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THE HOCHSCHILD COHOMOLOGY RING OF MONOMIAL

ALGEBRAS

DALIA ARTENSTEIN, JANINA C. LETZ, AMREI OSWALD, AND ANDREA SOLOTAR

Abstract. We give an explicit description of a diagonal map on the Bardzell
resolution for any monomial algebra, and we use this diagonal map to describe
the cup product on Hochschild cohomology. Then, we prove that the cup prod-
uct is zero in positive degrees for triangular monomial algebras. Our proof uses
the graded-commutativity of the cup product on Hochschild cohomology and
does not rely on explicit computation of the Hochschild cohomology modules.
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1. Introduction

Given a field k and an associative k-algebra A, the Hochschild cohomology of A
with coefficients in the A-bimodule A is the graded vector space

HH∗(A) =
⊕

i>0

ExtiA⊗Aop(A,A) .

The Hochschild cohomology of an associative algebra has a rich structure, which
provides several derived invariants that are useful when studying the representations
of the given algebra. The cup product, ⌣: HH∗(A) ⊗ HH∗(A) → HH∗(A), gives
HH∗(A) the structure of a graded-commutative k-algebra, as has been proved in
several different ways. The proof of Murray Gerstenhaber [Ger63] gave rise to the
definition of the Gerstenhaber bracket. Both the cup product and the Gerstenhaber
bracket were originally defined in terms of the bar resolution, which is usually very
inefficient for explicit computations of the Hochschild cohomology. It has been
known for a long time that the Hochschild cohomology can be computed by any
resolution of A as an A-bimodule; see [CE56, Chapter IX, §6]. However, that the
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cup product and Gerstenhaber bracket can be computed using any resolution are
more recent results; see [SW99] and [NW16, Vol19] respectively. In fact, the cup
product coincides with the Yoneda product.

It is possible to avoid using the bar resolution for the computation of the cup
product and use any resolution P—perhaps minimal—whenever it is equipped with
a diagonal map ∆: P → P ⊗A P ; see for example [Wit19]. We use this strategy to
compute the cup product for triangular monomial algebras and prove the following
theorem.

Theorem A (Theorem 6.5). Consider a finite triangular monomial algebra, A.
The cup product on HH∗(A) is zero in positive degrees.

There are many classes of algebras for which the cup product is zero in positive
degrees. In [Cib98, Lemma 3.1], Claude Cibils showed this for a finite dimensional
path algebra A = kQ/I with radical square zero and a finite quiver Q that is not a
crown. In loc. cit. cycles are called crowns. As described in [GS02], there exist self-
injective algebras which have nonzero cup product in positive degrees. Moreover,
in [GS02], Edward Green and Øyvind Solberg construct many algebras that are
not self-injective for which the cup product is nonzero in positive degrees. Next,
Juan Carlos Bustamante [Bus06] proved that the cup product is zero in positive
degrees for triangular quadratic string algebras and conjectured that this holds for
any triangular monomial algebra as in Theorem A. In [RR14, Theorem 5.3], Maŕıa
Julia Redondo and Lucrecia Román verified this conjecture for triangular string
algebras.

For the description of the Hochschild cohomology, we use the Bardzell resolution
introduced in [Bar97]. This is a minimal resolution of A as an A-bimodule, hence
it is much more efficient than the bar resolution. We give an explicit description
of a diagonal map on the Bardzell resolution for any monomial algebra in The-
orem 4.3. We then use this diagonal map and the fact that the cup product is
graded-commutative to prove Theorem A in Section 5. Our proof does not rely on
an explicit computation of the Hochschild cohomology modules.
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2. Ambiguities

Let k be a field and A = kQ/I a finite dimensional monomial algebra. We
denote by B a basis of paths of A; such a basis is unique since A is monomial. In
particular, a path is zero in A if and only if it is not contained in B.

Notation 2.1. A finite quiver Q = (Q0, Q1, s, t) consists of
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(1) a finite set of vertices Q0,
(2) a finite set of arrows Q1,
(3) a source map s : Q1 → Q0, and
(4) a target map t : Q1 → Q0.

A path p is a sequence of arrows αn . . . α1 where t(αi) = s(αi+1). Graphically the
path can be depicted as

• • . . . • .
α1 α2 αn

We set s(p) := s(α1) the source of p and t(p) := t(αn) the target of p. We say the
length of the path p = αn . . . α1 is n. We identify a path of length zero with its
vertex. We write qp for the concatenation of the paths p and q if t(p) = s(q).

Let p and q be paths such that p = bqa. We say q is a divisor of p. In general
the position of q in p, that is the paths a and b, need not be unique. We write q ≤ p
to mean that q is a divisor of p and the position of q in p is fixed. In this situation
we set

prep(q) := a and sufp(q) := b

for the prefix and suffix of q in p, respectively. We drop the subscript when it is
clear from the context. If b = 1, we say q is a suffix of p, and if a = 1, we say q
is a prefix of p. If q is a divisor/suffix/prefix of p and p 6= q, we say q is a proper
divisor/suffix/prefix, and we write q � p.

Definition 2.2. Let n ≥ −1 be an integer. A path in Q is a left n-ambiguity if it
decomposes as p = u−1 . . . un such that

(1) u−1 ∈ Q0, u0 ∈ Q1, ui ∈ B, and
(2) for any 0 ≤ i ≤ n − 1 we have uiui+1 ∈ I and any proper suffix of uiui+1

does not lie in I.

In practice, we drop the trivial path u−1 and write u0 . . . un for the decomposition
of a left ambiguity.

Dually, a path p is a right n-ambiguity if it decomposes as p = vn . . . v−1 such
that the above properties hold when we replace suffix by prefix.

Left ambiguities are called right n-chains in [Skö08, Section 3]. Our use of the
term ambiguity follows [CS15, Definition 3.1] and alludes to the fact that left and
right ambiguities are equivalent; see [Bar97, Lemma 3.1] and also [Skö08, Lemma 1].
Hence we will simply say n-ambiguity instead of left or right n-ambiguity. More-
over, given an n-ambiguity p and decompositions as left and right ambiguities
p = u0 . . . un = vn . . . v0, respectively, we have

(2.3) vi ≤ un−iun−i+1 and ui ≤ vn−i+1vn−i

for any 1 ≤ i ≤ n.
We denote the set of n-ambiguities by Γn. This set is denoted by AP (n+ 1) in

[Bar97] and by APn+1 in [RR18a, RR18b].
For small n, we have the following descriptions of the sets of ambiguities Γn.

(1) The (−1)-ambiguities are precisely the trivial paths of length zero, that is
Γ−1 = Q0.

