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Resumen

Proveniencia de datos es el problema de explicar cómo un dato fue creado o
usado. Al hacerlo se plantean muchos desafíos, como ser entender y acordar qué
son los datos y los procesos que los crean y asignarles identi�cadores (problemas
agravados en un ambiente distribuido), capturar la información de proveniencia,
y sobre todo, hacer todo esto de forma transparente. Presentamos un análisis de
estos desafíos y a continuación desarrollamos la mayor contribución de la tesis,
un framework para la captura y registro de la proveniencia basado en metadatos
para un ambiente distribuido y heterogéneo. Nuestra solución está basada en
un modelo conceptual de datos, que facilita la integración de información de
proveniencia originada en diferentes sistemas. Por lo tanto es posible construir
un grafo de proveniencia que vincule datos producidos en diferentes sistemas.
El framework de�ne roles y responsabilidades para obtener la proveniencia de
los datos. De�ne también un sistema para la identi�cación de los datos y las
transformaciones que los producen así como para resolver la ubicación de los
datos. También se presenta una propuesta de implementación para el repositorio
de la proveniencia.

Nuestro enfoque consiste en relevar la literatura para analizar soluciones ya
existentes, para primero construir una de�nición común de proveniencia y un
modelo conceptual de datos para proveniencia basados en los trabajos relevados,
y luego desarrollar nuestro framework basado en este modelo conceptual. Hemos
hecho un análisis de las características de los sistemas que ofrecen proveniencia
y del tipo de proveniencia que ofrecen, con el objetivo de obtener principios
generales, lo que a lo mejor de nuestro conocimiento no es analizado por ningún
trabajo. También hacemos explícitas algunas de las hipótesis de trabajo que
son comúnmente implícitas. Además, presentamos un análisis del problema de
ofrecer proveniencia de datos en un entorno distribuido con tecnologías diversas.
En particular, cuando se utiliza Hadoop (el estándar de la industria para el
almacenamiento y procesamiento de grandes volúmenes de datos) y las diferentes
herramientas de su ecosistema, surgen nuevos retos, que analizamos y tomamos
en cuenta en el diseño de nuestro framework.
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Abstract

Data provenance is the pervasive problem of explaining how a datum was cre-
ated or used. Doing so has many challenges, such as understanding and agreeing
what data and processes are and assigning them identi�ers (aggravated in a dis-
tributed environment), capturing provenance information, and all this done in
a transparent manner. We present an analysis of these and in consequence de-
velop our major contribution, a framework for provenance capture and recording
based on metadata in a distributed and heterogeneous environment. Our so-
lution is based on a conceptual data model, which facilitates the integration
of provenance information originated in di�erent systems. Thus, it is possible
to construct a data provenance graph which relates data produced in di�erent
systems. The framework de�nes roles and responsibilities to achieve data prove-
nance, as well as an identi�cation scheme for data and transformations and for
resolving the location for data items. We also present an implementation of the
provenance repository.

Our approach consists in reviewing the literature for existing solutions, to
construct �rst a common de�nition of provenance and a common conceptual
data model for provenance based on the reviewed works, and then develop our
framework based on this conceptual model. We have also performed an analysis
of the characteristics of the systems o�ering provenance and the type of prove-
nance they o�er, in order to obtain more general principles, what to the best of
our knowledge is not analysed by any work. We also make explicit some of the
working hypothesis which are commonly implicit.

What is more, we o�er an analysis of the problem of o�ering data provenance
in a distributed environment with diverse technologies. In particular, when using
Hadoop (the industry standard for big data management) and the di�erent tools
of its ecosystem, new challenges arise, which we analyse and take into account
in the design of our framework.
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Chapter 1

Introduction

Provenance is the pervasive problem of explaining how something was created
or used. For example, in the context of science, data can be obtained from
di�erent measurements and processed with models to produce new data, which
can be fed to other models (maybe, by a di�erent scienti�c group) to produce
other data. In this domain, a common requirement is to ask: who produced the
data being used, as well as when and how. The how is related to which data
transformations or processing steps were applied to produce it. These questions
help the users enhance their interpretation of the data and assess its quality and
reliability.

A classical example of data provenance in information systems is in data
warehousing, where it is common to integrate data from di�erent sources via
ETL (extract, transformation and load) and data cleansing processes and to
create tables or views with aggregated data. When analysing the aggregated
data, common requirements are: to access the detailed information on which the
aggregated data is based on, or even more, to identify the sources of a possibly
faulty datum and to access the original data prior to the ETL or cleansing
processes that led to the construction of that datum.

There are other examples of provenance which are not restricted to data
management. For example, in an industrial process, where raw materials are
used to produce some resulting products, and it is necessary to know which
raw material were used to produce a given item, or vice versa, which resulting
products were obtained from a raw item. Also, analysing academic publications,
it is of interest to know which previous publications were referenced by a certain
publication, and vice versa, which publications referenced a given one.

O�ering this provenance information is challenging for many reasons: �rst,
when data travels through di�erent systems and is processed by di�erent sys-
tems, it may be di�cult to understand the unit of data and the unit of data
transformation used by each system, not to mention, to integrate them in a
common model. We have seen in the reviewed literature that di�erent de�ni-
tions of provenance exist, which include varied elements and not always refer
to them with the same terms. Also, conceptual data models are seldom used,
which makes it more di�cult to integrate provenance information.

Also, there is a need for a data identi�cation scheme for data items and
data transformations. This is specially challenging in a diverse and distributed
scenario. What is more, these identi�ers should permit the user to retrieve
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information about the data transformations, their executions, about the data
items or the data itself. Some authors [53] use hash digests as identi�ers for
data, but this only works to identify data �les (a.k.a. coarse granularity), not
its individual inner records. To identify the individual inner records (a.k.a. �ne
granularity) some authors [61, 31] use their locations as identi�ers, but this
results in brittle solutions that break if the �le is moved or reordered. Also,
other authors [44] create identi�ers for each record, but burden the provenance
repository with saving the data and the identi�ers.

What is more, provenance capture and data identi�cation is expected to be
transparent to the data transformations. We have seen that better types of
provenance (�ner granularity and more informative notions of provenance) can
only been achieved by restricting the type of data transformations supported,
thus resulting in less transparency. In order to o�er the most informative type of
provenance, the authors [55, 33] restrict data transformations to be declaratively
de�ned (e.g. via a query), while other authors [46, 44] support any type of data
transformations but o�er a much more limited type of provenance.

In this context, we set as our objective to obtain a general, high-level,
metadata-based solution, which supports the best possible notion of provenance.
Thus, we have developed a framework for provenance capture and recording
based on metadata. The solution is based on a conceptual data model, which
facilitates the integration of concepts in the di�erent systems. Thus, it is pos-
sible to construct a data provenance graph which relates data produced by
di�erent systems. The framework de�nes roles and responsibilities to achieve
data provenance (in particular one for capturing and one for recording data
provenance) as well as an identi�cation scheme for data and transformations
and for resolving the location for data items.

The major contribution of this thesis is the aforementioned framework to-
gether with a proposal for the implementation of the provenance repository.
Other contributions are a survey of existing solutions to data provenance in dif-
ferent contexts, the uni�cation of di�erent terms used in the literature and the
proposal of a de�nition of data provenance which includes them. Also, we have
developed PCM (Provenance Conceptual Model), a conceptual data model for
provenance based on the data models of the surveyed works.

Another contribution is the analysis of the characteristics of the systems
o�ering provenance and the type of provenance o�ered, what to the best of our
knowledge is not analysed by any work. We also make explicit some of the
working hypothesis which are commonly implicit. What is more, we o�er an
analysis of the problem of o�ering data provenance in a distributed environment
with diverse technologies, in particular inside the Hadoop environment (the
framework for distributed storage and distributed processing of very large data
sets), analysing the challenges that can appear when the di�erent tools of the
Hadoop ecosystem interact with each other.

In chapter 2, based on a review of the literature, we present a de�nition of
data provenance, and present the characteristics of provenance as well.

In chapter 3, we present our case study and based on its requirements, we
review the surveyed solutions, focusing on those which work with Hadoop. We
analyse them and show they cannot be used to solve our case study.

In chapter 4 we present the analysis of the case study and propose the
provenance framework as a solution. We start by explaining the need for a
conceptual data model for provenance, we present the models of the reviewed
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CHAPTER 1. INTRODUCTION

works and construct PCM (Provenance Conceptual Model). Then we analyse
the di�culties for capturing and recording provenance in this scenario. We close
the chapter presenting the provenance framework.

In chapter 5 we address the implementation of the provenance framework,
�rst we review OPM and PROV-DM, two provenance models for interoperability
and assess them using PCM; then we present a concrete implementation of
the Provenance Repository; we present the aspects of the implementation of
provenance and present how these issues are addressed in the reviewed works in
a comparative summary. We show how two existing solutions for Hadoop and
relational databases could be adapted to work within the framework playing the
provenance capture role.

In chapter 6 we present other scenarios and show how the framework and
the metadata repository proposed in chapter 5 can be adapted to satisfy the
di�erent requirements in the di�erent use scenarios. Finally, in chapter 7 we
present our conclusions and future work.
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Chapter 2

Provenance De�nition

When searching the reviewed literature for a de�nition of data provenance we
�nd that in each case the authors are immersed in a speci�c domain and problem
and thus present a de�nition of provenance that suits their requirements. This
results in limited de�nitions. In order to study the general problem of data
provenance, we need a more general de�nition, which we construct from the
reviewed de�nitions.

In this chapter �rst we present a de�nition of provenance and a summary
of its characteristics, we survey the di�erent de�nitions for provenance given by
di�erent authors and conclude with a comprehensive de�nition of provenance
that includes the reviewed de�nitions. Finally, we present a summary of the
surveyed de�nitions comparing them to the proposed de�nition.

2.1 Introduction

Several de�nitions do exist for the provenance of a datum, also known as attri-
bution, �liation, genealogy, lineage, parentage and pedigree. These de�nitions
do not always consider the same elements nor refer to them using the same
terms. Buneman et al. [37] -which according to Google Scholar is one of the
most cited articles dealing with provenance-, de�ne data provenance as "the
description of the origins of a piece of data and the process by which it arrived
in a database".

Most authors work in a particular context, where data are stored in di�erent
structures and data items are even called with di�erent names, e.g. data can
be stored in relations in the case of databases, in which case data items are
generally referred to as tuples; data can be stored in �les in the case of the
HDFS, in which case data items are generally referred to as records; etc. We
will try to refer to these in a more general way using the terms data collection
and data item respectively.

We now present some general terms, then introduce each reviewed work with
its de�nition of provenance and close the chapter giving a general de�nition
which includes those of the the reviewed works.

In Appendix A we present a glossary with the di�erent terms used in the
reviewed literature and the de�nitions given by the authors.
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2.1.1 Fine- and Coarse-grained provenance

Depending on how granular the provenance information is, it can be referred
to as coarse-grained or �ne-grained provenance. If the solution only permits to
identify the source data collections from which the data item was derived, it is
called coarse-grained provenance. On the other hand, if it permits to identify
exactly which source data items were used to produce a given data item in the
output, it is called �ne-grained provenance [45, 76].

In the context of �ne-grained provenance, the relation between an output
data item and the input data items used to produce it is called causal relation
[31].

2.1.2 Notions of provenance (Why, how and where)

In the context of �ne-grained provenance it is possible for the causal relation be-
tween data items to bear a meaning, which depends on the notion of provenance
being used. Cheney et al. [41] say that among the di�erent notions of prove-
nance proposed, the most common ones are why-, where- and how-provenance.

Buneman et al. [37] �rst distinguish between "why-provenance" y "where-
provenance". While why-provenance explains why a data item is in the col-
lection, which is, for a given data transformation, what pieces of input data
validate the existence of an output data item; where-provenance shows where a
given piece of data comes from, which "requires us to identify locations in the
source data".

Why- and where-provenance are related, when we identify the where-provenance
of a data item in the output, its value must have been copied from some data
item from the input, which can be found in the why-provenance of the output
data item.

Green et al. [55] show that why-provenance has certain limitations because
even though it shows the set of contributing data items for an output data item,
it does not explain how these contributed to it. It can be the case, for example,
for two di�erent output data items to have the same why-provenance and yet for
them to have been created using those data items in a di�erent way. Thus, they
propose the notion of "how-provenance" which uses polynomials to represent
the how the data transformation used the the input data items to produce the
output data item. These polynomials are used to tag the output data items to
document how they were produced.

As stated by Cheney et al. [41], how-provenance is more general than why-
provenance since one can derive the why-provenance of an output tuple from its
how-provenance polynomial but not the other way around.

2.1.3 Backward and Forward Tracing

The causal relation between input and output data items can be seen or queried
in two ways, known as backward tracing and forward tracing.

When performing backward tracing, the provenance of a data item consists
of the data transformation and the input data items used to produce it. If
backward tracing is applied iteratively over those input data items, then the
backward-tracing provenance of the data item in question consists of all its

6



CHAPTER 2. PROVENANCE DEFINITION

origins or ancestral data products and entire processing or derivation history
[63, 37, 46, 76, 77, 80].

Regarding forward tracing, the data provenance of a data item, consists of
the transformations that were applied to it as well as the output data items
produced by them. If applied iteratively over those output data items, then
the forward-tracing provenance of a data item are all the data items that have
evolved from it, also known as descendant data items [36, 61].

Backward and forward tracing of a datum are de�nitely related, since they
are two alternative ways of seeing the same information.

2.2 Reviewed works

In this section we survey the di�erent de�nitions for provenance. The reviewed
works are ordered by publication year and alphabetically by �rst author. The
process and criteria to select the reviewed works is explained in Appendix B.

Buneman et al. (2001)

Buneman et al. [37] work in the context of transformations de�ned as database
queries (both relational and XML databases) and propose a syntactic approach
to compute provenance based on analysing the query (i.e. the schema mapping).
They state provenance is "essential to anyone interested in the accuracy and
timeliness of the data".

The authors de�ne provenance, lineage or pedigree, as "the description of
the origins of a piece of data and the process by which it arrived in a database".
Yet, they address only the part of the problem referring to the origins of a
piece of data. Thus, their solution o�ers �ne-grained provenance, distinguishing
between why-provenance and where-provenance and o�ering a solution which
works to compute the �rst type of provenance for general queries and computes
the latter for a restricted type of queries. This limitation is due to the fact that
the syntactic analysis they perform over queries cannot always determine the
origin of the output result of a query (it is possible for a query to be rewritten
in a di�erent but equivalent way and for the where-provenance of a result to
change, this is why the authors say where-provenance is not invariant under
query rewriting).

Frew et al. (2001)

Frew et al. [53] have developed a metadata recording framework called Earth
System Science Workbench (ESSW). They work in the context of science, where
available data sets are used to generate higher level data products which are in
turn published. In this context, the authors claim it is di�cult to keep track of
which are the original data sets, which ones are generated, and when, how (e.g.
version of program) and by whom.

They de�ne an "object's data lineage" [sic] as its origin and processing his-
tory. Their system permits to record coarse-grained provenance for �les or data
sets.
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Marathe (2001)

Marathe [65] works in a context of science where data is represented in multidi-
mensional arrays and data transformations are expressed using the declarative
language AML (Array Manipulation Language), an algebra consisting of three
operators that map arrays to arrays. In this context, the author presents a "lin-
eage tracing algorithm" called SUB-pushdown for data transformations over
array data which o�ers �ne-grained provenance, in particular why-provenance.

The author de�nes lineage tracing as "a type of data-�ow analysis that
relates parts of a result array to those parts of the argument (base) arrays that
have bearings on the result array parts." In particular, considering an array
manipulation that computes a result array X from one or more base arrays, and
considering some selected elements X' of the array X, lineage or lineage trace
of X' consists of those elements of the base arrays that are required to compute
X'.

Foster et al. (2002)

Foster et al. [51] work in the context of science where they say the analysis
of data is a signi�cant community activity and that as a result of this activity,
communities construct, in a collaborative fashion, collections of derived data.
In this context, they point out the importance of recording and discovering the
relationships between data objects corresponding to the computational proce-
dures used to derive one from another.

They have developed a prototype for a system called Chimera, which com-
bines a virtual data catalogue, for representing data derivation procedures and
derived data, with a virtual data language interpreter that translates user re-
quests into data de�nition and query operations on the database.

This data catalogue permits to compute data provenance on a coarse level
based on metadata, and also to perform "virtual data management" operations,
for example to "re-materialize" data products that were deleted, generate data
products that were de�ned but never created, regenerate data when data depen-
dencies or transformation programs change, and create replicas of data products
at remote locations when re-creation is more e�cient than data transfer.

Provenance is not de�ned by the authors in this work. However, they refer
to the works of Buneman and Cui which de�ne provenance as the causal rela-
tionship between data items. Also, they point out the importance of identifying
the data transformations used to create the data collections (coarse-grained
granularity).

Cui et al. (2000, 2003)

Cui et al. [45, 47, 46] working in the context of data warehousing, formally de�ne
provenance (they use the term lineage) and present an algorithm to trace exact
�ne-grained provenance for both relational views and for non-declarative trans-
formations. The provenance of a (view) data item is de�ned as "the exact set
of base data items that produced" it, which coincides with the why-provenance
de�nition as is pointed out by Buneman et al. [37].

They consider the problem of a data warehouse composed of a sequence of
materialized views, where the transformations that take data through the views
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"may vary from simple algebraic operations or aggregations to complex procedu-
ral code". The algorithms proposed work for non-declarative transformations,
but take advantage of the schema mapping information when present. Here the
separation of speci�cation and implementation of the mappings is evidentiated.

Pancerella et al. (2003)

Pancerella et al. [72] work in the context of chemical sciences, where multi-scale
research is done by passing of information from one level to the next. Also,
experiments may produce new results so provenance may help to understand
the accuracy and currency of scienti�c data. In this context, they state that one
of the major bottlenecks is passing information from one level to the next in a
consistent and validated manner. They have developed a system called Collab-
oratory for the Multi-scale Chemical Sciences (CMCS) which o�ers a suite of
tools for managing data and metadata and visualizing "pedigree relationships"
between data entries with coarse granularity.

The authors de�ne data provenance or data pedigree as "where a piece of
data came from and the process by which it arrived in the data repository" and
say it is important to the accuracy and currency of data.

Bhagwat et al. (2005)

Bhagwat et al. [35] work in the scienti�c domain, where they say that data is
collected from di�erent sources and it is often cleansed and reformatted before
it is compiled into a new database, where it is common for such newly created
databases to contain new analysis or results that are derived by scientists. In
this context, they say that there is information about data that is not kept in
the database but that it is critical for further analysis and scienti�c discovery
to propagate it along as data is being moved around.

With this objective, they have developed an annotation management system
for relational databases in which every piece of data in a relation is assumed to
have zero or more annotations associated with it and annotations are propagated
along, from the source to the output, as data is being moved through by a query.
The system uses the notion of where-provenance to de�ne which annotations to
propagate when a query is executed. Even though the actual origin of a new
data item (i.e. its where-provenance) is identi�ed and used by the system,
this information is intentionally not recorded, but instead its where-provenance
annotations are copied and assigned to the new data item.

In the system, every column of every tuple in every relation can be annotated
with zero or more annotations. The term annotation is used to refer to infor-
mation about data such as provenance, comments, or other types of metadata.
It should be considered that it is understood by the authors that provenance
is neither the causal relation (why-p) nor the location from where a data item
was obtained (where-p) but instead provenance is a piece of metadata associ-
ated to each data item. As it, it needs to be propagated together with the data
item. Also, note that the solution works in a context where no transformations
are actually applied on the data, it is only "moved around", and therefore the
system only works for SPJ queries.

The authors de�ne the provenance of a piece of data as where that piece of
data is copied or created from, and it is seen in their system as one of the many
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annotations of the data. Other examples of annotations given are: the perceived
accuracy or reliability of experimental results by domain experts, information
about who has seen or edited a piece of data, error reports or remarks about a
piece of data, and the quality or security level of a piece of data.

Green et al. (2007)

Green et al. [55] work in the context of relational databases, where data trans-
formations are restricted to relational algebra. They show the limitation of
why-provenance in that two di�erent output data items may have the same
why-provenance when they may have used those input data items in a di�erent
way. To overcome this they develop the notion of how-provenance, where a
polynomial is used to show how the input data items were used to construct an
output data item.

As shown by Cheney et al. [41], how-provenance is more general than why-
provenance, so the latter can be computed from the former. Hence, this solution
permits to compute �ne-grained why-provenance.

Amsterdamer et al. (2011)

Amsterdamer et al. [33] work in the context of work�ows whose transformations
(referred to as modules in this work) are Pig Latin queries. In this context
they propose a solution (and have built a prototype) that permits to compute
�ne-grained data provenance (both for backward- and forward-tracing) using
metadata. Regarding the notion of provenance, their work is based on the
idea of semirings developed by Green et al. [55] for the context of database, so
the system permits to compute how-provenance (and therefore, why-provenance
also).

They de�ne the data transformations, which they call modules, as a Pig
Latin [71] query that reads and writes in a relational schema. A distinct char-
acteristic of these data transformations is that are allowed to have an internal
state (which may be modi�ed by inputs in previous executions of the work�ow)
which the provenance system takes into account.

Crawl et al. (2011)

Crawl et al. [78, 32, 44] work in the context of scienti�c work�ows, where they
have developed a work�ow management systems called Kepler, which they have
integrated with Hadoop, creating Kepler+Hadoop. The Kepler system permits
to model and execute work�ows (both through a GUI or in batch mode), the
Kepler+Hadoop version presents extensions to permit the data transformations
(referred to as actors in Kepler) to be MapReduce jobs. They provide a meta-
data based framework to compute coarse-grained provenance (both for backward
and forward tracing).

Their provenance data model focuses on the work�ow, its de�nition, its
evolution and its executions. They de�ne a work�ow de�nition as a speci�cation
of what exists in the work�ow, its entities, their parameters and the connections
between the actors. Work�ow evolution is a description of how the work�ow
de�nition has changed over time. Their model permits to record work�ow and
actor executions (a.k.a. runs), the context and data products consumed and
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produced by the mentioned runs. Context is the who, what, where, when, and
why that is associated with the run.

Huq et al. (2011)

Huq et al. [60] work in the context of stream data processing for data coming
from sensors. This is the case where individual data items may arrive continu-
ously in "multiple, rapid, time-varying, possibly unpredictable and unbounded
streams"[34]. In this case, the transformation process is continuously executed
on a subset of the data stream known as a window. Their solution permits to
compute �ne-grained data provenance, in particular why-provenance, since the
solution "associates the chosen output tuple with the set of contributing input
tuples".

