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Abstract. We develop a monotone, two-scale discretization for a class of
integrodifferential operators of order 2s, s ∈ (0, 1). We apply it to develop

numerical schemes, and convergence rates, for linear and obstacle problems
governed by such operators. As applications of the monotonicity, we provide

error estimates for free boundaries and a convergent numerical scheme for a

concave fully nonlinear, nonlocal, problem.

1. Introduction

In recent times, nonlocal models have gained a lot of popularity in the pure and
applied sciences. The reason behind this boom is manifold. From the point of view
of applications, it is claimed that they are able to encode a wider range of phenom-
ena when compared to their local counterparts. In this regard, for instance, one can
refer to the creation of peridynamics [65, 66], nonlocal diffusion reaction equations
[70], fractional Cahn-Hilliard models [4, 3], fractional porous media equations [31],
the fractional Schrödinger equation [68], fractional viscoelasticity [26], fractional
Monge-Ampère [18] and many more. The interested reader can refer to the many
existing overviews [12, 48, 32] for further references and insight.

In our opinion, nonlocal models started to gain the attention of the mathematical
community after the seminal work [20], where the authors showed that the so-called
fractional Laplacian (in the whole space) can be realized as a degenerate elliptic
operator in one more dimension. With this, many of the techniques that were used
to analyze local problems could now be applied to nonlocal ones. Later, purely
nonlocal techniques for many problems were also introduced; see, for instance,
[19, 45].

Regarding the numerical treatment of nonlocal problems, some early attempts
could be found in [41, 42, 43, 34, 33]. However, references [56, 14, 13, 1] deserve
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special attention. In [56] the extension technique of [20] was exploited to develop a
numerical method, and its analysis, for the so-called spectral fractional Laplacian.
References [14, 13] for the spectral and integral fractional Laplacian, respectively,
develop a nonconforming approximation on the basis of an integral representation, a
quadrature formula, and spatial discretization. Finally, closer to our discussion here
is [1] where the integral fractional Laplacian is considered. On the basis of weighted
Hölder regularity results developed in [61], the authors of this work provide weighted
Sobolev regularity, and construct a direct discretization over graded meshes that,
in two dimensions, is optimal with respect to degrees of freedom.

The error estimates of [1, 15] are in the energy and L2(Ω)–norms. Pointwise
error estimates for the integral fractional Laplacian were obtained in [39], where a
monotone two-scale method for this operator was developed. The error estimates in
this work were based on weighted Hölder regularity and the construction of suitable
barriers.

Two-scale methods, such as those developed in [58, 46, 52, 54] and [39, 40]
naturally inherit a discrete maximum principle from the continuous operator. This
is in general not true for finite element approximations. For instance, the finite
element approximation of the classical Laplacian possesses a discrete maximum
principle only under certain geometric constraints on the mesh [29, Section III.20].
We remark that for nonlocal operators, the lack of monotonicity for the finite
element approximation is not expected to be fixed by only a geometric constraint
as for its local counterpart, especially when s ≈ 0, where the stiffness matrix
approaches a standard mass matrix.

This brings us then to the main goals of the present work. We will consider an
integrodifferential operator of order 2s, s ∈ (0, 1),

(1) Lη[w](x) = v.p.

∫
Rd

w(x)− w(y)

|x− y|d+2s
η

(
x− y
|x− y|

)
dy,

where the so-called kernel η : Sd−1 → R is assumed to verify several properties
that will be specified below. Operators of this form have been extensively studied
in probability and finance, as they represent the generator of a 2s–stable Lévy
processes, see e.g., [30, 7]. The simplest, and most important, example is the
aforementioned integral fractional Laplacian (−∆)s, which is defined by

η(θ) ≡ C(d, s) =
4ssΓ(s+ d/2)

πd/2Γ(1− s)
> 0.

In [39], the authors propose a monotone discretization for the fractional Laplacian
based on the splitting of the integral in the definition of the operator into a singular
and a tail parts; the former is approximated by a scaled finite-difference Laplacian.
This, in essence, amounts to truncating the kernel in a neighborhood of the origin.
Inspired by that work, for a broader class of operators with kernel η ∈ C(λ,Λ)
(cf. Definition 1), we develop a monotone, two-scale method for the discretization
of the operator (1) and show its consistency under weighted Hölder regularity as-
sumptions. Instead of truncation, we propose to regularize the kernel in (1) near
the origin. From an analysis perspective, this means that we are using a zero-order
operator for the approximation of the singular part of the integral. Our motivation
is to obtain approximations of (1) that are robust in the limit s ↑ 1, which may
require wide stencils.
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As applications of the proposed scheme, we then consider three applications of
increasing difficulty. First we obtain pointwise rates of convergence for a linear
problem where the operator is of the form (1). Next, we consider an obstacle
problem for (1) and obtain pointwise rates of convergence. These pointwise rates
of convergence, in turn, allow us to provide error estimates for free boundaries.
Finally, we develop a numerical scheme for a class of concave fully nonlinear inte-
grodifferential operators of order 2s. Rates of convergence for problems of this type,
however, are at this stage beyond our reach. We need to point out that the rates
of convergence are obtained under realistic regularity assumptions. Namely, up to
the boundary Cs regularity, and interior Cβ regularity, with β ∈ (2s, 4). In the
linear case, the interior regularity is solely dictated by the regularity of the forcing
function, whereas the obstacle problem exhibits a reduced regularity of β ≤ 1 + s.

Our presentation is organized as follows. Notation and the functional framework
we shall operate in is presented in Section 2. There we also introduce the class of
integrodifferential operators we shall be interested in, and their most elementary
properties. The two-scale discretization of our operators is introduced in Section 3.
We describe the action of each one of the scales, namely regularization and dis-
cretization, and study the consistency of approximations. The first application
of our two-scale discretization is the content of Section 4, where we study a linear
problem and provide pointwise rates of convergence for its numerical scheme. These
rates of convergence are obtained under realistic regularity assumptions. Next, in
Section 5, we study an obstacle problem. We propose and analyze a pointwise
convergent scheme. The rates are, once again, obtained under realistic regularity
assumptions. We then continue, in Sections 5.2 and 5.3, with the study of the
approximation of free boundaries. We provide a rate of convergence for discrete
boundaries, both in the presence of regular and singular points. As a final appli-
cation of our scheme, Section 6 studies a concave fully nonlinear integrodifferential
equation. We propose a convergent scheme, albeit without explicit rates of conver-
gence. Finally, Appendix A provides some intuition, justification, and consequences
for our design choices behind the regularization scale.

2. Notation and preliminaries

Let us introduce some notation and terminology that will be used throughout
our discussion. For A,B ∈ R the relation A . B means that, for a nonessential
constant c, we have A ≤ cB. The value of this constant may change in every
occurrence. A & B means B . A. If A . B . A we abbreviate this by saying
A ≈ B. The Landau symbols, big-O and little-o, respectively, are O and o.

For r > 0 and x ∈ Rd we denote by Br(x) the (open) Euclidean ball of radius r
centered at x. We set Br = Br(0). The unit sphere in Rd is Sd−1 = ∂B1.

Throughout our discussion Ω ⊂ Rd, with d ∈ N, is a bounded Lipschitz domain
which we assume satisfies an exterior ball condition. We denote its boundary by
∂Ω and its complement by Ωc = Rd \ Ω.

For x ∈ Ω we define δ(x) = dist(x, ∂Ω) and if x, y ∈ Ω, then we set δ(x, y) =
min{δ(x), δ(y)}.

2.1. Function spaces and their norms. We will adhere to standard notation for
the Lebesgue spaces, and their norms, when they are defined either over the whole
space or some domain. Since we are concerned with pointwise estimates, we must
work with functions that are at least continuous. The space of functions w : Ω̄→ R
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that are continuous is denoted by C(Ω̄). We recall that this space endowed with
the norm

‖w‖C(Ω̄) = sup
x∈Ω̄

|w(x)|,

is a Banach space. We also need spaces of continuously differentiable functions.
For k ∈ N we set

Ck(Ω̄) =
{
w : Ω̄→ R

∣∣ Dβw ∈ C(Ω̄), |β| ≤ k
}
.

We also set C0(Ω̄) = C(Ω̄). The norm on these spaces is

‖w‖Ck(Ω̄) = sup
|β|≤k

‖Dβw‖C(Ω̄).

To provide a more refined characterization of smoothness, for k ∈ N0, and α ∈ (0, 1]
we define the Hölder spaces via

Ck,α(Ω̄) =
{
w ∈ Ck(Ω̄)

∣∣ [Dβw]C0,α(Ω̄) <∞, |β| = k
}
,

where

[w]C0,α(Ω̄) = sup
x,y∈Ω̄:x 6=y

|w(x)− w(y)|
|x− y|α

.

The norm in the Hölder spaces is

‖w‖Ck,α(Ω̄) = max

{
‖w‖Ck(Ω̄), max

|β|=k
[Dβw]C0,α(Ω̄)

}
.

These spaces are complete.
We set Ck,0(Ω̄) = Ck(Ω̄). In addition, whenever k ∈ N0 and α ∈ (0, 1] with

k + α /∈ N0, we may denote Ck+α(Ω̄) = Ck,α(Ω̄). Finally, for k ∈ N0 and α ∈ (0, 1]
we will say that w ∈ Ck,α(Ω) if w|Ū ∈ Ck,α(Ū) for all U b Ω. A further refinement
of these spaces will be detailed when needed.

We will also deal with fractional Sobolev spaces. For r ∈ (0, 1) we set

Hr(Rd) =
{
w ∈ L2(Rd)

∣∣ ‖w‖Hr(Rd) <∞
}
,

with

‖w‖2Hr(Rd) = ‖w‖2L2(Rd) + [w]2Hr(Rd),

[w]2Hr(Rd) =
C(d, r)

2

∫∫
Rd×Rd

|w(x)− w(y)|2

|x− y|d+2s
dxdy,

for which it is a Hilbert space.
We also set, again for r ∈ (0, 1),

H̃r(Ω) =
{
w ∈ L2(Ω)

∣∣ w̃ ∈ Hr(Rd)
}
,

where by w̃ we denote the extension by zero onto Ωc. Owing to the fractional
Poincaré inequality,

‖w‖L2(Ω) . [w̃]Hr(Rd), ∀w ∈ H̃r(Ω),

the seminorm [·]Hr(Rd) is actually an equivalent norm in H̃r(Ω) which makes it

Hilbert. The dual of H̃r(Ω) is denoted by H−r(Ω), and the duality pairing will
be 〈·, ·〉. In what follows, if confusion does not arise, we shall suppress the explicit
mention of zero extensions.
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2.2. The integrodifferential operator. We shall consider integrodifferential op-
erators of the form (1). Regarding the kernel, we encode its assumptions in the
following definition.

Definition 1 (class C(λ,Λ)). Let λ,Λ ∈ (0,∞) with λ ≤ Λ. We will say that the
kernel η : Sd−1 → R belongs to the class C(λ,Λ) if it is:

1. Symmetric, i.e., η(θ) = η(−θ) for all θ ∈ Sd−1.
2. Elliptic, i.e., we have

0 < λ ≤ η(θ) ≤ Λ, a.e. θ ∈ Sd−1.

Owing to these assumptions, if η ∈ C(λ,Λ), a fractional integration by parts
shows that

[w]2Hs(Rd) ≈ 〈Lη[w], w〉, ∀w ∈ H̃s(Ω),

with equivalence constants that depend on η only through the constants λ and Λ.
In other words, for every η ∈ C(λ,Λ) the expression

‖w‖2η,s =

∫∫
Rd×Rd

|w(x)− w(y)|2

|x− y|d+2s
η

(
x− y
|x− y|

)
dy dx,

is an equivalent Hilbertian norm on H̃s(Ω).
Owing to the positivity of the kernel, the operator (1) satisfies a comparison

principle.

