
MUSIC PROOFREADING WITH REFINPAINT:
WHERE AND HOW TO MODIFY COMPOSITIONS GIVEN CONTEXT

Pedro RamonedaZ
Universtat Pompeu Fabra

Barcelona
pedro.ramoneda@upf.edu

Martin Rocamora
Universtat Pompeu Fabra

Barcelona
martin.rocamora@upf.edu

Taketo Akama
Sony Computer Science Laboratories

Tokyo
taketo.akama@sony.com

ABSTRACT

Autoregressive generative transformers are key in mu-
sic generation, producing coherent compositions but facing
challenges in human-machine collaboration. We propose
RefinPaint, an iterative technique that improves the sam-
pling process. It does this by identifying the weaker music
elements using a feedback model, which then informs the
choices for resampling by an inpainting model. This dual-
focus methodology not only facilitates the machine’s abil-
ity to improve its automatic inpainting generation through
repeated cycles but also offers a valuable tool for humans
seeking to refine their compositions with automatic proof-
reading. Experimental results suggest RefinPaint’s effec-
tiveness in inpainting and proofreading tasks, demonstrat-
ing its value for refining music created by both machines
and humans. This approach not only facilitates creativity
but also aids amateur composers in improving their work.

1. INTRODUCTION

Advanced autoregressive models [1, 2] have enabled
the automatic generation of complex musical perfor-
mances [3–7]. However, while autoregressive models gen-
erate music in a strictly forward-moving manner, human
composers often follow a more iterative approach, fre-
quently revisiting and refining earlier sections of a piece
before proceeding [8–10]. Although there are some it-
erative methods for music generation [11–13], there are
still areas for improvement in terms of controllability and
human-in-the-loop aspects, such as inferring where to
modify composition and inpainting capability to enable
partial modification.

Iterative refinement proved effective for image genera-
tion; in particular, Lezama’s Token-Critic [14] shows how
feedback mechanisms can enhance image synthesis. Sim-
ilarly, such feedback could benefit music composition for
iteratively refining generated music. Within the spectrum
of music composition tools, the Piano Inpainting Applica-
tion (PIA) [15] stands out for its capabilities for automatic
ZWork conducted at Sony Computer Science Laboratories, Inc. Tokyo.

© P. Ramoneda, M. Rocamora & T. Akama. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: P. Ramoneda, M. Rocamora & T. Akama, “Music
Proofreading with RefinPaint: Where and How to Modify Compositions
given Context”, in Proc. of the 25th Int. Society for Music Information
Retrieval Conf., San Francisco, USA, 2024.

Figure 1: A user selects a MIDI section for enhancement
(gray rectangle). Our methodology uses token-level feed-
back (blue) to highlight critical notes or sequences (red)
for regeneration (green). This cycle repeats iteratively.

music generation that addresses the missing parts of mu-
sical performances, a technique referred to as inpainting.
We highlight their handling of the musical context both be-
fore and after the selected gaps, enabling precise note-level
inpainting. On account of that, inspired by image genera-
tion’s success with iterative feedback and how PIA handles
music context, our research explores applying these con-
cepts to enhance controllability, human-in-the-loop func-
tionality, and iterative refinement capability in automatic
music generation.

In this work, drawing from Token-Critic and PIA, we
propose RefinPaint, which aims to boost automatic in-
painting and proofreading in music generation. Our ap-
proach includes an iterative process of identifying areas in
a composition needing modification and applying inpaint-
ing techniques to these areas. In this context, proofreading
refers to automatically identifying and correcting errors or
inconsistencies in a music composition. This dual-focus
methodology facilitates the machine’s ability to improve
its automatic inpainting generation through repeated cy-
cles, and offers a valuable tool for humans seeking to refine



Figure 2: Encoder-decoder architecture for in-
painting, given a user-provided mask Mu with a
subset mask Ms.

Figure 3: The Feedback algorithm identifies the
most realistic tokens by training it to discern be-
tween real and synthetic music tokens.

