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LOCAL PRODUCT STRUCTURE FOR EXPANSIVE HOMEOMORPHISMS

ALFONSO ARTIGUE, JOAQUIN BRUM, AND RAFAEL POTRIE

Abstract. Let f : M → M be an expansive homeomorphism with dense topologically hyper-

bolic periodic points, M a closed manifold. We prove that there is a local product structure in

an open and dense subset of M . Moreover, if some topologically hyperbolic periodic point has

codimension one, then this local product structure is uniform. In particular, we conclude that the

homeomorphism is conjugated to a linear Anosov diffeomorphism of a torus.

1. Introduction

Let M be a compact connected boundaryless manifold of dimension n and f : M → M an

expansive homeomorphism, that is, there exists α > 0 such that every two points have iterates

which are separated at least α from each other (the existence of α is independent of the metric,

furthermore, the notion can be defined independently of the metric).

A paradigm of expansive homeomorphisms are Anosov diffeomorphisms. Other class of ex-

pansive homeomorphisms are pseudoAnosov maps in surfaces of genus g > 2. They satisfy that

Ω(f) = M and they have dense topologically hyperbolic periodic points. In surfaces, pseu-

doAnosov maps and linear Anosov homeomorphisms (that is, conjugated to a linear Anosov

diffeomorphism) describe completely expansive dynamics as was proved in [L2],[H2] obtaining

a global classification of expansive homeomorphisms. For this classification, the key step is to

prove that in a reduced neighborhood of every point there is a local product structure. To do

this, in [L2] it is proved that every point in an expansive homeomorphism has a uniformly big

connected stable and unstable set. On surfaces, in some way this is enough to find the local

product structure since proving that the connected sets intersect is enough (using Invariance of

Domain Theorem, see [Sp]) to find local product structure (these connected sets contain arcs and

so a map from [0, 1]2 to a neighborhood of the point can be constructed). In higher dimensions,

the existence of connected stable and unstable sets is not enough to find a local product structure,

as shown in the example from [FR].

A surprising result is the one of [V2], since it proves that in dimension 3 expansive homeomor-

phisms whose topologically hyperbolic periodic points are dense, are conjugated to linear Anosov

diffeomorphisms in the torus T3. For doing this it is also very important to find a local product

structure in an open and dense subset of the manifold (see [V1]). Again, the technique is to obtain

intersections between stable and unstable sets of topologically hyperbolic periodic points which

are near and use Invariance of Domain Theorem. This is not completely direct since, a priori,

the size of the stable and unstable sets of the periodic points is not controlled, and must study

separation properties of these sets to ensure the intersection. The hypothesis of having dense

topologically hyperbolic periodic points was weakened in [V4] changing it for having Ω(f) = M
1
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(a necessary condition as can be seen with the example in [FR]) and some smooth hypothesis (f

must be a C1+θ diffeomorphism) to use Pesin theory.

In this work we obtain local product structure in an open dense subset of M when topologically

hyperbolic periodic points are dense in M ; in fact, we obtain local product structure in neighbor-

hoods of every periodic point. When the codimension of topologically hyperbolic periodic points

is arbitrary, this result is optimal, since in the case of a product of two pseudoAnosov maps the

local product structure can not be defined in all the manifold.

The somewhat strange aspect of the result from [V2] is that it proves that in dimension 3 no

singularities can appear, not as in the surface case where pseudoAnosov maps are expansive with

dense topologically hyperbolic periodic points. However, this result has a nice counterpart in the

theory of Anosov diffeomorphisms where it is known that codimension one Anosov diffeomorphisms

can only exist in torus and be conjugated to a linear one (see [F1],[N]).

Maybe this connection is not a priori obvious, but we give in this work more evidence of it,

proving that if the topologically hyperbolic periodic points are dense in M (with dimension higher

than 2) and one of them has codimension one, then, the homeomorphism is conjugated to a linear

Anosov diffeomorphism of Tn. The reason why this does not work in dimension 2 is that we can

disconnect an arc by removing from it one point and not a disc of dimension > 1. The proof in

this case is based on proving first that singularities are finite, and then discarding their existence.

1.1. Definitions and presentation of results. In this section we define the concepts that we

use in the course of this paper and give precise statements of the results in it.

Definition 1.1. We say an homeomorphism f : M → M is expansive if α > 0 exists satisfying

that if x, y ∈ M are different points, then, there exists n ∈ Z such that dist(fn(x), fn(y)) > α.

Definition 1.2. We say that a periodic point p ∈ M of period l is topologically hyperbolic

(p ∈ PerH) if f l is locally conjugated to the linear map L : Rr × Rn−r → Rr × Rn−r given by

L(x, y) = (x/2, 2y). In this case we say that p ∈ PerrH ⊂ PerH , we say that r is the index of p.

In our case f is expansive, so, due to results in [L1] (Lemma 2.7) it is true that Per0H = PernH = ∅

since no stable points exist.

We denote as Hk(A) (Hk
c (A)) the k dimensional reduced homology (cohomology with com-

pact support) of A with coefficients in R. As usual, we define the stable and unstable sets of

a point x ∈ M as W s(x) = {y ∈ M : dist(fn(x), fn(y)) → 0, n → +∞} and W u(x) = {y ∈

M : dist(fn(x), fn(y)) → 0, n → −∞}. The local stable and unstable sets (ε-local) are de-

fined as follows W s
ε (x) = {y ∈ M : dist(fn(x), fn(y)) ≤ ε, ∀n ≥ 0} and W u

ε (x) = {y ∈ M :

dist(fn(x), fn(y)) ≤ ε, ∀n ≤ 0}. We denote as ccp(X) the connected component of X ⊂ M

containing p.

We prove a separation property verified by the stable and unstable set of a point p ∈ PerrH .

The proof of this Proposition follows the ideas in [V1],[V2] and it is developed in section 2. The

property is the following.
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Proposition 1.1. Let f : M → M be an expansive homeomorphism. Then, there exists ε > 0

such that for all x ∈ M , p ∈ PerkH ∩ Bε(x) and V ⊂ Bε(x) homeomorphic to Rn and containing

p, we have Hn−k−1(V \ Sp) ∼= R with Sp = ccp(V ∩W s(p)).

An analogous result is verified for the unstable set.

Remark 1.1. If f : M → M is an expansive homeomorphism and z ∈ M then, for all ε > 0 exists

δ > 0 such that if Sz = ccz(W
s(z) ∩Bδ(z)) then Sz ⊂ W s

ε (z). See [L2].

Definition 1.3. We say that p ∈ M admits a local product structure if there exists a map

h : Rk × Rn−k → M which is a homeomorphism over its image (p ∈ Im(h)) and if there exists

ε > 0 such that for all (x, y) ∈ Rk ×Rn−k it is verified that h({x}×Rn−k) = W s
ε (h(x, y))∩ Im(h)

and h(Rk × {y}) = W u
ε (h(x, y)) ∩ Im(h). We say that the local product structure is a uniform

local product structure if in addition to the previous conditions, there exists r > 0 such that for

all x ∈ M the points in Br(x) admit a local product structure.

We remark that the points admitting a local product structure are an open set. We call the

points which do not admit a local product structure singularities.

Theorem 1.1. Let f : M → M be an expansive homeomorphism such that PerH = M . Then,

every point in PerH admits a local product structure. In particular, the set of points with a local

product structure is open and dense in M .