Proposition 2 (comparison). Let K : Rd → R be a positive function. Define the
operator LK via

LK [w](x) = v.p.

∫
Rd

(w(x)− w(y))K(x− y) dy.

Let w : Rd → R be such that, in the weak sense, LK [w] ≥ 0 almost everywhere in
Ω and w ≥ 0 in Ωc. Then, w ≥ 0 in Ω.

Proof. See [60, Proposition 4.1]. �

As a final piece of preliminary notation we must introduce a set of parameters,
relations between them, and a space of functions with a prescribed behavior away
from the boundary. We let β ∈ R, and assume it satisfies

(2) β > 2s, β, β − 2s /∈ N0.

Given such β we define

(3) Sβ(Ω) =
{
w ∈ Cβ(Ω) ∩ C0,s(Ω̄)

∣∣ ‖w‖Cβ({x∈Ω | δ(x)≥ρ}) . ρ
s−β} .

The usefulness of this function class shall become clear once we perform the error
analysis. Indeed, as we shall show (cf. Lemma 11 below), solutions of problems
involving the operator Lη typically belong to such class.

3. Two-scale discretization

We now begin the discretization of our integrodifferential operator (1). Besides
consistency, a fundamental necessity, we wish to preserve its comparison property
detailed in Proposition 2.

These two requirements stand at odds of each other. For instance, when deal-
ing with (local) elliptic second order differential operators and their finite element
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discretization, very stringent mesh requirements must be imposed to retain a com-
parison principle, see [29, Section III.20] and [49, Section 3.5]. If, on the contrary,
we discretize via finite differences, it is known that wide stencils must be employed,
see [49, Section 3.2]. To fulfill these two conditions then, we will employ a two-scale
discretization.

Two-scale discretizations have become a popular choice to develop schemes that
preserve the comparison principle for (local) elliptic second order differential op-
erators. As an example, the reader is referred to [58, 46, 52, 54]. Regarding the
two-scale discretization of nonlocal problems we mention [39, 40], where the authors
proposed a two-scale discretization for the fractional Laplacian.

3.1. The regularization scale. The first step in the approximation of (1) is reg-
ularization. The idea is that, for some ε > 0, we split the integral that defines
the operator in two parts: Rd \ Bε and Bε. The integral in the small ball Bε is
then regularized by introducing a non singular kernel with suitable approximation
properties.

We begin by observing that, since the kernel η is symmetric, we have

(4) Lη[w](x) =
1

2

∫
Rd

(2w(x)− w(x− y)− w(x+ y)) η

(
y

|y|

)
K(|y|) dy,

where K(r) = 1
rd+2s . Let now ε > 0. We define

Lη,ε[w](x) =
1

2

∫
Rd

(2w(x)− w(x− y)− w(x+ y)) η

(
y

|y|

)
Kε(|y|) dy,

where the radial, nonsingular kernel Kε is defined as

(5) Kε(r) =


1

rd+2s
, r ≥ ε,

1

εd+2s
+ γ(r2 − ε2) + ν(r3 − ε3), r < ε.

We point out that (5) gives

lim
r↑ε
Kε(ε) = ε−d−2s, lim

t↓0

Kε(t)−Kε(0)

t
= 0.

The constants γ and ν are chosen so that Kε ∈ C1([0,∞)) and

Lη[q] = Lη,ε[q], ∀q ∈ P2.

The smoothness requirement implies that

2γε+ 3νε2 = −(d+ 2s)ε−d−2s−1.

On the other hand, by the symmetry of η we will have exactness provided that∫ ε

0

r2

rd+2s
rd−1 dr =

∫ ε

0

r2Kε(r)rd−1 dr.

In short, the parameters γ and ν have the values

γ = − (4 + d)(d+ 2s)(3 + d+ 2s)

4(1− s)
ε−d−2s−2 < 0,

ν =
(5 + d)(d+ 2s)(2 + d+ 2s)

6(1− s)
ε−d−2s−3 > 0.
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The following result studies the interior consistency of this regularization. By
interior we mean that we consider points x ∈ Ω, such that Bε(x) ⊂ Ω, i.e., all the
points where the regularization of the kernel takes place are contained in Ω.

Theorem 3 (interior consistency). Let Ω be a bounded Lipschitz domain that sat-
isfies the exterior ball condition. Assume that β ∈ (2s, 4] and η ∈ C(λ,Λ). Let
w ∈ Sβ(Ω), where this class is defined in (3). Let α0 > 1, ε > 0, and x ∈ Ω be such
that δ(x) ≥ α0ε. Then, it holds that

|Lη[w](x)− Lη,ε[w](x)| . εβ−2sδ(x)s−β .

The implicit constant depends on d, s, α0, β, λ, and Λ.

Proof. We need to estimate

|Lη[w](x)− Lη,ε[w](x)| =
1

2

∣∣∣∣∫
Bε

(2w(x)− w(x− y)− w(x+ y)) η

(
y

|y|

)(
1

|y|d+2s
−Kε(|y|)

)
dy

∣∣∣∣ .∫ ε

0

‖w‖Cβ(Br(x))r
β

∣∣∣∣ 1

rd+2s
−Kε(r)

∣∣∣∣ rd−1 dr

.
∫ ε

0

(δ(x)− r)s−β
∣∣∣∣ 1

rd+2s
−Kε(r)

∣∣∣∣ rβ+d−1 dr,

where, in the last step, we used the interior Hölder estimate that is assumed of w.
Because δ(x) ≥ α0ε,∫ ε

0

(δ(x)− r)s−β
∣∣∣∣ 1

rd+2s
−Kε(r)

∣∣∣∣ rβ+d−1 dr .

δ(x)s−β
∫ ε

0

rβ+d−1

(
1

rd+2s
+Kε(r)

)
dr . εβ−2sδ(x)s−β . �

As it can be seen from the proof of Theorem 3, the interior consistency of our
regularization depends on how close we are to the boundary. In particular, we need
to have Bε(x) b Ω. For this reason, given ε > 0 we let ε : Ω→ (0,∞) be sufficiently
smooth and satisfy

ε(x) ≤ min

{
δ(x)

2
, ε

}
, ∀x ∈ Ω.

With this function at hand, we then define

Lη,ε[w](x) = Lη,ε(x)[w](x).

In order to properly leverage the boundary regularity of solutions, the choice of ε
is made more precise below; depending on the problem under consideration.

Owing to the positivity of Kε, the comparison principle from Proposition 2 holds
for Lη,ε. Thus, pointwise consistency estimates for this operator can be achieved
by combining a comparison principle with a suitable barrier function. We thus
construct a barrier.

Lemma 4 (barrier). Let Ω be a bounded, Lipschitz domain. Define

b(x) = χΩ(x), ∀x ∈ Ω.

Then,

δ(x)−2s . Lη,ε[b](x).
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Proof. Since, by construction, we have ε(x) ≤ δ(x) for all x ∈ Ω we may write

Lη,ε[b](x) =

∫
Rd

(1− b(y)) η

(
x− y
|x− y|

)
Kε(x)(|x− y|) dy ≥ λ

∫
Ωc

1

|x− y|d+2s
dy.

Since

δ(x)−2s .
∫

Ωc

1

|x− y|d+2s
dy,

with a hidden constant that depends on d, s, and Ω, the result follows. �

We are now in position to estimate the consistency of our regularized operator.

Theorem 5 (consistency). In the setting of Theorem 3 assume, in addition, that
w,wε ∈ Sβ(Ω) verify

Lη[w] = Lη,ε[wε] in Ω, w = wε = 0, in Ωc.

Then we have
‖w − wε‖L∞(Ω) . max{εs, εβ−2s}.

Proof. Let x ∈ Ω. Since ε(x) ≤ 1
2δ(x), arguing as in the proof of Theorem 3 we get

Lη,ε[w − wε](x) = Lη,ε[w](x)− Lη[w](x) . ‖w‖Cβ(Bε(x)(x))ε(x)β−2s

. (δ(x)− ε(x))s−βε(x)β−2s . 2s−βδ(x)s−βε(x)β−2s

. δ(x)3s−βε(x)β−2sδ(x)−2s.

If 3s− β ≥ 0 continue the estimate as

Lη,ε[w − wε](x) . εβ−2sδ(x)−2s . εβ−2sLη,ε[b](x),

where we used the barrier function of Lemma 4. If, on the other hand, 3s− β < 0
we use that

δ(x)3s−βε(x)β−2s =

(
ε(x)

δ(x)

)β−3s

ε(x)s . εs.

Gathering both cases we conclude that, for every x ∈ Ω, we have

Lη,ε[w − wε](x) . max{εβ−2s, εs}Lη,ε[b](x).

An application of the comparison principle for the operator Lη,ε allows us to con-
clude. �

3.2. The discretization scale. We assume that Ω is a convex polytope and let
T = {T} be a conforming and shape regular simplicial triangulation of Ω. The
elements T ∈ T are assumed to be closed. We set, for T ∈ T , hT = diam(T ). We
denote by NT the set of vertices of T . The interior and boundary vertices are,
respectively,

N i
T = NT ∩ Ω, N ∂

T = NT ∩ ∂Ω.

For each interior vertex z ∈ N i
T we define its patch to be

ωz =
⋃
{T ∈ T | z ∈ T} .

By hz we denote the radius of the ball of maximal radius, centered at z, that can
be inscribed in ωz. Over such a triangulation we define the following spaces of
functions

VT =
{
wT ∈ C(Ω̄)

∣∣ wT |T ∈ P1, ∀T ∈ T
}
,

V0
T =

{
wT ∈ C(Ω̄)

∣∣ wT |∂Ω = 0
}
,
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Notice that any function wT ∈ V0
T can be trivially extended to Ωc by zero. When

this causes no confusion, we shall not make a distinction between a function and
its extension.

It is a general fact that solutions to problems involving integrodifferential oper-
ators, like (1), exhibit an algebraically singular behavior near the boundary, inde-
pendently of the smoothness of the problem data. The problems that we shall be
interested in are no exception; see the regularity results of Sections 4.1 and 5. To
compensate this we will consider a mesh that is graded towards the boundary as it
was studied in [1]. We consider a mesh size h > 0 and parameter µ ≥ 1. Our mesh
T is assumed to satisfy

(6) hT ≈


hµ, T ∩ ∂Ω 6= ∅,

hdist(T, ∂Ω)
µ−1
µ T ∩ ∂Ω = ∅.

As shown in [17, Remark 4.14] we have that

(7) dimV0
T ≈



h(1−d)µ, µ ≥ d

d− 1
,

h−d| log h|, µ =
d

d− 1
,

h−d, µ <
d

d− 1
.

Finally, we observe that, under the condition (6), we have

(8) hz ≈ hδ(z)1−1/µ ∀z ∈ N i
T .

At this point we impose that, at least, 1
2hz ≤ ε(z). We shall later refine this

choice; see Definition 12 and 20 for the linear and obstacle problems, respectively.

3.2.1. Consistency of interpolation. Let Ih : C(Ω̄)→ VT be the Lagrange interpo-
lation operator. For z ∈ N i

T we wish to estimate the consistency error

E [w, z] = Lη,ε[Ihw](z)− Lη[w](z),

provided the function w possesses suitable, but realistic, smoothness. We begin by
rewriting this error as

E [w, z] = (Lη,ε[w](z)− Lη[w](z)) + Lη,ε[Ihw − w](z).

The first term entails the regularization error, and it was estimated in Theorem 3.
Our immediate goal shall be to estimate the second term.

Lemma 6 (refined interpolation estimate). Let β > 0 satisfy (2), β̄ = min{β, 2},
and w ∈ Sβ(Ω). Furthermore, assume the mesh T satisfies (6). Then, for all
T ∈ T , we have

‖w − Ihw‖L∞(T ) .

{
hβ̄ dist(T,Ω)s−β̄/µ, T ∩ ∂Ω = ∅,
hµs, T ∩ ∂Ω 6= ∅.