Figure 4: RefinPaint uses inpainting and feedback models to iteratively suggest changes, based on specific
note feedback. It reduces the selected tokens in each iteration.

their compositions with automatic proofreading.
Our RefinPaint method is grounded in an autoregres-

sive inpainting model to generate synthetic music tokens
and a feedback model trained to distinguish between orig-
inal and synthetic tokens. This differentiation is key dur-
ing the sampling stage when deciding on token retention
or revision. RefinPaint takes an iterative approach, inte-
grating feedback into the inpainting model for selectively
regenerating parts in each iteration, as Figure 1 shows. In
contrast to Token-Critic, RefinPaint focuses on modifying
a specific part of a composition using a contextual model
and exposes the intermediate outputs of the autoregressive
inpainting model to human inspection in each iteration.

The human-in-the-loop approach we propose allows for
selecting the number of tokens to modify and revise the
analysis heatmap at each iteration, as described in the
following section. Through experimentation, we confirm
RefinPaint’s effectiveness in inpainting and proofreading
tasks, demonstrating its utility for enhancing music cre-
ated by both machines and humans. Finally, we provide a
companion page featuring examples 1 and the code along
with the trained models of RefinPaint for reproducibility 2 .

1 At: https://refinpaint.github.io/
2 At: https://github.com/ta603/RefinPaint

2. METHODOLOGY

Our proposed methodology employs two models: an in-
painting model I, and a feedback model F , alongside our
iterative algorithm RefinPaint. Initially, F identifies areas
within a MIDI file that need improvement based on the spe-
cific criteria described in Section 2.2. It uses a heatmap for
detailed MIDI token-level feedback, allowing one to as-
sess the context and relevance of each note in the selected
region. Then, model I can regenerate the selected tokens
considering the feedback, as described in Section 2.1. The
methodology involves using both models iteratively with
RefinPaint and encompasses three main stages: training
the inpainting model (Section 2.1.1), training the feedback
model (Section 2.2.1), and finally executing the iterative
process for MIDI sequence generation (Section 2.3).

2.1 Inpainting model (I)

The inpainting model aims to predict, or fill in, missing
parts of a MIDI sequence based on a given mask. We adopt
an encoder-decoder architecture for sequence-to-sequence
tasks, as shown in Figure 2, inspired by the PIA study for
music generation [15]. This model involves an encoder
converting input data into a latent representation and a de-
coder predicting the final output.

https://refinpaint.github.io/
https://github.com/ta603/RefinPaint


With an anti-causal mask, self-attention within the en-
coder prevents future data access, while with a causal
mask, self-attention within the decoder limits access only
to previous data. With an identity mask, cross-attention
enforces positional alignment between the encoder and de-
coder outputs, which is helpful for aligned sequence tasks.

The attention mechanisms are defined as follows, where
Mtype is the mask type (anti-causal, causal, or identity):

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk
⊙Mtype

)
V.

(1)
This structure enhances the capability of the model to

handle bidirectional input-output relationships, essential
for inpainting, where future context influences the genera-
tion process. Furthermore, we add an extra binary embed-
ding to the encoder input with information about the mask
Ms–the tokens to regenerate–for the inpainting model.

2.1.1 Training the Inpainting Model (I)

The training process is outlined in Algorithm 1. A batch x
is sampled from the MIDI dataset D, and a random frag-
ment Mu is chosen for each sample in x with a length de-
termined by t1. It is important to note that t1 refers to
the length in terms of the token sequence, rather than the
MIDI duration. Consequently, a random mask Ms, with
the masking ratio controlled by γ(t2), is then applied to
Mu. The forward pass of the model calculates the loss
using the batch x, the mask Ms, and the Cross Entropy
(CE) loss function to evaluate the difference between the
predicted outputs and the actual labels. The model is sub-
sequently updated via gradient descent. The function γ,
a cosine scheduler, dynamically adjusts the masking ratio.
It operates on a domain defined by a random variable t2
within the interval [0, 1]. Specifically, for any chosen value
t2 drawn uniformly from the interval [0, 1], the value un-
dergoes a cosine transformation γ to determine the mask-
ing ratio, where γ(t2) = cos

(
πt2
2

)
.