Ikeda et al. (2011)

Ikeda et al. [61, 73] have built a prototype system called RAMP as an extension
to Hadoop, to support the automatic capture and recording of �ne-grained
metadata-based provenance (both for backward and forward tracing). Their
solution is for "data-oriented work�ows" (directed acyclic graph where nodes
denote data set transformations, and edges denote the �ow of data input to
and output from the transformations -each edge is annotated with a data set-
), in particular for MapReduce work�ows, where all transformations are pure
map and reduce functions. The MapReduce functions could be implemented
directly or be the result of the compilation of Pig Latin [71] (a high-level data-
�ow language). The case study presented is for the analysis of tweets and
diggs to "gauge public opinion on movies" in batch processing of data sets (not
continuous stream processing).

They de�ne provenance the same way Cui et al. [45] do it, �rst for an output
tuple of a transformation, as those elements of the input that contributed to
its derivation, i.e. why-provenance; and then, the provenance of an output set
is de�ned as the union of the provenance of its elements. A speci�c de�nition
of provenance is de�ned for each transformation type (map, reduce, union and
split). In this way, provenance for the work�ow is de�ned recursively.

Akoush et al. (2013)

Akoush et al. [31] present a modi�ed version of Hadoop -called HadoopProv-
which o�ers capturing and recording of �ne-grained why-provenance in MapRe-
duce jobs. The authors de�ne provenance as "the causal relationship between
input and output records", which is equivalent to the de�nition used by Ikeda
et al. [61].

2.3 General De�nition and Comparative Summary

Taking these reviews into account, we give the following de�nition. Data prove-
nance is the explanation of everything that happened related to the creation
of data. We point out that it refers to something that has already occurred as
stated by Bose et al. and Moreau et al. [36, 67]. This explanation related to
the creation of data includes -but is not limited to- the following information:
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I if referring to raw data, how it were created (e.g. regarding scienti�c measure-
ments: the recording instrument, the instrument's operating parameters,
perceived accuracy or reliability of experimental results by domain experts,
etc.) [80];

II when data were processed from other data, information regarding the data
transformation execution (in which context it was executed, by whom,
when, using which parameters, etc.) [80, 53, 51, 72, 32];

III the speci�cation (de�nition, purpose, version, developer, etc.) of the data
transformation that produced the data [80, 53, 51, 72, 32, 33];

IV if the data transformation was invoked as part of another transformation or
work�ow, information regarding the latter [44];

V information regarding the input data, with coarse granularity and �ne gran-
ularity, and explaining how these input data items were used [63, 41, 37,
45, 55].

VI other information describing the data item, such as: assumptions and crite-
ria applied at any stage of the data product life cycle; information about
who has seen or edited a piece of data; error reports or remarks about a
piece of data or its quality, etc. [36, 35].

Being in possession of this information, one can approach it from di�erent per-
spectives to pose di�erent queries. The most common queries refer to backward
and forward provenance tracing, which can be queried in only one step or it-
erating over the provenance information. That is, when performing backward
provenance tracing for example, in one step one would see the information for
the data items used as input by the transformation that produced it; then one
could iterate over those data items, performing backward provenance tracing
for them.

Other possible queries over this information are: to identify all data items
produced with a certain version of a data transformation; to identify data pro-
duced by transformations run by a certain user or under certain conditions; and
integrating it with forward tracing, to identify all descendants of these data
items.

In table 2.1 we show which aspects of the de�nition are considered by each
of the reviewed works, showing also the granularity of the solution, the notion
of provenance and if the solution o�ers backward or forward tracing. In this
analysis we can observe the di�erences in the reviewed de�nitions. Also, we can
see the one element that is present in all de�nitions of provenance is the causal
relation between input and output.
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Reviewed
Works

I&VI II III IV V Gran. Notion of
Prov.

Bw /
Fw

Tracing

Buneman et
al. [37]

x x x Fine Why-p,
Where-p

Bw

Frew et al.
[53]

x x x Coarse - Bw

Marathe [65] x Fine Why-p Bw
Foster et al.

[51]
x x x Coarse - Bw

Cui et al. [45] x Fine Why-p Bw
Pancerella

[72]
x x x x Coarse - Bw

Bhagwat et
al. [35]

x x Fine Where-p Bw

Green et al.
[55]

x x Fine How-p,
Why-p

Bw

Amsterdamer
et al. [33]

x x x Fine How-p,
Why-p

Both

Crawl et al.
[44]

x x x x x Coarse - Both

Huq et al.
[60]

x Fine Why-p Bw

Ikeda et al.
[61]

x Fine Why-p Both

Akoush et al.
[31]

x Fine Why-p Both

Table 2.1: Comparative summary of reviewed de�nitions.
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Chapter 3

Case Study and Available

Solutions

In this chapter we present our case study -of provenance requirements in a
Hadoop (an open-source framework for "reliable, scalable, distributed comput-
ing" [14]) environment- and based on these requirements we review the surveyed
solutions for Hadoop to analyse if they could be used to address them. We show
that none of them address all of aspects the scenario.

3.1 Case Study

We present a case study with the objective of illustrating the di�erent situations
and challenges that can arise when tracing provenance in a Hadoop environment.
Hadoop is an open-source framework for "reliable, scalable, distributed comput-
ing". The core of Hadoop consists of Hadoop Distributed File System, a.k.a.
HDFS, and Hadoop MapReduce (parallel processing of large data sets) [14]. Yet,
when referring to Hadoop we will consider also Hadoop's Ecosystem, which in-
cludes several widely used frameworks and tools built over Hadoop, which o�er
di�erent abstractions and paradigms for storing and processing data.

The problem we consider is that of updating quality attributes of derived
data when the quality attributes of their ancestral data are updated.

The case study consists of a distributed environment, composed of a Hadoop
system used to summarize large volumes of data, and then the summarized data
are copied to a relational database where, after being integrated with other data,
are used for decision making.

In �gure 3.1 we present the case study. It is composed of a Hadoop system
which has four data �les, A and B where data are loaded from di�erent sources,
and C where data are integrated from A and B. The data in C is then sum-
marized in D. The summarized data in D are copied to the relational database,
in particular to the relation D'. These data transformations can be performed
using any of the frameworks in the Hadoop ecosystem.

Once data arrives to D', using the data available in the relation E, the data
in the relation F are created, which is then input to a decision making process.

The original data loaded in Hadoop (�les A and B) are loaded together
with quality attributes. Based on these, the quality attributes of C and of the
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Figure 3.1: Di�erent data transformations running in di�erent environments.
The arrows represent the causal relation between input and output data items
of each transformation execution.

summary data (D) are calculated. And then the quality of data in the relation
F is calculated. Then decisions are based on the calculated quality of the latter.

So when a noti�cation rectifying the quality attributes of the original data
in Hadoop (either A or B, with �ne granularity), it is of vital importance to
identify the data items in F which were derived (indirectly) from them and to
update their quality attributes so better decisions can be made. This is expected
to be performed as fast as possible.

For each of the processing steps it is also necessary to know which data
transformation was performed. Another requirement is that the system should
be able to communicate the provenance information it computes.

It is desirable that provenance capture and recording is as much transparent
as possible to the developers of the transformations and work�ows.

3.2 Analysis of existing solutions

In this section we study the reviewed solutions which are designed for the
Hadoop environment, select two of them as a reference and analyse how well
they satisfy the requirements.

We present in table 3.1 a summary of the surveyed solutions which work
in the Hadoop data management context. First, as for the de�nition of prove-
nance, most of the selected solutions restrict the concept of provenance to the
causal relation between input and output records, so no information regarding
transformation executions nor context is captured by them. The exception is
the solution presented by Crawl et al. [44] which puts great emphasis on it, es-
pecially on the concept of work�ow. As for what they o�er, most of the surveyed
solutions o�er �ne-grained provenance, except for that Crawl et al. which o�ers
coarse-grained provenance. Yet, it also o�ers information about the work�ow
that produced the data and context information of its execution.

Most of the selected solutions are based on metadata and one follows a
hybrid approach (none of the solutions is based on a tracing procedure). Also,
regarding what is included in the scope of the solution, most solutions address
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Amsterdamer
et al.

Ikeda et al. Akoush et al. Crawl et al.

Provenance
de�nition

Causal
relationship

Causal
relationship

Causal
relationship

Causal
relationship
and work�ow
executions

What they
o�er

Fine-grained,
how-p and
why-p

Fine-grained,
why-p

Fine-grained,
why-p

Coarse-grained
& WF

Executions
and

Speci�cation
Metadata or
Tracing
procedure

Metadata Metadata Hybrid Metadata

Scope of the
Solution

Not speci�ed Only
provenance
capture.

Locations used
as identi�ers.

Only
provenance
capture.

Locations used
as identi�ers.

Provenance
capture and
Data and
Process

identi�cation.
Hadoop
ecosystem

Pig and
MapReduce

jobs.

Pure
MapReduce

jobs.

Pure
MapReduce

jobs.

MapReduce
jobs executed
from Kepler.

Only inside
Hadoop?

Only inside
Hadoop.

Only inside
Hadoop.

Only inside
Hadoop.

Distributed
environment.
Centralized
metadata
repository.

Table 3.1: Summary of the surveyed solutions which work in Hadoop.

only the problem of provenance capture, and only that of Crawl et al. address
the problem of identi�cation of data items and data transformation executions.

Finally, we show the tools and type of data transformations inside Hadoop
that are supported by the solution, for instance, there are solutions for data
transformations de�ned using Pig Latin, for pure MapReduce jobs and for gen-
eral MapReduce jobs; and if the solution permits to integrate provenance meta-
data from other systems.

We will focus on the solutions designed by Crawl et al. [44] and that by
Ikeda et al. [61] since these are the ones with a more detailed explanation of
their implementation.

We will not focus on the solution developed by Amsterdamer et al. [33],
since the authors omit many aspects of their solution, such as how are the data
items identi�ed and how is metadata stored in the �le system. The solution
developed by Akoush et al. [31] also o�ers little details of its implementation,
but seems to be an improved version of that developed by Ikeda et al. [61].
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Solutions of Ikeda et al. and Crawl et al.

Based on the previous analysis done in this chapter, we now go over the two
selected solutions. As for the de�nition of provenance, Ikeda et al. [61] restrict
the concept of provenance to the association between input and output records,
so no information regarding neither transformation executions nor context is
captured.

Alternatively, Crawl et al. [44] include the work�ow de�nition and run in
their provenance requirements. Another di�erence is that Ikeda et al. o�er
�ne-grained provenance while Crawl et al. o�er coarse-grained provenance.

Regarding the scope of their solutions, Ikeda et al. only address the capture
and recording of provenance based on a given identi�cation scheme or on a
default one (the data item location). The authors do not address the issue
of identifying data items. Also, the proposed solution does not address the
maintenance of the metadata, thus the solution is heavily dependent on the
form data is stored in the �le system, even the way it is ordered inside the �les,
e.g. Hive tables (i.e. HDFS �les) partitions can wreak the system.

On the other hand, Crawl et al. explicitly address the issue of data and
process identi�ers creation. In their solution, data are always moved around
with their identi�ers, which is transparently handled by their framework.

Regarding the frameworks supported in Hadoop and the integration with
other systems, Ikeda et al. address provenance for MapReduce jobs only, which
would work for Pig Latin programs and HiveQL queries which compile to
MapReduce jobs. However, the metadata could break should �les be sorted
or partitioned, which are common Hive operations. So other frameworks are
not really supported. In this case, the solution developed by Crawl et al. is
even more restrictive because it only supports MapReduce jobs run from inside
the Kepler system.

Lastly, as for the integration of provenance with other systems, Ikeda et
al. speci�cally address the possibility of tracing provenance through a sequence
of MapReduce jobs, but do not mention the possibility of tracing provenance
through di�erent systems. This would be di�cult since no identi�cation scheme
is de�ned. In contrast, Crawl et al. consider a scenario where data can be
moved inside Hadoop to be processed and then moved out to continue its pro-
cessing, while provenance is traced through all the work�ow. They follow a
metadata approach to provenance which is recorded in a centralized manner.
This solution does not support systems which are not able to record provenance
information, but this is not really a problem because they restrict themselves
to data transformations executed from Kepler.

The two reviewed works address only a small part of the potential general
problem. Ikeda et al. cover more situations since their solution captures prove-
nance for any MapReduce job running in Hadoop, while that of Crawl et al.
works only when the jobs are run from a Kepler work�ow. Another big di�er-
ence is that Crawl et al. address the problem of assigning identi�ers to data
items, which then permits tracing provenance through di�erent systems, a pos-
sibility not o�ered by Ikeda et al. Since data items are assigned identi�ers, the
two must be handled together, which implies an extra di�culty to provenance
capture, which results in Crawl et al. o�ering only coarse-grained provenance,
while Ikeda et al. o�er �ne-grained provenance.
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3.3 Conclusions

We have presented our case study of a distributed scenario including a Hadoop
environment. Of the reviewed works, we have selected those which o�er prove-
nance in a Hadoop environment and analysed how well they satisfy the require-
ments of our case study. We cannot say that one solution is completely better
than other, because while one may cover in a better way some of the dimensions
of the problem, it is outperformed in another dimension by the other solution.
Yet, none of them addresses all of aspects the scenario, so in the following chap-
ter we present a framework for provenance capture and recording which satis�es
the requirements of the case study.
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Chapter 4

A General Framework for

Provenance

In this chapter we present an analysis and a solution for the case study. In
order to address the requirements we start by developing a conceptual data
model of provenance, representing the concepts and relations to which we refer.
Then we present an analysis of the case study and close the chapter presenting
a framework for capturing and recording data provenance which satis�es the
requirements of the case study.

4.1 A Provenance Conceptual Model

In order to address the requirements of provenance we need a model to represent
the concepts and relations to which we refer. This model should be a conceptual
model, which is a "concise description of the data requirements of the users and
includes detailed descriptions of the entity types, relationships, and constraints"
[49]. It should be expressed using a high-level data model and should not include
implementation details.

We distinguish between conceptual, logical and physical design. In database
design, once the conceptual data model is designed, the following step is the
logical design, the process of transforming the conceptual schema into the im-
plementation data model, such as the relational or object-oriented data model,
or an HBase table data model. Then comes the physical design, during which
the internal storage structures, indexes, access paths, and �le organizations for
the database �les are speci�ed [49, 64].

In this section we start by presenting the data models of the reviewed works.
Here we �nd that the authors rarely present conceptual data models, instead
they generally present only the logical (relational) model or sometimes they do
not present a model at all. When there is no conceptual data model presented
we construct it by making the abstraction from the logical model, so next we can
build PCM (Provenance Conceptual Model), a conceptual model which includes
the concepts and relations of the reviewed models.
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4.1.1 Reviewed works

In this section we review the di�erent provenance data models of the surveyed
works. The reviewed works are ordered by publication year and alphabetically
by �rst author.

Buneman et al. (2001)

Buneman et al. [37] de�ne provenance, lineage or pedigree, as "the description of
the origins of a piece of data and the process by which it arrived in a database".
Yet, they address only the part of the problem referring to the origins of a piece
of data. They present no conceptual model for provenance. However, their
model consists of the causal relation between input and output data items,
expressing both why- and where-provenance.

Frew et al. (2001)

Frew et al. [53] have developed a metadata recording framework called Earth
System Science Workbench (ESSW). They present no conceptual model but
instead present the system's logical relational schema (�gure 4.1). Their model is
di�cult to comprehend because the terms are vaguely de�ned and are explained
using the logical model.

The authors use the general concept of "science object" which is de�ned as
"data and process", and works as an umbrella-term that includes everything in
their model. Each science object is recorded in the ScienceObject table and in
its speci�c table.

One core concept in their data model is that of "model". Although not
explicitly de�ned by the authors, it is said that it can be modelled as a DAG
(Directed Acyclic Graph) and that it can have many instances called experi-
ments. Thus the model is a speci�cation of a work�ow of data transformations
while the experiments are the executions of the work�ows.

An experiment (a.k.a. a model instance) is composed of processing steps,
processing activities or experiment steps, which are a data transformation exe-
cution.

Using the umbrella-term of science object, their system tracks how these
science objects are linked and can record additional metadata for them. (The
association recorded is that between science objects, which permits to declare
for instance the relation between data as input or output to transformations.
The metadata element for a science object is an XML document holding all
metadata elements and values for it. No speci�cation for these XML �les is
provided.

Marathe (2001)

Marathe [65] de�nes lineage tracing as "a type of data-�ow analysis that relates
parts of a result array to those parts of the argument (base) arrays that have
bearings on the result array parts". Thus, no conceptual data model for prove-
nance is de�ned. Their model consists of the causal relation between input and
output data items, expressing why-provenance.
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Figure 4.1: Earth System Science Workbench (ESSW) database relational
schema [53].
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Foster et al. (2002)

The Chimera [51] virtual data schema de�nes and records a set of relations
which follow two objectives: 1) to formalize descriptions of how a program can
be invoked, and 2) to record its actual invocations. The latter are the ones of
interest regarding provenance.

The authors present a conceptual data model expressed using UML which
we can see in �gure 4.2. In this data model, transformations are registered (i.e.
executable programs, with the information needed to invoke it), along with the
derivations (i.e. the several executions of each program, together with the values
for the parameters, execution time, etc.). Transformations are the equivalent
to data transformation speci�cations and derivations are the equivalent to data
transformation executions. In description of the schema.

The authors also de�ne a data object as a named entity which was consumed
or produced by a derivation (which can be �les, relations or objects, granularity
is coarse).

In their data model, they distinguish logical from physical transformations,
where the logical transformation is the speci�cation while the physical transfor-
mation describes where it can be accessed. Physical transformations are associ-
ated to one logical one, while a logical transformation can be associated to many
physical ones. This information is important for the virtual data management
operations the system o�ers, but not for provenance.

Derivations, the execution of the transformations, are associated to the log-
ical transformations but not to the physical ones. Logical transformations have
formal arguments de�ned, while the derivations have actual arguments de�ned,
which correspond to the formal ones. An actual argument can be either a LFN
(logical �le name) or the value of a non-�le parameter.

Cui et al. (2000, 2003)

Cui et al. [45, 47, 46] de�ne provenance of a data item as "the exact set of base
data items that produced" it. No conceptual model is explicitly presented, even
though is a subjacent model in their solution.

The way they de�ne it, provenance results contain the tables and tuples in
the corresponding source that produced the result tuple for which provenance
was queried. Thus, it is the causal relation between input and output data
items.

Yet, the authors de�ne a transformation as "any procedure that takes data
sets as input and produces data sets as output", which may vary from "simple
algebraic operations or aggregations to complex procedural code". However, the
information regarding which transformation produced a given data item is not
of interest in their work.

These transformations can compose a work�ow or a sequence of a directed
acyclic graph (DAG) of transformations. The authors de�ne provenance, i.e. the
causal relation between input and output, for one transformation and their algo-
rithm works in that basis. Yet, when that transformation composes a work�ow,
the provenance of the sequence is computed by applying the same algorithm in
an iterative fashion.

Since the transformation is not part of their provenance de�nition, no em-
phasis is given to it, and the speci�cations and executions of the data transfor-
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Figure 4.2: Chimera UML description of the schema [51].
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mations (and work�ows) are not distinguished.

Pancerella et al. (2003)

Pancerella et al. [72] de�ne data provenance or data pedigree as "where a piece
of data came from and the process by which it arrived in the data repository"
and focus their data model on the description of �les (data sets). Their system
is basically a repository of metadata used to describe �les and their relations to
projects and to other data sets. The authors do not present a conceptual data
model but only use attributes to tag �les.

The metadata they use is based on Dublin Core, from which they employ the
following elements to describe the data �les: Title, Creator, Subject, Descrip-
tion, Publisher, Contributor, Date, Type, Format, Source, Language, Relation,
and Rights. Also, they use the following Dublin Core Element Re�nements: Ab-
stract, Created, Valid, Available, Issued, Modi�ed, Is Version Of, Has Version,
Is Replaced By, Replaces, Is Referenced By, and Has References.

What is more, they have developed some extensions with the object of: en-
abling chemistry-speci�c searching, de�ning the relationship of scienti�c data to
projects and related inputs and outputs (i.e. computing provenance, in particu-
lar why-provenance) and for scienti�c publication and peer review annotations.
The metadata attributes developed for provenance are:

� Has Inputs: Used to de�ne the input �les needed to recreate the data
results.

� Has Outputs: Used to de�ne the output �les created by the process.

� Is Part Of Project: Used to reference a project to a data collection or
resource.

� Is Sanctioned By: Used to reference one or more review boards or organi-
zations that have approved or "blessed" the data.

Regarding the last two annotations (Is Part Of Project and Is Sanctioned By),
no de�nition is given of the concepts of project, review board or organizations,
and it is not de�ned as an entity with possible elements either.

Bhagwat et al. (2005)

Bhagwat et al. [35] state that the provenance of a datum is something that
can be described in one of its annotations. The authors de�ne the provenance
of a piece of data as where that piece of data is copied or created from, yet
this de�nition is too vague to de�ne a provenance data model and to de�ne the
structure of the mentioned provenance annotations.

The authors give the same treatment as that given to provenance to: the
perceived accuracy or reliability of experimental results by domain experts, in-
formation about who has seen or edited a piece of data, error reports or remarks
about a piece of data, and the quality or security level of a piece of data. No
model is provided for these either.
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Green et al. (2007)

Green et al. [55] de�ne provenance for a data item as a polynomial that repre-
sents not only which data items were used to create it, but also how they were
used. No conceptual data model is presented.

Amsterdamer et al. (2011)

Amsterdamer et al. [33] present a conceptual data model which permits to ex-
press �ne-grain records, associate them to module invocations, to both work�ows
or modules input and output records, and to other records and state records via
operator nodes (i.e. how-provenance). They de�ne data transformations, which
they call modules. In their model, multiple modules may be combined in a work-
�ow, which is de�ned by "a Directed Acyclic Graph (DAG) in which every node
is annotated with a module identi�er (name), and edges pass data between
modules". A work�ow execution is de�ned as a sequence of module invoca-
tions. The logical �ow of a work�ow execution and its input-output relations
is de�ned by them as coarse-grained provenance. Then they de�ne �ne-grained
provenance that allows "zooming-into" modules to observe the features of the
execution, such as the database's state of a module, operations performed, and
computational dependencies between data.

Over this model, the system o�ers the operation of "zooming-out" of a mod-
ule invocation provenance graph, which returns another graph where the in-
ternal nodes of a module are omitted and only its input and output nodes are
returned. In this zoomed-out graph, the notion of provenance o�ered is simply
of why-provenance, and not how-provenance, since no information is given of
how the input records were used to compute the output records. It just shows
which input records were used but still with �ne granularity (using the literature
term). However, the authors refer to this zoomed-out graph as a coarse-grained
provenance graph.

