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Abstract. This chapter is about the modeling of nematic liquid crystals

(LCs) and their numerical simulation. We begin with an overview of the basic

physics of LCs and discuss some of their many applications. Next, we delve into
the modeling arguments needed to obtain macroscopic order parameters which

can be used to formulate a continuum model. We then survey different contin-

uum descriptions, namely the Oseen-Frank, Ericksen, and Landau-deGennes
(Q-tensor) models, which essentially model the LC material like an anisotropic

elastic material. In particular, we review the mathematical theory underlying

the three different continuum models and highlight the different trade-offs of
using these models.

Next, we consider the numerical simulation of these models with a sur-
vey of various methods, with a focus on the Ericksen model. We then show

how techniques from the Ericksen model can be combined with the Landau-

deGennes model to yield a Q-tensor model that exactly enforces uniaxiality,
which is relevant for modeling many nematic LC systems. This is followed by

an in-depth numerical analysis, using tools from Γ-convergence, to justify our

discrete method. We also show several numerical experiments and comparisons
with the standard Landau-deGennes model.

1. Physics of Liquid Crystals

1.1. Fundamentals. The name “liquid crystal” appears self-contradictory. A
crystal has a rigid molecular structure and so is associated with being a solid. How
could a crystal be liquid? Thinking more broadly, a crystal is matter that possesses
some kind of macroscopic order, such as having individual molecules arranged in a
lattice. On the other hand, a liquid has no macroscopic order.

Liquid crystals (LCs) are a meso-phase of matter, having a degree of macro-
scopic order that is between a liquid and a solid [119]. A classic solid crystal has
both translational order (points in the lattice do not move) and orientational order
(neighboring molecules have similar orientation). A LC has no strong translational
order, i.e. the molecules are free to slide about, but they must roughly maintain the
same orientation with neighboring molecules. Thus, LCs have partial orientational
order.

The initial, accidental discovery of LCs is classically attributed to the Austrian
botanist Friedrich Reinitzer [97, 98], who was studying carrots. While heating
cholesteryl benzoate, he saw the material exhibit an LC phase. In order to bet-
ter understand this, he sought the help of German physicist, Otto Lehmann [68]
who had experimental apparatus capable of better analysis. After this initial work,
Lehmann continued to study LCs, while Reinitzer moved on. Further informa-
tion on the history of LCs can be found in [105], which contains translations of

JPB has been supported in part by NSF grant DMS-1411808.
SWW has been supported in part by NSF grant DMS-1555222 (CAREER).

1



2 J.P. BORTHAGARAY AND S.W. WALKER

Reinitzer’s and Lehmann’s initial papers. Moreover, one can consult [39, 40, 74, 82]
for more details on the basic physics of LCs.

The LC state may be obtained as a function of temperature between the crys-
talline and isotropic liquid phases; in such a case, the material is called a ther-
motropic LC. Other classes include lyotropic and metallotropic LCs, in which con-
centration of the LC molecules in a solvent or the ratio between organic and inor-
ganic molecules determine the phase transitions, respectively.

Let us consider thermotropic LCs. In a crystalline solid, molecules exhibit both
long-range ordering of the positions of the centers and orientation of the molecules.
As the substance is heated, the molecules gain kinetic energy and large molecular
vibrations usually make these two ordering types disappear. This results in a fluid
phase. In substances capable of producing an LC meso-phase, the long-range orien-
tational ordering survives until a higher temperature than the long-range positional
ordering. Whenever long-range positional ordering is completely absent, but ori-
entational order remains, the LC is regarded as nematic. At lower temperatures,
the molecules may order along a preferred direction, forming layered structures:
this is called the smectic phase. In turn, smectic mesophases may be classified into
subclasses (such as smectics A, smectics C and hexatic smectics), depending on
the type and degree of positional and orientational order [39]. Some substances
with chiral molecules (i.e. different from their mirror image) may give rise to a
cholesteric mesophase, in which the structure possesses a helical distortion.

This chapter will only consider nematic LCs, and regard their molecules as rods,
elongated in one direction and thin in the other two directions. Imagining a bunch
of thin rods packed together, it is natural to expect the orientation of neighboring
rods to be similar, but the rods are free to slide along each other. Indeed, the
partial order of LCs is essentially due to the anisotropic shape of the LC molecules.
Naturally, most LC molecules do not possess axial symmetry. If the molecules
resemble more laths than rods, it is expected that the energy interaction can be
minimized if the molecules are fully aligned; this necessarily involves a certain
degree of biaxiality. Roughly, this was the rationale behind the prediction of the
biaxial nematic phase by Freiser [49].

Since that seminal work, empirical evidence of biaxial states in certain lyotropic
LCs has been well documented (see [127], for example). Nevertheless, for ther-
motropic LCs the nematic biaxial phase remained elusive for a long period, and
was first reported long after Freiser’s original prediction [1, 75, 92]. As pointed out
by Sonnet and Virga [108, Section 4.1],

The vast majority of nematic liquid crystals do not, at least in
homogeneous equilibrium states, show any sign of biaxiality.

Therefore, in this chapter, we shall focus mainly on uniaxial LCs. We discuss
three models for the equilibrium configurations. Uniaxiality is naturally built into
both the Oseen-Frank and the Ericksen models, as the LC orientation is modeled
by a vector field. In contrast, the Landau-deGennes model represents molecular
orientation by means of a tensor field, and thus accounts for biaxiality. However,
one can enforce uniaxiality and obtain a model that is not equivalent to either
the Ericksen or the Oseen-Frank models. In particular, the uniaxially constrained
Landau-deGennes model represents the LC molecule orientation by a line field, and
thus it allows for non-orientable configurations. We will discuss this with more
detail in Section 4.
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1.2. Applications. The most well-known application of LCs is in electronic dis-
plays [57, 99], which is due to an LC’s birefringence property. Indeed, some LC
materials polarize light (depending on the orientation of molecules) and this can
be controlled through external fields, such as electric fields. This, combined with
sophisticated engineering, delivers the flat panel LC display.

However, many newer uses for LCs are being found in material science, that either
further build on LCs ability to manipulate light or take advantage of the mechanical
properties of the material’s anisotropy [65]. For example, [59] demonstrates three
dimensional LC droplets that act as lasers, which may be used as bio-sensors. Self-
assembly of rigid particles (inclusions) immersed in an LC medium [116, 117] has
the potential to make new materials. Clever optical effects with LC droplets [102]
provide novel means of creating secure “markers” that cannot be counterfeit.

Furthermore, LC models provide a test bed for investigating continuum models
of complex fluids (e.g. Ericksen-Leslie [37, 83, 121]), especially swarms of bacteria
[118, 78, 51] which is sometimes called active matter [94, 95, 42, 80]. The shape
of a bacterium is very reminiscent of LC molecules (elongated rods) so it is not
surprising that LC models, coupled with fluid dynamics, may be reused. Therefore,
LC research is a very active field within physics, mathematics, biology, and soft-
matter in general.

2. Modeling of Nematic Liquid Crystals

We review three models for the equilibrium states of LCs. Specifically, we show
how to obtain a continuum description by an appropriate averaging over molecules.
This leads to continuum mechanics type models that derive from minimizing an
energy; we refer to [39, 119, 82] for more details on the modeling of LCs.

2.1. Order Parameters. Modeling individual LC molecules is certainly viable via
molecular dynamics or Monte Carlo methods [23, 115, 81, 123, 111, 33] and has
the advantage of being based on first principles (i.e. completely “correct”), but is
also very expensive computationally. In order to build on these models for, say,
coupling to fluids or doing optimal design, we require a macroscopic description of
LCs. Usually, the transition between phases of different symmetry is described in
terms of an order parameter, that represents the extent to which the configuration
of the more symmetric phase differs from that of the less symmetric phase.

In the following discussion, we fix the spatial dimension to be d = 3. As a first
step, suppose we have an ensemble of LC molecules in a small region where the
state of each molecule is defined by its orientation in R3, i.e. let p ∈ S2 be a vector
in the unit sphere that indicates the orientation of an LC molecule. Let ρ(p) ≥ 0
be the probability distribution of the orientation of LC molecules. Obviously, the
distribution of LC molecules may vary in space (and in time), e.g. ρ ≡ ρ(x,p),
but we shall omit the dependence on these variables for simplicity of notation. It
is reasonable to assume that an LC molecule is just as likely to be observed with
orientation p as −p; hence, ρ satisfies ρ(p) = ρ(−p). Based on this head-to-tail
symmetry, it must be that

(1)

∫
S2

pρ(p) dp = 0,

so direct averaging does not yield a useful order parameter.
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Therefore, the first nontrivial information on the molecule distribution is given
by the second moments of ρ, namely:

(2)

∫
S2

ppT ρ(p) dp = M,

where M ∈ R3×3 is symmetric and effectively captures the average state of the LC
molecules (i.e. this is a useful order parameter). For a uniformly random (isotropic)
distribution of LC molecules, ρ(p) = 1/(4π) and M = Miso = (1/3)I. Thus, it is
convenient to define an auxiliary matrix

(3) Q := M−Miso,

which is symmetric and traceless, i.e.

(4) Q ∈ Λ :=
{
Q ∈ R3×3 | Q = QT , tr Q = 0

}
.

Clearly, for an isotropic distribution of LC molecules, Q = 0. However, as pointed
out in [119, Sec. 1.3.4], Q = 0 is a necessary but not sufficient condition for isotropy.
For the sake of obtaining a continuum theory in which microscopic order is described
by Q only, we shall regard all distributions satisfying Q = 0 as isotropic.

We can further characterize Q by its eigenframe and is often written in the form:

Q = s1(n1 ⊗ n1) + s2(n2 ⊗ n2)− 1

3
(s1 + s2)I,(5)

where n1, n2 are orthonormal eigenvectors of Q, with eigenvalues given by

λ1 =
2s1 − s2

3
, λ2 =

2s2 − s1

3
, λ3 = −s1 + s2

3
,(6)

where λ3 corresponds to the eigenvector n3 ⊥ n1,n2. The eigenvalues of Q are
constrained by

(7) −1

3
≤ λi =

∫
S2

(p · ni)2ρ(p) dp− 1

3
≤ 2

3
, i = 1, 2, 3.

When all eigenvalues are equal, since Q is traceless, we must have λ1 = λ2 = λ3 = 0
and s1 = s2 = 0, i.e. the distribution of LC molecules is isotropic. If two eigenvalues
are equal, i.e.

λ1 = λ2 ⇔ s1 = s2,

λ1 = λ3 ⇔ s1 = 0,

λ2 = λ3 ⇔ s2 = 0,

(8)

then we encounter a uniaxial state, in which either molecules prefer to orient in
alignment with the simple eigenspace (in case it corresponds to a positive eigen-
value) or perpendicular to it (in case it corresponds to a negative eigenvalue). If
all three eigenvalues are distinct, then the state is called biaxial. We recall that, as
discussed in Section 1.1, most nematic LCs can be effectively modeled as uniaxial
states.

Let us consider a uniaxial state for Q, that can be written in the equivalent form

(9) Q = s

(
n⊗ n− 1

3
I

)
.

Above, n is the main eigenvector with eigenvalue λ = 2s/3; the other two eigen-
values equal −s/3. The scalar field s is called the degree of orientation of the LC
molecules. Taking into account identity (6) and the restriction (7), it follows that
the physically meaningful range is s ∈ [−1/2, 1]. As Figure 1 illustrates, the s
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variable characterizes the local order. In case s = 1, the molecular long axes are in
perfect alignment with the direction of n, whereas s = −1/2 represents the state
in which all molecules are perpendicular to n.

25.74°

n

n
n θ

well-aligned
local
defect perpendicular

s ≈ 1 s ≈ 0 s ≈ −1/2

Figure 1. The degree-of-orientation variable s(x) provides infor-
mation on the probability distribution ρ(x, ·) over a local ensemble.
The case s = 1 corresponds to a Dirac delta distribution, and rep-
resents the state of perfect alignment in which all molecules in the
ensemble are parallel to n(x). Likewise, s = −1/2 represents the
state in which ρ(x, ·) is a uniform distribution on the unit circle
perpendicular to n(x). Finally, when s(x) = 0, ρ(x, ·) is a uniform
distribution on S2; such a state is regarded as a defect in the LC.

Remark 1 (problems in 2d). The discussion above simplifies considerably when
d = 2. Indeed, the fact that Q is a zero-trace tensor forces it to be uniaxial.
Writing Q as (9), we deduce that its eigenvalues are λ1 = s/2, with eigenvector n,
and λ2 = −λ1, with eigenvector n⊥. Because eigenvalues are constrained to satisfy
λi ∈ (−1/2, 1/2), we deduce that the physically meaningful range is s ∈ (−1, 1).
Actually, one can further simplify to s ∈ [0, 1) by noting that a state with director
n and degree of orientation s < 0 is equivalent to a state with director m ⊥ n and
degree of orientation −s.
2.2. Continuum Mechanics. Given the order parameter, we still need a model
to determine its state as a function of space. For modeling equilibrium states, this
amounts to finding minimizers of an energy functional. A common approach from
continuum mechanics [56, 112, 114] is to construct the “simplest” functional possible
that is quadratic in gradients of the order parameter whilst obeying standard laws
of physics, such as frame indifference and material symmetries.

2.2.1. Oseen-Frank. If we assume Q has the form (9), and assume s is constant,
then Q is fully determined by n. Hence, we may take n to be the order parameter,
which is usually called the director. If we now seek the simplest energy functional
that is quadratic in gradients of n, and obeying symmetry relations such as n ≡ −n,
then we obtain the Oseen-Frank energy [119]:

EOF[n] :=
1

2

∫
Ω

WOF(n,∇n) dx,

WOF(n,∇n) := k1(div n)2 + k2(n · curl n)2 + k3|n× curl n|2

+ (k2 + k4)[tr([∇n]2)− (div n)2],

(10)
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where |n| = 1 and {ki}4i=1 are independent material parameters. Note that mini-
mizing EOF subject to |n| = 1 is a non-convex optimization problem. We give more
discussion on mathematical issues, such as regularity of minimizers, in Section 3.
The Oseen-Frank model has been used extensively in the modeling of LC-based flat
panel pixel displays, so in that sense has been very successful. As a simplification,
one can take k1 = k2 = k3 = 1, k4 = 0 to obtain

(11) EOF,one[n] :=
1

2

∫
Ω

|∇n|2 dx,

which is known as the one-constant approximation.
There are two main drawbacks to using (10) or (11). First, the state of the LC

molecules is unaffected by the sign of n. For example, if n = n(x) is a minimizer of
EOF, then arbitrarily changing the sign of n on any subset of the domain Ω does
not affect the state of the LC molecules. However, changing the sign of n at points
arbitrarily close together leads to very large gradients in n, which of course affects
the energy. Thus, the energy in (10) does not fully respect the basic symmetry
condition n ≡ −n of nematic LCs.

However, even allowing for the smoothest possible configurations of the director,
boundary conditions may force another problem. For example, suppose Ω is a
simply connected open set containing the origin, and suppose we fix n = x/|x|
on the boundary ∂Ω. Then, by the Poincaré-Hopf Theorem, every smooth vector
field v in Ω that coincides with n on ∂Ω must have at least a zero with non-zero
index. Therefore, the unit-length vector field n = v/|v| must have a point of
discontinuity. Moreover, if Ω ⊂ R2, then EOF,one[n] = ∞ by basic arguments.
Since defects naturally occur in many LC systems, this is a major problem with
the Oseen-Frank model.

If Ω ⊂ R3, then EOF,one[n] for a point defect is actually finite. However, for line
defects in R3 such as

(12) n(x1, x2, x3) =
(x1, x2, 0)T − (a1, a2, 0)T

|(x1, x2, 0)− (a1, a2, 0)| ,

which is a two dimensional point defect extruded in the x3-direction, one has
EOF,one[n] =∞. The same holds true for curvilinear defects in R3.

Remark 2. This discussion on defects is not merely academic; defects do occur in
LC systems. For example, [55] gives experimental evidence for the “Saturn-ring”
defect which is a closed curvilinear loop in R3 that surrounds a rigid inclusion.
Other examples of LC defects can be found in [41, 53, 63, 113, 117].

2.2.2. Landau-deGennes. When defects are relevant to an LC system, the Oseen-
Frank model is not appropriate. A better model, using Q as the order parameter,
is the Landau-deGennes energy [39, 108]:

ELdG[Q] :=

∫
Ω

WLdG(Q,∇Q) dx +
1

ηB

∫
Ω

ψLdG(Q) dx,

WLdG(Q,∇Q) :=
1

2

(
L1|∇Q|2 + L2|∇ ·Q|2 + L3(∇Q)T : ∇Q

)
,

(13)
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where {Li}3i=1, ηB are material parameters, ψLdG is a “bulk” (thermotropic) po-
tential and

|∇Q|2 := (∂kQij)(∂kQij), |∇ ·Q|2 := (∂jQij)
2,

(∇Q)T : ∇Q := (∂jQik)(∂kQij),
(14)

and we use the convention of summation over repeated indices. This is a relatively
simple form forWLdG; more complicated models can also be considered [82, 39, 108].

The bulk potential ψLdG is a double-well type of function that confines the
eigenvalues of Q to the physically meaningful range λi ∈ [−1/d, 1−1/d], where the
simplest form is given by

ψLdG(Q) = K +
A

2
tr(Q2)− B

3
tr(Q3) +

C

4

(
tr(Q2)

)2
.(15)

Above, A, B, C are material parameters such that A has no sign, and B, C are
positive; K is a convenient constant.