Consequently, we have the global interpolation estimate

(9) ‖w − Ihw‖L∞(Ω) . max{hµs, hβ̄}.
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Proof. If w ∈ Cα(T ) for some α ∈ (0, 2], we have

‖w − Ihw‖L∞(T ) . ‖w‖Cα(T )h
α
T .

Now, if T ∩ ∂Ω = ∅ the definition of the class Sβ(Ω), given in (3), and the mesh
grading imply that

‖w − Ihw‖L∞(T ) . dist(T, ∂Ω)s−β̄hβ̄ dist(T, ∂Ω)β̄(µ−1)/µ . hβ̄ dist(T,Ω)s−β̄/µ.

If, on the contrary, T ∩ ∂Ω 6= ∅, we estimate

‖w − Ihw‖L∞(T ) . ‖w‖C0,s(T )h
s
T . h

µs.

Estimate (9) follows from a closer inspection of the case T ∩ ∂Ω = ∅. If s ≥ β̄/µ
then there is nothing to prove, so we assume s < β̄/µ. Let z ∈ N i

T be a vertex of T .

By shape regularity and (8), we have hT ≈ hz ≈ hδ(z)1−1/µ, and dist(T, ∂Ω) ≈ δ(z).
Therefore, we can write

‖w − Ihw‖L∞(T ) . h
µshβ̄−µsδ(z)s−β̄/µ ≈ hµs

(
hz
δ(z)

)β̄−µs
. hµs. �

We can now estimate the remaining consistency term.

Proposition 7 (consistency of interpolation). Let the function ε : Ω→ R be such
that 1

2hz ≤ ε(z) ≤
1
2δ(z) for all z ∈ N i

T . In the setting of Lemma 6 we have, for

all z ∈ N i
T ,

(10) |Lη,ε[Ihw − w](z)| . hβ̄δ(z)s−β̄/µε(z)−2s + max{hµs, hβ̄}δ(z)−2s.

Proof. Let z ∈ N i
T . We observe that Ihw(z) = w(z) and that Ihw ≡ w ≡ 0 on Ωc.

Therefore, we have

Lη,ε[Ihw − w](z) =

∫
Ω

(w(y)− Ihw(y)))Kε(z)(|z − y|)η
(
z − y
|z − y|

)
dy

We define

(11) Ω∂ =
⋃
{T ∈ T | T ∩ ∂Ω 6= ∅} ,

and partition the integration domain into

Ω̄ =

3⋃
i=1

Di,

where

D1 = Ω∂ ∩Bδ(z)/2(z)c,

D2 = (Ω \ Ω∂) ∩Bδ(z)/2(z)c,

D3 = Bδ(z)/2(z),

and estimate each term separately.
Estimate on D1: Since every point y ∈ D1 belongs to a boundary-touching element,
we use the first part of Lemma 6 to write∣∣∣∣∫

D1

(w(y)− Ihw(y)))Kε(z)(|z − y|)η
(
z − y
|z − y|

)
dy

∣∣∣∣ . hµs ∫
D1

1

|z − y|d+2s
dy .

hµs
∫
Bδ(z)/2(z)c

1

|z − y|d+2s
dy . hµsδ(z)−2s.
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Estimate on D2: Notice now that every element y ∈ D2 belongs to a non-boundary-
touching element. We can then invoke the other case in the first part of Lemma 6
to estimate∣∣∣∣∫

D2

(w(y)− Ihw(y)))Kε(z)(|z − y|)η
(
z − y
|z − y|

)
dy

∣∣∣∣ . hβ̄
∫
D2

δ(y)s−β̄/µ

|z − y|d+2s
dy.

Now, if s− β̄
µ ≥ 0 we simply estimate

hβ̄
∫
D2

δ(y)s−β̄/µ

|z − y|d+2s
dy ≤ hβ̄

∫
Bδ(z)/2(z)c

1

|z − y|d+2s
dy . hβ̄δ(z)−2s.

If, instead, s− β̄
µ < 0 then

hβ̄
∫
D2

δ(y)s−β̄/µ

|z − y|d+2s
dy . hβ̄hµ(s−β̄/µ)

∫
D2

1

|z − y|d+2s
dy . hµsδ(z)−2s.

Estimate on D3: Observe that δ(y) ≥ δ(z)−|z−y| and, if y ∈ D3, we also have that
1
2δ(z) ≤ δ(y) ≤ 3

2δ(z). Now, since z ∈ N i
T we have that δ(z) & hµ. Consequently,

if y ∈ T ∩D3 for some T such that T ∩ ∂Ω = ∅,

hT . hδ(y)1−1/µ . hδ(z)1−1/µ.

We, once again, invoke the estimates of Lemma 6 to obtain∣∣∣∣∣
∫
D3∩(Ω\Ω∂)

(w(y)− Ihw(y)))Kε(z)(|z − y|)η
(
z − y
|z − y|

)
dy

∣∣∣∣∣ .
hβ̄δ(z)s−β̄/µ

∫
D3∩(Ω\Ω∂)

Kε(z)(|z − y|) dy .

hβ̄δ(z)s−β̄/µ

(∫ δ(z)/2

ε(z)

1

r1+2s
dr +

∫
Bε(z)(z)

Kε(z)(|z − y|) dy

)
.

hβ̄δ(z)s−β̄/µε(z)−2s.

On the other hand, if D3 ∩ Ω∂ 6= ∅ it means that dist(Bδ(z)/2(z), ∂Ω) . hµ, and
therefore δ(z) = dist(z, ∂Ω) . δ(z)/2 + hµ, namely δ(z) ≈ hµ ≈ hz. Therefore, it
must be ε(z) ≈ δ(z). In such a case, on D3 ∩ Ω∂ , we have∣∣∣∣∫

D3∩Ω∂
(w(y)− Ihw(y)))Kε(z)(|z − y|)η

(
z − y
|z − y|

)
dy

∣∣∣∣ .
hµs

∫
D3∩Ω∂

Kε(z)(|z − y|) dy .

hµs

(∫ δ(z)/2

ε(z)

1

r1+2s
dr +

∫
Bε(z)(z)

Kε(z)(|z − y|) dy

)
.

hµsε(z)−2s ≈ hµsδ(z)−2s.

Gathering all the obtained estimates leads to the claim. �
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4. The linear problem

Having studied a consistent and monotone discretization of the operator Lη, de-
fined in (1), we proceed to use this discretization to propose and analyze numerical
methods for problems of increasing complexity. The first one shall be a linear one.

We consider the following problem: Let s ∈ (0, 1) and η ∈ C(λ,Λ) for some

λ,Λ > 0. Given f ∈ H−s(Ω), find u ∈ H̃s(Ω) such that

(12) Lη[u] = f, in Ω.

Notice that, by virtue of the definition of the solution space, we are implicitly
providing the exterior condition u = 0 on Ωc. Owing to the fact that ‖ · ‖η,s is

an equivalent norm on H̃s(Ω), existence and uniqueness of a weak solution follows
immediately. In addition, since η is positive, a nonlocal maximum principle holds;
see Proposition 2.

4.1. Regularity. The regularity properties of u, solution of (12), are of utmost
relevance for its numerical approximation. In contrast to local elliptic operators, it
is well known that solutions to (12) possess limited regularity near the boundary,
regardless of the smoothness of Ω and f ; see [69, 38, 16]. The following is an optimal
regularity result.

Lemma 8 (optimal Hölder regularity). Let s ∈ (0, 1) and let Ω ⊂ Rd be a bounded
Lipschitz domain that satisfies the exterior ball condition. Let f ∈ L∞(Ω) and

u ∈ H̃s(Ω) be the (weak) solution to (12). Then u ∈ C0,s(Ω̄). Moreover, we have

‖u‖C0,s(Ω̄) ≤ C‖f‖L∞(Ω),

where the implicit constant depends only on d,Ω and s.

Proof. See [63, Proposition 4.5]. �

The previous regularity is optimal, as exemplified by existing explicit solutions
to the fractional Laplace problem over a ball (cf. [37]). The reason for this limited
regularity gain lies in the fact that there is an algebraic boundary singularity present
in the solution, which can be characterized via

u(x) ≈ dist(x, ∂Ω)s,

as x approaches ∂Ω. Higher order regularity estimates can be obtained if one takes
into account such boundary behavior. In [62] such results were obtained for the
fractional Laplacian over weighted Hölder spaces, where the weights are given by
powers of the distance to the boundary.

Definition 9 (weighted Hölder space). Let σ > −1 and β = k + γ > 0 with
k ∈ N0, γ ∈ (0, 1]. For w ∈ Ck(Ω) define the seminorm

|w|(σ)
β,Ω = sup

x,y∈Ω:x 6=y

(
δ(x, y)β+σ

∣∣Dkw(x)−Dkw(y)
∣∣

|x− y|γ

)
,

and the norm

‖w‖(σ)
β,Ω =

k∑
`=1

sup
x∈Ω

(
δ(x)`+σ|D`w(x)|

)
+ |w|(σ)

β,Ω +

{
sup
x∈Ω

(δ(x)σ|v(x)|) , σ ≥ 0,

‖v‖C0,−σ(Ω̄), σ < 0.

The methods used in [61] can be adapted to operators of the form (1) to obtain
the following weighted Hölder regularity.
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Lemma 10 (weighted Hölder estimates). Let Ω be a bounded domain that satisfies
the exterior ball condition, and let β > 0 satisfy (2). Moreover, we have

‖u‖(−s)β,Ω . ‖u‖C0,s(Rd) + ‖f‖(s)β−2s,Ω,

where the implicit constant only dependsLet f ∈ Cβ−2s(Ω) be such that ‖f‖(s)β−2s,Ω <

∞. If, for k ∈ N, β ≥ k, then we additionally assume that η ∈ Ck(Sd−1). In this
setting, the solution of (12) satisfies u ∈ Cβ(Ω). on d, Ω, λ, Λ and s.

Proof. The result can be obtained by using the same procedure as in [61, Proposi-
tion 1.4] for η ≡ 1. For completeness, we repeat the main parts of the argument.

Let x0 ∈ Ω and R = δ(x0)
K for some K ∈ N. We define ũ(x) = u(x0 +Rx)−u(x0)

and, following [61, Proposition 1.4], it is possible to show that

‖ũ‖C0,s(B1) ≤ CRs[u]C0,s(BR(x0))(13)

‖(1 + | · |)−d−2sũ(·)‖L1(Rn) ≤ CRs[u]C0,s(Rd).

In addition, if β ≤ 1,

sup
x,y∈B1

|Lη[ũ](x)− Lη[ũ](y)|
|x− y|β

= R2s+β sup
x,y∈BR(x0))

|Lη[u](x)− Lη[u](y)|
|x− y|β

.

We also observe that, since the coefficient η is independent of x, for any k ∈ N0

DkLη[ũ](x) = RkLη[Dku](x).

We use this in the case β > 1 to assert that, for any β > 0 that satisfies (2),

‖Lη[ũ]‖Cβ(B1) . R
2s+β‖Lη[u]‖Cβ(BR(x0)) ≤ Rs‖Lη[u]‖(s)β,Ω.(14)

The estimates so far do not use the regularity of the coefficient η, but only
its boundedness and translation invariance. Now we can repeat the proof [61,
Corollary 2.4] using the additional regularity on η together with the estimates
(13)—(14) to get

(15)
‖ũ‖Cβ(B1/2) . ‖(1 + | · |)−d−2sũ(·)‖L1(Rd) + ‖ũ‖Cβ−2s(B2) + ‖Lη[ũ]‖Cβ−2s(B2)

. Rs
(

[u]C0,s(Rd) + ‖f‖(s)β−2s,Ω

)
+ ‖ũ‖Cβ−2s(B2),

where we assumed that K ≥ 2 to bound the term ‖Lη[ũ]‖Cβ−2s(B2) appropriately.
We repeat that the regularity of the coefficient η is only used in order to be able to
stress the arguments used in the proof of [61, Corollary 2.4].

