1, . . . , xN}, that is

ϕi(xj) = δji . Given an element T ∈ T , we denote by hT and ρT its diameter
and inner radius, respectively. As customary, we write h = maxT∈T hT . The
family of triangulations considered is assumed to be shape-regular, namely,
there exists σ > 0 independent of T such that

hT ≤ σρT for all T ∈ T .
In this context, the discrete analogous of (2.3) reads: find uh ∈ Vh such that

(3.1)
C(n, s)

2
〈uh, vh〉Hs(Rn) =

ˆ
Ω
fvh, vh ∈ Vh,

providing a conforming1 FEM for any 0 < s < 1.

Writing the discrete solution as uh =
∑

j ujϕj , problem (3.1) is equivalent
to solving the linear system

(3.2) KU = F,

where the coefficient matrix K = (Kij) ∈ RN×N and the right-hand side
F = (fj) ∈ RN are defined by

Kij =
C(n, s)

2
〈ϕi, ϕj〉Hs(Rn), fj =

ˆ
Ω
fϕj ,

and the unknown is U = (uj) ∈ RN .

The fractional stiffness matrix K is symmetric and positive definite, so
that (3.2) has a unique solution. Notice that the integrals in the inner
product involved in computation of Kij should be carried over Rn. For this
reason we find it useful to consider a ball B containing Ω and such that the
distance from Ω̄ to Bc is an arbitrary positive number. As it is explained
in Appendix A.5, this is needed in order to avoid difficulties caused by lack

1Notice that even P0 elements are conforming for 0 < s < 1/2. We restrict ourselves
to continuous P1 in order to give an unified conforming approach for any 0 < s < 1.
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of symmetry when dealing with the integral over Ωc when Ω is not a ball.
Together with B, we introduce an auxiliary triangulation TA on B \Ω such

that the complete triangulation T̃ over B (that is T̃ = T ∪TA) is admissible
(see Figure 1).

Figure 1. A square domain Ω (gray) and an auxiliary ball
containing it. Regular triangulations T and TA for Ω and
B \ Ω are shown. The final symmetry of the admissible tri-

angulation T̃ = T ∪ TA, exhibited in the example, is not
relevant.

Let us call NT̃ the number of elements on the triangulation of B. Then,
defining for 1 ≤ `,m ≤ NT̃ and 1 ≤ ` ≤ NT̃

Ii,j`,m =

ˆ
T`

ˆ
Tm

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy,

J i,j` =

ˆ
T`

ˆ
Bc

ϕi(x)ϕj(x)

|x− y|2+2s
dydx,

(3.3)

we may write

Kij =
C(n, s)

2

NT̃∑
`=1

 NT̃∑
m=1

Ii,j`,m + 2J i,j`

 .

As mentioned above, the computation of each integral Ii,j`,m and J i,j` is chal-

lenging for different reasons: the former involves a singular integrand if
T` ∩ Tm 6= ∅ (Appendices A.2, A.3, A.4 are devoted to handle it) while the
latter needs to be calculated on an unbounded domain. In this case notice
that

J i,j` =

ˆ
T`

ϕi(x)ϕj(x)ψ(x) dx,

with ψ(x) :=
´
Bc

1
|x−y|2+2s dy. Therefore all we need is an accurate compu-

tation of h(x) for each quadrature point used in T` ⊂ Ω̄ (notice that h(x) is
a smooth function up to the boundary of Ω since |x− y| > dist(Ω̄, Bc) > 0).

Taking this into account, we observe that it is possible to take advantage
of the fact that h(x) is a radial function that can be either quickly computed
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on the fly or even precomputed with an arbitrary degree of precision (see
Appendix A.5 for a full treatment of h(x)).

For the reader’s convenience we finish this section with Table 1, containing
some handy notations.

Table 1. Main Variables

Notation Meaning

T , TA, T̃ Meshes: of Ω, B \ Ω and B resp.
N Nodes of T
E Edges of T
B Boundary edges of T
NT #T
NN #N
NB #B

4. Data structure and auxiliary variables

We assume that the mesh T has been generated in advance2. The in-
formation related to T should be encoded in some specific variables p, t,
bdrynodes, nt_aux nf R, as follows:

• p is a 2×NN array, such that p(:,n) are the coordinates of the n-th
node.
• t is a NT̃ × 3 index array, and t(l,:) are the indices of the vertices

of Tl. Triangles belonging to TA must be listed at the end.
• nt_aux = #TA.
• bdrynodes is an index column vector listing the nodes lying on ∂Ω.
• nf is an index column vector contiaining the free nodes (those in Ω).
• R the radius of B.

These data have to be available in the MATLAB R© workspace before the
execution of the main code.

Next, we begin by creating some variables that refer to problem (1.2):

s = 0.5;

f = @(x,y) 1;

cns = s*2^(-1+2*s)*gamma(1+s)/(pi*gamma(1-s));

load(‘data.mat’);

Here, s is the order of the fractional Laplacian involved, f is a function
handle containing the volume force (which as an example we have set to be
f ≡ 1), and cns is equal to the constant C(n, s) previously defined.

2For the sake of convenience an stored example mesh -as well as a suitable mesh
generator- is provided together with the source code.
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In order to compute the stiffness matrix we need to estimate the bilin-
ear form 〈·, ·〉Hs(Rn) evaluated at the nodal basis through an appropriate
quadrature rule.

To perform an efficient vectorized computation, we require some pre-
calculated data, given in the file data.mat. This file contains information
about nodes and weights for the quadratures performed throughout the code.
The content of data.mat is listed in Table 2 and further details can be found
in Appendix C.

Table 2. Variables stored in data.mat

Name Size
Used as input
in function:

Description

p_cube 27x3
vertex_quad

edge_quad

Quadrature points
over [0, 1]3

p_T_6 6x2
None (used in non-
touching case)

Quadrature points

over T̂

p_T_12 12x2 comp_quad
Quadrature points

over T̂

p_I 9x1
comp_quad

triangle_quad

Quadrature points
over [0, 1]

w_I 9x1 comp_quad
Quadrature weights
associated to p_I

phiA

phiB 9x36
None (used in non-
touching case)

See Appendix C.2

phiD

vpsi1 25x27 vertex_quad See Appendix C.3
vpsi2

epsi1

epsi2

epsi3 16x27 edge_quad See Appendix C.4
epsi4

epsi5

tpsi1

tpsi2 9x9 triangle_quad See Appendix C.5
tpsi3

cphi 9x12 comp_quad See Appendix C.6

As mentioned before, some auxiliary elements are added to the original
mesh in order to have a triangulation on a ball B containing Ω (see Figure
1). The nodes in this auxiliary domain B\Ω are regarded as Dirichlet nodes.

Next, we define some mesh parameters and set to zero the factors involved
in equation (3.2). The following lines do not need extra explanation beyond
the in-line comments:
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nn = size(p,2); % number of nodes

nt = size(t,1) % number of elements

uh = zeros(nn,1); % discrete solution

K = zeros(nn,nn); % stiffness matrix

b = zeros(nn,1); % right hand side

Then, the measures of all the elements in the mesh are calculated:

area = zeros(nt,1);

for i=1:nt

aux = p( : , t(i,:) );

area(i) = 0.5.*abs(...

det([ aux(:,1) - aux(:,3) aux(:,2) - aux(:,3)]) );

end

So, area is a vector of length NT̃ satisfying area(l) = |Tl|, l ∈ {1, ..., NT̃ }.
The quadratures we employ to compute the integrals Ii,j`,m (defined in

(3.3)) depend on whether the elements T` and Tm coincide or their intersec-
tion is an edge, a vertex or empty. Therefore, it is important to distinguish
theses cases in an efficient way. We construct a data structure called patches

as follows, using a linear number of operations:

deg = zeros(nn,1);

for i=1:nt

deg( t(i,:) ) = deg( t(i,:) ) + 1;

end

patches = cell(nn , 1);

for i=1:nn

patches{i} = zeros( 1 , deg(i) );

end

for i=1:nt

patches{ t(i,1) }(end - deg( t(i,1) ) + 1) = i;

patches{ t(i,2) }(end - deg( t(i,2) ) + 1) = i;

patches{ t(i,3) }(end - deg( t(i,3) ) + 1) = i;

deg( t(i,:) ) = deg( t(i,:) ) - 1;

end

The output of this code block is a NÑ × 1 cell, called patches, such that
patches{n} is a vector containing the indices of all the elements in the
neighborhood of the node n.

5. Main loop

One of the main challenges to build up a FE implementation to problem
(1.2) is to assemble the stiffness matrix in an efficient mode. Independently
of whether the supports of two given basis functions ϕi and ϕj are disjoint,
the interaction 〈ϕi, ϕj〉Hs(Rn) is not null. This yields a paramount difference
between FE implementations for the classical and the fractional Laplace op-
erators; in the former the stiffness matrix is sparse, while in the latter it is
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full. Therefore, unless some care is taken, the amount of memory required
and the number of operations needed to assembly the stiffness matrix in-
creases quadratically with the number of nodes. Due to this, the code we
present takes advantage of vectorized operations as much as possible.

Moreover, as the computation of the entries of the stiffness matrix requires
calculating integrals on pairs of elements, it is required to perform a double

loop. It is simple to check the identity Ii,j`,m = Ii,jm,` for all i, j, `,m, and

therefore it is enough to carry the computations only for the pairs of elements
T` and Tm with ` ≤ m.

In the following lines we preallocate memory and create the auxiliary
index array aux_ind (to be used in code line 58).

vl = zeros(6,2);

vm = zeros(6*nt,2);

norms = zeros(36,nt);

ML = zeros(6,6,nt);

empty = zeros(nt,1);

aux_ind = reshape( repmat( 1:3:3*nt , 6 , 1 ) , [] , 1 );

empty_vtx = zeros(2,3*nt);

BBm = zeros(2,2*nt);

The main loop goes through all the elements T` of the mesh of Ω, namely,
1 ≤ ` ≤ NT . Observe that auxiliary elements are excluded from it. Fixed
`, the first task is to classify all the mesh elements Tm (1 ≤ m ≤ NT̃ ,

m 6= `) according to whether T` ∩ Tm is empty, a vertex or an edge. This is
accomplished employing a linear number of operations by using the patches
data structure as follows:

edge = [ patches{t(l,1)} patches{t(l,2)} patches{t(l,3)} ];

[nonempty M N] = unique( edge , ’first’ );

edge(M) = [];

vertex = setdiff( nonempty , edge );

ll = nt - l + 1 - sum( nonempty>=l );

edge( edge<=l ) = [];

vertex( vertex<=l ) = [];

empty( 1:ll ) = setdiff_( l:nt , nonempty );

empty_vtx(: , 1:3*ll) = p( : , t( empty(1:ll) , : )’ );

At this point, ll is the number of elements –including the auxiliary ones–
whose intersection with T` is empty and have not been visited yet (namely,
those with index m>l). By considering only the elements with index greater
than `, we are taking advantage of the symmetry of the stiffness matrix.
The arrays empty, vertex and edge contain the indices of all those elements
whose intersection with T` is empty, a vertex or an edge respectively, and
have not been computed yet. In empty_vtx we store the coordinates of the
vertices of the triangles indexed in empty.
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Then, the code proceeds to assemble the right hand side vector in equation
(3.2)

nodl = t(l,:);

xl = p(1 , nodl); yl = p(2 , nodl);

Bl = [xl(2)-xl(1) yl(2)-yl(1); xl(3)-xl(2) yl(3)-yl(2)]’;

b(nodl) = b(nodl) + fquad(area(l),xl,yl,f);

Here, nodl stores the indices of the vertices of T`; xl and yl are the x and
y coordinates of these vertices, respectively. The element T` is the image of
a reference element T̂ via an affine transformation,

(x̂, ŷ) 7→ Bl(x̂, ŷ) + (xl(1), yl(1)).

