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Abstract. We propose and analyze a robust BPX preconditioner for the integral frac-

tional Laplacian of order s ∈ (0, 1) on bounded Lipschitz domains. Compared with

the standard BPX preconditioner, an additional scaling factor 1 − γ̃s, for some fixed
γ̃ ∈ (0, 1), is incorporated to the coarse levels. For either quasi-uniform grids or graded

bisection grids, we show that the condition numbers of the resulting systems remain
uniformly bounded with respect to both the number of levels and the fractional power.

1. Introduction

Given s ∈ (0, 1), the fractional Laplacian of order s in Rd is the pseudodifferential operator
with symbol |ξ|2s. That is, denoting the Fourier transform by F , for every function v : Rd →
R in the Schwartz class S it holds that

F ((−∆)sv) (ξ) = |ξ|2sF(v)(ξ).

Upon inverting the Fourier transform, one obtains the following equivalent expression:

(1.1) (−∆)sv(x) = C(d, s) p.v.

∫
Rd

v(x)− v(y)

|x− y|d+2s
dy, C(d, s) =

22ssΓ(s+ d
2 )

πd/2Γ(1− s) .

The constant C(d, s) ' s(1−s) compensates the singular behavior of the integrals for s→ 0
(as |y| → ∞) and for s→ 1 (as y → x), and yields [26, Proposition 4.4]

(1.2) lim
s→0

(−∆)sv(x) = v(x), lim
s→1

(−∆)sv(x) = −∆v(x), ∀v ∈ C∞0 (Rd).

From a probabilistic point of view, the fractional Laplacian is related to a simple random
walk with arbitrarily long jumps [51], and is the infinitesimal generator of a 2s-stable Lévy-
process [8]. Thus, the fractional Laplacian has been widely utilized to model jump processes
arising in social and physical environments, such as finance [24], predator search patterns
[48], or ground-water solute transport [7].

There exist several nonequivalent definitions of a fractional Laplace operator (−∆)s on a
bounded domain Ω ⊂ Rd (see [10, 11]). Our emphasis in this paper is on the homogeneous
Dirichlet problem for the integral (or restricted) fractional Laplacian: given f : Ω→ R, one
seeks u : Rd → R such that

(1.3)

{
(−∆)su = f in Ω,

u = 0 in Ωc,

where the pointwise definition of (−∆)su(x) is given by (1.1) for x ∈ Ω. Consequently, the
integral fractional Laplacian on Ω maintains the probabilistic interpretation and corresponds
to a killed Lévy process [8, 22]. It is noteworthy that, as the underlying stochastic process
admits jumps of arbitrary length, for the integral fractional Laplacian the standard Dirichlet
conditions need to be replaced by suitable volume constraints on the complement of the
domain Ω, e.g. u = 0 in Ωc. In contrast, the spectral Laplacian for s ∈ (0, 1) and the
censored (or regional) Laplacian for s ∈ ( 1

2 , 1) admit Dirichlet boundary conditions on ∂Ω.
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Despite their strikingly different boundary behavior, we show in Section 9 that the three
operators are spectrally equivalent in bounded Lipschitz domains, an interesting property
already known for the integral and spectral operators [22].

Weak solutions to (1.3) are the minima of the functional v 7→ 1
2 |v|2Hs(Rd) −

∫
Ω
fv on the

zero-extension space H̃s(Ω) (see Section 2.2). In accordance with (1.2) restricted to any

v ∈ C∞0 (Ω), it holds that if v ∈ H̃σ(Ω) for some σ > 0, then [39]

(1.4) lim
s→0+

|v|Hs(Rd) = ‖v‖L2(Ω),

while if v ∈ L2(Rd) is such that supp v ⊂ Ω and lims→1− |v|Hs(Rd) exists and is finite, then

v ∈ H1
0 (Ω) and [17]

(1.5) lim
s→1−

|v|Hs(Rd) = |v|H1(Ω).

We emphasize that the presence of a scaling factor C(d, s) ' s(1− s) in the fractional-order
seminorm |v|Hs(Rd) is fundamental for (1.4) and (1.5) to hold. Consider a discretization of
(1.3) using standard linear Lagrangian finite element space on a mesh T (denoted by V(T ),
see details in Section 2.2) whose elements have maximum and minimum size hmax and hmin

respectively, and denote by A the corresponding stiffness matrix. Then, as shown in [4], the
condition number of A obeys the relation

(1.6) cond (A) . (dimV(T ))2s/d

(
hmax

hmin

)d−2s

for 0 < s < 1 with 2s < d, and one can remove the factor involving hmax

hmin
by preconditioning

A by a diagonal scaling. On non quasi-uniform grids, the hidden constant in the critical
case 2s = d is worse by a logarithmic factor.

We point out that solutions to (1.3) generically exhibit the boundary behavior u '
d(·, ∂Ω)s, and thus graded meshes towards ∂Ω are required to recover optimal convergence
rates. The relation (1.6) shows that even in the limit s→ 0, in which the fractional Laplacian
approaches the identity (cf. (1.2)), the use of graded grids may give rise to ill-conditioned
matrices; this could be cured though by diagonal scaling (see Section 8.2).

In recent years, efficient finite element discretizations of (1.3) have been examined in
several papers. Adaptive algorithms have been considered in [28, 2, 32], and a posteriori
error analysis has been addressed in [44, 30]. Standard finite element discretizations of the
fractional Laplacian give rise to full stiffness matrices; matrix compression techniques have
been proposed and studied in [61, 3, 37]. For the efficient resolution of the discrete problems,
operator preconditioners have been considered in [33].

In this work, we propose a multilevel BPX preconditioner (cf. [53, 18, 31, 6, 49]) B
for the solution of (1.3), that yields cond(BA) . 1. In general, our result follows from the
general theory for multigrid preconditioners (cf. [54, 34, 55, 58]). An important consequence
of (1.4) and (1.5) is that, on any given grid, the stiffness matrices associated with integral
fractional Laplacians of order s approach either the standard mass matrix (as s→ 0) or the
stiffness matrix corresponding to the Laplacian (as s→ 1), the latter because the canonical

basis functions of V(T ) are Lipschitz and W 1,∞
0 (Ω) ⊂ H̃s(Ω). This is consistent with (1.6):

for example, on quasi-uniform grids of size h, such a formula yields cond(A) ' h−2s.
Based on the above observations, one of our main goals is to obtain a preconditioner

that is uniform with respect to s as well as with respect to the number of levels J̄ . For
such a purpose, we need to weight the contributions of the coarser levels differently to the
finest level. On a family of quasi-uniform grids {T k}J̄k=0 with size h̄k, we shall consider a
preconditioner in the operator form (cf. (4.2) below)

(1.7) B = I J̄ h̄
2s
J̄ QJ̄ + (1− γ̃s)

J̄−1∑
k=0

Ikh̄
2s
k Qk,
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with an arbitrary parameter γ̃ ∈ (0, 1). Above, Qk and Ik are suitable L2-projection and
inclusion operators, respectively. Clearly, if s ∈ (0, 1) is fixed, then the factor 1 − γ̃s is
equivalent to a constant. However, such a factor tends to 0 as s→ 0, and this correction is
fundamental for the resulting condition number to be uniformly bounded with respect to s.

We now present a simple numerical example to illustrate this point. Let Ω = (−1, 1)2,
f = 1, s = 10−1, 10−2, and choose either γ̃ = 0 (i.e., no correction) and γ̃ = 1

2 in the
preconditioner above to compute finite element solutions to (1.3) on a sequence of nested
grids. The left panel in Table 1 shows the condition numbers of the preconditioned linear
systems. It is apparent that setting γ̃ = 1

2 gives rise to a more robust behavior with respect

to either s and the number of levels J̄ .

Uniform grids

DOFs
s = 10−1 s = 10−2

γ̃ = 0 γ̃ = 1
2 γ̃ = 0 γ̃ = 1

2

225 8.66 2.92 12.11 3.70
961 10.81 3.00 15.97 3.80

3969 12.66 3.03 19.66 3.83
16129 14.28 3.03 23.27 3.84

Graded bisection grids

DOFs
s = 10−1 s = 10−2

γ̃ = 0 γ̃ = 1
2 γ̃ = 0 γ̃ = 1

2

161 8.06 3.85 11.48 5.06
853 10.80 4.21 15.86 5.14

2265 13.43 4.55 20.72 5.38
9397 15.53 4.74 24.71 5.55

Table 1. Condition numbers with BPX preconditioner without (γ̃ = 0)
and with (γ̃ = 1

2 ) a correction factor. We display results on a family of
uniformly refined grids (left panel), and on a sequence of suitably graded
bisection grids (right panel).

Another aspect to take into account in (1.3) is the low regularity of solutions [46, 36,
14], which calls for graded grids in numerical computation [1, 13]. However, graded grids
give rise to worse-conditioned matrices, as described by (1.6). This work also addresses
preconditioning on graded bisection grids, that can be employed to obtain the refinement
as needed. Our algorithm on graded bisection grids builds on the subspace decomposition
introduced in [21], which leads to optimal multilevel methods for classical (s = 1) problems.
Our theory on graded bisection grids, however, differs from the existing ones [21, 52, 31]
to account for the uniformity with respect to s. As illustrated by the right panel in Table
1, including a correction factor on the coarser scales leads to a more robust preconditioner.
This confirms the practical value of the modification in addition to its theoretical value.

We now briefly discuss the main difficulty of our analysis for graded bisection grids. We
rely on the theory of subspace correction [54], but the presence of the scaling factor 1− γ̃s
on coarse meshes complicates the stable decomposition. Since the subspaces generated by
bisection are local and non-nested, the decomposition in [21, 52, 31] directly applies to the
difference of some local operators (called slicing operators in [21]), but the technique used in
[21] yields a stability constant depending on (1− γ̃s)−1 that blows up as s→ 0. Instead, we
develop in Section 3.2 a new tool called s-uniform decomposition on nested spaces. Invoking
this tool, we construct in Section 7 a stable decomposition on a sequence of auxiliary nested
subspaces for bisection grids that leads to the desired L2-stable decomposition to the local
subspaces. The resulting BPX counterpart of (1.7) is robust with respect to the number J of
levels and the fractional order s, and applies as well to the spectral and censored Laplacians
in view of their spectral equivalence to the integral Laplacian alluded to earlier.

This paper is organized as follows. Section 2 collects preliminary material about the
interpolation spaces and the finite element discretization of (1.3). Next, in Section 3 we
discuss general aspects of the method of subspace corrections and introduce an s-uniform
decomposition that plays a central role in our analysis. As an application, we introduce a
BPX preconditioner for quasi-uniform grids in Section 4, and prove that it leads to condition
numbers uniformly bounded with respect to the number of refinements J̄ and the fractional
power s. Afterwards, we delve into the preconditioning of systems arising from graded
bisection grids. For that purpose, Section 5 offers a review of the bisection method with
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novel twists and proposes a BPX preconditioner on graded bisection grids. Sections 6 and
7 provide the technical analysis of the s-uniform decomposition for graded bisection grids.
Section 8 presents some numerical experiments that illustrate the uniform performance of
the BPX preconditioners with respect to s and the number of levels. Finally, Section 9
discusses BPX preconditioners for the spectral and censored fractional Laplacians.