Now, for β − 2s ≤ s, the claim follows from estimate (15). Indeed, using that, if
y ∈ BR(x0), we have

‖D`ũ‖L∞(B1/2) = R`‖D`u‖L∞(BR/2(x0)),

and δ(x, y)/|x− y| ≤ K if x and y are far away from each other.
If, instead, we have that β − 2s > s, we repeat the argument in (15) for

‖ũ‖Cβ−2s(B2) in total m times until β − 2sm ≤ s. Choosing K large enough,
but finite (depending on s), finishes the proof. �

As a consequence of Lemmas 8 and 10, we have the following regularity estimate
away from the boundary.
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Lemma 11 (interior Hölder estimate). Let Ω be a bounded Lipschitz domain that
satisfies the exterior ball condition and let f , β, and η satisfy the same assumptions
as in Lemma 10. For every ρ > 0 we have

‖u‖Cβ({x∈Ω:δ(x)≥ρ}) . ρ
s−β ,

for a constant only on ‖f‖(s)β−2s,Ω, ‖f‖L∞(Ω), s, and Ω.

Proof. Repeat the proof of [39, Corollary 2.5]. �

In short, the previous results show that u, the solution of (12), satisfies u ∈ Sβ(Ω)

and ‖u‖(−s)β,Ω <∞.

4.2. Pointwise error estimates. We have reached the point where we can pro-
pose a numerical scheme for (12) and provide an error analysis for it. To begin, we
need to make a precise choice of the regularization scale ε.

Definition 12 (ε for the linear problem). Let the vertex z ∈ N i
T . We set

ε(z) =
1

2
h1/2
z δ(z)1/2.

At this point we make some comments regarding the choice in Definition 12.
First, notice that close to the boundary we have

ε(z) ≈ hz ≈ δ(z),
which ensures that Bε(z)(z) ⊂ Ω. On the other hand, in the interior of the domain
we have δ(z) ≈ 1, so that

ε(z) ≈ h1/2
z .

This scaling bears resemblance to the scalings used in two-scale methods for (local)
linear second order elliptic problems; see; [49, 50, 64, 46, 58, 53, 54].

We now describe the scheme. For ε given according to Definition 12, our scheme
seeks for uh ∈ V0

T such that

(16) Lη,ε[uh](z) = f(z), ∀z ∈ N i
T .

We comment that, since this is a finite dimensional problem, existence and unique-
ness of a solution are implied immediately by the following discrete comparison
principle for the operator Lη,ε.

Proposition 13 (discrete comparison principle). Let ε be such that, for every
z ∈ N i

T , we have ε(z) ≥ 1
2hz. Assume that vh, wh ∈ V0

T are such that

(17) Lη,ε[vh](z) ≥ Lη,ε[wh](z), ∀z ∈ N i
T .

Then,
vh(z) ≥ wh(z) ∀z ∈ N i

T .

Proof. The proof follows by a simple argument. Suppose the inequality (17) is strict,
and that the function vh−wh attains a (non-positive) minimum at an interior node
z ∈ N i

T . Then, we have

vh(z)− wh(z) ≤ vh(y)− wh(y) =⇒ vh(z)− vh(y) ≤ wh(z)− wh(y) ∀y ∈ Rd

and, consequently,
Lη,ε[vh](z) ≤ Lη,ε[wh](z).

This shows that, in case of strict inequality in (17), it must be that vh > wh in Ω.
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Assume next that the inequality (17) is not strict. Consider the discrete barrier
function bh = Ihb, where b = χΩ and Ih denotes the Lagrange interpolant. We have
Lη,ε[bh](z) > 0 for all z ∈ N i

T . Therefore, for ε > 0, we have the strict inequality

Lη,ε[vh + εbh](z) > Lη,ε[wh](z) ∀z ∈ N i
T ,

from which it follows that vh(z) + εbh(z) > wh(z) for all z ∈ N i
T . Letting ε → 0,

we obtain the desired result. �

We now proceed with the error analysis of our scheme. Using the choice of ε
given by Definition 12, we begin by making the results from Proposition 7 more
precise.

Proposition 14 (consistency of interpolation for the linear problem). Let the regu-
larization scale ε verify Definition 12, β satisfy (2), β̄ = min{β, 2}, and w ∈ Sβ(Ω).
We have

|Lη,ε[Ihw − w](z)| . max{hµs, hβ̄−s}δ(z)−2s ∀z ∈ N i
T .

Proof. Let z ∈ N i
T . By (10), it suffices to show that

hβ̄δ(z)s−β̄/µε(z)−2s . max{hµs, hβ̄−s}δ(z)−2s.

We consider the set Ω∂ given by (11).

If z ∈ Ω∂ , then δ(z) ≈ hz ≈ hµ. Combining this with ε(z) = 1
2h

1/2
z δ(z)1/2 ≈

δ(z), we obtain

hβ̄δ(z)s−β̄/µε(z)−2s ≈ hµsδ(z)−2s.

In contrast, if z /∈ Ω∂ , then z ∈ T for some T with T ∩ ∂Ω = ∅ and therefore

hz ≈ hT ≈ hδ(z)1−1/µ and ε(z) = 1
2h

1/2
z δ(z)1/2 If s ≥ (β̄ − s)/µ, then we have

hβ̄δ(z)s−β̄/µε(z)−2s ≈ hβ̄−sδ(z)s−(β̄−s)/µδ(z)−2s . hβ̄−sδ(z)−2s.

Otherwise, we write h ≈ hzδ(z)−1+1/µ and

hβ̄δ(z)s−β̄/µε(z)−2s ≈ hβ̄−sz δ(z)−β̄+2sδ(z)−2s ≈ hµs
(
hz
δ(z)

)β̄−s−µs
δ(z)−2s.

Because hz ≤ δ(z) and β̄ − s − µs > 0, the second term in the right hand side is
uniformly bounded above. �

It remains then to obtain error estimates. This is the content of the following
result.

Theorem 15 (error estimate). Let Ω be a convex polytope, s ∈ (0, 1), β ≤ 4 is
such that (2) holds. Define β̄ = min{β, 2}. Let f ∈ Cβ−2s(Ω)∩L∞(Ω) be such that

‖f‖(s)β−2s,Ω <∞. Assume that η ∈ C(λ,Λ) and that if, for some k ∈ N, β > k, then

η ∈ Ck(Sd−1). Let u ∈ Sβ(Ω) solve (12) and uh ∈ V0
T solve (16). If T satisfies

(6) and ε is chosen as in Definition 12, we have

‖u− uh‖L∞(Ω) . max{hµs, hβ̄−s, hβ/2−s}.

Proof. We consider u− uh = (u− Ihu) + (Ihu− uh). By (9), to prove the claim, it
suffices to estimate the second term. We do so by estimating the consistency

|Lη,ε[Ihu− uh](z)| ≤ |Lη,ε[Ihu− u](z)|+ |Lη,ε[u− uh](z)| = I + II,

for z ∈ N i
T , and then applying the discrete comparison principle from Proposi-

tion 13.
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Proposition 14 yields

I . max{hµs, hβ̄−s}δ(z)−2s ≈ max{hµs, hβ̄−s}Lη,ε[b](z),
where we recall that b is the barrier function introduced in Lemma 4. Additionally,
the choice of ε, identity (8), and Theorem 3 with α0 = 2, yield

II = |Lη,ε[u](z)− Lη[u](z)| . ε(z)β−2sδ(z)s−β

≈ hβ/2−sδ(z)s−
β/2−s
µ Lη,ε[b](z).

Thus, if s − β/2−s
µ ≥ 0 we are done. In case s < β/2−s

µ , we write instead h ≈
hzδ(z)

1/µ−1 and obtain

II . hβ/2−sδ(z)s−
β/2−s
µ Lη,ε[b](z)

≈ hµshβ/2−µs−sz δ(z)(1/µ−1)(β/2−µs−s)δ(z)s−
β/2−s
µ Lη,ε[b](z)

≈ hµs
(
hz
δ(z)

)β/2−µs−s
Lη,ε[b](z).

This concludes the proof. �

Remark 16 (complexity estimate). Let us try to interpret the estimates of The-
orem 15 in terms of degrees of freedom. To shorten the notation we set, only for
this discussion, N = dimV0

T . Furthermore, we will assume that the right hand
side f is as smooth as possible, i.e., we let β = 4 and satisfying (2). This regularity
assumption implies that β/2 = β̄ = 2.

First, if d = 2, we can choose µ = 2 so that, according to (7), N ≈ h−2| log h|.
As a consequence,

‖u− uh‖L∞(Ω) . max
{
N−s| logN |s, N−1+s/2| logN |1−s/2

}
.

Therefore, with respect to the number of degrees of freedom, and up to logarithmic
factors, we obtain convergence with order s for s ≤ 2/3 and with order 1 − s/2
for s > 2/3. Additionally we observe that, for s > 2/3, one does not need to
take µ = 2 in two dimensions, and that the maximal convergence rate is attained
whenever µs = 2 − s i.e., µ = 2−s

s ; any extra mesh refinement does not reflect in
an improvement of convergence rates, although it affects the conditioning of the
resulting system.

On the other hand, for d = 3 we must choose µ = 3
2 if we wish to maintain a

near optimal number of degrees of freedom, i.e., N ≈ h−3| log h|. Thus,

‖u− uh‖L∞(Ω) . max
{
N−s/2| logN |s/2, N−2/3+s/3| logN |2/3−s/3

}
.

Again, we observe that, if −s/2 ≤ −2/3 + s/3, namely if s ≥ 4/5, the maximal
convergence order s/2 is attained for meshes graded with µ = 2−s

s .

Remark 17 (relationship between ε and f). Definition 12 is suitable for sufficiently
smooth right hand sides, namely, it formally delivers optimal convergence rates in

case f ∈ Cβ−2s(Ω) ∩ L∞(Ω) be such that ‖f‖(s)β−2s,Ω < ∞ with β ≥ 4. We recall
that, since we are using a second difference formula, the interior consistency of the
regularized operator cannot exploit any regularity beyond S4(Ω), cf. Theorem 3.
Let us briefly comment on what one can obtain when f satisfies the assumptions
above but with β ∈ (2s, 4) and satisfying (2).
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We let ε(z) = 1
2h

α
z δ(z)

1−α with α ∈ [0, 1], that clearly satisfies 1
2hz ≤ ε(z) ≤

1
2δ(z). By doing the same calculations as in Proposition 14, we obtain

|Lη,ε[Ihw − w](z)| . max{hµs, hβ̄−2αs}δ(z)−2s ∀z ∈ N i
T .

Arguing then as in the proof of Theorem 15, we obtain the error estimate

‖u− uh‖L∞(Ω) . max{hµs, hβ̄−2αs, hα(β−2s)}.

Now, if β ∈ (2, 4), we have β̄ = 2 and

2− 2αs = α(β − 2s) ⇒ α =
2

β
.

Therefore, choosing ε(z) = 1
2h

2
β
z δ(z)

1− 2
β yields the error estimate

‖u− uh‖L∞(Ω) . max{hµs, h2− 4s
β }.

In contrast, if β ∈ (2s, 2), we observe β̄ = β and we get that

β − 2αs = α(β − 2s) =⇒ α = 1.

In this low regularity case, setting ε(z) = 1
2hz gives rise to

‖u− uh‖L∞(Ω) . max{hµs, hβ−2s}.

The latter will be of interest in the approximation of the obstacle problem in the
next section, and justifies Definition 20 below.

5. The obstacle problem

As the next application of our two-scale discretization, we will consider the
following nonlinear problem. In the setting of Section 4 we assume that, in addition,

we have ψ : Ω̄→ R that satisfies ψ < 0 on ∂Ω. We seek for u ∈ H̃s(Ω) that satisfies

(18) min {Lη[u]− f, u− ψ} = 0, a.e. Ω.