The idea of "zooming-out" is similar to the overlapping accounts of the same
past execution o�ered by the Open Provenance Model [67], which aims to o�er
di�erent levels of explanation for such execution. The di�erence is that the OPM
is more general, permitting the user to hide complete data transformations,
while the zoom-out in this work permits to hide only the details occurring inside
a data transformation.

Crawl et al. (2011)

Kepler's [78, 32, 44, 28] conceptual data model is based on an actor-oriented
paradigm, where the work�ow is composed of actors. An actor is the implemen-
tation of a speci�c function that needs to be performed. Each actor performs
a speci�c independent task that can be implemented as atomic or compos-
ite (a.k.a. sub-work�ows, are composed of atomic actors bundled together to
perform complex operations). Communication between actors takes place via
tokens that contain both data and messages.

The order of execution of actors in the work�ow is speci�ed by an indepen-
dent entity called the director. Directors specify what �ows as tokens between
the actors; how the communication between the actors is achieved; when actors
execute (a.k.a. �re); and when the overall work�ow can stop execution.
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Finally, a work�ow is a linked set of components -the Actors- that may
execute under di�erent Models of Computations -the directors-.

Their provenance system records the values of all data passed between ac-
tors during work�ow execution and the dependencies between data and actor
executions.

The provenance information is recorded in a relational database together
with the values of the data items. The logical relational schema consists of the
following tables, which are designed using terminology of OPM, representing
tokens and transfer events as OPM Artifacts and actor executions as OPM
Processes:

artifact(Aid,V,C) denotes that artifact Aid has a value V and the checksum
of the value is C.

compress(C,M) denotes that a checksum C has a compressed value M.

actor(E,T,R) denotes that an actor named E has a number T for work�ow
run R.

dependency(Aid,Pid,D) denotes that artifact Aid was read or written, spec-
i�ed by D, by process Pid.

As can be observed from the schema, data items (artifacts) are identi�ed with
�ne granularity, but all that is said of them is that they were either input or
output to data transformations (an actor) but it is not possible to declare a
causal relationship between data items.

The authors use OPM terms to describe their model, which may be used as
mapping to export it to OPM.

Huq et al. (2011)

Huq et al. [60] de�ne provenance of an output tuple as the set of contributing
input tuples (�ne grained provenance, why-p notion). Their model also includes
the coarse provenance metadata, which refers to the "processing elements" (i.e.
the data transformations) and its sources and destinations.

The concept of data transformation execution does not apply to this con-
text because the transformation process is continuously executed as data items
arrive continuously in streams. As the authors point out, this coarse-grained
provenance is documented during the setup of a processing element.

The term work�ow is used in the article but is not de�ned by the authors
and apparently it is not part of the provenance model. The work�ow seems to
be only a sequence of processing elements.

Ikeda et al. (2011)

Ikeda et al. [61, 73] de�ne "data-oriented work�ows" as directed acyclic graph
where nodes denote data set transformations and edges denote the �ow of data
input to and output from the transformations. They focus on a special case of
such work�ows, which they call generalized map and reduce work�ows (GM-
RWs) in which all transformations are either map or reduce functions.

The authors de�ne provenance the same way Cui et al. [45] do it, �rst
for one output tuple of a transformation, as those elements of the input that
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contributed to its derivation, i.e. why-provenance; and then, the provenance of
an output set is de�ned as the union of the provenance of its elements. Using
this de�nition, provenance for a work�ow is de�ned recursively.

Regarding the data transformations and work�ows, they are de�ned and
taken into account in the provenance tracing algorithm, but information about
them is not considered as relevant provenance information that should be given
to the �nal user.

Akoush et al. (2013)

Akoush et al. [31] work in a Hadoop environment where data transformations
are MapReduce jobs and a work�ow is a series of MapReduce jobs. They de�ne
data provenance of MapReduce jobs as the causal relationship between input
and output records; and say the same de�nition is extended to "link provenance
information across an entire work�ow".

4.1.2 De�ning a Conceptual Data Model

Based on the reviewed works, their de�nitions of provenance and the data mod-
els they de�ne, we de�ne PCM (Provenance Conceptual Model), a conceptual
data model for provenance to include all the di�erent concepts and relations
considered by them which we considered were relevant and well de�ned. We
present PCM in �gure 4.3 using UML. We also mention the elements that were
not included. This model serves not only as a summary of the reviewed lit-
erature but also as a requirement against which to assess existing provenance
models.

Di�erent authors work with coarse or �ne-grained provenance, for which we
respectively de�ne the context-agnostic concepts of Data Collection and Data
Item. A Data Collection is a group of Data Items that is understood as an
entity by the user. Regarding Data Collections and Data Items, there is a need
to declare things about them [80, 72, 35].

Also, there is a need to identify data transformations and their inputs and
outputs [53]. Also, some authors distinguish between the speci�cation and the
executions (a.k.a. runs) of the data transformations [51]. The executions of
the data transformations can include information such as the parameters used,
its execution time, etc. Other expect to know also the context in which the
transformation was executed, understood as "the who, what, where, when, and
why that is associated with the run" [32].

We de�ne the context-agnostic concept of data transformation as a general
transformation that takes data items as input to produce output data items.
We will distinguish two aspects of a data transformation: its speci�cation (its
name, purpose, version, its de�nition, etc.) and its executions or runs.

What is more, several authors consider sequences of transformations or work-
�ows. So we de�ne the context-agnostic concept of work�ow which is a com-
position of data transformations. We consider it to be a directed acyclic graph
(DAG) of data transformations, since this is the most common approach in the
literature [45, 33, 61, 60, 31].

We point out that we consider a sequence of data transformations to be
a work�ow only if it has been explicitly de�ned that way by the user. This
way, it is possible to talk about the purpose of the work�ow and also of its
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Figure 4.3: Provenance Conceptual Model.
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di�erent versions. Regarding work�ows we will distinguish its speci�cations
(which include its versions) and its executions.

Requiring that the work�ow be de�ned by the user in order for a sequence
of data transformations to be considered a work�ow restricts in no way the
possibilities of provenance tracing.

In the context of �ne-grained provenance, it is requested to at least identify
the set of contributing for a data item (known as why-provenance) [65, 45], but
other authors require to incorporate a semantics to the relation between input
and output data items, for example where-provenance [37] or how-provenance
[55].

To represent the semantics of the creation of a data item, we include the
concept of data production, which relates to the transformation execution it
belongs to and to its input data items and explains how they were used to
produce the output data item.

As for the elements not included in the model, they are those who refer to
who executed the transformations. Since this element is only mentioned by two
authors, Pancerella et al. [72] and Crawl et al. [44], and not much emphasis is
put in it, we opt not to include it.

4.2 Analysis for a General Provenance Frame-

work

In this section we present an analysis of the general aspects of the provenance
problem as well as the di�culties that arise in this scenario, speci�cally related
to the Hadoop ecosystem and to having a distributed scenario.

4.2.1 Transparent Provenance and User Intervention

We will start by stating explicitly a common objective of the reviewed works
which regards to the required user intervention for the capture and recording of
data provenance. The ideal is a system which can capture and record provenance
in a completely transparent manner and without imposing any restrictions either
to the user or the developer. However, there are limits to what can be captured
automatically.

On the one hand, the causal relation between input and output of a data
transformation execution can be expected to be captured automatically. Yet,
�ne grained provenance can only be obtained automatically when certain condi-
tions hold. What is more, how and where provenance can only be obtained with
even more restrictions. Therefore, in a distributed environment with di�erent
systems capturing provenance and pursuing this objective, it may not be possi-
ble for all of them to o�er the same notion of provenance not even provenance
information with the same granularity.

On the other hand, there are some aspects of provenance that cannot be
expected to be captured in an automatic and transparent way, such as the
name, description or objective of the data transformations. In order to have
information about the transformations that produced the data opens the door
to a range of additional requirements.

First, it is necessary to de�ne what a transformation is in the context of
work, for it to be possible to identify and register them, identify them when
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Figure 4.4: Di�erent conceptions of a transformation or a work�ow.

they execute and associate them to the data they create, e.g. in Hadoop, both
a map and a reduce function could be thought of as individual transformations
(e.g. Crawl et al. [78]), also a MapReduce job (e.g. Ikeda et al. [61]) or a
sequence of MapReduce jobs could also be thought of as a single transformation
as well. The di�erence between both ends of the spectrum is the thing being
traced and the granularity of information the user receives. What is more, the
granularity of what is considered a transformation could be �xed but it could
also be variably de�ned by the user. This is something that needs to be de�ned
within the functional requirements.

Besides considering the data transformations, in the reviewed literature,
provenance systems usually provide support for work�ows, i.e. a user-de�ned
and organized sequence of transformations. The work�ow element can be seen as
a high level abstraction of the transformations and can provide high level prove-
nance information, an idea which is covered by the Open Provenance Model
[67] with the idea of multiple levels of description. So, if the provenance system
should be able to capture provenance for work�ows as well, it is necessary to
de�ne what is understood by a work�ow.

We point out that just because two transformations take place one after
another, it does not necessarily imply that the data created by the second one
should be identi�ed as created by a work�ow. In �gure 4.4 we analyse the case
study, where for example, one criterion could be to de�ne the whole sequence of
transformations as a work�ow (W), while another criterion could be to consider
only the �rst two transformations as a work�ow (W'). There is no correct or
incorrect answer, the only thing is that for a data item to be identi�ed as having
been created by a work�ow, we understand it should have been explicitly stated
by the user that the sequence of transformations that created that data item
are indeed part of a larger entity.

As a consequence, it is necessary to have a register of the transformations
and work�ows available in the system. This permits to associate the created
data to transformations the user can recognize, and maintain additional infor-
mation describing these transformations. Some of the reviewed works require
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versioning of the transformations and work�ows [72, 44]. Having a registry of
transformations can facilitate the versioning by o�ering the user a place to de-
clare that one transformation is a newer version of another and declare in what
they di�er, and then to distinguish data created by one or other version of the
transformation.

4.2.2 Metadata or Tracing Procedure

Simmhan et al. [76] distinguish the two major approaches for obtaining prove-
nance information between metadata approaches and tracing procedure (actu-
ally, he refers to them as "annotations" or "inversion" approaches respectively).
We will use the terms metadata approach instead of annotations because it is
more common in the literature and tracing procedure instead of inversion, be-
cause a transformation may or not have an inverse, but a tracing procedure can
be designed independently of that, as pointed out by Cui et al. [45].

In the metadata approach, metadata comprising of the derivation history of
a data product is collected as annotations and descriptions about source data
and processes when the transformation takes place. This is an eager form of rep-
resentation in that provenance is pre-computed and readily usable as metadata.
On the other hand, the tracing procedure implies that certain algorithm must
be run in order to �nd the input data supplied to derive the output data (the
tracing procedure can sometimes imply to rerun the original transformation,
e.g. Cui et al.'s solution [46]).

The solutions which are based on a tracing procedure also depend on some
metadata, such as recording the mapping between two schemas, e.g., the query
that relates two relations, or properties of the transformation, etc. However,
these are referred to as not metadata-based in opposition to those which record
metadata for every data item for which provenance is to be computed. The
metadata stored by these solutions is sometimes called process-oriented [76] or
coarse-grained provenance metadata [33, 60].

Simmhan et al. [76] argue that metadata should be used to provide data
provenance at a coarse level, but for a �ner granularity, the amount of metadata
required would be far too large. Alternatively, the metadata required to apply
a tracing procedure is much more compact.

Besides of the disk space used by one approach or the other, another aspect
is the processing overhead. When a metadata approach is followed, transforma-
tions are burdened with collecting and recording the metadata, which is hence
readily available to query later. On a tracing procedure approach, the trans-
formation is freed from this, but instead the burden falls on the tracing proce-
dure which must execute some algorithm every time provenance for a datum is
queried.

There is therefore a trade-o� between obtaining provenance quickly and
running the transformations quickly. This is schematically represented in table
4.1.

Also, there are some solutions that follow an intermediate path between
these two, to which we refer as a hybrid approach. The intention of these is to
o�er a solution of compromise between the metadata and the tracing procedure
approaches.

When opting between these options, the �rst thing to consider is the require-
ments for provenance: must the system be able to answer provenance queries
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Approach Transformation
execution

Provenance
computation

Metadata slow (penalized) fast (metadata readily
available)

Tracing procedure fast (not penalized) slow (implies running
tracing procedure)

Table 4.1: Trade-o� between obtaining provenance quickly and running the
transformations quickly.

fast and is the capture overhead not a problem? Or the system running the
data transformations is a real time system and is there no requirement about
the speed of provenance answers?

Yet another aspect to consider is the possibilities of the system running the
transformations, since it may not be possible to choose. For instance, it may be
the case that a tracing procedure cannot be implemented because, due to the
characteristics of the transformation, it would imply rerunning the transforma-
tion which would be prohibitively expensive. Alternatively, the system running
the transformations is a closed one but still natively o�er a tracing procedure.
In that case, should one opt for a metadata approach, that tracing procedure
should be invoked systematically to materialize that metadata.

To conclude, given the requirements for fast provenance answering one would
opt for a metadata approach. However, in an environment where there exist
di�erent systems with diverse characteristics, it is better to leave the door open
for systems limited to other approaches.

4.2.3 Identifying Data Items

Provenance is a kind a metadata, and as such it could be added directly over the
data or alternatively managed separately of it. There are several arguments in
favour of managing it separately, such as not modifying the schemas of the prob-
lem speci�c transformations, which is related to having a provenance solution
which is independent from the problem speci�c solutions. Another argument
in favour of the latter is that provenance information may need to be recorded
in di�erent ways, according to the information requirements and the ways it is
going to be accessed.

In order to manage provenance metadata separately from the actual data,
a form of identi�cation for the data is needed, and therefore all of the reviewed
works implement some strategy to achieve this.

When o�ering coarse-grained granularity, the reviewed solutions assign a
unique identi�er to each �le and address as separate problems the identi�cation
of the �le from managing its location. Such is the case of Foster et al. [51] and
Pancerella et al. [72]. Frew et al. [53] use a MD5 hash digest as the identi�er
for the �les and maintain the id-location associations.

When o�ering �ne-grained granularity, every data item is either assumed to
have an identi�er or assigned one. In the context of databases, the reviewed
authors [37, 65, 55] assume that tuples (i.e. data items) can be identi�ed inside
a relation (i.e. a data collection), while the relations are uniquely identi�ed by
their name inside the database. Also, in the context of MapReduce jobs, Ikeda
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et al. [61, 73] and Akoush et al. [31] identify data records by the name of the �le
they are in together with the position they hold inside that �le. Similarly, Crawl
et al. [78, 32, 44] assign each record an identi�er composed of the identi�er of
the MapReduce task that created it and a unique identi�er inside that particular
task. The di�erence between the two lies in using as part of the identi�er the
created �le or the executing task.

Therefore, for a system to o�er provenance metadata there is need for a
data identifying scheme. The core of the provenance problem is capturing the
required information when a data item is created, yet, in a metadata approach,
the provenance information be recorded only once the created data items have
been given identi�ers.

An important issue to address is how to identify the data items, and if the
data identi�cation method should be provided by the provenance framework or
it should be dealt outside of it. Some authors assume the existence of identi�ers
while others -working in a context where no natural identi�ers exist- address the
issue explicitly. In a distributed environment, one cannot assume the existence
of a data identifying scheme. Also, if this identifying scheme existed, one could
not assume it creates uniform nor globally unique identi�ers.

Another issue is whether the provenance framework should be aware of data
sets being moved around or altered or this is beyond its scope. What should the
relation between data identi�ers and data locators be? In the solution developed
by Ikeda et al. [61], a provenance �le is created for every output data �le. Should
the �le be moved or renamed via �le system operations, the metadata registry
becomes inconsistent. What is more, the position (o�set) of a record in the
�le is used as local identi�er within that �le. So, if the data �les are altered,
e.g. sorted, partitioned, etc., the provenance metadata based on �le o�sets also
becomes inconsistent. We can see that in this solution unique locators are used
as trivial identi�ers, so it is necessary to maintain the provenance metadata
when data are moved. Therefore, it seems convenient to maintain separately
the identi�ers of data from its location.

4.2.4 Hadoop ecosystem

Hadoop is an open-source framework for "reliable, scalable, distributed comput-
ing". The core of Hadoop consists of Hadoop Distributed File System, a.k.a.
HDFS, and Hadoop MapReduce (parallel processing of large data sets) [14].
Yet, when referring to Hadoop it is common to consider also Hadoop's Ecosys-
tem, which includes the frameworks and tools built over Hadoop. The Hadoop
Ecosystem includes di�erent tools to process and record data, which are widely
used. These tools, developed by di�erent groups or companies (Pig: Yahoo!,
Hive & Presto: Facebook, HBase: developed after Google's Big Table), fol-
low di�erent paradigms and sometimes overlap in the functionalities they o�er.
What is more, these tools are able to intercommunicate and share data, which
weaves an intricate web of relations and dependencies between them, which
poses several challenges for provenance capture and recording.

For a system to capture provenance inside Hadoop, it is necessary to de�ne
which of these frameworks (or none, it could be just HDFS and MapReduce)
are going to be supported, i.e. which of these are going to be used to record and
process data while expecting provenance capture and recording, since speci�c
solutions (or modules) need to be developed to address each one of them.
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It must be taken into account that using one framework or another may o�er
di�erent possibilities on the kind of provenance that is captured. For instance,
when using Pig Latin to de�ne the transformations it is possible to o�er �ne-
grained how-provenance [33], when using pure MapReduce transformations it
is possible to o�er �ne-grained why-provenance [61], for general MapReduce
transformations it may only be possible to o�er coarse-grained provenance.

With no pretension of being exhaustive, we present some of the most used
frameworks of the Hadoop ecosystem while showing some of their interdepen-
dencies, with the purpose of illustrating the challenges it poses for provenance
capture and recording. At the core of this ecosystem are the Hadoop Distributed
File System (HDFS) [23] and the Hadoop MapReduce [24] frameworks. The
HDFS is a distributed �le system which is highly fault-tolerant, provides high
throughput access to application data and is suitable for applications that have
large data sets. Hadoop MapReduce is a software framework for writing ap-
plications which process vast amounts of data in-parallel on large clusters in a
reliable, fault-tolerant manner. The developer has to solve his problems using
the MapReduce programming model where data is accessed as �les in the HDFS
and the framework will handle parallelism and fault-tolerance.

Regarding the Hadoop Ecosystem, �rst, there are two very popular frame-
works which add a higher-level abstraction to Hadoop, these are Pig [19] and
Hive [16]. Both frameworks o�er a language to express data transformations,
respectively, Pig Latin -a data-�ow language- and HiveQL -an SQL dialect-.
Transformations declared using these languages are compiled into MapReduce
jobs to be executed. [79] There exist solutions which capture provenance for
MapReduce jobs (e.g. Ikeda et al. [61]), and since Pig Latin and HiveQL are
both compiled to MapReduce jobs, these existing solutions could be used to
capture provenance for Pig and Hive too. However, developing a speci�c solu-
tion for Pig or Hive frameworks opens the door to o�ering a richer notion of
provenance by taking advantage of the declarative speci�cation of the transfor-
mation provided by their language, as the solution of Amsterdamer et al. [33]
which o�ers how-provenance for Pig Latin transformations.

Besides o�ering a higher-level abstraction to MapReduce, they both o�er an
abstraction to the �le o�ered by HDFS. For instance in Pig, the data structures
are much richer, typically being multivalued and nested, while Hive organizes
data into tables. This should be taken into account when assigning identi�ers
to the data items, since the notion of data item seen from inside the framework
may not match with what that from HDFS. Another important aspect is that
when loading a table in Hive (Hive may copy the �le into its warehouse directory
or refer to the data in its existing location), Hive does not initially modify the
�le, so a correspondence seems to exist between �les and tables. However, Hive
o�ers the possibility of partitioning and sorting tables, which results in physical
changes to the �les but no changes to the table. [79] It is important to see that
a provenance solution which uses positions in a �le as identi�ers for the data
items (e.g. Ikeda et al. [61]) is prone to break if these operations are performed.

Another widely used framework is HBase [15], a column-oriented database
built on top of HDFS which o�ers real-time read/write random-access to very
large data sets. The abstraction o�ered by HBase over HDFS consists in tables,
which are multi-dimensional maps, in which a cell is identi�ed by a combination
of row key and column quali�er, and contains a value and a timestamp, which
represents the value's version. So data items (cells) always have an identi�er in
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HBase. [54] Since HBase data can be written and read by any application, the
challenge here is that of provenance capture.

What is more, HBase's �les in HDFS can be used as input or output of
MapReduce jobs. Also, HBase tables can be registered as Hive tables [12] and
be used as input or output of HiveQL queries as well.

The following example shows the integration of MapReduce, HBase and
Hive to illustrate the challenges of o�ering provenance in this environment.
Consider an HBase table which is initially loaded via a MapReduce job MR1,
then updated by an application A1 (where some of the data items are used
to create other), and then via a HiveQL query HQ1 this table is integrated
with a Hive table and recorded in another Hive table. O�ering provenance
associations in this scenario means being able to associate the input data items
of the MapReduce job MR1 with the output data items of HQ1 inside the last
Hive table.

To o�er provenance in this scenario it is necessary that a speci�c mod-
ule be designed for each framework, which is able of capturing the required
provenance information inside that framework while associating identi�ers to
data items and transformations, ideally in a transparent manner and imposing
minimal restrictions to the data transformations. Despite these modules being
framework-speci�c, they must work consistently, so the provenance information
they produce can be integrated later. This means, for example, that the unit
of data produced by MR1 should be consistent with the unit of data accessed
by the application A1, and that these data items must be given the same iden-
ti�ers. If the unit of data produced by the former and consumed by the latter
does not coincide, each data item must be assigned a di�erent identi�er and the
relation between those related but di�erent data items must be recorded. For
example, in the example, the records in the result of MR1 may be consider the
unit of data and may be given each an identi�er, while in the application A1, a
record may be seen as a sequence of cells, where a cell is considered the unit of
data and each cell is given an identi�er. To o�er provenance across MR1 and
A1, it is vital to be able to relate records produced by MR1 and cells accessed
by A1.

There are many other frameworks besides these, but the challenges are the
same in general, building framework-speci�c solutions which are able to capture
provenance inside them but still act in a consistent manner. For instance, there
exist tools to declare and execute work�ows of MapReduce jobs, like Oozie
[18], Azkaban [22] and Tez [21]; machine learning tools like Mahout [17]; and
in-memory SQL-like frameworks like Impala [25] and Tajo [20].

In �gure 4.5 we represent some of the aforementioned systems and the in-
terdependencies between them, using arrows to indicate that the source may
invoke and thus depend on the target.

