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Abstract. La formulación mixta del problema de Poisson clásico consiste en introducir un flujo como
nueva variable con condiciones de borde adecuadas, obteniendo un sistema de ecuaciones acopladas.
Usando identidades del cálculo fraccionario, en este trabajo exploramos una formulación mixta del prob-
lema de Poisson fraccionario y probamos que el problema está bien planteado. Una discretización directa
del problema no parece posible, por lo que siguiendo ideas de Hughes y Masud introducimos una formu-
lación estabilizada, que da lugar a un problema coercivo y bien planteado. La coercividad implica que
cualquier discretización por elementos finitos conforme sea estable. Por último, obtenemos la conver-
gencia de estas discretizaciones y discutimos su implementación.
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Abstract. The mixed formulation of the classical Poisson problem consists in the introduction of a
flux as a new variable with adequate boundary conditions, resulting in a system of coupled equation sys-
tem. Using fractional calculus identities, in this work we explore a mixed formulation of the fractional
Poisson problem and prove the well-posedness of the problem. A direct discretization of this problem
seems out of reach, by following Hughes and Masud we are able to introduce a stabilized formulation
that results in a coercive and well-posed problem. The coercivity implies that any confirming finite el-
ement discretization is stable. Lastly, we prove the convergence of this discretization and discuss its
implementations.



1 INTRODUCTION

In the last years, study of nonlocal operators has been an active area of research in different
branches of mathematics. Nonlocal models have been increasingly used in different areas of
science. Namely, machine learning (Rosasco et al. (2010), Lu et al. (2022), Wei et al. (2020)),
finance (Carr et al. (2002)), image processing (Buades et al. (2010), Gilboa and Osher (2007),
Lou et al. (2010)), magnetohydrodynamic (Schekochihin et al. (2008)), among others. In par-
ticular, the fractional Laplacian has been considered in many applications, including, for ex-
ample, diffusion-reaction problems Yamamoto (2012), quasi-geostrophic flows Constantin and
Wu (1999), transport in porous media De Pablo et al. (2012) and ultrasound Treeby and Cox
(2010).

Let Ω ⊂ Rd be a bounded, Lipschitz domain. We propose to study a mixed formulation for
the fractional Poisson problem in Ω, namely{

(−∆)su = f in Ω,

u = 0 in Ωc := Rd \ Ω.
(1)

Above, s ∈ (0, 1), f ∈ L2(Ω), and (−∆)s denotes the fractional Laplacian

(−∆)su(x) := C(d, s) p.v.
∫
Rd

u(x)− u(y)

|x− y|d+2s
dy, x ∈ Rd, (2)

where

C(d, s) :=
22ssΓ(s+ d

2
)

πd/2Γ(1− s)
. (3)

Note that (−∆)s is an operator of order 2s. For the properties of this operator we refer to Acosta
and Borthagaray (2017), Di Nezza et al. (2012), Lischke et al. (2019) and Daoud and Laamri
(2022).

The fractional Laplacian can be regarded as a composition of certain weighted, nonlocal,
vector calculus operators. Namely, given w : Rd → R, we define its fractional gradient of order
s, gradsw : Rd → Rd,

gradsw(x) := µ(d, s)

∫
Rd

(w(x)− w(y))

|x− y|d+s

(x− y)

|x− y|
dy, (4)

and given Ψ : Rd → Rd we define its fractional divergence of order s, divsΨ : Rd → R,

divsΨ(x) := µ(d, s)

∫
Rd

(Ψ(x)−Ψ(y))

|x− y|d+s
· (x− y)

|x− y|
dy, (5)

where

µ(d, s) =
2sΓ(d+s+1

2
)

πd/2Γ(1−s
2

)
. (6)

These operators possess the following properties. In first place, we have (e.g. D’Elia et al.
(2021a))

(−∆)sw = −divsgradsw. (7)

Additionally, we have an integration by parts formula (e.g. Comi and Stefani (2019)): given
w ∈ C∞c (Rd), Ψ ∈ C∞c (Rd,Rd),∫

Rd

gradsw ·Ψ = −
∫
Rd

w divsΨ. (8)



This formula can be extended to a broader class of functions (i.e. the spaces H̃s(Ω) and L̃2(Ω)
defined below) via a density argument.