Recall that b stores the numerical approximation to the right hand side
vector from equation (3.2), namely, b(j) ≈

´
Ω fϕj . The routine fquad uses

a standard quadrature rule, interpolating f on the edge midpoints of Tl (see
Appendix B).

Remark 5.1. Let 1 ≤ `,m ≤ NT̃ . When computing Ii,j`,m or J i,j` , the basis

function indices i and j do not refer to a global numbering but to a local
one. This means, for example, that if T` ∩ Tm = ∅, then 1 ≤ i, j ≤ 6. See
Remark A.1 for details on this convention.

5.1. Identical elements. The first interaction to be computed by the code
corresponds to the case m = ` in (3.3). The values calculated are assembled
in the stiffness matrix K.

K(nodl, nodl) = K(nodl, nodl) +...

triangle_quad(Bl,s,tpsi1,tpsi2,tpsi3,area(l),p_I) +...

comp_quad(Bl,xl(1),yl(1),s,cphi,alpha*R,area(l),p_I,w_I,p_T_12);

The function triangle_quad estimates Ii,j`,` , while comp_quad computes

numerically the value of J i,j` . These functions use pre-built data from the
file data.mat: the first one employs the variables tpsi1, tpsi2 and tpsi3,
and the second one cphi, p_I, w_I and p_T_12. Implementation details
can be found in appendixes A.4 and A.5, respectively. The output of both
triangle_quad and comp_quad are 3 by 3 matrices, such that:

triangle_quadij ≈ I
i,j
`,` , comp_quadij ≈ 2J i,j` .

5.2. Non-touching elements. The next step is to compute the interac-
tions between T` and all the elements Tm whose closure is disjoint T` (so
that their indices are stored in the variable empty). In order to do this, we
calculate and store quadrature points for all the triangles involved in the
operation as follows:

BBm(:,1:2*ll) = reshape( [ empty_vtx( : , 2:3:3*ll ) -...

empty_vtx( : , 1:3:3*ll ) , ...

empty_vtx( : , 3:3:3*ll ) -...

empty_vtx( : , 2:3:3*ll ) ] , [] , 2)’ ;
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vl = p_T_6*(Bl’) + [ ones(6,1).*xl(1) ones(6,1).*yl(1) ];

vm(1:6*ll,:) = reshape( permute( reshape( p_T_6*BBm(:,1:2*ll), ...

[6 1 2 ll] ) , [1 4 3 2] ) , [ 6*ll 2 ] ) +...

empty_vtx(: , aux_ind(1:6*ll) )’;

The matrix BBm has size 2×2∗nt, and it contains nt submatrices of dimension
2 × 2. The m-th submatrix corresponds to the affine transformation that
maps T̂ into Tm. The vectors vl and vm contain the coordinates of all
quadrature points in T` and Tm for m ∈ empty, respectively.

Here, the matrix BBm satisfies

BBm(:,2*m-1:2m)’ · T̂ + empty vtx(:,3*(m-1) + 1)’ 7→ Tm,

The matrix p_T_6 ∈ R6×2 was provided by the precomputed file data.mat,
and it stores the coordinates of the 6 quadrature points in the reference el-
ement T̂ . In order to compute vm, we use three nested operations over the
6×2∗ll matrix p_T_6*BBm(:,1:2*ll). To better understand this, suppose
we rewrite this matrix as follows:

p_T_6*BBm(:,1:2*ll) = [A1, A2, ..., All],

where Ai is a 6 × 2 matrix and i = 1, .., ll. Then, after the application
of reshape( permute( reshape( ... ’, we obtain the 6*ll by 2 matrix
[A1;A2; ...;All], which can be used as an input in pdist2. This trick was
taken out from [1].

Next, we compute distances from all the quadrature nodes in vl to the
ones in vm, and raise them to the power of −(2 + 2s):

norms(:,1:ll) = reshape(pdist2(vl,vm(1:6*ll,:)),36,[]).^(-2-2*s);

Thereby, norms is a 36× ll matrix such that for m ∈ {1, ..., ll},

norms(:,m) =



||vl(1,:)− vm(6*m - 5,:) ||−(2+2s)

...

||vl(1,:)− vm(6*m, :) ||−(2+2s)

||vl(2,:)− vm(6*m - 5,:) ||−(2+2s)

...

||vl(2,:)− vm(6*m, :) ||−(2+2s)

...

||vl(6,:)− vm(6*m - 5,:) ||−(2+2s)

...

||vl(6,:)− vm(6*m, :) ||−(2+2s)



,

where || · || denotes the usual euclidean distance in R2.

At this point, we have collected all the necessary information to compute

Ii,j`,m for T`∩Tm = ∅ and i, j corresponding to any of the six vertices of these

elements. We employ the pre-built matrices phiA, phiB and phiD, that
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contain the values of the nodal basis functions evaluated at the quadrature
points of T̂ , multiplied by their respective weights, and stored in an appro-
priate way in order to perform an efficient vectorized operation. Details are
provided in appendixes A.1 and C.2. The code proceeds:

ML(1:3,1:3,1:ll) = reshape( phiA*norms(:,1:ll) , 3 , 3 , [] );

ML(1:3,4:6,1:ll) = reshape( phiB*norms(:,1:ll) , 3 , 3 , [] );

ML(4:6,4:6,1:ll) = reshape( phiD*norms(:,1:ll) , 3 , 3 , [] );

ML(4:6,1:3,1:ll) = permute( ML(1:3,4:6,1:ll) , [2 1 3] ) ;

So, the matrix ML satisfies

Ii,j`,m ≈ 4|T`||Tm| ML(i,j,m).

The last step to complete the computations for the case T` ∩Tm = ∅ is to
add the calculated values in their corresponding stiffness matrix entries:

for m=1:ll

order = [nodl t( empty(m) , : )];

K(order,order) = K(order,order) +...

( 8*area(empty(m))*area(l) ).*ML(1:6,1:6,m);

end

The vector order collects the local indices of the vertices of T` and Tm,

given as explained in Remark A.1. Recall that Ii,j`,m = Ii,jm,` and that we

are summing over the elements listed in empty. In particular, this means
that ` < m. We multiply ML(1:6,1:6,m) by 8*area(empty(m))*area(l)

instead of by 4*area(empty(m))*area(l) in order to avoid carrying the

redundant computation of Ii,jm,`.

5.3. Vertex-touching elements. In order to compute Ii,j`,m for the indices

m corresponding to elements sharing a vertex with T`, we use the pre-built
variables vpsi1, vpsi2 and p_cube as input in the function vertex_quad.
Let us mention once more that vpsi1 and vpsi2 contain the nodal basis in

the reference element T̂ evaluated at quadrature points, multiplied by their
respective weight and properly stored. Moreover, the variable p_cube stores
quadrature nodes in the unit cube [0, 1]3. Further details about vertex_quad
and the auxiliary pre-built data can be found in appendixes A.2 and C.3,
respectively. We compute the integrals and add the resulting values to K as
follows:

for m=vertex

nodm = t(m,:);

nod_com = intersect(nodl, nodm);

order = [nod_com nodl(nodl~=nod_com) nodm(nodm~=nod_com)];

K(order,order) = K(order,order) ...

+ 2.*vertex_quad(nodl,nodm,nod_com,p,s,vpsi1,vpsi2,...

area(l),area(m),p_cube);

end
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Here, we store in nodm the indices of the vertices of Tm, whereas nod_com

dentoes the index of the vertex shared by T` and Tm. The first entry of order
is the index of this common vertex, followed by the nodes of T` different from
it, and then by the indices of the remaining two nodes of Tm. Observe that,
unlike the previous case, here there are involved five nodal basis, so the
output of vertex_quad is a 5 by 5 array, such that:

vertex_quadij ≈ I
i,j
`,m.

5.4. Edge-touching elements. Proceeding similarly, we compute next the
case where T` ∩ Tm is an edge. Now there are only 4 nodal basis functions
involved, and the local numbering is such that the first two nodes correspond
to the endpoints of the shared edge, the third is the one in T` but not in Tm
and the last one is the node in Tm but not in T`. Using the pre-built variables
epsi1, epsi2, epsi3, epsi4,epsi5 and p_cube as input in edge_quad (see
appendixes A.3 and C.4), we proceed as in the previous case:

for m=edge

nodm = t(m,:);

nod_diff = [setdiff(nodl, nodm) setdiff(nodm, nodl)];

order = [ nodl( nodl~=nod_diff(1) ) nod_diff ];

K(order,order) = K(order,order) +...

2.*edge_quad(nodl,nodm,nod_diff,p,s,...

epsi1,epsi2,epsi3,epsi4,epsi5,area(l),area(m),p_cube);

end

The indices of the two nodes not shared by T` and Tm are stored in nod_diff,
and order has the nodes ordered as explained in the previous paragraph.
The output of the function edge_quad is a 4 by 4 array satisfying

edge_quadij ≈ I
i,j
`,m.

5.5. Discrete solution. Once the main loop is concluded, the stiffness ma-
trix K and the right hand side vector b have been computed, and thus it is
possible to calculate the FE solution uh of the system (3.2):

uh(nf) = ( K(nf,nf)\b(nf) )./cns; % Solving linear system

The entries of K and b needed are only the ones corresponding to free nodes.
The nodes belonging to ∂Ω and to the auxiliary domain B \Ω are excluded,
as the discrete solution uh is set to vanish on them.

Finally, uh is displayed, and the auxiliary domain is excluded from the
representation:

trimesh(t(1:nt-nt_aux , :), p(1,:),p(2,:),uh);

6. Numerical Experiments

In order to illustrate the performance of the code, in this section we show
the results we obtained in an example problem. Explicit solutions for (1.2)
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are scarce, but it is possible to obtain a family of them if Ω is a ball. Other
numerical experiments carried with this code can be found in [2] and in [6]
(for the eigenvalue problem in several domains).

According to the theory given in [2, 6] convergence in the energy norm
is expected to occur with order 1

2 with respect to the mesh size parameter

h, or equivalently, of order − 1
2n with respect to the number of degrees of

freedom. Moreover, using duality arguments, it is expected to have order

of convergence s + 1
2 (resp. − s+1/2

n ) for 0 < s ≤ 1/2 and 1 (resp. − 1
n) for

s > 1/2 in the L2(Ω)-norm with respect to h (resp. number of degrees of
freedom).

We first construct non-trivial solutions for (1.2) if Ω is a ball. Consider

the Jacobi polynomials P
(α,β)
k : [−1, 1]→ R, given by

P
(α,β)
k (z) =

Γ(α+ k + 1)

k! Γ(α+ β + k + 1)

k∑
m=0

(
k

m

)
Γ(α+ β + k +m+ 1)

Γ(α+m+ 1)

(
z − 1

2

)m
,

and the weight function ωs : Rn → R,
ωs(x) = (1− ‖x‖2)s+.

In [9, Theorem 3] it is shown how to construct explicit eigenfunctions

for an operator closely related to the FL by using P
(s,n/2−1)
k . To be more

precise, the authors prove the following result.

Theorem 6.1. Let B(0, 1) ⊂ Rn the unitary ball. For s ∈ (0, 1) and k ∈ N,
define

λk,s =
22s Γ(1 + s+ k)Γ

(
n
2 + s+ k

)
k! Γ

(
n
2 + k

)
and p

(s)
k : Rn → R,

p
(s)
k (x) = P

(s, n/2−1)
k (2‖x‖2 − 1)χB(0,1)(x).

Then the following equation holds

(−∆)s
(
ωsp

(s)
k (x)

)
= λk,s p

(s)
k (x) in B(0, 1).

A family of explicit solutions is available by using this theorem. As a first
example, we analyze the solution with k = 0. This gives a right hand side
equal to a constant. Namely, consider

(6.1)

{
(−∆)su = 1 in B(0, 1) ⊂ R2,

u = 0 in B(0, 1)c.

We have run the code for a wide range of parameters s, while keeping the
radius of the auxiliary ball B equal to 1.1. Orders of convergence in the L2

and energy norm3 are shown in Table 3; these results are in accordance with
the theory.