4.2.5 Only inside Hadoop? Centralized or Federated Meta-
data

If considering data transformations occurring outside of the Hadoop platform,
data can thus have a history of transformations both prior being loaded to
Hadoop and later when copied from it, and this should be addressed by the
solution. Examples of this are data being loaded from the cloud (e.g. Amazon
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Figure 4.5: A part of the Hadoop ecosystem, representing the di�erent frame-
works and the fact that one may invoke and thus depend on others.
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S3 [13]) where it had gone through several transformations and thus have prove-
nance in its source system. This data are then loaded (copied) into our Hadoop
platform, where several MapReduce transformations (for instance) take place
and the result is copied to a DBMS where it is integrated with other data to
result in other new data items which are stored in the DBMS (as in our case
study).

In this case, it is necessary to design a much more general scheme to cap-
ture and manage provenance metadata. First, it is clear that the provenance
capture is a system-speci�c problem but the solution must o�er mechanisms to
interchange the metadata.

In this distributed scenario the problems of data identi�cation and location
arise again with new challenges. How to guarantee that data identi�ers are
unique across di�erent systems? When data are copied from one system to
another, should new identi�ers be created for them? How to locate and access
a data item given its identi�er?

Other aspects of the problem are where provenance metadata should be
stored. Should we follow a distributed or a centralized approach? Must prove-
nance metadata be always stored with the data? Di�erent options could be
selected for di�erent cases, distinguishing for instance the history prior to the
data being loaded in our working space from the history from there on, and dis-
tinguishing local data transformation systems from those outside our control.

Regarding data that is loaded into our system, its provenance regarding
backward tracing cannot change (the data have been created already). So if we
are accessing it from an outside system (and we have no space limitations) we
probably want to obtain it together with the data to guarantee its availability
and probably faster access to it. In this case, it is necessary to de�ne a common
model for the metadata exchange, e.g. OPM or PROV-DM. Alternatively, a
query mechanism should be de�ned to access the metadata on demand.

On the other hand, if we consider only a local environment, we could opt
for a centralized metadata repository or a federated one. Since in traditional
DBMS contexts �ne-grained metadata is reported to be large to be recorded
[76], and since in Hadoop the space is abundant and cheap, a good choice seems
to be to follow a centralized approach, recording all provenance metadata inside
Hadoop. In this case, a write API should be provided to record provenance
metadata in Hadoop. Alternatively, should a federated approach be followed, a
query mechanism should be de�ned as mentioned earlier.

In a centralized approach, all provenance metadata would reside in one place,
so whenever data transformations are executed by systems outside of Hadoop,
these are burdened with the task of sending the metadata to the central reposi-
tory, either in the act or later in batch mode, which can have an impact on these
systems' performance. However, when querying provenance with the centralized
approach, the metadata is readily available without need to query the di�erent
systems, which can speed up answering.

On the other hand, in a federated approach, systems processing data outside
of Hadoop could be requested to report some minimal information, like which
data they use, but there is no need for them to report everything that happens
which can be a great release. However, these systems will be requested to
answer whenever there is provenance querying, so provenance answering will be
slower. This problem is exacerbated when there are many systems processing
data outside Hadoop and they have many interdependencies, so since no one
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has a complete picture of provenance, the systems may be queried iteratively to
get the answer.

A solution which can work in a hybrid mode seems to be the best, since it
would permit each system running data transformations to select a preferred
approach, based on its �exibility, its SLAs, etc.

4.3 A General Framework for Provenance

In this section we develop a solution for the scenario presented in chapter 3.
The solution is presented �rst in a conceptual way and then the details for its
implementation are presented in the following chapter.

We summarize the scenario in which we wish to o�er data provenance as
follows.

� It is a distributed scenario with di�erent systems (e.g. Hadoop, Relational
databases, etc.), where data can be moved between them and where data
transformations occur in every system.

� Inside the Hadoop environment we expect to run di�erent frameworks to
record and transform data.

� We expect to load data from external sources, which could be loaded with
their provenance information.

� We require a general de�nition of provenance, which should be satis�ed
as good as possible by each system. The requirement for data provenance
is to ful�l the conceptual data model developed in section 4.1.

� We are required to address the problem of data identi�cation.

� We prioritize fast provenance answering over provenance capture overhead,
thus we opt for a metadata approach.

To support provenance capture and recording in this scenario we present the
following framework. The framework de�nes roles and responsibilities and com-
munication mechanisms. Within this framework it is possible to reuse existing
solutions for provenance capture, for example, that of Ikeda et al. [61] for
MapReduce jobs and that of Cui et al. [45, 47] for relational queries. We
also present a provenance recorder to work within this framework, which is the
missing piece to complete the puzzle.

To o�er provenance information with a metadata approach, we distinguish
two aspects of the problem and hence two basic functions of the solution: �rst,
that of capturing provenance and secondly, that of recording it, which we repre-
sent in �gure 4.6. They are inherently di�erent functions, and while provenance
capture needs to be solved speci�cally for each system and application context,
its recording is a general problem and it su�ces to solve it once.

So, in a distributed environment, where di�erent nodes with possibly dif-
ferent technologies perform transformations over data, we need the Provenance
Capture function inside each system (e.g. one speci�c for relational databases,
one for Hadoop, etc.). On the other hand, it is not necessary to have a prove-
nance repository in each node, it could be recorded in one central repository if
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Figure 4.6: Di�erent Functions.

it is considered more convenient (it could though, be recorded in a distributed
fashion).

Even if only considering the Hadoop environment, this separation also per-
mits to have di�erent Provenance Capture modules working at the same time,
for instance, one for MapReduce jobs and another one for Pig Latin scripts, and
yet for both of them to use the same Provenance Recording module.

In �gure 4.7 we show a diagram of our case study, where di�erent Provenance
Capture functions have been deployed, while only one Provenance Recording
function is used. In this example the Provenance Recorder in Hadoop keeps
provenance metadata for transformations taking place in the DBMS. Provenance
metadata has traditionally been considered too large to be recorded, so Hadoop
is the best candidate to manage this big metadata. Therefore we place the
Provenance Recorder inside Hadoop.

Provenance information could be recorded in a centralized or distributed
manner. In a centralized solution, as in the example in �gure 4.7, the Provenance
Recording function inside the Hadoop system would record:

� Provenance for data produced inside Hadoop, for transformations run in-
side Hadoop.

� Provenance for data produced outside of the Hadoop system. Every sys-
tem which runs a Provenance Capture function records its data provenance
using the Provenance Recording function in Hadoop.

� Provenance information to relate data produced in one system and used
as input to a transformation in another system, so to be able to trace
provenance through di�erent systems.

Alternatively, in a distributed approach to Provenance Recording, every sys-
tem must run both a Provenance Capture Module function and a Provenance
Recording function. Therefore, the Provenance Recording function inside the
Hadoop system would record no data provenance regarding data items produced
outside of it, since every other system would be responsible of recording it. A
consideration must be made, because if every system records provenance solely
for its data items, it is not possible to trace provenance when it spans through
various systems. To overcome this, when data items are copied from one sys-
tem to another, the �rst one must record that those data items were copied
to be used by the second system, and when it has to answer a forward tracing
provenance query, it knows it must query the second system for that piece of
provenance.

When in a distributed environment provenance spans through di�erent sys-
tems, in order to answer provenance queries it is necessary to query the dif-
ferent systems sequentially to construct the whole graph with all the ancestral
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Figure 4.7: Several Provenance capture functions and one Provenance recording
function.
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and descendant data products. Given the requirement for answering prove-
nance queries fast, we opt for a centralized approach in which all provenance
information is readily available in one repository permitting faster access to the
information.

What is more, using a centralized repository permits to give the same treat-
ment to all of the metadata created by the di�erent systems in the distributed
scenario and thus o�er the same levels of: indexes and query response time,
fault tolerance, etc.

Another argument in favour of following a centralized approach, more specif-
ically a centralized repository in Hadoop, is that every provenance metadata
would be recorded where disk space is considered cheap and there are no restric-
tions to the amount of data managed. Alternatively, in a distributed approach,
metadata is recorded in the di�erent systems which probably have restrictions
on the amount of data they manage.

In a metadata approach data transformations' performance is penalized by
the overhead of recording the metadata. Yet, in the centralized approach, trans-
formations (and network bandwidth) are further penalized because all the meta-
data must be sent to the central repository as soon as it is captured, which would
take more time than saving it locally and would also use network resources.
However, these problems could be mitigated by implementing mechanisms of
bu�ering and programmed synchronization.

Lastly, to be able to use a centralized repository requires that the distributed
data transformation systems, which are able to capture provenance, are capable
of sending this metadata to the repository in a "push" manner. Besides any
e�ciency considerations, it may be the case that the system is closed or belongs
to a third party and thus cannot work this way. Because of this, the provenance
repository must be able to work in a hybrid manner (permitting some metadata
to be stored in a federated fashion). That way, when tracing provenance for
a data item which was input or output to this closed system, the system is
queried for it, thus working as a distributed repository at least for that part of
the work�ow. In this case it is necessary to know which data items were input
or output to that system.

A similar thing happens when one of the nodes in the environment cannot
record provenance metadata but still o�ers a tracing procedure. Analogously,
it must also be recorded which data items were input or output to that system,
and when tracing provenance for any of those data items, that system should be
queried. The di�erence is that instead of having the metadata readily available
it needs to compute it.

The Provenance Recorder function we propose can work in both ways, being
able to record for some data items their complete forward tracing provenance
for if that is the information it receives, and for other data items recording only
which systems are using them.

4.3.1 Provenance Capture Function

The Provenance Capture function, which is system speci�c, is responsible of
capturing provenance metadata and sending it to the Provenance Recorder.
Whether we have a centralized or a federated repository, the capture function
is the same. In order to do this, �rst it must address the following problems:
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1. Assign each data item an identi�er.

2. Recognize which transformation is being executed, register the context of
the execution (e.g. who ran it, when, using which parameters, etc.) and
assign an identi�er to the transformation execution.

3. Capture provenance for the created data items.

We analyse each of the three problems and present the proposed solution.

Identifying Data Items

In order to record provenance metadata, i.e. which data items were used to
create some others, it is necessary to have a means of referring to those data
items. There are two possible ways to do it, one is to use the data items' values
while the other one is to assign each data item an identi�er which identi�es it
univocally. We consider it necessary to use identi�ers because:

� Using an identi�er gives an univocal way to identify data items, specially
when data sets may have duplicated elements. Although two data items
in the same data set may have the same value, they are still not the same
data item. These can have di�erent creation time and therefore could have
been used as input by di�erent transformations ran in di�erent moments.

� Also, using identi�ers to refer to a data instead of the data item's value,
makes the reference a uniform (data items that may reside in very di�erent
systems and have di�erent formats) and compact one.

Therefore, the identi�ers and not the actual data items are sent to the Prove-
nance Recorder, so the communication and recording is done in a uniform and
more compact manner.

Once established the need for data items' identi�ers, there are three things
to consider:

� The identi�cation of data items and resolving their location are two dif-
ferent problems.

� Assigning identi�ers to data items is a system speci�c problem.

� For a general solution, which integrates data provenance from di�erent
systems a uniform identi�er is desirable.

Identi�cation vs. Location The location of a data set is unique, whether
it is a URL or a path, following it will lead to one and only one data set.
Analogously, the physical location of a data item in that data set is also unique
inside the data set. If the two are joined, it results in a global unique location for
a data item. It may be tempting to use this data item location as an identi�er,
but this results in a brittle solution, as has been shown already. Whenever
the data set is moved or its data items are rearranged, the identi�ers must
be updated, which shows they were not really identi�ers. It would be really
inconvenient having to update the data provenance repository because a �le has
changed location.
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Assigning identi�ers to data items is a system speci�c problem Every
system has its own characteristics and thus has di�erent possibilities regarding
the creation and assignment of identi�ers to data items. In a distributed en-
vironment, where di�erent systems are running data transformations and data
provenance must span through all of them, it is necessary -as was just shown- to
ask these systems to provide identi�ers for the data items, but it is not necessary,
and it is even inconvenient to impose them a data identifying scheme.

For example, in a relational database, a relation may have a primary key, in
which case identifying data items could be considered a trivial matter. Alter-
natively, if the relation does not have a primary key another mechanism must
be used. Whatever the way data items are identi�ed, it should be transparent
to the Provenance Recording function, that only deals with data identi�ers.

Each system should develop the data item identifying scheme that better
suits it. What is more, each system could develop all the identifying schemes it
needs. What is needed from the system is for it to o�er a layer of abstraction
on how it is solving the problem, to deliver provenance associations using data
identi�ers, and once a data item is assigned an identi�er, the system is able to
maintain the identi�er-location association and thus to be able to return a data
item when given its identi�er.

Global identi�ers Despite what was just said about of the assignment of
identi�ers being a system speci�city, a data provenance solution which spans
through various systems requires those identi�ers to be uniform and globally
unique, for it to be able manage them.

To achieve global uniqueness of identi�ers we propose to follow a hierarchical
distributed id assigning scheme, similar to the Internet Domain Name System.

An identi�er for a data set consists of two numbers separated by dots (`.').

`system' . `data set'

A data item's identi�er consists thus of three numbers separated by dots
(`.').

`system' . `data set' . `data item'

The �rst number corresponds to the systems which runs the data transfor-
mation that creates the data item and that records it. The second number
corresponds to the data set where the data items is recorded. This number
should be unique in the context of the system. The third number corresponds
to the data item itself, which should be unique in the context of the data set.

Therefore, uniqueness of identi�ers for data sets and data items is guaranteed
because:

� A central repository assigns a unique identi�er to each system running
data transformations.

� Each system runs a Data set catalogue and assigns a unique identi�er to
each data set.

� The Provenance Capture module running in each system assigns -using
the identi�cation scheme- each data item an identi�er that is unique in
that data set.
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Since we record provenance for the data items' identi�ers, it is therefore neces-
sary to locate the data items when provenance is queried. Hence it is necessary
to maintain the association between the identi�cation and the location of data
items. Since data sets (and thus data items) can be moved, the best suited to be
informed about these changes is the system where the data resides. We create
a module called Data Set Catalogue running in each system, so it should take
responsibility of maintaining this information. We assume that data cannot be
deleted.

The Id Creation Scheme module participates assigning identi�ers to data
items as they are created, but also when provenance is queried and data items
must be retrieved by their identi�ers, this module is responsible for retrieving
the data items.

The Id Creation Scheme module works very close to the Provenance Capture
module, because when the latter captures the provenance association between
data items, it must ask the former for their identi�ers.

Also, the Id Creation Scheme and the Data Set Catalogue modules are very
interrelated, because should the identi�cation scheme be based on some physical
characteristic of the data set, if the data set was modi�ed the Data Set Catalogue
should notify the Id Creation Scheme module. An example of this is when data
items are identi�ed by their physical position in their data set. In this case, the
Id Creation Scheme module should maintain the association between identi�ers
and locations. If the data set was rearranged (ordered for example), the Id
Creation Scheme should update the identi�ers-locations association.

We point out that when copying data between systems, it is vital that it is
copied with its identi�ers. An alternative is to assign them new identi�ers and
to declare the relation between them, as the identity transformation. The latter
option is recommended when the second system cannot manage the identifying
scheme or the data granularity changes, so new identi�ers are actually needed.

Identifying Transformation Executions

Another system speci�c problem is identifying the transformation being exe-
cuted, the execution itself and the context of the execution.

Identifying the transformation being executed requires the existence of a
Catalogue of transformations, ideally containing the author and a description,
as well as other required information. This catalogue could allow the identi-
�cation of di�erent versions of the transformation, and therefore associating
the transformation executions and the data items created to the corresponding
version of the transformation.

The context of the execution would include aspects such as: who executed
it, parameters passed to the transformation and what was the system state at
the moment.

In order to register transformation executions, each execution must be as-
signed an identi�er as well. An identi�er for a data transformation consists thus
of two numbers separated by dots (`.').

`system' . `execution number'

The �rst number corresponds to the system which runs the data transfor-
mation while the second number corresponds to the execution. Each system is

46



CHAPTER 4. A GENERAL FRAMEWORK FOR PROVENANCE

responsible of assigning each execution an identi�er which is unique within its
domain.

When a data transformation is executed, the system running it should reg-
ister the following information:

<transformation execution id, transformation speci�cation id, execution
context >

Regarding the identi�cation of the speci�cations of data transformations, two
approaches are possible. One is for each system to have its local Transformation
Catalogue being responsible for assigning identi�ers to them. This has the
inconvenience that should two identical data transformations be available in
two di�erent systems they would be assigned two identi�ers. On the other
hand, if a centralized Transformation Catalogue responsible for doing it, data
transformations could be registered only once and they could be referenced
from local Transformation Catalogues that would contain only the available
transformations in that system.

In either case, the local Transformation Catalogue running inside each sys-
tem is necessary and is responsible for maintaining the relation between the
speci�cation of data transformations and their executable counterparts. There
is also a need for a centralized Transformation Catalogue which knows all the ex-
isting data transformations and is able to declare work�ows which span through
di�erent systems.

When running work�ows we face very similar problems. The work�ow ex-
ecution corresponds to a work�ow speci�cation, which must also be registered
as follows.

<work�ow execution id, work�ow speci�cation id, execution context >

A work�ow speci�cation is composed of a series of data transformation spec-
i�cations which should be executed following a certain speci�ed logic. When a
work�ow runs, it will follow that speci�ed logic to invoke the di�erent data
transformations. When it calls the data transformations it is informed of their
identi�ers which it must register as follows:

<work�ow execution id, transformation execution id, position in work�ow >

In �gure 4.8 we extend the diagram of the case study to show the relation-
ships between work�ow and data transformation executions and their speci�ca-
tions inside the Transformation Catalogue.

Provenance Capture

When a data transformation runs, consuming data and producing data, the
Provenance Capture module is responsible for identifying the relation between
input and output and record it.

Using the identi�ers provided the Id Creation Scheme and the Data Set
Catalogue for the input and output, and the identi�er assigned to the transfor-
mation execution, the Provenance Capture module will record both coarse- and
�ne-grained provenance respectively as follows:

<output data set id, [input data set id], transformation execution id >
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Figure 4.8: Three data transformations (T1, T2 and T3) being invoked by a
work�ow WF1. The arrows between WF1 and T1, T2 and T3 represent WF1
invoking them.
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Figure 4.9: Fundamental aspects of the provenance capture function.

<output data item id, [input data item id], provenance semantics,
transformation execution id >

These declarations state that the output element (a data set or data item)
was created using the (possibly many) input elements by a certain transfor-
mation execution. Regarding �ne-grained provenance, should it be possible to
capture the semantics of the relation between input and output data items (e.g.
why-p, how-p or other to be de�ned), it could be recorded as well.

We point out that it may be possible for a system to o�er di�erent Prove-
nance Capture modules, one to address each system speci�c characteristics. For
example, it could be possible in a Hadoop environment to develop a Provenance
Capture module speci�c for MapReduce jobs and another one for Pig programs.
The latter would be able to o�er more complete provenance information than
the former, yet it can only be applied when running a Pig programs. Analo-
gously, in a relational database two di�erent Provenance Capture modules could
be implemented for relational queries and for ETL programs.

If several Provenance Capture modules were implemented, they should be
served by the same Id Creation Scheme and Data set Catalogue, for it to be
possible to trace provenance consistently through these di�erent types of trans-
formations.

Provenance Capture Function Summary

The Provenance Capture Function is thus composed of the following modules, as
represented in �gure 4.9: Provenance Capture, Data Item identi�cation Scheme,
Data Set Catalogue and Data Transformation Catalogue.

When a data transformation is executed, the corresponding Provenance Cap-
ture module (there may more than one inside one system, each for some speci�c
type of data transformation) runs and captures the provenance association be-
tween input and output data items of input and output data sets. To do this,
the Provenance Capture module requires:
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Figure 4.10: Fundamental aspects of the provenance recording function.

� the Id Creation Scheme and the Data Set Catalogue to provide the iden-
ti�ers for the input and output data items.

� the Transformation Catalogue to provide the identi�er of the transforma-
tion execution.

Then, all this information is sent to the Provenance Recording Function (for it
to record it).

4.3.2 Provenance Recording Function

The Provenance Recorder function, represented in �gure 4.10, consists of: the
System Catalogue module, which maintains the list of data transformation sys-
tems for which provenance is recorded; the centralized Transformation Cata-
logue; the Provenance Recorder module, which will receive all the provenance
metadata and record it; and the Provenance Query modules, which translate
the provenance metadata to the required provenance models.

Systems Catalogue

First, there is the Systems Catalogue, which is responsible for registering all
the systems running data transformations in the distributed environment and
assigning each one an identi�er. This identi�er is used by each one as part
of their id creation schemes to be able to create identi�ers which are unique
through the whole distributed environment.

The Systems Catalogue also maintains the list of the nodes recording prove-
nance in the distributed environment and the information to communicate with
them.

When querying provenance metadata and obtaining data items' identi�ers,
the �rst level part of the identi�ers is used to know which system's Data Cat-
alogue to query for those data items. The Systems Catalogue provides the
information needed to query the Data Catalogue .
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Centralized Transformations Catalogue

As was shown in the previous section, there is a need for a centralized Trans-
formation Catalogue which knows all the existing data transformations and is
able to declare work�ows which span through di�erent systems.

Provenance Recording

The Provenance Recorder module receives all the provenance metadata that
was described in the previous section and has responsibility for recording it.

Summarizing the previous section, we list the metadata information that is
recorded:

� When a work�ow is executed it registers:

<work�ow execution id, work�ow speci�cation id, execution context >

� When a work�ow runs and invokes a data transformation it register:

<work�ow execution id, transformation execution id, position in work�ow>

� When a data transformation is executed it registers:

<transformation execution id, transformation speci�cation id, execution
context >

<output data set id, [input data set id], transformation execution id >

<output data item id, [input data item id], provenance semantics,
transformation execution id >

As mentioned earlier, it is possible that some of the systems running data
transformations are not able to send the provenance metadata to the Provenance
Recorder, but still o�er some support for provenance (be it by metadata or a
tracing procedure). In this case the Provenance Recording function works as a
federated repository.

To perform backward tracing over data items produced by these systems, it
su�ces to know that they produced the data in question. The information nec-
essary to know this is already available if the system is registered in the System
Catalogue and the data identi�cation follows the speci�ed format. To perform
forward tracing over the data items used by these systems, it is necessary to
know which data items were consumed by them. For this we incorporate the
possibility for the system to declare which data it consumes:

<system id, input data set id >

De�ning this communication interface for the di�erent nodes to send the
provenance metadata permits to o�er di�erent implementations for its phys-
ical recording without modifying the recording functions. For example, the
provenance metadata could be physically recorded in di�erent ways, favour-
ing backward or forward tracing operations or both depending on the access
requirements and space availability.