Once this is obtained, in [V2] singularities are studied, discarding their existence by studying

the way in which the product structure is glued together in the singularity and proving that this

can not happen by discarding the possible dimensions in which that gluing may happen one by

one . As was already explained, with the product between the Anosov and the pseudo-Ansov we

see that this can not be done in dimension larger than 3, unless we add the hypothesis of having

Pern−1
H = PerH . This will be studied in section 4.3.

It is worth observing that the fact of having a local product structure in an open and dense

subset does not imply, a priori, that the index of the topologically hyperbolic periodic points should

be constant in all the manifold. We shall prove this is true, under the hypothesis of Theorem 1.1,

for dimensions 3 and 4. For doing that, in section 4.1 several properties of the points in Pern−1
H

are studied. The following sharper result is obtained.

Theorem 1.2. Let f : M → M be an expansive homeomorphism verifying PerH = M . Then,

Pern−1
H = PerH or Pern−1

H = ∅. Analogously for Per1H .

Corollary 1.1. Let f : M → M be an expansive homeomorphism of a manifold of dimension 3

or 4 with PerH(f) = M . Then, every topologically hyperbolic point has the same index.

Proof. In dimension 3 we have PerH = Per1H∪Per2H (see [L1], Lemma 2.7, no stable points can

exist); the Theorem 1.2 concludes the proof. In dimension 4, we have PerH = Per1H∪Per2H∪Per3H
and since Per1H ∪ Per3H = ∅ implies PerH = Per2H the proof finishes by using the Theorem 1.2.

�
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Finally, in section 4.3 we study the singularities in the case of having one topologically hyperbolic

point of index n− 1 (or 1), discarding their existence and concluding that there is a uniform local

product structure in all the manifold.

Definition 1.4. Let f : M → M be a homeomorphism, we say it verifies the pseudo orbit tracing

property if for all K > 0 exists α > 0 such that if {xn}n∈Z verifies dist(xn, f(xn−1)) < α (i.e. it

is an α−pseudo-orbit) then there exists x ∈ M such that dist(fn(x), xn) < K for all n ∈ Z (i.e. x

K−shadows the pseudo orbit).

Theorem 1.3. Let f : M → M be an expansive homeomorphism verifying PerH = M and

Pern−1
H 6= ∅ or Per1H 6= ∅ . Then, there is a uniform local product structure in all the manifold.

In particular, the pseudo orbit tracing property is verified.

In dimension 3, in [V3] the uniform local product structure is used for proving that M = T3 and

concluding that f must be conjugated to a linear Anosov diffeomorphism. In higher dimensions,

as far as we know, there are no published results which ensure that a manifold with uniform local

product structure of codimension one is a torus. However, our results give a codimension one

foliation transversal to a dimension one foliation. It is known from the work of Franks that if the

foliations are differentiable this implies that the manifold is a torus. This is also the case without

the differentiability assumption. The proof is a straightforward adaptation of the work in [V3]

and [F1]. However, we shall sketch how to adapt the proof for the sake of completeness. We then

have the following Corollary, which is the main result of this paper.

Corollary 1.2. Let f : Mn → Mn (n ≥ 3) be an expansive homeomorphism verifying PerH = M .

Suppose Pern−1
H 6= ∅ or Per1H 6= ∅. Then, M = Tn and f is conjugated to a linear Anosov

diffeomorphism.

Proof. It is consequence of the Theorem 1.3 and a result of Hiraide ([H1]) which ensures that

an expansive homeomorphism in Tn with the pseudo orbit tracing property is conjugated to a

linear Anosov diffeomorphism. The proof that M = Tn is sketched at the Appendix of this work.

�
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2. Separation properties

In this section, with the help of the ideas in [V1], we prove the Proposition 1.1.

The following Lemma is a general homological property of euclidean spaces.

Lemma 2.1. Let B be a set homeomorphic to Rn and F ⊂ B a closed connected set homeomorphic

to an open set of Rk. Then, Hn−k−1(B \ F ) ∼= R.
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Proof. Let U = B \ F . We then have the following long exact sequence of homology:

. . . → Hl(B) → Hl(B,U) → Hl−1(U) → Hl−1(B) → . . .

We know Hl(B) = 0 (recall we work with reduced homology), so, we have Hl(B,U) ∼= Hl−1(U).

In particular, it is true thatHn−k(B,U) ∼= Hn−k−1(U). Using the duality Theorem of Alexander-

Pontryagin we also deduce that Hn−k(B,U) ∼= Hk
c (F ) (see [D],[Sp]). Applying the same Theorem,

now to (F, ∅), we can conclude that H0(F, ∅) ∼= Hk
c (F ). Therefore, we can deduce (using that

H0(F, ∅) ∼= R since F is connected) that Hn−k−1(U) ∼= R as we desired.

�

Lemma 2.2. Let f : M → M be an expansive homeomorphism. Then, there exists ε > 0 such

that for all p ∈ PerrH exists φ : Dr → W s(p) a surjective homeomorphism over its image satisfying

that: φ(0) = p and that for all continuous curve y : [0, 1] → Dr such that y(0) = 0 and y(1) ∈ ∂Dr

there exists s ∈ (0, 1] such that φ ◦ y(s) /∈ Bε(p).

Proof. Expansivity ensures the existence of ε > 0 such that for every connected set C with

diameter smaller than ε satisfying that the diameter of fn(C) is bigger than the constant α of

expansivity for some n ≤ 0, then, the diameter of fm(C) is bigger than ε for all m < n.

If this affirmation were false there would exist connected sets Cn with diameter smaller than

1/n and numbers kn > 0 and ln > kn verifying that the diameter of f−kn(Cn) is bigger than the

expansivity constant and the diameter of f−ln(Cn) smaller than 1/n. Using the uniform continuity

of f we obtain that kn → +∞ and ln − kn → +∞. Connectedness of Cn and its iterates allows

us to find points xn and yn in f−mn(Cn) (with 0 ≤ mn ≤ ln and ln − mn → ∞) such that

α/2 ≤ d(xn, yn) < α and d(f i(xn), f
i(yn)) < α for all −ln + mn ≤ i ≤ mn. Considering limit

points of the sequences xn and yn we contradict the expansivity of f .

Without loss of generality we can suppose that p is a fixed point and we can consider the

conjugation h : Dr → W s(p) between f and the linear hyperbolic map. Also, we know that there

exists N < 0 such that for all x ∈ h(∂Dr) ⊂ W s(p) exists n ∈ [N, 0] satisfying fn(x) /∈ B(p, α)

(if not, we can find points in h(∂Dr) which stay in B(p, α) for an arbitrarily large quantity of

iterates of f , taking limit points of that sequences we contradict expansivity). We then define

φ : Dr → W s(p) by φ(x) = fN ◦ h(x). Then, for every y connecting p with φ(∂Dr) we have that

y([0, 1]) is a connected set of diameter bigger than ε. For this ε the lemma works.

�

Proof of Proposition 1.1. After what we have already proved, to conclude the proof, it

is enough to prove that if we have a homeomorphism over its image φ : Dk → Rn such that

φ(0) = 0 and such that for every curve y : [0, 1] → Dk verifying y(0) = 0 and y(1) ∈ ∂Dk satisfies

that φ ◦ y([0, 1]) is not contained in Bε(0), so, considering X , the connected component of 0 in

φ−1(Bε(0)) we have Hn−k−1(Bε(0) \ φ(X)) = R.

In order to do this, let F = φ(X) and B = Bε(0). Since B is open, we have that φ−1(B) is an

open set of Dk. Since Dk is locally arcconnected, X , being a connected component of an open set

is open in Dk and locally arcconnected. This implies that it is arcconnected.
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We have that X ∩ ∂Dk = ∅ since in the other case a curve joining 0 with ∂Dk whose image by

φ would be included in B would exist. Then, F is homeomorphic to an open set of Rk. Since X is

a connected component, X is closed in φ−1(B) so F is closed in B. Lemma 2.1 implies the thesis.