3A discussion about how to compute errors in the energy norm can be found in [2].
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Table 3. Computational rates of convergence for problem
(6.1) with respect to the mesh size, measured in the L2(Ω)
and energy norms.

Value of s Order in L2(Ω) Order in H̃s(Ω)

0.1 0.621 0.500
0.2 0.721 0.496
0.3 0.804 0.492
0.4 0.880 0.491
0.5 0.947 0.492
0.6 1.003 0.496
0.7 1.046 0.501
0.8 1.059 0.494
0.9 0.999 0.467

As a second example we illustrate, in Table 4, that in problem (6.1) the
radius R of the auxiliary ball B does not substantially affect the error of the
scheme. This suggests that it is preferable to maintain the exterior ball’s
radius as small as possible. Since in this problem the domain Ω is itself
a ball, for comparison, we also included the output of the code without
resorting to the exterior ball (the row corresponding to R = 1.0). The
table clearly shows that the CPU time grows linearly with respect to the
number of elements NT̃ − NT used in the auxiliary domain. Taking into
account that the final size of the linear system (3.2) involved in each case
is the same, the computational cost is, essentially, increased only during
the assembling routine. Since considering an auxiliary domain involves only
the computation of the interaction between inner and outer nodes, a linear
behavior of the type described above is clearly expected.

Table 4. The L2(Ω) and H̃s(Ω) errors for different values of
R in problem (6.1) with s = 0.5. In all the cases we are using
a fixed and regular triangulation T of Ω, with NT = 4228.
The computations were performed with MATLAB R© version
2015a in Windows 10, Intel i7 Processor, RAM 8Gb.

R NT̃ CPU time (sec.) Error in ‖ · ‖L2(Ω) Error in ‖ · ‖
H̃s(Ω)

1.0 4228 80.3 0.0164 0.1314
1.1 4980 100.7 0.0167 0.1345
1.4 8218 206.6 0.0167 0.1351
1.7 12370 344.7 0.0167 0.1352
2.0 17170 511.9 0.0167 0.1354

As a third example we return to the setting of Theorem 6.1. We consider
k = 2 and compute the order of convergence in L2(Ω) for s = 0.25 and
s = 0.75. We summarize our numerical results in Figure 2. These are in
accordance with the predicted rates of convergence. Finally, in Figure 3 the
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FE solution, for s = 0.75 and k = 2, computed with a mesh of about 14000
triangles is displayed.

Figure 2. Computational rate of convergence in the L2(Ω)-
norm for the problem with solution given by Theorem 6.1,
for k = 2. The left panel corresponds to s = 0.25 and the
right to s = 0.75. The asymptotic rate for s = 0.25 is ≈
(#DOFs)−3/8, whereas for s = 0.75 it is ≈ (#DOFs)−1/2, in
agreement with theory.

Figure 3. FE solution with a mesh containing about 14000

triangles. With s = 0.75, we use f(x) = λ2,0.75 p
(0.75)
2 (x) as a

source term (see Theorem 6.1).

Finally, we would like to mention just a few more facts: our numerical ex-
periments suggest that the condition number of K behaves like ∼ N s

T while
over the 99% of the CPU time is devoted to the assembly routine. Actually,
the expected complexity for assembling K is quadratic in the number of
elements, and this seems to be the case in our tests.
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Appendix A. Quadrature rules

Here we give details about how to compute the integrals Ii,j`,m and J i,j`
(see Section 3). In order to cope with Ii,j`,m, we proceed according to whether

T` ∩ Tm is empty, a vertex, an edge or an element. Recall that Ii,j`,m = Ii,jm,`,

so that we may assume ` ≤ m.

Consider two elements T` and Tm such that supp(ϕi), supp(ϕj) ∩ (T` ∪
Tm) 6= ∅. Observe that if one of this intersections is empty, then Ii,j`,m = 0.

Moreover, it could be possible that one of the elements is disjoint with
the support of both ϕi and ϕj , provided the other element intersects both

supports and Ii,j`,m 6= 0.

We are going to consider the reference element

T̂ = {x̂ = (x̂1, x̂2) : 0 ≤ x̂1 ≤ 1, 0 ≤ x̂2 ≤ x̂1},
whose vertices are

x̂(1) =

(
0
0

)
, x̂(2) =

(
1
0

)
, x̂(3) =

(
1
1

)
.

The basis functions on T̂ are, obviously,

ϕ̂1(x̂) = 1− x̂1, ϕ̂2(x̂) = x̂1 − x̂2, ϕ̂3(x̂) = x̂2.

Remark A.1. Given two elements T` and Tm, we provide a local numbering
in the following way. If T` and Tm are disjoint, we set the first three nodes to
be the nodes of T` and the following three nodes to be the ones of Tm. Else,
we set the first node(s) to be the ones in the intersection, then we insert
the remaining node(s) of T` and finally the one(s) of Tm (see Figure 4). For

simplicity of notation, when computing Ii,j`,m and J i,j` , we assume that i, j

denote the local numbering of the basis functions involved; for example, if
T` and Tm share only a vertex, then 1 ≤ i, j ≤ 5.

T`

Tm

1

2

3

4

5

T` Tm

1

3
4

2

Figure 4. Local numbering for elements with a vertex and
an edge in common.

Consider the affine mappings

χ` : T̂ → T`, χ`(x̂) = B`x̂+ x
(1)
` ,
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χm : T̂ → Tm, χm(x̂) = Bmx̂+ x(1)
m ,

where the matrices B` and Bm are such that x̂(2) (resp. x̂(3)) is mapped
respectively to the second (resp. third) node of T` and Tm in the local
numbering defined above. Then, it is clear that

Ii,j`,m = 4|T`||Tm|
ˆ
T̂

ˆ
T̂

(ϕi(χ`(x̂))− ϕi(χm(ŷ)))(ϕj(χ`(x̂))− ϕj(χm(ŷ)))

|χ`(x̂)− χm(ŷ)|2+2s
dx̂ dŷ =

= 4|T`||Tm|
˘

T̂×T̂
Fij(x̂1, x̂2, ŷ1, ŷ2) dx̂1 dx̂2 dŷ1 dŷ2.

(A.1)

We discuss how to compute Ii,j`,m depending on the relative position of T`

and Tm, and afterwards we tackle the computation of J i,j` .

A.1. Non-touching elements. This is the simplest case, since the inte-
grand Fij in (A.1) is not singular. Recall that

Ii,j`,m =

ˆ
T`

ˆ
Tm

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy, 1 ≤ `,m ≤ NT̃ .

Splitting the numerator in the integrand, we obtain

Ii,j`,m =

ˆ
T`

ˆ
Tm

ϕi(x)ϕj(x)

|x− y|2+2s
dxdy +

ˆ
T`

ˆ
Tm

ϕi(y)ϕj(y)

|x− y|2+2s
dxdy

−
ˆ
T`

ˆ
Tm

ϕi(x)ϕj(y)

|x− y|2+2s
dxdy −

ˆ
T`

ˆ
Tm

ϕi(y)ϕj(x)

|x− y|2+2s
dxdy.

Note that all the integrands depend on ` and m only through their de-
nominators. Since ϕi(x) = 0 if i = 1, 2, 3 and x ∈ Tm or if i = 4, 5, 6 and
x ∈ T`, given two indices i, j, only one of the four integrals above is not
null. Thus, we may divide the 36 interactions between the 6 basis functions
involved into four 3 by 3 blocks, and write the local matrix ML as:

(A.2) ML =

(
A`,m B`,m
C`,m D`,m

)
,

where

Ai,j`,m =

ˆ
T`

ˆ
Tm

ϕi(x)ϕj(x)

|x− y|2+2s
dxdy, Bi,j`,m = −

ˆ
T`

ˆ
Tm

ϕi(x)ϕj+3(y)

|x− y|2+2s
dxdy

Ci,j`,m = −
ˆ
T`

ˆ
Tm

ϕi+3(y)ϕj(x)

|x− y|2+2s
dxdy, Di,j

`,m =

ˆ
T`

ˆ
Tm

ϕi+3(y)ϕj+3(y)

|x− y|2+2s
dxdy.

We use two nested Gaussian quadrature rules to estimate these integrals.
These have 6 quadrature nodes each, making a total of 36 quadrature points.
Let us denote by pk and wk (k = 1, . . . , 6) the quadrature nodes and weights

in T̂ , respectively. Changing variables we obtain

Ai,j`,m = 4|T`||Tm|
ˆ
T̂

ˆ
T̂

ϕ̂i(x)ϕ̂j(x)

|χ`(x)− χm(y)|2+2s
dxdy,
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and applying the quadrature rule twice, we derive:

(A.3) Ai,j`,m ≈ 4|T`||Tm|
6∑
q=1

6∑
k=1

wq wk ϕ̂i(pk)ϕ̂j(pk)

|χ`(pk)− χm(pq)|2+2s
.

Note that the right hand side summands only depend on i and j through
their numerators, and on ` and m through their denominators. As our goal
is to compute the whole block A`,m as efficiently as possible, we set the
following definitions:

• The matrix ΦA ∈ R9 ×R36 stores the numerators involved in (A.3),
corresponding to the 9 pairs of basis functions and the 36 pairs of
quadrature nodes, respectively. Namely,

(A.4) ΦA
ij = ϕ̂[i−1]3+1(pd j

6
e)ϕ̂d i3 e

(pd j
6
e)w[j−1]6+1wd j

6
e,

where [m]k denotes m modulo k and d·e is the ceiling function. Let
us make this definition more explicit. The matrix ΦA may be divided
in 6 blocks,

ΦA = (ΦA1 . . .ΦA6),

where ΦAk is a 6× 9 matrix:

ΦAk =



ϕ̂1(pk)ϕ̂1(pk)wkw1 ϕ̂1(pk)ϕ̂1(pk)wkw2 . . . ϕ̂1(pk)ϕ̂1(pk)wkw6

ϕ̂2(pk)ϕ̂1(pk)wkw1 ϕ̂2(pk)ϕ̂1(pk)wkw2 . . . ϕ̂2(pk)ϕ̂1(pk)wkw6

ϕ̂3(pk)ϕ̂1(pk)wkw1 ϕ̂3(pk)ϕ̂1(pk)wkw2 . . . ϕ̂3(pk)ϕ̂1(pk)wkw6

ϕ̂1(pk)ϕ̂2(pk)wkw1 ϕ̂1(pk)ϕ̂2(pk)wkw2 . . . ϕ̂1(pk)ϕ̂2(pk)wkw6

ϕ̂2(pk)ϕ̂2(pk)wkw1 ϕ̂2(pk)ϕ̂2(pk)wkw2 . . . ϕ̂2(pk)ϕ̂2(pk)wkw6

ϕ̂3(pk)ϕ̂2(pk)wkw1 ϕ̂3(pk)ϕ̂2(pk)wkw2 . . . ϕ̂3(pk)ϕ̂2(pk)wkw6

ϕ̂1(pk)ϕ̂3(pk)wkw1 ϕ̂1(pk)ϕ̂3(pk)wkw2 . . . ϕ̂1(pk)ϕ̂3(pk)wkw6

ϕ̂2(pk)ϕ̂3(pk)wkw1 ϕ̂2(pk)ϕ̂3(pk)wkw2 . . . ϕ̂2(pk)ϕ̂3(pk)wkw6

ϕ̂3(pk)ϕ̂3(pk)wkw1 ϕ̂3(pk)ϕ̂3(pk)wkw2 . . . ϕ̂3(pk)ϕ̂3(pk)wkw6


.

• The variable dm ∈ R36 is a vector storing the distances between all
the quadrature nodes involved:

(A.5) dmk =
∣∣∣χ`(p[k−1]6+1)− χm(pd k

6
e)
∣∣∣−(2+2s)

.
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Namely, the vector dm can be written as:

dm =



|χ`(p1)− χm(p1)|−(2+2s)

...

|χ`(p6)− χm(p1)|−(2+2s)

|χ`(p1)− χm(p2)|−(2+2s)

...

|χ`(p6)− χm(p2)|−(2+2s)

...