2. Preliminaries

In this section, we set the notation used in the rest of the paper regarding Sobolev
spaces and recall some preliminary results about their interpolation. We refer to [13] for
the basic definitions we use here. We are particularly concerned with the zero-extension

Sobolev space H̃σ(Ω) := C∞0 (Ω)
‖·‖

Hσ(Rd) , which is the set of functions in Hσ(Rd) whose

support is contained in Ω. Given u, v ∈ H̃σ(Ω), we define the (scaled) inner product

(·, ·)σ : H̃σ(Ω)× H̃σ(Ω)→ R to be

(2.1) (u, v)σ := (u, v)Hσ(Rd) =
C(d, σ)

2

∫∫
Rd×Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2σ
dx dy,

where C(d, σ) is the constant from (1.1). We point out that the integration in (2.1) takes

place in
(
Ω× Rd

)
∪
(
Rd × Ω

)
because functions in H̃σ(Ω) vanish in Ωc. We further write

the scaled Gagliardo semi-norm |u|σ = (u, u)
1/2
σ = |u|Hσ(Rd), and let ‖u‖0 := ‖u‖L2(Ω).

For convenience, we write X . Y (resp. X & Y ) to indicate X ≤ CY (resp. CX ≥ Y ),
where C denotes, if not specified, a generic positive constant that may stand for different
values at its different occurrences but is independent of the fractional power s or the number
of levels; this implies the independence of the mesh-size for quasi-uniform grids or the
dimension of the FEM-space for graded bisection grids. The notation X ' Y means both
X . Y and X & Y hold.

2.1. Interpolation and fractional Sobolev spaces. An important feature of the frac-
tional Sobolev scale is that it can be equivalently defined by interpolation of integer-order
spaces. This, along with the observation that the norm equivalence constants are uniform
with respect to s, is fundamental for our work. In view of the applications below, we now
recall the abstract setting for two separable Hilbert spaces X1 ⊂ X0 with X1 continuously
embedded and dense in X0. Following [38, Section 2.1], the inner product in X1 can be
represented by a self-adjoint and coercive operator S : D(S)→ X0 with domain D(S) ⊂ X1

dense in X0, i.e. (v, w)X1 = (Sv,w)X0 for all v ∈ D(S), w ∈ X1. Invoking the spectral
decomposition of self-adjoint operators [59], we let Λ : X1 → X0 be the square root of S,
which in turn is self-adjoint, coercive, and satisfies

(2.2) (v, w)X1 = (Λv,Λw)X0 ∀v, w ∈ X1.

Suppose further that the spectrum {λk}∞k=1 of Λ is discrete and the corresponding eigen-
functions {ϕk}∞k=1 form a complete orthonormal basis for X0; hence Λv =

∑∞
k=1 λkvkϕk for

all v =
∑∞
k=1 vkϕk ∈ X1. Then, we can define a fractional power s ∈ (0, 1) of Λ as follows:

(2.3) Λsv :=

∞∑
k=1

λskvkϕk if ‖Λsv‖2X0
:=

∞∑
k=1

λ2s
k v

2
k <∞.

On the other hand, we can construct intermediate spaces by the K-method. Given
s ∈ (0, 1), we consider the interpolation space (X0, X1)s,2 with norm

(2.4) ‖v‖(X0,X1)s,2 :=

(
2 sin(πs)

π

∫ ∞
0

t−1−2sK2(v, t)2dt

) 1
2

,

where K2(t, v) := infv=v0+v1

(
‖v0‖2X0 + t2‖v1‖2X1

) 1
2 . The following result [38, Theorem 15.1]

gives an intrinsic spectral equivalence between the interpolation by K-method and spectral
theory.
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Theorem 2.1. (intrinsic spectral equivalence) Let X1 ⊂ X0 be two Hilbert spaces with
X1 continuously embedded and dense in X0. Let the self-adjoint and coercive operator
Λ : X1 → X0 satisfy (2.2) and have a discrete, complete and orthonormal set of eigenpairs
(λk, ϕk)∞k=1 in X0. Given s ∈ (0, 1), for any v ∈ X0 with ‖Λsv‖X0 <∞ we have

‖Λsv‖X0
= ‖v‖(X0,X1)s,2 .

We now apply Theorem 2.1 (intrinsic spectral equivalence) to L2-based Sobolev spaces.

Let X0 = L̃2(Ω) and X1 = H̃1(Ω) denote the spaces of functions in L2(Ω) and H1
0 (Ω) ex-

tended by zero to Ωc, respectively, and let the inner product in X1 be given by (v, w)X1 =∫
Rd ∇v · ∇w =

∫
Ω
∇v · ∇w. The corresponding operator S equals the Laplacian −∆ with

zero Dirichlet condition on the bounded Lipschitz domain Ω; S thus admits a set of eigen-

pairs {λ̂k, ϕ̂k}∞k=1 where the eigenfunctions {ϕk}∞k=1 are extended by zero to Ωc and form

a complete orthonormal set in L̃2(Ω) [29, Section 6.5.1 and Appendix D.5]. Therefore, the

corresponding eigenpairs {λk, ϕk}∞k=1 of Λ = (−∆)
1
2 satisfy λk = λ̂

1/2
k and ϕk = ϕ̂k, whence

(2.5) ‖Λsv‖20 = ‖(−∆)
s
2 v‖20 =

∞∑
k=1

λ2s
k v

2
k =

∞∑
k=1

λ̂skv
2
k

is the norm square of the interpolation space H̃s(Ω) =
(
L̃2(Ω), H̃1(Ω)

)
s,2
. Since this norm

is uniformly equivalent to the scaled Gagliardo norm

(2.6) |v|s ' ‖Λsv‖0 ∀v ∈ H̃s(Ω),

(cf. [40, Theorem B.8, Theorem B.9] and [20]), (2.5) yields the following equivalence.

Proposition 2.1 (norm equivalence). The following equivalence is uniform in s ∈ (0, 1),

(2.7) |v|2s '
∞∑
k=1

λ̂skv
2
k ∀v ∈ H̃s(Ω).

2.2. Variational formulation and finite element discretization. Since a Poincaré in-
equality is valid in H̃s(Ω) (cf. [1, Prop. 2.4], for example), the map u 7→ (u, u)s is an inner

product on H̃s(Ω). Given f ∈ H−s(Ω), the dual of H̃s(Ω), the weak formulation of the

homogeneous Dirichlet problem (1.3) reads: find u ∈ H̃s(Ω) such that

(2.8) a(u, v) := (u, v)s = 〈f, v〉s,Ω ∀v ∈ H̃s(Ω),

where 〈·, ·〉s,Ω stands for the duality pairing between H−s(Ω) and H̃s(Ω). Existence and
uniqueness of solutions of (2.8) is a consequence of the Riesz representation theorem.

Given a conforming and shape-regular triangulation T of Ω, we consider discrete spaces
consisting of continuous piecewise linear functions that vanish on ∂Ω,

(2.9) V(T ) = {vh ∈ C(Ω): vh|T ∈ P1(T ) ∀T ∈ T , vh|∂Ω = 0}.
It is clear that V(T ) ⊂ H̃s(Ω), independently of the value of s. Therefore, we can pose a
conforming discretization of (2.8): we seek uh ∈ V(T ) such that

(2.10) a(uh, vh) = 〈f, vh〉s,Ω ∀vh ∈ V(T ).

Remark 1 (necessity of graded grids). Convergence rates in the energy norm are derived by
using suitable interpolation estimates [23, 1] and regularity results [11, Theorem 3.7]. As
shown in [1], conforming finite element approximations over quasi-uniform grids converge
at most with order 1

2 in the energy norm, due to the boundary behavior (9.3) [10, 36, 46].
To mitigate such a low convergence rate one can incorporate a mesh grading towards ∂Ω.
This idea was exploited in [1] (see also [11, 16]), where the regularity of the solution is
characterized in weighted Sobolev spaces, with the weight being a power of d(·, ∂Ω). In fact,
let us define the patch of a closed element τ ∈ T

Sτ :=
⋃
{τ ′ ∈ T : τ ′ ∩ τ 6= ∅}.
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Given a grading parameter µ ≥ 1 and a mesh size parameter h, we assume that, for all
τ ∈ T , the element size hτ = |τ |1/d satisfies

(2.11) hτ '
{
hµ if Sτ ∩ ∂Ω 6= ∅,
h d(τ, ∂Ω)(µ−1)/µ otherwise.

If the right-hand side f is sufficiently smooth, it turns out that the optimal choice for µ is
d
d−1 . We refer to [1, 11, 16] for details.

We conclude this section with a fractional local inverse estimate valid on arbitrary, shape-
regular grids T . The proof hinges on localization of fractional norms to element patches.
Because the Gagliardo seminorm | · |σ involves integration on Ωc, we introduce the extended
patch of a closed element τ ∈ T ,

(2.12) S̃τ :=

{
Sτ if τ ∩ ∂Ω = ∅,
Bτ otherwise.

where Bτ = B(xτ , Chτ ) is the ball of center xτ and radius Chτ , with xτ being the barycenter
of τ , and C = C(σ) a shape regularity dependent constant such that Sτ ⊂ Bτ . We assume

S̃τ is a Lipschitz set, so that the space Hβ(S̃τ ) defined by interpolation between H1(S̃τ ) and

L2(S̃τ ) is well defined and has a seminorm equivalent to the (scaled) Gagliardo seminorm

v 7→ |v|Hβ(S̃τ ) :=

(
C(d, β)

2

∫∫
S̃τ×S̃τ

|v(x)− v(y)|2
|x− y|d+2β

dy dx

)1/2

.

Lemma 2.1 (local inverse inequality). Let σ ∈ [0, 1] and β ∈ [0, σ], and assume S̃τ is
Lipschitz for every τ ∈ T . Then,

(2.13) |v|σ .
(∑
τ∈T

h2(β−σ)
τ |v|2

Hβ(S̃τ )

) 1
2

∀v ∈ V(T ),

where the hidden constant depends on the spatial dimension, shape-regularity constant and

Lipschitz constant of S̃τ , but is uniformly bounded with respect to σ and β.

Proof. We decompose the scaled seminorm |v|σ locally according to [15, Lemma 4.1] for
σ < 1,

|v|2σ ≤
C(d, σ)

2

∑
τ∈T

(∫∫
τ×S̃τ

|v(x)− v(y)|2
|x− y|d+2σ

dy dx+
C

σ h2σ
τ

‖v‖2L2(τ)

)
∀v ∈ V(T ),

where C(d, σ) is taken as in (2.1) and the constant C depends only on d and the shape-
regularity constant of T . We next exploit the local quasi-uniformity of T and operator
interpolation theory (cf. [50, Chapter 34 & 36]) applied to the estimates

|v|H1(S̃τ ) . h
−1
τ ‖v‖L2(S̃τ ), ‖v‖L2(S̃τ ) ≤ ‖v‖L2(S̃τ ),

to deduce the local inverse estimate with hidden constant insensitive to σ

|v|Hσ(S̃τ ) . h
−σ
τ ‖v‖L2(S̃τ ),

because S̃τ is Lipschitz. Applying again operator interpolation theory to this estimate and
|v|Hσ(S̃τ ) ≤ |v|Hσ(S̃τ ) gives

|v|Hσ(S̃τ ) . h
β−σ
τ |v|Hβ(S̃τ ), β ∈ [0, σ]

and leads to the desired estimate (2.13) for σ < 1. The case σ = 1 is simpler because
the seminorm |v|1 is local. In fact, it hinges on the local inverse estimate |v|H1(S̃τ ) .

hβ−1
τ |v|Hβ(S̃τ ), which in turn results from operator interpolation applied to the estimates

|v|H1(S̃τ ) . h
−1
τ ‖v‖L2(S̃τ ) and |v|H1(S̃τ ) ≤ |v|H1(S̃τ ). �
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3. s-uniform Additive Multilevel Preconditioning

Let (·, ·) be the L2-inner product in Ω and V := V(T ) denote the discrete space. Let
A : V → V be the symmetric positive definite (SPD) operator defined by (Au, v) := a(u, v)

for any u, v ∈ V , and let f̃ ∈ V be given by (f̃ , v) = 〈f, v〉s,Ω for any v ∈ V . With this
notation at hand, the discretization (2.10) leads to the following linear equation in V

(3.1) Au = f̃ .