Stationary points of ψLdG are either uniaxial or isotropic Q-tensors [76]; for such,
ψLdG is a quartic polynomial on the degree of orientation s in (9), which has a local
extremum at s = 0. A straightforward calculation shows that s = 0 is a maximum
if and only if A ≤ 0 (because B, C > 0). Thus, in three dimensions it is typical to
let A ≤ 0 in order to favor uniaxial states over isotropic states, so throughout this
paper we assume that

A ≤ 0, B,C > 0,(16)

which implies that ψLdG(Q) ≥ 0 assuming K is suitably chosen. In two dimensions,

tr(Q3) = 0, because Q2 = s2

4 I. Hence, B is irrelevant when d = 2, and it is
necessary that A be strictly negative in order to have a stable nematic phase. This
also implies that ψLdG is an even function of s if Q is uniaxial (see Remark 1).

In the same spirit as in (11), one can take L1 = 1, L2 = L3 = 0 to obtain a
one-constant approximation

ELdG,one[Q] :=
1

2

∫
Ω

|∇Q|2 dx +
1

ηB

∫
Ω

ψLdG(Q) dx.(17)

2.2.3. Remarks on Uniaxiality. As we discussed in Section 1.1, the biaxial phase
is elusive among thermotropic nematic LCs: it took about 30 years after Freiser’s
prediction [49] to empirically observe a nematic biaxial phase [1, 75, 92]. Moreover,
in the Landau-deGennes theory, there is no a priori constraint on the eigenvalues
of the tensor Q, in contrast with the probabilistic definition from (2) and (3).

In [76] it is shown that, in the low-temperature regime, the Landau-deGennes
model can lead to Q having physically unrealistic eigenvalues. As a remedy, Ball
and Majumdar [13] propose a continuum energy functional that interpolates be-
tween the Landau-deGennes energy and the mean-field Maier-Saupe energy. This
gives rise to the bulk potential

ψB(Q) := T inf
ρ∈AQ

∫
Sd−1

ρ(p) ln ρ(p)dp− κ|Q|2,

where T denotes the absolute temperature, κ is a constant related to the strength
of intramolecular interactions and AQ is the set of probability distributions that
yield the tensor Q,

AQ =

{
ρ : Sd−1 → [0,∞),

∫
Sd−1

ρ(p) dp = 1, Q =

∫
Sd−1

(
ppT − 1

d
I

)
ρ(p) dp

}
.
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This potential satisfies the key property ψB(Q) → ∞ as any of the eigenvalues λi
approaches the boundary of the physically meaningful range.

Clearly, if uniaxiality is built into the model, for instance by forcing Q to have
the form (9), then keeping the eigenvalues within the physically meaningful range
reduces to guaranteeing that a single parameter (s) lies in a suitable range. This is
an important simplification if, for example, the energy has the form (13) or if there
is a large external forcing. Clearly, another approach to enforce uniaxiality is to
consider a director model. If we allow for a variable degree of orientation, then we
are led to the Ericksen model, that we discuss in the next section.

2.2.4. Ericksen Model. Though the Landau-deGennes model is quite general, it can
be fairly expensive when d = 3. In such a case, since Q ∈ R3×3 and symmetric, it
has five independent variables. Moreover, the bulk potential ψLdG is a non-linear
function of Q, which couples all five variables together when seeking a minimizer
of ELdG.

Therefore, we present the Ericksen model of LCs, which is an intermediate model
between Oseen-Frank and Landau-deGennes. Assuming that Q is uniaxial (9), we
can take s and n as order parameters and obtain an energy analogous to (10)
[44, 119]:

Eerk[s,n] :=
1

2

∫
Ω

Werk(s,∇s,n,∇n) dx +
1

ηB

∫
Ω

ψerk(s) dx,

Werk(s,∇s,n,∇n) = k1s
2(div n)2 + k2s

2(n · curl n)2 + k3s
2|n× curl n|2

+(k2 + k4)s2[tr([∇n]2)− (div n)2] + b1|∇s|2 + b2(∇s · n)2

+ b3s(div n)(∇s · n) + b4s∇s · [∇n]n,

(18)

where |n| = 1, and {ki}4i=1 and {bi}4i=1 are material constants. Moreover, we have
the one-constant version of (18):

Eerk,one[s,n] :=
κ

2

∫
Ω

|∇s|2 dx +
1

2

∫
Ω

s2|∇n|2 dx +
1

ηB

∫
Ω

ψerk(s) dx,(19)

where κ > 0 is a single material parameter, and ψerk is a double-well potential like
ψLdG, except acting on s.

We point out that both (18) and (19) are degenerate in the sense that s may
vanish, which allows for n to have discontinuities (i.e. defects) with finite energy.
Indeed, the hallmark of this model is to regularize defects using s, but still retain
part of the Oseen-Frank model. Discontinuities in n may still occur in the singular
set

(20) S := {x ∈ Ω : s(x) = 0}.
For problems in R3, because n ∈ S2, it is uniquely defined by two parameters.

Thus, in such a case the Ericksen model only has three scalar order parameters,
as opposed to five in the Landau-deGennes model. Another advantage of the Er-
icksen model is that s and n are easy to decouple when searching for a minimizer
numerically.

Additionally, the parameter κ in (19) plays a major role in the occurrence of
defects. Assuming that s equals a sufficiently large positive constant on ∂Ω, if κ is
large, then

∫
Ω
κ|∇s|2dx dominates the energy and s stays close to such a positive

constant within the domain Ω. Thus, defects are less likely to occur. If κ is small
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(say κ < 1), then
∫

Ω
s2|∇n|2dx dominates the energy, and s may vanish in regions

of Ω and induce a defect. This is confirmed by the numerical experiments in [85, 86].

Remark 3 (orientability). Director field models –either Oseen-Frank or Ericksen–
are more than adequate in some situations, although in general they introduce a
nonphysical orientational bias into the problem. Even though LC molecules may be
polar, in nematics one always finds that the states with n and −n are equivalent
[54]. At the molecular level, this means that the same number of molecules point
“up” and “down”. Therefore, line-fields are more appropriate for modeling nematic
LCs.

Another issue with the use of the vector field n as an order parameter instead
of the matrix Q is that the only allowable defects in such a case are integer-order
defects. On the other hand Q, specifically n ⊗ n in (9), is able to represent line
fields having half-integer defects. These have been largely observed and documented
in experiments, see for example [30, 88] and references therein. We point out that,
if a line field is orientable, then a vector field representation is essentially equivalent
[14, 15].

2.3. Dynamics. Dynamic LC models become more complicated than the ones
discussed in Section 2.2. The simplest setting is to assume the dynamics are dictated
by a gradient flow [31, 43, 26]. Let t represent “time” and suppose that u ≡ u(x, t)
is an evolving solution such that limt→∞ u(·, t) =: u∗ is a local minimizer of some
energy functional J(u) that is bounded below by a constant. If u(x, 0) := u0 is
the initial guess, then the energy minimizing evolution can be found via (steepest)
gradient descent:

(∂tu(·, t), v) = −δuJ(u; v),(21)

for all perturbations v in an appropriate space, where (·, ·) is the L2(Ω) inner
product, and δuJ(u; v) is the variational derivative of J(u) with respect to u in the
direction v. Formally, the solution of (21) will converge to a local minimizer of J
depending on the initial guess u0 [43].

We can approximate this evolution by a time semi-discrete scheme known as
minimizing movements (see [79, Ch. “New problems on minimizing movement”],
[26, Ch. 7]). Discretizing in time, we let uk(x) ≈ u(x, kδt), where δt > 0 is a finite
time step and k is the time index. Next, define an auxiliary functional

Fk(u) := J(u) +
1

2δt
‖u− uk‖2Ω.(22)

Treating u0 as given, setting δt > 0, and initializing k = 0, we iterate the following
scheme:

(1) Let uk+1 := arg minFk(u).
(2) Update k := k + 1.

At each iteration, we solve the variational problem δuFk(u; v) = 0 for all v, i.e.(
uk+1 − uk

δt
, v

)
= −δuJ(uk+1; v), ∀v,(23)
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which is a backward Euler discretization of (21). The following properties of this
scheme are immediate:

J(uk+1) ≤ J(uk+1) +
1

2δt
‖uk+1 − uk‖2Ω = min

u
Fk(u) ≤ J(uk),

‖uk+1 − uk‖2Ω ≤ −2δt (J(uk+1)− J(uk)) .
(24)

Both (21) and the minimizing movement scheme may be applied to any of the
energy functionals we have discussed.

More realistic dynamics can be derived by generalizing the L2(Ω) inner prod-
uct and coupling in other PDE constraints (such as Stokes flow) using Onsager’s
variational framework of minimum energy dissipation [89, 90, 70, 71, 93, 60]. We
refer the interested reader to [73, 121, 37, 52, 126, 129] for more information on
dynamical theories for LCs.

3. Mathematical Formulation

We revisit the LC models discussed in Section 2.2 with an emphasis on their
mathematical formulation. Functional minimization must include an admissible set
in which to find the minimizer. In other words, we describe the function spaces over
which to minimize the energies given in Section 2.2, as well as other mathematical
issues. Although often overlooked, the function space is an important part of a
continuum mathematical model [11, 12]. For example, Lavrentiev gap phenomena
between Sobolev and special bounded variation (SBV) functions in certain nematic
LC models are examined in [21].

3.1. Oseen-Frank. Taking the first variation of EOF and setting to zero yields
the first order optimality conditions, i.e. the PDE satisfied by a minimizer. For
simplicity, let us consider the one-constant energy EOF,one whose minimization
problem is as follows

min
v∈H1

g(Ω)
EOF,one[v], subject to |v| = 1, a.e.,(25)

where H1
g(Ω) =

{
v ∈ H1(Ω) | v|∂Ω = g

}
. This is an instance of the harmonic map

problem [101, 100, 29, 28, 62, 110]. The Euler-Lagrange equation for a minimizer
of (25), in strong form, is given by

−∆n− |∇n|2n = 0, in Ω, n = g, on ∂Ω.(26)

The existence of minimizers is complicated if defects are present, unless the bound-
ary data g is sufficiently restricted (recall the discussion in Section 2.2.1).

There is an extensive literature on numerical methods to find a minimizer of (25),
e.g. [58, 35, 72, 6, 18, 19], all of which solve the non-convex minimization problem
iteratively. Their main contribution is in how they handle the unit length constraint,
|n| = 1, at each iteration. For instance, Lagrange multipliers may be used by
solving the linearized Euler-Lagrange equation in a saddle point framework [58].
Alternatively, one can project the current (iterative) solution onto the constraint
manifold (see the algorithm in Section 3.3.4 for an example), which usually takes
advantage of a discrete maximum principle that is built into the method [35, 6, 19].
One can find more recent methods for Oseen-Frank type models coupled to other
physics in [2, 3, 4, 45].
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For this paper, our main interest is in modeling defects such that they have finite
energy, so we will not discuss more on the extensive literature of harmonic maps
and their numerical approximation.

3.2. Landau-deGennes. We follow [38] to outline the basic theory of the Landau-
deGennes model. We also write down a numerical method to simulate Landau-
deGennes motivated by [10, 38, 128].

3.2.1. Theoretical Background. First, we define the function space for Q when seek-
ing a minimizer:

V(P) :=
{
Q ∈ H1(Ω) | Q ∈ Λ a.e. in Ω, Q|ΓD

= P
}
,(27)

where Λ is defined by (4), ΓD ⊂ Γ and P ∈ H1(Ω) is arbitrary such that P(x) ∈ Λ
for a.e. x ∈ Ω. For the sake of generality, we slightly modify the energy ELdG in
(13):

ELdG[Q] :=

∫
Ω

WLdG(Q,∇Q) dx +
1

ηB

∫
Ω

ψLdG(Q) dx

+ ηΓ

∫
Γ

fΓ(Q) dS(x)−
∫

Ω

χLdG(Q) dx,

(28)

where WLdG is given in (13), ψLdG is given in (15), ηΓ ≥ 0, and a Rapini-Papoular
type anchoring energy [16] is used:

fΓ(Q) =
1

2
tr (Q−QΓ)

2 ≡ 1

2
|Q−QΓ|2,(29)

where QΓ ∈ H1(Ω) is given and QΓ(x) ∈ Λ for all x ∈ Ω. The extra term involving
fΓ gives an energetic way to penalize boundary conditions, provided ηΓ is large
enough.

The functional χLdG(·) accounts for external forcing effects, e.g. from an electric
field. For example, the energy density of a dielectric with fixed boundary potential
is given by −1/2 D · E [120], where the electric displacement D is related to the
electric field E by the linear constitutive law [47, 39, 22]:

(30) D = εE = ε̄E + εaQE, ε(Q) = ε̄I + εaQ,

where ε is the LC material’s dielectric tensor and ε̄, εa are constitutive dielectric
permittivities. Thus, in the presence of an electric field, χLdG(·) becomes

(31) χLdG(Q) = −1

2
D ·E = −1

2

[
ε̄|E|2 + εaE ·QE

]
.

The minimization problem for the Landau-deGennes energy functional (28) is as
follows

min
Q∈V(QD)

ELdG[Q],(32)

where QD ∈ H1(Ω) is given and QD(x) ∈ Λ for a.e. x ∈ Ω. This minimization
problem is not as delicate as (25); for instance, there is no non-convex, unit-length
constraint. Existence of a minimizer is guaranteed by the following results (taken
from [38, Lem. 4.1]).
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Theorem 1 (coercivity). Let aLdG (·, ·) : H1(Ω) × H1(Ω) → R be the symmetric
bilinear form defined by

aLdG (Q,P) =

∫
Ω

L1∇Q : ∇P + L2(∇ ·Q) · (∇ ·P) + L3(∇Q)T : ∇P dx.(33)

Then aLdG (·, ·) is bounded. If L1, L2, L3 satisfy

0 < L1, −L1 < L3 < 2L1, −3

5
L1 −

1

10
L3 < L2,(34)

then there is a constant C > 0 such that aLdG (Q,Q) ≥ C|Q|2H1(Ω) for all Q ∈
H1(Ω). Moreover, if |ΓD| > 0, then there is a constant C ′ > 0 such that aLdG (Q,Q) ≥
C ′‖Q‖2H1(Ω) for all Q ∈ V(0).

Combining Theorem 1 with the form of the energy in (28) and other basic results
(see [38, Lem. 4.2, Thm. 4.3]) we arrive at the following result.

Theorem 2 (existence of a minimizer). Let ELdG be of the form (28), and assume
that QD and ΓD are defined as above and that χLdG is a bounded linear functional
on V(QD). Then (32) has at least one minimizer.

The Euler-Lagrange equation for a minimizer of (32), in weak form, is as follows.
Find Q ∈ V(QD) such that

δQELdG[Q; P] := aLdG (Q,P)

+
1

ηB

∫
Ω

∂ψLdG(Q)

∂Q
: P dx + ηΓ

∫
Γ

∂fΓ(Q)

∂Q
: P dS(x)

−
∫

Ω

∂χLdG(Q)

∂Q
: P dx = 0, ∀P ∈ V(0),

(35)

where the variational derivatives are given by

∂ψLdG(Q)

∂Q
: P =

[
AQ−BQ2 + C tr(Q2) Q

]
: P,

∂fΓ(Q)

∂Q
: P = [Q−QΓ] : P

∂χLdG(Q)

∂Q
: P = −1

2
εaE ·PE,

(36)

where we used

∂tr(Q2)

∂Q
: P = 2 Q : P,

∂tr(Q3)

∂Q
: P = 3 Q2 : P,

∂
(
tr(Q2)

)2
∂Q

: P = 4 tr(Q2) Q : P.

(37)

The strong form of the Euler-Lagrange equation is given by

− (L1∂k∂kQij + (L2 + L3)∂j∂kQik)

+
1

ηB

[
AQij −BQikQkj + C tr(Q2)Qij

]
= −1

2
εaEiEj , in Ω,

Qij = Q0,ij , on ΓD,

− (L1νk∂kQij + L2νj∂kQik + L3νk∂jQik) = Qij −QΓ,ij , on Γ \ ΓD,

(38)
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for 1 ≤ i, j ≤ 3, where ν ≡ [νk]3k=1 is the unit outer normal of Γ. If L2 = L3 = 0,
E = 0, and ΓD = Γ, then the strong form simplifies to

−∆Q +
1

ηB

[
AQ−BQ2 + C tr(Q2) Q

]
= 0, in Ω, Q = QD, on ΓD,(39)

which is an elliptic Dirichlet problem with non-linear lower order term due to the
bulk potential. From [38, Thm 6.3], we have

Theorem 3 (regularity). Let Ω be a bounded, open, connected set, and assume
Ω is either convex or C1,1, and assume ΓD ≡ Γ := ∂Ω. Moreover, let F (Q) :=∫

Ω
χLdG(Q) dx be a bounded linear functional on L2(Ω). Then any solution of (35)

is in H2(Ω) ∩H1
0 (Ω).

3.2.2. Numerical Method. One can try to solve (35) either directly [38, 45], or look
for an energy minimizer [67, 96, 128, 10]. To better compare with our method for
the uniaxially constrained Landau-deGennes model (Section 4), we adopt the later
approach and state a simple gradient flow method to find a minimizer of (32).

Let t represent “time” and suppose that Q ≡ Q(x, t) is an evolving solution
such that limt→∞Q(·, t) =: Q∗ is a local minimizer of ELdG, where Q(x, 0) = Q0,
and Q0 ∈ V(QD) is the initial guess for the minimizer. Next, we evolve Q(·, t)
according to the following L2(Ω) gradient flow:

(∂tQ(·, t),P) = −δQELdG[Q; P], ∀P ∈ V(0),(40)

where the variational derivative is given in (35). Formally, the solution of (40) will
converge to Q∗.