�

3. Local product structure

The construction of a local product structure is strongly based on proving that stable and

unstable sets of the periodic points intersect. This allows us to define a map between W s
ε (p) ×

W u
ε (p) and a neighborhood of p which is a homeomorphism by the invariance of domain theorem

and has the desired properties. In this section we prove that this intersection occurs for periodic

points close to a given one.

Let ∆m = {(x1, . . . xm+1) ∈ Rm+1 : xi ≥ 0 , x1 + . . . xm+1 = 1} the canonical simplex of

dimension m. We denote γ =
∑

i aiσi to a m−chain, where σi : ∆
m → V (ai ∈ R). In the course

of this section, γ denotes the chain and the union of the images of σi indifferently.

Lemma 3.1. For all x ∈ M , there exists ε > 0 such that if V ⊂ Bε(x) is homeomorphic to Rn

and p ∈ V ∩PerlH then there exists a cycle γ ⊂ Up which is non trivial in the n− l−1 dimensional

homology of V \ Sp (where Sp = ccp(V ∩W s(p)) and Up = ccp(V ∩W u(p))). Furthermore, given

K compact in V we can choose γ so that γ ⊂ V \K.

Proof. Because of Proposition 1.1 we know that ε0 > 0 exists verifying that Hn−l−1(V \Sp) 6= 0.

Let γ be a cycle such that its n − l − 1 dimensional homology class [γ] is non trivial. Since

Hn−l−1(V ) = 0 we can suppose γ = ∂η where η is a n− l dimensional chain in V.

Say η =
∑j

i=1 aiσi with σi : ∆
n−l → V (ai ∈ R).

Besides, we can suppose that σi and ∂σi are topologically transversal to Sp so that the set of

points of intersection between every σi and Sp is finite and such that ∂σi ∩ Sp = ∅. Given ε1 > 0,

using barycentric subdivision (see [Sp]), we can also suppose diam(σi) < ε1. We observe that if

σi ∩Sp = ∅ then ∂σi is trivial in Hn−l−1(V \ Sp). So, by choosing ε1 small enough we can suppose

that each σi intersects Sp in yi only for i = 1, ..., j.

Let h : U ⊂ Rn → M the local conjugation with the hyperbolic map, in a neighborhood of

p. Intersecting with V we have that h(U) ⊂ V and by iteration of f we can suposse that is a

neighborhood of Sp.

We can think U ⊂ V ⊂ Rn (with the identification given by h) , Sp ⊂ Rl × {p2} and Up ⊂

{p1} × Rn−l where p = (p1, p2).

We can choose ε1 smaller so that Bε1(yi) ⊂ U

Since yi ∈ σi and diam(σi) < ε1 we have σi ⊂ Bε1(yi). Let h
i
t : R

l×Rn−l → Rl×Rn−l continuous

given by hi
t(a+ y1i , b) = (ta+ y1i , b) with t ∈ [0, 1] where yi = (y1i , y

2
i ).

Then, for t ∈ [0, 1], hi
t ◦ ∂σi does not intersect Sp and is contained in V . Also, we have

hi
1 ◦ ∂σi = ∂σi and hi

0 ◦ ∂σi ⊂ {y1i } × Rn−l. Since h0 ◦ ∂σi is homotopic to ∂σi we have they are

both homologous in V \ Sp.

For every i = 1, ..., j let βi : [0, 1] → Sp be a continuous curve such that β(0) = yi and β(1) = p.

If we choose a smaller ε1 again, we have Bε1(βi) ⊂ U for all i = 1, ..., j.



LOCAL PRODUCT STRUCTURE FOR EXPANSIVE HOMEOMORPHISMS 7

Now, we consider git : R
n → Rn, another homotopy, given by git(z) = z+βi(t)−yi. It verifies that

git(h0◦∂σi) does not intersect Sp for all t ∈ [0, 1], gi0 = idRn and gi1(yi) = p so
∑j

i=1 aig
i
1◦h

i
0◦∂σi ⊂

Up, and since git is a homotopy, it is homologous to γ =
∑j

i=1 ai∂σi which is non trivial in the

homology of V \ Sp. We call γ to
∑j

i=1 aig
i
1 ◦ h

i
0 ◦ ∂σi.

To see that there is a cycle homologous to γ outside of every compact set in V , we will use

the map of the Lemma 2.2 φ : Dn−l ⊂ Rn−l → M which verifies that Up = φ(X) where X =

cc0(φ
−1(V )). Consider a subdivision of Rn−l in simplexes of dimension n− l and diameter smaller

than ρ. Let us say Rn−l =
⋃∞

i=1 θi and that 0 ∈ Rn−l is in the interior of θ0.

If we consider a neighborhood B ⊂ V of p with linear structure as before, we know that

Hn−l−1(B \ Sp) ∼= R. So, we have that there exists a non zero a ∈ R such that γ = a∂(φ ◦ θ0) in

Hn−l−1(B \ Sp) and in particular also in Hn−l−1(V \ Sp). Let η1 = θ0 −
∑

θi⊂X θi.

We observe that ∂(φ ◦ η1) is a trivial cycle in V \ Sp. So, a−1γ is homologous to γ′ = ∂φ ◦

(
∑

θi⊂X θi) =
∑

θi⊂X φ ◦ ∂θi.

To conclude the proof is enough to observe that we can suppose
∑

θi⊂X ∂θi ⊂ Bρ(∂X) and

use the fact that φ is uniformly continuous. This is true because every boundary in Bρ(∂X) is

cancelled for being trivial in homology and we can take θi to have arbitrarily small diameter.

Given a compact set in V , considering an adequate ρ we conclude the proof.

�

Corollary 3.1. With the same hypothesis that the previous Lemma, if p ∈ Pern−1
H then Sp sepa-

rates V in two connected components V1 and V2. Also, p separates Up in two connected components

U1 and U2 such that U1 ⊂ V1 and U2 ⊂ V2.

Proof. Due to the fact that we are working with reduced homology, the previous Lemma implies

that V \ Sp has two connected components V1 and V2. Moreover, Up is homeomorphic to R, so

Up \ {p} has two connected components U1 and U2. Let us suppose that U1, U2 ⊂ V1. Since V1 is

connected, we have that every γ ⊂ U1∪U2 would be trivial in the homology of V \Sp, contradicting

the previous Lemma.

�

We will repeatedly make use of the following Lemma concerning the semicontinuous variation

of stable and unstable sets (see [L2]).

Lemma 3.2. Let f : M → M be any homeomorphism. Then, given ε, γ > 0 and x ∈ M , there

exists δ > 0 verifying that if dist(x, y) < δ then, W s
ε (y) ∈ Bγ(W

s
ε (x)).

Proof. Suppose by contradiction that there exists γ, ε > 0 and xn → x such that yn ∈

W s
ε (xn) ∩Bγ(W

s
ε (x))

c exist. If we consider z a limit point of yn we have

dist(fk(z), fk(x)) = lim
n→+∞

dist(fk(yn), f
k(xn)) ≤ ε

with z 6= x and k ≥ 0. Thus, z ∈ W s
ε (x), but this is a contradiction since z /∈ Bγ(W

s
ε (x)).

�
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Another result we will repeatedly make use of refers to the distance between local stable and

unstable sets of the points (see [V1] also). We think of it as ensuring “big angles” between the

local stable and unstable sets.