(2) The 0-ambiguities are precisely the arrows, that is Γ0 = Q1.
(3) The 1-ambiguities are the minimal generating set of paths of I.

For quadratic algebras the ambiguities have particularly nice decompositions:
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Example 2.4. Let A = kQ/I be a finite dimensional quadratic monomial algebra.
Then I is generated by paths of length 2. For any left ambiguity p = u0 . . . un each
ui is an arrow in Q and uiui+1 lies in the minimal generating set of I. In particular,
setting vi := un−i yields a decomposition of p as a right ambiguity. Moreover, for
any 0 ≤ i ≤ n− 1 the path uiui+1 is a 1-ambiguity.

The latter property needs not hold when I is generated by paths of length more
than 2. In this case, uiui+1 can have a proper prefix that lies in I.

Example 2.5. We consider the quiver

Q =

• •

• •

α

δ

β

γ with I = (γβα, αδγ) .

Then, α|δγ|βα is a left 2-ambiguity. The notation indicates that u0 = α, u1 = δγ
and u2 = βα. In this left 2-ambiguity, we have u1u2 = δγβα  γβα ∈ I.

The following Lemma utilizes that ui+1 is chosen minimally so that uiui+1 lies
in I. It will be used repeatedly in the sequel.

Lemma 2.6. Let m ≥ n be integers and let

p = u0 . . . um ≥ u′

0 . . . u
′

n = q

be decompositions as left m- and n-ambiguities, respectively. We assume ℓ ≤ m is
maximal such that uℓ . . . um ≥ q. Then

(2.7)
uℓ+i ≥ u′

i when i even

uℓ+i ≤ u′

i when i odd
for 0 ≤ i ≤ n .

In particular, this yields m ≥ l + n and

(1) if n is even, then uℓ . . . uℓ+n ≥ q and uℓ . . . uℓ+n−1 6≥ q.
(2) if n is odd, then uℓ+1 . . . uℓ+n ≤ q.

Moreover, if n is odd and q a suffix of uℓ . . . um, then q = uℓ . . . uℓ+n.
An analogous statement holds for right ambiguities.

Proof. We show (2.7) by induction on i. By assumption the claim holds for i = 0.
We assume uℓ+i ≥ u′

i. Since no proper suffix of uℓ+iuℓ+i+1 lies in I and u′
iu

′
i+1 ∈ I,

we have uℓ+i+1 ≤ u′
i+1. A similar argument yields uℓ+i+1 ≥ u′

i+1 when uℓ+i ≤ u′
i.

Now let n be odd and q a suffix of uℓ . . . um. We show that, in this case, we have
uℓ . . . uℓ+i = u′

0 . . . u
′
i when i is odd in the induction above. For i = −1 there is

nothing to show. We assume it holds for i. Then u′
i+1u

′
i+2 and uℓ+i+1uℓ+i+2 have

the same source, so one is the suffix of the other. Since both lie in I and neither has
a proper suffix in I, they are equal. Taking i = n yields the desired statement. �

Corollary 2.8. Let p be an n-ambiguity.

(1) No proper divisor of p is an n-ambiguity.
(2) The decompositions of p as a left and right ambiguity are unique. �

Let p be a left n-ambiguity with decomposition p = u0 . . . un. The suffix

(m)p := u0 . . . um

is, with this decomposition, a left m-ambiguity for every −1 ≤ m ≤ n.
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Analogously, if p is a right n-ambiguity with decomposition p = vn . . . v0 we set

p(m) := vm . . . v0 .

By (2.3), any n-ambiguity p has a decomposition

(2.9) p = (j)pbp(i)

for i + j = n − 1 and some b ∈ B with b < uj+1 and b < vi+1. In general the
remainder b in (2.9) need not be trivial, as seen in the following example.

Example 2.10. In Example 2.5, the 3-ambiguity p = γβαδγβα has the decompo-
sitions as left and right ambiguity

γ|βα|δγ|βα and γβ|αδ|γβ|α ,

respectively. Then, we have (1)p = γβα and p(1) = γδα, and the remainder is b = α.
In this example, for any n-ambiguity and i+ j = n− 1, the remainder is a path of
length 1.

3. Bardzell’s resolution

Let A = kQ/I be a monomial algebra and Γn the set of n-ambiguities. We set
E := kQ0

∼= kΓ−1 and Ae := A ⊗k Aop. In this section we describe a minimal
resolution of A over Ae due to Bardzell [Bar97] that uses n-ambiguities as a basis
in homological degree n+1. Since this resolution was first introduced, the notation
has evolved and many arguments in the original paper can be made more concrete.
In the sequel, we make use of some of these technical results. For this reason and
the convenience of the reader, we will give many of the details.

We start with a description of the (n−1)-ambiguities contained in an n-ambiguity.
This depends on the parity of n.

Notation 3.1. Let p be an n-ambiguity, i.e. p ∈ Γn. We define

Sub(p) := {q ∈ Γn−1 | q ≤ p} .

For every q ∈ Sub(p) we have p = suf(q)q pre(q). Clearly suf(q), pre(q) /∈ I. By
Corollary 2.8, we have two distinct elements

{

(n−1)p, p(n−1)
}

⊆ Sub(p) .

We will see that the description of Sub(p) depends on the parity of n. But first
we need a technical Lemma.

Lemma 3.2. Let n be an odd integer and q1 6= q2 be n-ambiguities with q1a = bq2.
If a /∈ I and b /∈ I, then there exist (n+1)-ambiguities p1 and p2 such that p1, p2 ≤

q1a = bq2 and (n)p1 = q1 and p
(n)
2 = q2.

Proof. We assume a /∈ I and b /∈ I. Let

q1 = u0 . . . un and q2 = u′

0 . . . u
′

n

be decompositions as left n-ambiguities. This setup is illustrated in Fig. 1.
Since b /∈ I and q1 6= q2, we have u1 ≥ u′

0. By Lemma 2.6, un ≥ u′
n−1, and so,

una ≥ u′
n−1u

′
n. We can choose un+1 ≤ a minimally such that un+1un ∈ I. Since

a /∈ I, we have un+1 /∈ I and p1 := u0 . . . un+1 ≤ q1a a (n+ 1)-ambiguity.
The (n + 1)-ambiguity p2 exists by the same argument for decompositions of

right ambiguities. �
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• • • . . . • • •

• • • . . . • • •

a un u1 u0

u′

n
u′

n−1 u′

0 b

Figure 1. Graphical depiction of the setup of Lemma 3.2.

Now we show [Bar97, Lemma 3.3].

Lemma 3.3. Let n be an even integer and p an n-ambiguity. Then

Sub(p) =
{

(n−1)p, p(n−1)
}

.