We derive a numerical scheme for approximating (40) by first discretizing in time
by minimizing movements (see Section 2.3). Let Qk(x) ≈ Q(x, kδt), where δt > 0
is a finite time-step, and k is the time index. Then (40) becomes a sequence of
variational problems. Given Qk, find Qk+1 ∈ V(QD) such that(

Qk+1 −Qk

δt
,P

)
= −δQELdG[Qk+1; P], ∀P ∈ V(0),(41)

which is equivalent to

Qk+1 = arg min
Q∈V(QD)

F (Q), F (Q) :=
1

2δt
‖Q−Qk‖2L2(Ω) + ELdG[Q],(42)

and yields the useful property F (Qk+1) ≤ F (Qk). However, (41) is a fully-implicit
equation and requires an iterative solution because of the non-linearity in ψLdG(Q).
For convenience, we shall, instead, use a semi-implicit approach via convex splitting
[124, 128, 125]. Let us define the following split of (15):

ψc(Q) = K +
A+D

2
tr(Q2),

ψe(Q) =
D

2
tr(Q2) +

B

3
tr(Q3)− C

4

(
tr(Q2)

)2
,

⇒ ψLdG(Q) ≡ ψc(Q)− ψe(Q),

(43)

where D > 0 is chosen sufficiently large. Indeed, for all Q that satisfy the physical
eigenvalue ranges (7), ψc and ψe are both convex functions if D > 0 is large enough.
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Therefore, referring to (35), we obtain the following semi-implicit weak formula-
tion of (41). Given Qk, find Qk+1 ∈ V(QD) such that(

Qk+1 −Qk

δt
,P

)
+ aLdG (Qk+1,P) +

1

ηB

∫
Ω

∂ψc(Qk+1)

∂Q
: P dx

+ ηΓ

∫
Γ

∂fΓ(Qk+1)

∂Q
: P dS(x) =

1

ηB

∫
Ω

∂ψe(Qk)

∂Q
: P dx

+

∫
Ω

∂χLdG(Qk)

∂Q
: P dx, ∀P ∈ V(0),

(44)

where the left-hand-side of (44) is linear in Qk+1 and the right-hand-side is explic-
itly known at each iteration.

Next, we approximate (44) by a finite element method, so we introduce some ba-
sic notation and assumptions in that regard. We assume that Ω ⊂ R3 is discretized
by a conforming shape regular triangulation Th = {Ti} consisting of simplices, i.e.
we define Ωh := ∪T∈ThT . Furthermore, we define the space of continuous piecewise
linear functions on Ωh:

Vh(Ωh) :=
{
v ∈ C0(Ωh) | v|T ∈ P1(T ), ∀T ∈ Th

}
,(45)

where Pk(T ) is the space of polynomials of degree ≤ k on T .
Next, we discretize (44) by a P1 approximation of the Q variable denoted Qh.

With the following notation

(46) Q ∈ Λ ⇔ Q =

q11 q12 q13

q12 q22 q23

q13 q23 q33

 , where q33 := −q11 − q22,

we approximate Q by Qh ∈ Qh:

Qh(Ωh) :=
{
P ∈ C0(Ωh) | P ∈ Λ, pij |T ∈ P1(T ),

1 ≤ i, j,≤ 3, ∀T ∈ Th
}
.

(47)

We point out that enforcing (46) at the mesh nodes guarantees that Qh(x) ∈ Λ for
all x ∈ Ω. Additionally, other bases can be used to represent Q [50]. Therefore,
the minimization problem (28) becomes

min
Qh∈Qh∩V(QD,h)

ELdG[Qh],(48)

where QD,h := IhQD and Ih denotes the Lagrange interpolation operator. We
find a local minimizer of (48) by solving a finite element approximation of (44), i.e.
given Qh,k, find Qh,k+1 ∈ Qh ∩ V(QD,h) such that(

Qh,k+1 −Qh,k

δt
,Ph

)
+ aLdG (Qh,k+1,Ph) +

A+D

ηB
(Qh,k+1,Ph)

+ ηΓ (Qh,k+1,Ph)Γ = ηΓ (IhQΓ,Ph)Γ −
1

2
εa (Ih(E⊗E),Ph)

1

ηB

([
DQh,k +BQ2

h,k − C tr(Q2
h,k) Qh,k

]
,Ph

)
, ∀Ph ∈ Qh ∩ V(0),

(49)

where we have written the scheme more explicitly. We iterate this procedure until
some stopping criteria is achieved. Numerical results for the standard LdG model
are given in Section 4.5.2 and Section 7.
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3.3. Ericksen. The (general) Ericksen model was originally proposed in [44]; see
also [119] for another description. In this section, we concentrate on the one-
constant model of Ericksen and review its theoretical aspects, which can be found
in [7, 8, 69]. Moreover, we describe a robust numerical method for finding local
minimizers of the one-constant Ericksen model (see [86, 87] for more details).

3.3.1. Energy Minimization Framework. We review a few hypotheses required to
have a well-posed energy minimization problem, and some key features of the one-
constant Ericksen energy. For convenience, we re-state (19) here:

E̊erk[s,n] :=

∫
Ω

s2|∇n|2 dx ≡ (s∇n, s∇n) ,

Eerk−m[s,n] :=
κ

2
(∇s,∇s) +

1

2
E̊erk[s,n],

Eerk,bulk[s] :=
1

ηB
(ψerk(s), 1)

Eerk,one[s,n] := Eerk−m[s,n] + Eerk,bulk[s],

(50)

where Eerk−m is the “main” part of Ericksen’s energy. Note that the double well
potential ψerk : (−1/2, 1)→ R is a C2 function that satisfies [44, 7, 69]:

1. lim
s→1

ψerk(s) = lim
s→−1/2

ψerk(s) =∞,

2. ψerk(0) > ψerk(s∗) = min
s∈[−1/2,1]

ψerk(s) = 0, for some s∗ ∈ (0, 1),

3. ψ′erk(0) = 0,

(51)

where s = 0 is a local maximum of ψerk.
If s 6= 0 and constant, then Eerk,one[s,n] effectively reduces to the Oseen-Frank

(one-constant) energy
∫

Ω
|∇n|2. When s is variable, Eerk,one[s,n] avoids singular

energies when defects (discontinuities in n) are present by allowing s to vanish
wherever there are defects. Hence, all defects must be contained in the singular set
(cf.(20))

S = {x ∈ Ω : s(x) = 0}.
Existence of minimizers was shown in [7, 69] through the following clever trick.

By introducing the auxiliary variable u := sn, one can rewrite Eerk−m[s,n] as

(52) Eerk−m[s,n] = Ẽerk−m[s,u] :=
1

2

∫
Ω

[
(κ− 1)|∇s|2 + |∇u|2

]
dx,

which uses ∇u = n⊗∇s+ s∇n and the unit length constraint |n| = 1. Thus, the
total energy in terms of s and u is

Ẽerk,one[s,u] = Ẽerk−m[s,u] + Eerk,bulk[s].(53)

The advantage of (52) is that it is quadratic in terms of s and u, which makes the
(closed) admissible set of minimizers straightforward to define [7, 69]:

Aerk := {(s,n) ∈ H1(Ω)× [L∞(Ω)]d : (s,u,n) satisfies (55),

with u ∈ [H1(Ω)]d},
(54)

where

(55) u = sn, −1/2 ≤ s ≤ 1 a.e. in Ω, and n ∈ Sd−1 a.e. in Ω,
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is called the structural condition of Aerk. If we write (s,u,n) in Aerk, then this is
equivalent to (s,n) in Aerk, u in [H1(Ω)]d, and (s,u,n) satisfies (55). Indeed, (52)
only holds for (s,u,n) in Aerk. Sometimes, we refer to the identity u = sn in (55)
as the cone constraint for obvious reasons.

Boundary conditions are accounted for by functions g : Rd → R, r,q : Rd → Rd
so that the following is satisfied.

Hypothesis 1 (regularity of boundary data). There exists g ∈ W 1,∞(Rd), r ∈
[W 1,∞(Rd)]d, q ∈ [L∞(Rd)]d, such that (g, r,q) satisfies (55) on Rd, i.e. r = gq
and q ∈ Sd−1 a.e. in Rd. Furthermore, we assume there is a fixed c0 > 0 (small)
such that

(56) c0 ≤ g ≤ 1− c0,
which implies that q ∈ [W 1,∞(Rd)]d. Moreover, let Γs, Γu, Γn be open subsets of
∂Ω on which to enforce Dirichlet conditions for s, u, n (respectively), and assume
that Γu = Γn ⊂ Γs.

The admissible class, with boundary conditions, is given by

Aerk(g,q) := {(s,n) ∈ Aerk : s|Γs
= g, n|Γn = q} ,(57)

and Hypothesis 1 guarantees that setting boundary conditions for (s,n) is mean-
ingful.

For technical reasons, we require the following assumption on ψerk.

Hypothesis 2 (growth of potential). Let c0 > 0 be taken from Hypothesis 1. The
bulk potential ψerk satisfies

ψerk(s) ≥ ψerk(1− c0) for s ≥ 1− c0,

ψerk(s) ≥ ψerk

(
−1

2
+ c0

)
for s ≤ −1

2
+ c0.

(58)

which is consistent with property 1 of ψerk in (51).

The existence of a minimizer (s,n) ∈ Aerk(g,q) of Eerk,one[s,n] is shown in
[7, 69], but is also a consequence of the Γ-convergence theory that we review in
Section 3.3.6.

3.3.2. Finite Element Discretization. The Ericksen model is degenerate in the di-
rector field n. This feature, that makes it capable of capturing non-trivial defects,
also makes its numerical analysis difficult. Consequently, references on numerical
methods for such a model are scarce. We refer to [17, 32] and to [86, 87] for finite
element approximations to dynamics and equilibrium configurations, respectively.

In this section we review [86, Sec. 2.2]. First, discretize Ω as we did in Section
3.2.2, i.e. Ω ⊂ Rd is approximated by Ωh which comes from a conforming shape-
regular mesh Th = {Ti} consisting of simplices. For simplicity, we assume that Ω ≡
Ωh, i.e. that there is no geometric error caused by the triangulation. Furthermore,
let Nh be the set of nodes (vertices) of Th and, with some abuse of notation, let N
be the cardinality of Nh.

Next, define continuous piecewise linear finite element spaces on Ω:

Sh := {sh ∈ H1(Ω) : sh|T ∈ P1(T ),∀T ∈ Th},
Uh := {uh ∈ [H1(Ω)]d : uh|T ∈ P1(T ),∀T ∈ Th},
Nh := {nh ∈ Uh : |nh(xi)| = 1,∀xi ∈ Nh},

(59)
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where the unit length constraint is enforced in Nh at the nodes (vertices) of the
mesh. Dirichlet boundary conditions are included via the following discrete spaces
(recall Hypothesis 1):

Sh(Γs, gh) := {sh ∈ Sh : sh|Γs
= gh},

Uh(Γu, rh) := {uh ∈ Uh : uh|Γu = rh},
Nh(Γn,qh) := {nh ∈ Nh : nh|Γn = qh},

(60)

where gh := Ihg, rh := Ihr, and qh := Ihq is the discrete Dirichlet data. This
leads to the following discrete admissible class with boundary conditions:

Aherk(gh,qh) :=
{

(sh,nh) ∈ Sh(Γs, gh)× Nh(Γn,qh) :

(sh,uh,nn) satisfies (62), with uh ∈ Uh(Γu, rh)
}
,

(61)

where

(62) uh = Ih(shnh), −1/2 ≤ sh ≤ 1 in Ω, and |nh(xi)| = 1,∀xi ∈ Nh,
is called the discrete structural condition of Aherk. If we write (sh,uh,nh) in Aherk,
then this is equivalent to (sh,nh) in Aherk, uh in Uh, and (sh,uh,nh) satisfies (62).
We emphasize that the approximation we are considering is not conforming. Indeed,
the inclusion Aherk ⊂ Aerk fails because, at the discrete level, we only impose the
structural condition u = sn at the mesh nodes.

The discretization of E̊erk[s,n] in (50) is non-standard because of the delicate na-
ture of the degenerate term s2|∇n|2. In fact, this requires us to make an additional
assumption on the meshes. We shall denote by φi the standard piecewise linear
“hat” function associated with a node xi ∈ Nh, so that {φi} are basis functions of
the spaces in (59). Moreover, we indicate with ωi = supp φi the patch of a node xi
(i.e. the “star” of elements in Th that contain the vertex xi).

Hypothesis 3 (weak acuteness). For all h > 0, the mesh Th is weakly acute:

(63) kij := −
∫

Ω

∇φi · ∇φjdx ≥ 0 for all i 6= j.

Condition (63) imposes a severe geometric restriction on Th [34, 109]. We recall
the following characterization of (63) for d = 2.

Proposition 1 (weak acuteness in two dimensions). For any pair of triangles T1,
T2 in Th that share a common edge e, let αi be the angle in Ti opposite to e (for
i = 1, 2). If α1 + α2 ≤ π for every edge e, then (63) holds.

Generalizations of Proposition 1 to three dimensions involve the interior dihedral
angles of tetrahedra [27, 64]. We also point out that a non-obtuse tetrahedral mesh
is automatically weakly acute.

We now motivate our discretization of E̊erk[s,n]. Note that for all xi ∈ Nh
N∑
j=1

kij = −
N∑
j=1

∫
Ω

∇φi · ∇φjdx = 0,

because
∑N
j=1 φj = 1 in the domain Ω (i.e. {φj}Nj=1 is a partition of unity). So, if

Sh 3 sh =
∑N
i=1 sh(xi)φi, then∫
Ω

|∇sh|2dx = −
N∑
i=1

kii[sh(xi)]
2 −

N∑
i,j=1,i6=j

kijsh(xi)sh(xj),
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and using kii = −∑j 6=i kij and the symmetry kij = kji, we get

(64)

∫
Ω

|∇sh|2dx =

N∑
i,j=1

kijsh(xi)
(
sh(xi)− sh(xj)

)
=

1

2

N∑
i,j=1

kij
(
sh(xi)− sh(xj)

)2
=

1

2

N∑
i,j=1

kij
(
δijsh

)2
,

where we define

(65) δijsh := sh(xi)− sh(xj), δijnh := nh(xi)− nh(xj).

On the other hand, we discretize E̊erk[s,n] by

E̊herk[sh,nh] :=
1

2

N∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|δijnh|2,(66)

and the main part of the Ericksen energy by

Eherk−m[sh,nh] :=
κ

2
(∇sh,∇sh) +

1

2
E̊herk[sh,nh],

=
κ

2

1

2

N∑
i,j=1

kij (δijsh)
2

+
1

2
E̊herk[sh,nh].

(67)

Equation (66) does not come from applying the standard discretization of
∫

Ω
s2|∇n|2dx

by piecewise linear finite elements (though it is a first order approximation). This
special discretization of the energy preserves an important energy inequality (see
Lemma 1), which is crucial to proving the Γ-convergence of our discrete energy
with the degenerate coefficient s2 without regularization.

The double-well energy is discretized in the usual way,

(68) Eherk,bulk[sh] :=
1

ηB
(ψerk(sh), 1) =

1

ηB

∫
Ω

ψerk(sh(x))dx.

Therefore, our discrete minimization problem for the Ericksen model is as follows.
Find (s∗h,n

∗
h) ∈ Aherk(gh,qh) such that

(s∗h,n
∗
h) = arg min

(sh,nh)∈Ah
erk(gh,qh)

Eherk,one[sh,nh],(69)

where

Eherk,one[sh,nh] := Eherk−m[sh,nh] + Eherk,bulk[sh].(70)

We close with a result showing that (67) preserves the key structure of (52) at
the discrete level, and is a key component of the Γ-convergence of the method.
First, we recall that Ih denotes the Lagrange interpolation operator and introduce
s̃h := Ih|sh| and two discrete versions of the vector field u,

(71) uh := Ih(shnh) ∈ Uh, ũh := Ih(s̃hnh) ∈ Uh.

Note that both triplets (sh,uh,nh), (s̃h, ũh,nh) ∈ Sh × Uh × Nh satisfy (62). The
following is taken from [86, Lem. 2.2].
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Lemma 1 (energy inequalities). Let the mesh Th satisfy (63). If (sh,nh) ∈
Aherk(gh,qh), then, for any κ > 0, the discrete energy (67) satisfies

(72) Eherk−m[sh,nh] ≥ (κ− 1)

∫
Ω

|∇sh|2dx+

∫
Ω

|∇uh|2dx =: Ẽherk−m[sh,uh],

and

(73) Eherk−m[sh,nh] ≥ (κ− 1)

∫
Ω

|∇s̃h|2dx+

∫
Ω

|∇ũh|2dx =: Ẽherk−m[s̃h, ũh].

3.3.3. Continuous Gradient Flow. We begin with a formal derivation of a gradient
flow to find a local minimizer of Eerk,one[s,n] in (50). Since s and n are coupled
variables, we will have two coupled gradient flows.

First, let as (·, ·) : H1(Ω) × H1(Ω) → R be a bounded bilinear form (inner
product) for s. For the sake of exposition, assume an L2(Ω) inner product, e.g.
as (s, z) := (s, z), but other choices can be made. Similar to (40), we define a
gradient flow for s:

as (∂ts(·, t), z) = −δsEerk,one[s,n; z], ∀z ∈ H1
Γs

(Ω),(74)

where H1
Γs

(Ω) := {z ∈ H1(Ω) : z|Γs
= 0} preserves the boundary condition for s,

and the first variation is given by

δsEerk,one[s,n; z] = κ

∫
Ω

∇s · ∇z dx +

∫
Ω

sz|∇n|2 dx +
1

ηB

∫
Ω

ψ′erk(s)z dx.(75)

Applying a formal integration by parts to (74) gives

(76)

∫
Ω

∂tsz dx = −
∫

Ω

(
−κ∆s+ |∇n|2s+

1

ηB
ψ′erk(s)

)
z dx, for all z ∈ H1

Γs
(Ω),

where we use the implicit Neumann condition ν · ∇s = 0 on ∂Ω \ Γs, with ν being
the outer unit normal of ∂Ω. Hence, s satisfies the (nonlinear) parabolic PDE:

∂ts− κ∆s+ |∇n|2s+
1

ηB
ψ′erk(s) = 0, in Ω,

s = g, on Γs, ν · ∇s = 0, on ∂Ω \ Γs.
(77)

Next, given (s,n) ∈ Aerk(g,q), we consider the space of tangential variations of
n:

V⊥(s,n) :=
{
v ∈ [L2(Ω)]d : v · n = 0 a.e. in Ω, and sv ∈ [H1(Ω)]d

}
,(78)

which is connected with the constraint n ∈ Sd−1 in the following sense. If n ≡
n(x, t) is evolving director field such that |n|2 = 1, then

0 = ∂t|n|2 = 2∂tn · n ⇒ ∂tn ∈ V⊥(s,n).