Lemma 3.3. Let f : M → M be an expansive homeomorphism with expansivity constant α > 0.

Given V ⊂ U neighborhoods of x and ρ small enough, there exist a neighborhood W ⊂ V of x

such that if y, z ∈ W we have dist(Sy ∩ (U \V ), Uz ∩ (U \V )) > ρ (where Sy = ccy(W
s(y)∩U and

Uz = ccz(W
u(z) ∩ U).

Proof. For 0 < ε < α let us consider δ > 0 given by Remark 1.1. Then, we can see that for

given neighborhoods V ⊂ U ⊂ Bδ(x) of x, there are ρ > 0 and and W ⊂ V (x ∈ W ) such that if

y, z ∈ W , then

dist(Sy ∩ (U\V ), Uz ∩ (U\V )) > ρ

Otherwise, there would be points yn and zn converging to x and such that dist(Syn∩(U\V ), Uzn∩

(U\V )) < 1/n. Taking a limit point of an ∈ Syn∩(U\V ) (choosen to verify dist(an, Uzn∩(U\V )) <

1/n) we find a point x 6= x such that x ∈ Sx ∩ Sy ∩ (U\V ). Thus, by Remark 1.1

dist(fk(x), fk(x)) ≤ ε < α

∀k ∈ Z so, expansivity implies x = x which is a contradiction.

�

In the following Proposition we prove that the index of topologically hyperbolic periodic points

is locally constant and that if two of them are close enough then their local stable and unstable

sets intersect. As was already mentioned, this is the key step for obtaining the local product

structure.

Proposition 3.1. Let f : M → M be an expansive homeomorphism. Then

(1) for all k = 1, ..., n− 1, PerkH is open in PerH and

(2) for all p ∈ PerH there exists open neighborhoods of p, V1 and V2 such that for all q ∈ PerH∩

V1 we have Sq∩Up 6= ∅ and Uq∩Sp 6= ∅, where Sx = ccx(W
s(x)∩V2), Ux = ccx(W

u(x)∩V2).

Proof. Let p ∈ PerkH , ε > 0 from Lemma 3.1 applied to p and h : Bρ(0) ⊂ Rn → h(Bρ(0)) ⊂

Bε(p) the local conjugacy, h(0) = p, between f and L : Rk×Rn−k → Rk×Rn−k given by L(x, y) =

(x/2, 2y), considering in Rn = Rk×Rn−k the metric d((x, y), (u, v)) = max{‖x−u‖, ‖y−v‖}. Fix

ρ1 ∈ (0, ρ) and let V2 = h(Bρ1(0)). For q ∈ h(Bρ1(0)) we denote S ′
q = h−1(Sq) and U ′

q = h−1(Uq).

Let ρ2 and ρ3 given by Lemmas 3.2 and 3.3 such that if dist(h−1(q), 0) < ρ3 then U ′
q ∩Bρ2(S

′
p ∩

∂Bρ1(0)) = ∅ and S ′
q ⊂ Bρ2(S

′
p). Let V1 = h(Bρ3(0)). Observe that we can use Lemma 3.2 to Sp

and Up because of the choice of ρ1.

By applying Lemma 3.1 we know that if q ∈ V1 ∩ PermH then there exists h ◦ γ ⊂ Sq a non

trivial cycle of the m− 1 dimensional homology of V2 \Uq. Because of Lemma 3.1 as well, we can

suppose that γ ⊂ Bρ2(S
′
p ∩ ∂Bρ1(0)).

Let πt : R
k × Rn−k → Rk × Rn−k given by πt(x, y) = (x, ty) for t ∈ [0, 1]. It is easy to see that

πt(Bρ2(S
′
p ∩ ∂Bρ1(0))) ⊂ Bρ2(S

′
p ∩ ∂Bρ1(0)) for all t ∈ [0, 1]. Then, πt ◦ γ is a homotopy between

γ and π0 ◦ γ ⊂ S ′
p contained in Bρ1(0) \ U

′
q, so they are homologous in Bρ1(0) \ U

′
q. To conclude:
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(1) If PerkH is not open in PerH we can suppose there exists q ∈ V1 ∩ PermH with m < k.

Then, γ has dimension m− 1 < k− 1 but m− 1 dimensional homology of S ′
p \U

′
q is trivial

(remember S ′
p is a disk) which is absurd.

(2) If m = k a cycle η ⊂ S ′
p such that ∂η = γ exists. Since h ◦ γ is non trivial in V2 \ Uq we

conclude that Sp ∩ Uq 6= ∅.

�

Proof of Theorem 1.1.

We are going to construct a local product structure in a neighborhood of every p ∈ PerH . We

consider the notation of the statement of Proposition 3.1.

Let πs : V1 → Sp be defined in the points q ∈ PerH as πs(q) = Uq ∩Sp. This map is well defined

in a dense subset of V1 because of Proposition 3.1. Let x ∈ V1 and qn → x, qn ∈ PerH with

π(qn) → y. Observe that y ∈ W u
ε (x) ∩ Sp and expansivity imply that the intersection point is

unique. This allows us to extend πs to V1. The same reason ensures this extension is continuous.

Also we have πs(x) ∈ Ux∩Sp and because of expansivity πs(x) = Ux∩Sp for all x ∈ V1. Expansivity

also implies that πs|Sx is injective.

If q ∈ PerH then the Invariance of Domain Theorem (see [Sp]) implies that πs|Sq is open and a

homeomorphism over its image. Observe that πs(r) ∈ πs(Sq) with r, q ∈ PerH implies Ur∩Sq 6= ∅.

Let W ⊂ Sp, p ∈ W , W homeomorphic to the disk D
k
and W relative neighborhood of p in Sp.

We affirm there exists V3 neighborhood of p such that for all q ∈ V3 ∩ PerH , W ⊂ πs(Sq).

Otherwise, qn → p would exists, such that qn ∈ PerH and W * πs(Sqn). Since W is connected

and πs|Sqn open, yn ∈ ∂πs(Sqn)∩W must exist (the frontier is relative to Sp). So there must exist

xn ∈ ∂V1∩Sqn such that πs(xn) = yn. We can suppose xn → x and yn → y points of Sqn ∩∂V1 and

W respectively, the first due to semicontinuity of local stable sets (Lemma 3.2) and the second

because W is compact. From the construction of πs we deduce that x and y are over the same lo-

cal stable and unstable set contradicting expansivity (observe that dist(W ,Sp∩∂V1) > 0 so x 6= y).

Let V4 = π−1
s (W ) ∩ V3, we have that for every q, r ∈ PerH ∩ V4, it is true that Sq ∩ Ur 6= ∅ and

Sr ∩ Uq 6= ∅ from its construction.

Let As ⊂ Sp∩V4 and Bu ⊂ Up∩V4 be relative neighborhoods of p, both homeomorphic to disks.

Now, let x ∈ As and y ∈ Bu, then, by taking limit points of the intersection of local stable and

unstable sets of periodic points converging to x and y respectively, semicontinuity of local stable

and unstable sets (Lemma 3.2) and expansivity easily imply that Ux ∩ Sy is a unique point. Let

h : As ×Bu → V1 given by h(x, y) = Ux ∩ Sy. It is continuous and injective. Using the Invariance

of Domain Theorem again we conclude that it is open. This concludes the proof of the existence

of a local product structure in an open and dense set.

�

Remark 3.1. Although this does not ensure the dimension of the decomposition in the local product

structure to be constant, it is an inmediate consequence of the obtained results if the hypothesis of
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f being transitive is added. We prove in section 4.2 that the splitting is constant when Pern−1
H 6= ∅

or Per1H 6= ∅.