Proof. Let q ∈ Sub(p) with q 6= (n−1)p. We can write

(n−1)pa = bq ≤ p .

Then a ≤ pre((n−1)p) /∈ I and b ≤ suf(p(n−1)) /∈ I. So, we can apply Lemma 3.2 to
obtain an n-ambiguity p̃ with p̃ ≤ bq ≤ p. Hence, p̃ = p and q = p(n−1). �

The following Lemma recovers [RR18a, Lemma 4.7].

Lemma 3.4. Let n be an even integer and p a path in Q. We consider the ordered
set

{q ∈ Γn | q ≤ p} = {q1, . . . , qN}

where p = biqiai and ai � ai+1 for any 1 ≤ i ≤ N − 1. Then (n−1)qi = q
(n−1)
i+1 for

all 1 ≤ i ≤ N − 1.

Proof. If (n−1)qi ≤ qi+1 or q
(n−1)
i+1 ≤ qi the claim holds by Lemma 3.3. On the other

hand, if (n−1)qi 6≤ qi+1 and q
(n−1)
i+1 6≤ qi, then we have

b((n−1)qi) = (q
(n−1)
i+1 )a with a, b /∈ I .

By Lemma 3.2 there exists an n-ambiguity q ≤ b((n−1)qi). By assumption, we have
q = qi or q = qi+1. This is a contradiction. �

In Lemma 3.2, we utilized that, under certain conditions, we can extend an n-
ambiguity to an (n+1)-ambiguity. For such an extension to exist, it is crucial that
one can choose un+1 /∈ I. The following example illustrates that this is not always
possible.

Example 3.5. We consider the quiver

1 2

3

α

β

ζ

γ
with I = (βζ, ζγ, αζα, ζαζ) .

Then, we have 2- and 4-ambiguities

q = ζ|αζ|α ≤ α|ζα|ζ|αζ|γ = p,

respectively. If r ≤ ζγ such that αr ∈ I, then r = ζγ ∈ I. Hence, q cannot be
extended by a prefix to a 3-ambiguity.

We can now describe the Bardzell resolution.
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Theorem 3.6. Let k be a field and A a monomial algebra over k. The complex,

Bzl(A)n+1 :=

{

0 if n < −1

A⊗E kΓn ⊗E A if n ≥ −1

with differential

(3.7) dn+1(1⊗ p⊗ 1) :=















∑

q∈Sub(p)

suf(q)⊗ q ⊗ pre(q) if n odd

suf(p(n−1))⊗ p(n−1) ⊗ 1

− 1⊗ (n−1)p⊗ pre((n−1)p)
if n even

for p ∈ Γn, is a resolution of A over Ae with quasi-isomorphism

ε : Bzl(A) → A , b⊗ p⊗ a 7→

{

ba if p ∈ Γ−1 and t(a) = p = s(b)

0 else .

We need a few more technical results for the proof. First, we describe some
constraints on the position of a smaller ambiguity in a bigger one.

Lemma 3.8. Let n be an integer and i+j = n−1. We assume p is an n-ambiguity
with a decomposition p = bqa such that q is an i-ambiguity.

(1) If i is odd, then a = 1 if and only if (j)p ≤ b.
(2) If i is even, then a � pre((n−1)p) if and only if (j)p ≤ b.

The analogous statements for p(j) hold as well:

(1) If i is odd, then b = 1 if and only if p(j) ≤ a.
(2) If i is even, then b � suf(p(n−1)) if and only if p(j) ≤ a.

Proof. We decompose p and q as left ambiguities p = u0 . . . un and q = u′
0 . . . u

′
i,

and let ℓ be maximal such that uℓ . . . un ≥ q.
Let i be odd. The maximality of ℓ implies that u′

0 ≤ uℓ. Therefore, by
Lemma 2.6, we have uℓ+i ≤ u′

i. Hence,

a = 1 ⇐⇒ ℓ+ i = n ⇐⇒ uj+1 . . . un ≥ q ⇐⇒ (j)p ≤ b .

Let i be even. Then pre((n−1)p) = un. By Lemma 2.6 we have uℓ+i ≥ u′
i. Hence,

a � pre((n−1)p) ⇐⇒ ℓ+ i = n ⇐⇒ uj+1 . . . un ≥ q ⇐⇒ (j)p ≤ b . �

Lemma 3.9. Let m < n be integers and p an n-ambiguity. We assume pâ = bqa
with q an m-ambiguity and m even. Then, b /∈ I if and only if q ≤ (m+1)p. In
particular, q ≤ p.

An analogous statement holds for b̂p = bqa and p(m+1).

Proof. Let p = u0 . . . un and q = u′
0 . . . u

′
m be decompositions as left ambiguities.

We assume b /∈ I. Then, b < u0u1. In particular, this means u′
0 ≤ u0u1. If

u′
0 = u0, then q = (m)p ≤ (m+1)p. If u′

0 ≤ u1, then by Lemma 2.6 we have
q ≤ u1 . . . um+1 ≤

(m+1)p since m is even.
The converse is clear from the definition of (m+1)p. �

Proof of Theorem 3.6. In the definition of the differential, we use implicitly that
for n even an n-ambiguity contains exactly two (n−1)-ambiguities; see Lemma 3.3.
First, we show that (Bzl(A), d) is a complex, that is that d2 = 0.

Step 3.10. We show that, for n odd, we have d2(1⊗ p⊗ 1) = 0 when p ∈ Γn.
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Using the definition of d in (3.7), we can write

d2(1 ⊗ p⊗ 1) =
∑

q∈Sub(p)

(

suf(q) suf(q(n−2))⊗ q(n−2) ⊗ pre(q)

− suf(q)⊗ (n−2)q ⊗ pre((n−2)q) pre(q)
)

.

We order Sub(p) = {(n−1)p = q1, . . . , qN = p(n−1)} as in Lemma 3.4. Then
(n−2)qi = qi+1

(n−2). Thus we obtain

d2(1⊗ p⊗ 1)

= suf(p(n−1)) suf(p(n−2))⊗ p(n−2) ⊗ 1− 1⊗ (n−2)p⊗ pre((n−2)p) pre((n−1)p)

= 0 ,

since suf(p(n−1)) suf(p(n−2)) ∈ I and analogously for the second term.

Step 3.11. We show that, for n even, we have d2(1 ⊗ p⊗ 1) = 0 when p ∈ Γn.

We can write

d2(1⊗ p⊗ 1) =
∑

q∈Sub(p(n−1))

suf(p(n−1)) suf(q)⊗ q ⊗ pre(q)

−
∑

q∈Sub((n−1)p)

suf(q)⊗ q ⊗ pre(q) pre((n−1)p) .