In this section, we give some general and basic results that will be used to construct and
analyze the s-uniform additive multilevel preconditioners for (3.1).

3.1. Space decomposition. We now invoke the method of subspace corrections [27, 60, 54,

55, 58]. We first decompose the space V as the sum V =
∑J
j=0 Vj of subspaces Vj ⊂ V . For

j = 0, 1, . . . , J , we consider the following operators:

• Qj : V → Vj is the L2-projection operator defined by (Qjv, vj) = (v, vj) for all
v ∈ V, vj ∈ Vj ;

• Ij : Vj → V is the natural inclusion operator given by Ijvj = vj for all vj ∈ Vj ;
• Rj : Vj → Vj is an approximate inverse of the restriction of A to Vj (often known as

smoother); we set ‖vj‖2R−1
j

:= (R−1
j vj , vj) for all vj ∈ Vj provided that Rj is SPD

on Vj .

A straightforward calculation shows that Qj = Itj because (Qjv, vj) = (v, Ijvj) = (Itjv, vj)
for all v ∈ V, vj ∈ Vj . Let the fictitious space be V˜ = V0 × V1 × . . .× VJ . Then, the Parallel
Subspace Correction (PSC) preconditioner B : V → V is defined by

(3.2) B :=

J∑
j=0

IjRjQj =

J∑
j=0

IjRjI
t
j .

The next two lemmas follow from the general theory of preconditioning techniques based
on fictitious or auxiliary spaces [41, 34, 54, 55, 56, 58].

Lemma 3.1 (identity for PSC). If Rj is SPD on Vj for j = 0, 1, . . . , J , then B defined in
(3.2) is also SPD under the inner product (·, ·). Furthermore,

(3.3) (B−1v, v) = inf∑J
j=0 vj=v

J∑
j=0

(R−1
j vj , vj) ∀v ∈ V.

Lemma 3.2 (estimate on cond(BA)). If the operator B in (3.2) satisfies

(A1) Stable decomposition: for every v ∈ V , there exists (vj)
J
j=0 ∈ V˜ such that

∑J
j=0 vj = v

and

(3.4)

J∑
j=0

‖vj‖2R−1
j

≤ c0‖v‖2A,

where ‖v‖2A = (Av, v), then λmin(BA) ≥ c−1
0 ;

(A2) Boundedness: For every (vj)
J
j=0 ∈ V˜ there holds

(3.5)

∥∥∥∥∥∥
J∑
j=0

vj

∥∥∥∥∥∥
2

A

≤ c1
J∑
j=0

‖vj‖2R−1
j

,

then λmax(BA) ≤ c1. Consequently, if B satisfies (A1) and (A2), then cond(BA) ≤ c0c1.
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3.2. Instrumental tools for s-uniform preconditoner. We assume that the spaces
{Vj}Jj=0 are nested, i.e.

Vj−1 ⊂ Vj ∀1 ≤ j ≤ J.
With the convention that Q−1 = 0, we consider the L2-slicing operators

Q̃j : V → Vj : Q̃j := Qj −Qj−1 (j = 0, 1, . . . , J).

Clearly, the L2-orthogonality implies that QkQj = Qk∧j , where k ∧ j := min{k, j}. Hence,

(3.6) Q̃jQk = QkQ̃j =

{
Q̃j j ≤ k,
0 j > k,

Q̃kQ̃j = δkjQ̃k.

The following lemma plays a key role in the analysis of an s-uniform preconditioner,
which is obtained by using the identity of PSC (3.3) and reordering the BPX preconditioner
[53, 18].

Lemma 3.3 (s-uniform decomposition). Given γ ∈ (0, 1), s ∈ (0, 1], it holds that, for every
v ∈ V ,

J∑
j=0

γ−2sj‖(Qj −Qj−1)v‖20 = inf
vj∈Vj∑J
j=0 vj=v

γ−2sJ‖vJ‖20 +

J−1∑
j=0

γ−2sj

1− γ2s
‖vj‖20

 .
Proof. This proof is an application of Lemma 3.1 (identity for PSC). Taking

B =

J∑
j=0

γ2sj(Qj −Qj−1),

by the L2-orthogonality (3.6), we easily see that B−1 =
∑J
j=0 γ

−2sj(Qj −Qj−1) and

(B−1v, v) =

J∑
j=0

γ−2sj‖(Qj −Qj−1)v‖20.

On the other hand, to identify Rj we reorder the sum in the definition of B

B =

J∑
j=0

γ2sj(Qj −Qj−1) = γ2sJQJ +

J−1∑
j=0

(1− γ2s)γ2sjQj =

J∑
j=0

IjRjQj ,

where

Rjvj :=

{
(1− γ2s)γ2sjvj j = 0, . . . , J − 1,

γ2sjvj j = J,

for all vj ∈ Vj . Finally, the identity (3.3) of PSC gives the desired result. �

The next lemma is useful to obtain stable decompositions in fractional-order norms. The
proof is a direct application of space interpolation theory and is therefore omitted here.

Lemma 3.4 (s-uniform interpolation). Assume that the spaces {Vj}Jj=0 are nested, and

(3.7)

J∑
j=0

γ−2j‖(Qj −Qj−1)v‖20 . |v|21 ∀v ∈ V.

Then, the following inequality holds for s ∈ [0, 1], with the hidden constant independent of
s and J ,

J∑
j=0

γ−2sj‖(Qj −Qj−1)v‖20 . |v|2s ∀v ∈ V.



ROBUST BPX PRECONDITIONER FOR FRACTIONAL LAPLACIANS 9

4. s-uniform BPX preconditioner for quasi-uniform grids

We propose and study a BPX preconditioner [53, 18, 31, 6, 49] for the solution of the
systems arising from the finite element discretizations (2.10) on quasi-uniform grids. We
emphasize that, in contrast to [18, 31, 6], the proposed preconditioner is uniform with
respect to both the number of levels and the order s. To this end, we introduce a new factor
for coarse spaces which differs from the original BPX preconditioners.

Consider a family of uniformly refined grids {T k}J̄k=0 on Ω, where T 0 = T0 is a quasi-

uniform initial triangulation. On each of these grids we define the space V k := V(T k)
according to (2.9). Let V = V J̄ and A be the SPD operator on V associated with a(·, ·):
(Av,w) = a(v, w) for all v, w ∈ V . Let the grid size be h̄k ' γk, where γ ∈ (0, 1) is a
fixed constant. For instance, we have γ = 1

2 for uniform refinement, in which each simplex

is refined into 2d children, and γ = ( 1
2 )1/d for uniform bisection, in which each simplex is

refined into 2 children.
Let Qk : V → V k and Ik : V k → V be the L2-projection and inclusion operators defined

in Section 3.1, and let Q−1 := 0. Let γ̃ ∈ (0, 1) be a fixed constant; it can be taken equal to

γ but this is not needed. For every vk ∈ V k, k = 0, . . . , J̄ , we define Rk : V k → V k to be

(4.1) Rkvk :=

{
(1− γ̃s)h̄2s

k vk k = 0, . . . , J̄ − 1,

h̄2s
k vk k = J̄ .

We now introduce the BPX preconditioner and study its properties in the sequel

(4.2) B :=

J̄∑
k=0

IkRkI
t

k = I J̄ h̄
2s
J̄ QJ̄ + (1− γ̃s)

J̄−1∑
k=0

Ikh̄
2s
k Qk.

Our next goal is to prove the following theorem, namely that B satisfies the two necessary
conditions (3.4) and (3.5) of Lemma 3.2 (estimate of cond(BA)) uniformly in J̄ and s over
quasi-uniform grids. We observe that the scaling (1 − γ̃s)−1 > 1 makes it easier to prove
the boundedness (3.5) but complicates the stable decompsition (3.4).

Theorem 4.1 (uniform preconditioning on quasi-uniform grids). Let Ω be a bounded Lip-
schitz domain and s ∈ (0, 1). Consider discretizations to (1.3) using piecewise linear La-
grangian finite elements on quasi-uniform grids. Then, the preconditioner (4.2) satisfies
cond(BA) . 1, where the hidden constant is uniform with respect to both J̄ and s.

We start with a norm equivalence for discrete functions. We rely on operator inter-
polation and the decomposition for s = 1 [54, 45, 25, 12], which was proposed earlier in
[53, 18] with a removable logarithmic factor. A similar result, for the interpolation norm of
(L2(Ω), H1

0 (Ω))s,2, was given in [56, Theorem 10.5].

Theorem 4.2 (norm equivalence). Let Ω be a bounded Lipschitz domain and s ∈ [0, 1]. If
V = V J and Qk : V → V k denotes the L2-projection operators onto discrete spaces V k, and

Q−1 := 0, then for any v ∈ V the decomposition v =
∑J̄
k=0(Qk −Qk−1)v satisfies

(4.3) |v|2s '
J̄∑
k=0

h̄−2s
k ‖(Qk −Qk−1)v‖20.

The equivalence constant hidden in (4.3) is independent of s and J̄ .

Proof. We show (4.3) in the entire space H̃s(Ω), namely J = ∞. We consider the self-

adjoint operator Λ =
∑∞
k=0 h̄

−1
k (Qk − Qk−1) : H̃1

0 (Ω) → L̃2(Ω), which induces a norm in

H̃1
0 (Ω) equivalent to the standard H1-norm according to [54, 45, 12]

‖Λv‖20 =

∞∑
k=0

h̄−2
k ‖(Qk −Qk−1)v‖20 ' ‖v‖21 ∀v ∈ H̃1

0 (Ω).
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Therefore, Theorem 2.1 (intrinsic spectral equivalence) implies that ‖Λsv‖0 defines a norm

on the interpolation space H̃s(Ω) that is uniformly equivalent to the interpolation norm,
whence |v|s ' ‖Λsv‖0 by virtue of (2.6). It remains to characterize ‖Λsv‖0.

We notice that Ṽk := (Qk − Qk−1)H̃1
0 (Ω) is an eigenspace of Λ with eigenvalue λk =

h̄−1
k and H̃1

0 (Ω) = ⊕∞k=0Ṽk is an L2-orthogonal decomposition. Consequently, (2.3) yields

‖Λsv‖20 =
∑∞
k=0 h̄

−2s
k ‖(Qk −Qk−1)v‖20 and thus (4.3), as asserted. �

Corollary 4.1 (stable decomposition). Let γ̃ ∈ (0, 1) be a fixed constant. For every v ∈
V = V J̄ and s ∈ (0, 1], there exists a decomposition (v0, . . . , vJ̄) ∈ V 0 × . . .× V J̄ , such that∑J̄
k=0 vk = v and

h̄−2s
J̄
‖vJ̄‖20 +

1

1− γ̃s
J̄−1∑
k=0

h̄−2s
k ‖vk‖20 ' |v|2s.

Proof. This is a direct consequence of Lemma 3.3 (s-uniform decomposition) and Theorem
4.2 (norm equivalence) because h̄k ' γk and 1− γs ' 1− γ̃s uniformly in s ∈ [0, 1]. �

We now prove the boundedness estimate in Lemma 3.2 (estimate on cond(BA)) with a
constant independent of both J̄ and s.