4. Codimension one case

4.1. Periodic point ordering and its properties. We shall study the structure of Pern−1
H in

a neighborhood of a singularity x ∈ M defining a partial order in Pern−1
H . We consider Bν(x) so

that Proposition 1.1 holds. Let

Sp = ccp(W
s(p) ∩Bν(x)),

Up = ccp(W
u(p) ∩Bν(x)).

Also, we shall suppose that, because of Remark 1.1, Sp ⊂ W s
ε (p) and Up ⊂ W u

ε (p) for some

ε > 0. For every p ∈ Pern−1
H ∩ Bν(x) we define p̂ = Bν \ ccx(Bν(x) \ Sp).

Given δ > 0 we define the following order relation in Xδ = Pern−1
H ∩Bδ(x). If p, q ∈ Xδ we say

that p ≤ q if p̂ ⊂ q̂. Clearly this is a partial order which depends on the singularity x ∈ M , ν > 0

from Proposition 1.1 and δ ∈ (0, ν). We call chain to every totally ordered subset of the relation.

Remark 4.1. Since stable sets of different periodic points have empty intersection, we have that

if p̂ ∩ q̂ 6= ∅ then the points p and q must be related by the ordering. So, if p ≤ q and p ≤ r then

p̂ ⊂ q̂∩ r̂, q and r must be related. This implies that if p ≤ q and C is a maximal chain containing

p, then q ∈ C.

This order can be well understood in the case of surfaces where, for the pseudo Anosov maps,

singularities have more than 2 maximal chains.

Lemma 4.1. Given a singularity x ∈ M and ν > 0 there exists δ > 0 such that there are finitely

many maximal chains in Xδ. These are pairwise disjoint and every one of them accumulates in

x.

Proof. Let us suppose there were infinitely many maximal chains different from each other.

We shall prove this implies the existence of arbitrarily large sets of points which are not pairwise

related by the order relation. We prove this using induction.

Let p1, ..., pl ∈ Xδ be pairwise not related. Let Ci be maximal chains such that pi ∈ Ci and take

C 6= Ci another maximal chain. Since two points in the same maximal chain are related, at most

one of the pi’s can belong to C.

If pi /∈ C for all i = 1, . . . , l then, we can choose pl+1 ∈ C\ (
⋃

i Ci) and it will not be related to

any of the pi by Remark 4.1.

If pi ∈ C for some 1 ≤ i ≤ l then, we can take p′i ∈ Ci\C and pl+1 ∈ C\Ci not related. So, the

points in {p1, . . . , p
′
i, . . . pl, pl+1} will be pairwise not related again by Remark 4.1.

This leads us to a contradiction since Lemma 3.3 implies the existence of δ > 0 and ν ′ ∈ (0, ν)

such that if p, q ∈ Xδ then

dist(Sp ∩ ∂Bν′(x), Uq ∩ ∂Bν′(x)) > ρ
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Given pi ∈ Xδ, Lemma 3.1 ensures the existence of qi ∈ p̂∩∂Bν′(x)∩Upi so that dist(qi, qj) > ρ

if i 6= j. So, there exists a bound on the number of pairwise not related points since ∂Bν′(x) is

compact.

Once we know there are finitely many maximal chains, we know that the ones that do not

accumulate in x are at a positive distance of x, so if we choose δ to be smaller, we obtain that

every maximal chain in Bδ(x) accumulates in x.

Let C and C ′ be two maximal chains and q ∈ C ∩C ′. If we choose δ smaller in such a way that

q̂ be disjoint with Bδ(x), we reduce the number of maximal chains in Bδ(x). So, we can suppose

that the maximal chains are pairwise disjoint.

�

We call [p] to the maximal chain of p in Xδ given by the previous Lemma. Now, we define

S[p] =
⋃

q∈[p]

q̂ ⊂ Bν(x)

where p ∈ Xδ.

We remark that we can choose ν such that for every p ∈ PerH∩Bν(x) we have that Sp ∈ W s
ε (x)

where 0 < 2ε < α and α > 0 is the constant of expansivity.

Lemma 4.2. For every maximal chain [p], ∂
(

⋃

q∈[p] q̂
)

∩Bν(x) ⊂ W s
ε (x) verifies.

Proof. Because of Lemma 4.1 we know that [p] accumulates in x. Let qn ∈ [p] such that qn → x.

Take a point y ∈ ∂
(

⋃

q∈[p] q̂
)

. Then, a sequence zn ∈ q̂n exists such that zn → y. Without loss of

generality we can suppose zn ∈ Sqn.

Remark 1.1 ensures the existence of ε > 0 such that Sqn ⊂ W s
ε (z

′
n). So we have that for all

m ≥ 0

dist(fm(y), fm(x)) = lim
n→∞

dist(fm(z′n), f
m(pn)) ≤ ε

so y ∈ W s
ε (x). Then, ∂

(

⋃

q∈[p] q̂
)

⊂ W s
ε (x).

�

Lemma 4.3. Suppose PerH = M and let x ∈ M be a singularity. Then, for all p ∈ Bδ(x)∩Pern−1
H ,

there exists a neighborhood V of Sp such that PerH ∩ V ∩Bδ(x) ⊂ [p].

Proof. By contradiction, let us suppose that there exists y ∈ Sp ∩ Bδ(x) satisfying that qn → y

with qn ∈ [q] 6= [p] (remember that because of Theorem 1.1, near Sp we have local product

structure so every periodic point near y must have the same index as p). Then y ∈ ∂S[q] (because

it belongs both to int(S[p]) and S[q], and the interiors of S[p] and S[q] have empty intersection). So,

by Lemma 4.2, y ∈ W s
ε (x). Therefore x ∈ W s(p) because y ∈ Sp ⊂ W s

ε (p). But, since p ∈ PerH
we contradict the fact that x is singular, since Theorem 1.1 gives us local product structure in a

neighborhood of x by iteration of the local product structure in p.

�



12 A. ARTIGUE, J. BRUM, AND R. POTRIE

Lemma 4.4. If PerH = M and let x ∈ M be a singularity. Then int(S[p]) ∩ Bδ(x) =
⋃

q∈[p] q̂ ∩

Bδ(x).

Proof.

The inclusion
⋃

q∈[p] q̂∩Bδ(x) ⊂ int(S[p])∩Bδ(x) is immediate because if q ≥ r then r̂ ⊂ int(q̂).

To obtain the other inclusion we proceed by contradiction supposing there exists a point y ∈

Bδ(x) in the interior of S[p] but such that y /∈ q̂ for all q ∈ [p].

Then, there exists yn ∈ Sqn such that yn → y (this implies in particular that y ∈ W s
ε (x) because

of Lemma 3.2) where qn ∈ [p] satisfies qn → x.

Using Lemma 4.3 and the fact that PerH = M we know that there exist points rn ∈ [p]

arbitrarily close to yn. We can suppose rn → y and that this points are not bounded in the

ordering in [p]. On the other hand, we consider Urn = ccrn(Bν(x) ∩ W u(rn)) ⊂ W u
ε (rn) (see

Remark 1.1) which is separated by Srn in two different connected components (see corollary 3.1).

Pick γ > 0 and choose zn ∈ ∂Bγ(y) ∩ Urn such that zn /∈ r̂n. We can suppose that zn → z ∈

∂Bγ(y) and using the semicontinuous variation of local stable and unstable sets (Lemma 3.2) we

obtain that z ∈ W u
ε (y).

We shall prove that z /∈ S[p] and since γ was arbitrary this will imply that y ∈ ∂S[p] which

contradicts the fact that y ∈ int(S[p]).