For q ∈ Sub(p(n−1)) ∩ Sub((n−1)p), the terms in the first and the second summand
coincide and thus cancel. If q ∈ Sub(p(n−1)) \ Sub((n−1)p), then q 6≤ (n−1)p, and by
Lemma 3.9, we have suf(p(n−1)) suf(q) ∈ I. Analogously, the prefix of the second
summand lies in I when q ∈ Sub((n−1)p) \ Sub(p(n−1)).

Thus, we have shown that (Bzl(A), d) is a complex. It remains to show that ε is
a quasi-isomorphism. We use the argument from [Skö08, Theorem 1].

Step 3.12. The map ε has an inverse up to homotopy as a map of right A-complexes.

We consider the inclusion as right A-complexes

ι : A → Bzl(A) , a 7→ 1⊗ t(a)⊗ a

and the homotopy of right A-complexes

σ : Bzl(A) → Bzl(A) , b⊗ p⊗ 1 7→
∑

bp=eqc
q∈Γn+1

e⊗ q ⊗ c

when p ∈ Γn. By [Skö08, Theorem 1] one has

dσ + σd = id+ιε

as maps of right A-complexes.
Hence ε is a homotopy equivalence as a map of right A-complexes and thus, a

quasi-isomorphism; the latter does not depend on the linearity. �
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4. Diagonal map

The canonical resolution of A as an Ae-module is the bar resolution Bar(A); see
[Hoc45] and also [CE56, Section IX.6]. Since both, Bardzell’s resolution and the bar
resolution, are complexes of free Ae-modules, there exist homotopy equivalences

(4.1) G : Bar(A) Bzl(A) :F .

These comparison morphisms were studied in [RR18a]. It is well known that the
bar resolution is equipped with a diagonal map

∆Bar : Bar(A) → Bar(A)⊗A Bar(A) ,

see [Wit19, §2.3]. Hence, the comparison morphisms (4.1) induce a diagonal map
on Bardzell’s resolution. That is, a diagonal map ∆Bzl is defined such that the top
of the following diagram commutes.

(4.2)

Bar(A) Bar(A)⊗A Bar(A)

Bzl(A) Bzl(A)⊗A Bzl(A)

A A⊗A A

∆Bar

G⊗GF

ε
≃

∆Bzl

ε⊗ε

≃

∼=
µ

Redondo and Roman described the induced diagonal map for quadratic string al-
gebras; see [RR18b].

Alternatively, a diagonal map can be defined as a lift of the canonical isomor-
phism given by the multiplication µ : A⊗A A → A on A; see [Wit19, §2.3]. By the
Comparison Theorem [Avr98, Proposition 1.3.1], the lift is unique up to homotopy.
Hence, a lift ∆ coincides with ∆Bzl up to homotopy. In the following, we construct
a map ∆ and show this map is a lift of the isomorphism µ−1.

Theorem 4.3. The Ae-linear homogeneous map ∆: Bzl(A) → Bzl(A)⊗A Bzl(A),
given by

(4.4) ∆n+1(1⊗ p⊗ 1) :=
∑

i+j=n−1
i,j>−1

∑

p=cq2bq1a
q1∈Γi,q2∈Γj

c⊗ q2 ⊗ b⊗ q1 ⊗ a

for any p ∈ Γn, is, up to homotopy, the map induced from the diagonal map on the
bar resolution.

Note that, implicitly, we are identifying

(A⊗E kΓj ⊗E A)⊗A (A⊗E kΓi ⊗E A) ∼= A⊗E kΓj ⊗E A⊗E kΓi ⊗E A .

Before proving Theorem 4.3, we show how, depending on the parity of i and j,
the decompositions in (4.4) can be simplified.

Lemma 4.5. Let n be an integer and i+j = n−1. We assume p is an n-ambiguity
with

p = cq2bq1a for q1 ∈ Γi and q2 ∈ Γj .

If i is odd, then a = 1, and if j is odd, then c = 1. In particular, if i and j are odd,
then (2.9) is the unique decomposition of p into an i- and j-ambiguity.

Proof. This follows from Lemma 3.8. �
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Lemma 4.6. Let n ≥ i, j be integers and p an n-ambiguity with

p = cq2bq1a for q1 ∈ Γi, q2 ∈ Γj .

Then, i + j ≤ n− 1.

Proof. We take decompositions as left ambiguities p = u0 . . . un, q1 = u′
0 . . . u

′
i , and

pick ℓ maximal such that q1 ≤ uℓ . . . un. Then q2 � u0 . . . uℓ, and hence j < ℓ.
We use Lemma 2.6. If i is even, then q1 6≤ uℓ . . . uℓ+i−1 and hence ℓ+ i ≤ n. If i

is odd, then q1 ≥ uℓ+1 . . . uℓ+i and hence ℓ + i ≤ n. Combining the inequalities we
obtain j + i < j + ℓ ≤ n, and thus, i+ j ≤ n− 1. �

Proof of Theorem 4.3. As discussed at the beginning of this section, it is enough
to show that ∆ is a chain map and a lift of the isomorphism µ−1 : A → A⊗A A. It
is straightforward to see that ∆ is a lift of µ−1 since µ(ε⊗ ε)∆ = ε holds.

It remains to show that ∆ is a chain map. Since the differential on Bzl(A) ⊗A

Bzl(A) is id⊗d+ d⊗ id, we need to show that ∆d = (id⊗d+ d⊗ id)∆.
In the cases when i or j are equal to −1, there is nothing to show. So, we assume

that i, j ≥ 0 for the remainder of the proof. We break the proof into two cases, one
for n even and one for n odd.

Case 1. Let n be even and p ∈ Γn. The first summand of (id⊗d+ d⊗ id)∆ yields

(id⊗d)(∆(1 ⊗ p⊗ 1))

=
∑

k+ℓ=n−2
k odd

∑

p=cq2bq1a
q2∈Γℓ,q1∈Γk+1

c⊗ q2 ⊗ b suf(q
(k)
1 )⊗ q

(k)
1 ⊗ a(4.7a)

−
∑

k+ℓ=n−2
k odd

∑

p=cq2bq1a
q2∈Γℓ,q1∈Γk+1

c⊗ q2 ⊗ b⊗ (k)q1 ⊗ pre((k)q1)a(4.7b)

−
∑

k+ℓ=n−2
k even

∑

p=cq2bq1a
q2∈Γℓ,q1∈Γk+1

∑

r∈Sub(q1)

c⊗ q2 ⊗ b suf(r) ⊗ r ⊗ pre(r)a .(4.7c)