While existence and uniqueness of a weak solution is classical, the regularity of
such solution is more delicate. Following [17] we introduce the classes

Fs(Ω̄) = C3−2s+ε(Ω̄), Ψ =
{
ψ ∈ C(Ω̄) : ψ|∂Ω < 0

}
∩ C2,1(Ω),

where ε > 0 is sufficiently small, so that 1− 2s+ ε /∈ N.
For future use we define the contact and non-contact sets as follows:

Ω0 = {x ∈ Ω | u(x) = ψ(x)} , Ω+ = {x ∈ Ω | u(x) > ψ(x)} .

In order to obtain rates of convergence, we must understand the regularity of
the solution. This can be achieved by combining the arguments in [17], [19], and
the regularity of the linear problem presented in Section 4.1. Namely, one first
proves the result for a problem in the whole space Rd, and then use a localization
argument; see [17] for details in the case η ≡ 1.

Proposition 18 (regularity). Assume that f ∈ Fs and ψ ∈ Ψ. Then, u ∈ H̃s(Ω),
the solution of (18) satisfies u ∈ C1,s(Ω) and

‖Lη[u]‖(s)1−s,Ω <∞.
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Remark 19 (pointwise evaluation). Notice that, since ψ < 0 on ∂Ω, the solution to
(18) solves the linear problem Lη[u] = f in a neighborhood of the boundary. By the
interior regularity of the previous result we additionally have Lη[u] ∈ C0,1−s(Ω). As
a consequence, we have that Lη[u] ∈ C0,1−s(Ω̄), meaning that pointwise evaluation
of the operator is meaningful.

5.1. Pointwise error estimates. Let us now provide a numerical scheme for the
obstacle problem (18) and pointwise error estimates for it. We seek for uh ∈ V0

T

such that

(19) min {Lη,ε[uh](z)− f(z), uh(z)− ψ(z)} = 0, ∀z ∈ N i
T .

For this problem, we shall make a different choice of ε than for the linear problem.
The reason behind this is that even if the data is sufficiently smooth, the solution
to the obstacle problem possesses a limited interior regularity, compare Lemma 10
with Proposition 18; see also the discussion of the case β ∈ (2s, 2) in Remark 17.

Definition 20 (choice of ε for the obstacle problem). Let z ∈ N i
T . We set

ε(z) =
1

2
hz.

Existence and uniqueness of uh follow from the fact that we are in finite dimen-
sions and the comparison principle for Lη,ε. Of interest here is the derivation of
pointwise error estimates. The technique that we will use is rather classical and
can be traced back to [5, 51], see also [55]. We begin by introducing the notions of
sub- and supersolutions to the obstacle problem.

Definition 21 (sub- and supersolution). We say that u+
h ∈ VT is a supersolution

to (19) if u+
h ≥ 0 in Ωc and, for all z ∈ N i

T , we have

u+
h (z) ≥ ψ(z), Lη,ε[u+

h ](z) ≥ f(z).

On the other hand, we say that u−h ∈ VT is a subsolution to (19) if u−h ≤ 0 in Ωc

and, for every z ∈ N i
T , if u−h (z) ≥ ψ(z), then

Lη,ε[u−h ](z) ≤ f(z).

The comparison principle of the operator Lη,ε gives a comparison for sub- and
supersolutions.

Lemma 22 (discrete comparison). Let u+
h , u

−
h ∈ VT be super- and subsolutions to

(19), and uh ∈ V0
T be the solution to (19). Then, for every z ∈ NT we have

u−h (z) ≤ uh(z) ≤ u+
h (z).

Proof. We consider each inequality separately. Let u−h be a subsolution and consider
the set of nodes

C− =
{
z ∈ NT

∣∣ u−h (z) ≥ ψ(z)
}
.

Now, if z ∈ C−, we have

Lη,ε[u−h ](z) ≤ f(z) ≤ Lη,ε[uh](z).

If, on the other hand z /∈ C−, then

u−h (z) < ψ(z) ≤ uh(z).

In summary, the function wh = u−h − uh ∈ VT verifies

Lη,ε[wh](z) ≤ 0, z ∈ C−, wh(z) ≤ 0, z /∈ C−.
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A discrete comparison principle then implies that wh ≤ 0.
Let now u+

h be a supersolution. Consider now the discrete contact set

C+ = {z ∈ NT | uh(z) = ψ(z)} ,

and observe that, if z ∈ C+,

uh(z) = ψ(z) ≤ u+
h (z).

On the other hand, if z /∈ C+ we have

Lη,ε[u+
h ](z) ≥ f(z) = Lη,ε[uh](z).

In conclusion, the function wh = u+
h − uh ∈ VT satisfies

Lη,ε[wh] ≥ 0, z /∈ C+, wh(z) ≥ 0, z ∈ C+.

Once again, a discrete comparison principle yields that wh ≥ 0. �

Next we need to present a suitable discrete proxy for u. Namely, we consider
Rhu ∈ V0

T to be such that, for every z ∈ N i
T ,

(20) Lη,ε[Rhu](z) = Lη[u](z).

Recall that, as detailed in Remark 19, the right hand side is meaningful. The
approximation power of Rhu is the content of the following result.

Corollary 23 (projection error). Let u be the solution of (18) and Rhu be defined
in (20). If the regularization scale ε is chosen according to Definition 20, then we
have

(21) ‖u−Rhu‖L∞(Ω) . e(h) = max{hµs, h1−s},

with an implicit constant that is independent of h.

Proof. We begin by recalling that, as indicated by Proposition 18, we must set
β = 1 + s.

Observe that, owing to (20),

I = |Lη,ε[u−Rhu]| = |Lη,ε[u]− Lη[u]| . ε(z)1−sδ(z)−1,

where, in the last step, we used Theorem 3.
Using the the current choice of ε we then continue this estimate as

I .

(
hδ(z)

1− 1
µ

)1−s

δ(z)−1 = h1−sδ(z)−2sδ(z)
s+

s−1
µ . h1−sδ(z)−2s,

provided that s+ s−1
µ ≥ 0.

If, on the other hand, we have s+ s−1
µ < 0 we use that δ(z) & hz & hµ to obtain

that

h1−sδ(z)
s+

s−1
µ . h1−sh

µ
(
s+

s−1
µ

)
≈ hµs,

so that, in all cases,

I . max{hµs, h1−s}δ(z)−2s.

The remaining of the proof follows exactly as the one of Theorem 15. �

With this proxy of the solution at hand we are ready to obtain error estimates.
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Theorem 24 (error estimates). In the setting of Proposition 18 let u solve (18)
and uh ∈ V0

T solve (19). If T satisfies (6) and ε is chosen as in Definition 20, we
have that

‖u− uh‖L∞(Ω) = ẽ(h) . e(h),

where the quantity e(h) is defined in (21).

Proof. We will construct suitable super- and subsolutions to the discrete obstacle
problem (19) and apply the comparison principle of Lemma 22 to conclude. Notice
that, owing to (21), there is a sufficiently large C > 0 for which

u− Ce(h) ≤ Rhu ≤ u+ Ce(h).

Supersolution: Let u+
h = Rhu + C1e(h) ∈ VT , where the constant C1 > 0 is to be

chosen, and notice that u+
h ≥ 0 in Ωc. Moreover, for z ∈ N i

T , with the barrier
function b = χΩ and Lemma 4,

Lη,ε[u+
h ](z) = Lη,ε[Rhu](z) + C1e(h)Lη,ε[b](z) > Lη[u](z) ≥ f(z).

In addition, if C1 ≥ C, we have, for any z ∈ N i
T ,

u+
h (z) ≥ u(z) + (C1 − C)e(h) ≥ ψ(z) + (C1 − C)e(h) ≥ ψ(z).

We have then shown that u+
h is a supersolution for the obstacle problem. This

implies, via Lemma 22, that for every x ∈ Ω we have

uh(x) ≤ u+
h (x) ≤ u(x) + (C + C1)e(h),

so that

uh(x)− u(x) . e(h).

Subsolution: We now define u−h = Rhu−C2e(h) ∈ VT where C2 > 0 is to be chosen.

Notice that u−h ≤ 0 in Ωc. We will show that it is a subsolution. To see this, let

z ∈ N i
T and assume that u−h (z) ≥ ψ(z). Then,

ψ(z) ≤ u−h (z) ≤ u(z)− (C2 − C)e(h) < u(z),

provided C2 > C. The fact that this inequality is strict shows that

Lη,ε[u−h ](z) = Lη,ε[Rhu](z)− C2e(h)Lη,ε[b](z) < Lη[u](z) = f(z),

so that indeed this is a subsolution. We invoke once again Lemma 22 to obtain
that

u(x)− (C + C2)e(h) ≤ u−h (x) ≤ uh(x), ∀x ∈ Ω,

as we needed to show. �

Remark 25 (optimality and complexity). We comment that the rate of conver-
gence of Theorem 24, as expressed by the quantity e(h) is optimal for our proof
technique. To see this, we recall that near the boundary the solution to the obsta-
cle problem behaves like that of the linear problem, i.e., u(z) ≈ δ(z)s, so that the
rate of interpolation is at best hµs. On the other hand, the interior regularity of
the solution is, at best, C1,s. Since our operator Lη is of order 2s, and our proof
technique is based on comparison principles, the rate in the interior can be at best
h1+s−2s = h1−s, as we have obtained.
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Finally, with the notation and conventions of Remark 16 let us present the
following complexity estimate

‖u− uh‖L∞(Ω) .


max

{
N−s| logN |s, N (s−1)/2| logN |(1−s)/2

}
, d = 2,

max
{
N−s/2| logN |s/2, N (s−1)/3| logN |(1−s)/3

}
, d = 3.

5.2. Regularity of free boundaries. Of particular importance in applications is
the so-called free boundary, which is the boundary of the contact set

Γ = ∂Ω0 ∩ Ω.

In this section we are concerned with the regularity of this set.

5.2.1. Regular points. We begin with the regularity of the free boundary near regu-
lar points which, roughly speaking, are those at which the function u−ψ grows at
a rate 1 + s. Define d(x) = dist(x,Ω0) to be the distance from x ∈ Ω to the contact
set. The following result is proved in [19, Theorem 1.1].

Theorem 26 (regular points I). Let α ∈ (0,min{s, 1− s}). Let ψ ∈ Ψ and x0 ∈ Γ
be a regular point. Then, there exist positive constants a(x0) and r(x0) such that

u(x)− ψ(x) = a(x0)d(x)1+s + o(|x− x0|1+s+α)

for all x ∈ Br(x0)(x0) ∩ Ω+. Moreover, the set of points satisfying this property is

an open set of Γ and is locally a C1,γ graph for all γ ∈ (0, s). Finally,

u ∈ C1,s
(
Br(x0)(x0)

)
Remark 27 (singular points). The points of Γ that are not regular are called
singular. According to [19, Theorem 1.1], these points satisfy

u(x)− ψ(x) = o(|x− x0|1+s+α).

Singular points do in fact occur and are characterized in [6] for the case η ≡ 1.

Remark 28 (C1,γ smoothness). Consider an interface Γ, a point x0 ∈ Γ with
normal vector ν, and x = x0 + r0ν for a sufficiently small r0 > 0. If the interface
Γ was C2, then the closest point to x in Γ is x0. However, if Γ is of class C1,γ with
γ < 1 (as in the conclusion of Theorem 26 ), then this is not the case anymore and
the distance d(x,Γ) may be realized at a point different than x0.

The following variant of Theorem 26, which avoids the use of the distance func-
tion d is stated in [36, Theorem 4.4.1].