We know that z /∈ q̂ for all q ∈ [p], so, if z ∈ S[p] it should be accumulated by points in Sqn

and therefore verify z ∈ W s
ε (x). Then, z 6= y, z ∈ W u

ε (y) and y, z ∈ W s
ε (x) which contradicts

expansivity (remember we chose ε so that 2ε < α).

�

Remark 4.2. Clearly x ∈ S[p] and x /∈ q̂ for all q ∈ [p]. Since S[p] is a closed set with non empty

interior and x ∈ ∂S[p] we have that its complement in Bν(x) which is open is also non empty. This

implies that ∂S[p] separates Bν(x).

The next lemma shows how the stable sets of periodic points converge uniformly towards ∂S[p].

Lemma 4.5. Suppose PerH = M and let z ∈ ∂S[p] ∩ Bδ(x) and ρ > 0. Then, there exists V a

neighborhood of z such that if q ∈ [p] ∩ V then S[p] ∩ Bδ(x) ⊂ q̂ ∪Bρ(∂S[p]).

Proof. Given ρ > 0, the set K =
(

S[p] \Bρ(∂S[p])
)

∩ Bδ(x) is a compact set contained in

int(S[p] ∩ Bδ(x)) so, using Lemma 4.4, {int(q̂)}q∈[p] is an open cover of K so r ∈ [p] exists such

that K ⊂ r̂. Let V be a neighborhood of z disjoint from r̂. Then, for every q ∈ [p] ∩ V we have

that q ≥ r. Then, K =
(

S[p] \Bρ(∂S[p])
)

∩Bδ(x) ⊂ q̂ and therefore S[p] ∩ Bδ(x) ⊂ q̂ ∪ Bρ(∂S[p]).

�

The following Lemma represents the key step for proving the uniformity of the local product

structure because it allows us to ensure that the stable and unstable sets intersect in a neighbor-

hood of a singularity. This gives uniformity and is also important to give structure to ∂S[p] and

discard singularities.

Lemma 4.6. Suppose PerH = M . For all z ∈ ∂S[p] ∩ Bδ(x) and for all ε > 0 there exists V

neighborhood of z such that if q, r ∈ V ∩ [p] then Uq intersects Sr and ∂S[p] in Bε(z) ∩ S[p].
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Proof. Let V be a neighborhood of z such that z ∈ V ⊂ Bδ(x). Corollary 3.1 allows us to

associate to each q ∈ [p]∩ V two points yq1, y
q
2 ∈ Uq ∩ ∂Bδ(x) such that yq1 ∈ q̂ and yq2 /∈ q̂. Lemma

3.3 gives us ρ > 0 such that (maybe taking V smaller) for i = 1, 2 and q ∈ [p] ∩ V

(1) dist(yqi , ∂S[p]) > ρ

At the same time, by Lemma 4.5 we can suppose that for every q ∈ [p] ∩ V ,

(2) S[p] ∩Bδ(x) ⊂ q̂ ∪ Bρ/2(∂S[p])

Then, since yq2 /∈ q̂ and yq2 /∈ Bρ(∂S[p]), we have that yq2 /∈ S[p]. Remark 4.2 together with the

fact that Uq is connected implies Uq intersects ∂S[p].

Let us take r ∈ V ∩ [p] such that q ≤ r, that is to say q̂ ⊂ r̂. Consider yr1 and yr2 associated to r

in the same way we did with q. Then yq1 ∈ q̂ ⊂ r̂. On the other hand, yr1 ∈ S[p]∩∂Bδ(x) and by (2)

yr1 ∈ q̂ ∪Bρ/2(∂S[p]). Because of (1) we have yr1 /∈ Bρ/2(∂S[p]) and so yr1 ∈ q̂. Then yr1, y
q
1 ∈ q̂ ⊂ r̂.

Now, since yr2 /∈ r̂ and q̂ ⊂ r̂ we have that yr2 /∈ q̂. Previously we said that yq2 /∈ S[p], so, applying

(2) (to r instead of q) we have that yq2 /∈ r̂. This implies yq2, y
r
2 /∈ r̂ ⊃ q̂.

Finally, since Uq ⊃ {yq1, y
q
2} and Ur ⊃ {yr1, y

r
2} are connected, and Sq and Sr separate the ball

Bν(x) we deduce that Sq ∩ Ur and Uq ∩ Sr are not empty as wanted.

Given ε > 0, expansivity and semicontinuous variation of local stable and unstable sets allow

us to prove that by means of considering V small enough we can ensure that the intersections lie

in Bε(z).

�

To prove Theorem 1.2 we shall also make use of some properties of the frontier of the sets S[p].

Proposition 4.1. If PerH = M , ∂S[p] ∩ Bδ(x) is a topological manifold of dimension n− 1.

Proof. Let z ∈ ∂S[p] ∩ Bδ(x). We choose ε > 0 such that Bε(z) ⊂ Bδ(x) and let V a

neighborhood of z satisfying that if q, r ∈ V ∩ [p] then Uq ∩Sr ∩Bε(z) 6= ∅ as given in Lemma 4.6.

Also, for every q ∈ V ∩ [p] we can have Uq ∩ ∂S[p] ∩ Bε(z) 6= ∅ again by Lemma 4.6.

Pick q ∈ V ∩ [p] and define hq : Sq ∩ V → ∂S[p] ∩ Bε(z) given by

hq(y) = lim
qn→y

Uqn ∩ ∂S[p]

which is well defined thanks to expansivity and semicontinuous variation of local stable and unsta-

ble sets (Lemma 3.2) together with the fact that ∂S[p] ⊂ W s
γ (z) because of Lemma 4.5. The fact

that there is a sequence qn ∈ [p] → y is a consequence of Lemma 4.3 and the fact that PerH = M .

The same argument implies that hq is continuous and injective. Moreover, since the domain is

compact, hq is a homeomorphism over its image.

Again, by Lemma 4.6 , we can take V ′ and ε′ > 0 such thatBε′(z) ⊂ V and that for q, r ∈ [p]∩V ′,

Uq ∩ Sr ∩ Bε′(z) 6= ∅. Analogously, we have that for every q ∈ V ′ ∩ [p], Uq ∩ ∂S[p] ∩ Bε′(z) 6= ∅

verifies.

If we fix q ∈ V ′ ∩ [p] (Lemmas 4.3 and 4.5 and ensures the existence of such q) we will be

able to prove that for all w ∈ ∂S[p] ∩ V ′ exists y ∈ Sq ∩ V such that hq(y) = w. This holds
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since for every w ∈ ∂S[p] ∩ V ′ we can find {qn} ⊂ [p] ∩ V ′ such that qn → w and so that

∅ 6= Uqn ∩Sq ∩Bε′(z) ⊂ V ∩Sq. In particular, every point in ∂S[p] ∩ V ′ has a preimage of the map

hq in Sq ∩ Bε′(z) ⊂ Sq ∩ V .

Since hq is a homeomorphism over its image, ∂S[p] ∩ V ′ is homeomorphic to its preimage which

is an open subset of Sq ∩ V ′ and the proposition is proved (remember Sq ∩ V is homeomorphic to

an open set of Rn−1).

�

4.2. Constant splitting. Proof of Theorem 1.2.

By contradiction, we suppose that ∅ 6= Pern−1
H 6= M and consider a singularity x ∈ ∂Pern−1

H .

We consider ν and δ as in Lemma 4.1, for which we know there is a finite set of maximal chains

of the partial order in Xδ. Let [p] be a maximal chain accumulating in x.