Proposition 4.1 (boundedness). Let γ̃ ∈ (0, 1) be a fixed constant, s ∈ (0, 1]. The precon-
ditioner B in (4.2) satisfies (3.5), namely∣∣∣ J̄∑

k=0

vk

∣∣∣2
s
≤ c1

(
h̄−2s
J̄
‖vJ̄‖20 +

1

1− γ̃s
J̄−1∑
k=0

h̄−2s
k ‖vk‖20

)
,

where γ̃ ∈ (0, 1) can be taken arbitrarily and the constant c1 is independent of J̄ and s.

Proof. Let v :=
∑J̄
k=0 vk. Then, we use Theorem 4.2 (norm equivalence), the fact that

h̄k ' γk and Lemma 3.3 (s-uniform decomposition) to write∣∣∣ J̄∑
k=0

vk

∣∣∣2
s

= |v|2s '
J̄∑
k=0

h̄−2s
k ‖(Qk −Qk−1)v‖20

'
J̄∑
k=0

γ−2sk‖(Qk −Qk−1)v‖20 = inf
wk∈V k∑J̄
k=0 wk=v

γ−2sJ̄‖wJ̄‖20 +

J̄−1∑
k=0

γ−2sk

1− γ2s
‖wk‖20

 .
Therefore, upon setting wk = vk for k = 0, . . . J̄ above, we deduce that∣∣∣ J̄∑

k=0

vk

∣∣∣2
s
. γ−2sJ̄‖vJ̄‖20 +

J̄−1∑
k=0

γ−2sk

1− γ2s
‖vk‖20 ≤ c1

(
h̄−2s
J̄
‖vJ̄‖20 +

1

1− γ̃s
J̄−1∑
k=0

h̄−2s
k ‖vk‖20

)
.

The proof is thus complete. �

Remark 2 (dependence on s). The standard BPX preconditioner reads [18, 31, 6]

(4.4) Bstd =

J̄∑
k=0

Ikh̄
2s
k Qk : V → V .

To explore sensitivity with respect to s, we consider the limiting case s = 0 and express A as
the identity matrix and Rk : V k → V k as the identity operator for all k = 0, . . . J̄ . In view of

Lemma 3.2, by decomposing any v ∈ V as v =
∑J̄
k=0 Q̃kv it follows that λmin(BstdA) = 1.

Additionally, for any v ∈ V 0 at the coarsest level we have BstdAv = (J̄ + 1)v and thus
λmax(BstdA) ≥ J̄ + 1. This implies that the condition number cond(BstdA) blows up as
s→ 0 and J̄ →∞; this is observed in the experimental results reported in Table 1.
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5. s-uniform BPX Preconditioner for Graded Bisection grids

In this section, we briefly review the bisection method with emphasis on graded grids
following [21], and present new notions. We also refer to [42, 43, 57] for additional details.

We then design a BPX preconditioner for the integral fractional Laplacian (1.1) on graded
bisection grids that is uniform with respect to both the number of levels J and fractional
order s. The boundedness can be proved by combining the BPX preconditioner on quasi-
uniform grids with the theory for graded bisection grids from [42, 21, 43, 52, 31].

5.1. Bisection rules and compatible bisections. For each closed simplex τ ∈ T and a
refinement edge e, the pair (τ, e) is called labeled simplex, and (T ,L) := {(τ, e) : τ ∈ T }
is called a labeled triangulation. For a labeled triangulation (T ,L), and τ ∈ T , a bisection
bτ : {(τ, e)} 7→ {(τ1, e1), (τ2, e2)} is a map that encodes the refinement procedure. The
formal addition is defined as follows:

T + bτ := (T ,L) \ {(τ, e)} ∪ {(τ1, e1), (τ2, e2)}.
For an ordered sequence of bisections B = (bτ1 , bτ2 , . . . , bτN ), we set

T + B := ((T + bτ1) + bτ2) + · · ·+ bτN .

Given an initial grid T0, the set of conforming grids obtained from T0 using the bisection
method is defined as

T(T0) := {T = T0 + B : B is a bisection sequence and T is conforming}.
The bisection method considered in this paper is assumed to satisfy the following two prop-
erties, which are valid for a variety of bisection grids [21].

(A1) Shape regularity: T(T0) is shape regular.
(A2) Conformity of uniform refinement: T k := T k−1 + {bτ : τ ∈ T k−1} ∈ T(T0) ∀k ≥ 1.

We denote by N (T ) the set of vertices of the mesh T , and define the first ring of either
a vertex p ∈ N (T ) or an edge e ∈ E(T ) as

Rp = {τ ∈ T | p ∈ τ}, Re = {τ ∈ T | e ⊂ τ},
and the local patch of either p or e as ωp = ∪τ∈Rpτ , and ωe = ∪τ∈Reτ . An edge e is
called compatible if e is the refinement edge of τ for all τ ∈ Re. Let p be the midpoint of a
compatible edge e and Rp be the ring of p in T + {bτ : τ ∈ Re}. Given a compatible edge
e, a compatible bisection is a mapping be : Re → Rp. The addition is thus defined by

T + be := T + {bτ : τ ∈ Re} = T \ Re ∪Rp,
which preserves the conformity of triangulations. Figure 5.1 depicts the two possible con-
figurations of a compatible bisection bej in 2D.

ej pj

p−j

p+j

bej

(a) Interior edge

ej pj

p−j

p+j

bej

(b) Boundary edge

Figure 5.1. Two possible configurations of a compatible bisection bej in
2D. The edge with boldface is the compatible refinement edge, and the
dash-line represents the bisection.

We now introduce the concepts of generation and level. The generation g(τ) of any
element τ ∈ T0 is set to be 0, and the generation of any subsequent element τ is 1 plus
the generation of its father. For any vertex p, the generation g(p) of p is defined as the
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minimal integer k such that p ∈ N (T k). Therefore, g(τ) and g(p) are the minimal number
of compatible bisections required to create τ and p from T0. Once p belongs to a bisection
mesh, it will belong to all successive refinements; hence g(p) is a static quantity insensitive
to the level of resolution around p. To account for this issue, we define the level `(p) of
a vertex p to be the maximal generation of elements in the first ring Rp; this is then a
dynamic quantity that characterizes the level of resolution around p.

We then have the decomposition of bisection grids in terms of compatible bisections; see
[21, Theorem 3.1].

Theorem 5.1 (decomposition of bisection grids). Let T0 be a conforming mesh with initial
labeling that enforces the bisection method to satisfy assumption (A2), i.e. for all k ≥ 0 all
uniform refinements T k of T0 are conforming. Then for every T ∈ T(T0), there exists a
compatible bisection sequence B = (b1, b2, . . . , bJ) with J = #N (T )−#N (T0) such that

(5.1) T = T0 + B.

pj

p−j

p+j

ωj

• ej : the refinement edge;
• pj : the midpoint of ej ;
• p−j , p+

j : two end points of ej ;

• ωj : the patch of pj (or ωpj );
• ω̃j = ωpj ∪ ωp−j ∪ ωp+

j
;

• hj : the local mesh size of ωj ;
• Tj = T0 + (b1, . . . , bj);
• Rj : the first ring of pj in Tj .

Figure 5.2. Plot of local patch ωj associated to a bisection node pj , en-
larged local patch ω̃j and definition of related quantities.

For a compatible bisection bj with refinement edge ej , we introduce the bisection triplet

(5.2) Tj := {pj , p+
j , p

−
j },

where p−j and p+
j are the end points of ej and pj is its middle point; see Figure 5.2. A vertex

can be a middle point of a bisection solely once, when it is created, but instead it can be
an end point of a refinement edge repeatedly; in fact this is the mechanism for the level to
increment by 1. In addition, since p±j already exist when pj is created, it follows that

gj := g(pj) ≥ g(p±j ).

The notion of generation of the bisection is well-defined due to the following lemma, see [21,
Lemma 3.3].

Lemma 5.1 (compatibility and generation). If bj ∈ B is a compatible bisection, then all
elements in Rj := Rpj have the same generation gj.

In light of the previous lemma, we say that gj is the generation of the compatible bisection
bj : Rej → Rpj . Because by assumption h(τ) ' 1 for τ ∈ T0, we have the following
important relation between generation and mesh size:

hj ' γgj , with γ =

(
1

2

)1/d

∈ (0, 1).

Moreover, there exists a constant k∗ depending on the shape regularity of T(T0) such
that for every vertex p ∈ N (Tj)
(5.3) max

τ∈Rp
g(τ)− min

τ∈Rp
g(τ) ≤ k∗, #Rp ≤ k∗.
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Combining this geometric property with Lemma 5.1 (compatibility and generation), we
deduce that

(5.4) gj − k∗ ≤ g(τ) ≤ gj + k∗ ∀τ ∈ R̃j := Rpj ∪Rp−j ∪Rp+
j
.

Another ingredient for our analysis is the relation between the generation of compatible
bisections and their local or enlarged patches [21, Lemmas 3.4 and 3.5].

Lemma 5.2 (generation and patches). Let TJ = T0 + B ∈ T(T0) with compatible bisection
sequence B = (b1, . . . , bJ). Then the following properties are valid:

• Nonoverlapping patches: For any j 6= k and gj = gk, we have

ω̊j ∩ ω̊k = ∅.

• Quasi-monotonicity: For any j > i and ˚̃ωj ∩ ˚̃ωi 6= ∅, we have

gj ≥ gi − 2k∗,

where k∗ is the integer defined in (5.3).

We now investigate the evolution of the level `(p) of a generic vertex p of T .

q

(a) Rq

q

e

(b) Case 1: q 6∈ e

q

e

(c) Case 2: q ∈ e

Figure 5.3. Two cases of bisection in Rq: the bisection edge e is on
the boundary of the patch and q does not belong to the bisection triplet
(middle); the node q is an endpoint of e and belongs to the bisection triplet
(right). The former can happen a fixed number k∗ of times before the
second takes place, where k∗ depends on the shape regularity of T(T0).

Lemma 5.3 (levels of a vertex). If q ∈ Tj ∩ Tk, where Tj is a bisection triplet and Tk is
the next one to contain q after Tj, and `j(q) and `k(q) are the corresponding levels, then

`k(q)− `j(q) ≤ k∗
where k∗ is the integer given in (5.3).

Proof. Every time a bisection changes the ring Rq, the level of q may increase at most by 1.
If the refinement edge e of the bisection is on the boundary of the patch ωq, then q does not
belong to the bisection triplet; see Figure 5.3 (middle). The number of such edges is smaller
than a fixed integer k∗ that only depends on the shape regularity of T(T0). Therefore, after
at most k∗ bisections the vertex q is an endpoint of a bisection triplet Tk; see Figure 5.3
(right). This implies `k(q) ≤ `j(q) + k∗ as asserted. �

We conclude this section with the following sequence of auxiliary meshes

(5.5) T̂j := T̂j−1 + {bi ∈ B : gi = j} j ≥ 1, T̂0 := T0,

where B is the set of compatible bisections (5.1). Note that each bisection bi in (5.1) does
not require additional refinement beyond the refinement patch ωi when incorporated in the
order of the subscript i according to (5.1). This is not obvious in (5.5) because the bisections

are now ordered by generation. The mesh T̂j contains all elements τ of generation g(τ) ≤ j
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leading to the finest graded mesh T = TJ . The sequence {T̂j}J̄j=1 is never constructed but
is useful for theoretical purposes in Section 7.

Lemma 5.4 (conformity of T̂j). The meshes T̂j are conforming for all j ≥ 0.