Theorem 29 (regular points II). Let α ∈ (0,min{s, 1 − s}), θ > max{0, 2s − 1},
and γ ∈ (0, s). Let the obstacle ψ ∈ C2,θ

0 (Rd). Let x0 ∈ Γ be a free boundary point.
Then, there is r0 > 0 such that, for all x ∈ Br0(x0), we have:

(i) either

(22) u(x)− ψ(x) = a0 ((x− x0) · ν)
1+s
+ +O(|x− x0|1+s+γ),

for some a0 > 0, ν ∈ Sd−1, and γ > 0,
(ii) or

u(x)− ψ(x) = O(|x− x0|1+s+α).

Moreover, the set of points satisfying (22) (regular points) is an open set of Γ, and
it is locally a C1,γ manifold.
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The following result is presented in [36, Corollary 4.5.3] without proof. Since
this estimate will be useful in our constructions we present a proof.

Lemma 30 (Hölder continuity). Let x0 ∈ Γ be a regular point, namely, one that
satisfies (22). In the setting of Theorem 29, the vector and scalar

b(z) = lim
x→z

1

d(x)s
∇(u(x)− ψ(x)), a(z) =

|b(z)|
1 + s

are of class C0,γ in Br0(x0) ∩ Γ.

Proof. Let x1, x2 ∈ Γ ∩ Br0(x0) be two arbitrary free boundary points which we
assume to be regular points and so to satisfy Theorem 29. Since the set of regular
points is open in Γ, this may require further restricting r0 > 0.

Denote v = u− ψ. It is possible to show that [36, Proposition 4.4.15]∥∥∥∥ 1

ds
∇v
∥∥∥∥
C0,γ(Br0 (x0))

≤ c0,

whence ∣∣∣∣ 1

d(x)s
∇v(x)− 1

d(y)s
∇v(y)

∣∣∣∣ ≤ c0|x− y|γ , ∀x, y ∈ Br0(x0).

Since Γ is C1,γ within Br0(x0) we let ν1,ν2 ∈ Sd−1 be the unit normals to Γ at
x1, x2 pointing towards Ω+. Let x→ x1, y → x2 and use the fact that

lim
x→x1

1

d(x)s
∇v(x) = b(x1), lim

y→x2

1

d(y)s
∇v(y) = b(x2),

to deduce that

|b(x1)− b(x2)| ≤ c0|x1 − x2|γ ,
whence b ∈ C0,γ(Br0(x0) ∩ Γ). Since a(xi) = 1

1+s |b(xi)|, we infer that

|a(x1)− a(x2)| . ||b(x1)| − |b(x2)|| ≤ |b(x1)− b(x2)| ≤ c0|x1 − x2|γ .

This is the desired estimate for a. �

To exploit the previous result we make the following convenient, but realistic,
regularity assumption on Γ.

Assumption 31 (regular points). The free boundary Γ consists only of regular
points, namely those that satisfy Theorem 26 or (22).

Next we discuss the fundamental nondegeneracy properties (NDP). Given ε > 0
we let S(Γ, ε) denote a strip of thickness ε around the free boundary Γ, namely,

S(Γ, ε) = {x ∈ Ω | d(x) = dist(x,Γ) < ε} , S+(Γ, ε) = S(Γ, ε) ∩ Ω+.

The following result is known as an NDP in distance. It prescribes a pointwise
behavior of u−ψ (growth with rate at least 1 + s) if one is close to a regular point
of the free boundary Γ.

Corollary 32 (NDP in distance). Let K b Ω and set Γ̃ = Γ∩K. If Assumption 31
is valid, then there exists constants a, ε0 > 0 such that

u(x)− ψ(x) ≥ ad(x)1+s, ∀x ∈ S+(Γ̃, ε0).

Proof. We proceed in several steps.
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1. Since, by Assumption 31, every point x0 ∈ Γ̃ is regular we have that a(x0) =
|b(x0)|

1+s > 0, and a and b are of class C0,γ in view of Lemma 30. We then deduce
that

a =
1

2
min
x0∈Γ̃

a(x0) > 0,

because Γ̃ is compact.
2. Let v = u− ψ, x0 ∈ Γ̃, and r0 > 0 be such that∥∥∥∥ 1

ds
∇v
∥∥∥∥
C0,γ(Br0 (x0))

≤ C0 = C(x0).

Given x ∈ Br0/2(x0) we let x1 ∈ Γ̃∩Br0(x0) be a point at minimal distance, i.e.,

d(x) = |x− x1| = (x− x1) · ν1.

Then, for y close to x1, we have∣∣∣∣ 1

d(x)s
∇v(x)− 1

d(y)s
∇v(y)

∣∣∣∣ ≤ C0|x− y|γ ,

whence, upon computing the limit as y → x1, we get∣∣∣∣ 1

d(x)s
∇v(x)− b1

∣∣∣∣ ≤ C0|x− x1|γ ,

This implies that

1

d(x)s
∂ν1

v(x) ≥ b1 · ν1 − C0|x− x1|γ = |b1| − C0|x− x1|γ ≥ (1 + s)a,

provided rγ0C0 ≤ (1 + s)a, upon restricting r0 if necessary. Therefore, we deduce
the nondegeneracy property for the normal derivative

∂ν1
v(x) ≥ (1 + s)ad(x)s = (1 + s)a ((x− x1) · ν1)

s
+ .

3. Let x(t) = tx + (1 − t)x1 denote any point in the segment joining x1 and x,

t ∈ [0, 1]. Then x1 ∈ Γ̃ is again a point in Γ̃ at a minimal distance to x(t). The
previous point implies then that

dv(x(t))

dt
= ∂ν1v(x(t))|x− x1| ≥ (1 + s)ats|x− x1|1+s,

or

v(x(t)) = v(x(1))− v(x(0)) =

∫ 1

0

dv(x(t))

dt
dt ≥ a|x− x1|1+s,

for all x ∈ Br0/2(x0). This is the desired local nondegeneracy property.

4. We cover Γ̃ with balls Br0/2(x0) for every x0 ∈ Γ̃. Since Γ̃ is compact, there is
a finite subcovering

Γ̃ ⊂
M⋃
m=1

Brm/2(xm).

Finally, let ε0 > 0 be the distance from Γ̃ to the complement of ∪Mm=1Brm/2(xm).

Then every x ∈ S+(Γ̃, ε0) belongs to a ball Brm/2(xm) for which the previous
step applies.

This concludes the proof. �
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Remark 33 (NDP). Observe that Corollary 32 implies the following weaker form

of nondegeneracy: For all x0 ∈ Γ̃ and r ∈ (0, ε0] we have

(23) sup
x∈Br(x0)

(u(x)− ψ(x)) ≥ ar1+s.

This inequality is also valid for all ε0 < r ≤ diam(Ω) because

ε0 =
ε0

r
r ≥ ε0

diam(Ω)
r,

which yields (23) with the constant a replaced by

ã = a

(
ε0

diam(Ω)

)1+s

.

We now make an explicit assumption about the boundary behavior of u − ψ,
which is not only useful for the subsequent argument, but it also has been used in
deriving regularity via a localization argument; see Proposition 18.

Assumption 34 (boundary behavior). The obstacle is strictly negative on ∂Ω,
i.e., there is c0 > 0 for which

ψ(x) ≤ −c0 < 0, ∀x ∈ ∂Ω.

The assumption above, by continuity, assumes that the free boundary Γ is uni-
formly away from the boundary of the domain ∂Ω, and thus the problem is linear
in a neighborhood of ∂Ω; see [17] for details in the case η ≡ 1. In addition, this
implies that the NDP in distance of Corollary 32 holds for all x ∈ S+(Γ, ε0).

Let now ε ∈ (0, ε0]. We define a ε–neighborhood of the free boundary Γ

N(Γ, ε) =
{
x ∈ Ω+

∣∣ 0 < u(x)− ψ(x) < ε1+s
}
.

Corollary 35 (comparing N(Γ, ε) and S(Γ, ε)). If Assumptions 31 and 34 hold,
then there is ε1 ∈ (0, ε0], with ε0 > 0 defined in Corollary 32, such that

N

(
Γ, a

1
1+s ε

)
⊂ S(Γ, ε), ∀ε ∈ (0, ε1].

Proof. Consider the compact set ω between S+(Γ, ε0) and ∂Ω, namely,

ω = Ω \ (S+(Γ, ε0) ∩ Ω0).

Set again v = u− ψ. In view of Assumption 34 and the fact that v ∈ C0,s(Ω̄), we
deduce

v ≥ c0, on ∂Ω, v ≥ aε1+s
0 on ∂S+(Γ, ε0) ∩ Ω+,

and that there is a constant c1 > 0 such that

v(x) ≥ c1, ∀x ∈ ω.
Let ε1 ∈ (0, ε0] be given by aε1+s

1 = c1. The definition of S(Γ, ε) in conjunction
with the NDP in distance of Corollary 32 guarantee that for all ε ∈ (0, ε1]

v(x) ≥ aε1+s, ∀x ∈ S(Γ, ε)c ∩ Ω+.

Therefore, for all x ∈ N(Γ, a
1

1+s ε) we have

0 < v(x) <

(
a

1
1+s ε

)1+s

= aε1+s,

whence x ∈ S(Γ, ε) as asserted. This concludes the proof. �
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Ω0 Ω0

Ω+

Ω+

Ω0

Ω+

Ω+

Figure 1. Examples of singular free boundary points where the
function u − ψ has strict quadratic growth. We expect quadratic
growth in the direction of the red arrows. The case on the right
is more degenerate than the case on the left, and worse for the
approximation of the free boundary Γ (depicted in blue). In both
cases we have that dim ker A = 1. A discrete free boundary ΓT ,
which is at a distance O(δ(h)1/2) is depicted in dashed brown.

We comment that the inclusion asserted in the previous Corollary is the typical
assumption that is made for the error estimates in distance for the classical obstacle
problem. See, for instance, [55, Section 2(d)].

5.2.2. Singular points. We now examine nondegeneracy for singular points. We
base our discussion on [6], which requires that Theorem 26 holds. We recall that a
singular point x0 ∈ Γ corresponds to

a(x0) =
|b(x0)|
1 + s

= 0

The characterization of singular points given in [6] hinges on the following struc-
tural assumption.

Assumption 36 (singular points). There is c0 > 0 and γ > 0 such that ψ ∈
C3,γ(Ω), f+∆ψ ≤ −c0 < 0 in {x ∈ Ω | ψ(x) > 0} and ∅ 6= {x ∈ Ω | ψ(x) > 0} b Ω.

For the rest of the discussion regarding singular points we restrict our attention
to the fractional Laplacian, i.e., η ≡ 1. The following result is proved in [6, Lemma
3.2].

Lemma 37 (general growth). If Assumption 36 holds, then there are constants
a, r0 > 0 such that, for all x0 ∈ Γ

sup
x∈Br(x0)

(u(x)− ψ(x)) ≥ ar2, ∀r ∈ (0, r0).

Notice that this is similar to (23) but with exponent 2 instead of 1 + s.
Consider now the following class of homogeneous polynomials of degree two:

P+
2 =

{
p2(x) =

1

2
xᵀAx

∣∣∣∣ A ∈ Rd×d \ {O}, Aᵀ = A, σ(A) ⊂ [0,∞)

}
.

The following result, which can be found in [6, Proposition 7.2], is crucial to char-
acterize singular points but does not play an important role in our discussion.
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Proposition 38 (growth at singular points). If Assumption 36 holds, then there
is a modulus of continuity ω : R+ → R+ such that for any x0 ∈ Γ singular, we have

u(x)− ψ(x) = px0
2 (x− x0) + ω(|x− x0|)|x− x0|2,

for some px0
2 ∈ P+

2 .

Remark 39 (growth at singular points). In the setting of Proposition 38 it is
important to notice that, if dim ker A = k, with k ∈ {0, . . . , d − 1}, then u − ψ
exhibits strict quadratic growth in the directions orthogonal to ker A. Since there
is at least one such direction, we conclude that Proposition 38 implies Lemma 37.

The first example of this scenario is when dim ker A = 0. This corresponds to
an isolated contact point x0, with the function u − ψ growing quadratically in all
directions emanating from x0.