Lemma 4.7. There exists δ > 0 such that PerH ∩ S[p] ∩Bδ(x) ⊂ Pern−1
H .

Proof. Suppose, by contradiction, that there exist pn, qn → x where qn ∈ S[p] ∩ PerH \ Pern−1
H

and pn ∈ [p].

We know that pn, qn /∈ ∂S[p] because it would contradict the fact that x is a singularity.

Since qn /∈ Pern−1
H , Uqn is a connected topological manifold (and therefore arcconnected) of

dimension at least two. Consequently, if we remove a point from Uqn it remains arcconnected.

Clearly, for every pn there exists qm /∈ p̂n. Remember that ∂S[p] and Spn separates the ball

Bν(x).

We shall prove that Uqm ⊂ S[p] \ p̂n. Otherwise, y ∈ Uqm \S[p] would exist. Since ∂S[p] separates

the ball Bν(x) we know that every curve contained in Uqm joining qm to y must intersect ∂S[p].

Expansivity implies that Uqm intersects ∂S[p] in at most one point. Then, since two curves in

Uqm connecting qm to y and coinciding only in the extremes exist (because of the dimension of

Uqm) they should intersect ∂S[p] in two different points reaching a contradiction. We proceed

analogously if we consider y ∈ p̂n.

Finally, the fact that for every n0 there exist m,n ≥ n0 such that Uqm ⊂ S[p] \ p̂n contradicts

expansivity (see Lemma 3.3).

�

Let C be the finite set of maximal chains in Bδ(x) and let

S =
⋃

[p]∈C

S[p]

Since every S[p] is closed in Bν(x) and C is finite, we have that S is closed. Lemma 4.7 and the

fact that PerH = M implies

(3) Bδ(x) ∩ S = Bδ(x) ∩ Pern−1
H

Since x ∈ ∂Pern−1
H we know that S can not be a neighborhood of x. We shall see how this fact

represents a contradiction.

In order to do that, we shall make use of Proposition 4.1 and the following lemma.
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Lemma 4.8. For all p ∈ Pern−1
H ∩ Bδ(x) exists A[p] ⊂ ∂S[p] such that A[p] is an open and dense

subset relative to ∂S[p] ∩ Bδ(x) and A[p] is in the interior of S.

Proposition 4.1 ensures that ∂S[p] ∩ Bδ(x) is a topological manifold of dimension n− 1. Then,

Lemma 4.8 and a result in [HW] stating that a closed set with empty interior in a topological

manifold has dimension smaller than the manifold (chapter IV, section 4), imply that for every

[p], dimtop(∂S[p] \ A[p]) ≤ n− 2. Moreover, since ∂S ⊂
⋃

∂S[p]

∂S ⊂
⋃

[p]∈C

∂S[p] \ A[p]

And, since the union of a finite set of closed spaces has the dimension of the largest one (see

[HW] chapter III, section 3) we know that dimtop(∂S) ≤ n − 2. So, ∂S can not separate Bδ(x)

because it should have dimension at least n − 1 (see [HW] chapter IV, section 5). This leads us

to a contradiction.

Proof of Lemma 4.8.

Let ε > 0 and z ∈ ∂S[p]. By Lemma 4.6, there exist q ∈ [p] such that {a} = Uq ∩ ∂S[p] is in

Bε(z). Theorem 1.1 implies that q has a neighborhood with local product structure, by iterating

this neighborhood to the past, we obtain local product structure over a neighborhood of a, so, a

must belong to int(S) = int(Pern−1
H ∩ Bδ(x)) and the lemma is proved.

�

4.3. Uniform local product structure. We shall prove Theorem 1.3 in this section. By Theo-

rem 1.1 we know that there is an open and dense set whose points admit a local product structure.

And by Theorem 1.2 we conclude, since Pern−1
H 6= ∅, that PerH = Pern−1

H .

Let S be the set of singularities of f , that is to say, the points which do not admit any local

product structure. To prove Theorem 1.3 we must prove that S is an empty set.

With the results proved in 4.1 we obtain the following consequence which allows us to study

the set of singularities in codimension one case. The next proposition gives a sort of local product

structure in the sets S[p] which will be defined properly in this statement.

Proposition 4.2. Let x ∈ S. Then, for every z ∈ ∂S[p] ∩ Bδ(x) there exists h : I × In−1 → S[p]

(I = [0, 1]) homeomorphism over its image, where h({a} × In) is contained in a local stable set,

h(I × {b}) is contained in a local unstable set and the image of h is a neighborhood of z relative

to S[p].

Proof. By Lemma 4.6 there exists V ⊂ Bδ(x) neighborhood of z in M such that if q, r ∈ [p]∩V

then Sq ∩ Ur 6= ∅ and Uq ∩ ∂S[p] 6= ∅.

Let Dz ⊂ ∂S[p] ∩ V homeomorphic to In−1 (see Proposition 4.1) such that z belongs to the

interior of Dz relative to ∂S[p].

Let V ′ ⊂ V neighborhood of z such that if q ∈ [p] ∩ V ′ then Sq ∩ Ur ∩ V 6= ∅ and Uq ∩Dz 6= ∅.

Let q ∈ V ′ ∩ [p] and we define h : Uq ∩ V ∩ S[p] × Dz → S[p] in such a way that h(y, w) =

W s
ε (y) ∩ W u

ε (w) is verified. By the choice of V , approximating with topologically hyperbolic

periodic points and making use of expansivity and semicontinuous variation of local stable and
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unstable sets (Lemma 3.2) we can ensure that the map h is well defined, continuous and injective

and, since the domain is compact, a homeomorphism over its image.

We are now interested in proving that the image contains V ′ ∩ S[p] and it is enough to show

that it contains [p] ∩ V ′, since Pern−1
H is dense in V ′′. This holds due to the choice of V ′.

Let U = h−1(V ′ ∩ S[p]) which is open because h is a homeomorphism over its image. Since

z ∈ V ′ ∩ S[p] a relative open set of the image of h and S[p], h
−1(z) is in the interior of U . Since

Uq ∩ V ∩S[p]×Dz is locally connected in h−1(z) we can find in U a set homeomorphic to I × In−1

neighborhood of h−1(z) whose image will be a relative neighborhood of z in S[p].

The other properties of h claimed in the statement of the proposition are immediate conse-

quences of the definition of h.

�

Lemma 4.9. If Pern−1
H = M then S is a finite set.

Proof.

Since the set of points with local product structure is open and invariant we know that S is

compact and invariant. Therefore, f : S → S is an expansive homeomorphism.

We shall prove that there exist a neighborhood of x ∈ S satisfying that every singularity in

that neighborhood belongs to the local stable set of x. This is a consequence of the existence

of δ > 0 small enough (given by Lemma 4.1) such that (since Pern−1
H is dense) we have that

Bδ(x) ⊂
⋃k

i=1 S[pi]. Proposition 4.2 implies that in the interior of S[pi] there is a local product

structure (maybe by considering δ smaller) so singularities must lie in
⋃k

i=1 ∂S[pi]. Lemma 4.2 now

implies that singularities of Bδ(x) belong to the local stable set of x.

Expansivity implies that Lyapunov stable points are asymptotically stable. Otherwise, points

y, w such that dist(fn(y), fn(w)) ≤ ε ≤ α (α expansivity constant) and such that a subsequence

nj → +∞ with dist(fnj (y), fnj(w)) ≥ δ exist. Taking limit points we contradict expansivity.

Since S is compact and every point is asymptotically stable for f , we conclude that S must be

finite.

�

In the following Lemma we will show that there are no isolated singularities if dim(M) ≥ 3.