Proof. We argue by induction. The starting mesh T̂0 is conforming by construction. Sup-

pose that T̂j−1 is conforming. We observe that the bisections bi with gi = j are disjoint
according to Lemma 5.2 (generation and patches). Suppose that adding bi does lead to
further refinement beyond the refinement patch ωi. If this were the case, then recursive
bisection refinement would end up adding compatible bisections of generation strictly less
than j that belong to the refinement chains emanating from ωi [42, 43]. But such bisections

are all included in T̂j−1 by virtue of (5.5). This shows that all bisections bi with gi = j are

compatible with T̂j−1 and yield local refinements that keep mesh conformity. �

5.2. Space decomposition and BPX preconditioner. Let Tj = T0 + {b1, · · · , bj} ∈
T(T0) be a conforming bisection grid obtained from T0 after j ≤ J compatible bisections

{bi}ji=1 and let Nj = N̊ (Tj) denote the set of interior vertices of Tj . Let V(Tj) be the finite
element space of C0 piecewise linear functions over Tj that vanish on ∂Ω and its nodal basis
functions be φj,p, namely V(Tj) = span{φj,p : p ∈ Nj}. We define the local spaces

(5.6) Vj = span{φj,q : q ∈ Tj ∩Nj}, j = 1, . . . , J

associated with each bisection triplet Tj . We observe that dimVj ≤ 3 and suppφ ⊂ ω̃j for
φ ∈ Vj and 1 ≤ j ≤ J ; see Figure 5.2. We indicate by V := V(TJ) the finite element space
over the finest graded grid TJ , with interior nodes P = NJ and nodal basis functions φp,

(5.7) V = span {φp : p ∈ P}, Vp = span {φp};
hence dim Vp = 1. Let hp be the local grid size around p, which can be defined by

(|ωq|/#Rq)1/d due to the shape regularity. Adding the spaces Vp and Vj yields the space
decomposition of V

(5.8) V =
∑
p∈P

Vp +

J∑
j=0

Vj .

We stress that the spaces Vj appear in the order of creation and not of generation, as is
typical of adaptive procedures. Remarkably, the functions φj,q with q = p±j depend on the

order of creation of Vj (see Figure 5.2). Consequently, reordering of Vj by generation, which
is convenient for analysis, must be performed with caution; see Sections 6 and 7.

Let Qp (resp. Qj) and Ip (resp. Ij) be the L2-projection and inclusion operators to and
from the discrete spaces Vp (resp. Vj), defined in Section 3.1. Inspired by the definition
(4.1), we now define the subspace smoothers to be

Rjvj := (1− γ̃s)h2s
j vj ∀vj ∈ Vj ,

Rpvp := h2s
p vp ∀vp ∈ Vp,

where Rp plays the role of the finest scale whereas Rj represents the intermediate scales.
That is, the intermediate spaces Vj are viewed as “coarse spaces” and are scaled by an
additional factor 1− γ̃s. This in turn induces the following BPX preconditioner on graded
bisection grids

(5.9) B =
∑
p∈P

IpRpI
t
p +

J∑
j=0

IjRjI
t
j =

∑
p∈P

Iph
2s
p Qp + (1− γ̃s)

J∑
j=0

Ijh
2s
j Qj .

6. Boundedness: Proof of (3.5) for graded bisection grids

Let J̄ = maxτ∈TJ gτ denote the maximal generation of elements in TJ . This quantity is
useful next to reorder the spaces Vj by generation because gj ≤ J̄ .
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Proposition 6.1 (boundedness). Assume the extended patch S̃τ defined in (2.12) is Lips-

chitz for every τ ∈ Tj with a uniform Lipschitz constant. Let v =
∑
p∈P vp +

∑J
j=0 vj be a

decomposition of v ∈ V according to (5.8). Then, there exists a constant c1 > 0 independent
of J and s such that

(6.1) |v|2s ≤ c1

∑
p∈P

h−2s
p ‖vp‖20 +

1

1− γ̃s
J∑
j=0

h−2s
j ‖vj‖20

 ,

whence the preconditioner B in (5.9) satisfies λmax(BA) ≤ c1.

Proof. We resort to Lemma 2.1 (local inverse inequality) with σ = s and β = 0, which is
valid on the graded grid TJ , to write

(6.2) |v|2s =

∣∣∣∣∑
p∈P

vp +

J∑
j=0

vj

∣∣∣∣2
s

.

∣∣∣∣∑
p∈P

vp

∣∣∣∣2
s

+

∣∣∣∣ J∑
j=0

vj

∣∣∣∣2
s

.
∑
p∈P

h−2s
p ‖vp‖20 +

∣∣∣∣ J∑
j=0

vj

∣∣∣∣2
s

.

In order to deal with the last term, we reorder the functions vj by generation and observe

that supp vj ⊂ ω̃j . We thus define wk =
∑
gj=k

vj and use (5.4) to infer that wk ∈ V k+k∗ =

V(T k+k∗). Similar to the proof of Proposition 4.1, using Theorem 4.2 (norm equivalence),
the fact that h̄k ' γk and Lemma 3.3 (s-uniform decomposition), we have∣∣∣∣ J∑

j=0

vj

∣∣∣∣2
s

=

∣∣∣∣ J̄∑
k=0

∑
gj=k

vj

∣∣∣∣2
s

=

∣∣∣∣ J̄∑
k=0

wk

∣∣∣∣2
s

'
J̄+k∗∑
`=0

γ−2s`

∥∥∥∥(Q` −Q`−1)

J̄∑
k=0

wk

∥∥∥∥2

0

= inf
z`∈V `∑J̄+k∗

`=0 z`=
∑J̄
k=0 wk

γ−2s(J̄+k∗)‖zJ̄+k∗‖20 +

J̄+k∗−1∑
`=0

γ−2s`

1− γ2s
‖z`‖20

 .
Choosing z` = 0 for ` ≤ k∗ − 1 and z` = w`−k∗ ∈ V ` for ` ≥ k∗ we get∣∣∣∣ J∑

j=0

vj

∣∣∣∣2
s

.
γ−2sk∗

1− γs
J̄∑
k=0

γ−2sk‖wk‖20.

In view of Lemma 5.2, we see that the enlarged patches ω̃j and ω̃i have finite overlap
depending only on shape regularity of T(T0) provided gj = gi, whence

‖wk‖20 .
∑
gj=k

‖vj‖20.

This in conjunction with 1−γ̃s
1−γs ' 1 and the fact that k∗ is uniformly bounded yields

(6.3)

∣∣∣∣ J∑
j=0

vj

∣∣∣∣2
s

.
1

1− γ̃s
J̄∑
k=0

γ−2sk
∑
gj=k

‖vj‖20 '
1

1− γ̃s
J∑
j=0

h−2s
j ‖vj‖20.

Combining (6.2) and (6.3) leads to (6.1) as asserted. Finally, the estimate λmax(BA) ≤ c1
follows directly from Lemma 3.2 (estimate on cond(BA)). �

7. Stable decomposition: Proof of (3.4) for graded bisection grids

We start with a review of the case of quasi-uniform grids in Corollary 4.1 (stable de-
composition) and a roadmap of our approach. We point out that robustness with respect
to both J and s, most notably the handling of the factor (1 − γ̃s)−1 on coarse levels, is
due to the combination of Lemma 3.3 (s-uniform decomposition) and Theorem 4.2 (norm
equivalence), which in turn relies on Lemma 3.4 (s-uniform interpolation). Since Lemma 3.4
fails on graded bisection grids, applying Lemma 3.3 to such grids faces two main difficulties:
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(a) Theorem 4.2 does not hold even for s = 1; (b) the spaces Vj in (5.6) and Vp in (5.7) are
locally supported, while the s-uniform interpolation requires nested spaces (see Lemma 3.4).

To overcome these difficulties, we create a family of nested spaces {Wk}J̄k=0 with WJ̄ = V
upon grouping indices according to generation and level around k: if

(7.1) Jk := {0 ≤ j ≤ J : gj ≤ k}, Pk := {p ∈ P : `(p) ≤ k},

then we define Wk to be

(7.2) Wk :=
∑
j∈Jk

Vj +
∑
p∈Pk

Vp.

Our approach consists of three steps. The first step, developed in Section 7.1, is to derive a
global decomposition based on Wk. Since the levels within Wk are only bounded above, to
account for coarse levels we invoke a localization argument based on a slicing Scott-Zhang
operator as in [21] (or [52, 31]), which gives the stability result (3.7) on {Wk}J̄k=0 via Lemma
3.3 (s-uniform decomposition) for s = 1; we bridge the gap to 0 < s < 1 via Lemma 3.4
(s-uniform interpolation). The space Wk is created for theoretical convenience, but never
constructed in practice, because there is no obvious underlying graded bisection grid on
which the functions of Wk are piecewise linear. This complicates the stable decomposition of

Wk into local spaces and requires a characterization of Wk in terms of the space V̂k = V(T̂k)

of piecewise linear functions over T̂k. The second step in Section 7.2 consists of proving

V̂k ⊂Wk ⊂ V̂k+k∗ ,

where k∗ is constant. Therefore, the space Wk of unordered bisections of generation and

level ≤ k is equivalent, up to level k∗, to the space V̂k of ordered bisections of generation ≤ k;
note that the individual spaces Vj might not coincide though. In the last step, performed in
Section 7.3, we construct a stable decomposition for graded bisection grids and associated

BPX preconditioner B̂. We also show that B̂ is equivalent to B in (5.9).

7.1. Global L2-orthogonal decomposition of Wk. We recall that the Scott-Zhang quasi-
interpolation operator Sj : V → V(Tj) can be defined at a node p ∈ P through the dual
basis function on arbitrary elements τ ⊂ Rp [47, 21]. We exploit this flexibility to define a
suitable quasi-interpolation operator Sj as follows provided Sj−1 : V → V(Tj−1) is already
known. Since Tj = Tj−1 + bj and the compatible bisection bj changes Tj−1 locally in the
bisection patch ωpj associated with the new vertex pj , we set Sjv(p) := Sj−1v(p) for all
p ∈ Nj \ Tj , where Tj is the bisection triplet (5.2). We next define Sjv(pj) using a simplex
τ ∈ Rj newly created by the bisection bj . If p = p±j ∈ Tj and τ ∈ Tj−1 is the simplex used

to define Sj−1v(p), then we define Sjv(p) according to the following rules:

(1) if τ ⊂ ωp(Tj) we keep the nodal value of Sj−1v, i.e. Sjv(p) = Sj−1v(p);
(2) otherwise we choose a new τ ⊂ ωp(Tj) ∩ ωp(Tj−1) to define Sjv(p);

note that τ ∈ Rj in case (2). Once τ ∈ Tj has been chosen, the definition of Sjv(p) for
p ∈ Tj is the same as in [47, 19]. This construction guarantees the local stability bound [47]

(7.3) hd/2p |Sjv(p)| . ‖v‖0,ωp ∀p ∈ Nj ,

where the index 0 stands for the L2 norm, and that the slicing operator Sj−Sj−1 is supported
in the enlarged patch ω̃j , namely

(7.4) (Sj − Sj−1) v ∈ Vj ∀1 ≤ j ≤ J.

We note that (7.3) and (7.4) are the only desired properties in the following lemma. Other
constructions of Sj (c.f. [52, 31]) can also be applied.
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Lemma 7.1 (stable L2-orthogonal decomposition). Let Q̂k : V →Wk be the L2-orthogonal

projection operator onto Wk and Q̂−1 = 0. For any v ∈ V , the global L2-orthogonal decom-

position v =
∑J̄
k=0(Q̂k − Q̂k−1)v satisfies

(7.5)

J̄∑
k=0

γ−2sk‖(Q̂k − Q̂k−1)v‖20 . |v|2s,

where the hidden constant is independent of 0 ≤ s ≤ 1 and J̄ .