...

|χ`(p1)− χm(p6)|−(2+2s)

...

|χ`(p6)− χm(p6)|−(2+2s)



.

With these two variables in hand, the computation of the integrals Aij

may be done in a vectorized mode. Defining Â`,m := ΦA · dm, we obtain:

A
[i−1]3+1,d i

3
e

`,m ≈ 4|T`||Tm|Âi`,m

= 4|T`||Tm|
∑
q

∑
k

wqwk
ϕ̂[i−1]3+1(pk)ϕ̂d i

3
e(pk)

|χ`(pk)− χm(pq)|2+2s
, i ∈ {1, ..., 9}.

Equivalently, using MATLAB R© notation:

A`,m ≈ 4|T`||Tm| reshape(Â`,m, 3 , 3).

We apply the same ideas to computate the remaining blocks in (A.2). We
define:

• a 9× 36 matrix ΦB, such that

ΦB
ij = ϕ̂[i−1]3+1(pd j

n
e)ϕ̂d i3 e+3(p[j−1]n+1)w[j−1]n+1wd j

n
e,

• a 9× 36 matrix ΦD, such that

ΦD
ij = ϕ̂[i−1]3+4(p[j−1]n+1)ϕ̂d i

3
e+3(p[j−1]n+1)w[j−1]n+1wd j

n
e.

Then, considering

B̂`,m := ΦB · dm,

D̂`,m := ΦD · dm,
we just need to multiply

B`,m ≈ 4|T`||Tm|reshape(B̂`,m, 3 , 3),

D`,m ≈ 4|T`||Tm|reshape(D̂`,m, 3 , 3).
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Is simple to verify that C`,m = B′`,m, so that there is no need to make
additional operations to compute the block C`,m. Moreover, let us emphasize

that the matrices ΦA, ΦB and ΦD depend on the quadrature rule employed,
but not on the elements under consideration; these are precomputed and
stored in data.mat. We refer to Section C.2 for details on how this is done.
However, in the main loop, the vector dm needs to be calculated for every
1 ≤ ` ≤ m ≤ NT̂ .

We obtain a matrix ML as follows:

ML ≈ 4|T`||Tm|
(

reshape(ΦA · dm, 3 , 3) reshape(ΦB · dm, 3 , 3)

reshape(ΦB · dm, 3 , 3)’ reshape(ΦD · dm, 3 , 3)

)
.

In addition, this vectorized approach gives us an efficient way to compute I`,m for
several values of m ∈ {1, ..., NT̃ } at once. Indeed, suppose that want to calculate
I`,m for m ∈ S ⊆ {1, ..., NT̃ } (along the execution of the main code, S would

contain the indices listed in empty). It is possible to compute Â`,m, B̂`,m and D̂`,m

for all m ∈ S using vectorized operations as follows:(
Â`,m1

, ..., Â`,m#S

)
= ΦA · (dm1 , ..., dm#S ) ,(

B̂`,m1
, ..., B̂`,m#S

)
= ΦB · (dm1 , ..., dm#S ) ,(

D̂`,m1 , ..., D̂`,m#S

)
= ΦD · (dm1 , ..., dm#S ) .

Observe that, fixed ` and S, the distances between interpolation points of the
involved triangles are all the necessary information to obtain the estimation of the
matrix ML (given by (A.2)), for m ∈ S.

In order to perform an efficient computation of (dm1 , ..., dm#S ), we use the Mat-
lab function pdist2 in the following way:

(dm1 , ..., dm#S ) = reshape( pdist2(X`,


Xm1

Xm2

...
Xm#S

 ), n2, [] )(−1−s).

Here, the vectors Xm are given by

Xm :=

 χm(p1)
...

χm(p6)

 .

The computation of the matrix ML is carried in the main code, and it is implemented
in Subsection 5.2.

A.2. Vertex-touching elements. In case T` ∩ Tm consists of a vertex, define
ẑ = (x̂, ŷ), identify ẑ with a vector in R4, and split the domain of integration in
(A.1) into two components D1 and D2, where

D1 = {ẑ : 0 ≤ ẑ1 ≤ 1, 0 ≤ ẑ2 ≤ ẑ1, 0 ≤ ẑ3 ≤ ẑ1, 0 ≤ ẑ4 ≤ ẑ3},
D2 = {ẑ : 0 ≤ ẑ3 ≤ 1, 0 ≤ ẑ4 ≤ ẑ3, 0 ≤ ẑ1 ≤ ẑ3, 0 ≤ ẑ2 ≤ ẑ1}.
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Let ξ ∈ [0, 1] and η = (η1, η2, η3) ∈ [0, 1]3. We consider the mappings Th : [0, 1]×
[0, 1]3 → Dh, h = 1, 2,

T1(ξ, η) =


ξ
ξη1
ξη2
ξη2η3

 , T2(ξ, η) =


ξη2
ξη2η3
ξ
ξη1

 ,

having Jacobian determinants |JT1| = ξ3η2 = |JT2|.
We perform the calculations in detail only on D1. Observe that if i = 1, which

corresponds to the vertex in common between T` and Tm, then

ϕi(χ`(ξ, ξη1))− ϕi(χm(ξη2, ξη2η3)) = −ξ(1− η2).

Meanwhile, if the subindex i equals 2 or 3, it corresponds to one of the other two
vertices of T`. Therefore, in those cases ϕi(χm(ξη2, ξη2η3)) = 0, and

ϕ2(χ`(ξ, ξη1)) =ξ(1− η1),

ϕ3(χ`(ξ, ξη1)) =ξη1.

Analogously, if i ∈ {4, 5}, then ϕi(χ`(ξ, ξη1)) = 0 and so

ϕ4(χm(ξη2, ξη2η3)) =− ξη2(1− η3),

ϕ5(χm(ξη2, ξη2η3)) =− ξη2η3.

Thus, defining the functions ψ
(1)
k : [0, 1]3 → R (k ∈ {1, . . . , 5}),

ψ
(1)
1 (η) = η2 − 1, ψ

(1)
2 (η) = 1− η1, ψ

(1)
3 (η) = η1,

ψ
(1)
4 (η) = −η2(1− η3), ψ

(1)
5 (η) = −η2η3,

we may write

ˆ
D1

Fij(ẑ) dẑ =

ˆ
[0,1]

ˆ
[0,1]3

ψ
(1)
i (η)ψ

(1)
j (η)∣∣∣∣B`( ξ

ξη1

)
−Bm

(
ξη2
ξη2η3

)∣∣∣∣2+2s ξ
5η2 dη dξ

=

(ˆ 1

0

ξ3−2sdξ

)(ˆ
[0,1]3

ψ
(1)
i (η)ψ

(1)
j (η)∣∣d(1)(η)
∣∣2+2s η2 dη

)

=
1

4− 2s

(ˆ
[0,1]3

ψ
(1)
i (η)ψ

(1)
j (η)∣∣d(1)(η)
∣∣2+2s η2 dη

)
,

where we have defined the function

d(1)(η) = B`

(
1
η1

)
−Bm

(
η2
η2η3

)
.

Observe that in the first line of last equation (or equivalently, in (A.1)), the in-
tegrand is singular at the origin. The key point in the identity above is that the
singularity of the integral is explicitly computed. The function d(1) is not zero on
[0, 1]3, and therefore the last integral involves a regular integrand that is easily
estimated by means of a Gaussian quadrature rule.
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In a similar fashion, the integrals over D2 take the form

ˆ
D2

Fij(ẑ) dẑ =
1

4− 2s

(ˆ
[0,1]3

ψ
(2)
i (η)ψ

(2)
j (η)∣∣d(2)(η)
∣∣2+2s η2 dη

)
,

where

ψ
(2)
1 (η) = 1− η2, ψ

(2)
2 (η) = η2(1− η3), ψ

(2)
3 (η) = η2η3,

ψ
(2)
4 (η) = η1 − 1, ψ

(2)
5 (η) = −η1,

and

d(2)(η) = B`

(
η2
η2η3

)
−Bm

(
1
η1

)
.

Based on the previous analysis, we describe the function vertex_quad. Let
p1, ..., pn ∈ [0, 1]3 be a set of quadrature points and w1, ..., wn their respective
weights. In the code we present, we work with three nested three-point quadrature
rules on [0, 1], making a total of 27 quadrature nodes in the unit cube. The data
necessary to use this quadrature is supplied in the file data.mat, and in Appendix
C.1.

Set h ∈ {1, 2}. Then, applying the mentioned quadrature rule in the cube,

ˆ
[0,1]3

ψ
(h)
i (η)ψ

(h)
j (η)∣∣d(h)(η)
∣∣2+2s η2 dη ≈

27∑
k=1

wk
ψ
(h)
i (pk)ψ

(h)
j (pk)∣∣d(h)(pk)
∣∣2+2s pk,2,

where pk,2 denotes the second coordinate of the point pk. The right hand side only

depends on ` and m through d(h). So, in order to compute Ii,j`,m using vectorized

operations, we define the following variables, in analogy to (A.4) and (A.5):

• A 25× 27 matrix Ψh satisfying

Ψh
ij = wj ψ

(h)
[i−1]5+1(pj)ψ

(h)

d i
5 e

(pj) pj,2.

• A vector dh ∈ R27, such that

dhk =
∣∣∣d(h)(pk)

∣∣∣2+2s

.

Then, defining Î`,m := Ψ1 · d1 + Ψ2 · d2, we obtain

I
[i−1]5+1,d i

5 e
`,m ≈ 4|T`||Tm|

4− 2s
Îi`,m

=

2∑
h=1

27∑
k=1

wk
ψ
(h)
[i−1]5+1(pk)ψ

(h)

d i
5 e

(pk)∣∣d(h)(pk)
∣∣2+2s , i ∈ {1, ..., 25}.

Equivalently, using MATLAB R© notation:

I`,m ≈
4|T`||Tm|

4− 2s
reshape(Î`,m, 5 , 5).

Given that the matrices Ψ1 and Ψ2 do not change along the execution, we only
need to compute them once. These are precomputed and provided on the data file;
explicit information regarding its entries is available on Appendix C.3.

So, the function vertex_quad computes the previous quadrature rule in the
following way:
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function ML = vertex_quad (nodl,nodm,sh_nod,p,s,psi1,psi2,areal,aream,p_c)

xm = p(1, nodm);

ym = p(2, nodm);

xl = p(1, nodl);

yl = p(2, nodl);

x = p_c(:,1);

y = p_c(:,2);

z = p_c(:,3);

local_l = find(nodl==sh_nod);

nsh_l = find(nodl~=sh_nod);

nsh_m = find(nodm~=sh_nod);

p_c = [xl(local_l), yl(local_l)];

Bl = [xl(nsh_l(1))-p_c(1) xl(nsh_l(2))-xl(nsh_l(1));

yl(nsh_l(1))-p_c(2) yl(nsh_l(2))-yl(nsh_l(1))];

Bm = [xm(nsh_m(1))-p_c(1) xm(nsh_m(2))-xm(nsh_m(1));

ym(nsh_m(1))-p_c(2) ym(nsh_m(2))-ym(nsh_m(1))];

ML = ( 4*areal*aream/(4-2*s) ).*reshape(...

psi1*( sum( ([ones(length(x),1) x]*(Bl’)...

- [y , y.*z]*(Bm’) ).^2, 2 ).^(-1-s) ) +...

psi2*( sum( ([ones(length(x),1) x]*(Bm’)...

- [y , y.*z]*(Bl’) ).^2, 2 ).^(-1-s) )...

, 5 , 5);

end

In the code above, nodl and nodm are the vertex indices of T` and Tm respectively,
sh_nod is the index of the shared node, p is an array that contains all the vertex
coordinates, areal and aream denote |T`| and |Tm| respectively, s is s, and p_c

contains the coordinates of the quadrature points on [0, 1]3. This last variable is
gathered form data.mat, where it is stored as p_cube (see Appendix C.1). In
addition, Bl and Bm play the role of B` and Bm, and psi1 and psi2 are Ψ1 and Ψ2

respectively. As we mentioned, psi1 and psi2 have been pre-computed and stored
on data.mat as vpsi1 and vpsi2 respectively (see Appendix C.3).