Observe that in surfaces, pseudoAnosov maps have this kind of singular points. The key fact here

is how the semilocal product structures given by Proposition 4.1 are glued around the singularity.

The idea is that if S[p] and S[q] have semilocal product structure, then S[p]∩S[q]\{x} is a connected

component of W s
loc(x) \ {x}. If dim(M) ≥ 3 then the set W s

loc(x) \ {x} is connected and therefore

there is no place for a third semilocal product structure. This will let us prove that x has a local

product structure.

Lemma 4.10. If dim(M) ≥ 3 and Pern−1
H = M then, no isolated singularities exist.

Proof. By contradiction, suppose x ∈ M is an isolated singularity. Let ν, δ > 0 be as in

Proposition 4.1 and such that Bν(x) ∩ S = {x}. Fix [p] a maximal chain accumulating in x and

let T = ccx(∂S[p] ∩ Bδ(x)). We know by Proposition 4.1 that T is a topological manifold that is

closed in Bδ(x).
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Let z ∈ T \ {x} and [q] 6= [p] such that z ∈ ∂S[q]. Define T ′ = ccz(∂S[q] ∩ Bδ(x)). Let

F = T ′ \ {x} ∩ T \ {x}, which is a non empty closed set in both T \ {x} and T ′ \ {x}. Since

for all w ∈ F there is a local product structure, F is open in both T \ {x} and T ′ \ {x}. Thus

F = T \ {x} = T ′ \ {x} because T \ {x} and T ′ \ {x} are connected sets (dim(M) ≥ 3). Then,

since T ′ is closed, x ∈ T ′ which implies that T ′ = ccx(∂S[q] ∩Bδ(x)).

Since Pern−1
H is dense in S[p] we can apply Proposition 4.2 to x. Let

hp : [0, 1)× (−1, 1)n−1 → Rp ⊂ Bδ(x)

be a homeomorphism such that Rp is a neighborhood of x relative to S[p] and hp(0) = x. Let

Fp = T ∩Rp = h({0} × (−1, 1)n−1).

Now, from Proposition 4.2 we can consider hq : (−1, 0] × (−1, 1)n−1 → Rq ⊂ Bδ(x) a homeo-

morphism satisfying that Rq is a neighborhood of z relative to S[q] and hq(0) = x. Analogously we

define Fq = ∂S[q] ∩ Rq = hq({0} × (−1, 1)n−1) ⊂ F . From the previous, we can suppose Fq ⊂ Fp.

Let π2 : R × Rn−1 → Rn−1 the canonical projection over the second coordinate. Furthermore, if

we restrict hp to the set [0, 1)× π2(h
−1
q (Fq)) we can suppose Fp = Fq.

Let h : (−1, 1)× Fp → Bδ(x) given by

h(t, y) =

{

hp(t, π2(h
−1
p (y))) if t ≥ 0

hq(t, π2(h
−1
q (y))) if t ≤ 0

Clearly h(0, y) = y so h is continuous. Again, using the Invariance of Domain Theorem, this

allows us to prove that h gives a local product structure around x. This contradicts the fact that

x is a singularity.

�

Proof of Theorem 1.3.

Once we have discarded singularities it is very simple to prove there is a uniform local product

structure. Otherwise, there would exist points xn not admitting local product structure in balls

of radius greater than 1/n. Taking a limit point we could find a singularity, a contradiction.

Uniform local product structure implies the pseudo orbit tracing property from the results of

[R] which ensure the existence of a hyperbolic metric in the coordinates given by the local product

structure (see [V2]).

�

5. Appendix

To conclude, we prove the following proposition and then sketch the proof that M is Tn.

Proposition 5.1. Let M be a n−dimensional manifold (n ≥ 3) and f : M → M an expansive

homeomorphism such that PerH is dense in M and Per1H 6= ∅ or Pern−1
H 6= ∅. Then, M admits

a codimension one foliation with leaves homeomorphic to Rn−1.

Proof. The uniform local product structure obtained in Theorem 1.3 shows the existence of

the foliation.
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Let us suppose that Pern−1
H 6= ∅, then, the leaves of the foliation are the stable sets of the

points. Let x ∈ M , we shall prove that W s(x) is homeomorphic to Rn−1. To see this, is enough

to see that

W s(x) =
⋃

n≥0

f−n(Sε(f
n(x))

Where Sε(z) is a disc of uniform size in W s
ε (z) (which exist because of the uniform local product

structure). So, W s(x) may be written (maybe by taking some subsequence nj → ∞ so that

f−nj(Sε(f
nj(x))) ⊂ f−nj+1(Sε(f

−nj+1(x)))) as an increasing union of n − 1 dimensional discs,

which implies the thesis.

�

Once we know the leaves are homeomorphic to Rn−1 classical arguments allow us to prove that

M is Tn. As we said, we shall sketch some steps of the proof for the sake of completeness. The

ideas are based on [V3] and [F1] section 5.

The first thing it should be proved is that the universal covering space of M (M) equals Rn.

To prove that M = Rn it suffices to prove that given two points x, y ∈ M then, the lifts of their

stable and unstable manifolds (which are respectively proper copies of Rn−1 and R) intersect at a

single point.

To see that the intersection has at most one point, we can see that if the manifolds intersect at

more than one point then we can obtain a closed loop transversal to the codimension one foliation,

thus, bounding a disc (since we are in the universal covering, the loop is nullhomotopic). By using

Solodov’s methods (see [So] Lemma 5) we see that the disc may be chosen to be in general position

so that we obtain a foliation of the disc D2, transversal to the frontier and such that its singularities

are nondegenerate and have no saddle connections (this is the only step where differentiability

is used in [F1]). Now, using Haefliger arguments (see [V3] Lemma 2.11 or [F1] Lemma 5.1) we

conclude there is a leaf of the codimension one foliation with non trivial holonomy, hence, the leaf

is not simply connected, a contradiction.

Finally, proving that the foliations intersect is a straightforward adaptation of the arguments

of [F1] Lemma 5.2 after it is known that the the leaves of the codimension one foliation are

dense (which follows from the fact that periodic points are dense and the uniform local product

structure).

Once this is obtained, it is not difficult to prove that π1(M) is free abelian by studding the

action of π1(M) over R as it permutes without fixed points the leaves of the codimension one

foliation (see [HeHi] Chapter VIII, section 3, remember that the leaves of the foliation are dense).

Now one can follow the proof in [F1], by reading the proofs of Proposition (6.2), Theorem (4.2)

and Theorem (3.6) in that order (remember that expansive homeomorphisms with local product

structure have hyperbolic canonical coordinates, [R]).

One can take a shortcut in dimensions ≥ 5 thanks to a result of [HiWa]. A space with free

abelian fundamental group and which is covered by Rn is an Elienberg-McLane space of the same

type of a torus, hence homotopically equivalent to one (see [Hat], Theorem 1.B.8.). From [HiWa]

we deduce that if n, the dimension of M , satisfies n ≥ 5 then M is homeomorphic to Tn.



LOCAL PRODUCT STRUCTURE FOR EXPANSIVE HOMEOMORPHISMS 19

This proves that M = Tn.

�
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Imerl, Facultad de Ingenieŕıa, Universidad de la República, Uruguay

E-mail address : rpotrie@cmat.edu.uy


	1. Introduction
	1.1. Definitions and presentation of results

	2. Separation properties
	3. Local product structure
	4. Codimension one case
	4.1. Periodic point ordering and its properties
	4.2. Constant splitting
	4.3. Uniform local product structure

	5. Appendix
	References