Also, additional data structures could be incorporated to facilitate prove-
nance tracing in a sequence of transformations, when data items which are the
result of a data transformation are then used as input for another transforma-
tion, so provenance tracing requires an iteration over the provenance metadata.
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Provenance Query Module

Should there be a requirement for exposing the provenance metadata using
a certain data model, the translation from the internal representation to the
desired representation would be done by the Provenance query module.

4.4 Conclusions

In this chapter we have developed a framework for capturing and recording
data provenance which satis�es the requirements of the case study. For this, we
have �rst developed PCM, a conceptual data model for provenance, based on
the data models of the surveyed solutions. We have also presented an analysis
of the general aspects of the provenance problem as well as of the particular
di�culties that arise in the case study.

The main contribution in this chapter is the framework we have presented,
de�ning roles and assigning them responsibilities. Our framework permits to
capture and record provenance through di�erent systems with di�erent tech-
nologies (in particular di�erent frameworks of the Hadoop ecosystem) within
a distributed environment, a thing not o�ered by any of the works we have
reviewed.

Our solution is �exible since it allows participating nodes in the environment
to send provenance metadata to the repository -the default option- or alterna-
tively work in a federated fashion, where they can record provenance locally or
compute it via a tracing procedure.
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Implementing the Framework

We have presented a framework for capturing and recording data provenance
in a distributed environment, de�ning roles and assigning them responsibilities.
Our framework is based on a centralized metadata repository, where provenance
capture occurs in di�erent nodes in the distributed environment and is sent to
the metadata repository. We propose to reuse some of the reviewed solutions
which have already solved provenance capture in di�erent contexts and design
the provenance recording module, the piece which completes the puzzle. This
metadata repository o�ers services to the provenance capture nodes for them to
record the metadata.

First, in order to de�ne the communication between the provenance cap-
ture modules and the provenance recording module, we survey existing models
for provenance interoperability, select two (OPM and PROV-DM) and assess
them by comparing them to PCM, and decide to use PROV-DM to de�ne the
operations, in order to obtain a more general solution.

In the next section we de�ne the services o�ered by our metadata repository
(based on the operations required in the case study) and de�ne a concrete
recording strategy using Hadoop and HBase (a column-oriented database built
on top of HDFS which o�ers real-time read/write random-access).

In section 3 we present general aspects of the implementation of provenance.
Then we review the surveyed works to see the details of their implementations
and close the section with a summary of the reviewed solutions. Finally, in
the two �nal sections we show how the reviewed solutions of Ikeda et al. for
MapReduce jobs and that of Cui et al. for relational databases, can be adapted
to work within the proposed framework.

5.1 Interoperability Provenance Data Models

Several models to represent provenance for communication and interoperability
have been proposed, yet only few of them have been adopted. For instance,
the Provenir ontology, which was designed for use in e-science in 2009 has re-
ceived few citations [75] (cited by 25 according to Google Scholar, September
5th 2015) and the project's home [39] page has not been modi�ed since May
2011 (last checked September 5th 2015). The Provenance Vocabulary [57] was
designed by for data on the web and to deal with the trustworthiness of RDF
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data in 2009 and since then it has received 152 citations (according to Google
Scholar, September 5th 2015). However, its home page [58] does not seem very
active, being last updated on July 2013 (last checked September 5th 2015).
The Provenance Markup Language (PML) [66] (originally the Proof Markup
Language [48] was designed for sharing explanations generated by various au-
tomated systems such web agents. The project's home page [50] states that
version 3.0 is in process of being designed, yet it was last modi�ed on Febru-
ary 2013 (last checked September 5th 2015). The Semantic Web Applications
in Neuromedicine (SWAN) Ontology [43] is an ontology proposed in 2008 for
modeling scienti�c discourse to facilitate the exchange of biomedical informa-
tion in context. Its page in Google Code [42] has been archived (last checked
September 5th 2015).

Simultaneously (2006-2010), the Provenance Challenge workshops [4] took
place, which resulted in the Open Provenance Model (OPM) [67, 29]. The
Fourth and Last Provenance Challenge [68] in 2010 resulted in the constitution
of the Provenance Incubator Group [7], where this community of researchers
continued their work. Using OPM as a reference model, the W3C Provenance
Incubator Group de�ned mappings to existing vocabularies and models, in-
cluding the aforementioned ones [56]. Later this group was renamed the W3C
Provenance Working Group [69] and, based on OPM, developed the PROV Data
Model (PROV-DM) [9] which is a W3C recommendation since April 2013.

It is worth noting that many of those researchers participating in the afore-
mentioned models and projects took part in the development of the W3C PROV-
DM, which would explain why the projects were discontinued.

The Dublin Core Metadata Initiative (DCMI) [5] provides a widely used
core metadata vocabulary (commonly referred to as Dublin Core) for simple and
generic resource descriptions, which, although is focused on describing resources
in a general sense, includes terms to provide information related to the prove-
nance of the resource. The original Dublin Core Metadata Element Set (a.k.a.
legacy) namespace URI http://purl.org/dc/elements/1.1/ has limitations
such as the properties have no speci�ed ranges, meaning that arbitrary values
can be used as objects. However, the terms namespace (a.k.a. DC Terms) URI
http://purl.org/dc/terms/, replicates the �fteen properties from the origi-
nal namespace and includes additional properties and classes, permitting the
de�nition of ranges for the properties.

The Provenance Incubator Group has de�ned a mapping between the DC
Terms and OPM [56], and between DC Terms and the PROV Ontology (PROV-
O) [8].

Today, the most widely used models are PROV-DM and OPM, which are
also recommended for provenance communication in A Primer on Provenance
[38] in ACM Queue. The mainstream work�ow systems today, Kepler and
Taverna, though they have their own internal representation, permit exporting
provenance: Kepler to OPM [28, 29] and Taverna to OPM and PROV-DM
[27, 26].

The objective of both OPM and PROV-DM is not to be adopted for internal
representation for existing systems, but instead to be used for serializing internal
provenance representations in order to allow existing systems to communicate
and interoperate [6]. Both OPM and PROV-DM are serializable into XML [3]
and [11] respectively and o�er an OWL Ontology model, OPMO [1] and PROV-
O[10] respectively. However, the available speci�cations for the OPMO (OPM
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OWL Ontology) and OPM XML schema are working drafts, both of October
2010 (last checked September 5th 2015).

Next we review the Open Provenance Model and PROV-DM and analyse
how �t they are to represent the provenance de�nitions aforementioned.

5.1.1 Open Provenance Model (OPM)

Moreau et al. [67] have developed a model of provenance, called Open Prove-
nance Model (OPM), as the result of the Provenance Challenge series. This is
not a system that captures or records provenance, but only a model. The model
is designed to allow the de�nition of provenance for anything (digital or not) in
a precise, technology-agnostic manner and hence allow provenance information
to be exchanged between systems. The OPM can be used to model relationships
between artifacts, and this can be used to compute provenance (forward-tracing
and backward-tracing, namely why-provenance).

The OPM does not specify nor restrict how systems should internally repre-
sent, manipulate and store their metadata, its focus is on information exchange
between systems. Serializations in XML and OWL are available in the OPM
website [29].

The model is very general, dealing with the creation of Artifacts, which are
de�ned as "immutable pieces of state, which may have a physical embodiment
in a physical object or a digital representation in a computer system". Artifacts
are created by Processes, i.e. "actions or series of actions performed on or caused
by artifacts, and resulting in new artifacts". Finally, an Agent is a "contextual
entity acting as a catalyst of a process, enabling, facilitating, controlling, or
a�ecting its execution".

Regarding streams of data, the authors consider an artifact to be a slice of
stream in time, i.e. the stream content at a speci�c instant in the computation.

Over the mentioned elements, a causal relationship is represented by an arc
and denotes the presence of a causal dependency between the source of the arc
(the e�ect) and the destination of the arc (the cause). Five causal relationships
are recognized, which we represent graphically in �gure 5.1:

� A process used an artifact, identifying under which role the artifact was
used.

� An artifact was generated by a process, identifying under which role the
artifact was generated.

� A process was triggered by a process, expresses a necessary condition, the
latter was required to have started for the former to be able to complete.
The authors point out that this interpretation is "weaker than the common
sense de�nition of trigger, which tends to express a su�cient condition for
an event to take place". Indeed it is much weaker.

� An artifact A2 was derived from an artifact A1, indicates that artifact A1
needs to have been generated for A2 to be generated. The piece of state
associated with A2 is dependent on the presence of A1 or on the piece of
state associated with A1
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Figure 5.1: Edges in the Open Provenance Model: sources are e�ects, and
destinations causes [67].

� A process was controlled by an agent, since a process may have been
controlled by several agents, it is also possible to identify their roles as
controllers.

The fact that a process used an artifact and generated another does not
imply the latter was derived from the former; such relationship needs to be
asserted explicitly using the "Artifact Derived from Artifact" edge.

Regarding the roles of artifacts used by or generated by processes the authors
consider they are meaningful only in the context of the process where they are
de�ned. Therefore, the meaning of roles is not de�ned by OPM and OPM only
uses roles syntactically (as "tags").

The Open Provenance Model allows for causality graphs to be decorated
with time information. This is not intended to be used for deriving causality.
Time may be associated to "instantaneous occurrences in a process", which
are for artifacts, the occurrences of creation and use, and for processes, their
starting and ending.

Other objectives of the model are to allow multiple levels of provenance
description to coexist and to de�ne a core set of rules that identify the valid
inferences that can be made on provenance representation. Regarding the �rst
one, given a provenance graph, two sub-graphs can o�er di�erent levels of expla-
nation for the same execution (the most detailed one is said to be a re�nement
of the other). This is not to be confused with coarse and �ne granularity in
provenance. It is possible to use re�nements repeatedly to create a hierarchy of
accounts.

There is a limitation with the overlapping accounts though, since it is not
possible to declare the relationship between a process and its re�nement pro-
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Figure 5.2: Example of Hierarchy of Accounts [67].

cesses. This is made clear in the example of the �gure 5.2, where the authors
claim that the red account shows that the processes p1a and p1b constitute a
single process p1. This is not said explicitly but implicitly by stating that p1a
and p1b share their input and output with p1.

Provenance graphs are aimed at representing causality graphs explaining
how processes and artifacts came out to be and can be summarized by means
of transitive closure. When users want to �nd out the causes of an artifact or a
process, they may not just be interested in direct causes, but in indirect causes,
as well, involving multiple transitions, which can be obtained by the transitive
closure of the "was derived from" edge.

The authors de�ne a transitive closure over the provenance graphs to sum-
marize the causal dependencies. For this, they introduce completion rules and
de�ne multi-step inferences.

First, they de�ne three completion rules: The �rst one, known as artifact
elimination rule, states that a "was triggered by" edge can be obtained from
the existence of "used" and "was generated by" edges. Second, the artifact
introduction rule allows to establish that the "was triggered by" edge is hiding
the existence of some artifact used by P2 and generated by P1. These are
represented in �gure 5.3.

We point out that this second rule excludes the possibility that the "was
Triggered By" edge be used to declare explicitly that a process composes another
one, which is the idea of a work�ow, or a multiple level description. Should a
process P1 be composed of processes P1a and P1b in that order, it would not
be possible to declare that P1a "was Triggered By" P1, since that would imply
there exists an Artifact "Generated By" P1 which was "used" by P1a, which is
not necessarily true.
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Figure 5.3: Completion rule for Process Introduction. [67]

Figure 5.4: Completion rules for Artifact Introduction and Elimination [67].

The third rule, known as process introduction, states that a "was derived
from" edge between artifacts hides the presence of an intermediary process. It
is represented in �gure 5.4.

The authors point out that the completion rules allow us to establish the
existence of some artifact but it does not tell us what its id is.

The multi-step inferences are used to derive new multi-step versions of the
aforementioned relationships, in order to express that artifacts or processes were
related not only in direct causes but also in indirect causes, through multiple
transitions.

Four multi-step relations are de�ned:

� The Multi-Step WasDerivedFrom is de�ned as the transitive closure of the
edge "was derived from", where an artifact a1 was derived from a2 if a1
"was derived from" an artifact that was a2 or that was itself derived from
a2 (possibly using multiple steps).

� In the Multi-Step Used relation, a process p is said to have used an artifact
a if p used an artifact that was a or was derived from a (possibly using
multiple steps). In this inference the Artifact Introduction Rule may be
vital to infer that a process p was derived from an artifact a if the only
thing known is that p wasTriggeredBy another process.
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� An artifact a was generated by process p (possibly using multiple steps), if
a was an artifact or was derived from an artifact (possibly using multiple
steps) that was generated by p.

� A process p1 was triggered by process p2 (possibly using multiple steps),
if p1 used an artifact that was generated or was derived from an artifact
(possibly using multiple steps) that was itself generated by p2.

The identi�cation of Artifacts is not addressed by the authors neither in the
conceptual documents nor in those regarding serialization. For serialization
there are two possible options: XML and RDF. When using XML [3], each
artifact [2] is required to have an XSD ID attribute [30] which uniquely identi�es
an element in an XML document (not necessarily a globally unique identi�er).
This identi�er is used to refer to the artifact from inside the document, for
example, to say the artifact was used or produced by a process. The artifact
can also have: a label

5.1.2 OPM to represent PCM

A correspondence could be established between our conceptual model PCM and
OPM as follows: Data Collections and Data Items could be represented by OPM
Artifacts; Data Transformation Executions and Work�ow Executions could be
represented by OPM Processes; and Data Transformation Speci�cations and
Work�ow Speci�cations could be represented by OPM Agents.

Provenance granularity is not addressed by OPM, that is why we map OPM
Artifacts to both Data Collections and Data Items. This is a limitation of the
model, since it does not distinguish entities that are conceptually di�erent, and
if both were represented as OPM Artifacts it would not be possible to declare
the relation between them.

A similar thing happens with work�ows. Work�ows are not addressed di-
rectly by the model, but it could be represented using the multiple levels of
description o�ered by the model. Also, it would be consistent with the de�ni-
tion of Artifact, which is "an action or series of actions". However, using this
model it is not possible to declare the relation between a process and its pro-
cesses in the re�nement explanation. We point out that the "wasTriggeredBy"
relation o�ered by the model cannot be used for this, since it implies -according
to the speci�cation- the existence of artifacts generated by the former and used
by the latter, which would not be necessarily true.

The stronger limitation though is related to specifying the semantics of the
derivation between Artifacts, for instance to express how-provenance. OPM
permits for roles to be attached to the relations between Artifacts and Processes
(i.e. the "used" and "wasGeneratedBy" relations), but it does not permit to
de�ne a role to the relation "wasDerivedFrom" between Artifacts. Specifying
the role a data item plays as input to a data transformation is not enough to
know the role it played for each output data item.

5.1.3 PROV-DM

PROV-DM [70] is the conceptual data model that forms a basis for the W3C
provenance (PROV) family of speci�cations, a W3C Recommendation since
April 2013. The authors de�ne provenance as "a record that describes the
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Figure 5.5: PROV Core Structures [70].

people, institutions, entities, and activities involved in producing, in�uencing,
or delivering a piece of data or a thing".

PROV-DM distinguishes core structures from extended structures:

� Core structures "form the essence of provenance information, and are com-
monly found in various domain-speci�c vocabularies that deal with prove-
nance".

� Extended structures "enhance and re�ne core structures with more ex-
pressive capabilities to cater for more advanced uses of provenance".

With its core structures, PROV-DM intends to describe the use and production
of entities by activities, which may be in�uenced in various ways by agents.
These core types and their relationships are illustrated by the UML diagram of
�gure 5.5. This core model is based on OPM, since it includes all its concepts
and relations with the same meaning (though renaming some of them).

An entity is de�ned as "a physical, digital, conceptual or other kind of thing
with some �xed aspects; entities may be real or imaginary". An activity is
"something that occurs over a period of time and acts upon or with entities; it
may include consuming, processing, transforming, modifying, relocating, using,
or generating entities". An agent is "something that bears some form of respon-
sibility for an activity taking place, for the existence of an entity, or for another
agent's activity". According to the speci�cation, an agent could be a particular
type of entity or activity, so the model can be used to express provenance of the
agents themselves.

Activities and Entities are associated with each other in two di�erent ways:
activities use entities and activities generate entities. Generation is "the com-
pletion of production of a new entity by an activity. This entity did not exist
before generation and becomes available for usage after this generation." Usage
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is "the beginning of utilizing an entity by an activity. Before usage, the activity
had not begun to utilize this entity and could not have been a�ected by the
entity."

They refer to the generation of an entity by an activity and its subsequent
usage by another activity as communication, represented by the association
"wasInformedBy". Communication is the exchange of some unspeci�ed entity
by two activities, one activity using some entity generated by the other.

A derivation ("wasDerivedFrom" association) is "a transformation of an en-
tity into another, an update of an entity resulting in a new one, or the con-
struction of a new entity based on a pre-existing entity". Attribution ("wasAt-
tributedTo" association) is "the ascribing of an entity to an agent". An activity
association ("wasAssociatedWith" association) is "an assignment of responsi-
bility to an agent for an activity, indicating that the agent had a role in the
activity".

Finally, delegation is "the assignment of authority and responsibility to an
agent (by itself or by another agent) to carry out a speci�c activity as a delegate
or representative, while the agent it acts on behalf of retains some responsibility
for the outcome of the delegated work" and is represented by the "actedOnBe-
halfOf" association.

Regarding its Extended Structures, the authors �rst de�ne the mechanisms
to do it, and then use them to present the extensions. There are four mechanisms
de�ned to extend the model: 1) subtyping core types and core relations (e.g. a
software agent is special kind of agent; a revision is a special kind of derivation),
2) expanding core binary relations to to n-ary relations (then the binary relation
is seen as a shorthand that can be 'opened up'), 3) optional identi�cation for
relations (for when it is required to identify an instance of an association between
two or more elements), and 4) new relations.

Based on the Core Structures and applying the de�ned mechanisms, the
following Extended Structures are de�ned:

� A Software agent is running software.

� An organization is a social or legal institution such as a company, society,
etc.

� A Person refers to people. The last three concepts are obtained by sub-
typing the core structure agent.

� A Revision is a special kind of derivation, de�ned as a derivation for which
the resulting entity is a revised version of some original.

� A Plan is de�ned by subtyping the core structure entity and full association
by an expanded relation, as follows.

� A plan is an entity that represents a set of actions or steps intended
by one or more agents to achieve some goals.

� An activity association is an assignment of responsibility to an agent
for an activity, indicating that the agent had a role in the activity.
The expanded relation allows for a plan to be speci�ed, which is the
plan intended by the agent to achieve some goals in the context of
this activity.
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Figure 5.6: Agents and Responsibility Overview [70].

The rationale for considering plans as entities is that since they may evolve
over time, it may become necessary to track their provenance. In �gure 5.6 we
present an overview of Agents and responsibility.

An example of association between an activity and an agent involving a plan
is: an XSLT transform (an activity) launched by a user (an agent) based on an
XSL style sheet (a plan).

� A bundle is a named set of provenance descriptions, and is itself an entity,
so allowing provenance of provenance to be expressed. This is created
by subtyping Entity. This is useful for users to analyse the provenance
of provenance information, to determine the agent its provenance is at-
tributed to, and when it was generated.

� A collection is an entity that provides a structure to some constituents
that must themselves be entities, which are said to be members of the
collections. The Collection is de�ned by subtyping Entity and creating
a relation between Entity and Collection. The model permits thus to
express the provenance of the collection itself in addition to that of the
members.

5.1.4 PROV-DM to represent PCM

A correspondence could be established between our conceptual model PCM and
PROV-DM as follows: Data Collections and Data Items could be represented
by PROV-DM Entities, in particular, Data Collections could be represented by
PROV-DM Collections and use the HadMember relation to declare its members.

Data Transformation Executions and Work�ow Executions could be repre-
sented by PROV-DM Activities; while the relation between them (the trigger-
ing) can be represented by the PROV-DM relations wasStartedBy and wasEnd-
edBy. These PROV-DM Activities would also be related via the the wasIn-
formedBy relation, since it is assumed there is a special Entity called Trigger
that is exchanged between them.
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Finally, Data Transformation Speci�cations and Work�ow Speci�cations
could be represented by PROV-DM Plans, which are a kind of Entity. There
is no way to declare the relation between the two. This could be achieved by
subtyping Plan, analogously to Collections, to include Plans composed of Plans.

The Concepts of Roles played by both Data Collections and Data Items in
the Transformation Executions can be represented by the Extended versions of
PROV-DM Used and WasGeneratedBy, which relate Activities to their input
and output Entities and permitting for the de�nition of additional attributes.

The concept of Data Production, which explains how a Data Item was pro-
duced could be represented by the Extended version of PROV-DMWasDerived-
From, which explains how it was derived, identi�es the responsible Activity and
permits for the de�nition of additional attributes.

No correspondence to PROV-DM Agents since in the comprehensive model
there is no entity to represent the one responsible for a data transformation or
work�ow execution.

5.1.5 Summary

We have reviewed the existing provenance models for provenance interchange,
which showed the most widely used models are OPM and PROV-DM. The
objective of both OPM and PROV-DM is not to be adopted for internal rep-
resentation for existing systems, but instead to be used for serializing internal
provenance representations in order to allow existing systems to communicate
and interoperate. Both OPM and PROV-DM are serializable into XML and
o�er an OWL Ontology model.

We analysed how �t both models are to represent the provenance model
built in section 4.1. We found that there were limitations of the OPM model
that restricted its possibility of representing several elements of our provenance
model.

PROV-DM is an extension of OPM, including OPM's model as its Core
Structures, and incorporating Extended Structures, i.e. additional Concepts
and Relations. Using these, it is possible to lift the restrictions imposed by
OPM, so it is possible to represent almost everything of our model. We could
not represent the Speci�cation of Work�ows using the entities of PROV-DM,
however, it can be represented using the mechanisms to de�ne extended struc-
tures o�ered by the speci�cation.

OPM and PROV-DM are the two most widely used models nowadays. From
them, PROV-DM includes OPM and extends it, resulting in a richer model
which could satisfy all the requirements set by our comprehensive model. What
is more, PROV-DM is a W3C recommendation. Therefore, we suggest its use
for interoperability.

5.2 Provenance Recording Repository

In this section we de�ne the services o�ered by our metadata repository (based
on the operations required in the case study) and de�ne a concrete recording
strategy using HBase.

Based on the operations that the nodes in the distributed environment need
to perform to record the provenance metadata, we de�ne the methods in our
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service. In chapter 4 we described these operations using the terms of the uni�ed
model PCM, but we will use PROV-DM to de�ne the operations, in order to
obtain a more general solution. As was shown in the previous section, PROV-
DM is more general than our uni�ed model and permits to express everything
of it.

We use a subset of the PROV-DM model, but the terms and relations used
are used respecting the model's de�nitions, so it is compliant. We use only a
subset of the model because that is what we need to satisfy our requirements,
but should there be a need to include other concepts or relations they could be
easily incorporated by de�ning additional methods and data structures.