Indeed, introducing a tangential perturbation of n: p(t) = n + tv where v ∈
V⊥(s,n), we have that |p|2 = 1 + t2|v|, which preserves |n| = 1 up to second order
in t. We remark that if s ≥ c0 > 0 in Ω, then v ∈ V⊥(n) is necessarily in [H1(Ω)]d.

Let an (·, ·) : V⊥(s,n)×V⊥(s,n)→ R be a bounded bilinear form (inner product)
for tangential variations of n. For the sake of exposition, assume an L2(Ω) inner
product, e.g. an (t,v) := (t,v), but other choices can be made. Similar to (74), we
define a gradient flow for n:

an (∂tn(·, t),v) = −δnEerk,one[s,n; v], ∀v ∈ V⊥(s,n) ∩ [H1
Γn

(Ω)]d,(79)
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where ∂tn = 0 on Γn preserves the boundary condition for n, and the first variation
is given by

δnEerk,one[s,n; v] =

∫
Ω

s2∇n · ∇v dx.(80)

Applying a formal integration by parts to (79) gives

(81)

∫
Ω

∂tn · v dx = −
∫

Ω

−∇ · (s2∇n) · v dx, ∀v ∈ V⊥(s,n) ∩ [H1
Γn

(Ω)]d,

where we use the implicit Neumann condition ν · ∇n = 0 on ∂Ω \ Γn. Hence, n
satisfies the (nonlinear) degenerate parabolic PDE:

∂tn−∇ · (s2∇n) = 0, in Ω,

n = q, on Γn, ν · ∇n = 0, on ∂Ω \ Γn.
(82)

Assuming (s,n) evolve according to (77), (82), we have that

∂tEerk,one[s,n] = δsEerk,one[s,n; ∂ts] + δnEerk,one[s,n; ∂tn],

= −as (∂ts, ∂ts)− an (∂tn, ∂tn) ≤ 0,
(83)

and therefore the energy is monotonically decreasing.

3.3.4. Discrete Gradient Flow. Here we discuss a discrete quasi-gradient flow al-
gorithm, as described in [86, Section 4.2.2]. Let (skh,n

k
h) ∈ Aherk(gh,qh) where k

indicates a “time-step” index. To simplify notation, we write

ski := skh(xi), nki := nkh(xi), zi := zh(xi), vi := vh(xi).

Using a fully implicit, backward Euler time discretization for ∂ts, and applying
the finite element space discretization in Section 3.3.2, we discretize (74) by

as

(
sk+1
h − skh
δt

, zh

)
= −δsEherk,one[sk+1

h ,nk+1
h ; zh], ∀zh ∈ Sh(Γs, 0),(84)

where δt > 0 is a finite time step. The discrete variational derivative is given by

δsE
h
erk,one[skh,n

k
h; zh] = κ

(
∇skh,∇zh

)
+

1

2
δsE̊

h
erk[skh,n

k
h; zh] +

1

ηB

(
ψ′erk(skh), zh

)
,

δsE̊
h
erk[skh,n

k
h; zh] =

N∑
i,j=1

kij |δijnkh|2
(
ski zi + skj zj

2

)
.

(85)

Next, we define the discrete version of (78):

V⊥h (nh) = {vh ∈ Uh : vh(xi) · nh(xi) = 0, for all nodes xi ∈ Nh},(86)

Using a “linearized” backward Euler time discretization for ∂tn, and the finite
element space discretization in Section 3.3.2, we discretize (79) by

an

(
nk+1
h − nkh
δt

,vh

)
= −δnEherk,one[sk+1

h ,nk+1
h ; vh], ∀vh ∈ V⊥h (nkh) ∩ Uh(Γu,0),

subject to |nk+1
h (xi)| = 1, for all nodes xi ∈ Nh,

(87)
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where the discrete variational derivative is given by

δnE
h
erk,one[skh,n

k
h; vh] =

1

2
δnE̊

h
erk[skh,n

k
h; vh],

δnE̊
h
erk[skh,n

k
h; vh] =

N∑
i,j=1

kij

(
(ski )2 + (skj )2

2

)
(δijn

k
h) · (δijvh).

(88)

Thus, a possible algorithm is the following. Given (skh,n
k
h) ∈ Aherk(gh,qh), solve

(84), (87) simultaneously to obtain (sk+1
h ,nk+1

h ) ∈ Aherk(gh,qh). Starting from an

initial guess (s0
h,n

0
h) ∈ Aherk(gh,qh), we iterate this until some convergence criteria

is achieved.
Unfortunately, this is a fully coupled non-linear system of equations with a non-

convex constraint |nh(xi)| = 1. Therefore, we adopt to split the gradient flow
iteration into three sequential steps. In order to obtain a monotone, energy de-
creasing scheme, we first employ a convex splitting approach [124, 103, 104] for the
double well potential ψerk, i.e. we write it as a difference of two convex functions
ψc, ψe:

(89) ψerk(s) = ψc(s)− ψe(s).
With this, and recalling (84), (85), we make the following approximation

(90)
(
ψ′erk(sk+1

h ), zh
)

:=
(
ψ′c(s

k+1
h ), zh

)
−
(
ψ′e(s

k
h), zh

)
.

The following result is from [86, Lem. 4.1].

Lemma 2 (convex-concave splitting). For any skh and sk+1
h in Sh, (90) implies

(91)
(
ψerk(sk+1

h ), 1
)
−
(
ψerk(skh), 1

)
≤
(
ψ′erk(sk+1

h ), sk+1
h − skh

)
.

We can now formulate our alternating direction, discrete gradient flow algorithm.
Given (s0

h,n
0
h) ∈ Aherk(gh,qh), iterate Steps 1-3 for k ≥ 0:

(1) Tangential flow for nh. First, linearize nk+1
h by ñk+1

h := nkh + tkh, for

some tkh ∈ V⊥h (nkh)∩H1
Γn

(Ω) to be determined. Note that ñk+1
h /∈ Nh. Next,

choose akn (th,vh) := δnE̊
h
erk[skh, th; vh] which is an effective (discrete) inner

product on V⊥h (nkh).
Then, assuming time step is unity, we replace (87) by: find tkh ∈ V⊥h (nkh)∩

H1
Γn

(Ω) such that

akn
(
tkh,vh

)
= −δnE̊herk[skh,n

k
h; vh], ∀vh ∈ V⊥h (nkh) ∩ Uh(Γu,0).(92)

(2) Projection. Define nk+1
h ∈ Nh(Γn,qh) by

nk+1
i :=

ñk+1
i

|ñk+1
i |

≡ nki + tki∣∣nki + tki
∣∣ , at all nodes xi ∈ Nh.(93)

(3) Gradient flow for sh. Using (skh,n
k+1
h ), find sk+1

h in Sh(Γs, gh) such that(
sk+1
h − skh
δt

, zh

)
= −δsEherk,one[sk+1

h ,nk+1
h ; zh], ∀zh ∈ Sh(Γs, 0),

= −κ
(
∇sk+1

h ,∇zh
)
− 1

2
δsE̊

h
erk[sk+1

h ,nk+1
h ; zh]

− 1

ηB

(
ψ′erk(sk+1

h ), zh
)
, ∀zh ∈ Sh(Γs, 0).

(94)
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The following result, taken from [86, Thm. 4.2], shows the robustness of this
algorithm.

Theorem 4 (energy decrease). Let Th satisfy (63). The iterate (sk+1
h ,nk+1

h ) of the
above algorithm exists and satisfies

(95) Eherk,one[sk+1
h ,nk+1

h ] ≤ Eherk,one[skh,n
k
h]− 1

δt

∫
Ω

(sk+1
h − skh)2dx

Equality holds if and only if (sk+1
h ,nk+1

h ) = (skh,n
k
h).

After summing in k in (95), the estimate

Eherk,one[sKh ,n
K
h ] ≤ Eherk,one[s0

h,n
0
h]− 1

δt

K−1∑
k=0

‖sk+1
h − skh‖2L2(Ω)

follows immediately. Therefore, if we set as termination criterion that ‖sk+1
h −

skh‖L2(Ω) < ε for some prescribed tolerance ε > 0, the algorithm must finish in a
finite number of iterations.

Remark 4 (projection is energy-decreasing). In order to guarantee that Step 2
above is energy decreasing, we need to use the weak-acuteness assumption on the
mesh from Hypothesis 3, cf. [6, 18, 86].

Example 1. We illustrate the energy monotonicity with a computational experi-
ment. We consider the square Ω = (0, 1)2 and set κ = 1 and ηB = 1 in the Ericksen
energy. The double-well potential we consider is such that its convex splitting (recall
(89)) is

ψerk(s) = ψc(s)− ψe(s)
:= 63.0s2 − (−16s4 + 21.33333333333333s3 + 57s2).

(96)

We point out that ψerk has a local minimum at s = 0 and a global minimum at
s = s∗ := 0.750025. We impose Dirichlet boundary conditions for both s and n on
Γs = Γn = ∂Ω,

(97) s = s∗, n(x, y) = (cos θ, sin θ)>, θ(x, y) = 3 atan2 (x− 0.3, y − 0.6) ,

where atan2 : R2 \ {0} → [−π, π] is the four quadrant inverse tangent function,
namely, atan2(x0, y0) is the angle between the positive x-axis and the ray to the
point (x0, y0). This gives a defect of degree +3.

We consider the gradient flow algorithm discussed in Section 3.3.4 with time
step δt = 10−1, initialized with (s0

h,n
0
h) ≡ (s∗, (1, 0)>) in the interior nodes, and

with stopping criterion ‖sk+1
h − skh‖L2(Ω) < 10−8. Figure 2 illustrates the energy

monotonicity property of our algorithm, that finishes in 328 steps. Figure 3 shows
the evolution of the iterates at some steps in the algorithm. We obtain an equilib-
rium configuration in which three point defects are present in the domain. More
precisely, at the final configuration the degree of orientation sh reaches local min-
ima approximately at sh(0.20, 0.78) ≈ 8.0 × 10−3, sh(0.31, 0.35) ≈ 4.9 × 10−3 and
sh(0.63, 0.58) ≈ 3.3× 10−3.



THE Q-TENSOR MODEL WITH UNIAXIAL CONSTRAINT 23

Figure 2. Evolution of the discrete Ericksen energy
Eherk,one[skh,n

k
h] in Example 1.

Figure 3. Director field n in Example 1. In red, we highlight the
regions where s < 3× 10−2.

3.3.5. Theoretical Tools. The singular set S = {s = 0} plays a critical role in the
Γ-convergence analysis. The following basic result from [46, Ch.5, exer. 17] is used
repeatedly when dealing with the singular set.

Lemma 3 (null gradient on level sets). Let u ∈ H1(Ω). Then, ∇u = 0 a.e. on the
set {u = c}, where c ∈ R.

Since ψerk diverges at s = −1/2 and s = 1, it is useful to truncate s away from
s = −1/2, 1. The next result, which is a slight modification of [86, Lem. 3.1],
clarifies this.
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Lemma 4 (truncation). Assume (g,q) satisfies Hypothesis 1 (recall c0 > 0). Let
(s,u,n) ∈ Aerk(g,q) and define

(98) bscρ := max

{
−1

2
+ ρ,min{s, 1− ρ}

}
,

for any ρ ≥ 0, and set bucρ := bscρ n. Then, (bscρ , bucρ ,n) ∈ Aerk(g,q) for all
ρ ≤ c0 and ∥∥∥(s,u)− (bscρ , bucρ)

∥∥∥
H1(Ω)

→ 0, as ρ→ 0.

This is also implies that

(99) Eerk−m[bscρ ,n] ≤ Eerk−m[s,n],
(
ψerk(bscρ), 1

)
≤ (ψerk(s), 1) ,

assuming Hypothesis 2 holds as well.
The same assertion holds for any (sh,uh,nh) ∈ Aherk(gh,qh) except the trunca-

tion is defined node-wise, i.e. (Ih bshcρ , Ih buhcρ ,nh) ∈ Aherk(gh,qh) and

(100)

Eherk−m[Ih bshcρ ,nh] ≤ Eherk−m[sh,nh],
(
ψerk(Ih bshcρ), 1

)
≤ (ψerk(sh), 1) .

The following proposition (taken from [86, Prop. 3.2]) is needed to construct a
recovery sequence (see Section 3.3.6).

Proposition 2 (Regularization in Aerk(g,q)). Suppose the boundary data satisfies
Hypothesis 1. Let (s,u,n) ∈ Aerk(g,q), with − 1

2 + ρ ≤ s ≤ 1 − ρ a.e. in Ω for
any ρ such that 0 ≤ ρ ≤ c0. Then, given δ > 0, there exists a triple (sδ,uδ,nδ) ∈
Aerk(g,q), such that sδ ∈W 1,∞(Ω), uδ ∈ [W 1,∞(Ω)]d, and

‖(s,u)− (sδ,uδ)‖H1(Ω) ≤ δ,

−1

2
+ ρ ≤ sδ(x) ≤ 1− ρ, ∀x ∈ Ω.

Thus, there exists Zε ⊂ Ω such that |Zε| < ε and (sδ,uδ) converges uniformly on
Ω \ Zε.

Moreover, define nδ := uδ/sδ if sδ 6= 0, and take nδ to be any unit vector if
sδ = 0. Then, nδ → n in [L2(Ω \ S)]d. Moreover, for each fixed ε > 0, nδ is
Lipschitz on Ω \ {|sδ| ≤ ε} with Lipschitz constant proportional to ε−1.

3.3.6. Gamma Convergence. We briefly review the main results of [86] needed to
prove Γ-convergence of Eherk,one[sh,nh] to Eerk,one[s,n]. For the existence of a re-

covery sequence we have [86, Lem. 3.3].

Lemma 5 (lim-sup inequality). Let (sε,uε,nε) ∈ Aerk(g, r,q) ∩ [W 1,∞(Ω)]1+2d be
the functions constructed in Proposition 2, for any ε > 0, and let (sε,h,uε,h,nε,h) ∈
Aherk(gh, rh,qh) be their Lagrange interpolants. Then

Eerk−m[sε,nε] = lim
h→0

Eherk−m[sε,h,nε,h]

= lim
h→0

Ẽherk−m[sε,h,uε,h] = Ẽerk−m[sε,uε].
(101)

The next result ([86, Lem. 3.4]) is needed for the lim-inf inequality.
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Lemma 6 (weak lower semi-continuity). The energy
∫

Ω
Lh(wh,∇wh)dx, with

(102) Lh(wh,∇wh) := (κ− 1)|∇Ih|wh||2 + |∇wh|2,
is well defined for any wh ∈ Uh and is weakly lower semi-continuous in H1(Ω), i.e.
for any weakly convergent sequence wh ⇀ w in H1(Ω), we have

(103) lim inf
h→0

∫
Ω

Lh(wh,∇wh) dx ≥
∫

Ω

(κ− 1)|∇|w||2 + |∇w|2dx.

A basic part of any Γ-convergence result is an equi-coercivity result ([86, Lem.
3.5]).

Lemma 7 (coercivity). For any (sh,uh,nh) ∈ Aherk(gh, rh,qh), we have

Eherk−m[sh,nh] ≥ min{κ, 1}max

{∫
Ω

|∇uh|2dx,
∫

Ω

|∇sh|2dx
}

as well as (recall (71))

Eherk−m[sh,nh] ≥ min{κ, 1}max

{∫
Ω

|∇ũh|2dx,
∫

Ω

|∇Ih|sh||2dx
}
.

The following result is a modification of [86, Lem. 3.6], which characterizes the
limit functions in our Γ-convergence result.

Lemma 8. Let (sh,uh,nh) in Aherk and suppose (sh,uh) converges weakly to (s,u)
in [H1(Ω)]1+d. Then, (sh,uh) converges to (s,u) strongly in [L2(Ω)]1+d, a.e. in
Ω, where −1/2 ≤ s ≤ 1, |s| = |u| a.e. in Ω, and there exists a director field
n : Ω → Sd−1, with n ∈ [L2(Ω)]d ∩ [L∞(Ω)]d, such that u = sn a.e. in Ω. Thus,
(s,u,n) in Aerk.

Furthermore, nh converges to n in [L2(Ω \ S)]d and a.e. in Ω \ S, and for each
fixed ε > 0:

(1) there exists Z ′ε ⊂ Ω such that |Z ′ε| < ε and (sh,uh) converges uniformly to
(s,u) on Ω \ Z ′ε;

(2) nh → n uniformly on Ω \ (Sε ∪ Z ′ε), where Sε = {|s(x)| ≤ ε}.
Note: the same results hold for (s̃h, ũh,nh) in Aherk converging to (s̃, ũ,n) in

Aerk, where s̃ := |s|, and ũ := s̃n (recall (71)).

Combining the above results, [86, Thm. 3.7] demonstrates Γ-convergence of our
discrete energy to the continuous energy.

Theorem 5 (convergence of global discrete minimizers). Let {Th} satisfy (63). If
(sh,uh,nh) ∈ Aerk(gh, rh,qh) is a sequence of global minimizers of Eherk,one[sh,nh]

in (70), then every cluster point is a global minimizer of the continuous energy
Eerk,one[s,n] in (50).

4. The Uniaxially Constrained Q-Model

In this section, we address the mathematical formulation of the minimization
problem for the one-constant Landau-deGennes energy ELdG,one (cf. (17)) under
the uniaxiality constraint (9). For three-dimensional problems, the approach dis-
cussed in Section 3.2.2 has two drawbacks.