Algorithm 1 Training the Inpainting model (I)

Require: MIDI dataset D, Inpainting model I
1: while convergence do
2: x ∼ D ▷ Sample batch
3: t1 ∼ U(0.1, 0.6), t2 ∼ U(0, 1)
4: Mu ← Fragment(x, t1)
5: Ms ← Random Masking(Mu, γ(t2))
6: L← ForwardInpaintingModel(I, x,Ms)

▷ model forward and compute loss
7: GradientDescent(L)
8: end while

2.2 Feedback model (F)

We employ an encoder-only transformer architecture for
the feedback phase that classifies music tokens as fake
or real. We use this output distribution to select the k
most realistic tokens to retain while the others are regen-
erated. Unlike the encoder-decoder inpainting model, I,

this model processes the input through a parallel and bidi-
rectional attention mechanism without employing any at-
tention masks, thus facilitating an unrestricted analysis of
the musical context. Additionally, we add an extra binary
embedding to the encoder input with information about the
mask Mu–the selected fragment–for the feedback model.

2.2.1 Training the Feedback model (F)

Algorithm 2 Training the Feedback model (F)

Require: MIDI dataset D, Inpainting model I, Feedback
model F

1: while convergence do
2: x ∼ D ▷ Sample batch
3: t1 ∼ U(0.1, 0.6), t2 ∼ U(0, 1)
4: Mu ← Fragment(x, t1)
5: Ms ← Random Masking(Ms, γ(t2))
6: x̂← I(x,Mu)
7: L← ForwardFeedbackModel(F , x̂,Mu)

▷ model forward and compute loss
8: GradientDescent(L)
9: end while

After training the inpainting model I, we train an
encoder-only feedback model F . This model aims to eval-
uate the output from I, offering feedback on the composi-
tion quality of each music fragment denoted by Mu.

One ideal way of training F would involve a vast
dataset of computer- or human-generated music compo-
sitions and human experts’ revisions for inpainting and
proofreading applications. Instead, we propose a more fea-
sible synthetic training strategy, described in Algorithm 2.
The inpainting model I generates tokens within the se-
lected fragment of a music piece, Mu, which we label as
‘Fake’, while we label as ‘Real’ the original unchanged to-
kens. We utilize these labels to instruct F , following the
process illustrated in Figure 3.

The training of F is based on the output of I. We be-
gin by sampling a batch x from the dataset D, then apply
masking Ms and Mu. Model I regenerates specific tokens
within x, yielding a modified output x̂. Model F then as-
sesses each token of x̂ against Ms, categorizing them as
‘Real’ or ‘Fake’. The loss L for F is computed using the
Binary Cross Entropy (BCE) loss function, and is mini-
mized through gradient descent. The outcome is a heatmap
for Mu, which indicates the probability of each token be-
ing ‘Real’ or ‘Fake’, determined by the sigmoid activation
of the model output.

2.3 Generation of MIDI sequences (RefinPaint)

We capitalize on the strengths of the inpainting and feed-
back models for the iterative MIDI sequence generation.
The process shown in Figure 4 begins with a MIDI se-
quence x introduced by the user, setting the stage for a
loop that spans a predetermined number of iterations T .

Initially, the user selects the fragment to be modified
x
(0)
m and sets the initial selection rate k = 0 for complete

inpainting. Alternatively, different values for k allow the



user to control how much of the content to keep in the se-
lected fragment when proofreading.

In the proposed Algorithm 3, at each iteration t, the in-
painting model I generates a new version of the sequence
x̂, based on the current masked input x(t)

m . In the human-
in-the-loop scenario, the user can then adjust this generated
sequence. The feedback model F evaluates x̂ and provides
a new mask M (t+1), which the user may also modify. This
mask highlights the tokens that are deemed most realis-
tic. The number of selected realistic tokens k follows a
decreasing function γ of the iteration t, which models the
increasing confidence in the tokens produced over time.
Moreover, we add an extra binary embedding to the en-
coder input with information about the mask M–the given
context–where M changes over iterations.

Refining the music sequence through each iteration
aims to achieve a compositional process that closely aligns
with that of a human composer so that the user interven-
tion becomes interpretable and natural. It fosters a collab-
orative environment between the user and the machine and
tailors the generation process to the user’s specific direc-
tives and preferences.