Some spaces we shall need are

H̃s(Ω) := {w ∈ Hs(Rd) : supp w ⊂ Ω}, (9)

furnished with the norm, cf. the Poincaré inequality (18),

‖w‖H̃s(Ω) := |w|Hs(Rd), (10)

where Hs(Rd) is the well know fractional Sobolev space

Hs(Rd) := {w ∈ L2(Rd) : |w|Hs(Rd) <∞} (11)

and | · |Hs(Rd) is the Gagliardo semi-norm, cf. Di Nezza et al. (2012),

|w|Hs(Rd) :=

(
C(d, s)

2

∫
Rd

∫
Rd

|w(x)− w(y)|2

|x− y|d+2s
dx dy

) 1
2

= ‖(−∆)
s
2w‖L2(Rd). (12)

We also define

H(divs; Ω) := {Ψ ∈ L2(Rd,Rd) : (divsΨ)
∣∣
Ω
∈ L2(Ω)}, (13)

with the norm
‖Ψ‖H(divs;Ω) :=

(
‖Ψ‖2

L2(Rd) + ‖(divsΨ)
∣∣
Ω
‖2
L2(Ω)

)1/2

. (14)

We will denote by L̃2(Ω) the space of functions in L2(Ω) that are extended by zero to Ωc.
A crucial property for our analysis is the following lemma. It follows from the Parseval

identity and an equivalent definition of grads for smooth functions via a convolution with the
Riesz kernel

Iα(x) =
1

cα

1

|x|d−α
, α ∈ (0, d), (15)

where

cα = π
d
2 2α

Γ(α
2
)

Γ(d−α
2

)
. (16)

This was shown in Shieh and Spector (2015).

Lemma 1 (Equivalence of seminorms). For a given s ∈ (0, 1), we have the equivalence of
seminorms

|w|Hs(Rd) ' ‖gradsw‖L2(Rd) (17)

for all w ∈ H̃s(Ω).

Finally, we have the following Poincaré inequality, see (Edmunds and Evans, 2022, Theorem
3.9).

‖w‖L2(Ω) ≤ CP |w|Hs(Rd) ' CP‖gradsw‖L2(Rd), ∀w ∈ H̃s(Ω). (18)



2 PROBLEM FORMULATION

The goal of this work is to consider a mixed formulation of the problem (1), which consists
in the introduction of the flux as a new variable. Therefore, we consider the following fractional
Darcy problem: find (p,Φ) ∈ L̃2(Ω)×H(divs; Ω) such that

Φ + gradsp = 0 in Rd,

divsΦ = f in Ω,

p = 0 in Ωc.

(19)

Clearly, (p,Φ) solves the problem above if and only if p solves (1) and Φ = −gradsp. We
remark that, due to the nonlocal nature of the problem, this definition needs to be imposed in
the whole space Rd and not just in the domain Ω.

Using the integration by parts formula (8), the weak formulation of (19) reads: find (p,Φ) ∈
L̃2(Ω)×H(divs; Ω) such that, for all (q,Ψ) ∈ L̃2(Ω)×H(divs; Ω),∫

Rd

Φ ·Ψ−
∫
Rd

p divsΨ +

∫
Rd

q divsΦ =

∫
Rd

fq. (20)

We emphasize that all but the first of the integrals above need to be effectively computed in Ω.
The problem above has a clear saddle-point structure. We introduce some more notation.

First, we define the forms

a : H(divs; Ω)×H(divs; Ω)→ R, a(Φ,Ψ) =

∫
Rd

Φ ·Ψ,

b : L̃2(Ω)×H(divs; Ω)→ R, b(q,Ψ) =

∫
Ω

q divsΨ,

F : L̃2(Ω)→ R, F (q) =

∫
Ω

fq.

(21)

Finally, we introduce
B : H(divs; Ω)→ L̃2(Ω) (22)

by its Riesz representative,

(BΨ, q)L2(Ω) := b(q,Ψ), ∀Ψ ∈ H(divs; Ω), q ∈ L̃2(Ω). (23)

3 WELL-POSEDNESS

Notice that a is symmetric. By standard arguments in the analysis of mixed formulations, to
prove the well-posedness of (20) it suffices to show that

• the form a is coercive in kerB;

• the form b satisfies an inf-sup condition.

The fact that a is coercive in kerB follows straightforwardly upon observing that kerB =
{Ψ ∈ H(divs; Ω) : divsΨ = 0 in Ω}. This yields that, for every Ψ ∈ kerB,

a(Ψ,Ψ) = ‖Ψ‖2
L2(Rd) = ‖Ψ‖2

H(divs;Ω). (24)

The inf-sup condition for b follows by the surjectivity of the divs operator.