Proof. We rely on the auxiliary spaces V k = V(T k) defined over uniformly refined meshes T k
of T0 for 0 ≤ k ≤ J̄ . Let Qk : V J̄ → V k denote the L2-orthogonal projection operator onto
V k and consider the global L2-orthogonal decomposition v =

∑
k=0 v̄k of any v ∈ V ⊂ V J̄ ,

where v̄k := (Qk −Qk−1)v. This decomposition is stable in H1 [54, 45, 12]

J̄∑
k=0

γ−2k‖v̄k‖20 . |v|21.

If gj is the generation of bisection bj and gj > k, then v̄k is piecewise linear in ωej (the
patch of the refinement edge ej), whence (Sj −Sj−1)v̄k = 0 and the slicing operator detects

frequencies k ≥ gj . Consider now the decomposition v =
∑J̄
k=0 vk of v ∈ V where

(7.6) vk :=
∑
gj=k

(Sj − Sj−1)v =
∑
gj=k

(Sj − Sj−1)

J̄∑
`=k

v̄` ∈Wk.

In view of Lemma 5.2 (generation and patches) and the shape regularity of T(T0), enlarged
patches ω̃j with the same generation gj = k have a finite overlapping property. This, in

conjunction with (7.3) and (7.4) as well as the L2-orthogonality of {v̄`}J̄`=k, yields

‖vk‖20 .
∑
gj=k

∥∥∥(Sj − Sj−1)

J̄∑
`=k

v̄`

∥∥∥2

0,w̃j
.
∑
gj=k

∥∥∥ J̄∑
`=k

v̄`

∥∥∥2

0,w̃j
.
∥∥∥ J̄∑
`=k

v̄`

∥∥∥2

0
=

J̄∑
`=k

‖v̄`‖20.

We use Lemma 3.3 (s-uniform decomposition) with s = 1, together with (7.6), to obtain

J̄∑
k=0

γ−2k‖(Q̂k − Q̂k−1)v‖20 = inf
wk∈Wk∑J̄
k=0 wk=v

[
γ−2J̄‖wJ̄‖20 +

J̄−1∑
k=0

γ−2k

1− γ2
‖wk‖20

]

≤ γ−2J̄‖vJ̄‖20 +

J̄−1∑
k=0

γ−2k

1− γ2
‖vk‖20.

Employing the preceding estimate of ‖vk‖20 and reordering the sum implies

J̄∑
k=0

γ−2k‖(Q̂k − Q̂k−1)v‖20 . γ−2J̄‖v̄J̄‖20 +

J̄−1∑
k=0

γ−2k

1− γ2

J̄∑
`=k

‖v̄`‖20

≤ γ−2J̄‖v̄J̄‖20 +

J̄∑
`=0

∑̀
k=0

γ−2k

1− γ2
‖v̄`‖20

= γ−2J̄‖v̄J̄‖20 +

J̄∑
`=0

γ−2` − γ2

(1− γ2)2
‖v̄`‖20 .

J̄∑
`=0

γ−2`‖v̄`‖20 . |v|21.

Hence, we have shown that (7.5) holds for s = 1. The desired estimate for arbitrary 0 ≤ s ≤ 1
follows by Lemma 3.4 (s-uniform interpolation). �

As a consequence of Lemma 3.3 (s-uniform decomposition) and Lemma 7.1 (stable L2-
orthogonal decomposition), we deduce the following property.
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Corollary 7.1 (s-uniform decomposition on Wk). For every v ∈ V , there exists a decom-

position v =
∑J̄
k=0 wk with wk ∈Wk for all k = 0, 1, . . . , J̄ and

γ−2sJ̄‖wJ̄‖20 +

J̄−1∑
k=0

γ−2sk

1− γ2s
‖wk‖20 . |v|2s.

7.2. Characterization of Wk. We now study the geometric structure of the spaces Wk,
defined in (7.2), which is useful in the construction of a stable decomposition of V . Recalling

the definition of T̂k in (5.5), our first goal is to compare Wk with the space

V̂k := V(T̂k)

of C0 piecewise linear functions over T̂k that have vanishing trace. We will show below

(7.7) V̂k ⊂Wk;

see Lemmas 7.3 and 7.4. We start with the set of interior vertices of Wk,

Vk := Bk ∪ Pk, Bk :=
⋃{

Tj : j ∈ Jk
}
, Pk =

{
p ∈ P : `(p) ≤ k

}
.

Lemma 7.2 (geometric structure of Wk). Functions in Wk are C0 piecewise linear on the

auxiliary mesh T̂k+k∗ , where k∗ is given in (5.3). Equivalently, Wk ⊂ V̂k+k∗ .

Proof. We examine separately each vertex q ∈ Vk. If q ∈ Pk, then `(q) ≤ k and all elements

τ ∈ R(q) have generation g(τ) ≤ k by definition of level; hence τ ∈ T̂k for all τ ∈ R(q). If
q ∈ Bk \ Pk instead, then the patch of q shares elements with that of the bisection node pj

min
τ∈Rj(q)

g(τ) ≤ g(pj) = gj ≤ k,

where Rj(q) is the ring of elements containing q in the mesh Tj . Property (5.3) yields

max
τ∈Rj(q)

g(τ) ≤ min
τ∈Rj(q)

g(τ) + k∗ ≤ k + k∗.

It turns out that all elements τ ∈ R̃j , the enlarged ring around pj , have generation g(τ) ≤
k + k∗, whence τ ∈ T̂k+k∗ . It remains to realize that any function w ∈ Vj is thus piecewise

linear over T̂k+k∗ and vanishes outside ω̃j . �

We next exploit the L2-stability of the nodal basis {φ̂q}q∈V̂ of V̂k+k∗ , where V̂ = V̂k+k∗

is the set of interior vertices of T̂ = T̂k+k∗ . In fact, if w =
∑
q∈V̂ w(q) φ̂q, then

(7.8) ‖w‖20 =
∑
τ∈T̂

‖w‖20,τ '
∑
τ∈T̂

|τ |
∑
q∈τ

w(q)2 =
∑
q∈V̂

w(q)2
∑
τ3q
|τ | '

∑
q∈V̂

w(q)2‖φ̂q‖20.

Our goal now is to represent each function φ̂q ∈ V̂k+k∗ in terms of functions of Wk+k∗ , which

in turn shows V̂k+k∗ ⊂Wk+k∗ and thus (7.7). We start with a partition of V̂k+k∗ ,

P̂k+k∗ := {q ∈ V̂k+k∗ : ̂̀(q) ≤ k + k∗ − 1}, P̂ck+k∗ := V̂k+k∗ \ P̂k+k∗ ,

where ̂̀(q) ≤ k+ k∗ is the level of q on T̂k+k∗ . Consequently, ̂̀(q) = k+ k∗ for all q ∈ P̂ck+k∗

and the corresponding functions φ̂q have all the same scaling due to shape regularity of

T(T0). In the next two lemmas we represent the functions φ̂q in terms of Wk+k∗ .

Lemma 7.3 (nodal basis φ̂q with q ∈ P̂k+k∗). For any q ∈ P̂k+k∗ , there holds

φ̂q = φq q ∈ Pk+k∗−1,

where Pk is defined in (7.1); hence, φ̂q ∈Wk+k∗−1.

Proof. Since ̂̀(q) ≤ k+k∗−1, all elements τ ∈ R(q) have generation g(τ) ≤ k+k∗−1. This
implies that no further bisection is allowed in τ because all the bisections with generation

lesser or equal than k + k∗ have been incorporated in T̂k+k∗ by definition. Therefore, R(q)

belongs to the finest grid T and `(q) = ̂̀(q) ≤ k + k∗ − 1, whence φ̂q ∈Wk+k∗−1. �
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Next, we consider a nodal basis function φ̂q corresponding to q ∈ P̂ck+k∗
. There exists a

bisection triplet Tjq that contains q and k ≤ `jq (q) ≤ k+ k∗, for otherwise `jq (q) < k would
violate Lemma 5.3 (levels of a vertex). We thus deduce

(7.9) k − k∗ ≤ `jq (q)− k∗ ≤ gjq ≤ `jq (q) ≤ k + k∗.

In accordance with (5.6), we denote by φjq,q the nodal basis function of Vjq centered at q.

We next show that φ̂q can be obtained by a suitable modification of φjq,q within Wk+k∗ .

Lemma 7.4 (nodal basis φ̂q with q ∈ P̂ck+k∗
). For any q ∈ P̂ck+k∗

, let

Sq := {j ∈ Jk+k∗ : j > jq, ωj ∩ suppφjq,q 6= ∅}
be the set of bisection indices j > jq such that gj ≤ k + k∗, φj,pj be the function of Vj
centered at the bisection vertex pj and ωj = supp pj. Then there exist numbers cj,q ∈ (−1, 0]

for j ∈ Sq such that the nodal basis function φ̂q ∈ Vk+k∗ associated with q can be written as

(7.10) φ̂q = φjq,q +
∑
j∈Sq

cj,qφj,pj ,

and the representation is L2-stable, i.e.,

(7.11) ‖φ̂q‖20 ' ‖φjq,q‖20 +
∑
j∈Sq

c2j,q‖φj,pj‖20.

Proof. The discussion leading to (7.9) yields k ≤ `jq (q) ≤ k + k∗ which, combined with
(5.3), implies that all elements τ ∈ Rjq (q) have generation between k− k∗ and k+ k∗. The
idea now is to start from the patch Rjq (q), the local conforming mesh associated with φjq,q,

and successively refine it with compatible bisections in the spirit of the construction of T̂j
in (5.5) until we reach the level k + k∗; see Figure 7.1. To this end, let T̂k−k∗(q) := Rjq (q)
and consider the sequence of local auxiliary meshes

T̂j(q) := T̂j−1(q) + {bi ∈ B : i ∈ Sq, gi = j} k − k∗ + 1 ≤ j ≤ k + k∗,

which are conforming according to Lemma 5.4 (conformity of T̂j).

q

(a) T̂k−2,q

q pi1

(b) T̂k−1,q

q

pi4

pi3pi2

(c) T̂k,q

q

pi5

pi6

pi7

(d) T̂k+1,q

q
pi8

pi9

(e) T̂k+2,q

Figure 7.1. Local auxiliary meshes T̂j,q with |j − k| ≤ k∗ = 2. Index sets
Sk−1,q = {i1}, Sk,q = {i2, i3, i4}, Sk+1,q = {i5, i6, i7}, Sk+2,q = {i8, i9} of

compatible bisections to transition from φ̂j−1,q to φ̂j,q. The support of φ̂j,q
is monotone decreasing as j increases and is plotted in grey.

We now consider the following recursive procedure: let φ̂k−k∗,q := φjq,q and

(7.12) φ̂j,q := φ̂j−1,q −
∑
i∈Sj,q

φ̂j−1,q(pi)φi,pi k − k∗ + 1 ≤ j ≤ k + k∗,

where pi is the bisection node of bi ∈ B and

Sj,q :=
{
i ∈ Jk+k∗ : gi = j, ωi ∩ supp φ̂j−1,q 6= ∅

}
.

Unless pi belongs to the boundary of supp φ̂j−1,q, the construction (7.12) always modifies

φ̂j−1,q; compare Figure 7.1b with Figures 7.1c–7.1e. In view of Lemma 5.2 (generation and
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patches), the sets ω̊i for i ∈ Sj,q are disjoint, whence φ̂j,q(p) = δpq for all nodes p of T̂j(q)
and φ̂j,q is the nodal basis function centered at q on T̂j(q). Morever,

φ̂j,q = φ̂j−1,q +
∑
i∈Sj,q

ci,q φi,pi

with coefficients ci,q ∈ (−1, 0]. Notice that ‖φ̂j,q‖0 ' ‖φ̂j−1,q‖0 ' ‖φi,pi‖0 due to the shape
regularity, the scales of these functions being comparable yields

‖φ̂j,q‖20 ' ‖φ̂j−1,q‖20 +
∑
i∈Sj,q

c2i,q ‖φi,pi‖20 .