Algorithm 3 Generation Algorithm (RefinPaint)

Require: Inpainting model I, Feedback model F ,
masked MIDI x

(0)
m , No. masked tokens N , No. it-

erations T
1: for i = 0 to T − 1 do
2: k =

⌈
γ
(

i
T

)
·N

⌉
3: x̂← I(x(i)

m )
4: if i ̸= T − 1 then
5: M (i+1) ← F(x̂)
6: x

(i+1)
m ← k-realistic tokens(x̂,M (i+1), k)

7: end if
8: end for

3. RELATED WORK

Automatic music generation has rapidly advanced recently.
Significant progress has been made [4–6], especially in
solo piano compositions [3, 7, 15], through the capabili-
ties of autoregressive models in producing coherent musi-
cal outputs. However, several challenges remain for creat-
ing successful interactions with humans [3, 11, 15–22].

Previous work has explored various approaches to
generate music iteratively and allowed for partial
modification—often referred to as inpainting—, which en-
hances controllability. Among them, sequential handling
of musical elements has been a common strategy, as in
models like DeepBach [11] and Coconet [12]. Although
these models allow for inpainting and iterative generation,
they often rely on random iterations without a mechanism
for discriminative feedback to guide improvements. This
lack of directed refinement contrasts with the human com-
positional process, which typically involves iterative im-
provements based on evaluative feedback. Our proposed
approach addresses this limitation by incorporating a feed-
back model that identifies areas for improvement for both

humans and machines to refine the composition.
Although it is not designed as an inpainting model, ES-

Net’s approach to music generation integrates generative
and discriminative capabilities in one model [13], with a
feature for correcting past errors for iterative refinement.
Our model differs significantly: it takes into account the
context of the selected fragment, could improve any ex-
isting inpainting model, and can handle general MIDI for-
mats. In [23], the authors propose a GAN model for piano
music composition with a discriminator model that dis-
cerns real and fake compositions in the training process.
However, it does not give feedback on which generated
parts are good or bad and does not create compositions it-
eratively. Yet, the application of discriminative feedback
in music generation, particularly in a manner that mimics
human iterative refinement, remains largely unexplored.

Finally, inpainting models in music have seen various
approaches but remain less studied compared to their coun-
terparts in image generation [24]. They typically focus on
quantized scores, with significant contributions like Gibbs
sampling for Bach chorales [11] and RNN-based melodies
inpainting [25]. Studies on transformers for multitrack
inpainting have advanced the field, such as MMM [26],
which utilizes a decoder architecture akin to GPT2 [2],
and PIA [15], which uses a specialized transformer de-
sign. We chose PIA over MMM as a ground element in
this work, given it is capable of working in the token level
or larger contexts and inpainting multiple little fragments
at the same time, similar to Token-Critic’s generator [14].

4. EXPERIMENTAL SETUP
4.1 Data preparation

Our study utilizes the Lakh MIDI dataset (LMD), an ex-
tensive collection of approximately 170k unique multi-
track MIDI files, compiled by Colin Raffel for music re-
search [27]. The dataset offers a wide variety of music,
albeit with varying quality due to its internet-sourced na-
ture. Despite this, the volume and diversity of the LMD
dataset make it a valuable asset for our proofreading task.
We extracted only the piano parts, totaling 120,000 tracks.

We tokenize the piano tracks using REMI (REvamped
MIDI-derived events) [16], a music representation method
that converts MIDI events into a structured format opti-
mized for Transformer-based models that significantly en-
hances their ability to comprehend and produce music.
REMI categorizes music elements into distinct event types,
including timing for rhythm and note events for melody,
but we exclude velocity events for simplicity. Specifically,
we use a modified version of REMI tailored for handling
single-track piano performances, as implemented in [28].
The dataset was split into training (hashes 0–d), validation
(hash e), and testing (hash f) segments, based on each file’s
MD5 hash’s leading digit, akin to previous methods [5, 6]

4.2 Model development
We train the inpainting and feedback models with the
AdamW optimizer, using eighty per cent of the dataset for
training and the remainder for validation. Each epoch con-
sists of a randomly selected fragment from the training set,