The Koszul sign rule when applying (id⊗d) yields (−1)ℓ+1 for each summand. The
second summand of the differential yields

(d⊗ id)(∆(1 ⊗ p⊗ 1))

=
∑

k+ℓ=n−2
k even

∑

p=cq2bq1a
q2∈Γℓ+1,q1∈Γk

∑

r∈Sub(q2)

c suf(r) ⊗ r ⊗ pre(r)b ⊗ q1 ⊗ a(4.8a)

+
∑

k+ℓ=n−2
k odd

∑

p=cq2bq1a
q2∈Γℓ+1,q1∈Γk

c suf(q
(ℓ)
2 )⊗ q

(ℓ)
2 ⊗ b⊗ q1 ⊗ a(4.8b)

−
∑

k+ℓ=n−2
k odd

∑

p=cq2bq1a
q2∈Γℓ+1,q1∈Γk

c⊗ (ℓ)q2 ⊗ pre((ℓ)q2)b ⊗ q1 ⊗ a .(4.8c)

By Lemma 4.5, we have c = 1 in (4.7a, 4.7b & 4.8a) and a = 1 in (4.7c, 4.8b &
4.8c).

Step 4.9. Combine (4.7a & 4.7b).
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We fix k + ℓ = n − 2 with k and ℓ odd. Let r be the path p = (ℓ)pr. Then, we
order the set of all (k + 1)-ambiguities contained in r,

{r̃ ∈ Γk+1 | r̃ ≤ r} = {r1, . . . , rN} ,

as in Lemma 3.4. By construction, we have r1 = p(k+1). Note that in (4.7a & 4.7b),
we have q2 = (ℓ)p, and q1 takes on precisely the values r1, . . . , rN . By Lemma 3.4,

we have that (k)ri = r
(k)
i+1 for any 1 ≤ i ≤ N−1, and therefore, the two sums cancel

except for the terms with r
(k)
1 and (k)rN .

Claim. (k)rN =
(

(n−1)p
)(k)

.

• • • •

• •
• • • •

• • • •

aN rN bN

(k)rN

pre((n−1)p) ((n−1)p)
(k) b̃

pre((n−1)p) ((n−1)p)
(k) b̃

Figure 2. Graphical depiction of the decompositions of the path
r, defined by p = (ℓ)pr in Step 4.9. The two possible configurations
are in the third and fourth line. It is shown that the only configu-

ration that occurs has (k)rN =
(

(n−1)p
)(k)

.

Since k and ℓ are odd, there is a unique decomposition of (n−1)p into a k- and a
ℓ-ambiguity. That is,

(n−1)p = (ℓ)pb̃
(

(n−1)p
)(k)

,

for some b̃; see Lemma 4.5. Note that we must have
(

(n−1)p
)(k)

≤ r. If the

claim is false, then (k)rN 6≤ (n−1)p. It is straightforward to check that we can

apply Lemma 3.2 to (k)rN and
(

(n−1)p
)(k)

. There are two configurations of these
paths in r as depicted in Fig. 2. So, there exists a (k + 1)-ambiguity r̃ ≤ r with
(k)r̃ =

(

(n−1)p
)(k)

or r̃ ≤ b̃
(

(n−1)p
)(k)

. The first is a contradiction to the fact that
rN is the maximal element in the set of (k+1)-ambiguities contained in r, and the
second a contradiction to Lemma 4.5. Hence, the claim has been shown.

Using the above, we can rewrite (4.7a & 4.7b) as

∑

k+ℓ=n−2
k odd

(

1⊗ (ℓ)p⊗ b1 ⊗ p(k) ⊗ 1− 1⊗ (ℓ)p⊗ b2 ⊗
(

(n−1)p
)(k)

⊗ pre((n−1)p)

)

,

where b1 and b2 depend on k and ℓ and are chosen appropriately.

Step 4.10. Combine (4.7a, 4.7b, 4.8b & 4.8c).
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The same argument as in Step 4.9 simplifies (4.8b & 4.8c). Combining the terms
(4.7a, 4.7b, 4.8b & 4.8c) yields

(4.11)

∑

k+ℓ=n−2
k odd

(

suf(p(n−1))⊗
(ℓ)(

p(n−1)
)

⊗ b′ ⊗ p(k) ⊗ 1

−1⊗ (ℓ)p⊗ b⊗
(

(n−1)p
)(k)

⊗ pre((n−1)p)

)

,

where b and b′ depend on k and ℓ, and are chosen appropriately.

Step 4.12. Combine (4.7c & 4.8a).

We fix k + ℓ = n− 2 with k and ℓ even. Given p = cq2bp
(k+1) with q2 ∈ Γℓ and

r ∈ Sub(p(k+1)), we have q2 ≤ (ℓ+1)p by Lemma 4.6. By Lemma 3.8 we obtain

pre(r) � pre((n−1)p) ⇐⇒ (ℓ+1)p ≤ cq2b suf(r) .

This means, any summand of (4.7c) for which pre(r) � pre((n−1)p) holds appears
as a summand of (4.8a). Thus, (4.7c & 4.8a) together give

(4.13)

∑

k+ℓ=n−2
k even

∑

p(n−1)=cq2bq1a
q2∈Γℓ,q1∈Γk

suf(p(n−1))c⊗ q2 ⊗ b⊗ q1 ⊗ a

−
∑

k+ℓ=n−2
k even

∑

(n−1)p=cq2bq1a
q2∈Γℓ,q1∈Γk

c⊗ q2 ⊗ b ⊗ q1 ⊗ a pre((n−1)p) .

Combining (4.11 & 4.13), we obtain

d(∆(1⊗ p⊗ 1))

=
∑

k+ℓ=n−2

∑

p(n−1)=cq2bq1a
q2∈Γℓ,q1∈Γk

suf(p(n−1))c⊗ q2 ⊗ b⊗ q1 ⊗ a

−
∑

k+ℓ=n−2

∑

(n−1)p=cq2bq1a
q2∈Γℓ,q1∈Γk

c⊗ q2 ⊗ b⊗ q1 ⊗ a pre((n−1)p)

= ∆(d(1 ⊗ p⊗ 1)) .