Lemma 2 (inf-sup condition). Let Ω ⊂ Rd be a bounded, Lipschitz domain. The map divs|Ω
such that divs|ΩΨ := (divsΨ)|Ω maps H(divs; Ω) onto L2(Ω). Consequently, b satisfies an
inf-sup condition: there exists β > 0 such that

inf
p∈L̃2(Ω)

sup
Φ∈H(divs;Ω)

b(p,Φ)

‖p‖L2(Ω)‖Φ‖H(divs;Ω)

≥ β. (25)

As a corollary, we deduce the well-posedness of the fractional Darcy problem (Boffi et al.,
2013, Theorem 4.2.3).

Proposition 1 (well-posedness). Problem (20) has a unique solution (p,Φ) ∈ L̃2(Ω)×H(divs; Ω),
and there hold

‖p‖L2(Ω) ≤ (1 + C2
P )‖f‖L2(Ω),

‖Φ‖H(divs;Ω) ≤ 2
√

1 + C2
P‖f‖L2(Ω).

(26)

4 STABILIZATION

Here, we address finite element approximations of (20). A direct discretization of such a
problem is out of reach, because the construction of H(divs)-conforming finite elements a-
la Raviart-Thomas seems unfeasible. Instead, here we follow Masud and Hughes (2002) and
pursue the use of a stabilized method.

To shorten the notation, we write

L :
(
L̃2(Ω)×H(divs; Ω)

)
×
(
L̃2(Ω)×H(divs; Ω)

)
→ R,

L((p,Φ), (q,Ψ)) := a(Φ,Ψ)− b(p,Ψ) + b(q,Φ),
(27)

so that we can rewrite (20) as: find (p,Φ) ∈ L̃2(Ω)×H(divs; Ω) such that

L((p,Φ), (q,Ψ)) = F (q), ∀(q,Ψ) ∈ L̃2(Ω)×H(divs; Ω). (28)

We introduce the stabilized form in V := H̃s(Ω)×H(divs; Ω),

Lstab : V× V→ R,

Lstab((p,Φ), (q,Ψ)) := L((p,Φ), (q,Ψ)) +
1

2

∫
Rd

(Φ + gradsp) · (−Ψ + gradsq) .
(29)

With this, we consider the stabilized problem: find (p,Φ) ∈ V such that

Lstab((p,Φ), (q,Ψ)) = F (q) ∀(q,Ψ) ∈ V. (30)

We make two important remarks regarding the definition of Lstab. First, we have shrunk the
domain by replacing L̃2(Ω) by H̃s(Ω) so that the stabilization term is well-defined. Second, the
stabilization term above involves integration on the whole Rd. Let us consider the following
norm in V,

|||(q,Ψ)||| :=
[

1

2

(
‖gradsq‖2

L2(Rd) + ‖Ψ‖2
L2(Rd)

)]1/2

. (31)

Remark 1 (equivalence). A pair (p,Φ) ∈ V solves the problem (30) if and only if it solves (28).



Lemma 3 (stability/coercivity). We have

Lstab((p,Φ), (p,Φ)) = |||(p,Φ)|||2 ∀(p,Φ) ∈ V. (32)

Proof. Indeed, if (p,Φ) ∈ V then

Lstab((p,Φ), (p,Φ)) = ‖Φ‖2
L2(Rd) +

1

2

∫
Rd

(Φ + gradsp) · (−Φ + gradsp)

=
1

2
‖Φ‖2

L2(Rd) +
1

2
‖gradsp‖2

L2(Rd).

Lemma 4 (continuity). We have

Lstab((p,Φ), (q,Ψ)) ≤ |||(p,Φ)||||||(q,Ψ)||| ∀(p,Φ), (q,Ψ) ∈ V. (33)

Proof. Let (p,Φ), (q,Ψ) ∈ V. Using the integration by parts formula (8) we can rewrite the
stabilized form as

|Lstab((p,Φ), (q,Ψ))| =
∣∣∣∣12
∫
Rd

Φ ·Ψ +
1

2

∫
Rd

gradsp ·Ψ− 1

2

∫
Rd

gradsq ·Φ

+
1

2

∫
Rd

gradsp · gradsq

∣∣∣∣, (34)

therefore by the inequality (a+ b)2 ≤ 2(a2 + b2) we deduce

|Lstab((p,Φ), (q,Ψ))| ≤ 1

2

(
‖Φ‖L2(Rd) + ‖gradsp‖L2(Rd)

) (
‖Ψ‖L2(Rd) + ‖gradsq‖L2(Rd)

)
≤ |||(p,Φ)||||||(q,Ψ)|||.

(35)

As usual, the two lemmas above and the Lax-Milgram theorem give rise to the well posedness
of our problem.