512 tokens in length. We also employ an augmentation
procedure that transposes the pitch tokens of a sequence
by adding or subtracting up to 6 semitones. For the in-
painting model, we apply a cross-entropy loss and use the
maximum batch size that our system can handle; a sin-
gle V100 GPU with 16GB allows for 48 samples. The
encoder-decoder inpainting model comprises 12 layers: 4
encoder layers and 8 decoder layers, similar to the original
PIA, with 8 heads and an embedding dimension of 512.
We employ a cosine scheduler for training, with 16,000
warmup steps, reaching up to a 0.0006 learning rate. The
feedback model consists of 6 layers, with an embedding
dimension of 512, a dropout rate of 0.1, 8 heads, and the
same cosine scheduler. Finally, we acknowledge that opti-
mizing these models was not the main focus of this paper,
so there might be better hyperparameter values.

In the particular case of proofreading without human
intervention, i.e. for evaluation purposes, the final output
is the iteration that maximizes the feedback model prob-
ability distribution. Using a sigmoid function, the model
determines whether each token in a sequence is fake or
real. By averaging the output probabilities, we calculate
a global feedback score (GFS) for the sequence’s overall
realism and select the best regeneration output based on it.

5. INPAINTING RESULTS

5.1 Divide and conquer with the inpainting model

We conducted an experiment to explore how the model’s
inpainting performance is affected by the percentage of to-
kens to inpaint in a selected fragment. We hypothesize that
the more tokens to inpaint, the harder the problem is, so
the model performance is lower. The experiment uses the
inpainting model trained as detailed in section 2.1.1, and
we report its Negative Log-Likelihood (NLL) loss and per-
plexity of the next predicted token. The evaluation cov-
ered the entire test set, with masking ratios ranging from
1 (fully masked) to 0 (no tokens to inpaint) and a fixed
30% fragment size rate of the 512 tokens sequence. Re-
sults shown in Table 1 indicate better performance with
reduced masking, confirming our hypothesis. Notably, the
average Perplexity value is less than half at 0.05 compared
to the 1.0 masking ratio. This finding is crucial for Refin-
Paint’s effectiveness as it reduces the number of tokens to
be inpainted in subsequent iterations, considering the iter-
ative process as a top-to-bottom strategy.

5.2 Objective evaluation of proofreading inpainting

This section conducts a comparative analysis between the
reference inpainting output, as described in [15] (PIA), and
our enhanced method. Our method applies the RefinPaint
proofreading process to the initial PIA’s inpainting output
over ten iterations and is referred to as ‘Ours’. For frag-
ment sizes of 50%, 30%, and 10% of the 512-token test
sequences, we computed 1,000 instances each. It is impor-
tant to note that the PIA method discussed is our reimple-
mentation, since the original code was not available.

Table 2 shows the average global feedback score (GFS),
computed as explained in Section 4.2, and the number of

masking ratio NLL AVG PPL

0.05 0.56 0.31
0.10 0.58 0.33
0.15 0.58 0.34
0.20 0.58 0.33
0.40 0.64 0.41
0.60 0.70 0.49
0.80 0.77 0.59
1.00 0.86 0.73

Table 1: Summary of the inpainting experiment with dif-
ferent masking ratios. A masking ratio of 1.0 corresponds
to being fully masked, and 0 indicates no masking. The
standard deviation is less than 0.01 in all the experiments.

evaluations in which each algorithm outperforms the other
(Wins) and in which their scores are the same (Ties). Ta-
ble 3, on the other hand, focuses on the comparison be-
tween PIA and Ours, employing the NLL loss, a metric of
the next token prediction in generated music. This metric,
derived from an autoregressive model we trained explicitly
from scratch to assess the inpainting results, is a bench-
mark metric in our evaluation. Similar evaluations have
been employed in previous studies in natural language pro-
cessing [29] and music generation [30]. Consequently, our
study employs a 12-layer Transformer-based autoregres-
sive model with REMI representation. Our goal is to assess
the similarity between the distribution of musical elements
in inpainted sections and those in the original dataset, in-
cluding aspects such as rhythms, harmony, or melodies.
A lower NLL loss indicates a more accurate prediction
of the next token, reflecting a closer approximation to the
dataset’s inherent musicality. Note we assess this metric
over the entire output sequence.