Case 2. Let n be an odd integer and p an n-ambiguity. Then, the first summand
of the differential on Bzl(A)⊗ Bzl(A) yields

(id⊗d)(∆(1 ⊗ p⊗ 1))

=−
∑

k+ℓ=n−2
k odd

∑

p=cq2bq1a
q2∈Γℓ,q1∈Γk+1

c⊗ q2 ⊗ b suf(q
(k)
1 )⊗ q

(k)
1 ⊗ a(4.14a)

+
∑

k+ℓ=n−2
k odd

∑

p=cq2bq1a
q2∈Γℓ,q1∈Γk+1

c⊗ q2 ⊗ b⊗ (k)q1 ⊗ pre((k)q1)a(4.14b)

+
∑

k+ℓ=n−2
k even

∑

p=cq2bq1a
q2∈Γℓ,q1∈Γk+1

∑

r∈Sub(q1)

c⊗ q2 ⊗ b suf(r) ⊗ r ⊗ pre(r)a .(4.14c)
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The Koszul sign rule when applying (id⊗d) yields (−1)ℓ+1 for each summand. The
second summand of the differential yields

(d⊗ id)(∆(1 ⊗ p⊗ 1))

=
∑

k+ℓ=n−2
k even

∑

p=cq2bq1a
q2∈Γℓ+1,q1∈Γk

c suf(q
(ℓ)
2 )⊗ q

(ℓ)
2 ⊗ b ⊗ q1 ⊗ a(4.15a)

−
∑

k+ℓ=n−2
k even

∑

p=cq2bq1a
q2∈Γℓ+1,q1∈Γk

c⊗ (ℓ)q2 ⊗ pre((ℓ)q2)b ⊗ q1 ⊗ a(4.15b)

+
∑

k+ℓ=n−2
k odd

∑

p=cq2bq1a
q2∈Γℓ+1,q1∈Γk

∑

r∈Sub(q2)

c suf(r) ⊗ r ⊗ pre(r)b ⊗ q1 ⊗ a .(4.15c)

By Lemma 4.5 we have a = 1 and c = 1 in (4.14c & 4.15c).

Step 4.16. Combine (4.14a & 4.14b).

We fix k + ℓ = n − 2 with k odd and ℓ even. For a decomposition p = cq2r
where q2 ∈ Γℓ such that r contains a (k + 1)-ambiguity, we order the set of all
(k + 1)-ambiguities contained in r,

{r̃ ∈ Γk+1 | r̃ ≤ r} = {r1, . . . , rN}

as in Lemma 3.4. By construction, we have r1 = p(k+1). So, we can rewrite (4.14a
& 4.14b) as

(4.17)
∑

k+ℓ=n−2
k odd

∑

p=cq2r

q2∈Γℓ,r>p(k+1)

(

c⊗ q2 ⊗ b1 ⊗
(k)rN ⊗ a1 − c⊗ q2 ⊗ b2 ⊗ p(k) ⊗ 1

)

,

where b1, a1 and b2 depend on q2.

Claim. There exists a unique q ∈ Sub(p) with q2b1(
(k)rN ) ≤ q.

Consider the decompositions as right ambiguities

p = vn . . . v0 , q2 = v′ℓ . . . v
′

0 and (k)rN = v̂k . . . v̂0 .

If v1v0 ≤ a1, then using Lemma 4.6 twice yields k + ℓ + 2 ≤ n − 1. This is a
contradiction. Hence, v1v0 < a1 and v̂0 ≤ v1. Since k is odd, we have v̂k ≥
vk+1 by Lemma 2.6. Hence, there exists v̂k+1 ≤ vk+2 such that v̂k+1 . . . v̂0 is an
(k + 1)-ambiguity. By the choice of rN we have v′0 ≤ v̂k+1 ≤ vk+2. So, applying
Lemma 2.6 inductively, we can extend v̂0 . . . v̂k+1 to a k + ℓ− 1 = n− 1-ambiguity
that satisfies the desired conditions. Since k is odd, the (n − 1)-ambiguity q is
unique by Lemma 4.5.

Claim. For any q ∈ Sub(p) with q 6= p(n−1), there exists a decomposition p = cq2r
with q2 ∈ Γℓ and r ≥ p(k+1) such that q2b(

(k)rN ) ≤ q.

Set q2 = (ℓ)q and write p = cq2r. By assumption suf(q) � suf(p(n−1)). Hence
by Lemma 3.8 we have p(k+1) ≤ r. By the previous claim there exists an (n − 1)-
ambiguity q′ satisfying the desired conditions, and by construction, q = q′.

Step 4.18. Combine (4.14a, 4.14b & 4.15c).
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Comparing (4.15c) with the second summand of (4.17), we see that the summand
suf(r)⊗r⊗pre(r)b⊗p(k)⊗1 appears in (4.17) if and only if pre(r)bp(k) ≥ p(k+1). By
Lemma 3.8, this is equivalent to suf(r) � suf(p(n−1)). Hence, the terms cancel, and
the remaining terms of (4.15c) are precisely those terms where suf(r) ≥ suf(p(n−1)).
The first summand of (4.17) yields the terms for any other q ∈ Sub(p) by the above
claims. Thus, we can write (4.14a, 4.14b & 4.15c) as

∑

q∈Sub(p)

∑

k+ℓ=n−2
k odd

∑

q=cq2bq1a
q2∈Γℓ,q1∈Γk

suf(q)c⊗ q2 ⊗ b⊗ q1 ⊗ a pre(q) .

Analogously, we can simplify (4.14c, 4.15a & 4.15b), and obtain

d(∆(1 ⊗ p⊗ 1)) = ∆(d(1 ⊗ p⊗ 1)) . �

5. The cup product of Hochschild cohomology

Since Bzl(A) is a free resolution of A over Ae, we can use it to give an explicit
description of Hochschild cohomology HH∗(A) := Ext∗Ae(A,A). Using the Hom-
tensor adjunction we obtain

HomAe(Bzln+1(A), A) = HomAe(A⊗E kΓn ⊗E A,A) ∼= HomEe(kΓn, A) =: kΓn‖B ,

and we denote the complex with modules kΓn‖B with the induced differential by
kΓ‖B. A basis of kΓn‖B is given by the maps

(p‖b)(q) =

{

b if q = p

0 else
for q ∈ Γn,

where p ∈ Γn and b ∈ B such that s(p) = s(b) and t(p) = t(b). The notation
−‖− indicates that the paths p and b are parallel, starting and ending at the same
vertex.

We give an explicit description of the differential. We need to treat the even and
odd case separately.

Case 1. Let n be an even integer and p‖b ∈ kΓn−1‖B. For an n-ambiguity q, the
differential is given by
(5.1)

∂n(p‖b)(q) = (p‖b)(dn+1(q)) =



















0 if p 6≤ q

cb− ba if cp = pa = q

cb if cp = q and p not a suffix of q

−ba if pa = q and p not a prefix of q .

Case 2. Let n be an odd integer and p‖b ∈ kΓn−1‖B. For an n-ambiguity q, the
differential is given by

(5.2) ∂n(p‖b)(q) =











0 if p 6≤ q
N
∑

i=1

cibai if cipai = q and ai 6= aj for i 6= j .