Proposition 2 (well-posedness of stabilized formulation). Given f ∈ L2(Ω), problem (30) has
a unique solution (p,Φ) ∈ V. Moreover, we have the stability estimate

|||(p,Φ)||| ≤ CP
√

2‖f‖L2(Ω). (36)

Sobolev regularity up to ∂Ω of u, the solution of (1), was established in Borthagaray and No-
chetto (2023); for f in the Besov spaceB−s+1/2

2,1 (Ω), the solution u lies in the space∩ε>0H̃
s+1/2−ε(Ω).

Note that the hypothesis on f is weaker than L2 when s > 1/2; if f ∈ L2(Ω) and s ≤ 1/2, we
have u ∈ ∩ε>0H̃

2s−ε(Ω).
Moreover, we deduce a regularity estimate for the flux by means of the mapping properties

of grads; if u ∈ H̃r+s(Ω) then gradsu ∈ Hr(Rd;Rd) := (Hr(Rd))d, cf. D’Elia et al. (2021b).
We summarize this discussion in the following proposition.



Proposition 3 (Regularity of the solutions). Given f ∈ L2(Ω). Consider (p,Φ) ∈ V the
solution of (30). We have

‖p‖
H̃s+1

2−ε(Ω)
+ |Φ|

H
1
2−ε(Rd;Rd)

≤ C√
ε|1− 2s|

‖f‖L2(Ω), for s >
1

2
,

‖p‖H̃2s−ε(Ω) + |Φ|Hs−ε(Rd;Rd) ≤
C√

ε|1− 2s|
‖f‖L2(Ω), for s <

1

2
,

‖p‖H̃1−ε(Ω) + |Φ|
H

1
2−ε(Rd;Rd)

≤ C

ε
‖f‖L2(Ω), for s =

1

2
,

(37)

for any ε < max{min{2s, 1
2

+ s}, 1
4
}.

5 FINITE ELEMENT DISCRETIZATION

By replacing L with Lstab we have obtained a coercive formulation. Therefore, if we take
any conforming finite element space, we immediately obtain a stable discretization. For the
sake of this work, we shall consider continuous, piecewise linear discretizations.

Let us then begin by describing the discrete framework that we will use, we closely follow
section 4 of Borthagaray et al. (2019). Notice that we are approximating Φ, which is not
compactly supported, and the form a in (21) and the stabilization term in (29) involve integration
in Rd. In order to tackle this problem we will consider a ball BH containing Ω and such that
H := d(Ω, Bc

H).
Let {Th}h>0 be a family of simplicial triangulations of BH which we will assume regular,

i.e., there exists a constant c > 0 such that

sup
h>0

sup
T∈Th

hT
ρT

= c, (38)

where hT = diam(T ) and ρT is the diameter of the largest ball contained in T . We also
assume that the set {T ∈ Th : T ∩ Ω 6= ∅} is a simplicial triangulation of Ω. The nodes of
Th will be denoted by {zi}. On the triangulation Th we define Vh as the functions (qh,Ψh) ∈
P1(Th) × Pd1 (Th) ⊂ V such that qh vanishes on Ωc and Ψh vanishes on Bc

H . As usual, we
introduce the Lagrange nodal basis {ϕi}, corresponding to the internal nodes {zi}. We denote
by Bi the largest ball centered in zi and contained in supp(ϕi). We consider the following
discrete problem: find (ph,Φh) ∈ Vh such that

Lstab((ph,Φh), (qh,Ψh)) = F (qh) ∀(qh,Ψh) ∈ Vh. (39)

The coercive formulation and the fact that Vh ⊂ V imply the existence and uniqueness of
solutions to (39) and the Galerkin orthogonality.

Proposition 4 (best approximation). Let (p,Φ) ∈ V and (ph,Φh) ∈ Vh be the solutions to (30)
and (39), respectively. We have the following Galerkin orthogonality:

Lstab((p− ph,Φ−Φh), (qh,Ψh)) = 0 ∀(qh,Ψh) ∈ Vh. (40)

Consequently, we obtain

|||(p− ph,Φ−Φh)||| ≤ inf
(qh,Ψh)∈Vh

|||(p− qh,Φ−Ψh)|||. (41)



To get convergence estimates, we will need interpolation estimates. The usual Lagrange
interpolation does not seem a feasible option in our setting because of the low regularity of
our solutions and the lack of stability and approximation properties with respect to the corre-
sponding low-order fractional Sobolev spaces. Therefore, we will use the quasi-interpolation
operators Πh and Πh introduced in Chen and Nochetto (2000).