First, a basic argument [108] shows that minimizers of Q 7→
∫

Ω
ψLdG(Q) have

the form of a uniaxial nematic (9). This is false for ELdG,one in (17) with general
boundary conditions. Thus, minimizers of the form (46) violate the algebraic form
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of (9) and exhibit a biaxial escape [91, 107, 66]. This is analogous to the escape
to the 3rd dimension in LC director models [119]. This is not desirable if the
underlying nematic LC is guaranteed to be uniaxial, which is the case in most
thermotropic materials.

In second place, the minimization problem (48) leads to a non-linear system with
five coupled variables in 3-D, which is expensive to solve and possibly not robust
[67, 96, 128, 129].

These drawbacks motivate us to enforce the uniaxiality constraint (9) in the
Landau-deGennes one-constant energy (17). The model we obtain has similarities
with the Ericksen model, but it has the advantage of allowing for non-orientable
minimizers that exhibit half-integer order defects. We also point out that in 2-D,
this approach is equivalent to minimizing (17) because, according to Remark 1,
Q-tensors must be uniaxial.

The approach we pursue is based on the Ericksen model (Section 3.3). Namely,
we shall use (s,n) as variables, where n is a (possibly non-orientable) vector field,
and then recover Q by means of (9), namely

Q = s

(
n⊗ n− 1

d
I

)
.

Compared to directly minimizing (17) using the Q-tensor as a variable, this will
allow us to derive an algorithm that can find a minimizer by solving a sequence
of linear systems of smaller dimension. See [12, Prop. 1, pg. 11] for a different
approach to enforcing uniaxiality.

Finally, we comment that uniaxial models effectively arise in a small elastic
constant limit. In [77], Majumdar and Zarnescu studied the one-constant model
(17) with a small bulk coefficient ηB (which is equivalent to a small elastic con-
stant). They showed that, under suitable boundary conditions, in the limit ηB → 0,
Landau-deGennes minimizers converge to minimizers for the Oseen-Frank energy.
The analysis in [77] is refined in [84], where the dependence of the difference between
the solution to both models with respect to ηB is analyzed.

4.1. Modeling Assumptions. For a uniaxially constrained Q-tensor as in (9),
we write Θ = n⊗n, which will be treated as a control variable in minimizing (17).
We introduce the set

(104) Ld−1 = {A ∈ Rd×d : there exists n ∈ Sd−1, A = n⊗ n},

which can be identified with the real projective space RPd−1 through the map

n⊗ n 7−→ {n,−n}.

This illustrates that the uniaxially constrained Landau-deGennes model takes into
account the molecular direction but not the orientation. In contrast to the Oseen-
Frank and Ericksen models, the Q-tensor model allows for half-integer defects.

Because ∇Q = ∇s⊗
(
Θ− 1

dI
)

+ s∇Θ, we have

|∇Q|2 = |∇s|2
∣∣∣∣Θ− 1

d
I

∣∣∣∣2 + s2|∇Θ|2 + 2s

[
∇s⊗

(
Θ− 1

d
I

)]
: ∇Θ.



THE Q-TENSOR MODEL WITH UNIAXIAL CONSTRAINT 27

A direct calculation gives
∣∣Θ− 1

dI
∣∣2 = d−1

d and
[
∇s⊗

(
Θ− 1

dI
)]

: ∇Θ = 0, and
therefore

|∇Q|2 =
d− 1

d
|∇s|2 + s2|∇Θ|2.

Also, the equalities:

for d = 2: (1/2)s2 = tr(Q2), 0 = tr(Q3), (1/4)s4 = (tr(Q2))2,

for d = 3: (2/3)s2 = tr(Q2), (2/9)s3 = tr(Q3), (4/9)s4 = (tr(Q2))2,

follow immediately. Therefore, in the one-constant approximation of the uniaxially
constrained Q-tensor model, the energy (17) becomes

ELdG,one[Q] = Euni[s,Θ] := Euni−m[s,Θ] + ELdG,bulk[s],

Euni−m[s,Θ] :=
1

2

(
d− 1

d

∫
Ω

|∇s|2 dx+ E̊uni[s,Θ]

)
,

E̊uni[s,Θ] :=

∫
Ω

s2|∇Θ|2 dx,

ELdG,bulk[s] :=
1

ηB

∫
Ω

ψLdG(s) dx,

(105)

where, with some abuse of notation, we write ψLdG(s) := ψLdG(Q).
It is apparent that (105) has the same form as the Ericksen energy (19), with

the only difference that Θ replaces n. Thus, we introduce a change of variable
analogous to the one in the Ericksen case; we set U = sΘ and rewrite

(106) Euni−m[s,Θ] = Ẽuni−m[s,U] :=
1

2

(
−1

d

∫
Ω

|∇s|2 dx+

∫
Ω

|∇U|2 dx
)
.

From the discussion in Section 2.1, we recall that the degree of orientation needs
to satisfy s ∈ [− 1

d−1 , 1]. In the same spirit as before, we define the admissible class
as

Auni := {(s,Θ) ∈ H1(Ω)× [L∞(Ω)]d×d :(s,U,Θ) satisfies (108),

with u ∈ [H1(Ω)]d},
(107)

with the structural condition

− 1

d− 1
≤ s ≤ 1, U = sΘ, Θ ∈ Ld−1 a.e. in Ω.(108)

In the same fashion as we did with the Ericksen model, we shall write (s,U,Θ)
in Auni, to denote (s,Θ) in Auni, U in [H1(Ω)]d×d, and (s,U,Θ) satisfies (108). In
order to enforce boundary conditions on (s,U), possibly on different parts of the
boundary, we assume the following condition (cf Hypothesis 1).

Hypothesis 4. There exist functions g ∈ W 1,∞(Rd), R ∈ [W 1,∞(Rd)]d×d, M ∈
[L∞(Rd)]d×d, such that (g,R,M) satisfies (108) on Rd, i.e. R = gM and M ∈
Ld−1 a.e. in Rd. Furthermore, we assume that g satisfies (56), that is, there is a
fixed c0 > 0 (small) such that

c0 ≤ g ≤ 1− c0.
The latter implies that M is of class H1 in a neighborhood of ∂Ω and satisfies
g−1R = M ∈ Ld−1 on ∂Ω.

Moreover, let Γs, ΓU, ΓΘ be open subsets of ∂Ω on which to enforce Dirichlet
conditions for s, U, Θ (respectively), and assume that ΓU = ΓΘ ⊂ Γs.
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With these boundary conditions, we have the following restricted admissible
class,

Auni(g,M) := {(s,Θ) ∈ Auni : s|Γs
= g, Θ|ΓΘ

= M} ,(109)

and Hypothesis 4 guarantees that setting boundary conditions for (s,Θ) is mean-
ingful.

Finally, we require the double-well potential to effectively confine the degree of
orientation variable s to a meaningful range.

Hypothesis 5 (Landau-deGennes potential). The coefficients A,B,C in (15) are
such that

ψLdG(s) ≥ ψLdG(1− δ0) for s ≥ 1− δ0,

ψLdG(s) ≥ ψLdG

(
− 1

d− 1
+ δ0

)
for s ≤ − 1

d− 1
+ δ0.

(110)

Moreover, we modify ψLdG near the bounds s = −1/(d − 1) and s = 1 so that
ψLdG(·) diverges (recall (51)).

4.2. Discretization. We discretize Ω in the same fashion as in Section 3.3.2. We
assume Ω ⊂ Rd is partitioned by a conforming simplicial shape-regular triangulation
Th = {Ti}, with no geometric error caused by domain approximation. Moreover,
we maintain the weak-acuteness mesh assumption (cf. Hypothesis 3).

Next, we consider continuous linear Lagrange finite element spaces on Ω. That
is, the space for sh is Sh as in (59), while the spaces for the tensor variables Uh

and Θh are

Uh := {Uh ∈ [H1(Ω)]d×d : Uh|T ∈ P1(T ),∀T ∈ Th},
Th := {Θh ∈ Uh : Θh(xi) ∈ Ld−1,∀xi ∈ Nh},

(111)

where Th imposes the rank-one, unit norm constraint only at the vertices of the
mesh. Dirichlet boundary conditions are included via the following discrete spaces:

Sh(Γs, gh) := {sh ∈ Sh : sh|Γs
= gh},

Uh(ΓU,Rh) := {Uh ∈ Uh : Uh|ΓU
= Rh},

Th(ΓΘ,Mh) := {Θh ∈ Th : Θh|ΓΘ
= Mh},

where gh := Ihg, Rh := IhR, and Mh := IhM are the discrete Dirichlet data. This
leads to the following discrete admissible class with boundary conditions:

Ahuni(gh,Mh) :=
{

(sh,Θh) ∈ Sh(Γs, gh)× Th(ΓΘ,Mh) :

(sh,Uh,Θn) satisfies (113), with Uh ∈ Uh(ΓU,Rh)
}
,

(112)

where

(113) Uh = Ih(shΘh), − 1

d− 1
≤ sh ≤ 1 in Ω, and Θh(xi) ∈ Ld−1,∀xi ∈ Nh,

is called the discrete structural condition of Ahuni. If we write (sh,Uh,Θh) ∈ Ahuni,

then this is equivalent to (sh,Θh) ∈ Ahuni, Uh ∈ Uh, and (sh,Uh,Θh) satisfies (62).
In view of Hypothesis 4, we can also impose the Dirichlet condition Θh = Ih[g−1

h Rh]
on ∂Ω.

The discrete version of Euni−m[s,Θ] is derived similarly to the Ericksen case.
We set

(114) δijsh := sh(xi)− sh(xj), δijΘh := Θh(xi)−Θh(xj),
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and define the main part of the discrete energy to be

Ehuni−m[sh,Θh] :=
d− 1

4d

n∑
i,j=1

kij (δijsh)
2

+
1

4

n∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|δijΘh|2.

(115)

Above, the first term corresponds to

1

2

n∑
i,j=1

kij (δijsh)
2

=

∫
Ω

|∇sh|2dx,

while the second term is a first order approximation of 1
2

∫
Ω
s2|∇Θ|2dx. For con-

venience, we shall denote

(116) E̊huni[sh,Θh] :=
1

2

n∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|δijΘh|2.

The bulk energy is discretized in the same way as before,

(117) EhLdG,bulk[sh] :=
1

ηB

∫
Ω

ψLdG(sh)dx.

With the notation introduced above, the formulation of the discrete problem reads
as follows. Find (sh,Θh) ∈ Sh(Γs, gh)×Th(ΓΘ,Mh) such that the following energy
is minimized:

(118) Ehuni[sh,Θh] := Ehuni−m[sh,Θh] + EhLdG,bulk[sh].

Because the discrete spaces consist of piecewise linear functions, the structural
condition Uh = shΘh is only satisfied at the mesh nodes (cf. (113)). Therefore,
there is a variational crime that we need to account for. Similarly to Lemma 1,
the discrete Landau-deGennes energy possesses an energy inequality property [24,
Lem. 1]. For our analysis, we introduce the functions

(119) s̃h = Ih(|sh|), Ũh = Ih(|sh|Θh),

and remark that (s̃h, Ũh,Θh) satisfies (113).

Lemma 9 (energy inequality). Let the mesh Th satisfy (63). Then, for all (sh,Uh,Θh) ∈
Ahuni(gh,Rh,Mh), the discrete energy satisfies

(120) Ehuni−m[sh,Θh]− Ẽhuni−m[sh,Uh] = Eh,
as well as

(121) Ehuni−m[sh,Θh]− Ẽhuni−m[s̃h, Ũh] ≥ Ẽh,
where

Ẽhuni−m[sh,Uh] :=
1

2

(
−1

d

∫
Ω

|∇sh|2dx+

∫
Ω

|∇Uh|2dx
)
,

and
(122)

Eh :=
1

8

n∑
i,j=1

kij
(
δijsh

)2∣∣δijΘh

∣∣2 ≥ 0, Ẽh :=
1

8

n∑
i,j=1

kij
(
δij s̃h

)2∣∣δijΘh

∣∣2 ≥ 0.

4.3. Gradient flow.
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4.3.1. Continuous gradient flow. We discuss a formal gradient flow to find local
minimizers of Euni[s,Θ] in (105). More precisely, we revisit (40), and impose the
uniaxial constraint (9). Because our control variables are s and Θ, we shall evolve
these two quantities separately, although the resulting gradient flows are coupled.
For the sake of exposition, we consider an L2 gradient flow for both s and Θ,
although other choices can be made.

We define

as (∂ts(·, t), z) = −δsEuni[s,Θ; z], ∀z ∈ H1
Γs

(Ω),(123)

where H1
Γs

(Ω) := {z ∈ H1(Ω) : z|Γs = 0} preserves the boundary condition for s

and, as in Section 3.3.3, we shall consider as (·, ·) as the standard L2-inner product.
Upon applying a formal integration by parts to this equality and using the Neumann
condition ν · ∇s = 0 on ∂Ω \ Γs, it follows that s satisfies

∂ts−
d− 1

d
∆s+ |∇Θ|2s+

1

ηB
ψ′LdG(s) = 0, in Ω,

s = g, on Γs, ν · ∇s = 0, on ∂Ω \ Γs.
(124)

We now consider the evolution of the Θ variable. For that purpose, we need a
characterization of the tangent space TΘL

d−1 at Θ ∈ Ld−1. Following [20], given
Θ = n⊗n, we consider a smooth curve γγγ : (−δ, δ)→ Sd−1 such that γγγ(0) = n, and

set ΓΓΓ : (−δ, δ)→ Ld−1, ΓΓΓ(t) = γγγ(t)⊗ γγγ(t). Then, setting v := dγγγ
dt (0) ∈ TnSd−1, we

obtain V ∈ TΘL
d−1 by

V =
dΓΓΓ

dt
(0) =

(
d

dt
γγγ(t)⊗ γγγ(t)

)∣∣∣∣
t=0

= n⊗ v + v ⊗ n.

Thus, at Θ = n⊗ n, there is a bijection between TΘL
d−1 and TnSd−1.

This motivates us to define the space of tangential variations of Θ = n⊗ n as

V⊥(s,Θ) :=
{
V ∈ [L2(Ω)]d×d : V = n⊗ v + v ⊗ n, v · n = 0 a.e. in Ω,

sV ∈ [H1(Ω)]d×d
}
.

(125)

Clearly, the restriction v · n = 0 a.e. in Ω is sufficient to guarantee orthogonality,
because

(v ⊗ n) : (n⊗ n) = (v · n)(n · n) = 0 if v · n = 0.

Moreover, if s ≥ c0 > 0 in Ω, then V ∈ V⊥(s,Θ) must belong to [H1(Ω)]d.
Additionally, considering a tangential perturbation of Θ, T = Θ + δtV with

V ∈ V⊥(s,Θ) preserves the constraint |Θ| = 1 up to second order, since |T|2 =
1 + δt2|V|2. However, our discrete gradient flow algorithm shall exploit the iden-
tification TΘL

d−1 ' TnSd−1 to consider vector-valued perturbations (instead of
tensor-valued). Namely, if we take tangential variations in n and set W := (n +
δtv) ⊗ (n + δtv) with v ∈ TnSd−1, then this yields a tangential variation of Θ up
to second order,

(126) W = Θ + δtV + δt2v ⊗ v, V = n⊗ v + v ⊗ n ∈ V⊥(s,Θ).

We set a gradient flow for Θ as follows:

aΘ (∂tΘ(·, t),V) = −δΘEuni[s,Θ; V], ∀V ∈ V⊥(s,Θ) ∩ [H1
ΓΘ

(Ω)]d×d.(127)
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Assume that aΘ (·, ·) above is the inner product in L2(Ω). After an integration by
parts, it follows that Θ satisfies

∂tΘ−∇ · (s2∇Θ) = 0, in Ω,

n = M, on ΓΘ, ν · ∇Θ = 0, on ∂Ω \ ΓΘ.
(128)

Assuming (s,n) evolve according to (124), (128), it follows that

∂tEuni[s,Θ] = δsEuni[s,Θ; ∂ts] + δΘEuni[s,Θ; ∂tΘ],

= −‖∂ts‖L2(Ω) − ‖∂tΘ‖L2(Ω) ≤ 0,
(129)

and therefore the energy is monotonically decreasing.

4.3.2. Discrete gradient flow. Given k ≥ 0, let (skh,Θ
k
h) ∈ Ahuni(gh,Mh) and we

write

ski := skh(xi), Θk
i := Θk

h(xi), nki := nkh(xi), zi := zh(xi), vi := vh(xi).

We consider the finite element discretization discussed in Section 4.2 and use a
fully implicit, backward Euler time discretization for ∂ts, to discretize (123) by

as

(
sk+1
h − skh
δt

, zh

)
= −δsEhuni[s

k+1
h ,Θk+1

h ; zh], ∀zh ∈ Sh(Γs, 0),(130)

where δt > 0 is a finite time step and Sh(Γs, 0) is defined according to (4.2). The
discrete variational derivative is given by

δsE
h
uni[s

k
h,Θ

k
h; zh] =

d− 1

d
(∇skh,∇zh) +

1

2
δsE̊

h
uni[s

k
h,Θ

k
h; zh] +

1

ηB
(ψ′LdG(skh), zh),

δsE̊
h
uni[s

k
h,Θ

k
h; zh] =

N∑
i,j=1

kij |δijΘk
h|2
(
ski zi + skj zj

2

)
.

(131)

The discrete version of (125), where Θh = nh⊗nh at the mesh nodes, is defined
by

V⊥h (Θh) = {Vh ∈ Uh : Vh(xi) = nh(xi)⊗ vh(xi) + vh(xi)⊗ nh(xi),

vh(xi) · nh(xi) = 0, for all nodes xi ∈ Nh},
(132)

Thus, a natural way to discretize (127) would be

aΘ

(
Θk+1
h −Θk

h

δt
,Vh

)
= −δΘEhuni[s

k+1
h ,Θk+1

h ; Vh], ∀Vh ∈ V⊥h (Θk
h) ∩ Uh(ΓU,0),

subject to Θk+1
h (xi) ∈ Ld−1, for all nodes xi ∈ Nh,

(133)

where the discrete variational derivatives are given by

δΘE
h
uni[s

k
h,Θ

k
h; Vh] =

1

2
δΘE̊

h
uni[s

k
h,Θ

k
h; Vh],

δΘE̊
h
uni[s

k
h,Θ

k
h; Vh] =

N∑
i,j=1

kij

(
(ski )2 + (skj )2

2

)
(δijΘ

k
h) : (δijVh).