GFS (↑) Wins Ties

PIA Ours PIA Ours

50% 0.458 0.696 0 870 130
30% 0.515 0.730 0 886 114
10% 0.650 0.803 0 891 209

Table 2: Comparison of global feedback scores (GFS)
between PIA and the proposed RefinPaint methodology,
Ours. Higher values indicate better performance.

NLL (↓) Wins Ties

PIA Ours PIA Ours

50% 2.01 1.97 330 541 129
30% 1.68 1.66 347 533 120
10% 1.63 1.62 321 457 222

Table 3: Comparison of Negative Log Likelihood (NLL)
between PIA and the proposed RefinPaint methodology,
Ours. Lower values indicate better performance.

Results in Table 2 indicate that our model’s GFS score is
generally better than the baseline, suggesting that the op-
timization goal of the RefinPaint iterative process is met.



The PIA model never wins because this experiment selects
the best GFS of all the iterations, as mentioned in Sec-
tion 4.2. Although dynamic programming or genetic algo-
rithms could enhance the process, this study uses a simpler
method, focusing on the iteration with the highest GFS.

In Table 3, RefinPaint consistently achieves a slightly
lower average NLL loss than PIA, suggesting that the in-
painted content by RefinPaint is more consistent with the
original dataset used for training. Furthermore, Refin-
Paint wins more evaluations than PIA across all the per-
centages of fragment size evaluated. This further under-
scores the enhanced performance of RefinPaint in produc-
ing sequences more akin to human compositions. How-
ever, comparing both tables, we acknowledge that higher
GFS does not always imply a better NLL loss, calling for
other types of evaluation, as addressed in the next section.

5.3 Listening test of proofreading inpainting
While computational metrics provide valuable insights into
the quality of our inpainted music sections, human percep-
tion adds another perspective for evaluating musical qual-
ity and appeal. A user-based evaluation was conducted to
capture a holistic view of the inpainted outputs’ musicality.

For each experiment, which involved 50%, 30%, and
10% fragments of inpainted content, 15 different anno-
tators evaluated both the first iteration of inpainted con-
tent (PIA) and the complete iterative process of RefinPaint
(Ours) for ten iterations. Participants were exposed to two
scenarios, Experiment 1 and Experiment 2: one from the
PIA model and one from our RefinPaint model. The or-
der in which these pairs were presented was randomized to
avoid any bias. Additionally, we provided the original mu-
sic fragment without the inpainted content for reference.
Participants listened to both the PIA and RefinPaint ver-
sions before making their evaluations. They were asked to
assess the inpainted content’s quality by comparing it to the
original fragment, focusing specifically on coherence and
creativity. To make their choice, participants were given
four options to prevent bias: ‘Experiment 1,’ ‘Maybe Ex-
periment 1,’ ‘Maybe Experiment 2,’ and ‘Experiment 2’.

Figure 5 shows the listening test results. Firstly, PIA
got lower preference scores than RefinPaint for the differ-
ent fragment size conditions. In addition, RefinPaint’s per-
formance for different fragment sizes shows that the coher-
ence scores increase as the fragment size gets larger, even
if the creativity varies. This means that as there is more to
inpaint, RefinPaint gets better at being coherent. In con-
trast, PIA does not show such a strong trend.

The quantitative and qualitative evaluations point to-
wards a clear trend: Refinpaint tends to yield superior in-
painting results when proofreading machine inpainted sec-
tions compared to the baseline. Our methodology pro-
duces music sequences that are more consistent, percep-
tually closer to the original, and preferred by listeners.

6. CASE OF STUDY ON PROOFREADING
AMATEUR COMPOSITIONS

We conducted an additional study to explore the proposed
system’s capabilities for proofreading music compositions

Figure 5: Results of the participants’ votes for the listening
test comparing PIA and RefinPaint (Ours) along different
fragment sizes (50%, 30%, and 10%).

by humans. Given the intrinsic difficulties of such a study
and due to practical restrictions, we limited our experiment
to four amateur composers–two with classical music train-
ing and two with modern popular music training.