The output of vertex_quad is a 6× 6 matrix ML that satisfies ML(i,j) ≈ Ii,j`,m.

A.3. Edge-touching elements. In this case, the parametrization of the elements
we are considering is such that both χ` and χm map [0, 1]×{0} to the common edge
between T` and Tm. Therefore, if we consider ẑ = (ŷ1 − x̂1, ŷ2, x̂2), the singularity
of the integrand is localized at ẑ = 0:

Ii,j`,m = 4|T`||Tm|
ˆ 1

0

ˆ 1−x̂1

−x̂1

ˆ ẑ1+x̂1

0

ˆ x̂1

0

Fij(x̂1, ẑ3, x̂1 + ẑ1, ẑ2) dẑ dx̂1.

We decompose the domain of integration as ∪5k=1Dk, where

D1 = {(x̂1, ẑ) : − 1 ≤ ẑ1 ≤ 0, 0 ≤ ẑ2 ≤ 1 + ẑ1,

0 ≤ ẑ3 ≤ ẑ2 − ẑ1, ẑ2 − ẑ1 ≤ x̂1 ≤ 1},
D2 = {(x̂1, ẑ) : − 1 ≤ ẑ1 ≤ 0, 0 ≤ ẑ2 ≤ 1 + ẑ1,

ẑ2 − ẑ1 ≤ ẑ3 ≤ 1, ẑ3 ≤ x̂1 ≤ 1},
D3 = {(x̂1, ẑ) : 0 ≤ ẑ1 ≤ 1, 0 ≤ ẑ2 ≤ ẑ1,
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0 ≤ ẑ3 ≤ 1− ẑ1, ẑ3 ≤ x̂1 ≤ 1− ẑ1},
D4 = {(x̂1, ẑ) : 0 ≤ ẑ1 ≤ 1, ẑ1 ≤ ẑ2 ≤ 1,

0 ≤ ẑ3 ≤ ẑ2 − ẑ1, ẑ2 − ẑ1 ≤ x̂1 ≤ 1− ẑ1},
D5 = {(x̂1, ẑ) : 0 ≤ ẑ1 ≤ 1, ẑ1 ≤ ẑ2 ≤ 1,

ẑ2 − ẑ1 ≤ ẑ3 ≤ 1− ẑ1, ẑ3 ≤ x̂1 ≤ 1− ẑ1}.

Consider the mappings Tk : [0, 1]× [0, 1]3 → Dk (k ∈ {1, . . . , 5}),

T1

(
ξ
η

)
=


ξ

−ξη1η2
ξη1(1− η2)
ξη1η3

 , T2

(
ξ
η

)
=


ξ

−ξη1η2η3
ξη1η2(1− η3)

ξη1

 ,

T3

(
ξ
η

)
=


ξ(1− η1η2)
ξη1η2
ξη1η2η3

ξη1(1− η2)

 , T4

(
ξ
η

)
=


ξ(1− η1η2η3)
ξη1η2η3
ξη1

ξη1η2(1− η3)

 ,

T5

(
ξ
η

)
=


ξ(1− η1η2η3)
ξη1η2η3
ξη1η2

ξη1(1− η2η3)

 ,

with Jacobian determinants given by

|JT1| = ξ3η21 , |JTh| = ξ3η21η2, h ∈ {2, . . . , 5}.

Then, over Dh it holds that

ˆ
Dh

Fij =
1

4− 2s

ˆ
[0,1]3

ψ
(h)
i (η)ψ

(h)
j (η)

|d(h)(η)|2+2s
J (h)(η) dη,

where

ψ
(1)
1 (η) = −η1η2, ψ

(1)
2 (η) = η1(1− η3),

ψ
(1)
3 (η) = η1η3, ψ

(1)
4 (η) = −η1(1− η2),

ψ
(2)
1 (η) = −η1η2η3, ψ

(2)
2 (η) = −η1(1− η2),

ψ
(2)
3 (η) = η1, ψ

(2)
4 (η) = −η1η2(1− η3),

ψ
(3)
1 (η) = η1η2, ψ

(3)
2 (η) = −η1(1− η2η3),

ψ
(3)
3 (η) = η1(1− η2), ψ

(3)
4 (η) = −η1η2η3,

ψ
(4)
1 (η) = η1η2η3, ψ

(4)
2 (η) = η1(1− η2),

ψ
(4)
3 (η) = η1η2(1− η3), ψ

(4)
4 (η) = −η1,

ψ
(5)
1 (η) = η1η2η3, ψ

(5)
2 (η) = −η1(1− η2),

ψ
(5)
3 (η) = η1(1− η2η3), ψ

(5)
4 (η) = −η1η2.

Moreover, the functions d(h) are given by

d(1)(η) = B`

(
1

η1η3

)
−Bm

(
1− η1η2
η1(1− η2)

)
,
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d(2)(η) = B`

(
1
η1

)
−Bm

(
1− η1η2η3
η1η2(1− η3)

)
,

d(3)(η) = B`

(
1− η1η2
η1(1− η2)

)
−Bm

(
1

η1η2η3

)
,

d(4)(η) = B`

(
1− η1η2η3
η1η2(1− η3)

)
−Bm

(
1
η1

)
,

d(5)(η) = B`

(
1− η1η2η3
η1(1− η2η3)

)
−Bm

(
1

η1η2

)
,

and the Jacobians are

J (1)(η) = η21 , J (h)(η) = η21η2, h ∈ {2, . . . , 5}.

As in the case of vertex-touching elements, the problem is reduced to computing
integrals on the unit cube. Let p1, ..., p27 ∈ [0, 1]3 the quadrature points, and
w1, ..., w27 their respective weights. For h = 1, . . . , 5 we have

ˆ
[0,1]3

ψ
(h)
i (η)ψ

(h)
j (η)∣∣d(h)(η)
∣∣2+2s J (h)(η) dη ≈

∑
k

wk
ψ
(h)
i (pk)ψ

(h)
j (pk)∣∣d(h)(pk)
∣∣2+2s J (h)(pk).

Once more, the right hand side only depends on ` and m through d(h). So, with
the purpose of computing I`,m efficiently, we define:

• A matrix Ψh ∈ R16×27, given by

Ψh
ij = wj ψ[i−1]4+1(pj)ψd i

4 e
(pj)J

(h)(pj).

• A vector dh ∈ R27, such that

dhk =
∣∣∣d(h)(pk)

∣∣∣2+2s

.

Therefore, considering Î`,m = Ψ1 ·d1 + · · ·+ Ψ5 ·d5, we reach the following relation:

I
[i−1]4+1,d i

4 e
`,m ≈ 4|T`||Tm|

4− 2s
Îi`,m

=
∑
h

∑
k

wk
ψ
(h)
[i−1]4+1(pk)ψ

(h)

d i
4 e

(pk)∣∣d(h)(pk)
∣∣2+2s , i ∈ {1, ..., 16}.

Using MATLAB R© notation,

I`,m ≈
4|T`||Tm|

4− 2s
reshape(Î`,m, 4 , 4).

As before, the matrices Ψ1, . . . , Ψ5 do not depend on the elements under con-
sideration, so they are precomputed and provided in data.mat, where they are
stored as epsi1, . . . , epsi5, respectively. Details about their calculation are given
in Appendix C.4.

The function edge_quad performs the calculations we have explained in this
section.

function ML = edge_quad(nodl,nodm,nod_diff,p,s,psi1,psi2,psi3,...

psi4,psi5,areal,aream,p_c)

xm = p(1, nodm);

ym = p(2, nodm);
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xl = p(1, nodl);

yl = p(2, nodl);

x = p_c(:,1);

y = p_c(:,2);

z = p_c(:,3);

local_l = find(nodl~=nod_diff(1));

nsh_l = find(nodl==nod_diff(1));

nsh_m = find(nodm==nod_diff(2));

P1 = [xl(local_l(1)), yl(local_l(1))];

P2 = [xl(local_l(2)), yl(local_l(2))];

Bl = [P2(1)-P1(1) -P2(1)+xl(nsh_l);

P2(2)-P1(2) -P2(2)+yl(nsh_l)];

Bm = [P2(1)-P1(1) -P2(1)+xm(nsh_m);

P2(2)-P1(2) -P2(2)+ym(nsh_m)];

ML = ( 4*areal*aream/(4-2*s) ).*reshape(...

psi1*( sum( ([ones(length(x),1) x.*z]*(Bl’)...

- [1-x.*y x.*(1-y)]*(Bm’) ).^2, 2 ).^(-1-s) ) +...

psi2*( sum( ([ones(length(x),1) x]*(Bl’)...

- [1-x.*y.*z x.*y.*(1-z)]*(Bm’) ).^2, 2 ).^(-1-s) ) +...

psi3*( sum( ([(1-x.*y) x.*(1-y)]*(Bl’)...

- [ones(length(x),1) x.*y.*z]*(Bm’) ).^2, 2 ).^(-1-s) ) +...

psi4*( sum( ([1-x.*y.*z x.*y.*(1-z)]*(Bl’)...

- [ones(length(x),1) x]*(Bm’) ).^2, 2 ).^(-1-s) ) +...

psi5*( sum( ([1-x.*y.*z x.*(1-y.*z)]*(Bl’)...

- [ones(length(x),1) x.*y]*(Bm’) ).^2, 2 ).^(-1-s) )...

, 4 , 4);

end

Here, nodl and nodm are the indices of the vertices of T` and Tm respectively,
nod_diff contains the not-shared-vertex index, p is an array that contains all the
vertex coordinates, areal and aream are |T`| and |Tm| respectively, s is s, p_c

contains the coordinates of the quadrature points on [0, 1]3 (stored in data.mat,
see Appendix C.1), Bl and Bm are B` and Bm, and psi1, ..., psi5 are Ψ1, . . . ,Ψ5

respectively.

The output of this function is a 4× 4 matrix ML ≈ I`,m.

A.4. Identical elements. In the same spirit as before, let us consider ẑ = ŷ − x̂,
so that

I`,` = 4|T`|2
ˆ 1

0

ˆ x̂1

0

ˆ 1−x̂1

−x̂1

ˆ ẑ1+x̂1−x̂2

−x̂2

Fij(x̂1, x̂2, x̂1 + ẑ1, x̂2 + ẑ2) dẑ2 dẑ1 dx̂2 dx̂1.
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Let us decompose the integration region into

D1 = {(x̂, ẑ) : − 1 ≤ ẑ1 ≤ 0, −1 ≤ ẑ2 ≤ ẑ1,
− ẑ2 ≤ x̂1 ≤ 1, −ẑ2 ≤ x̂2 ≤ x̂1},

D2 = {(x̂, ẑ) : 0 ≤ ẑ1 ≤ 1, ẑ1 ≤ ẑ2 ≤ 1,

ẑ2 − ẑ1 ≤ x̂1 ≤ 1− ẑ1, 0 ≤ x̂2 ≤ ẑ1 − ẑ2 + x̂1},
D3 = {(x̂, ẑ) : − 1 ≤ ẑ1 ≤ 0, ẑ1 ≤ ẑ2 ≤ 0,

− ẑ1 ≤ x̂1 ≤ 1, −ẑ2 ≤ x̂2 ≤ x̂1 + ẑ1 − ẑ2},
D4 = {(x̂, ẑ) : 0 ≤ ẑ1 ≤ 1, 0 ≤ ẑ2 ≤ ẑ1,

0 ≤ x̂1 ≤ 1− ẑ1, 0 ≤ x̂2 ≤ x̂1},
D5 = {(x̂, ẑ) : − 1 ≤ ẑ1 ≤ 0, 0 ≤ ẑ2 ≤ 1 + ẑ1,

ẑ2 − ẑ1 ≤ x̂1 ≤ 1, 0 ≤ x̂2 ≤ x̂1 + ẑ1 − ẑ2},
D6 = {(x̂, ẑ) : 0 ≤ ẑ1 ≤ 1, −1 + ẑ1 ≤ ẑ2 ≤ 0,

− ẑ2 ≤ x̂1 ≤ 1− ẑ1, −ẑ2 ≤ x̂2 ≤ x̂1}.