Definition 1 (quasi-interpolation operators). We define Πh : H̃s(Ω) → P1(Th) and Πh :
H(divs; Ω)→ Pd1 (Th) as

Πhq :=
∑
zi∈Ω

(
1

|Bi|

∫
Bi

q(x) dx

)
ϕi,

ΠhΨ :=
∑
zi∈BH

(
1

|Bi|

∫
Bi

Ψ(x) dx

)
ϕi.

(42)

We refer to Chen and Nochetto (2000) and Borthagaray et al. (2019) for the properties of
this operator. For a regular family of triangulations, we have the following global interpolation
estimates,

‖q − Πhq‖H̃s(Ω) ≤ C(d, c, t)ht−s‖q‖H̃t(Ω),

‖Ψ−ΠhΨ‖L2(BH ;Rd) ≤ C(d, c, t)ht|Ψ|Ht(Rd;Rd),
(43)

for 0 < t < 2. The following lemma gives us a global interpolation estimate for the flux in Rd.
For the sake of simplicity we assume that the origin is contained in Ω and that BH is centered
in the origin.

Lemma 5 (Global interpolation estimates for the flux). Let (p,Φ) ∈ V be the solution to (30)
and t ∈ (0, 2). We have,

‖Φ−ΠhΦ‖L2(BH ;Rd) ≤ C(d,Ω, t)ht|Ψ|Ht(Rd;Rd),

‖Φ−ΠhΦ‖L2(Bc
H ;Rd) ≤ C(d, s,Ω)H−

1
2
− d

2
−s‖p‖L2(Ω).

(44)

Proof. The first inequality is (43).
For the complement of the ball, as ΠhΦ|Bc

H
≡ 0 and gradsp = Φ, we have

‖Φ−ΠhΦ‖L2(Bc
H ;Rd) = ‖Φ‖L2(Bc

H ;Rd) = ‖gradsp‖L2(Bc
H ;Rd).

Given x ∈ Bc
H , by the definition of grads and the Poincaré inequality (18), we deduce

|gradsp(x)|2 =

∣∣∣∣µ(d, s)

∫
Ω

p(y)
x− y

|x− y|d+s+1
dy

∣∣∣∣2
≤ C2

Pµ(d, s)2|Ω|‖p‖2
L2(Ω)

1

d(x,Ω)2(d+s)
.

(45)

Therefore, by the inequality d(x,Ω) ≥ |x| − diam(Ω) (recall that we are assuming 0 ∈ Ω) and
a change of variables to polar coordinates, we deduce the bound

‖gradsp‖2
L2(Bc

H ;Rd) ≤ Cµ(d, s)2 ‖p‖2
L2(Ω)

∫
Bc

H

1

d(x,Ω)2(d+s)
dx

≤ Cµ(d, s)2H−1−d−2s|Ω| ‖p‖2
L2(Ω).

(46)

Here we are using the fact that for sufficiently large ball BH , its radius and H are comparable.



As a corollary we obtain convergence rates for the numerical scheme.

Corollary 1 (Order of convergence). Let (p,Φ) ∈ V and (ph,Φh) ∈ Vh be the solutions to
(30) and (39), respectively. We have the following order of convergence,

|||(p− ph,Φ−Φh)||| ≤


Ch

1
2 | log h| 12‖f‖L2(Ω), for s > 1

2
,

Chs| log h| 12‖f‖L2(Ω), for s < 1
2
,

Ch
1
2 | log h| ‖f‖L2(Ω), for s = 1

2
.

(47)

Proof. We assume s > 1
2
, the other cases follow by the same argument.

By combining the best approximation property (cf. Proposition 4) with the interpolation
estimates (43) and the Lemma 5, we obtain

|||(p− ph,Φ−Φh)|||2 ≤ C
(
h2t−2s‖p‖2

H̃t(Ω)
+ h2t|Φ|2Ht(Rd;Rd) +H−1−d−2s‖p‖2

L2(Ω)

)
, (48)

for t ∈ (0, 2). Now, by choosing t = s+ 1
2
− ε and ε = | log h|−1 (such that h−ε is constant for

h < 1), we can estimate the first term in the right hand side of (48) by means of the regularity
estimates (cf. Proposition 3);

h2t−2s‖p‖2
H̃t(Ω)

≤ Ch| log h|‖f‖2
L2(Ω). (49)

The same argument with t = 1
2
− ε and ε = | log h|−1 shows

h2t|Φ|2Ht(Rd;Rd) ≤ Ch| log h|‖f‖2
L2(Ω). (50)

For the third term, the choice of H−1−d−2s ' h| log h| and the stability properties (cf. Proposi-
tion 2) yields

H−1−d−2s‖p‖2
L2(Ω) ≤ Ch| log h|‖f‖2

L2(Ω). (51)
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