(134)

Therefore, we could consider the following algorithm: given (skh,Θ
k
h) ∈ Ahuni(gh,Mh),

solve (130), (133) simultaneously to obtain (sk+1
h ,Θk+1

h ) ∈ Ahuni(gh,Mh). Starting
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from an initial guess (s0
h,Θ

0
h) ∈ Ahuni(gh,Mh), we iterate this until some conver-

gence criteria is achieved. This algorithm yields a fully coupled non-linear system
of equations with the constraint Θk+1

h (xi) ∈ Ld−1.
There are two simplifications to be made. First, in the same fashion as we did

for the Ericksen model in Section 3.3.4, we split the gradient flow iteration into
three steps. Namely, we evolve Θh, resulting in a tangential update that does not
necessarily belong to Ld−1 at the nodes; after this, we need to project this update;
and finally, evolve sh with a gradient flow step.

However, the second step in this algorithm is problematic: projecting an arbi-
trary tensor onto Ld−1 is more challenging than the simple unit length normal-
ization step in the algorithm from Section 3.3.4. Therefore, instead of looking for
tensor variations of Θ, we shall exploit the identification between the tangent spaces
TΘL

d−1 and TnSd−1 to obtain a vectorial update.
We point out that if Θk+1

h was a tangential update, so that

Θk+1
i −Θk

i = nki ⊗ ti + ti ⊗ nki

for some ti such that nki ·ti = 0, then we could replace the Frobenius inner product
by a vectorial one:

(Θk+1
i −Θk

i ) : Vi = 2tki · vi, ∀Vi = nki ⊗ vi + vi ⊗ nki .

Therefore, instead of (133) we consider, for Θk
i = nki ⊗ nki ,

1

δt
an

(
tkh,vh

)
= −δΘEhuni[s

k+1
h ,Θk

h + nkh ⊗ tkh + tkh ⊗ nkh; Vh],

∀Vh ∈ V⊥h (nkh) ∩ Uh(Γu,0).
(135)

Upon taking the update ñk+1
i = nki +tki , we can recover the constraint Θk+1

i ∈ Ld−1

by considering

Θk+1
i =

ñk+1
i

|ñk+1
i |

⊗ ñk+1
i

|ñk+1
i |

.

Because of the second-order inconsistency committed when updating Θ with a
non-tangential variation (recall (126)), we need a careful selection of the an (·, ·)-
form. Moreover, near the discrete singular set, namely wherever skh is small, it is
critical to allow for relatively large variations tkh in order to accelerate the algorithm.
Given a function ω ∈ L∞(Ω) with ω ≥ 0, we define the weighted H1-space

‖v‖H1
ω(Ω) :=

(∫
Ω

|v(x)|2 dx+

∫
Ω

|∇v(x)|2 ω(x) dx

)1/2

,

and we write by (·, ·)H1
ω(Ω) its inner product. In the algorithm below, we shall

consider the weight ω = (skh)2.
Finally, we point out that the double well potential can be treated in the same

way as for the Ericksen model. Indeed, by using a convex-concave splitting ψLdG =
ψc − ψe and considering the approximation

(136)
(
ψ′LdG(sk+1

h ), zh
)

:=
(
ψ′c(s

k+1
h ), zh

)
−
(
ψ′e(s

k
h), zh

)
,

we obtain an unconditionally stable evolution for EhLdG,bulk[sh] (cf. Lemma 2).

Our discrete quasi-gradient flow algorithm is as follows. Given (s0
h,Θ

0
h) ∈

Ahuni(gh,Mh), with Θ0
h = n0

h ⊗ n0
h, and a time step δt > 0, iterate Steps 1–3

for k ≥ 0:
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(1) (Weighted) tangent flow step for Θh: find tkh ∈ V⊥h (nkh)∩H1
ΓΘ

(Ω) and

Tk
h = nkh ⊗ tkh + tkh ⊗ nkh, such that

1

δt
(tkh,vh)H1

(sk
h
)2

(Ω) = −δΘE̊huni[s
k
h,Θ

k
h + Tk

h; Vh],

∀Vh = nkh ⊗ vh + vh ⊗ nkh, vh ∈ Vh ∩H1
ΓΘ

(Ω).

(137)

(2) Projection: update Θk+1
h ∈ Th(ΓΘ,Mh) by

(138) Θk+1
h (xi) :=

nkh(xi) + tkh(xi)

|nkh(xi) + tkh(xi)|
⊗ nkh(xi) + tkh(xi)

|nkh(xi) + tkh(xi)|
, ∀xi ∈ Nh.

(3) Gradient flow step for sh: find sk+1
h ∈ Sh(Γs, gh) such that, for all

zh ∈ Sh(Γs, 0),

1

δt

(
sk+1
h − skh, zh

)
= −δsEhuni[s

k+1
h ,Θk+1

h ; zh],

= −d− 1

d

(
∇sk+1

h ,∇zh
)
− 1

2
δsE̊

h
uni[s

k+1
h ,Θk+1

h ; zh]

− 1

ηB

(
ψ′LdG(sk+1

h ), zh
)
.

(139)

Under a mild time-step restriction, this algorithm is energy-decreasing [24, Thm.
2].

Theorem 6 (energy decrease). Assume the family of meshes is weakly acute (cf.
Hypothesis 3) and δt < Chd/2. Then, it holds that

Ehuni[s
N
h ,Θ

N
h ]+

1

δt

(
N−1∑
k=0

‖tkh‖2H1

(sk
h
)2

(Ω) + ‖sk+1
h − skh‖2L2(Ω)

)
≤ Ehuni[s

0
h,Θ

0
h] ∀N ≥ 1.

Thus, the discrete energy is monotonically decreasing.

Remark 5 (CFL condition). The use of the weighted H1
(skh)2

(Ω)-norm in Step 1 is

needed to bound the second-order consistency error (125). This, in turn, leads to
the stability constraint δt ≤ Chd/2 because of the use of an inverse estimate between
L∞(Ω) and L2(Ω) [24]. However, if (skh)2 is bounded away from zero, then a milder

CFL condition can be obtained, namely δt ≤ Chd/2−1| log h|−1 [20].

4.4. Gamma Convergence. The roadmap to prove Γ-convergence of the discrete
energy minimization problems to the continuous one is the same as for the Ericksen
model, and makes use of the general philosophy [25],

equi-coerciveness + Γ-convergence ⇒ convergence of minimum problems.

As a first step, we remark that truncating the double-well potential decreases
energy.

Lemma 10 (truncation). Assume (g,M) satisfies Hypothesis 4. Let (s,U,Θ) ∈
Aerk(g,M) and, given ρ ≥ 0, consider bscρ as in (98), namely: define

bscρ := max

{
−1

2
+ ρ,min{s, 1− ρ}

}
.

Define bUcρ := bscρ Θ. Then, (bscρ , bUcρ ,n) ∈ Aerk(g,R) for all ρ ≤ c0 and∥∥∥(s,U)− (bscρ , bUcρ)
∥∥∥
H1(Ω)

→ 0, as ρ→ 0.



34 J.P. BORTHAGARAY AND S.W. WALKER

This is also implies that

Euni−m[bscρ ,Θ] ≤ Euni−m[s,Θ], ELdG,bulk[bscρ] ≤ ELdG,bulk[s],

where we also assume Hypothesis 5.
The same assertion holds for any (sh,Uh,Θh) ∈ Ahuni(gh,Mh) if the truncation

is defined node-wise. Namely, if (Ih bshcρ , Ih bUhcρ ,Θh) ∈ Ahuni(gh,Mh) then

Ehuni−m[Ih bshcρ ,Θh] ≤ Ehuni−m[sh,Θh], EhLdG,bulk[Ih bshcρ] ≤ EhLdG,bulk[sh].

Because our discrete admissible class is defined by enforcing the structural con-
ditions nodewise, we use Lagrange interpolation to construct a recovery sequence
(i.e., to prove the lim-sup property needed for Γ-convergence). However, the natu-
ral space for (s,U) is [H1(Ω)]1+d×d (cf. (107)), and thus this construction cannot
be done a priori: the Lagrange interpolant of an admissible pair (s,U) may not be
defined at all if d ≥ 2. This motivates the following result, which is a counterpart
of Proposition 2. Essentially, it guarantees that Lipschitz continuous functions are
H1-dense in the admissible class.

Proposition 3 (Regularization in Auni(g,M)). Suppose the boundary data satisfies
Hypothesis 4. Let (s,U,Θ) ∈ Auni(g,M), with − 1

d−1 + ρ ≤ s ≤ 1− ρ a.e. in Ω for

any ρ such that 0 ≤ ρ ≤ c0. Then, given ε > 0, there exists a triple (sε,Uε,Θε) ∈
Auni(g,M), such that sε ∈W 1,∞(Ω), Uε ∈ [W 1,∞(Ω)]d×d, and

‖(s,U)− (sε,Uε)‖H1(Ω) ≤ ε,

− 1

d− 1
+ ρ ≤ sε(x) ≤ 1− ρ, ∀x ∈ Ω.

Thus, there exists Zδ ⊂ Ω such that |Zδ| < ε and (sε,Uε) converges uniformly on
Ω \ Zδ.

Moreover, define Θε := Uε/sε if sε 6= 0, and take Θε to be any tensor in Ld−1

if sε = 0. Then, Θε → Θ in [L2(Ω \ S)]d. Moreover, for each fixed δ > 0, Θε is
Lipschitz on Ω \ {|sε| ≤ δ} with Lipschitz constant proportional to δ−1.

The proof of the proposition above is more delicate than for the Ericksen case.
Indeed, smoothening the tensor field Θ involves convolution and thus breaks its
uniaxial structure. Therefore, uniaxiality needs to be rebuilt into the regularized
field. We recall that, for instance in three dimensions, the eigenvalues of the uniaxial
Q tensor Q = s(Θ − 1

3I) are {2s/3,−s/3,−s/3}. Heuristically, convolution with
a localized kernel should not affect much the eigenframe of Θ(x) if s is uniformly
positive in a neighborhood of x. In such a case, one can simply extract the leading
eigenspace to construct a uniaxial field. However, if s is not uniformly positive the
argument does not carry. To deal with this, the idea in [24, Prop. 7] is to regularize
the positive semidefinite field |s|Θ within a scale δ, to rebuild the uniaxiality and,
for a coarser scale σ ≥ δ, to recover the sign of s by using a suitably regularized
sign function.

Once we know that Lipschitz continuous functions are dense among the admis-
sible pairs (s,U), we can build a recovery sequence by using Lagrange (nodal)
interpolation.

Lemma 11 (lim-sup inequality). Let (sε,Uε,Θε) ∈ Auni(g,R,M) be the func-
tions constructed in Proposition 3, for any ε > 0, and let (sε,h,Uε,h,Θε,h) ∈
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Ahuni(gh,Rh,Mh) be their Lagrange interpolants. Then

Euni−m[sε,Θε] = lim
h→0

Ehuni−m[sε,h,Θε,h]

= lim
h→0

Ẽhuni−m[sε,h,Uε,h] = Ẽuni−m[sε,Uε].

Weak lower semi-continuity follows by the same arguments as in the Ericksen
case.

Lemma 12 (weak lower semi-continuity). The energy
∫

Ω
Lh(Wh,∇Wh)dx, with

Lh(Wh,∇Wh) := −1

d
|∇Ih|Wh||2 + |∇Wh|2,

is well defined for any Wh ∈ Uh and is weakly lower semi-continuous in H1(Ω),
i.e. for any weakly convergent sequence Wh ⇀ W in H1(Ω), we have

(140) lim inf
h→0

∫
Ω

Lh(Wh,∇Wh) dx ≥
∫

Ω

−1

d
|∇|W||2 + |∇W|2dx.

Proof. Indeed, “flattening” the matrix W ∈ Rd×d to a vector w ∈ Rd2 , we can
use the same proof from Lemma 6 to prove the result because the norm of the
gradient of the flattened matrix equals the Fröbenius norm of ∇Uh; recall that
κ = (d− 1)/d. �

The next result shows that the discrete energy controls the H1 norms of both
sh and Uh. This gives us the compactness needed to prove convergence of discrete
minimizers towards minimizers of the uniaxially constrained Landau-deGennes en-
ergy (105).

Lemma 13 (coercivity). For any (sh,Uh,Θh) ∈ Ahuni(gh,Rh,Mh), we have

Ehuni−m[sh,Θh] ≥ d− 1

d
max

{∫
Ω

|∇Uh|2dx,
∫

Ω

|∇sh|2dx
}

as well as (recall (71))

Ehuni−m[sh,nh] ≥ d− 1

d
max

{∫
Ω

|∇Ũh|2dx,
∫

Ω

|∇Ih|sh||2dx
}
.

Next, we prove that the limit functions satisfy the Landau-deGennes admissibil-
ity condition (109) (cf. [24, Lem. 9]).

Lemma 14. Let (sh,Uh,Θh) in Ahuni and suppose (sh,Uh) converges weakly to
(s,U) in [H1(Ω)]1+d×d. Then, (sh,Uh) converges to (s,U) strongly in [L2(Ω)]1+d×d,
a.e. in Ω, where −1/(d − 1) ≤ s ≤ 1, |s| = |U| a.e. in Ω, and there exists a field
Θ : Ω → Ld−1, so that Θ ∈ [L∞(Ω)]d×d, such that U = sΘ a.e. in Ω. Thus,
(s,U,Θ) in Auni.

Furthermore, Θh converges to Θ in [L2(Ω \ S)]d×d and a.e. in Ω \ S, Θ admits
a Lebesgue gradient on Ω \ S, that satisfies the identity |∇U|2 = |∇s|2 + s2|∇Θ|2
a.e. in Ω \ S, and for each fixed ε > 0:

(1) there exists Z ′ε ⊂ Ω such that |Z ′ε| < ε and (sh,Uh) converges uniformly to
(s,U) on Ω \ Z ′ε;

(2) Θh → Θ uniformly on Ω \ (Sε ∪ Z ′ε), where Sε = {|s(x)| ≤ ε}.
Note: the same results hold for (s̃h, Ũh,Θh) in Aherk converging to (s̃, Ũ,Θ) in

Auni, where s̃ := |s|, and Ũ := s̃Θ (recall (119)).
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Collecting Lemmas 11–14, a standard argument yields the Γ-convergence of our
discrete energy to the continuous energy.

Theorem 7 (convergence of global discrete minimizers). Let {Th} satisfy (63). If
(sh,Uh,Θh) ∈ Auni(gh,Rh,Mh) is a sequence of global minimizers of Ehuni[sh,Θh]
in (118), then every cluster point is a global minimizer of the continuous energy
Euni[s,Θ] in (105).

4.5. Numerical Experiment. We simulate a curved line defect in the unit cube
(0, 1)3 that exhibits a +1/2 degree “point” defect in each horizontal plane of the
cube; hence, the line field is non-orientable. We first simulate the uniaxially con-
strained model, then the standard LdG model.

4.5.1. Uniaxially Constrained Model. The double-well potential with a convex split-
ting is given by

ψLdG(s) = ψc(s)− ψe(s)
:= (36.7709s2 + 1)− (−7.39101s4 + 4.51673s3 + 39.27161s2),

(141)

with ηB = 1/16, and note that ψLdG has a local maximum at s = 0 and a global
minimum at s = s∗ := 0.700005531 with ψLdG(s∗) = 0.

The boundary conditions for Θ were constructed in the following way. Let
θ0(x, y) define a +1/2 degree defect in the plane, located at (0.3, 0.3) by

(142) θ0(x, y) =
1

2
atan2

(
y − 0.3

x− 0.3

)
,

where atan2 is the four-quadrant inverse tangent function (analogous to (97)). Like-
wise, let θ1(x, y) define a +1/2 degree defect in the plane, located at (0.7, 0.7). Next,
define the Dirichlet boundary Γs = ΓΘ = ∂Ω \Γo, where Γo := Ω∩ ({z = 0}∪{z =
1}). Then, the Dirichlet conditions are

s = s∗, n(x, y) = (cos θ, sin θ, 0), Θ = n⊗ n,

θ(x, y, z) = (1− z)θ0(x, y) + zθ1(x, y) + πz,
(143)

with vanishing Neumann condition on Γo. Basically, the boundary conditions con-
sist of rotating a planar +1/2 degree point defect as a function of z. The solution is
computed with the gradient flow approach in Section 4.3.2 and time step δt = 10−3,
and initialized with

s = s∗, n = (cosα, sinα, 0), Θ = n⊗ n, α(x, y, z) = θ2(x, y) + πz,

where θ2(x, y) corresponds to a +1/2 degree defect centered at (0.5, 0.5); this con-
figuration has an initial energy of Ehuni[sh,Θh] = 10.013214.

Figure 4 shows three dimensional views of the minimizing configuration, where
as Figure 5 shows four horizontal slices of the solution. A non-orientable line
defect is observed, with final energy Ehuni[sh,Θh] = 5.2042593769 and min(sh) ≈
2.145× 10−2.
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Figure 4. A +1/2 degree line defect in a 3-D cube domain (Sec-
tion 4.5.1). Left: line field Θ is shown at levels z = 0.0, 0.5, 1.0
(colored by s). Right: The s = 0.05 iso-surface is shown that con-
tains the line defect. In each horizontal plane, the line field exhibits
a +1/2 degree point defect in 2-D. The twisting of the line defect
is due to the choice of boundary conditions.