5.2.1 Recording Services

We will distinguish two types of services, �rst those in which the repository
actually records provenance metadata, and second, those used to support a fed-
erated metadata repository. The latter are solely used when the provenance
capture node is unable to invoke the services to record metadata in the cen-
tralized repository. In that case, it must register a minimal information so
provenance can be traced by querying it.

Provenance Recording Services

We now revisit the operations performed by the provenance capture nodes and
the corresponding methods using PROV-DM terminology.

1) When a data transformation is executed, the system running it
should register the following information:

<transformation execution id, transformation speci�cation id, execution
context >

This can be represented by the PROV-DM wasAssociatedWith[70] relation
as follows:

wasAssociatedWith(id; a, ag, pl, attrs) in PROV-N, has:

� id: an optional identi�er for the association between an activity and an
agent;

� activity: an identi�er (a) for the activity, that represents the transforma-
tion execution id;

� agent: an optional identi�er (ag) for the agent associated with the activity;

� plan: an optional identi�er (pl) for the plan the agent relied on in the
context of this activity, that represents the transformation speci�cation
id;

� attributes: an optional set (attrs) of attribute-value pairs representing
additional information about this association of this activity with this
agent, that can be used to represent information about the execution
context.
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2) When running work�ows we face very similar problems. The work-
�ow execution corresponds to a work�ow speci�cation, which must
be registered as follows:

<work�ow execution id, work�ow speci�cation id, execution context >

This is registered the PROV-DM wasAssociatedWith[70] relation analo-
gously as the transformation executions.

3) When a work�ow runs, it will follow that speci�ed logic to invoke
the di�erent data transformations. When it calls the data transfor-
mations it is informed of their identi�ers which it must register as
follows:

<work�ow execution id, transformation execution id, position in work�ow >

This can be represented by the PROV-DM wasStartedBy[70] relation as
follows:

wasStartedBy(id; a2, e, a1, t, attrs) in PROV-N, has:

� id: an optional identi�er for the activity start;

� activity: an identi�er (a2) for the started activity, that represents the
transformation execution id;

� trigger: an optional identi�er (e) for the entity triggering the activity;

� starter: an optional identi�er (a1) for the activity that generated the
(possibly unspeci�ed) entity (e), that represents the work�ow execution
id;

� time: the optional time (t) at which the activity was started;

� attributes: an optional set (attrs) of attribute-value pairs representing ad-
ditional information about this activity start, that can include information
about the position of the data transformation in the work�ow.

4) Using the identi�ers provided the Id Creation Scheme and the Data
Set Catalogue for the input and output, and the identi�er assigned
to the transformation execution, the Provenance Capture module
will record coarse-grained provenance as follows:

<output data set id, [input data set id], transformation execution id >

This can be represented by the PROV-DM used[70] and generatedBy[70]
relations as follows:

used(id; a, e, t, attrs) in PROV-N, has:

� id: an optional identi�er for a usage;

� activity: an identi�er (a) for the activity that used an entity, that repre-
sents the transformation execution id;

� entity: an optional identi�er (e) for the entity being used, that represents
the input data set id;
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� time: an optional "usage time" (t), the time at which the entity started
to be used;

� attributes: an optional set (attrs) of attribute-value pairs representing
additional information about this usage. -

wasGeneratedBy(id; e, a, t, attrs) in PROV-N, has:

� id: an optional identi�er for a generation;

� entity: an identi�er (e) for a created entity, that represents the output
data set id;

� activity: an optional identi�er (a) for the activity that creates the entity,
that represents the transformation execution id;

� time: an optional "generation time" (t), the time at which the entity was
completely created;

� attributes: an optional set (attrs) of attribute-value pairs representing
additional information about this generation.

5) Also, the Provenance Capture module will record �ne-grained prove-
nance as follows:

<output data item id, [input data item id], provenance semantics,
transformation execution id >

This can be represented by the extended version of PROV-DM WasDerived-
From [70] relation as follows:

wasDerivedFrom(id; e2, e1, a, g2, u1, attrs) in PROV-DM has:

� id: an optional identi�er for a derivation;

� generatedEntity: the identi�er (e2) of the entity generated by the deriva-
tion, that represents the output data item id;

� usedEntity: the identi�er (e1) of the entity used by the derivation, that
represents the input data item id;

� activity: an optional identi�er (a) for the activity using and generating
the above entities, that represents the transformation execution id;

� generation: an optional identi�er (g2) for the generation involving the
generated entity (e2) and activity (a);

� usage: an optional identi�er (u1) for the usage involving the used entity
(e1) and activity (a);

� attributes: an optional set (attrs) of attribute-value pairs representing
additional information about this derivation, can represent the semantics
of the provenance relation between input and output.
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Federated Provenance Services

As was mentioned earlier, it is possible that some system cannot call the afore-
mentioned services, in which case we need some information to be able to span
provenance information across that system. To perform forward tracing over
the data items used by these systems, it is necessary to know which data items
were consumed by them.

For this we incorporate the possibility for the system to declare which data
it consumes:

<system id, input data set id >

Since this is not part of our provenance model, we do not represent it using
PROV-DM. For this purpose we de�ne the following method:

systemUsed(system id, input data set id)

� system id: represents the system which is executing data transformations,
the id is the one provided by the Systems Catalogue.

� input data set id: represents the data sets accessed by the system.

5.2.2 Consuming Services and Recording Strategy

Given the amount of metadata we need to manage, which was too large in
traditional relational databases to be recorded [76], and is bigger if we include
Hadoop data, we consider Hadoop HDFS as the best option over relational
databases. Also, given the random access required when querying the metadata,
we select HBase over plain HDFS, as recommended by Hadoop: The de�nitive
guide [79]. Finally, Franke et al. [52] present a case in favour of HBase for
recording provenance information.

As we mentioned earlier, one of the advantages of de�ning a communication
interface is to be able change the internal representation of the data without
a�ecting the provenance capture nodes. Also, given the case study speci�c
requirements, one can design the internal representation to better cater for
them. In particular, in our case study presented in chapter 5, the motivation
for having provenance information is to be able to update quality attributes for
already processed data when the quality attributes for their ancestral data are
updated. This is a case of forward-tracing, and we will design our repository's
data structure to favour this operation.

Also, we take advantage of the workings of HBase, which works at its best
when how the data will be accessed is taken into account when designing the
schemas. This is actually mentioned as the most important consideration since
"all access is via primary key so the key design should lend itself to how the
data is going to be queried" [79].

HBase is a distributed column-oriented database built on top of HDFS. de-
signed to provide real-time read/write random-access to very large data sets.
In HBase, data is stored in tables, which have rows and columns. A row in
HBase consists of a row key and one or more columns with values associated
with them. Rows are sorted alphabetically by the row key as they are stored. A
column in HBase consists of a column family and a column quali�er, which are
delimited by a : (colon) character. Column families physically co-locate a set
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Table: WasAssociatedWith

Row Key: activity

Family:
agent: columns: agent, id
plan: columns: [ ] � plan
attributes: columns: attribute � value

Table 5.1: HBase Table WasAssociatedWith.

of columns and their values, often for performance reasons. Finally, a cell is a
combination of row, column family, and column quali�er, and contains a value
and a timestamp, which represents the value's version [59].

Taking all the requirements into account, we propose to have the following
5 tables, one for each of the de�ned operations:

� WasAssociatedWith,

� WasStartedBy,

� Used,

� WasGeneratedBy,

� WasDerivedFrom.

The table WasAssociatedWith (table 5.1) holds the information sent via the
method wasAssociatedWith(id; activity, agent, plan, attributes) when a data
transformation or a work�ow is executed.

Since we want to access it for forward-tracing operations, we want to favour
queries over the transformation or work�ow execution, i.e. the PROV-DM Ac-
tivity, we select the activity as the row key. There will be three column families:
agent, plan and attributes. In the agent family, the column keys are agent and
id, where it is possible to record respectively the identi�er for the agent and the
identi�er for the association between the activity and the agent. In the plan
family, we use only one column with the empty quali�er to store the identi�er for
the plan. In the attributes family, a column is created for each attribute-value
pair, using the attribute as column key.

The table WasStartedBy (table 5.2) holds the information sent via the
method wasStartedBy(id; started activity, entity (trigger), triggering activity,
time, attributes) when a work�ow runs and it invokes the di�erent data transfor-
mations. The row key is the started activity in order to favour forward-tracing.
In the column activity:triggering activity records the activity that triggered the
started activity. In the time family, we use only one column with the empty
quali�er to store the time at which the activity was started. The attributes
column family works analogously as in the previous table.

The table Used (table 5.3) holds the information sent via the method used(id;
activity, used entity, time, attributes) when a data transformation consumes
data. The key is composed of the identi�er for the used entity and that of
the activity that used it. This key takes advantage of the partial key scan
functionality o�ered by HBase, which permits to obtain all the rows between a
start and end key, thus all the entity-activity pairs for a given entity identi�er.
It is therefore easy to obtain all the activities that used a certain entity, thus
favouring forward-tracing operations.
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Table: WasStartedBy

Row Key: started activity

Family:
activity: columns: triggering activity, id
time: columns: [ ] � time
attributes: columns: attribute � value

Table 5.2: HBase Table WasStartedBy.

Table: Used

Row Key: entity - activity

Family:
id: columns: [ ] � id
time: columns: [ ] � time
attributes: columns: attribute � value

Table 5.3: HBase Table Used.

The table WasGeneratedBy (table 5.4) holds the information sent via the
method wasGeneratedBy(id; generated entity, activity, time, attributes) when
a data transformation generates data. The key is composed of the identi�er
for the activity that generated the entity and the identi�er for the generated
entity. This key also takes advantage of the partial key scan functionality,
facilitating the query of all the entities generated by a certain activity, thus
favouring forward-tracing operations.

The table WasDerivedFrom (table 5.5) holds the information sent via the
method wasDerivedFrom(id; generated entity, used entity, activity, generation
id, usage id, attributes) when data items are derived from other data items.
The row key is composed of the identi�er for the used entity and the identi�er
for the generated entity, permitting via partial key scan to query the entities
derived from a given one.

As for maintaining the federated provenance repository, we showed that it is
only necessary that the system that is consuming data informs it to the central
repository. For that, it calls the method systemConsumed(system id, input data
set id). This can be recorded in the following HBase table SystemUsed (table
5.6). The row key is composed by the identi�er for the entity used and the
identi�er for the system which used it. This favours forward-tracing since it is
easy to query for a given entity if it was used and by whom.

Table: WasGeneratedBy

Row Key: activity - entity

Family:
id: columns: [ ] � id
time: columns: [ ] � time
attributes: columns: attribute � value

Table 5.4: HBase Table WasGeneratedBy.
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Table: WasDerivedFrom

Row Key: used entity - generated entity

Family:
activity: columns: activity, generation id, usage

id
attributes: columns: attribute � value

Table 5.5: HBase Table WasDerivedFrom.

Table: SystemUsed

Row Key: used entity - system
Family: usage: [ ] � timestamp

Table 5.6: HBase Table SystemUsed.

5.3 Implementing Provenance

In this section we present the aspects of the implementation of provenance, in
particular the type of provenance that can be obtained in di�erent contexts,
and how the provenance information only improves with more restrictions to
the system. Also, we show that the notions of how- and where-provenance are
dependent on the existence of mappings to de�ne the data transformations.
Then we review the surveyed works to see the details of their implementations
and close the section with a summary of the reviewed solutions.

5.3.1 Automatic Provenance Capture

As we mentioned earlier, a common objective of the reviewed works is that
provenance capture and recording is done in a completely transparent manner
and without imposing any restrictions either to the user or the developer.

This objective, though seldom stated in the literature, is always present and
solutions where the user is required to manually record provenance information
are rare (generally the older works). Requiring the user to do this is not only
error-prone but also di�cult and expensive, and therefore the reviewed solutions
which follow this approach o�er only coarse-grained provenance.

Also, the transparency from the point of view of the developer is sought
and it is rare for developers to be requested to explicitly invoke APIs to record
provenance. Having the developer of data transformations explicitly addressing
provenance has several inconveniences: he is distracted from his main objective
of developing the data transformation; he could do it unsystematically; it be-
comes another thing to test; etc. Ideally, the provenance capture solution should
occur outside of the transformation, so that it is done consistently. Also, hav-
ing the provenance capture de�ned independently of the transformations would
permit to rede�ne its criteria without a�ecting the transformations.

There are some aspects of provenance that cannot be expected to be captured
in an automatic and transparent way, such as the name, description or objective
of a data transformation. On the other hand, the capture of the causal relation
between data items or data collections, which are input and output to data
transformations, is expected to be captured as automatically and transparently
as possible.
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Regarding the transparency of provenance capture, we identify the following
situations in the reviewed works:

I. No restrictions imposed on the type of transformations, the user is
requested to declare the causal relations, it results in coarse-grained
provenance [51, 72].

II. No restrictions imposed on the type of transformations, the devel-
oper is requested to invoke an API declaring the causal relations. We
reviewed one solution following this approach which o�ers coarse-
grained provenance [53]. However, if addressed by the developer
�ne-grained provenance could be o�ered.

III. No restrictions imposed on the type of transformations, a wrapper
is applied over the data transformations, it results in coarse-grained
provenance [46, 44].

IV. Imposing certain restrictions on the type of transformations allowed,
a wrapper is applied over the data transformations, it results in �ne-
grained provenance, in particular, why-provenance. The restrictions
depend on the speci�c context, but could be: belonging to a certain
transformation class or the existence of schema mappings [46]; that
it be a Constant Mapping Operation [60], or in a MapReduce context
requiring that both map and reduce functions be deterministic and
pure [61, 73].

V. Restricting to declaratively de�ned transformations, it results in
�ne-grained provenance, in particular, why-, where- and how-provenance
[37, 65, 45, 35, 55, 33].

We summarize this in the table 5.7. Situations I and II are the most atypical,
which require the user to register provenance or the developer to consider it
when developing the transformations. The remaining situations (III-V) are the
most common ones as well as the most transparent. In these we can observe
how the results improve (�ner granularity or better notions of provenance) only
when the imposed restrictions increase.

Data Transformations' Speci�cations and Notions of Provenance

When explaining the causal relation between inputs and outputs of a data trans-
formation, the most complete information is provided by the notions of where-
and how-provenance, which explain not only which (why-provenance) data items
were used as input but how they were used.

It must be noted, however, that these notions of provenance are strongly
dependent on the use of mappings (e.g. queries) to declaratively de�ne the
transformations. A transformation is "any procedure that takes data sets as
input and produces data sets as output" [46, 61]. As such, it may have or
exhibit schema mappings, or be completely de�ned by mappings [46]. A schema
mapping is a "speci�cation that describes the relationships between schemas at
a high level" [62]. Rahm and Bernstein [74] present a more general de�nition
stating that a mapping is "a set of mapping elements, each of which indicates
that certain elements of schema S1 are mapped to certain elements in S2, where
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Situation Developer User Restrictions Result

I None Register
provenance

None Coarse
Granularity

II Invoke API None None Fine or
Coarse

Granularity

III None None None Coarse
Granularity

IV None None

Restricted
types of

transforma-
tions

Fine
Granularity
(only why-p)

V None None
Declaratively

de�ned
Fine

Granularity
(why-,

where- and
how-p)

Table 5.7: Characteristics of Provenance.

each mapping element can have a mapping expression which speci�es how the
S1 and S2 elements are related". They also de�ne a schema in a very general
way, as "a set of elements connected by some structure".

These better notions of provenance are obtained because of the existence
of the mapping, from which both the source of a tuple's value (where-p) or
its composition (how-p) are obtained. If the mapping was not available, it
would be necessary to do a reverse engineering process to obtain this kind of
provenance. On the other hand, while why-p can be derived from the mapping,
its existence is not necessary and solutions do exist where why-p is computed
for non-declarative transformations.

We point out that if provenance was explicitly addressed by someone imple-
menting a transformation (e.g. writing code), speci�c code could be included
to permit the capture and record of metadata for where- and how-provenance,
thus solving provenance inside the transformation. However, as seen above, this
approach is not common in the reviewed literature.

Here we highlight the important role played by the query, which is a mapping
between schemas, i.e. a high-level declarative speci�cation of the transforma-
tion taking place. Even though the transformation is considered as given and
provenance is solved outside of it, there is this vital piece of metadata which
permits to obtain a much more speci�c provenance than just why-provenance,
namely where- and how-provenance.

5.3.2 Reviewed works

In this section we review the surveyed works to see the details of their imple-
mentations, in particular if they are based on metadata or a tracing procedure,
how automatic the solutions are and the restrictions they impose to the users,
and how they solve the data identi�cation problem. The works are ordered by
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publication year and alphabetically by �rst author.

Buneman et al. (2001)

Buneman et al. [37] propose a framework to trace backward provenance based
on a syntactic analysis of the data transformations in the context of databases
and transformations de�ned by SPJU (Select-Join-Projection-Union) queries.

The representation of where-provenance requires the identi�cation of loca-
tions in the source data, so data items need a way be identi�ed. The authors
assume that data items can be uniquely identi�ed, and if that is not the case,
they state that collections are treated as sets, identifying the data items by
their value. As a basis for describing where-provenance the authors use an
edge-labeled tree data model where "the location of any piece of data can be
uniquely described and determined by a path". Relations are cast to the model
by using the keys as edge labels. If there is no key for the relation, the tuples
are modelled as a set, i.e. the entire tuple becomes an edge label. The authors
state that object-oriented or semi structured databases with object identi�ers
for all structures can be expressed using the mentioned model.

As mentioned earlier, the authors' approach is based on the syntactic anal-
ysis of queries, so it is limited to data transformations declaratively de�ned.
Although not addressed by the authors, this approach could be used to com-
pute provenance both previously and on demand, i.e. a metadata approach or
a tracing procedure approach. Yet, a possible provenance recording mechanism
is not presented in the article.

Since everything needed to compute provenance is available in the query,
nothing is needed from the user for the system to work.

Although not stated by the authors, it is assumed that the data sources
remain unchanged. If this was not the case, the algorithms proposed would not
work.

Frew et al. (2001)

Frew et al. [53] have developed a metadata recording framework called Earth
System Science Workbench (ESSW). The ESSW system has a client-server ar-
chitecture, where a researcher's workstation acts as a client sending the meta-
data and causal associations to the server which in turn records it. This permits
to record provenance for transformations executing in di�erent machines, where
data items may be shared or not.

The authors claim that provenance capture is transparent or nonintrusive
"because it relies on scripting", where "wrappers or ancillary scripts log sci-
ence object metadata, with minimal alterations to existing processing methods".
However, provenance capture is not really transparent because "the scripts that
carry out each experiment either invoke commands that collect the values for
science object metadata or explicitly provide these values".

The system works in a context where input and output data may be image
�les. In this context, the authors identify two problems: "�rst, there is no in-
trinsic connection between a �le's name and its contents- the metadata encoded
in a �le's path name is always vulnerable to a �le's being moved, renamed, or
re- written. Second, there is no simple, portable way to maintain multiple path
names to the same �le." These problems are those of identifying the data item
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(the �le) and that of maintaining the id-location association. These problems
are addressed by them by using a MD5 hash digest as the identi�er for the �les.

The authors claim ESSW may be used to characterize work�ows at whatever
level of granularity needed, but even though it would be possible to refer to �ne-
grain data items, it would not be possible to declare the relations between these
data items, because all that can be declared is that they were either input or
output to a certain experiment, so only coarse-grained provenance is actually
recorded.

Marathe (2001)

Marathe [65] presents a "lineage tracing algorithm" called SUB-pushdown for
data transformations over array data which o�ers �ne-grained provenance, in
particular why-provenance.

SUB-pushdown is restricted to array manipulations expressed using AML
(a declarative language). The author points out that "an interesting research
question is how to trace data lineage in arbitrary array computations".

This algorithm uses the de�nition of the array transformations as input,
therefore it needs it to be available for use. It also requires the input arrays to
be available, for it to be able to identify the participating data items in them.
Data items are identi�ed by their positions in the arrays.

Foster et al. (2002)

Foster et al. [51] have developed a prototype for a system called Chimera, which
combines a virtual data catalogue, for representing data derivation procedures
and derived data, with a virtual data language interpreter that translates user
requests into data de�nition and query operations on the database.

The architecture of the Chimera virtual data system comprises two princi-
pal components: a virtual data catalogue (VDC; this implements the Chimera
virtual data schema) and the virtual data language interpreter, which trans-
lates the calls to the virtual data catalogue operations into SQL queries to the
database (inserts, updates, queries).

The paper does not address the question of how the data maintained within
the Chimera system is produced, but state that information about transforma-
tions and derivations could be manually recorded by the user and/or created by
monitoring job execution, among others.

Regarding the identi�cation and location of transformations and data �les,
the authors in both cases create unique identi�ers for them and separate the
identi�cation and location problems by creating a mapping component. In the
case of logical transformations, they are characterized by an identifying name,
the namespace within which the name is unique, and a version number. Then,
the logical transformation can be associated to many physical transformations.
In the case of data �les, they are considered as logical �les, named by a logical �le
name (LFN); then a "separate replica catalogue" or "replica location service"
would be used to map from logical �le names to physical �le location(s).

Cui et al. (2000, 2003)

Cui et al. [45, 47, 46], working in the context of data warehousing, present
an algorithm to trace �ne-grained provenance for both relational views and for
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non-declarative transformations.
The authors de�ne schema mapping in the context of a transformation T

with input schema A and output schema B. The mapping is de�ned as a function
from tuples of attribute values in one schema to tuples of attribute values in the
other schema; where its domain can be either a subset of attributes of A or a
subset of attributes of B, and the range a subset of attributes of B or a subset
of attributes of A, respectively; and where some other conditions are met.

It is possible that the complete transformation is speci�ed via mappings
(the transformation is speci�ed as a standard relational operator or view). On
the other hand, some transformations are simply procedural code and lack the
mapping speci�cation. However, Cui et al. [46] say that transformations "often
lie between these two extremes, they are not standard relational operators, but
they have some known structure or properties that can help" to identify and
trace data provenance.

Given a transformation T, an input set I and a subset of the output set
which we call O*, the authors propose a series of algorithms to determine the
provenance of O*, depending on the class of the transformation T. The algorithm
can be more or less e�cient depending on the presence of schema mappings in
the transformation and on the properties these mappings may have.