Since k∗ is uniformly bounded depending on shape regularity of T(T0), iterating these two
expressions at most 2k∗ times leads to (7.10) and (7.11), and concludes the proof. �

We are now in a position to exploit the representation of the nodal basis of V̂k+k∗ , given
in Lemmas 7.3 and 7.4, to decompose functions in Wk. We do this next.

Corollary 7.2 (L2-stable decomposition of Wk). Given any 0 ≤ k ≤ J̄ consider the sets

(7.13) Pk+k∗ = {q ∈ P : `(q) ≤ k + k∗}, Ik+k∗ = {0 ≤ i ≤ J : k − k∗ ≤ gi ≤ k + k∗}.
Then, every function w ∈Wk admits a L2-stable decomposition

(7.14) w =
∑

q∈Pk+k∗

wq +
∑

j∈Ik+k∗

wj , ‖w‖20 '
∑

q∈Pk+k∗

‖wq‖20 +
∑

j∈Ik+k∗

‖wj‖20,

where wq ∈ Vq for all q ∈ Pk+k∗ and wj ∈ Vj for all j ∈ Ik+k∗ .

Proof. Invoking Lemma 7.2 (geometric structure of Wk), we infer that w ∈ V̂k+k∗ , which

yields the L2-stable decomposition of w in terms of nodal basis of V̂k+k∗

w =
∑

q∈V̂k+k∗

w(q) φ̂q =
∑

q∈P̂k+k∗

w(q) φ̂q +
∑

q∈P̂ck+k∗

w(q) φ̂q.

On the one hand, Lemma 7.3 (nodal basis φ̂q with q ∈ P̂k+k∗) implies that φ̂q = φq
and P̂k+k∗ ⊂ Pk+k∗ ; hence we simply take wq := w(q)φq. On the other hand, using the

representation (7.10) of φ̂q from Lemma 7.4 (nodal basis φ̂q with q ∈ P̂ck+k∗
) and reordering,

we arrive at ∑
q∈P̂ck+k∗

w(q)φ̂q =
∑

q∈P̂ck+k∗

w(q)

(
φjq,q +

∑
j∈Sq

cj,q φj,pj

)
=

∑
j∈Ik+k∗

wj ,

where
wj :=

∑
q:jq=j

w(q)φj,q +
∑
q:Sq3j

w(q) cj,q φj,pj ∈ Vj .

This gives the decomposition (7.14). The L2-stability (7.8) of {φ̂q}q∈V̂k+k∗

‖w‖20 '
∑

q∈P̂k+k∗

w(q)2 ‖φ̂q‖20 +
∑

q∈P̂ck+k∗

w(q)2 ‖φ̂q‖20,

in conjunction with (7.11), gives

‖w‖20 '
∑

q∈P̂k+k∗

‖w(q)φ̂q‖20 +
∑

q∈P̂ck+k∗

w2(q)

(
‖φjq,q‖20 +

∑
j∈Sq

c2j,q‖φj,pj‖20
)

=
∑

q∈Pk+k∗

‖wq‖20 +
∑

j∈Ik+k∗

(∑
jq=j

w2(q)‖φj,q‖20 +
∑
Sq3j

w2(q)c2j,q‖φj,pj‖20
)
.

To prove the L2-stability in (7.14), it remains to show that the term in parenthesis is
equivalent to ‖wj‖20 for any j ∈ Ik+k∗ , which in turn is a consequence of the number of
summands being bounded uniformly. We first observe that the cardinality of {q : jq = j}
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is at most three because this corresponds to q ∈ Tj , the j-th bisection triplet. Finally, the

cardinality of the set {q ∈ P̂ck+k∗
: j ∈ Sq ∩ Ik+k∗} is bounded uniformly by a constant that

depends solely on shape regularity of T(T0). To see this, note that ̂̀(q) = k + k∗ yields
k ≤ g(τ) ≤ k+ k∗ for all elements τ within suppφjq,q and k− k∗ ≤ gj ≤ k+ k∗, whence the
number of vertices q such that suppφjq,q ∩ωj 6= ∅ is uniformly bounded as asserted. Hence

‖wj‖20 '
∑
jq=j

w2(q)‖φj,q‖20 +
∑
Sq3j

w2(q)c2j,q‖φj,pj‖20

yields the norm equivalence in (7.14) and finishes the proof. �

7.3. Construction of stable decomposition. We first construct a BPX preconditioner
that hinges on the space decomposition of Section 7.1 and the nodal basis functions just
discussed in Section 7.2. We next show that this preconditioner is equivalent to (5.9).

Theorem 7.1 (stable decomposition on graded bisection grids). For every v ∈ V , there
exist vp ∈ Vp with p ∈ P, vp,k ∈ Vp with p ∈ Pk+k∗ , and vj,k ∈ Vj with j ∈ Ik+k∗ , such that

(7.15) v =
∑
p∈P

vp +

J̄∑
k=0

 ∑
q∈Pk+k∗

vq,k +
∑

j∈Ik+k∗

vj,k

 ,

where Pk+k∗ and Ik+k∗ are given in (7.13), and there exists a constant c0 independent of
s ∈ (0, 1] and J such that

(7.16) γ−2sJ̄
∑
p∈P
‖vp‖20 +

J̄∑
k=0

γ−2sk

1− γ2s

 ∑
p∈Pk+k∗

‖vp,k‖20 +
∑

j∈Ik+k∗

‖vj,k‖20

 ≤ c0|v|2s.
Proof. We construct the decomposition (7.15) in three steps.

Step 1: Decomposition on Wk. Applying Corollary 7.1 (s-uniform decomposition on Wk),

we observe that there exist wk ∈Wk, k = 0, 1, · · · , J̄ such that v =
∑J̄
k=0 wk and

(7.17) γ−2sJ̄‖wJ̄‖20 +

J̄−1∑
k=0

γ−2sk

1− γ2s
‖wk‖20 . |v|2s.

Step 2: Finest scale. We let {φp}p∈P be the nodal basis of V and set vp := wJ̄(p)φp; hence
wJ̄ =

∑
p∈P vp. Applying the L2-stability (7.8) to {φp}p∈P gives

(7.18) ‖wJ̄‖20 '
∑
p∈P
‖vp‖20.

We also choose the finest scale of vp,k and vj,k to be vq,J̄ = 0 and vj,J̄ = 0.

Step 3: Intermediate scales. By Corollary 7.2 (L2-stable decomposition of Wk), we have
the L2-stable decomposition (7.14) of wk ∈ Wk for every k = 0, . . . , J̄ − 1. Combining the
stability bound (7.17) with (7.18) and (7.14), we deduce the stable decomposition (7.16). �

In view of Theorem 7.1 above, we consider the BPX preconditioner

(7.19) B̂ := γ2sJ̄
∑
p∈P

IpQp + (1− γ2s)

J̄∑
k=0

γ2sk

 ∑
p∈Pk+k∗

IpQp +
∑

j∈Ik+k∗

IjQj

 .

The following corollary is a direct consequence of (7.16) and (3.4).

Corollary 7.3 (uniform bound for λmin(B̂A)). The preconditioner B̂ in (7.19) satisfies

λmin(B̂A) ≥ c−1
0 .

We are now ready to prove the main result of this section, namely that B in (5.9) is a

robust preconditioner for A on graded bisection grids. To this end, we need to show that B̂
in (7.19) is spectrally equivalent to B.
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Theorem 7.2 (uniform preconditioning on graded bisection grids). Let Ω be a bounded Lip-

schitz domain and s ∈ [0, 1]. Assume the extended patch S̃τ defined in (2.12) is Lipschitz for
every τ ∈ Tj with a uniform Lipschitz constant. Let V be the space of continuous piecewise
linear finite elements over a graded bisection grid T , and consider the space decomposition
(5.8). The corresponding BPX preconditioner B in (5.9), namely

B =
∑
p∈P

Iph
2s
p Qp + (1− γ̃s)

J∑
j=0

Ijh
2s
j Qj ,

is spectrally equivalent to B̂ in (7.19), whence λmin(BA) & c−1
0 . Therefore, the condition

number of BA satisfies

cond (BA) . c0c1,

where the constants c0 and c1, given in (7.16) and (6.1), are independent of s and mesh-
parameters except for the shape-regularity constant.

Proof. We show that the ratio (Bv,v)

(B̂v,v)
is bounded below and above by constants independent

of s and J for all v ∈ V . We first observe that for p ∈ P with level `(p), we have hp ' γ`(p).
Then,

h2s
p ' γ2s`(p) = γ2s(J̄+1) + (1− γ2s)

J̄∑
k=`(p)

γ2sk,

whence B1 :=
∑
p∈P Iph

2s
p Qp and vp = Qpv satisfy

(B1v, v) ' γ2sJ̄
∑
p∈P
‖vp‖20 + (1− γ2s)

∑
p∈P

J̄∑
k=`(p)

γ2sk‖vp‖20.

The rightmost sum can be further decomposed as follows:∑
p∈P

J̄∑
k=`(p)

γ2sk‖vp‖20 =

J̄∑
j=0

∑
`(p)=j

J̄∑
k=j

γ2sk‖vp‖20

=

J̄∑
k=0

γ2sk
∑
`(p)≤k

‖vp‖20 ≤
J̄∑
k=0

γ2sk
∑

`(p)≤k+k∗

‖vp‖20

= γ−2sk∗

J̄∑
k=0

γ2s(k+k∗)
∑

`(p)≤k+k∗

‖vp‖20 ≤ γ−2sk∗

J̄∑
k=0

γ2sk
∑
`(p)≤k

‖vp‖20.

Since γ−2sk∗ ' 1, there exist equivalence constants independent of s and J such that

(7.20) (B1v, v) ' γ2sJ̄
∑
p∈P
‖vp‖20 + (1− γ2s)

J̄∑
k=0

γ2sk
∑

p∈Pk+k∗

‖vp‖20.

We now consider the bisection triplets Tj and 3-dimensional spaces Vj , for which hj ' γgj .
We let B̂2 :=

∑J̄
k=0 γ

2sk
∑
j∈Ik+k∗

IjQj , B2 :=
∑J
j=0 Ijh

2s
j Qj and vj := Qjv, to write

(7.21)

(B̂2v, v) =

J̄∑
k=0

γ2sk
∑

k−k∗≤gj≤k+k∗

‖vj‖20

=

J̄∑
k=0

γ2sk
i=k∗∑
i=−k∗

γ2si
∑
gj=k

‖vj‖20

'
J̄∑
k=0

γ2sk
∑
gj=k

‖vj‖20 =

J∑
j=1

γ2sgj‖vj‖20 ' (B2v, v),
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because
∑i=k∗
i=−k∗ γ

2si ' 1 due to the fact that k∗ is a fixed integer depending solely on shape

regularity of T(T0). Combining (7.20) and (7.21) we obtain

(Bv, v) = (B1v, v) + (1− γ̃s)(B2v, v) ' (B̂v, v) ∀ v ∈ V,
whence the operators B and B̂ are spectrally equivalent. Invoking Corollary 7.3 (uni-

form bound for λmin(B̂A)), we readily deduce λmin(BA) & c−1
0 . We finally recall that

λmax(BA) . c1, according to Proposition 6.1 (boundedness), to infer the desired uniform
bound cond(BA) = λmax(BA)λmin(BA)−1 . c0c1. �

8. Numerical Experiments

This section presents some experiments with conjugate gradient and BPX preconditioners
(4.2) for quasi-uniform grids and (5.9) for graded bisection grids, whose main difference with
BPX for the classical Laplacian is the scaling factor 1 − γ̃s for coarse levels. Therefore, if
N = dimV denotes the number of degrees of freedom of the finest space V = V(TJ), the
computational cost for applying (4.2) and (5.9) is CN with a modest constant C and is
comparable with the classical Laplacian. However, a key difference is that the stiffness
matrix A is dense and a matrix-vector product requires N2 operations. The effect of BPX is
thus to limit such matrix-vector products to a fixed number regardless of s and J . However,
to reduce the total computational cost to log-linear in N requires further sparsification of A.