4.5.2. The Standard LdG Model. Next, we simulate the model in Section 3.2.1. We
use the boundary conditions in (143) and the double-well potential in (141). In
terms of the standard LdG model, the Dirichlet boundary conditions on ΓD :=
Γs ≡ ΓΘ are

Q = s∗
(

Θ− 1

3
I

)
on ΓD,(144)

where Θ is taken from (143), with vanishing Neumann condition on Γo; this is con-
sistent with the boundary conditions in (143). Moreover, the double-well potential
is given by (15), (43), where

K = 1.0, A = −7.502104, B = 60.975813,

C = 66.519069, D = 552.230967,
(145)

which is consistent with the double well potential (141). The minimizer is computed
using the gradient flow approach in Section 3.2.2, with time step δt = 0.01, and
initialized with the minimizer from the uniaxial model. All other parameters are
the same.

For visualizing the solution, we shall use the biaxiality parameter [77, eqn. (25)],
given by

(146) β(Q) = 1− 6

(
tr(Q3)

)2
(tr(Q2))

3 ,

where 0 ≤ β(Q) ≤ 1 and has the properties:

(1) β(Q) = 0 if and only if Q is uniaxial, i.e. Q has the form (9);
(2) β(Q) = 1 if and only if s1/s2 = 2, where s1, s2 appear in the biaxial form

(5).
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Figure 5. Horizontal slices of the +1/2 degree line defect in a
3-D cube domain shown in Figure 4 (Section 4.5.1). Top: left is
z = 0.2, right is z = 0.4. Bottom: left is z = 0.6, right is z = 0.8.
The location of the point defect in each plane rotates with the
boundary conditions.

In other words, β(Q) provides a simple measure of uniaxiality versus biaxiality.
Figure 6 shows three dimensional views of the minimizing configuration, whereas

Figure 7 shows the biaxiality and point-wise l2 error |(Quni−QLdG)(x)| between the
uniaxial (uni) and standard LdG solutions. A non-orientable line defect is observed,
with final energy Ehuni[sh,Θh] = 4.5533587 and achieves a maximum biaxiality of
1.0.

5. Colloidal effects

The presence of a colloidal particle in suspension in a LC material modifies the
topology of the domain. This, in turn, can induce interesting equilibrium states
with non-trivial defect configurations. A famous example is the so-called Saturn
ring defect [5, 55], which is a circular ring of defect surrounding a spherical hole
inside the LC domain (see Figure 8). Figure 9 shows more detail on the director
configuration for the Saturn ring defect. The boundary conditions on the spherical
inclusion are n = ν (the unit normal of the spherical hole) on Γi and n = (0, 0, 1)T
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Figure 6. A +1/2 degree line defect in a 3-D cube domain (Sec-
tion 4.5.2). Left: line field (taken as the dominant eigenvector of
Q) is shown at levels z = 0.0, 0.5, 1.0 (colored by the effective
s := (3/2)λ, where λ is the dominant eigenvalue). Right: The
s = 0.22 iso-surface is shown that contains the line defect. In each
horizontal plane, the line field exhibits a +1/2 degree point de-
fect in 2-D. The solution looks qualitatively a little different from
Figure 4.

Figure 7. View of the biaxiality and l2 error of the solution in
Figure 6 (Section 4.5.2). Left: clearly, there is a high degree of
biaxiality near the defect. Right: plots of the l2 error |(Quni −
QLdG)(x)| are shown. The error is larger near the defect and,
interestingly, it increases as a function of z.

on Γo. Note that the disclination ring can have an alternate configuration (see right
plot in Figure 9), which depends on the size of the particle [122, 61, 96]. Either
way, we emphasize that the presence of the hole can force a defect in the LC.

This section discusses the capabilities of the Ericksen and uniaxially constrained
Landau-deGennes models, and the corresponding numerical methods described in
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n

defect
ring

Figure 8. Saturn ring defect in a director field model. A spherical
colloidal particle is shown with normal anchoring conditions on its
boundary (i.e. the director field n is normal to the sphere). The
singular set S (where s = 0) is marked by the thick curve and
occurs depending on the outer boundary conditions (away from
the sphere) imposed on n.

Γo

Γi

hole

n⊗ n

Ω

Γo

Γi

hole

n⊗ n

Ω

Figure 9. Illustration of Saturn ring defect pattern. Left: a two
dimensional vertical slice of the domain shown in Figure 8; thick
lines show the line field n⊗n. The defect region is marked by the
two grayed circles. Right: another possible defect configuration
[122, 61, 96]. The ring has a much smaller radius and is below the
spherical inclusion.

sections 3.3.2 and 4.2, to capture defects in the presence of colloids. We shall model
colloids as spherical inclusions inside the LC domain.

5.1. Conforming non-obtuse mesh. Given an arbitrary domain, it may be quite
difficult to generate a conforming, non-obtuse, tetrahedral mesh. As far as we know,
the question of whether it is possible to generate a non-obtuse tetrahedral mesh of
a general three dimensional domain remains open.

Here we report on numerical results over a certain non-obtuse mesh of a cylin-
drical domain with a hole cut out. We refer to [87, Sec. 5.1.1] for details about the
mesh construction. For the simulations in this section, the domain Ω is a “prism”
type of cylindrical domain with square cross-section [−0.25

√
2, 0.75

√
2]2, is centered
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about the z = 0 plane, and has height 6. It contains a spherical inclusion, with
boundary Γi, centered at (

√
2/4,
√

2/4, 0) with radius 0.283/
√

2.
For the Ericksen model, one could in principle consider the strong anchoring

conditions

(147) n = ν on Γi, n = (0, 0, 1)> on Γo = ∂Ω \ Γi, s = s∗ on ∂Ω,

where ν is the outer unit normal of the spherical inclusion and s∗ is the global
minimum of the double well potential (96). These boundary conditions do not lead
to a ring-like defect, but rather to disperse/point defects, depending on the value
of κ in Eerk−m (cf. [87, Sec. 5.1.2]).

Instead of (147), we consider the following boundary conditions:

n = ν on Γi, s = s∗ on ∂Ω,

n interpolates between (0, 0,−1)> and (0, 0, 1)> on Γo.
(148)

Figure 10 shows the outcome of a numerical simulation with κ = 1, and a gradient
flow with initial conditions s = s∗,

n(x, y, z) = (0, 0,−1)> if z < 0,

n(x, y, z) = (0, 0, 1)> if z ≥ 0.

Importantly, the structure of the director field does not coincide with the one

Figure 10. Simulation results for the Ericksen model with bound-
ary conditions (148). The surface mesh of the internal hole is shown
and the defect region is indicated by the s = 0.12 iso-surface (plot-
ted in red). The director field n is depicted with white arrows.

expected from the Landau-deGennes model [5]. Here, at every vertical slice, the
defect in the director field has degree −1, while in [5] the degree of the defect is
−1/2. The Ericksen model imposes an orientability constraint that is not part of
the physical problem.

The uniaxially-constrained Landau-deGennes model is capable of capturing such
a non-orientable configuration. We impose the strong anchoring conditions

(149) n = ν on Γi, n = (0, 0, 1)> on Γo, Θ = n⊗ n on ∂Ω, s = s∗ on ∂Ω,
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where now s∗ = 0.7 is the global minimum of the double-well potential

ψLdG(s) = ψc(s)− ψe(s)
:= (36.770913s2 + 1)

− (−7.3910077s4 + 4.5167269s3 + 39.271614s2).

(150)

We take a time step δt = 10−3 for the gradient flow, which is initiated with s = s∗

and n = (0, 0, 1)>. Figure 11 displays the final configuration of (s,Θ). A cross-
section shows the non-orientability of the resulting line field.

Figure 11. Simulation results for the uniaxially-constrained
Landau-deGennes model with boundary conditions (149). In the
left panel, the line field is plotted with color scale based on s, and
the −1/2 degree defect are visible on the left and right sides of the
spherical inclusion. The right panel shows the s = 0.25 isosurface
in blue.

5.2. Immersed boundary method. Mesh weak-acuteness imposes a hard geo-
metric constraint on the meshes, and can be extremely difficult to satisfy in imple-
mentations in three dimensions. As an alternative to it, [87, Section 5.2] proposes
an immersed boundary approach to deal with general colloid shapes. This approach
consists in representing the LC domain by using a phase field function and to in-
corporate a penalty term into the energies to weakly enforce boundary conditions
on the colloid’s boundary.

5.2.1. Colloid representation. Assume the colloid is given by an open set Ωc ⊂⊂ Ω,
and let Ω̂c ⊂ Rd be a reference shape such that there is an affine parametrization
F : Rd → Rd,

x̂ = F(x) = Zx + b, Ω̂c = F(Ωc).

Above, Z is a rotation matrix and b a translation vector. We also use the signed

distance functions to ∂Ω̂c and ∂Ωc, that we denote by d and d̂ respectively, and are
related by

d(x) = d(F(x̂)) = d̂(x̂), ∀x ∈ Rd.
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Applying the chain rule, we also deduce the identity

∇xd(x) = ∇x̂d̂(x̂)Z.

Next, we introduce a phase field function to approximate the colloidal domain.
Given ε > 0, that will represent the thickness of the transition, we consider

φref
ε : R→ (−1, 1), φref

ε (t) =
1

2

(
2

π
arctan

(
− t
ε

)
+ 1

)
.

Using this reference phase field function, we define

φε(x) = φref
ε (d(x)) = φref

ε (d̂(x̂)),

that yields

|∇xφε(x)|2 =

(
1

πε

)2
1(

1 +
(
d̂(F(x))

ε

)2
)2 |∇x̂d̂(F(x))|2.

In order to motivate the penalty term that will account for the colloidal inclusion,
we note a relation between bulk and surface integrals. Given f ∈ C(Ω), let

(151) Jε(f) := ε
|Sd−1|

2

∫
Ω

f(x)|∇φε(x)|2dx.

Then, in the limit ε→ 0, Jε recovers the surface integral of f ,

(152) lim
ε→0

Jε(f) =

∫
∂Ωc

f(x)dS(x).

5.2.2. Weak anchoring. Boundary conditions can either be imposed by a Dirichlet
condition (strong anchoring) or by an energetic penalization term (weak anchoring).
Indeed, in some physical situations, weak anchoring is a better reflection of the
physics [39, 119]. We take advantage of this for modeling colloids [9, 36, 116, 117].

Specifically, we incorporate penalization terms Eerk,a and Euni,a into either Eerk,one

or Euni, and corresponding terms in the discrete energies. In the Q-tensor model,
a standard approach is to add the energy term

Jν(Q) =
Kν

a

2

∫
∂Ωc

|Q−Qν |2dS(x),(153)

where Qν is the preferred state for Q on the boundary of the colloid, which is
imposed by an energetic penalization with Kν

a as the weighting term. For example,
Qν may have the form [82]

Qν = s∗
(
ν ⊗ ν − 1

d
I

)
,(154)

which is a uniaxial tensor, where ν is the unit vector normal to ∂Ωc; this is called
a uniaxial, homeotropic (normal anchoring) condition.

Another popular weak anchoring condition is called planar degenerate anchoring,
whose purpose is to enforce a uniaxial state at the boundary with the director
orthogonal to ν [48, 96, 33]. Let

Q̃ := Q +
s

d
I, Q̃⊥ := [I− ν ⊗ ν] Q̃ [I− ν ⊗ ν] ;(155)
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we point out that, with our notation, Q̃ = sΘ = U. Thus, we include the following
energy term

J⊥(Q) =
K⊥a,1

2

∫
∂Ωc

|Q̃− Q̃⊥|2dS(x) +
K⊥a,2

2

∫
∂Ωc

(
|Q̃|2 − (s∗)2

)2

dS(x),(156)

where the quartic term is necessary in the standard LdG model to fully enforce a
uniaxial state [48, eqn. (4)] when d = 3.

Remark 6. For some LC materials, in certain specialized experimental conditions,
some biaxiality can be observed near the boundary despite using a uniaxial boundary
condition [106, 48].

Let us now consider the effect of imposing the uniaxial constraint Q = s(Θ− 1
dI)

on the weak anchoring energies. Starting with normal anchoring (153), (154), we
expand |Q − Qν |2, exploiting that Q, Qν are uniaxial (cf. (9)), symmetric, and
that |Θ| = 1, |ν| = 1, and so obtain

(157) |Q−Qν |2 = 2ss∗
(
|Θ|2|ν|2 −Θν ·Θν

)
+
d− 1

d
(s− s∗)2|Θ|2.

Since ν = ∇φε/|∇φε| on ∂Ωc, we combine the identity above with (151) and (152)
to introduce the continuous weak normal anchoring energy for the uniaxially con-
strained Landau-deGennes model:

Jν [s,Θ] :=
Kν

a

2
|Sd−1|ε

∫
Ω

2ss∗
(
|Θ|2|∇φε|2 −Θ∇φε ·Θ∇φε

)
+
Kν

a

2
|Sd−1|ε

∫
Ω

|∇φε|2
d− 1

d
(s− s∗)2|Θ|2.

(158)

To better see the structure of (157), we write Θ = n⊗ n, use that |Θ|2 = |n|2,
and get

|Q−Qν |2 = 2ss∗
(
|n|2|ν|2 − (n · ν)2

)
+
d− 1

d
(s− s∗)2|n|2

= nT
[
2ss∗ (I− ν ⊗ ν) +

d− 1

d
(s− s∗)2I

]
n

= nT

[(
2ss∗ +

d− 1

d
(s− s∗)2

)
(I− ν ⊗ ν)

+
d− 1

d
(s− s∗)2 (ν ⊗ ν)

]
n =: nTHνn.

(159)

It follows immediately from this identity that the matrix Hν is uniformly positive
semi-definite. Therefore, for the Ericksen model, this motivates to consider the
weak normal anchoring energy

Jν [s,n] :=
Kν

a

2
|Sd−1|ε

∫
Ω

2ss∗
(
|n|2|∇φε|2 − (n · ∇φε)2

)
+
Kν

a

2
|Sd−1|ε

∫
Ω

|∇φε|2
d− 1

d
(s− s∗)2|n|2.

(160)
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Next, we proceed similarly for the weak planar degenerate anchoring (155), (156).
Expanding, and using that Θ2 = Θ, we get

|Q̃− Q̃⊥|2 = s2
∣∣Θ− [I− ννT ][Θ− (Θν)νT ]

∣∣2
= s2

[
2|Θν|2 − (νTΘν)2

]
= s2(Θ : ν ⊗ ν) [2− (Θ : ν ⊗ ν)] ,

(161)

and (
|Q̃|2 − (s∗)2

)2

=
(
s2|Θ|2 − (s∗)2

)2
= (s− s∗)2(s+ s∗)2,(162)

which yields a slightly complicated energy functional for imposing planar anchoring
with a desired degree of orientation, s∗. At this point, it is worthwhile to revisit
the modeling assumptions made in posing (156). The main motivation for choos-
ing (156) is to enforce planar degenerate anchoring with a uniaxiality constraint.
However, our approach enforces uniaxiality in a more explicit way, so other energy
penalization terms may be used to achieve planar anchoring.

Indeed, (Θ : ν ⊗ ν)2 � (Θ : ν ⊗ ν) when |Θ : ν ⊗ ν| is small, e.g. when planar
anchoring is achieved. Hence, it is reasonable to make the following approximation

|Q̃− Q̃⊥|2 ≈ 2s2(Θ : ν ⊗ ν).(163)

Moreover, we can replace (162) by (2s∗)2(s− s∗)2 as a simpler way to enforce the
degree of orientation on the surface. Therefore, combining with the phase-field
approach, we assume the following continuous weak planar degenerate anchoring
energy for the uniaxially constrained Landau-deGennes model:

J⊥[s,Θ] :=
K⊥a,1

2
|Sd−1|ε

∫
Ω

2s2 (∇φε ·Θ∇φε)

+
K⊥a,2

2
|Sd−1|ε

∫
Ω

|∇φε|2(2s∗)2(s− s∗)2|Θ|2.
(164)

Furthermore, writing Θ = n⊗ n, we have

J⊥[s,n] :=
K⊥a,1

2
|Sd−1|ε

∫
Ω

2s2 (n · ∇φε)2

+
K⊥a,2

2
|Sd−1|ε

∫
Ω

|∇φε|2(2s∗)2(s− s∗)2|n|2.
(165)

Then, we can define the anchoring energies for the uniaxially constrained Landau-
deGennes and the Ericksen models respectively by Euni,a[s,Θ] := Jν [s,Θ]+J⊥[s,Θ]
and Eerk,a[s,n] := Jν [s,n] + J⊥[s,n]. In case K⊥a,1 = K⊥a,2 = 0 (resp. Kν

a = 0), this
yields weak normal (resp. weak planar degenerate) anchoring; otherwise, it gives
rise to a weak oblique anchoring.