For most of the algorithms, it is assumed that the input to the already
executed transformation is readily available. If no schema mapping is present,
it is necessary to rerun the transformation to obtain the provenance of O*; if one
mapping is present, it can help reduce the set of possible provenance elements
from the input set; if more mappings are present, these can reduce even more the
set of possible provenance elements. If the mappings enjoy certain properties,
it may su�ce to only recall the mappings instead of the whole transformation.
For the particular case when the transformation is entirely de�ned by mappings,
i.e. relational views, a special tracing procedure is given based on the view
de�nition. Regarding this, the authors point out that the data "sources may
be inaccessible, expensive to access, expensive to transfer data from, and/or
inconsistent with the views at the warehouse", so the problem could be avoided
by storing auxiliary views in the warehouse.

On the other hand, for one particular case of transformation it is not neces-
sary to have available the input set. When a tracing procedure for the transfor-
mation (this is not necessarily the inverse of the transformation) is provided, it
may, or not, be necessary to have available the input set.

When the transformation cannot be classi�ed in any of the categories de�ned
(i.e. it is neither a dispatcher nor an aggregator) and does not have a provided
provenance tracing procedure, the authors call it a black-box transformation.
In this case, the entire input data set is the provenance of each output item,
thus resulting in coarse-grained provenance.

The problem of identifying data items is not addressed by the authors. The
presented tracing procedures return the actual data, so we can say that data is
identi�ed by its value inside a certain set.

Pancerella et al. (2003)

Pancerella et al. [72] work in the context of chemical sciences and have developed
a system called Collaboratory for the Multi-scale Chemical Sciences (CMCS)
which o�ers a suite of tools for managing data and metadata and visualizing
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provenance relationships between data entries with coarse granularity. The
system is basically a repository of metadata that is used to describe �les (that is,
for data sets) and their relations to projects and to other data sets. The authors
state that this metadata could be loaded in four ways: using the Scienti�c
Annotation Middleware (SAM) which runs a user de�ned XSLT to translate
metadata from another schema, manually via the web application, using the
DAV protocol or an API.

However, the problem of capturing the provenance metadata is not addressed
by the authors. All that is said is that the API "allows scientists to easily write
programs to add/edit metadata and to integrate with existing and new chemical
science applications."

Regarding the identi�cation of data collections or resources within the CMCS
data repository, URIs are used to reference them.

Bhagwat et al. (2005)

Bhagwat et al. [35] work in the scienti�c domain and have developed an an-
notation management system for relational databases in which every piece of
data in a relation is assumed to have zero or more annotations associated with
it and annotations are propagated along, from the source to the output, as data
is being moved through a query. When a query (which reads and saves data)
is executed the data item's annotations are propagated using the propagation
scheme selected by the user.

The system o�ers three annotations propagation schemes: the default, the
default-all and a custom one. The default scheme uses where-provenance as the
basis for propagating annotations. If an output piece of data d' is copied from an
input piece of data d, then the annotations associated with d are propagated to
d'. Because that the way annotations are propagated is dependent on the way a
query is written (two equivalent queries may propagate annotations di�erently),
an alternative method of propagating annotations is o�ered, called the default-
all scheme, which propagates annotations according to where data is copied from
in all equivalent formulations of the given query. Also, a custom mechanism is
o�ered, where the user de�nes which annotations are copied to which location.

Regarding why-provenance, the authors set as future work to extend their
system to o�er a propagation scheme based on why-provenance. They state
that this scheme should return the set of all annotations in an output location
if it occurs in the same output location in the results of all equivalent queries.
Still, they state that it needs to be investigated whether a query basis can be
generated for such propagation scheme. However, a simpler approach could be
taken, not considering all the equivalent queries but just the actual query, which
is the approach taken by Cui et al. [45]. Also, in this work, for the notion of
where-provenance, two approaches are considered, one for the actual query and
one for all the equivalent ones.

In this system, the metadata necessary to "answer provenance queries" (the
way understood by them) is computed when the transformation takes place
and is ready for use whenever needed. In this scheme, answering provenance
is "fast" since no traceability function needs to be executed. However, the
transformations (query execution time) are penalized by the propagation of
the annotations (to a large degree in the default-all scheme according to the
experiments conducted by Bhagwat et al.). Also, even though nothing is said
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about it in the article, the size of the metadata it can be potentially large
with respect to the amount of data. If the default scheme is used for a 100%
annotated database (i.e. every value has one annotation), with every query,
the size of the metadata grows proportionally with the size of the data. If the
default-all scheme is used for a 100% annotated database, with every query, the
size of metadata will grow proportionally more than the size of the data.

No concept of data identi�cation exists in this work. Every time the data is
copied to a new table inside the same database, all its provenance information
is replicated, and it is not clear each version of the "same" data is considered
to be di�erent.

Green et al. (2007)

Green et al. [55] show the limitation of why-provenance and develop the notion
of how-provenance to overcome this, where a polynomial is used to show how
the input data items were used to construct an output data item.

The notion of how-provenance is strongly related to the existence of map-
pings to de�ne the transformations, since it is from the mappings that how-
provenance information is derived. In particular, the authors work in the context
of relational databases, where data transformations are restricted to relational
algebra. They propose to derive from the relational query, for every output
tuple, a polynomial that represents not only which tuples were used to create
the output tuple, but also how they were used.

The polynomial is expressed using the "ids" of the input. It is thus assumed
by the authors that there exist identi�ers for the data items. However, they do
not state how they should be assigned.

The authors do not mention if any prototype of their solution has been
developed. Should a system like this be developed, it could be implemented
either with a metadata approach or a tracing procedure approach. In either
case the how-provenance metadata could arguably be transparently captured as
long as only relational algebra is used to de�ne the transformations. Yet, no
estimates are given of the space needed to record neither the polynomial nor
the time needed to compute it.

Amsterdamer et al. (2011)

Amsterdamer et al. [33] work in the context of work�ows whose transformations
(referred to as modules in this work) are Pig Latin queries. In this context
they propose a solution (and have built a prototype) that permits to compute
�ne-grained data provenance (both for backward- and forward-tracing) using
metadata. The provenance derivation scheme they propose is based on the
fact that Pig Latin query constructs can be translated into (the bag semantics
version of) nested relational calculus, hence to a declarative speci�cation, i.e. a
mapping. Their solution provides how-provenance for transformations speci�ed
using Pig Latin, however, when the transformation is not speci�ed this way, it
provides only why-provenance.

Their system architecture is based on two sub-systems: a Provenance Tracker
and Query Processor. The Provenance Tracker is responsible for tracking prove-
nance for tuples that are generated over the course of work�ow execution, and
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to write the output to the �le system. This output is read by the Query Pro-
cessor sub-system, which builds the provenance graph in memory, is responsible
of answering provenance queries.

The authors say that the Provenance Tracker does not involve any modi�ca-
tions to the Pig Latin engine, that it is implemented using Pig Latin statements
invoked during work�ow execution. However, no further details are given of
how provenance is actually captured, nor how the work�ow execution is regis-
tered. Also, the issue of how why-provenance for non-Pig Latin transformations
is captured, is not addressed.

Other unmentioned aspects are: how are records identi�ed (this is necessary
to express the semirings as shown by Green et al. [55]) and how is metadata
stored in the �le system.

Regarding the restriction of acyclicity in the work�ows, the authors ex-
plain that it "dealing with recursive work�ows would introduce potential non-
termination in the semantics and, to the best of our knowledge, this is still an
unexplored area from the perspective of provenance."

Crawl et al. (2011)

Crawl et al. [78, 32, 44] work in the context of scienti�c work�ows, where they
have developed a work�ow management systems called Kepler, which they have
integrated with Hadoop, creating Kepler+Hadoop. The Kepler system permits
to model and execute work�ows and the Kepler+Hadoop version permits the
transformations (referred to as actors in Kepler) to be MapReduce jobs. They
provide a metadata based framework to compute coarse-grained provenance.

In this system, work�ows are de�ned and executed from Kepler (from outside
of Hadoop). Data is copied from Kepler to the HDFS to be processed by the
MapReduce jobs and when �nished it is copied back. Provenance metadata is
stored outside of Hadoop in a MySQL Cluster.

Kepler adopts an actor-oriented modeling paradigm, where the work�ow is
composed of actors, which can consume or produce data, called tokens. Work-
�ows and its actors must be de�ned and executed through the Kepler system,
which can trigger the metadata collection module (called Provenance Recorder)
if the user so wants (it is an optional feature). To give provenance support for
MapReduce actors, the Kepler+Hadoop system presents extensions to the orig-
inal system, following a wrapper approach to capture provenance automatically,
with coarse-granularity.

When a map or reduce task executes, its input and output data (to which
they refer to as dependencies) are identi�ed and recorded. These dependencies
between the data items and the executions is registered in a MySQL cluster.
Each data item is assigned a unique identi�er (which is used to declare the de-
pendencies) and the data item with its identi�er is also recorded in this database.

The identi�er for a data item is constructed in part by the provenance repos-
itory and in part by the executing node. The identi�er is composed of three
identi�ers, (R, S, N): First, the identi�er of the work�ow execution -which they
call R-, provided by the provenance repository, then S is the identi�er of the
MapReduce task within the MapReduce job and �nally N is the artifact number
within S. The latter two are provided by the executing node. An identi�er in
this format is unique since R is di�erent for each work�ow execution, S is gen-
erated by Hadoop to uniquely identify each MapReduce task, and N is unique
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within the MapReduce task S.

Huq et al. (2011)

Huq et al. [60] work in the context of stream data processing for data coming
from sensors. They propose a hybrid approach (metadata and tracing proce-
dure) which permits to compute �ne-grained data provenance. Their approach
is based on a temporal data model, which, by adding a temporal attribute (e.g.
timestamp) to each data item, allows to retrieve the overall database state at
any point in time. This, together with what they call "coarse-grained prove-
nance of the transformation" (information regarding the transformation: its
classi�cation, its sources and characteristics regarding the window processing
and execution trigger), allows them to construct provenance. Therefore, some
metadata is recorded for every tuple, but this is not provenance metadata ex-
plicitly and a tracing procedure is used to compute provenance. Hence, we
classify it as a hybrid approach.

The computation is done as follows: �rst they calculate (or �lter) the set
of the input tuples which form the processing window for the tuple for which
provenance is computed. Then, based on the temporal ordering of the tuples
and the transformation metadata, the contributing tuples can be identi�ed.

This tracing procedure can be applied to SQL operations or "generic func-
tions" (e.g. interpolate, extrapolate), with the requirement that it be a Constant
Mapping Operation. This means that it has a �xed ratio of mapping from input
to output tuples per window, i.e. 1 : 1, n :1, n : m. For variable mapping op-
erations (i.e. those that have not any �xed mapping ratio from input to output
tuples), the solution cannot be applied directly. They mention as a possible so-
lution could be to transform these operations into constant mapping operations
by introducing NULL tuples in the output, however this idea is not developed
in their work nor is an estimation of the storage overhead given.

They analyse the storage consumption of their solution for their case study
(i.e. the interpolation of sensor data, which is a constant mapping operation),
comparing the storage overhead against the size of the actual sensor data and
against an explicit provenance metadata solution. For that particular example,
their hybrid approach takes at least 4 times less storage space than the explicit
approach. Also, the storage space needed by the metadata of their approach is
less than half of the space required for the actual data.

No analysis is presented regarding the time it takes to compute provenance
using their solution.

Ikeda et al. (2011)

Ikeda et al. [61, 73] have built a prototype system called RAMP as an exten-
sion to Hadoop, to support the automatic capture and recording of �ne-grained
metadata-based provenance (both for backward and forward tracing). Their
approach consists of transparently wrapping Hadoop MapReduce functions, to
capture and record provenance metadata. The system assumes that every tu-
ple has a globally unique identi�er, so when a transformation is executed, the
identi�ers of the participating tuples are copied to the created tuples. For map
functions -which produce zero or more output elements independently for each
element in its input set-, they extract the unique identi�er of each input element
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that produces one or more output elements, and add that ID to each of the out-
put elements. For reduce functions -which take an input data set I in which
each element is a key-value pair, and return zero or more output elements inde-
pendently for each group of elements in I with the same key-, they keep track of
the grouping key for each input group, and add that key to each output element
produced by the group.

The solution requires that every tuple has a globally unique identi�er. RAMP
can receive a scheme to assign them, or it can apply its default one. The de-
fault scheme, which works when data sets are stored in �les, consists of using
(�lename, o�set) as a default unique ID for each data element.

RAMP stores provenance metadata separately from the input and output
data. It is stored in �les, in particular using one provenance data �le for output
data �le. The provenance data �le associates output item identi�ers with input
item identi�ers. The latter are composed of an input �le number and and o�set,
so RAMP also maintains a dictionary with the actual �lenames.

RAMP implements the capture of provenance through a wrapping scheme.
In particular, by wrapping the following components of Hadoop: Record-reader,
Mapper, Combiner, Reducer and Record-writer. The Record-reader's wrapper
assigns a unique ID p to each input element, the Mapper is wrapped so it is
unaware of this but its output records contain the ID. The Reducer's wrapper
iterates over all annotated map output elements with the same key k and feeds
record to the reducer. While doing this, the Reducer's wrapper stores the map
provenance, i.e. the relation between the input record and the mapper output,
namely (k, p). Then the Record-writer's wrapper assigns a unique identi�er
q to each produced record and stores the reduce provenance, i.e. the relation
between the output record and the grouping key of the reduce function, namely
(q, k).

The granularity of transformations for which provenance is captured is a
MapReduce job. In particular, no intermediate data is stored between the Map
and Reduce functions. Also, a Map function which is not followed by a reduce
function, and a Reduce function which is not preceded by a Map function, are
treated as MapReduce jobs.

RAMP requires that both map and reduce functions are deterministic and
pure. A map function is considered pure if it produces zero or more output
elements independently for each element in its input set. A reduce function is
considered pure if takes an input data set I in which each element is a key-value
pair, and returns zero or more output elements independently for each group
of elements in I with the same key. The key aspect of these de�nitions is the
word independently, which means these functions do not bu�er the input or
otherwise use "side-e�ect" temporary storage, which would make it impossible
to associate input and output data items correctly.

The authors conduct experiments to measure the performance of their appli-
cation regarding two aspects: �rst, the time and space overhead of provenance
capture, and second the time to compute why-provenance (backward-trace).

Depending on the type of the transformation being traced (in particular,
due to its multiplicity), time and space overhead during provenance capture
can vary considerably. For the Wordcount problem (a many-one transforma-
tion, where each intermediate and output data element is annotated with many
input element IDs), provenance capture incurred a 72-76% time overhead and
the number of annotations per data element increases with input size. For the
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Terasort problem (a one-one transformation, where each intermediate and out-
put data element is annotated with exactly one input element ID), provenance
capture incurred a 16-20% time overhead and a 19-21% space overhead.

The time needed to compute provenance also varied greatly from one prob-
lem to another. The authors report that for Wordcount, tracing one element
took approximately 1, 3, and 5 minutes, for 100, 300, and 500 GB input data
sizes respectively. For Terasort, tracing one element took approximately 1.5
seconds for all input data sizes.

RAMP's provenance recording scheme is biased towards backward tracing,
which the authors assume is a more frequent operation than forward tracing.
They state that "without auxiliary structures, each forward-tracing step would
require a complete scan of the map provenance, which is not sorted on input
element IDs".

Akoush et al. (2013)

Akoush et al. [31] present a modi�ed version of Hadoop -called HadoopProv-
which o�ers capturing and recording of �ne-grained why-provenance in MapRe-
duce jobs. HadoopProv aims to minimize provenance capture overheads while
the MapReduce jobs execute and hence follows a hybrid approach to prove-
nance. They do this by recording causal relationship between input and output
records in Map and Reduce phases separately. This is not the causal relation-
ship between input and output records of the MapReduce job, but the latter
is computed with this information on demand, thus we consider it a hybrid
approach. This provenance information is stored in separate �les.

More speci�cally, when a Map task executes, it reads records from an input
�le split and applies a user-de�ned Map function to emit intermediate key-value
pairs. Here, HadoopProv captures and records the association between each
emitted intermediate key and the locations of corresponding input records that
participated in its creation. When a Reduce task executes over the intermediate
key-value pairs, HadoopProv captures and records, for each output record, the
association between its location at the output �le and the intermediate key
given to that task. Then, at query time, the entire provenance graph can be
constructed by joining the Map and Reduce provenance �les on all matching
intermediate keys.

Provenance capture is addressed by the system itself, since this version of
Hadoop has been modi�ed in order for it to capture causal relationships between
input and output records. However, no details are given of how it is done and
it is not mentioned by the authors if there is any restriction on the kind of
MapReduce transformations for which the system works. It would appear that
it would have the same restrictions as the solution proposed by Ikeda et al. [61].

Regarding the identi�cation of the data items, the system uses their location
in the data sets as their identi�er. This has the drawback that the provenance
metadata would be "broken" should the data set be reordered.

5.3.3 Summary of reviewed works

In table 5.8 we summarize the survey of existing solutions in the literature,
putting special attention in the following characteristics:
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� First, if the solution is based on precomputing metadata, on applying a
tracing procedure or on a hybrid approach.

� Second, if the system requires the intervention of the user or it can auto-
matically obtain the input to compute provenance.

� Another characteristic refers to restrictions imposed on the data transfor-
mations for the system to work, e.g. if the provenance system supports
only transformations which are de�ned declaratively by a high level lan-
guage (i.e. using mappings, e.g. a SQL query), or it only works for a
certain type of transformations, etc.

� The fourth and �fth dimensions refer to what the system o�ers: the granu-
larity of provenance o�ered (Fine or Coarse) and the notion of provenance
o�ered (i.e. why-, where- or how-provenance).

� The sixth characteristic refers to the identifying scheme used.

The system developed by Foster et al. [51] o�ers among other things a metadata
framework, but do not address the question of how the metadata is maintained.
They just say that it could be manually recorded by the user and/or created by
monitoring job execution, so we classify it as manual.

The work of Cui et al. has three entries in the table because they o�er
di�erent solutions if the transformation is de�ned declaratively or not or if the
transformation has certain properties. In the �rst case, the schema mapping
(i.e. the query) is enough to compute provenance, in the second one the user is
required to specify the properties that are present in the transformations. If no
properties are present, the solution only o�ers coarse-grained provenance.

We can observe from the reviewed literature that the way provenance is
computed (via metadata or a tracing procedure, i.e. pre- or post-computed
respectively) and the way the transformations are speci�ed (declaratively or
not) are two independent dimensions.

We have reviewed works where metadata is pre-computed for both declaratively-
de�ned and non-declarative transformations, e.g. Bhagwat et al. [35] and Ikeda
et al. [61] respectively. On the other hand, we have reviewed works which follow
a post-computation approach for both declaratively-de�ned and non-declarative
transformations, e.g. Cui et al. [45] and Cui et al. [46] respectively.

5.4 Provenance Capture in Hadoop

In this section we show how the solution developed by Ikeda et al. [61] can be
adapted to work with the presented framework, so it can work as one of the
nodes capturing and sending provenance information to the central repository
in our distributed environment. This solution o�ers �ne-grained provenance for
MapReduce jobs following a metadata approach.

To adapt this solution to work within the framework we only need to:

� Change where it records the provenance metadata, instead of recording it
in a local �le for it to send the metadata to the repository.

� The data identifying scheme should follow the framework's de�nition. We
point out the original identifying scheme of Ikeda et al. consists of using
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Reviewed
Works

MD /
Tr. proc.

Prov.
Capture

Data
Transfor-
mations

Gran. Notion
of prov.

Id.
scheme

Buneman et
al. [37]

Tracing
proc.

Auto Decl.
De�ned
(query)

F Why-p,
Where-p
(limited)

Location
as id.

Frew et al.
[53]

MD Invoke
API

No
restrict.

C - MD5 hash
digest

Marathe [65] Tracing
proc.

Auto Decl.
De�ned
(query)

F Why-p Location
as id.

Foster et al.
[51]

MD Manual No
restrict.

C - Creates
ids

Cui et al.
(Rel.

Op.)[45]

Tracing
proc.

Auto Decl.
De�ned
(query)

F Why-p Value as
id.

Cui et al.
(Gen. Tr.)

[46]

Tracing
proc.

Auto Known
class of
data
transf.

F Why-p Value as
id.

Cui et al.
(Gen. Tr.)

[46]

Tracing
proc.

Auto No
restrict.

C - -

Pancerella et
al. [72]

MD Manual No
restrict.

C - URIs

Bhagwat et
al. [35]

MD Auto Decl.
De�ned
(query)

F Where-p
(similar)

Not
mentioned

Green et al.
[55]

Not
speci�ed
(could
be

either)

Auto Decl.
De�ned
(query)

F How-p,
Why-p

Not
mentioned

Amsterdamer
et al. [33]

MD Auto Decl.
De�ned
(Pig
Latin)

F How-p,
Why-p

Not
mentioned

Crawl et al.
[44]

MD Auto No
restrict.

C - Creates
ids

Huq et al.
[60]

Hybrid Auto Constant
mapping
operations

F Why-p Not
mentioned

Ikeda et al.
[61]

MD Auto Pure Map
R.

functions

F Why-p Location
as id.

Akoush et
al. [31]

Hybrid Auto Pure Map
R.

functions

F Why-p Location
as id.

Table 5.8: Summary of reviewed works.
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the �le name and the o�set as identi�er for the data items, which can
easily be adapted to comply with the framework by assigning an identi�er
to each �le which is unique in the system.

Performing these changes, we have the same solution but now extended to com-
pute provenance in a distributed environment. We point out that the solution
still has the same limitations regarding locations used as identi�ers. This could
be raised by incorporating the functions of the Id Creation Scheme, which would
maintain the id-location relation.

This solution cannot address the identi�cation of data transformations. There-
fore, when sending the provenance metadata to the repository, this information
will not be sent. To overcome this, it is necessary to maintain a Data Transfor-
mation Catalogue, where information about the MapReduce jobs is de�ned.

5.5 Provenance Capture in Relational Databases

Similarly, to compute provenance in a relational database, we show how to
adapt one of the reviewed solutions to work within our framework. We select
the solution developed by Cui et al. [47] which o�ers �ne-grained provenance
for data transformations which are relational queries.

The solution developed by Cui et al. is based on a tracing procedure which
is executed on demand to o�er backward-tracing provenance. Should we want
to compute only backward-tracing provenance, this could be reused as it is,
exploiting the possibility that the repository can work in a federated fashion.
What needs to be addressed though, is data identi�cation. It is necessary that
the provenance capture function can maintain the identi�ers for data items,
whether the data are created inside the relational database or outside of it -
e.g.: copied from Hadoop-. For example, if data produced inside of Hadoop was
copied to the relational database to be used as input for data transformations,
the provenance capture function should maintain the identi�ers for those data
items, and notify the provenance repository that it is using them. Therefore,
when performing forward-tracing provenance for a data item inside Hadoop, if
one of its descendant data products was copied to the relational database and
registered as used by it, we know we have to ask the local provenance solution
for that part of the provenance graph.