Participants used a straightforward proofreading inter-
face that enables bar selection for regeneration, allowing
them to choose how much of the content to keep in certain
sections of their work, as described in 2.3. Additionally,
we allowed the users to change the RefinPaint feedback in
the selected area and experiment with the tools by conduct-
ing as many trials as they wanted.

After testing our inpainting tool on a 30-second music
piece, participants responded to questions about their expe-
rience. They evaluated whether the tool (i) enhanced their
original draft, (ii) sparked new ideas, (iii) could save time
over manual proofreading, and (iv) was something they
would use in the future. All chose “yes” for (i), (iii) and
(iv) with three “yes” and one “maybe” for (ii), suggesting
time efficiency as a key advantage and providing an overall
positive view of the tool.

The positive feedback prompted us to showcase the
proofread compositions on our companion website. Par-
ticipants suggested the tool could be particularly effective
in overcoming creative blocks, noting that inspiring ideas
stemmed from all iterations, not just the last one. Addition-
ally, two participants especially valued the option to alter
tokens within the RefinPaint selection.

7. CONCLUSION
In conclusion, our novel approach, RefinPaint, signifi-
cantly enhances music generation by identifying and im-
proving weaker musical elements through iterative feed-
back. Its effectiveness in both inpainting and proofread-
ing tasks promises a new direction for creative assistance
and quality enhancement in compositions by humans and
machines alike. Future work could fruitfully extend the
research to multitrack compositions and explore control
mechanisms for this model, such as conditioning by har-
mony, rhythm, genre, or other musical factors.



8. ETHICS STATEMENT

While RefinPaint can represent a significant leap forward
in music composition technology, ensuring ethical deploy-
ment and use is crucial. We advocate for a future where
such technologies support and enrich the creative pro-
cess, complementing rather than displacing human creativ-
ity. While RefinPaint aims to democratize music creation,
making it accessible and achievable for amateurs, there is a
risk that professional musicians and composers could feel
their roles and contributions are being undermined or re-
placed by machines. It is essential to strike a balance where
this technology serves as a tool for enhancement and learn-
ing rather than a substitute for human creativity. Further-
more, it will be vital to establish guidelines that protect
the intellectual property rights of original compositions,
whether entirely human-made or AI-assisted.

9. REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural infor-
mation processing systems (NeurIPS), 2017.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised mul-
titask learners,” OpenAI Blog, vol. 1, no. 8, 2019.

[3] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,
I. Simon, C. Hawthorne, A. M. Dai, M. D. Hoff-
man, M. Dinculescu, and D. Eck, “Music transformer:
Generating music with long-term structure,” in 7th In-
ternational Conference on Learning Representations,
(ICLR), 2019.

[4] S.-L. Wu and Y.-H. Yang, “Compose & embellish:
Well-structured piano performance generation via a
two-stage approach,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), 2023.

[5] J. Thickstun, D. Hall, C. Donahue, and P. Liang,
“Anticipatory music transformer,” arXiv preprint
arXiv:2306.08620, 2023.

[6] B. Yu, P. Lu, R. Wang, W. Hu, X. Tan, W. Ye, S. Zhang,
T. Qin, and T.-Y. Liu, “Museformer: Transformer with
fine-and coarse-grained attention for music genera-
tion,” in Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[7] N. Fradet, J.-P. Briot, F. Chhel, A. E. F. Seghrouchni,
and N. Gutowski, “Byte pair encoding for symbolic
music,” in Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), 2023.

[8] D. Collins and M. Dunn, “Problem-solving strategies
and processes in musical composition: Observations in
real time,” Journal of Music, Technology & Education,
vol. 4, no. 1, pp. 47–76, 2011.

[9] P. Burnard, Musical creativities in practice. OUP Ox-
ford, 2012.

[10] B. Jacob, “Algorithmic composition as a model of cre-
ativity,” Organised Sound, vol. 1, pp. 157 – 165, 1996.

[11] G. Hadjeres, F. Pachet, and F. Nielsen, “Deepbach: a
steerable model for bach chorales generation,” in In-
ternational Conference on Machine Learning (ICML),
2017.