Clearly, if Θ = n⊗n in Ω, then Euni,a[s,Θ] ≡ Eerk,a[s,n]. Note that the energies
(160) and (165) are insensitive to changes in the sign of n. With this, we seek to
minimize the total energies

Eerk,one[s,n] := Eerk−m[s,n] + Eerk,bulk[s] + Eerk,a[s,n],

Euni[s,Θ] := Euni−m[s,Θ] + ELdG,bulk[s] + Euni,a[s,Θ],

under suitable boundary conditions.
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Next, we give a discrete counterpart of Eerk,a[s,n]. For convenience, we define
the following discrete bilinear forms:

an
h(nh,vh) := Kν

a

∫
Ω

Ih
{

2shs
∗ ((nh · vh)|∇φε|2 − (∇φε · nh)(∇φε · vh)

)
+ |∇φε|2

d− 1

d
(sh − s∗)2(nh · vh)

}
+K⊥a,1

∫
Ω

Ih
{

2s2
h (nh · ∇φε) (vh · ∇φε)

}
+K⊥a,2

∫
Ω

Ih
{
|∇φε|24(s∗)2(sh − s∗)2(nh · vh)

}
,

ash(sh, zh) := Kν
a

∫
Ω

Ih
{
shzh|∇φε|2

d− 1

d
|nh|2

}
+K⊥a,1

∫
Ω

Ih
{
shzh2 (nh · ∇φε)2

}
+K⊥a,2

∫
Ω

Ih
{
shzh|∇φε|24(s∗)2|nh|2

}
,

ωsh(zh) := Kν
a

∫
Ω

Ih
{

2zhs
∗ (|nh|2|∇φε|2 − (nh · ∇φε)2

)}
ζsh(zh) := Kν

a

∫
Ω

Ih
{
zhs
∗|∇φε|2

d− 1

d
|nh|2

}
+K⊥a,2

∫
Ω

Ih
{
zhs
∗|∇φε|24(s∗)2|nh|2

}
,

(166)

where Ih is the Lagrange interpolant. These expressions correspond to using the
so-called mass lumping quadrature which, for all f ∈ C0(Ω), reads

(167)

∫
Ω

Ihf =
∑
T∈Th

∫
T

Ihf =
∑
T∈Th

|T |
d+ 1

d+1∑
i=1

f(xiT ),

where {xiT }d+1
i=1 are the vertices of T . This quadrature rule is exact for piecewise

linear polynomials and has the advantage that the finite element realization of (166)
is a diagonal matrix, which induces the following monotonicity result (proved in
[87, Lem. 6]).

Lemma 15 (monotone property for lumped mass matrix). Let mh : Uh×Uh → R
be a bilinear form defined by

mh(nh,vh) :=

∫
Ω

Ih [nh ·H(x)vh] dx,

where H is a continuous d×d symmetric positive semi-definite matrix. If |nh(xi)| ≥
1 at all nodes xi in Nh, then

mh(nh,nh) ≥ mh

(
nh
|nh|

,
nh
|nh|

)
.

To apply Lemma 15 to the first bilinear form in (166) we observe that H =
Hν +H⊥1 +H⊥2 , where Hν is given in (159), and

H⊥1 = 2s2
h∇φε ⊗∇φε, H⊥2 = |∇φε|24(s∗)2(sh − s∗)2I.
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Since Hν , H⊥1 , H⊥2 are all positive semi-definite, H is symmetric positive semi-
definite, thus

(168) an
h(nh,nh) ≥ an

h

(
nh
|nh|

,
nh
|nh|

)
.

Therefore, we take the discrete weak anchoring energy to be

Eherk,a[sh,nh] := |Sd−1|εa
n
h(nh,nh)

2
,(169)

and the discrete total energy is then given by

Eherk,one[sh,nh] := Eherk−m[sh,nh] + Eherk,bulk[sh] + Eherk,a[sh,nh],

Ehuni[sh,Θh] := Ehuni−m[sh,Θh] + EhLdG,bulk[sh] + Ehuni,a[sh,Θh],

again noting that Ehuni,a[sh,Θh] ≡ Eherk,a[sh,nh].

Because an
h(nh,nh) = ash(sh, sh) + ωsh(sh) + ζsh(s∗ − 2sh), a straightforward cal-

culation yields

δshE
h
erk,a[sh,nh; zh] = |Sd−1|ε

(
ash(sh, zh) +

ωsh(zh)

2
− ζsh(zh)

)
, zh ∈ Sh(Γs, 0)

δnh
Eherk,a[sh,nh; vh] = |Sd−1|εan

h(nh,vh), vh ∈ V⊥h (nh) ∩ Uh(Γu,0),

(170)

where Sh(Γs, 0) and Uh(Γu,0) are defined in (60), and V⊥h (nh) is given by (86).
Thus, for the computation of discrete minimizers, the first variation formulas (170)
must be incorporated into the algorithm described in Section 3.3.3.

Remark 7. Since Ehuni,a[sh,Θh] ≡ Eherk,a[sh,nh] (because Θh = Ihnh⊗nh), prov-

ing Γ-convergence for the discrete energy with weak anchoring Eherk,a[sh,nh] is ex-

actly the same as in [87, Sec. 8].

5.2.3. Computational Colloid Example. We simulate a Saturn-ring defect by using
the phase field approach described in Section 5.2.2. More precisely, we consider
the double-well potential (150) with ηB = 1/16, and represent a spherical colloidal
inclusion centered at (0.5, 0.5, 0.5) with radius 0.2 by means of a phase field function
with ε = 6× 10−2. The domain is Ω = (0, 1)3, and we set homogeneous Neumann
conditions on Γo := Ω∩ ({z = 0}∪{z = 1}), and the Dirichlet boundary conditions

s = s∗, n(x, y) = (0, 0, 1), Θ = n⊗ n

on Γs = ΓΘ = ∂Ω \ Γo.
Figure 12 shows the result of the gradient flow algorithm described in Section

5.2.2 with time-step δt = 10−2 and initialized with

s = s∗, n(x, y) = (0, 0, 1), Θ = n⊗ n.

The double-well potential and boundary conditions on ∂Ω are essentially the
same as in the experiment described in Section 5.1 for the uniaxially-constrained
Landau-deGennes model; therefore, it is no surprise that the results are similar to
those illustrated in Figure 11.
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Figure 12. Simulation results for the uniaxially-constrained
Landau-deGennes model under the setting described in Section
5.2.3. The left panel displays the line field Θ on the plane
{x = 0.5}, with color scale based on the degree of orientation
s. Two defects of order −1/2 are visible on the sides of the colloid.
The right panel shows the degree of orientation on the same plane,
and the isosurface s = 0.25 is depicted in blue.

6. Electric fields

The LC models can be augmented by considering external forces acting on
them. Here we discuss the incorporation of an electric field into the Ericksen (resp.
Landau-deGennes) model. This is achieved by adding another term to the energies
Eerk,one (resp. Euni).

6.1. Modified energies. We now consider energies of the form

Eerk,one[s,n] = Eerk−m[s,n] + Eerk,bulk[s] + Eerk,ext[s,n]

Euni[s,Θ] = Euni−m[s,Θ] + ELdG,bulk[s] + Euni,ext[s,Θ],
(171)

where we represent the external field energies in either the Ericksen and Landau-
deGennes models by Eerk,ext[s,n] and Euni,ext[s,Θ], respectively. Given an electric
field E, we consider [22, 39]

Eerk,ext[s,n] := −Kext

2

(
ε̄

∫
Ω

(1− sγa)|E|2 + εa

∫
Ω

s(E · n)2

)
,(172)

Euni,ext[s,Θ] := −Kext

2

(
ε̄

∫
Ω

(1− sγa)|E|2 + εa

∫
Ω

sΘE ·E
)
.(173)

Above, the constant Kext is a weighting parameter. If we let ε‖, ε⊥ be the dielectric
permittivities in the directions parallel and orthogonal to the LC molecules, then
ε̄ = (ε‖ + (d − 1)ε⊥)/d is the average dielectric permittivity and εa = ε‖ − ε⊥ is
the dielectric anisotropy. Finally, γa = εa/(dε̄) is a dimensionless ratio; whenever
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0 ≤ ε⊥ ≤ ε‖, it must be 0 ≤ γa ≤ 1. Note that the definition of the dielectric
constants here account for the dimension d.

From (172) and (173), it is evident that, independently of s and the electric
constants, if Θ = n⊗ n then Eerk,ext[s,n] ≡ Euni,ext[s,Θ]. Thus, our treatment of
both energies follows the same pattern.

We point out that, although the second integrals in (172) and (173) are bounded,
they may be negative. Hence, some care is required in discretizing the electric
energy in order to preserve our energy decreasing minimization scheme. First,
define a discrete bilinear form analogous to (166):

(174) eh(sh,nh,vh) =

∫
Ω

Ih
[
|εa||E|2(nh · vh)− εash(E · nh)(E · vh)

]
.

To apply Lemma 15, we see that the matrix H reads

H = |εa||E|2I− εashE⊗E,

and is therefore symmetric and positive semi-definite since |sh| ≤ 1. Consequently,
whenever |nh| ≥ 1,

(175) eh(sh,nh,nh) ≥ eh
(
sh,

nh
|nh|

,
nh
|nh|

)
.

We now define the discrete counterpart of (171) to be

Eherk,one[sh,nh] := Eherk−m[sh,nh] + Eherk,bulk[sh]

+ Eherk,a[sh,nh] + Eherk,ext[sh,nh],
(176)

where the discrete electric energy is similar to (172) and is given by

Eherk,ext[sh,nh] =
Kext

2

(
−ε̄
∫

Ω

(1− shγa)|E|2 + eh(sh,nh,nh)− |εa|
∫

Ω

|E|2
)
.

(177)

Observe that (177) is an approximation of

Eherk,ext[sh,nh] =
Kext

2

(
− ε̄

∫
Ω

(1− shγa)|E|2 − εa

∫
Ω

sh(E · nh)2

+ |εa|
∫

Ω

|E|2(|nh|2 − 1)
)
,

(178)

where the “extra” term is non-positive and consistent (i.e. it vanishes as h → 0
provided the singular set S has zero Lebesgue measure). Moreover,

∫
Ω
|E|2|n|2 is

constant at the continuous level, whence the extra term does not fundamentally
change the energy. However, it is needed to ensure the projection step in the
algorithm decreases the (discrete) energy, which is guaranteed by (175).

We take first order variations of Eherk,ext in the directions zh ∈ Sh(Γs, 0) and

vh ∈ V⊥h (nh) ∩ Uh(Γu,0), to obtain

δshE
h
erk,ext[sh,nh; zh] =

Kext

2

(
ε̄

∫
Ω

zhγa|E|2 − εa

∫
Ω

Ih
[
zh(E · nh)2

])
,

δnh
Eherk,ext[sh,nh; vh] = Kext eh(sh,nh,vh).

Remark 8. Since Ehuni,ext[sh,Θh] ≡ Eherk,ext[sh,nh] (because Θh = Ihnh ⊗ nh),
proving Γ-convergence for the discrete energy with the electric field contribution
Eherk,ext[sh,nh] is exactly the same as in [87, Sec. 8].
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6.2. Computational Electric Field Example. We illustrate the effect of an
electric field on the same configuration as in Section 5.2.3. Namely, with the same
colloidal inclusion and boundary conditions as there, we incorporate the effect of a
constant electric field E = (0, 1, 0). We set the parameter Kext = 160.0, and the
material constants ε‖ = 7/3, ε⊥ = 1/3, that yield ε̄ = 1, εa = 2, γa = 2/3 in (177).

The results of our simulation, with the same gradient flow setting as in Section
5.2.3, are shown in Figures 13 and 14. The presence of a strong electric force creates
two noticeable effects. Clearly, the electric energy (173) is minimized whenever the
field Θ is aligned with E; thus, the LC molecules tend to deflect to the y-axis in
the domain. This creates a Freedericksz-type transition [22, 57, 87], in which the
director field deflects towards the y-axis to better align with the electric field and
this, in turn, gives rise to a defect region near the sides of the cube, on which Θ is
set to be vertical. Secondly, the Saturn-ring defect observed in Figure 13 is rotated.
Instead of having a rotation axis parallel to the z-axis, the ring has a rotation axis
parallel to the y-axis. Figure 14 shows alternative views of the simulation.

Figure 13. Computational results for the uniaxially-constrained
Landau-deGennes model under the presence of an electric field and
a colloidal inclusion (represented using a phase field approach).
The left panel shows the line field Θ on the slice {x = 0.5}, while
the right panel depicts the degree of orientation on the same plane
and the isosurface s = 0.4. As opposed to Figure 12, the two
−1/2-degree defects are situated on top and bottom of the colloidal
particle. The strong electric field also creates a large defect region
near the sides of the cube.

7. The Landau-deGennes Model With and Without the Uniaxial
Constraint

Our uniaxially constrained LdG model allows us to probe the fundamental mod-
eling issue raised earlier in Section 1.1. Does uniaxiality significantly affect the
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Figure 14. Another visualization of the experiment in Figure 13.
The left panel shows the degree of orientation in the {y = 0.5}
plane, while the right panel shows the {z = 0.5} plane. The Saturn-
ring is clearly aligned with the y-axis, and one can see a secondary
line defect near the walls of the domain aligned with the z-axis.

minimizing configuration? To the best of our knowledge, our method is the first to
simulate the LdG model with uniaxiality enforced as a hard constraint. Thus, we
can do a direct quantitative comparison of the “standard” LdG approach against
the uniaxially constrained case.

We revisit the Saturn-ring example in Section 5.1. In particular, we use the
boundary conditions in (149) and the double-well potential in (150) for the uniax-
ially constrained model in (105). For the standard (one-constant) LdG model in
(17), we use the following boundary conditions

Q = s∗
(
ν ⊗ ν − 1

3
I

)
on Γi,

Q = s∗
(

(0, 0, 1)⊗ (0, 0, 1)− 1

3
I

)
on Γo,

(179)

which is consistent with the boundary conditions in (149). Moreover, the double-
well potential is given by (15), (43), where

K = 1.0, A = −7.502104, B = 60.975813,

C = 66.519069, D = 552.230967,
(180)

which is consistent with the double well potential (150). The initial guess for the
standard LdG model is chosen to be the minimizer Quni of the uniaxial model. Both
models were simulated using the following set of values for ηB: {0.25, 0.16, 0.09, 0.04}.

Table 1 shows a comparison of the energy Euni[Quni] with ELdG,one[Quni]. The
relative error is small, but not zero, because the two numerical models are different,
i.e. the error is purely due to numerical discretization and a finite mesh size. This
table illustrates that the two numerical models are consistently implemented.
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Table 1. Comparison of the standard LdG model with the uniax-
ially constrained model: model difference error. The relative error
between Euni[Quni] and ELdG,one[Quni] is shown.

ηB Euni[·] (initial) Euni[Quni] (final) ELdG,one[Quni] (initial) rel. error
0.25 7.5990605 2.6644532 2.6164206 0.018358114
0.16 7.5990605 2.8031773 2.7497279 0.019438097
0.09 7.5990605 3.0018994 2.9413466 0.020586758
0.04 7.5990605 3.2711983 3.2176374 0.016646014

0.0225 7.5990605 3.5063179 3.5156034 -0.002641225

The uniaxial solution Quni, for ηB = 0.25, is depicted in Figure 11, in Section
5.1. In Figure 15, we show a direct numerical comparison of the minimizer of the
standard LdG model QLdG with Quni. On the left, we plot the biaxiality parameter
given in (146). Figure 15 shows that QLdG achieves maximum biaxiality near the
defect.

On the right of Figure 15, we plot the pointwise quantity |QLdG(x) −Quni(x)|
with a maximum value approximately 0.228 (note that QLdG and Quni are O(1)
tensors). Figure 15 clearly shows that the two solutions are quite different near the
defect.

Figure 15. Comparison of the standard LdG model with uniaxially
constrained version, using the Saturn-ring defect as example [55] (Sec-
tion 7). Left: the “standard” one-constant LdG model exhibits maxi-
mum “biaxiality” near the defect. Right: the pointwise L2 error between
the minimizer from the standard model and the minimizer with uniaxial
constraint.

Moreover, the energy of the uniaxial minimizer is significantly higher than the
LdG minimizer, as shown in Table 2. The fact that it is higher is not surprising –the
uniaxial model is more constrained– but it is significantly higher, which suggests
that the two models could behave quite differently when other physical effects (e.g.
electric/magnetic fields) are present.
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Table 2. Comparison of the standard LdG model with the uni-
axially constrained model: final energy error. The relative error
between Euni[Quni] and ELdG,one[QLdG] is shown.

ηB Euni[Quni] (final) ELdG,one[QLdG] (final) rel. error
0.25 2.6644532 2.1808923 0.22172614
0.16 2.8031773 2.2931235 0.22242754
0.09 3.0018994 2.4689709 0.21585046
0.04 3.2711983 2.7850147 0.17457129

0.0225 3.5063179 3.0643099 0.14424392

8. Conclusion

We discussed the modeling of nematic LCs and their numerical simulation. We
compared three models (namely, Oseen-Frank, Ericksen and Landau-deGennes) for
the equilibrium state of LCs. Because most thermotropic LCs do not exhibit any
biaxiality, we focus on uniaxial LCs and compare Ericksen’s model with a uniaxially-
constrained Landau-deGennes model. For these, we present robust finite element
schemes, which Γ-converge to the continuous problem as the mesh size tends to zero.
For the solution of the resulting nonlinear equations, we design gradient flow-type
algorithms that are proven to be energy-decreasing.

We presented a variety of numerical experiments, illustrating the discretizations’
ability to capture non-trivial orientable and (for the Landau-deGennes model) non-
orientable defects. Moreover, we incorporated additional energy terms to model
colloidal effects and the effect of external fields, such as electric fields. Finally, we
gave a detailed numerical study of the effect of imposing the uniaxial constraint
(exactly) in the classic Landau-deGennes model, which is a major highlight of this
work.
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[37] P. A. Cruz, M. F. Tomé, I. W. Stewart, and S. McKee. Numerical solution of the ericksen-
leslie dynamic equations for two-dimensional nematic liquid crystal flows. Journal of Com-

putational Physics, 247:109 – 136, 2013.

[38] T. Davis and E. Gartland. Finite element analysis of the landau-de gennes minimization
problem for liquid crystals. SIAM Journal on Numerical Analysis, 35(1):336–362, 1998.

[39] P. G. de Gennes and J. Prost. The Physics of Liquid Crystals, volume 83 of International

Series of Monographs on Physics. Oxford Science Publication, Oxford, UK, 2nd edition,
1995.

[40] W. H. de Jeu, editor. Liquid Crystal Elastomers: Materials and Applications. Advances in

Polymer Science. Springer, 2012.
[41] I. Dierking, O. Marshall, J. Wright, and N. Bulleid. Annihilation dynamics of umbilical

defects in nematic liquid crystals under applied electric fields. Phys. Rev. E, 71:061709, Jun

2005.
[42] A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans, and F. Sagués. Active nematics.

Nature Communications, 9:3246, 2018.
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