The diagonal map on Bzl(A) given in Theorem 4.3 induces a chain map

⌣ : HomAe(Bzl(A), A) ×HomAe(Bzl(A), A) → HomAe(Bzl(A), A) ,
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which induces the cup product on Hochschild cohomology; see the discussion before
Theorem 4.3. The cup product is given by the formula

(5.3) (p2‖b2 ⌣ p1‖b1)(q) =
∑

q=ep2cp1a

eb2cb1a

for any (i + j − 1)-ambiguity q where p1‖b1 ∈ kΓi and p2‖b2 ∈ kΓj .
By the discussion at the beginning of Section 4, preceding Theorem 4.3, this cup

product coincides with the classical cup product coming from the bar resolution up
to homotopy. Hence, we can use (5.1 & 5.2) to compute Hochschild cohomology
and (5.3) to describe the algebra structure on the Hochschild cohomology. We
utilize the formulas to describe the Hochschild cohomology algebra in the following
examples.

Example 5.4. Let A = kQ/I be a finite dimensional quadratic monomial algebra.
Then, any n-ambiguity is of length (n+1), and in the formula for the diagonal map
(4.4), there is at most one summand for every i+ j = n− 1 given by p = q2q1. On
kΓ‖B this yields the formula

p2‖b2 ⌣ p1‖b1 =

{

p2p1‖b2b1 if p2p1 ∈ Γi+j−1 and b2b1 ∈ B

0 else

for any p1‖b1 ∈ kΓi and p2‖b2 ∈ kΓj . This is the same cup product that Redondo
and Roman obtain using the comparison maps; see [RR18b, 4.2].

Example 5.5. We consider the same quiver with relations as in Example 3.5:

1 2

3

α

β

ζ

γ
with I = (βζ, ζγ, αζα, ζαζ) .

The monomial algebra A = kQ/I is a string algebra, but not gentle. By direct
calculation one obtains

HH0(A) = 〈1‖1 + 2‖2 + 3‖3, 1‖ζα, 2‖αζ〉

HH4m+1(A) = 〈(αζ)3mα‖α, (ζα)3mζ‖ζ, (αζ)3mα‖γβ, 〉

HH4m+2(A) = 〈(αζ)3m+1α‖α+ (ζα)3m+1ζ‖ζ, (αζ)3m+1α‖γβ〉

HH4m+3(A) = 〈β(ζα)3mζγ‖3, (ζα)3m+2‖ζα〉

HH4m+4(A) = 〈β(ζα)3m+1ζγ‖3, (αζ)3m+3‖αζ, (ζα)3m+3‖ζα〉

for m ≥ 0. The element 1‖1 + 2‖2 + 3‖3 is the unit of HH∗(A). We describe,
up to commutativity, all nonzero multiplications in positive degrees. We set w :=
((αζ)3m+1α‖α+ (ζα)3m+1ζ‖ζ) ∈ HH4m+2(A). Then we obtain

(αζ)3ℓα‖α ⌣ w = (αζ)3(ℓ+m)+2‖αζ

(ζα)3ℓζ‖ζ ⌣ w = (ζα)3(ℓ+m)+2‖ζα

((αζ)3ℓ+1α‖α+ (ζα)3ℓ+1ζ‖ζ) ⌣ w = (αζ)3(ℓ+m+1)‖αζ + (ζα)3(ℓ+m+1)‖ζα .

In particular, we see that the algebra HH∗(A) is not finitely generated as a k-
algebra. However, the algebra HH∗(A)/N , where N is the ideal of nilpotent ele-
ments, is finitely generated; cf. [GSS06].
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Example 5.6. Let m,n be positive integers such that char(k) does not divide m.
We consider the quiver

• •

• •

• •

x1

x2xn

x3xn−1

with I = ({xi · · ·xi+m−1 | 1 ≤ i ≤ n}) .

The Hochschild cohomology of the associated monomial algebra A was described
in [Loc99], and its algebra structure in [BLM00]. The latter defined a product on
kΓd‖B and showed that, on cohomology, it coincides with the cup product. In the
following, we will see, that our product on kΓd‖B, as described in (5.3), does not
coincide with the product used in [BLM00]. However, on cohomology, the products
are the same.

The (2ℓ − 1)-ambiguities of A are precisely the paths of length ℓm, and the 2ℓ-
ambiguities the paths of length ℓm+ 1. For convenience, we will denote by |p| the
length of the path p.

Let p‖b ∈ Γi−1‖B and p′‖b′ ∈ Γj−1‖B. Then

p‖b ⌣ p′‖b′ = pp′‖bb′ if i or j even .

If i and j are odd, then |p|+ |p′| = m i+j
2 −m+ 2 and every (i + j − 1)-ambiguity

is of length m i+j
2 . Hence,

p‖b ⌣ p′‖b′ = 0 if i and j odd and |b| > 0 or |b′| > 0 .

In the remaining case, when |b| = |b′| = 0, the cup product can have multiple terms.
In comparison, the product on kΓd‖B given in [BLM00] is

p‖b ⌣ p′‖b′ =

{

pp′‖bb′ if pp′ ∈ Γi+j−1

0 else .

That is, the cases where the products need not coincide are for i and j odd and
|b| = |b′| = 0.

By [Loc99, Lemma 6, Proposition 8],

ker(∂2ℓ+1) =

c−1
⊕

j=1

kΓ2ℓ−1‖Qj

where Qj the set of all paths of length j in Q. In particular, elements p‖b ∈ Γi−1‖B
for i odd and |b| = 0 do not appear as nonzero summands in a cocycle. Hence, our
product ⌣ and the product ⌣ of [BLM00] coincide on the cocycles and therefore
on cohomology.

6. Hochschild Cohomology of Triangular Monomial Algebras

A quiver algebra with relations is triangular if the underlying quiver has no
oriented cycles. For a triangular monomial algebra A, the differentials (5.1 & 5.2)
on the complex kΓ‖B can be simplified. When n is odd, the case cp = pa = q
cannot occur. When n is even, the decomposition cpa = q is unique, and hence,
there is exactly one summand whenever p ≤ q. These simplifications give us some
control over a generating set of the cocycles given by the irreducible cocycles.
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Definition 6.1. We fix a cocycle

(6.2) x =
k
∑

i=1

αi(pi‖bi) ∈ kΓn‖B

of degree n + 1 with αi 6= 0 for 1 ≤ i ≤ k and pi‖bi pairwise distinct. We say x
is irreducible if for each sequence 1 ≤ i1 < . . . < iℓ ≤ k with ℓ < k and non-zero
elements βj ∈ k for 1 ≤ j ≤ ℓ one has

∂





ℓ
∑

j=1

βj(pij‖bij )



 6= 0 .