[12] C.-Z. A. Huang, T. Cooijmans, A. Roberts,
A. Courville, and D. Eck, “Counterpoint by con-
volution,” in Proc. of the 18th Int. Society for Music
Information Retrieval Conf. (ISMIR), 2017.

[13] W. Chi, P. Kumar, S. Yaddanapudi, R. Suresh, and
U. Isik, “Generating music with a self-correcting non-
chronological autoregressive model,” in Proc. of the
21th Int. Society for Music Information Retrieval Conf.
(ISMIR), 2020.

[14] J. Lezama, H. Chang, L. Jiang, and I. Essa, “Improved
masked image generation with token-critic,” in Euro-
pean Conference on Computer Vision (ECCV), 2022.

[15] G. Hadjeres and L. Crestel, “The piano inpainting ap-
plication,” arXiv preprint arXiv:2107.05944, 2021.

[16] C.-Z. A. Huang, T. Cooijmans, A. Roberts,
A. Courville, and D. Eck, “Pop music transformer:
Beat-based modeling and generation of expressive pop
piano compositions,” in Proceedings of the 28th ACM
International Conference on Multimedia, 2020.

[17] T. Akama, “Controlling symbolic music generation
based on concept learning from domain knowledge,”
in Proc. of the 20th Int. Society for Music Information
Retrieval Conf. (ISMIR), 2019.

[18] ——, “Connective fusion: Learning transformational
joining of sequences with application to melody cre-
ation,” in Proc. of the 21st Int. Society for Music Infor-
mation Retrieval Conf. (ISMIR), 2020.

[19] ——, “A contextual latent space model: Subsequence
modulation in melodic sequence,” in Proc. of the 22nd
Int. Society for Music Information Retrieval Conf. (IS-
MIR), 2021.

[20] C. Payne, “Musenet,” https://openai.com/blog/
musenet, 2019.

[21] G. Hadjeres and L. Crestel, “Vector quantized con-
trastive predictive coding for template-based music
generation,” arXiv preprint, 2020.

[22] Y.-J. Shih, S.-L. Wu, F. Zalkow, M. Muller, and Y.-H.
Yang, “Theme transformer: Symbolic music genera-
tion with theme-conditioned transformer,” IEEE Trans-
actions on Multimedia, 2022.

https://openai.com/blog/musenet
https://openai.com/blog/musenet


[23] A. Muhamed, L. Li, X. Shi, S. Yaddanapudi, W. Chi,
D. Jackson, R. Suresh, Z. C. Lipton, and A. J. Smola,
“Symbolic music generation with transformer-gans,”
in 35th AAAI Conference on Artificial Intelligence,
2021.

[24] O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and
Y. Akbari, “Image inpainting: A review,” Neural Pro-
cessing Letters, vol. 51, pp. 2007–2028, 2020.

[25] G. Hadjeres and F. Nielsen, “Anticipation-rnn: Enforc-
ing unary constraints in sequence generation, with ap-
plication to interactive music generation,” Neural Com-
puting and Applications, vol. 32, no. 4, pp. 995–1005,
2020.

[26] J. Ens and P. Pasquier, “Mmm: Exploring conditional
multi-track music generation with the transformer,”
arXiv preprint arXiv:2008.06048, 2020.

[27] C. Raffel, “Learning-based methods for comparing se-
quences, with applications to audio-to-midi alignment
and matching,” Ph.D. dissertation, Columbia Univer-
sity, 2016.

[28] N. Fradet, J.-P. Briot, F. Chhel, A. El Fal-
lah Seghrouchni, and N. Gutowski, “MidiTok: A
python package for MIDI file tokenization,” in Ex-
tended Abstracts for the Late-Breaking Demo Session
of the 22nd International Society for Music Informa-
tion Retrieval Conference, 2021.

[29] A. Wang and K. Cho, “BERT has a mouth, and it
must speak: BERT as a Markov random field language
model,” in Proceedings of the Workshop on Methods
for Optimizing and Evaluating Neural Language Gen-
eration, Jun. 2019.

[30] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and
D. Eck, “A hierarchical latent vector model for learning
long-term structure in music,” in International confer-
ence on machine learning (ICML), 2018.