As a second example we consider the situations given in Figure 1. Although
the geometry is quite distinct, in both cases we have dim ker A = 1. We expect
quadratic growth in the directions of the red arrows. The case on the right is more
degenerate than the case on the left, and worse for the approximation of the free
boundary Γ. This will be discussed further below.

5.3. Error estimates for free boundaries. Let us now put the pointwise error
estimates of the previous sections to use and, on the basis of the discussions of
Section 5.2, obtain approximation properties for the free boundary Γ. To start
we mention that there is ψh = Ihψ ∈ VT (the Lagrange interpolant) such that
ψh(z) = ψ(z) for all z ∈ NT and, more importantly,

(24) ‖ψ − ψh‖L∞(Ω) = σ(h),

for some function σ : R+ → R+ with σ(h) ↓ 0 as h ↓ 0. Typically, and this shall be
the case if ψ ∈ Ψ,

σ(h) . |ψ|W 2,∞(Ω)h
2.

Notice that (19), and its analysis, remain unchanged if we replace ψ by ψh.
The next step is to define the discrete free boundary Γh. To do so, instead of

looking at the zero level set of uh − ψh we consider the level set at height

δ(h) = ẽ(h) + σ(h),

where ẽ was defined in Theorem 24, see also (21). Thus we define the discrete
noncontact and contact sets, respectively, to be

Ω+
T = {x ∈ Ω | uh(x)− ψh(x) > δ(h)} , Ω0

T = {x ∈ Ω | uh(x)− ψh(x) ≤ δ(h)} .

The free boundary is then,

ΓT = ∂Ω+
T ∩ Ω = ∂Ω0

T ∩ Ω.

We intend to prove that, in a sense, Γ and ΓT are close. This will be quantified
by means of the Hausdorff distance.

Definition 40 (Hausdorff distance). Let A,B ⊂ Rd. Their Hausdorff distance is

dH(A,B) = max

{
max
x∈A

dist(x,B),max
y∈B

dist(y,A)

}
.

The error estimate for free boundaries reads as follows.
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Theorem 41 (free boundary approximation). Let Γ satisfy Assumptions 31 and
34, and let a > 0 be given in Corollary 32 and (23). Then, there is h0 > 0 such
that

dH(Γ,ΓT ) ≤
(

2

a
δ(h)

) 1
1+s

, ∀h ∈ (0, h0].

Proof. We proceed in three steps.

1. We first show that Ω0 ⊂ Ω0
T . To achieve this consider x ∈ Ω0, so that u(x) =

ψ(x). Thus, using (21) and (24) we have

uh(x)− ψh(x) = (uh(x)− u(x)) + (ψ(x)− ψh(x)) ≤ ẽ(h) + σ(h) = δ(h).

In other words, x ∈ Ω0
T .

2. Next we show that

ΓT ⊂ S

Γ,

(
2

a
δ(h)

) 1
1+s

 .

Let then x ∈ ΓT and x0 ∈ Γ be the closest point to it, i.e.,

|x− x0| = d(x) = dist(x,Γ).

From the previous step we know that x ∈ Ω+. Since

uh(x)− ψh(x) = δ(h),

and, in view of Theorem 24, u(x)− uh(x) ≤ ẽ(h) we realize that

u(x)− ψ(x) ≤ (u(x)− uh(x)) + (uh(x)− ψh(x)) + (ψh(x)− ψ(x))

≤ ẽ(h) + δ(h) + σ(h) = 2δ(h).

Let now h0 > 0 be sufficiently small so that δ(h0) ≤ a
2ε

1+s
1 , where ε1 > 0 is

given in Corollary 35. This implies

x ∈ N(Γ, a
1

1+s ε1) ⊂ S(Γ, ε1).

Therefore, Corollary 32 yields

u(x)− ψ(x) ≥ a dist(x,Γ)1+s,

whence,

a dist(x,Γ)1+s ≤ 2δ(h),

i.e.,

dist(x,Γ) ≤
(

2

a
δ(h)

) 1
1+s

,

as desired.
3. We show that

Γ ⊂ S

ΓT ,

(
2

a
δ(h)

) 1
1+s

 .

Indeed, let x0 ∈ Γ and assume, for the sake of contradiction, that

R = dist(x,ΓT ) >

(
2

a
δ(h)

) 1
1+s

.
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Notice that the first step of the proof yields that if BR(x0) ⊂ Ω0
T , then

uh(y)− ψh(y) ≤ δ(h), ∀y ∈ BR(x0).

We now recall (23) which is a consequence of Corollary 32: for all r ≤ diam(Ω)

sup
y∈Br(x0)

(u(y)− ψ(y)) ≥ ar1+s.

In other words, by compactness and continuity, there is y ∈ BR(x0) such that

u(y)− ψ(y) ≥ aR1+s.

On the other hand,

uh(y)− ψh(y) = (uh(y)− u(y)) + (u(y)− ψ(y)) + (ψ(y)− ψh(y))

≥ −ẽ(h) + aR1+s − σ(h) > −ẽ(h) + 2δ(h)− σ(h) > δ(h),

which is a contradiction. This proves the assertion and concludes the proof. �

Remark 42 (stability). We observe that the nondegeneracy constant a > 0, defined
in Corollary 32, acts as a stability parameter in the estimate of Theorem 41.

Remark 43 (localized estimate). Let K b Ω be a compact so that Γ∩K is made
only of regular points. We thus allow Γ to have singular points in Γ ∩Kc. Since
the set of regular points is relatively open in Γ, we realize that Corollary 32 is valid
in K, i.e.,

u(x)− ψ(x) ≥ aKd(x)1+s, ∀x ∈ S+(Γ, ε) ∩K,
for some constant aK > 0 that, in particular, depends on the compact K. We can
thus repeat the proof of Theorem 41 locally to deduce

dH(Γ ∩K,ΓT ∩K) ≤
(

2

aK
δ(h)

) 1
1+s

, ∀h ∈ (0, h0].

Theorem 41 and Remark 43 assume that, at least locally, there are no singular
free boundary points. Let us conclude the discussion by presenting some results
about the general case, namely when Γ contains singular points. An inspection of
the proof of Theorem 41 shows that the second step cannot be carried out, but the
first and third one remain valid. In fact, the first step hinges on the definition of
ΓT and the last step relies on the growth condition (23) which, in principle, could
be replaced by the general growth condition provided in Lemma 37. This brings
about the following result.

Theorem 44 (error estimates for singular points). If Assumption 36 holds and
η ≡ 1, then for every x ∈ Γ we have that x ∈ Ω0

T and

(25) dist(x,ΓT ) ≤
(

2

a
δ(h)

) 1
2
.

Remark 45 (a posteriori error estimation). Estimate (25) establishes an error of Γ
relative to ΓT . This is the spirit of an a posteriori error estimate. We refer to [57]
for similar estimates for the classical obstacle problem for the Laplace operator.

Remark 46 (regularity). Estimate (25) requires no regularity of the free boundary
Γ beyond the nondegeneracy property of Lemma 37, which relies on Assumption 36.
The free boundary regularity stated in Proposition 38 is not needed to assert (25). It
is then natural to wonder how the quadratic growth in certain directions established
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in Proposition 38 can be exploited for free boundary approximation. For instance,
one may use the approximations that are depicted in Figure 1.

In the left panel of Figure 1 the discrete free boundary is uniformly close to Γ
and a global estimate of the form

dist(x,Γ) . δ(h)1/2, ∀x ∈ ΓT

is expected.
On the other hand, the right panel of Figure 1 shows that points of ΓT may be

far away from Γ and, thus, the estimate above cannot be obtained.

To conclude the discussion of approximation of free boundaries at singular points
we mention that the scenarios depicted in Figure 1 also illustrate the relevance of
the localized error estimates alluded to in Remark 43.

6. A concave, fully nonlinear, nonlocal, problem

As a final application of our two-scale discretization, we shall consider a nonlocal
Hamilton Jacobi Bellman equation. Let s ∈ (0, 1), and ηi ∈ C(λ,Λ) (i ∈ {1, 2}) for
some λ,Λ. Given f ∈ C(Ω̄) we must find u : Rd → R such that

(26) min {Lη1 [u],Lη2 [u]} = f, in Ω, u = 0, in Ωc.

Equations of this form have gathered a lot of attention in recent times. We
refer the reader to, for instance, [21, 23, 44] for details regarding the existence,
uniqueness, and regularity of solutions. Regarding numerics, in the case Ω = Rd,
see [8, 59, 25, 10, 9, 27, 28]. To our knowledge, however, no reference addresses
the numerical approximation in the case of a bounded domain, as in (26). Our
goal here will be to provide then the first convergent method for such problem. To
achieve this we will get inspiration from [47, 35, 2, 11], and relate this problem to
a sequence of obstacle problems.

6.1. Existence and uniqueness. Since it will be useful for our numerical pur-
poses, we begin by discussing the existence of solutions. Below, by ÷ we mean the
remainder of integer division.

Theorem 47 (existence and uniqueness). Assume that f ∈ C(Ω̄) and that Lηi
have a common supersolution, i.e., there is U ∈ C2(Rd) for which

Lηi [U ] ≥ f in Ω, U ≥ 0, in Ωc.

Then, problem (26) has a unique solution. Moreover, this solution can be obtained

as the uniform limit of the following sequence: u0 ∈ H̃s(Ω) solves

Lη1 [u0] = f, in Ω.

For k ∈ N, let i = k ÷ 2 + 1. The function uk ∈ H̃s(Ω) solves

(27) min {Lηi [uk]− f, uk − uk−1} = 0, in Ω.

Proof. We split the proof in several steps.
Convergence: Notice that the sequence {uk}k∈N0

, as solutions of an obstacle problem

with common right hand side, lie uniformly in C0,s(Ω̄). Moreover, by construction,
the sequence is nondecreasing, i.e., uk ≥ uk−1 and bounded above. Indeed, since

Lη1 [U ] ≥ f = Lη1 [u0] in Ω, U − u0 ≥ 0, in Ωc,
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we must have, by comparison, that U ≥ u0. Assume next that, for some k ∈ N,
we have uk−1 ≤ U . Let x ∈ Ω. We either have uk(x) = uk−1(x) ≤ U(x) or
uk(x) > uk−1(x). However, at such points we must have

Lηi [uk](x) = f(x) ≤ Lηi [U ](x).

Therefore, if we denote Ω+
k = {x ∈ Ω | uk(x) > uk−1(x)} we see that

Lηi [U − uk] ≥ 0, in Ω+
k , U − uk ≥ 0, in (Ω+

k )c.

Consequently, by comparison, we must have that uk ≤ U in Ω+
k . By Dini’s theorem

then, there is u ∈ C(Ω̄) such that uk ⇒ u.
Solution: The uniform convergence also implies that, for i ∈ {1, 2},

Lηi [u] ≥ f, in Ω.

On the other hand, if we show that for every k ∈ N0

(28) min {Lη1 [uk],Lη2 [uk]} ≤ f, in Ω,

we may pass to the limit and obtain that

Lη1 [u] ≥ f, Lη2 [u] ≥ f, min {Lη1 [u],Lη2 [u]} ≤ f,
and thus u must be a solution.
Proof of (28): We argue by induction. By the way the iterative scheme is initialized,

(28) holds for k = 0. Assume now that the inequality holds for some k ∈ N.
Consider the noncoincidence set

xn ∈ Ω+
k = {x ∈ Ω | uk+1(x) > uk(x)} .

By the complementarity conditions we must have, for some i ∈ {1, 2}, that

Lηi [uk+1](xn) = f(xn).

If, on the other hand, we consider the coincidence set

xc ∈ Ω0
k = {x ∈ Ω | uk+1(x) = uk(x)} ∩ Ω,

we see that uk+1(xc) = uk(xc) and uk+1(y) ≥ uk(y) for all y ∈ Rd. By the inductive
hypothesis, there is i0 ∈ {1, 2} for which

Lηi0 [uk](xc) ≤ f(xc),

then

Lηi0 [uk+1](xc) = v.p.