(A.6)

We begin by considering the first two sets. Making the change of variables
(x̂′, ẑ′) = (x̂,−ẑ) on D1 and (x̂′, ẑ′) = (x̂+ẑ, ẑ) on D2, both regions are transformed
into

D′1 = {(x̂′, ẑ′) : 0 ≤ ẑ′1 ≤ 1, ẑ′1 ≤ ẑ′2 ≤ 1, ẑ′2 ≤ x̂′1 ≤ 1, ẑ′2 ≤ x̂′2 ≤ x̂′1},

so that

4|T`|2
ˆ
D1∪D2

Fij(x̂, x̂+ ẑ) = 4|T`|2
ˆ
D′

1

Fij(x̂
′, x̂′ − ẑ′) + Fij(x̂

′ − ẑ′, x̂′) dx̂′ dẑ′

= 8|T`|2
ˆ
D′

1

Fij(x̂
′, x̂′ − ẑ′) dx̂′ dẑ′,

because

Fij(x̂
′, x̂′ − ẑ′) =

(ϕ̂i(x̂
′)− ϕ̂i(x̂′ − ẑ′))(ϕ̂j(x̂′)− ϕ̂j(x̂′ − ẑ′))

|B`(ẑ′)|2+2s
= Fij(x̂

′ − ẑ′, x̂′).

Next, consider the four-dimensional simplex

D = {w : 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ w1, 0 ≤ w3 ≤ w2, 0 ≤ w4 ≤ w3},

the map T1 : D → D′1,

(
x̂′

ẑ′

)
= T1


w1

w2

w3

w4

 =


w1,

w1 − w2 + w3,
w4,
w3

 , |JT1| = 1,

and the Duffy-type transform T : [0, 1]4 → D,

(A.7) w = T

(
ξ
η

)
=


ξ,
ξη1,
ξη1η2,
ξη1η2η3

 , |JT | = ξ3η21η2.
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The composition of these two changes of variables allows to write the variables
in Fij in terms of (ξ, η) in the following way:

x̂′ =

(
ξ

ξ(1− η1 + η1η2)

)
, ẑ′ =

(
ξη1η2η3
ξη1η2

)
, x̂− ẑ′ =

(
ξ(1− η1η2η3)
ξ(1− η1)

)
.

Observe that

Λ
(1)
k (ξ, η) := ϕ̂k(x̂′)− ϕ̂k(x̂′ − ẑ′) =


−ξη1η2η3 if k = 1,

−ξη1η2(1− η3) if k = 2,

ξη1η2 if k = 3.

Thus,

4|T`|2
ˆ
D1∪D2

Fij(x̂, x̂+ ẑ) = 8|T`|2
ˆ
D

Fij(w1, w1 − w2 + w3, w4, w3) dw =

= 8|T`|2
ˆ
[0,1]4

Λ
(1)
i (ξ, η) Λ

(1)
j (ξ, η)∣∣∣∣B`( ξη1η2η3

ξη1η2

)∣∣∣∣2+2s ξ
3η21η2 dξ dη.

Finally, as the functions Λ
(1)
k may be rewritten as Λ

(1)
k (ξ, η) = ξη1η2ψ

(1)
k (η3), where

ψ
(1)
1 (η3) = −η3, ψ

(1)
2 (η3) = −(1− η3), ψ

(1)
3 (η3) = 1,

we obtain

4|T`|2
ˆ
D1∪D2

Fij(x̂, x̂+ ẑ) =

= 8|T`|2
ˆ 1

0

ξ3−2sdξ

ˆ 1

0

η2−2s1 dη1

ˆ 1

0

η1−2s2 dη2

ˆ 1

0

ψ
(1)
i (η3)ψ

(1)
j (η3)∣∣∣∣B`( η3

1

)∣∣∣∣2+2s dη3.

Obviously, the first three integrals above are straightforwardly calculated by
hand, and the last one involves a regular integrand, so that it is easily estimated
by means of a Gaussian quadrature rule.

It still remains to perform similar calculations on the rest of the sets in (A.6).
Consider the new variables (x̂′, ẑ′) = (x̂,−ẑ) on D3, (x̂′, ẑ′) = (x̂ + ẑ, ẑ) on D4,
(x̂′, ẑ′) = (x̂+ ẑ, ẑ) on D5 and (x̂′, ẑ′) = (x̂,−ẑ) on D6, so that

4|T`|2
ˆ
D3∪D4

Fij(x̂, x̂+ ẑ) = 8|T`|2
ˆ
D′

2

Fij(x̂
′, x̂′ − ẑ′) dx̂′ dẑ′,

4|T`|2
ˆ
D5∪D6

Fij(x̂, x̂+ ẑ) = 8|T`|2
ˆ
D′

3

Fij(x̂
′, x̂′ − ẑ′) dx̂′ dẑ′,

where

D′2 = {(x̂′, ẑ′) : 0 ≤ ẑ′1 ≤ 1, 0 ≤ ẑ′2 ≤ ẑ′1, ẑ′1 ≤ x̂′1 ≤ 1, ẑ′2 ≤ x̂′2 ≤ x̂′1 − ẑ′1 + ẑ′2},
D′3 = {(x̂′, ẑ′) : − 1 ≤ ẑ′1 ≤ 0, 0 ≤ ẑ′2 ≤ 1 + ẑ′1, ẑ

′
2 ≤ x̂′1 ≤ 1 + ẑ′1, ẑ

′
2 ≤ x̂′2 ≤ x̂′1}.
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These domains are transformed into [0, 1]4 by the respective composition of the
transformations Th : D → D′h (h = 1, 2)

T2


w1

w2

w3

w4

 =


w1

w2 − w3 + w4

w3

w4

 , T3


w1

w2

w3

w4

 =


w1 − w4

w2 − w4

−w4

w3 − w4

 ,

and the Duffy transformation (A.7). Simple calculations lead finally to

4|T`|2
ˆ
D3∪D4

Fij(x̂, x̂+ ẑ) =
8|T`|2

(4− 2s)(3− 2s)(2− 2s)

ˆ 1

0

ψ
(2)
i (η3)ψ

(2)
j (η3)∣∣∣∣B`( 1

η3

)∣∣∣∣2+2s dη3,

4|T`|2
ˆ
D5∪D6

Fij(x̂, x̂+ ẑ) =
8|T`|2

(4− 2s)(3− 2s)(2− 2s)

ˆ 1

0

ψ
(3)
i (η3)ψ

(3)
j (η3)∣∣∣∣B`( η3

1− η3

)∣∣∣∣2+2s dη3,

where

ψ
(2)
1 (η3) = −1, ψ

(2)
2 (η3) = 1− η3, ψ

(2)
3 (η3) = η3,

ψ
(3)
1 (η3) = η3, ψ

(3)
2 (η3) = −1, ψ

(3)
3 (η3) = 1− η3.

For the sake of simplicity of notation, we write

d(1)(x) :=

∣∣∣∣B`( x
1

)∣∣∣∣2+2s

, d(2)(x) :=

∣∣∣∣B`( 1
x

)∣∣∣∣2+2s

,

d(3)(x) :=

∣∣∣∣B`( x
1− x

)∣∣∣∣2+2s

.

In order to estimate the integrals in the unit interval, we use a 9 point Gaussian
quadrature rule. Let p1, . . . , p9 ∈ [0, 1] the quadrature points, and w1, ..., w9 their
respective weights. Considering the integrals over the domains D′h (h ∈ {1, 2, 3}),
we may write

ˆ 1

0

ψ
(h)
i (η)ψ

(h)
j (η)

d(h)(η)
dη ≈

9∑
k=1

wk
ψ
(h)
i (pk)ψ

(h)
j (pk)

d(h)(pk)
.

As before, we take advantage of the fact that the integrand only depends on `
through its denominator. We define:

• A 9× 9 matrix Ψh, such that

Ψh
ij = wj ψ[i−1]3+1(pj)ψd i

3 e
(pj) J

(h)(pj).

• A vector dh ∈ R9, given by

dhk = d(h)(pk).

Setting Î`,m := Ψ1 · d1 + Ψ2 · d2 + Ψ3 · d3, we obtain, for i ∈ {1, ..., 9},

I
[i−1]3+1,d i

3 e
`,m ≈ 8|T`|2

(4− 2s)(3− 2s)(2− 2s)
Îi`,m
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=
8|T`|2

(4− 2s)(3− 2s)(2− 2s)

3∑
h=1

9∑
k=1

wk
ψ
(h)
[i−1]3+1(pk)ψ

(h)

d i
3 e

(pk)

d(h)(pk)
,

or in MATLAB R© notation,

I`,m ≈
8|T`|2

(4− 2s)(3− 2s)(2− 2s)
reshape(Î`,m, 3 , 3).

The matrices Ψ1, Ψ2 and Ψ3 are supplied by data.mat, where they are respectively
saved as tpsi1, tpsi2 and tpsi3.

The code of the function triangle_quad is as follows.

function ML = triangle_quad(Bl,s,psi1,psi2,psi3,areal,p_I)

ML = ( 8*areal*areal/((4-2*s)*(3-2*s)*(2-2*s)) ).*reshape(...

psi1*( ( sum( (Bl*[p_I’; ones(1,length(p_I))]).^2 ).^(-1-s) )’ ) +...

psi2*( ( sum( (Bl*[ones(1,length(p_I)) ; p_I’]).^2 ).^(-1-s) )’ ) + ...

psi3*( ( sum( (Bl*[p_I’ ; p_I’ - ones(1,length(p_I))]).^2 ).^(-1-s) )’ ) ...

, 3 , 3);

end

The matrix Bl plays the role of B`, s is s, areal is |T`|, and p_I contains the values
of the quadrature points in [0, 1]. The latter are stored in data.mat under the same
name, see Appendix C.1. The matrices Ψ1, Ψ2 and Ψ3 are respectively saved as
psi1, psi2 and psi3.

The output ML of this function is a 3× 3 matrix, such that: ML ≈ I`,`.

A.5. Complement. Recall that we are assuming that the domain Ω is contained
in a ball B = B(0, R). Here we are considering the interaction of two basis functions
ϕi, ϕj such that supp(ϕi) ∩ supp(ϕj) = T`, over the region T` × Bc. Namely, we
aim to compute

J` =

ˆ
T`

ˆ
Bc

ϕi(x)ϕj(x)

|x− y|2+2s
dydx =

ˆ
T`

ϕi(x)ϕj(x)ψ(x) dx

= 2|T`|
ˆ
T̂

ϕ̂i(x̂)ϕ̂j(x̂)ψ(χ`(x̂)) dx̂,

where

ψ(x) =

ˆ
Bc

1

|x− y|2+2s
dy.

The integral above may be calculated by a Gauss quadrature rule in the reference
element T̂ , provided that the values of ψ at the quadrature points are computed.

Observe that the function ψ is radial (see Figure 5) and therefore it suffices to
estimate it on points of the form x = (x1, 0), where x1 > 0. For a fixed point x
and given θ ∈ [0, 2π], let ρ0(θ) be the distance between x and the intersection of
the ray starting from x with angle θ with respect to the horizontal axis. Then, it
is simple to verify that

ρ0(θ, x) = −x1 cos θ +

√
R2 − x21 sin2 θ,

and therefore, integrating in polar coordinates,

ψ(x) =
1

2s

ˆ 2π

0

1

ρ0(θ, x)2s
dθ.
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x = (x1, 0)

ρ0(θ, x)

θ

Figure 5. Computing ψ(x) in a point of B = B(0, R). Due
to the symmetry, the value of ψ is the same along the dashed
circle, hence we may assume that x = (x1, 0) and 0 ≤ x1 < R.
For any 0 ≤ θ ≤ π , the function ρ0 is given by ρ0(θ, x) =

−x1 cos θ +
√
R2 − x2

1 sin2 θ.