The irreducible elements form a generating set of the cocycles in kΓn‖B.

Lemma 6.3. Given a triangular monomial algebra A = kQ/I with basis B and

an irreducible cocycle x =
∑k

i=1 αi(pi‖bi) ∈ kΓn‖B with αi ∈ k for n ≥ 0, there

exist nontrivial paths p̃ and b̃ with pi = cip̃ai and bi = cib̃ai for ai, ci ∈ B for all
1 ≤ i ≤ k.

Before we prove the Lemma, we make an observation for general monomial al-
gebras on overlapping elements of Γn‖B for n ≥ 0. Let ∂(p‖b)(q) = ∂(p′‖b′)(q) 6= 0
for p‖b, p′‖b′ ∈ Γn‖B and an (n+ 1)-ambiguity q. We choose q = cpa = c′p′a′ such
that cba = c′b′a′. Without loss of generality, we may assume a ≤ a′. Then, there
exist nontrivial paths p̃ ≤ p, p′ and b̃ ≤ b, b′ such that

p = c̃p̃ , p′ = p̃ã , b = c̃b̃ and b′ = b̃ã

for some ã ≤ a′ and c̃ ≤ c. This is depicted in Fig. 3. Loosely speaking, this means
that b differs from p at most along the ‘intersection’ of p and p′.

q
a p c

a′ p′ c′

b

b′

Figure 3. Graphical representation of the arrangement of the
paths when ∂(p‖b)(q) = ∂(p′‖b′)(q) 6= 0 as described in (5.2). All
the parallel arrows lie on the same path, same for the bend arrows.

Proof of Lemma 6.3. For n = 0 it is enough to show that any irreducible cocycle
has at most one non-zero summand. Suppose ∂(p‖b)(q) = ∂(p′‖b′)(q) 6= 0 with
p 6= p′. Since A is triangular, b = p, b′ = p′ and ∂(p‖p)(q) = ∂(p′‖p′)(q) = q = 0
as Q ∈ Γ1 is a relation in A. This is a contradiction. Hence any irreducible cocycle
has at most one non-zero summand and the claim is satisfied.

Suppose n ≥ 1 and k > 1. Given a sequence i0, . . . , iℓ of positive integers ≤ k
and n-ambiguities q1, . . . , qℓ such that:

∂(pij‖bij)(qj) = cjbijaj = c′j+1bij+1a
′

j+1 = ∂(pij+1‖bij+1)(qj) 6= 0
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for all 1 ≤ j ≤ ℓ, we will prove by induction on ℓ that there exist nontrivial paths
p̃ and b̃ with pij = ãj p̃c̃j and bij = ãj b̃c̃j with ãj , c̃j ∈ B for all 1 ≤ j ≤ ℓ.

For ℓ = 1 this holds by the previous discussion. Suppose the claim holds for ℓ,
and we want to prove it for ℓ+ 1. Then

∂(piℓ‖biℓ)(qℓ) = cℓc̃ℓb̃ãℓaℓ = c′ℓ+1biℓ+1
a′ℓ+1 6= 0

and q = cℓc̃ℓp̃ãℓaℓ = c′ℓ+1piℓ+1
a′ℓ+1. Hence, there exists a path p̃′ such that

p̃ = c̃p̃′ã and piℓ+1
= c̃′ℓ+1p̃

′ã′ℓ+1 with ã, c̃, c̃′ℓ+1, ã
′

ℓ+1 ∈ B. The latter holds since
cℓc̃ℓ, ãℓaℓ, c

′

ℓ+1, a
′

ℓ+1 ∈ B. One can think of p̃′ as the intersection of p̃ and piℓ+1
. We

let b̃′ be the path parallel to p̃′ inside b̃. Since A is triangular, the path b̃′ is unique.
It remains to set ã′j := ãj ã and c̃′j := c̃j c̃ for 1 ≤ j ≤ ℓ. These elements together

with p̃′ and b̃′ satisfy the desired conditions.
Since x is irreducible, there exists a sequence from p1‖b1 to pk‖bk passing through

every pi‖bi with i = 2, · · · , k − 1 satisfying the conditions above. This finishes the
proof. �

Lemma 6.4. Let A = kQ/I be a triangular monomial algebra and x ∈ kΓm−1‖B,
y ∈ kΓn−1‖B irreducible cocycles with n,m > 0. If x ⌣ y 6= 0, then y ⌣ x = 0.

Proof. We take p̃ and p̃′ for x and y as in Lemma 6.3. Since x ⌣ y 6= 0, there
exists q ∈ Γn+m−1 such that q = ep̃cp̃′a. Let us suppose that y ⌣ x 6= 0. Then,
there exists q′ ∈ Γn+m−1 such that q′ = e′p̃′c′p̃a. Hence, p̃cp̃′c′ is an oriented cycle
in Q. This is a contradiction since A is a triangular monomial algebra. �

Theorem 6.5. Consider a triangular monomial algebra, A = kQ/I, with a basis
of paths B. Then, the cup product on HH∗(A) is zero in positive degrees.

Proof. It is enough to show that the equivalence class of a cup product of irreducible
cocycles is zero. Let x ∈ kΓn−1‖B and y ∈ kΓm−1‖B be irreducible cocycles. By
Lemma 6.4, we have x ⌣ y = 0 or y ⌣ x = 0. Since ⌣ is graded-commutative on
HHn+m(A), we conclude that x ⌣ y is zero in HHm+n(A). �

Finally, we give an example to demonstrate that there are nontrivial examples
of Lemma 6.4. That is, there exist irreducible cocycles x and y with x ⌣ y 6= 0
although x ⌣ y = 0.

Example 6.6. We consider the quiver

Q = • • • • • •α1 α2

β

α3 α4

γ

α5

with I = (α5α4, α4α3, α3α2, α2α1). It is straightforward to check that

x := α4α3‖γα3 + α5α4‖α5γ and y := α2α1‖βα1 + α3α2‖α3β

are irreducible cocycles. Then

y ⌣ x = α4α3α2α1‖γα3βα1 + α5α4α3α2‖α5γα3β = ∂(α4α3α2‖γα3β) 6= 0 .
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[RR14] Maŕıa Julia Redondo and Lucrecia Román, Hochschild cohomology of triangular string

algebras and its ring structure, J. Pure Appl. Algebra 218 (2014), no. 5, 925–936.
MR 3149643

[RR18a] , Comparison morphisms between two projective resolutions of monomial alge-

bras, Rev. Un. Mat. Argentina 59 (2018), no. 1, 1–31. MR 3825761
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