In the sequel, we consider the Dirichlet integral fractional Laplacian (1.1) in Ω = (−1, 1)2

with various fractional powers and examine robustness of the BPX preconditioners.

8.1. Uniform grids. We first perform computations on a family of nested, uniformly re-
fined meshes. Table 2 lists the condition numbers obtained upon applying the standard BPX
preconditioner (4.4) (i.e. γ̃ = 0) and the s-uniform BPX preconditioner (4.2) (i.e. γ̃ > 0).
Limited by computational capacity, the largest J̄ we take in our computations is 6, which
corresponds to number of degrees of freedom N = 16129. In Figure 8.1a, we plot the condi-
tion numbers vs s for both standard and s-uniform BPX preconditioners for quasi-uniform
grids. Even though this is a small-scale problem, the s-uniform BPX preconditioner (4.2)
performs better than the standard one, especially when the fractional power s is small.

J̄ hJ̄ N
s = 0.9 s = 0.5 s = 0.1

κ(A) γ̃ = 0 γ̃ = 1
2 κ(A) γ̃ = 0 γ̃ = 1

2 κ(A) γ̃ = 0 γ̃ = 1
2

1 2−1 9 4.68 2.95 2.98 1.83 2.22 1.63 1.90 3.25 1.99
2 2−2 49 17.07 5.21 4.90 3.49 3.20 2.35 2.44 6.10 2.62
3 2−3 225 59.94 7.69 7.26 6.96 4.10 2.90 2.68 8.66 2.92
4 2−4 961 209.12 10.74 9.97 13.94 4.92 3.40 2.75 10.81 3.00
5 2−5 3969 728.66 14.78 13.42 27.93 5.61 3.89 2.77 12.66 3.03
6 2−6 16129 2538.1 20.44 18.04 55.93 6.22 4.37 2.78 14.28 3.03

Table 2. Condition numbers cond(BA): non-preconditioned system
(κ(A)), standard BPX preconditioner (γ̃ = 0), and s-uniform BPX pre-
conditioner (γ̃ = 1

2 ).

8.2. Graded bisection grids. We next consider graded bisection grids. As described in
Remark 1, the graded grids are required to obtain better convergence rates. In order to
obtain the mesh grading (2.11) of [1] when using bisection grids, we consider the following
strategy. Given an element τ ∈ T , let xτ be its barycenter. Our strategy is based on
choosing a number θ > 1 and marking those elements τ such that

(8.1) |τ | > θN−1 logN · d(xτ , ∂Ω)2(µ−1)/µ.

We use the newest vertex bisection algorithm. Figure 8.2 displays graded bisection grids
obtained with (8.1) and θ = 4, µ = 2, the latter being optimal for d = 2 [1].
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(a) quasi-uniform grids
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(b) graded bisection grids

Figure 8.1. Condition numbers vs s for the standard BPX preconditioner
(γ̃ = 0) and the s-uniform BPX preconditioners (γ̃ = 1/2 and γ̃ =

√
2/2).

(a) J̄ = 6 (b) J̄ = 9 (c) J̄ = 12 (d) J̄ = 15

Figure 8.2. Graded bisection grids on (−1, 1)2, using strategy (8.1) with
θ = 4 and µ = 2.

We report condition numbers cond(BA) over graded bisection grids in Table 3. Note
that the condition number κ(A) of A could be relatively large for small s due to the factor
hmaxh

−1
min in (1.6); this could be cured by diagonal scaling B as documented in Table 3.

The latter also shows that the s-uniform BPX preconditioner (5.9) performs well for a wide
range of s. This is further confirmed by Figure 8.1b. We also observe that diagonal scaling
outperforms the preconditioner (5.9) for s = 0.1 and gives rise to condition numbers that
seem to be independent of N . Such a phenomenon is not expected from (1.6), probably
due to the grids not being refined enough since N2s/d ≈ 2.496 for the finest test (J̄ = 18).
Another possibility is that formula (1.6) is not sharp for these special graded bisection grids.
Note that (1.6) would also suggest that κ(A) . N−1 for all s, because hmin ≈ h2

max ≈ N
and d = 2, but Table 3 shows sensitivity of κ(A) with respect to s.

9. Spectral and censored Laplacians

The spectral and censored Laplacians are useful variants of (1.3) in practice. We finally
show that our preconditioners (4.2) and (5.9) are effective for these two operators as well
because of their spectral equivalence to the integral fractional Laplacian.

We recall that the eigenpairs of the Laplacian −∆ with homogeneous Dirichlet condition

on ∂Ω are denoted by {λ̂k, ϕ̂k}∞k=1 and consider the space

Ĥs(Ω) :=
{
v =

∞∑
k=1

vkϕ̂k ∈ L2(Ω) : |v|2
Ĥs(Ω)

=

∞∑
k=1

λ̂skv
2
k <∞

}
,

which coincides with H̃s(Ω) and has equivalent norms according to (2.7). However, these
norms induce different fractional operators. Minima of the functional v 7→ 1

2 |v|2Ĥs(Ω)
−
∫

Ω
fv
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J̄ N
s = 0.9 s = 0.5 s = 0.1

κ(A) diag γ̃ = 0
√
2
2

κ(A) diag γ̃ = 0
√
2

2
κ(A) diag γ̃ = 0

√
2

2
7 61 9.14 8.38 4.64 4.55 6.21 2.55 2.88 2.42 15.87 2.76 5.54 3.20

8 153 14.22 12.83 5.95 5.67 9.15 3.21 3.76 2.94 31.52 2.81 7.13 3.75

9 161 15.63 14.90 6.89 6.27 9.29 3.44 4.21 3.18 29.82 2.74 8.06 3.67

10 369 24.69 22.84 8.06 7.03 13.75 4.36 5.03 3.51 60.72 2.78 9.09 3.78

11 405 31.30 30.42 8.69 7.61 13.56 4.91 5.41 3.65 55.66 2.71 10.18 3.83

12 853 40.48 37.52 10.12 8.72 26.53 5.88 6.31 4.14 193.58 2.77 10.80 3.86

13 973 60.90 54.95 11.45 9.71 20.59 6.77 6.68 4.33 114.42 2.71 12.12 3.91

14 1921 74.38 69.93 12.31 10.58 37.76 7.00 7.12 4.72 361.86 2.77 12.52 4.07

15 2265 111.31 100.94 13.34 11.50 30.13 9.44 7.18 4.70 213.77 2.72 13.43 4.03

16 4269 140.96 133.64 14.65 12.50 53.59 11.19 7.70 5.10 675.54 2.75 14.14 4.16

17 5157 206.53 187.62 16.13 13.76 43.56 13.33 7.69 5.04 407.64 2.72 14.79 4.10

18 9397 274.17 250.31 18.04 15.19 79.67 15.79 8.29 5.42 1390.3 2.75 15.53 4.17

Table 3. Condition numbers cond(BA): non-preconditioned system
(κ(A)), diagonal scaling (diag), standard BPX preconditioner (γ̃ = 0), and

s-uniform BPX preconditioner (5.9) with γ̃ =
√

2/2.

are weak solutions of the spectral fractional Laplacian in Ω with homogeneous Dirichlet

condition for 0 < s < 1, whose eigenpairs are (λ̂sk, ϕ̂k)∞k=1.
In contrast, let us consider the eigenvalue problem for the integral fractional Laplacian

(1.1) with homogeneous Dirichlet condition,{
(−∆)su

(s)
k = µ

(s)
k u

(s)
k in Ω,

u
(s)
k = 0 in Ωc.

It is well-known that there exist an infinite sequence of eigenvalues 0 < µ
(s)
1 < µ

(s)
2 ≤ . . .

with µ
(s)
k →∞, and the following equivalence is derived in [22]

C(Ω)λ̂sk ≤ µ(s)
k ≤ λ̂sk, k ∈ N.

There is yet a third family of fractional Sobolev spaces, namely Hs
0(Ω), which are the

completion of C∞0 (Ω) with the L2-norm plus the usual Gagliardo Hs-seminorm

(9.1) |v|2Hs(Ω) = C(d, s)

∫
Ω

∫
Ω

|v(x)− v(y)|2
|x− y|d+2s

dxdy.

If Ω is Lipschitz, it turns out that Hs
0(Ω) = H̃s(Ω) for all 0 < s < 1 such that s 6= 1

2 ; in

the latter case H̃
1
2 (Ω) = H

1
2
00(Ω) is the so-called Lions-Magenes space [38]. The seminorm

(9.1) is a norm equivalent to | · |s for s ∈ ( 1
2 , 1) but not for s ∈ (0, 1

2 ]; note that 1 ∈ Hs
0(Ω)

and |1|Hs(Ω) = 0 for s ∈ (0, 1
2 ]. Functions in Hs

0(Ω) for s ∈ ( 1
2 , 1) admit a trace on ∂Ω and

minima of the functional v 7→ 1
2 |v|2Hs(Ω)−

∫
Ω
fv are weak solutions of the censored fractional

Laplacian, which reads as (1.1) but with integration over Ω instead of Rd. In addition,

(9.2) |v|Hs(Ω) ≤ |v|H̃s(Ω) ≤ C|v|Hs(Ω), v ∈ H̃s(Ω) = Hs
0(Ω), s > 1/2,

holds with a constant C that scales as (s − 1/2)−1. Indeed, splitting the integration to

compute H̃s(Ω) above, one readily finds that

|v|2
H̃s(Ω)

= |v|2Hs(Ω) +2C(d, s)

∫
Ω

∫
Ωc

|u(x)|2
|x− y|d+2s

dydx ' |v|2Hs(Ω) +
C(d, s)

s

∫
Ω

|u(x)|2
d(x, ∂Ω)2s

dx,

and it is therefore necessary to bound the last integral in the right hand side in terms of the
Hs(Ω)-seminorm. Such is the purpose of the Hardy inequality (cf. [35, Theorem 1.4.4.4]),
for which the optimal constant is of order (s− 1/2)−1 [9].

In spite of their spectral equivalence, the inner products that give rise to the integral,
spectral and censored fractional Laplacians are different and yield a strikingly different
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boundary behavior [10]. For a right-hand side f ∈ L∞(Ω), the boundary behavior of
solutions u of the three operators is as follows: for the integral Laplacian, u is roughly like

(9.3) u ' d(·, ∂Ω)s,

whereas for the spectral Laplacian u behaves like

u ' d(·, ∂Ω)min{2s,1},

except for s = 1
2 that requires an additional factor | log d(·, ∂Ω)|, and for the censored

Laplacian with s ∈ ( 1
2 , 1) the function u is quite singular at the boundary [5]

u ' d(·, ∂Ω)2s−1.

We finally conclude that, in view of (2.7), the BPX preconditioners (4.2) for quasi-
uniform meshes and (5.9) for graded bisection meshes are effective for the spectral and
censored Laplacians, but the performance for the latter deteriorates as s→ 1

2 .
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