In order to compute J` we perform two nested quadrature rules: one over T̂
and, for each quadrature point pk in T̂ , another one to estimate ψ(pk) over [0, 2π].

We apply a 12 point quadrature formula over T̂ and a 9 point one on [0, 2π]. Let

p1, . . . , p12 ∈ T̂ , θ1, . . . , θ9 ∈ [0, 2π] be these quadrature nodes, and w1, . . . , w12,
W1, . . . ,W9 their respective weights. Applying the rules we obtain

J` ≈
|T`|
s

12∑
k=1

wkϕ̂i(pk)ϕ̂j(pk)

9∑
q=1

Wq

ρ0(θq, χ`(pk))2s
.

In the same fashion as for the other computations, we write the previous expres-
sion as the product of a pre-computed matrix (that only depends on the choice of
the quadrature rules) times a vector that depends on the elements under consider-
ation. Indeed, we define:

• A matrix Φ ∈ R9×12, such that

Φij = wj ϕ̂[i−1]3+1(pj)ϕ̂d i
3 e

(pj).

• A vector ρ ∈ R12, such that

ρk =
∑
q

Wq

ρ0(θq, χ`(pk))2s
.

Upon defining Ĵ` := Φ · ρ, we obtain

J
[i−1]3+1,d i

3 e
` ≈ |T`|

s
Ĵ i` , i ∈ {1, ..., 9}.

Using MATLAB R© notation, the above identity may be written as

J` ≈
|T`|
s

reshape(Ĵ`, 3 , 3).

The function comp_quad perform the previous computations.
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function ML = comp_quad(Bl, x0, y0, s , phi , R, areal , p_I , w_I , p_T)

x = (Bl*p_T’)’ + [x0.*ones(length(p_T),1) , y0.*ones(length(p_T),1)];

aux = x(:,1)*cos(2*pi*p_I’) + x(:,2)*sin(2*pi*p_I’);

weight = ( ( -aux + sqrt( aux.^2 + R^2 - ( x(:,1).^2 +...

x(:,2).^2 )*ones(1,length(p_I)) ) ).^(-2*s) )*w_I;

ML = (areal*2*pi/s).*reshape( phi*weight , 3 , 3);

end

Recall the parametrization χ`(x̂) = B`x̂+x
(1)
` , so that Bl, x0 and y0 satisfy Bl = B`

and

(
x0

y0

)
= x

(1)
` . Moreover, s is s, areal is |T`|, p_I contains the quadrature

points in the interval [0, 1], so that 2πp_I(q) = θq, w_I(q) = Wq, p_T contains 12

quadrature points over T̂ , stored in data.mat as p_T_12 (see Appendix C.1) and
phi is the matrix Φ, that is pre-computed and stored in data.mat as cphi (see
Appendix C.6).

The output ML satisfies ML ≈ 2J`.

Appendix B. Two auxiliary functions

The main code uses two functions that have not been outlined yet. Here we show
them in detail.

The function setdiff_ takes as input two vectors A and B, such that A contains
consecutive positive integers, ordered low to high, B contains positive integers and is
such that length(B) ≤ length(A) and max(B) ≤ max(A). The function computes
the set difference A \ B, taking advantage of the pre-condition.

function e = setdiff_( A , B )

e = A;

b = B - A(1) + 1;

b( b<1 )=[];

e(b) = [];

end

On the other hand, the function fquad calculates the entries of the right hand
side vector in (3.2). Taking as input areal := |T`|, the vectors xl and yl, that
contain the x and y coordinates of the vertices respectively, and a function f , fquad
returns a vector in R3 array such that

fquadk ≈
ˆ
T`

f ϕik .

Here, for k ∈ {1, 2, 3}, ik denotes the index of the k-th vertex of T` and ϕik the
basis function corresponding to it.

function VL = fquad( areal, xl , yl , f )

VL = zeros(3,1);

xmid = [(xl(2)+xl(3))/2, (xl(1)+xl(3))/2, (xl(1)+xl(2))/2];

ymid = [(yl(2)+yl(3))/2, (yl(1)+yl(3))/2, (yl(1)+yl(2))/2];

for i=1:3

for j=1:3

if j~=i
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VL(i) = VL(i) + areal/6 * f(xmid(j), ymid(j));

end

end

end

end

Appendix C. Auxiliary data

In order to perform the necessary calculations efficiently, along the execution the
code makes use of pre-computed data, stored in data.mat. Here we describe the
variables provided by this file. It is convenient to clarify that all the MATLAB R©

code showed in this section does not belong to the program itself. It is included
with an illustrative purpose.

C.1. Quadrature points and weights: p cube, p T, p T comp, p I and w I.
We list the quadrature points used in all the quadrature rules and their respective
weights.

The matrix p_cube is used as input on functions vertex_quad and edge_quad,
and contains 27 quadrature points over [0, 1]3.

p_cube =

0.1127 0.1127 0.1127

0.1127 0.1127 0.5000

0.1127 0.1127 0.8873

0.1127 0.5000 0.1127

0.1127 0.5000 0.5000

0.1127 0.5000 0.8873

0.1127 0.8873 0.1127

0.1127 0.8873 0.5000

0.1127 0.8873 0.8873

0.5000 0.1127 0.1127

0.5000 0.1127 0.5000

0.5000 0.1127 0.8873

0.5000 0.5000 0.1127

0.5000 0.5000 0.5000

0.5000 0.5000 0.8873

0.5000 0.8873 0.1127

0.5000 0.8873 0.5000

0.5000 0.8873 0.8873

0.8873 0.1127 0.1127

0.8873 0.1127 0.5000

0.8873 0.1127 0.8873

0.8873 0.5000 0.1127

0.8873 0.5000 0.5000

0.8873 0.5000 0.8873

0.8873 0.8873 0.1127

0.8873 0.8873 0.5000

0.8873 0.8873 0.8873
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Over T̂ , we use two different quadrature rules, with 6 and 12 points. The set of
nodes p_T_6 is used to compute the non-touching element case and p_T_12 as an
input on comp_quad.

p_T_6 =

0.5541 0.4459

0.5541 0.1081

0.8919 0.4459

0.9084 0.0916

0.9084 0.8168

0.1832 0.0916

p_T_12 =

0.7507 0.2493

0.7507 0.5014

0.4986 0.2493

0.9369 0.0631

0.9369 0.8738

0.1262 0.0631

0.6896 0.6365

0.3635 0.0531

0.9469 0.3104

0.3635 0.3104

0.6896 0.0531

0.9469 0.6365

The 9×1 array p_I contains the quadrature points over [0, 1], and w_I is a 9×1
array that contains their respective weights. These variables are used as input on
comp_quad. The set of nodes p_I is also employed in triangle_quad.

p_I = w_I =

0.5000 0.1651

0.0820 0.0903

0.9180 0.0903

0.0159 0.0406

0.9841 0.0406

0.3379 0.1562

0.6621 0.1562

0.8067 0.1303

0.1933 0.1303

C.2. Auxiliary variables to compute non-touching elements case: phiA,
phiB and phiD. The variables phiA, phiB and phiD play the role of ΦA , ΦB and
ΦD (defined in Appendix A.1), respectively. We expose below the code used to
set up these variables. We use the lists p_T_6 and w_T_6 of quadrature points and

weights in T̂ defined in Appendix C.1:
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w_T_6 = zeros(6,1);

w_T_6(1) = 0.1117;

w_T_6(2) = w_T_6(1);

w_T_6(3) = w_T_6(1);

w_T_6(4) = 0.0550;

w_T_6(5) = w_T_6(4);

w_T_6(6) = w_T_6(4);

local = cell(1,6);

local{1} = @(x,y) 1-x;

local{2} = @(x,y) x-y;

local{3} = @(x,y) y;

local{4} = @(x,y) -(1-x);

local{5} = @(x,y) -(x-y);

local{6} = @(x,y) -y;

mat_loc = zeros(6);

for i = 1:6

for j = 1:6

mat_loc(i,j) = local{i}(p_T_6(j,1),p_T_6(j,2));

end

end

W = w_T_6*(w_T_6’);

M_aux = zeros(18);

N_aux = zeros(18);

L_aux = zeros(18);

phiB = zeros(9,36);

phiA = zeros(9,36);

phiD = zeros(9,36);

for i=1:3

for j=1:3

for k = 1:6

for q=1:6

M_aux( q + 6*(i-1) , k + 6*(j-1) ) =...

W(q,k)*mat_loc(i,q)*mat_loc(j+3,k);

N_aux( q + 6*(i-1) , k + 6*(j-1) ) =...

W(q,k)*mat_loc(i,q)*mat_loc(j,q);

L_aux( q + 6*(i-1) , k + 6*(j-1) ) =...

W(q,k)*mat_loc(i+3,k)*mat_loc(j+3,k);

end

end

end

end

for i=1:9
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[im jm] = ind2sub([3 3] , i);

im = 6*(im - 1) + 1;

jm = 6*(jm - 1) + 1;

phiB(i,:) = reshape( M_aux( im:im+5 , jm:jm+5 ) , 1 , [] );

phiA(i,:) = reshape( N_aux( im:im+5 , jm:jm+5 ) , 1 , [] );

phiD(i,:) = reshape( L_aux( im:im+5 , jm:jm+5 ) , 1 , [] );

end

C.3. Auxiliary variables to compute vertex-touching elements case: vpsi1
and vpsi2. The variables vpsi1 and vpsi2 are used as arguments of the function
vertex_quad and play the role of the matrices Ψ1 and Ψ2 defined in Appendix A.2.
Below we show the code used to initialize these variables.

First we define a variable w_cube that lists the weights associated with each
quadrature point stored in p_cube:

w_cube =

0.0214

0.0343

0.0214

0.0343

0.0549

0.0343

0.0214

0.0343

0.0214

0.0343

0.0549

0.0343

0.0549

0.0878

0.0549

0.0343

0.0549

0.0343

0.0214

0.0343

0.0214

0.0343

0.0549

0.0343

0.0214

0.0343

0.0214

The following lines generate vpsi1 and vpsi2:

psi_D1 = cell(5,1);

psi_D1{1} = @(x,y,z) y-1;

psi_D1{2} = @(x,y,z) 1-x;
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psi_D1{3} = @(x,y,z) x;

psi_D1{4} = @(x,y,z) -y.*(1-z);

psi_D1{5} = @(x,y,z) -y.*z;

psi_D2 = cell(5,1);

psi_D2{1} = @(x,y,z) -(y-1);

psi_D2{2} = @(x,y,z) y.*(1-z);

psi_D2{3} = @(x,y,z) y.*z;

psi_D2{4} = @(x,y,z) -(1-x);

psi_D2{5} = @(x,y,z) -x;

vpsi1 = zeros(25,27);

vpsi2 = zeros(25,27);

for i = 1:5

for j = 1:5

f1 = @(x,y,z) psi_D1{i}(x,y,z).*psi_D1{j}(x,y,z).*y;

f2 = @(x,y,z) psi_D2{i}(x,y,z).*psi_D2{j}(x,y,z).*y;

vpsi1( sub2ind([5 5], i , j) , : ) =...

( f1( p_cube(:,1) ,p_cube(:,2) , p_cube(:,3)) ).*w_cube;

vpsi2( sub2ind([5 5], i , j) , : ) =...