∫
Rd

(uk+1(xc)− uk+1(y))
1

|x− y|d+2s
η

(
xc − y
|xc − y|

)
dy

= v.p.

∫
Rd

(uk(xc)− uk+1(y))
1

|x− y|d+2s
η

(
xc − y
|xc − y|

)
dy

≤ v.p.

∫
Rd

(uk(xc)− uk(y))
1

|x− y|d+2s
η

(
xc − y
|xc − y|

)
dy

= Lηi0 [uk](xc) ≤ f(xc),

as claimed.
Uniqueness: Follows by comparison. �

Remark 48 (obstacle). Notice that the iterative scheme presented in Theorem 47
requires, at every step the solution of an obstacle problem like the one described in
Section 5.
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Remark 49 (supersolution). Theorem 47 relies on the existence of a common
supersolution for the operators. A possible common supersolution is

U(x) =
A

2
|x|2 +B.

The constant B can be chosen so that U ≥ 0 in Ωc, whereas we can choose A,
depending only on d, s, λ, Λ, and −‖f‖L∞(Ω), to obtain a supersolution.

Remark 50 (rate of convergence). It is not known to us whether a rate of conver-
gence for the iteration of Theorem 47 can be established.

6.2. A convergent scheme. As a final application of our constructions we present
a scheme for problem (26). Inspired by the proof of Theorem 47 we consider the
following iterative scheme: uh,0 ∈ V0

T is such that

Lη1,ε[uh,0](z) = f(z), ∀z ∈ N i
T .

For k ∈ N, let i = k ÷ 2 + 1. The function uh,k ∈ V0
T solves

(29) min {Lηi,ε[uh,k](z)− f(z), uh,k(z)− uh,k−1(z)} = 0, ∀z ∈ N i
T .

We immediately observe that, for every k, (29) has a unique solution. We would
now like to obtain convergence of uh,k to u, the solution to (26). In order to achieve
this, we introduce, for k ∈ N, the function ũh,k ∈ V0

T that is the solution of

(30) min {Lηi,ε[ũh,k](z)− f(z), ũh,k(z)− Ihuk−1(z)} = 0, ∀z ∈ N i
T .

Notice that ũh,k is nothing but an approximation to the function uk from the scheme
of Theorem 47. As such we expect that ũh,k → uk with a given rate. We quantify
this by introducing the following assumption.

Assumption 51 (approximation). There is a continuous function σ : R+ → R+

such that σ(h) ↓ 0 as h ↓ 0 for which

sup
k∈N0

‖uk − ũh,k‖L∞(Ω) ≤ σ(h),

where {uk}k∈N0
are defined in Theorem 47 and {ũh,k}k∈N0

in (30).

Remark 52 (smoothness and compatibility). While we would like to assert that
the rate σ(h) of Assumption 51 is that given by Theorem 24 we are unable to prove
this. The reason is that the error estimates of this Theorem hinge on the regularity
of Proposition 18 which need the obstacle to belong to the class Ψ. This means
that, for every k ∈ N, we must be able to assert that:

1. uk ∈ C2,1(Ω). While we are not able to verify this directly, we comment that this
smoothness assumption is taken from [17], which in turn follows the arguments
of [24, 67]. This may not be sharp.

2. uk|∂Ω < 0. However, we have uk|∂Ω = 0.

Clearly
ẽ(h) ≤ σ(h),

where ẽ(h) was defined in Theorem 24; see also (21). Let us now show convergence.

Theorem 53 (convergence). In the setting of Theorem 47 and under Assump-
tion 51, let u solve (26), and {uh,k}k∈N0,h>0 be the solutions to (29). Assume that,
as k ↑ ∞ and h ↓ 0, we have that

k σ(h)→ 0.
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Then, uh,k ⇒ u.

Proof. As mentioned above, the family {ũh,k}k∈N0
⊂ V0

T , defined in (30), is an
approximation of the obstacle problem defined in (27).

Consider now the difference ũh,k − uh,k. We claim that

(31) ‖ũh,k − uh,k‖L∞(Ω) ≤ ‖uh,k−1 − Ihuk−1‖L∞(Ω).

Indeed, if we define wh = ũh,k + ‖uh,k−1 − Ihuk−1‖L∞(Ω) we see that

wh ≥ ũh,k = 0, in Ωc.

Moreover, for z ∈ N i
T ,

wh(z) ≥ ũh,k(z) + uh,k−1(z)− Ihuk−1(z) ≥ uh,k−1(z)

and Lηi,ε[wh](z) ≥ f(z). In other words, the function wh is a supersolution to the
obstacle problem (29). Lemma 22 then implies that uh,k ≤ wh, i.e.,

uh,k − ũh,k ≤ ‖uh,k−1 − Ihuk−1‖L∞(Ω).

A similar argument shows the lower bound.
Using Assumption 51 we now iterate (31) to obtain

‖uk − uh,k‖L∞(Ω) ≤ ‖uk − ũh,k‖L∞(Ω) + ‖ũh,k − uh,k‖L∞(Ω)

≤ σ(h) + ‖uh,k−1 − Ihuk−1‖L∞(Ω)

≤ σ(h) + ‖uk−1 − Ihuk−1‖L∞(Ω) + ‖uh,k−1 − uk−1‖L∞(Ω)

≤ 2σ(h) + ‖uh,k−1 − uk−1‖L∞(Ω)

≤ (k + 1)σ(h) + ‖uh,0 − u0‖L∞(Ω) ≤ (k + 2)σ(h),

where, in the last step, we used that uh,0 is an approximation to the solution of the
linear problem.

The triangle inequality, and the assumption on k and h, yield the result. �

Appendix A. Approximation of integrodifferential operators of
order 2s by second order differential operators

To gain some intuition about what properties of the operator we would like to
preserve after regularization; and, in addition, to highlight the differences between
the case of constant η (i.e., a fractional Laplacian) and a variable one, here we
inspect the approximation of the integrodifferential operator

Iε[w](x) =

∫
Bε

w(x+ y)− 2w(x) + w(x− y)

|y|d+2s
η

(
y

|y|

)
dy

by considering its action on a quadratic, i.e., w ∈ P2. This may help in justifying
our choice, showing the stark difference between our approach and that of [39, 40],
as well as providing some intuition into existing works that operate in a reverse
way. For instance, [22, 58, 64] approximate (local) second order elliptic differential
operators by integral operators like Iε. We emphasize, however, that to obtain
consistent, monotone, finite-difference schemes for arbitrary (local) second order
elliptic operators, one requires the use of wide stencils [49].

We begin by observing that, for w ∈ P2,

w(x+ y)− 2w(x) + w(x− y) = D2w(x) : y ⊗ y,
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where D2w(x) is the Hessian of w at x, ⊗ is the outer product, and : is the Frobenius
inner product. This means that

Iε[w](x) =

∫
Bε

D2w(x) : y ⊗ y 1

|y|d+2s
η

(
y

|y|

)
dy

= D2w(x) :

∫
Bε

y ⊗ y 1

|y|d+2s
η

(
y

|y|

)
dy = A : D2w(x),

where

A =

∫
Bε

y ⊗ y 1

|y|d+2s
η

(
y

|y|

)
dy ∈ Rd×d, Aᵀ = A.

Consider now the particular case of η ≡ 1. The change of variables y = εz with
z ∈ B1 shows that

A = ε2(1−s)
∫
B1

z ⊗ z 1

|z|d+2s
dz =

ε2(1−s)ωd
2d(1− s)

I,

where I is the identity matrix, and ωd = |Sd−1|. Therefore,

Iε[w](x) =
ε2(1−s)ωd
2d(1− s)

∆w(x), ∀w ∈ P2.

Assume now that the coefficient η is not constant, but even, i.e., η(z) = η(−z).
Notice that this assumption is included in the class C(λ,Λ) of Definition 1. The
change of variables y = εz implies that

A = ε2(1−s)
∫
B1

z ⊗ z 1

|z|d+2s
η

(
z

|z|

)
dz.

We see that A is symmetric positive definite. Let us use polar coordinates to obtain
that

A = ε2(1−s)
∫
Sd−1

θ ⊗ θη(θ)

∫ 1

0

r2

rd+2s
rd−1 dr dθ

=
ε2(1−s)

2(1− s)

∫
Sd−1

θ ⊗ θη(θ) dθ =
ε2(1−s)

2(1− s)
A0,

where, since η is even, A0 is diagonal but anisotropic. In this case

(32) Iε[w](x) =
ε2(1−s)

2(1− s)
A0 : D2w(x) =

ε2(1−s)

2(1− s)
∇·(A0∇w(x)), ∀w ∈ P2.

Let us, finally, consider the general case of a coefficient of the form η(x, z|z| ). In

this case

A0 = A0(x) =

∫
Sd−1

θ ⊗ θη(x, θ) dθ,

and

(33) Iε[w](x) =
ε2(1−s)

2(1− s)
A0(x) : D2w(x), ∀w ∈ P2.

Remark 54 (anisotropy). As we have already mentioned, it is not easy to construct
approximations of second order anisotropic operators, like those in (32) and (33),
that are monotone. In particular, (33) requires wide stencils.
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Let us mention now what are the implications of the previous considerations
for the approximation of the operator Lη, introduced in (1). First, owing to the
symmetry of the coefficient η, which is part of Definition 1, we have (4), with
K(r) = r−d−2s. Next, if we assume that w ∈ P2, we have

Lη[w](x) =
1

2

∫
Rd\Bε

(2w(x)− w(x+ y)− w(x− y)) η

(
y

|y|

)
Kε(|y|) dy

− 1

2
Iε[w](x),

where the smooth kernel Kε was introduced in (5), and

Iε[w](x) =

∫
Bε

w(x+ y)− 2w(x) + w(x− y)

|y|d+2s
η

(
y

|y|

)
dy.

Using (32) we then conclude that, if w ∈ P2,

Lη[w](x) =
1

2

∫
Rd\Bε

(2w(x)− w(x+ y)− w(x− y)) η

(
y

|y|

)
Kε(|y|) dy

− ε2(1−s)

1− s
∇·(A0∇w(x)).

In summary, by regularizing our operator, we have replaced it by a (local) sec-
ond order differential operator in divergence form, with a small coefficient, and an
operator of order zero. The monotonicity properties can then be driven by the zero
order operator without imposing any mesh restrictions.

Finally, expression (4) motivates the consistency for quadratics. The symmetry
of the kernel transforms the difference inside the integral into a second difference.
A quadratic is the highest order polynomial for which a second difference gives
exactly the value of the (directional) derivative. Notice that the approach from
[39, 40], that merely truncates the kernel, does not preserve this property.
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[31] Arturo de Pablo, Fernando Quirós, Ana Rodŕıguez, and Juan Luis Vázquez. A general frac-

tional porous medium equation. Comm. Pure Appl. Math., 65(9):1242–1284, 2012.

[32] Marta D’Elia, Qiang Du, Christian Glusa, Max Gunzburger, Xiaochuan Tian, and Zhi Zhou.

Numerical methods for nonlocal and fractional models. Acta Numer., 29:1–124, 2020.



36 J.P. BORTHAGARAY, R.H. NOCHETTO, A.J. SALGADO, AND C. TORRES

[33] Vincent J. Ervin, Norbert Heuer, and John Paul Roop. Numerical approximation of a time

dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal., 45(2):572–

591, 2007.
[34] Vincent J. Ervin and John Paul Roop. Variational formulation for the stationary fractional

advection dispersion equation. Numer. Methods Partial Differential Equations, 22(3):558–

576, 2006.
[35] Lawrence C. Evans and Avner Friedman. Optimal stochastic switching and the Dirichlet

problem for the Bellman equation. Trans. Amer. Math. Soc., 253:365–389, 1979.
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