( f2( p_cube(:,1) , p_cube(:,2) , p_cube(:,3)) ).*w_cube;

end

end

C.4. Auxiliary variables to compute edge-touching elements case: epsi1,
..., epsi5. The variables epsi1, ..., epsi5 are used as input on the function
edge_quad and play the role of Ψ1, ..., Ψ5 defined in Appendix A.3, respectively.
The code employed to set up these variables is exhibited below. We used the vari-
able w_cube defined in the previous sub-section (containing weights associated to
quadrature points stored in p_cube):

psi_D1 = cell(3,1);

psi_D1{1} = @(x,y,z) -x.*y;

psi_D1{2} = @(x,y,z) x.*(1-z);

psi_D1{3} = @(x,y,z) x.*z;

psi_D1{4} = @(x,y,z) -x.*(1-y);

psi_D2 = cell(3,1);

psi_D2{1} = @(x,y,z) -x.*y.*z;

psi_D2{2} = @(x,y,z) -x.*(1-y);

psi_D2{3} = @(x,y,z) x;

psi_D2{4} = @(x,y,z) -x.*y.*(1-z);

psi_D3 = cell(3,1);

psi_D3{1} = @(x,y,z) x.*y;
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psi_D3{2} = @(x,y,z) -x.*(1-y.*z);

psi_D3{3} = @(x,y,z) x.*(1-y);

psi_D3{4} = @(x,y,z) -x.*y.*z;

psi_D4 = cell(3,1);

psi_D4{1} = @(x,y,z) x.*y.*z;

psi_D4{2} = @(x,y,z) x.*(1-y);

psi_D4{3} = @(x,y,z) x.*y.*(1-z);

psi_D4{4} = @(x,y,z) -x;

psi_D5 = cell(3,1);

psi_D5{1} = @(x,y,z) x.*y.*z;

psi_D5{2} = @(x,y,z) -x.*(1-y);

psi_D5{3} = @(x,y,z) x.*(1-y.*z);

psi_D5{4} = @(x,y,z) -x.*y;

epsi1 = zeros(16,27);

epsi2 = zeros(16,27);

epsi3 = zeros(16,27);

epsi4 = zeros(16,27);

epsi5 = zeros(16,27);

for i = 1:4

for j = 1:4

f1 = @(x,y,z) psi_D1{i}(x,y,z).*psi_D1{j}(x,y,z) .*(x.^2);

f2 = @(x,y,z) psi_D2{i}(x,y,z).*psi_D2{j}(x,y,z) .* (x.^2).*y;

f3 = @(x,y,z) psi_D3{i}(x,y,z).*psi_D3{j}(x,y,z) .* (x.^2).*y;

f4 = @(x,y,z) psi_D4{i}(x,y,z).*psi_D4{j}(x,y,z) .* (x.^2).*y;

f5 = @(x,y,z) psi_D5{i}(x,y,z).*psi_D5{j}(x,y,z) .* (x.^2).*y;

epsi1( sub2ind([4 4], i , j) , : ) =...

( f1( p_cube(:,1) , p_cube(:,2) , p_cube(:,3)) ).*w_cube;

epsi2( sub2ind([4 4], i , j) , : ) =...

( f2( p_cube(:,1) , p_cube(:,2) , p_cube(:,3)) ).*w_cube;

epsi3( sub2ind([4 4], i , j) , : ) =...

( f3( p_cube(:,1) , p_cube(:,2) , p_cube(:,3)) ).*w_cube;

epsi4( sub2ind([4 4], i , j) , : ) =...

( f4( p_cube(:,1) , p_cube(:,2) , p_cube(:,3)) ).*w_cube;

epsi5( sub2ind([4 4], i , j) , : ) =...

( f5( p_cube(:,1) , p_cube(:,2) , p_cube(:,3)) ).*w_cube;

end

end

C.5. Auxiliary variables to compute identical elements case: tpsi1, tpsi2
and tpsi3. Here, the variables tpsi1, tpsi2 and tpsi3 are used as inputs on the
function triangle_quad and play the role of the matrices Ψ1, Ψ2 and Ψ3, defined
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in Appendix A.4, respectively. We describe the code used to set up these variables,
where we use the quadrature data p_I and w_I introduced in Appendix C.1:

lambda_D1 = cell(3,1);

lambda_D1{1} = @(z) -z;

lambda_D1{2} = @(z) -(1-z);

lambda_D1{3} = @(z) 1;

lambda_D2 = cell(3,1);

lambda_D2{1} = @(z) -1;

lambda_D2{2} = @(z) (1-z);

lambda_D2{3} = @(z) z;

lambda_D3 = cell(3,1);

lambda_D3{1} = @(z) z;

lambda_D3{2} = @(z) -1;

lambda_D3{3} = @(z) 1-z;

tpsi1 = zeros(9,9);

tpsi2 = zeros(9,9);

tpsi3 = zeros(9,9);

for i = 1:3

for j = 1:3

f1 = @(z) lambda_D1{i}(z).*lambda_D1{j}(z);

f2 = @(z) lambda_D2{i}(z).*lambda_D2{j}(z);

f3 = @(z) lambda_D3{i}(z).*lambda_D3{j}(z);

tpsi1( sub2ind([3 3], i , j) , : ) = f1( p_I ).*w_I;

tpsi2( sub2ind([3 3], i , j) , : ) = f2( p_I ).*w_I;

tpsi3( sub2ind([3 3], i , j) , : ) = f3( p_I ).*w_I;

end

end

C.6. Auxiliary variable to compute quadrature over complement: cphi.
The matrix Φ, defined in Appendix A.5, is stored as the variable cphi and used
as input on the function comp_quad. Before explaining the code we employed to
build it, we define the 12 by 1 array w_T_12 as the set of weights associated to the
quadrature points stored in p_T_12:

w_T_12 =

0.1168

0.1168

0.1168

0.0508

0.0508

0.0508
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0.0829

0.0829

0.0829

0.0829

0.0829

0.0829

Then, the following lines generate cphi:

local = cell(1,3);

local{1} = @(x,y) 1-x;

local{2} = @(x,y) x-y;

local{3} = @(x,y) y;

cphi = zeros(9,12);

for i = 1:3

for j = 1:3

f1 = @(z,y) local{i}(z,y).*local{j}(z,y);

cphi( sub2ind([3 3], i , j) , : ) =...

f1( p_T_12(:,1) , p_T_12(:,2) ).*w_T_12;

end

end

Appendix D. Main Code

For the sake of the reader’s convenience, we include here the main code described
in Sections 4 and 5.

1 clc

2 s = 0.5;

3 f = @(x,y) 1;

4 cns = s*2^(-1+2*s)*gamma(1+s)/(pi*gamma(1-s));

5 load(’data.mat’);

6 nn = size(p,2);

7 nt = size(t,1)

8 uh = zeros(nn,1);

9 K = zeros(nn,nn);

10 b = zeros(nn,1);

11 % Compute areas

12 area = zeros(nt,1);

13 for i=1:nt

14 aux = p( : , t(i,:) );

15 area(i) = 0.5.*abs( det( [ aux(:,1) - aux(:,3)...

aux(:,2) - aux(:,3)] ) );

16 end

17 % Build patches data structure

18 deg = zeros(nn,1);
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19 for i=1:nt

20 deg( t(i,:) ) = deg( t(i,:) ) + 1;

21 end

22 patches = cell(nn , 1);

23 for i=1:nn

24 patches{i} = zeros( 1 , deg(i) );

25 end

26 for i=1:nt

27 patches{ t(i,1) }(end - deg( t(i,1) ) + 1) = i;

28 patches{ t(i,2) }(end - deg( t(i,2) ) + 1) = i;

29 patches{ t(i,3) }(end - deg( t(i,3) ) + 1) = i;

30 deg( t(i,:) ) = deg( t(i,:) ) - 1;

31 end

32 % Preallocate auxiliary memory

33 vl = zeros(6,2);

34 vm = zeros(6*nt,2);

35 norms = zeros(36,nt);

36 ML = zeros(6,6,nt);

37 empty = zeros(nt,1);

38 aux_ind = reshape( repmat( 1:3:3*nt , 6 , 1 ) , [] , 1 );

39 empty_vtx = zeros(2,3*nt);

40 BBm = zeros(2,2*nt);

41 for l=1:nt-nt_aux % Main Loop

42 edge = [ patches{t(l,1)} patches{t(l,2)} patches{t(l,3)} ];

43 [nonempty M N] = unique( edge , ’first’ );

44 edge(M) = [];

45 vertex = setdiff( nonempty , edge );

46 ll = nt - l + 1 - sum( nonempty>=l );

47 edge( edge<=l ) = [];

48 vertex( vertex<=l ) = [];

49 empty( 1:ll ) = setdiff_( l:nt , nonempty );

50 empty_vtx(: , 1:3*ll) = p( : , t( empty(1:ll) , : )’ );

51 nodl = t(l,:);

52 xl = p(1 , nodl); yl = p(2 , nodl);

53 Bl = [xl(2)-xl(1) yl(2)-yl(1); xl(3)-xl(2) yl(3)-yl(2)]’;

54 b(nodl) = b(nodl) + fquad(area(l),xl,yl,f);

55 K(nodl, nodl) = K(nodl, nodl)...

+ triangle_quad(Bl,s,tpsi1,tpsi2,tpsi3,area(l),p_I)...

+ comp_quad(Bl,xl(1),yl(1),s,cphi,R,area(l),p_I,w_I,p_T_12);

56 BBm(:,1:2*ll) = reshape( [ empty_vtx( : , 2:3:3*ll )...

- empty_vtx( : , 1:3:3*ll ) , empty_vtx( : , 3:3:3*ll )...

- empty_vtx( : , 2:3:3*ll ) ] , [] , 2)’ ;

57 vl = p_T_6*(Bl’) + [ ones(6,1).*xl(1) ones(6,1).*yl(1) ];

58 vm(1:6*ll,:) = reshape(...

permute(...

reshape( p_T_6*BBm(:,1:2*ll) , [6 1 2 ll] ) , [1 4 3 2] ) , [ 6*ll 2 ] )...

+ empty_vtx(: , aux_ind(1:6*ll) )’;

59 norms(:,1:ll) = reshape( pdist2(vl,vm(1:6*ll,:)), 36 , [] ).^(-2-2*s);
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60 ML(1:3,1:3,1:ll) = reshape( phiA*norms(:,1:ll) , 3 , 3 , [] );

61 ML(1:3,4:6,1:ll) = reshape( phiB*norms(:,1:ll) , 3 , 3 , [] );

62 ML(4:6,4:6,1:ll) = reshape( phiD*norms(:,1:ll) , 3 , 3 , [] );

63 ML(4:6,1:3,1:ll) = permute( ML(1:3,4:6,1:ll) , [2 1 3] );

64 % Assembling stiffness matrix

65 for m=1:ll

66 order = [nodl t( empty(m) , : )];

67 K(order,order) = K(order,order)...

+ ( 8*area(empty(m))*area(l) ).*ML(1:6,1:6,m);

68 end

69 for m=vertex

70 nodm = t(m,:);

71 nod_com = intersect(nodl, nodm);

72 order = [nod_com nodl(nodl~=nod_com) nodm(nodm~=nod_com)];

73 K(order,order) = K(order,order)...

+ 2.*vertex_quad(nodl,nodm,nod_com,p,s,vpsi1,vpsi2,area(l),area(m),p_cube);

74 end

75 for m=edge

76 nodm = t(m,:);

77 nod_diff = [setdiff(nodl, nodm) setdiff(nodm, nodl)];

78 order = [ nodl( nodl~=nod_diff(1) ) nod_diff ];

79 K(order,order) = K(order,order)...

+ 2.*edge_quad(...

nodl,nodm,nod_diff,p,s,epsi1,epsi2,epsi3,epsi4,epsi5,area(l),area(m),p_cube);

80 end

81 end

82 uh(nf) = ( K(nf,nf)\b(nf) )./cns;

83 trimesh(t(1:nt - nt_aux , :), p(1,:),p(2,:),uh);
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[9] B. Dyda, A. Kuznetsov, and M. Kwaśnicki. Fractional Laplace operator and Meijer
G-function. Constr. Approx., 45(3):427–448, 2017.

[10] G. Grubb. Fractional Laplacians on domains, a development of Hörmander’s theory
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