However, in our case study we want to perform forward-tracing, so the so-
lution needs to be adapted to record provenance metadata in the centralized
repository. This could be done by performing the tracing procedure over each
created data item and recording the returned information.

This solution does not address data transformations either, so it will not
record provenance metadata about them. To overcome this, it is necessary
to maintain a Data Transformation Catalogue, where information about the
relational queries is de�ned.

5.6 Conclusions

Our framework is based on a centralized metadata repository, where provenance
capture occurs in di�erent nodes in the distributed environment and is sent to
the metadata repository. We have presented a solution for the Provenance
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repository and have shown how to capture provenance in Hadoop and relational
databases.

First, we reviewed the existing provenance models for provenance interoper-
ability, which showed the most widely used models are OPM and PROV-DM.
We analysed how �t both models are to represent PCM, the provenance model
built in section 4.1, and found the OPM model has limitations that do not per-
mit to represent every aspect of PCM. On the other hand, using PROV-DM
and its mechanisms to de�ne extended structures, it is possible to represent
everything of our model, so we select it for use.

Then we presented a concrete implementation for our metadata repository
(based on the operations required in the case study), de�ned the services using
a subset of PROV-DM terms and de�ned a concrete recording strategy using
HBase, in order to manage large volumes of provenance metadata.

We have also presented general aspects of the implementation of provenance,
and also we have shown how to modify the solutions developed by Ikeda et al.
[61] and Cui et al. [47] so that they can work within the framework and thus re-
sult in improved versions, incorporating the functionality of o�ering provenance
outside of the original scenarios.

Using these modi�ed solutions within the proposed framework it is possi-
ble to compute provenance in a distributed scenario of Hadoop and relational
databases.
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Chapter 6

Two Application Scenarios

In this chapter we present other scenarios and show how the proposed framework
and the metadata repository can be adapted to satisfy the di�erent requirements
in the di�erent use scenarios.

6.1 Tracing products of industrial processes

This scenario is set in an industrial process, where raw materials are used to
produce some resulting products, and it is necessary to keep track of which
input and output batches.

The industrial process we consider is that of producing biodiesel from veg-
etable oil, but it could be any process. In the processing plant, tankers are
received with the oil to be used as input, where each tanker arrival has its iden-
ti�er. In this scenario exist basically two industrial processes: �rst, process A,
which is fed with the oil in the incoming tankers and produces an intermediate
product which is stored in tanks. Secondly, process B is fed with the aforemen-
tioned intermediate product, which results in the �nal product of biodiesel, also
stored in tanks.

There are two tracing requirements. First, when a problem is detected in
process B, it is required to know which oil tankers were input to the running
process. Second, it is common to receive information about the oil tankers long
after they were used, so it is necessary to identify which biodiesel tanks were
produced based on them.

These provenance requirements can be satis�ed with our framework. First
we construct a conceptual data model to represent this reality and then show
how it could be mapped to PROV-DM. In �gure 6.1 we present the model,
which includes the concepts of process runs (for processes A and B), the tankers
and tanks of intermediate and �nal product. The model also shows the relations
between these.

In PROV-DM terms, both tankers and tanks are Entities and the run of pro-
cesses A and B are Activities, which are concepts and relationships included in
our model. The requirements are for operations of both backward and forward-
tracing over the causal relationship between entities. The proposed implementa-
tion favours forward tracing, but an additional structure could be incorporated
to facilitate backward tracing as well.
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Figure 6.1: Conceptual data model for the industrial process.

6.2 Bibliographic references

This case study addresses the problem of extracting and representing academic
publications and the references (citations) between them, in order to mine this
data with di�erent purposes. The bibliographic references' domain includes
academic publications, their authors, the conferences where they were pub-
lished and the editors of the conferences. Also, publications can have keywords
associated to them.

With this information, we would like to identify all publications which were
based on a given one, both directly and indirectly (i.e. publications which
referenced another publication which in turn referenced the given one, or with
more than one intermediate publication). Thus, it is possible to quantify the
impact (both directly and indirectly) a publication has, and analyse it per year,
per group of keywords, etc. Based on the impact of his publications, the impact
of an author can be derived. These measures can be used to estimate the
quality of the publications and authors. Analogously, the quality of conferences
and editors can be assessed.

Here also, we start by representing the domain with a conceptual data model
(�gure 6.2), which is to be used to map to PROV-DM. First, a publication can
reference many other publications, while at the same time, it may be referenced
by many others. The publication is attributed to one or more authors and it
is published in a conference edition. The conference edition has editors and
belongs to a certain conference.

This problem is analogous to that of capturing and recording data prove-
nance, and it can be represented using the PROV-DM model as follows: aca-
demic publications can be represented by Entities and authors by Agents, where
the publication is attributed to the author. Each edition of a conference can
be represented as a Collection Entity, which is composed of all its academic
publications. The conference is attributed to the editors, which are also Agents.
Finally, the editors act on behalf of the conference institution, another Agent.

This can be solved with the proposed framework because the di�erent el-
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Figure 6.2: Conceptual data model for bibliographic references.

ements in the domain can be represented using the PROV-DM model that it
uses. A speci�c module needs to be created for capturing "provenance" for
this domain, which would have the responsibility of assigning identi�ers to the
publications and capturing the references between them, ideally retrieving the
semantics of that reference, and �nding the conference where it was published
and its authors.

This information then needs to be sent to the provenance repository. The
proposed repository does not provide support for PROV-DM Agents, so it needs
to be extended to include them. The elicited requirements are for forward
tracing operations, which are favoured by the proposed implementation. The
mentioned extension should be done with this in mind.

6.3 Conclusions

We have seen two possible applications of the proposed provenance framework
in scenarios that are very di�erent from the traditional one of data processing,
and shown how they could be solved with the proposed framework.

A key aspect for the adaptability of the framework is the selection of a gen-
eral data model to represent provenance, PROV-DM, which has proven general
enough to deal with the di�erent case studies.
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Chapter 7

Conclusions and Future Work

This thesis studies data provenance as a general problem and presents a frame-
work for provenance capture and recording based on metadata and a conceptual
data model, which can be used to o�er provenance in a distributed environment
with di�erent technologies. In particular, it can be used in an environment
where the nodes are, for example, a Hadoop system or a relational database.

Chapter 2 is dedicated to the survey of existing de�nitions of data provenance
in di�erent contexts. Its contributions are the uni�cation of di�erent terms
used in the literature and the proposal of a comprehensive de�nition of data
provenance.

In chapter 3 we present our case study and its requirements for provenance
in a distributed environment with diverse technologies, in particular a Hadoop
environment. We analyse existing solutions and conclude that none of them
address all of aspects the scenario.

Chapter 4 is the analysis of the case study and the proposal of a framework
to address it. The analysis consists of �rst constructing PCM, a conceptual
data model for provenance, based on the requirements and data models of the
surveyed works. One contribution of chapter 4 is the analysis of the challenges
to satisfy the case study, in particular, when one of the nodes in the environment
is a Hadoop system, analysing the challenges that can appear when the di�erent
tools of the Hadoop ecosystem interact with each other.

We close chapter 4 presenting the Framework for provenance capture and
recording, the main contribution of this thesis. The framework de�nes roles
and responsibilities to achieve data provenance capture and recording in this
distributed scenario with diverse technologies, something not possible with the
surveyed solutions. The framework is designed to be �exible to work with
systems which can o�er provenance both by a tracing procedure or via metadata,
and in the case of o�ering it via metadata, that can record it both locally or
centrally in the Provenance repository.

In chapter 5 we address the implementation of the framework. First we
survey existing models for provenance interoperability, select OPM and PROV-
DM, the two most widely used models, and assess them by comparing them
to PCM. Then we de�ne the services o�ered by our metadata repository (using
PROV-DM terms) and give a detailed design of the Provenance repository using
HBase and HDFS to be able to provide random access to large volumes of
provenance metadata, based on the access requirements of our case study.
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Then we present general aspects of the implementation of provenance, in
particular those related to provenance capture. The contribution here is to show
the relation between the characteristics of the systems o�ering provenance and
the type of provenance o�ered, what to the best of our knowledge is not analysed
by any work. We revisit the reviewed works analysing the characteristics of their
implementations and what kinds of provenance they o�er. We also make explicit
some of the working hypothesis which are commonly implicit. We present a
comparative summary of all the surveyed solutions.

We close chapter 5 showing how some of the surveyed solutions can be
adapted to work within the framework acting in the provenance capture role
and sending the provenance metadata to the Provenance repository, thus com-
pleting all the actors in our framework.

Since we have selected PROV-DM as the basis of the communication inter-
faces of the Provenance repository in order to o�er a more general solution, in
chapter 7 we show that the proposed framework can be used (with some ex-
tensions) to satisfy provenance requirements in di�erent contexts outside of the
traditional data processing scenarios.

Given that the proposed framework can manage provenance metadata from
diverse sources and technologies and can accommodate large volumes of meta-
data, it can be used to provide provenance in a big data environment.

We have developed a provenance framework based on metadata, thus an
interesting question that remains to be analysed is what is the possible size of
the metadata relative to the size of the data. This will depend on the context of
work and its characteristics, in particular, on the type of data transformations
and the relation between inputs and outputs, and on the granularity of data
items and their size. A starting point for this can be the works of Crawl et al.
[44] and Ikeda et al. [61] who present di�erent results in di�erent situations. It
could also be of interest to analyse how di�erent characteristics of the context
of work -for example the complexity of the data transformations- relate to the
overhead of the provenance capture and the stress it implies for the provenance
recording function.

Another line of work is to study how the provenance metadata could be
compressed following the algorithms developed by Chapman et al. [40] while
maintaining acceptable write and read response times. A possibility may be
to run maintenance MapReduce jobs to perform these compression operations
without penalizing write operations. In this case, it would be interesting to
study the space gained against the performance penalty for read operations.

Also, we have proposed an implementation strategy based on Hadoop and
HBase. It would be desirable to develop a set of guidelines for the tuning of this
solution for it to cope with large volumes of metadata and situations of stress.

Another line for future work is that of analysing and developing management
policies for the provenance metadata, which deal for example with historical
metadata.

With our solution we have addressed the problem of o�ering data provenance
in a distributed scenario, in particular we have shown how it could be applied for
Hadoop. However, inside Hadoop we capture provenance only for MapReduce
jobs. A natural next step is to extend the provenance capture provenance for
data transformations occurring inside other tools of the Hadoop ecosystem, like
Hive or Pig.
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Appendix A

Glossary

We present the di�erent terms used in the reviewed literature and the de�nitions
given by the authors.

Actor. The implementation of a speci�c function that needs to be performed
[44].

Data object. A named entity which was consumed or produced by a derivation
[51].

Derivation. An actual execution of a program [51].

Director. Directors specify what �ows as tokens between actors; how the com-
munication between the actors is achieved; when actors execute (a.k.a.
�re) [44].

Experiment. An instance of a model [53].

Experiment step or processing step. On of the steps in an experiment, de-
�ned in the model [53].

Model. A speci�cation of a data transformation modelled as a DAG (Directed
Acyclic Graph) that can have many instances called experiments [53].

Module. A data transformation [33].

Module invocation. An execution of a data transformation [33].

Science object. Can be either data or a process [53].

Token. Communication between actors that contain both data and messages
[44].

Transformation.

1. An executable program, of which it is known how to invoke it [51].

2. Any procedure that takes data sets as input and produces data sets as
output, without distinguishing speci�cations from executions [45].
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Transformation Sequence. A directed acyclic graph (DAG) of transforma-
tions, which would be equivalent to a work�ow, without distinguishing
speci�cations from executions [45].

Work�ow.

1. A Directed Acyclic Graph (DAG) in which every node is annotated with
a module identi�er (name), and edges pass data between modules [33].

2. A linked set of components -the Actors- that may execute under di�erent
Models of Computations -the directors- [44].

Work�ow execution. A sequence of module invocations [33].
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Bibliographic Search

The selection of bibliographic references was done using Google Scholar, taking
into account the abstracts of the works and the number of citations they re-
ceived. Also, when reading a work which referenced related works which were
considered relevant, these were included as well. What is more, additional works
of the relevant authors were also searched for.

We present the searches performed in Google Scholar, showing the date in
which it was done, the search terms used and other �lter applied. For each search
we present the results, assigning each result an identi�er, and showing its bibtex
and abstract, the number of citations it received, and an assessment about its
relevance for our work with three possible results: it is considered relevant and
must be read, it is considered relevant but too speci�c on a particular subject
so it could be left for a later read, or alternatively it is not considered relevant.

Since reading a work or an author could lead to other works, we represent the
results as a tree, where the works are vertices and the aforementioned relations
are the connections. We present the results in a DFS (Depth First Search)
fashion, while including comments explaining why additional references were
considered.

B.1 Search 1

Search Id 1
Search date 2014 March
Site scholar.google.com
Search terms data provenance
Other

Results

Id Reference Description Citations Assessment
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1.1
[76]

@article{simmhan2005survey,
title={A survey of data provenance in
e-science},
author={Simmhan, Yogesh L and Plale,
Beth and Gannon, Dennis},
journal={ACM Sigmod Record},
year={2005},
publisher={ACM}}

715 Read

Abstract: Data management is growing in complexity as large-scale appli-
cations take advantage of the loosely coupled resources brought together
by grid middleware and by abundant storage capacity. Metadata de-
scribing the data products used in and generated by these applications is
essential to disambiguate the data and enable reuse. Data provenance,
one kind of metadata, pertains to the derivation history of a data product
starting from its original sources. In this paper we create a taxonomy of
data provenance characteristics and apply it to current research e�orts
in e-science, focusing primarily on scienti�c work�ow approaches. The
main aspect of our taxonomy categorizes provenance systems based on
why they record provenance, what they describe, how they represent and
store provenance, and ways to disseminate it. The survey culminates with
an identi�cation of open research problems in the �eld.
We retrieve some of the referenced articles by 1.1, which we
identify as 1.1.*.

1.1.1
[80]

@inproceedings{woodru�1997supporting,
title={Supporting �ne-grained data lineage
in a database visualization environment},
author={Woodru�, Allison and Stonebraker,
Michael},
booktitle={Data Engineering, 1997.
Proceedings. 13th International Conference
on},
year={1997},
organization={IEEE}}

216 Read
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Abstract: The lineage of a datum records its processing history. Because
such information can be used to trace the source of anomalies and errors
in processed data sets, it is valuable to users for a variety of applications
including investigation of anomalies and debugging. Traditional data lin-
eage approaches rely on metadata. However, metadata does not scale well
to �ne-grained lineage, especially in large data sets. For example, it is not
feasible to store all of the information necessary to trace from a speci�c
�oating point value in a processed data set to a particular satellite image
pixel in a source data set. In this paper, we propose a novel method
to support �ne-grained data lineage. Rather than relying on metadata,
our approach lazily computes lineage using a limited amount of informa-
tion about the processing operators and the base data. We introduce the
notions of weak inversion and veri�cation. While our system does not
perfectly invert the data, it uses weak inversion and veri�cation to pro-
vide a number of guarantees about the lineage it generates. We propose
a design for the implementation of weak inversion and veri�cation in an
object-relational database management system.

1.1.2
[45]

@inproceedings{cui2000practical,
title={Practical lineage tracing in data
warehouses},
author={Cui, Yingwei and Widom,
Jennifer},
booktitle={Data Engineering, 2000.
Proceedings. 16th International Conference
on},
year={2000},
organization={IEEE}}

156 Read

Abstract: We consider the view data lineage problem in a warehousing
environment: For a given data item in a materialized warehouse view, we
want to identify the set of source data items that produced the view item.
We formalize the problem, and we present a lineage tracing algorithm for
relational views with aggregation. Based on our tracing algorithm, we
propose a number of schemes for storing auxiliary views that enable con-
sistent and e�cient lineage tracing in a multi-source data warehouse. We
report on a performance study of the various schemes, identifying which
schemes perform best in which settings. Based on our results, we have
implemented a lineage tracing package in the WHIPS data warehousing
system prototype at Stanford. With this package, users can select view
tuples of interest, then e�ciently "drill through" to examine the exact
source tuples that produced the view tuples of interest.

1.1.2.1
[46]

@article{cui2003lineage,
title={Lineage tracing for general data
warehouse transformations},
author={Cui, Yingwei and Widom,
Jennifer},
journal={The VLDB Journal},
year={2003},
publisher={Springer-Verlag New York, Inc.}}

343 Read
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Abstract: Data warehousing systems integrate information from opera-
tional data sources into a central repository to enable analysis and min-
ing of the integrated information. During the integration process, source
data typically undergoes a series of transformations, which may vary from
simple algebraic operations or aggregations to complex �data cleansing�
procedures. In a warehousing environment, the data lineage problem is
that of tracing warehouse data items back to the original source items
from which they were derived. We formally de�ne the lineage tracing
problem in the presence of general data warehouse transformations, and
we present algorithms for lineage tracing in this environment. Our tracing
procedures take advantage of known structure or properties of transfor-
mations when present, but also work in the absence of such information.
Our results can be used as the basis for a lineage tracing tool in a general
warehousing setting, and also can guide the design of data warehouses
that enable e�cient lineage tracing.

1.1.2.2
[47]

@article{cui2000tracing,
title={Tracing the lineage of view data in a
warehousing environment},
author={Cui, Yingwei and Widom, Jennifer
and Wiener, Janet L},
journal={ACM Transactions on Database
Systems (TODS)},
year={2000},
publisher={ACM}}

324 Read

We consider the view data lineage problem in a warehousing en viron-
ment. For a given data item in a materialized warehouse view, we want
to identify the set of source data items that produced the view item. We
formally de�ne the lineage problem, develop lineage tracing algorithms
for relational views with aggregation, and propose mechanisms for per-
forming consistent lineage tracing in a multi-source data warehousing en-
vironment. Our results can form the basis of a tool that allows analysts to
browse warehouse data, select view tuples of interest, then "drill-through"
to examine the exact source tuples that produced the view tuples of in-
terest.

1.1.2.3 @article{widom2004trio,
title={Trio: A system for integrated
management of data, accuracy, and lineage},
author={Widom, J.},
year={2004},
publisher={Stanford InfoLab}}

539 Read

1.1.3 Reference 1.9
1.1.4
[36]

@article{bose2005lineage,
title={Lineage retrieval for scienti�c data
processing: a survey},
author={Bose, R.; Frew, J.},
year={2005},
publisher={ACM}}

377 Read
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Abstract: Scienti�c research relies as much on the dissemination and
exchange of data sets as on the publication of conclusions. Accurately
tracking the lineage (origin and subsequent processing history) of sci-
enti�c data sets is thus imperative for the complete documentation of
scienti�c work. Researchers are e�ectively prevented from determining,
preserving, or providing the lineage of the computational data products
they use and create, however, because of the lack of a de�nitive model for
lineage retrieval and a poor �t between current data management tools
and scienti�c software. Based on a comprehensive survey of lineage re-
search and previous prototypes, we present a metamodel to help identify
and assess the basic components of systems that provide lineage retrieval
for scienti�c data products.

1.1.5
[51]

@inproceedings{foster2002chimera,
title={Chimera: A virtual data system for
representing, querying, and automating data
derivation},
author={Foster, I.; Vockler, J.; et al.,
year={2002},
organization={IEEE}}

671 Read

Abstract: Much scienti�c data is not obtained from measurements but
rather derived from other data by the application of computational pro-
cedures. We hypothesize that explicit representation of these proce-
dures can enable documentation of data provenance, discovery of available
methods, and on-demand data generation (so-called �virtual data�). To
explore this idea, we have developed the Chimera virtual data system,
which combines a virtual data catalog, for representing data derivation
procedures and derived data, with a virtual data language interpreter
that translates user requests into data de�nition and query operations
on the database. We couple the Chimera system with distributed �Data
Grid� services to enable on-demand execution of computation schedules
constructed from database queries. We have applied this system to two
challenge problems, the reconstruction of simulated collision event data
from a high-energy physics experiment, and the search of digital sky sur-
vey data for galactic clusters, with promising results.

1.1.6 @incollection{zhao2004semantically,
title={Semantically linking and browsing
provenance logs for e-science},
author={Zhao, Jun and Goble, Carole and
Stevens, Robert and Bechhofer, Sean},
year={2004},
publisher={Springer}}

79 Speci�c.
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Abstract: e-Science experiments are those performed using computer-
based resources such as database searches, simulations or other applica-
tions. Like their laboratory based counterparts, the data associated with
an e-Science experiment are of reduced value if other scientists are not
able to identify the origin, or provenance, of those data. Provenance is
the term given to metadata about experiment processes, the derivation
paths of data, and the sources and quality of experimental components,
which includes the scientists themselves, related literature, etc. Conse-
quently provenance metadata are valuable resources for e-Scientists to
repeat experiments, track versions of data and experiment runs, verify
experiment results, and as a source of experimental insight. One speci�c
kind of in silico experiment is a work�ow. In this paper we describe how
we can assemble a SemanticWeb of work�ow provenance logs that allows
a bioinformatician to browse and navigate between experimental compo-
nents by generating hyperlinks based on semantic annotations associated
with them. By associating well-formalized semantics with work�ow logs
we take a step towards integration of process provenance information and
improved knowledge discovery.

1.1.7
[53]

@inproceedings{frew2001earth,
title={Earth system science workbench: A
data management infrastructure for earth
science products},
author={Frew, J.; Bose, R.},
year={2001},
organization={IEEE}}

125 Read

Abstract: The Earth System Science Workbench (ESSW) is a nonin-
trusive data management infrastructure for researchers who must also
be data publishers. An implementation of ESSW to track the process-
ing of locally received satellite images is presented, demonstrating the
Workbench's transparent and robust support for archiving and publish-
ing data products. ESSW features a Lab Notebook metadata service, a
No Duplicate- Write Once Read Many (ND-WORM) storage service, and
Web user interface tools. The Lab Notebook logs processes (experiments)
and their relationships via a custom APl to XML documents stored in a
relational database. The ND-WORM provides a managed storage archive
for the Lab Notebook by keeping unique �le digests and namespace meta-
data, also in a relational database. ESSW Notebook tools allow product
searching and ordering, and �le and metadata management.

1.2
[37]

@incollection{buneman2001and,
title={Why and where: A characterization of
data provenance},
author={Buneman, P.; Khanna, S.;
Wang-Chiew, T.},
booktitle={Database Theory�ICDT 2001},
year={2001},
publisher={Springer}}

841 Read
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Abstract: With the proliferation of database views and curated databases,
the issue of data provenance - where a piece of data came from and the
process by which it arrived in the database - is becoming increasingly
important, especially in scienti�c databases where understanding prove-
nance is crucial to the accuracy and currency of data. In this paper we
describe an approach to computing provenance when the data of interest
has been created by a database query. We adopt a syntactic approach
and present results for a general data model that applies to relational
databases as well as to hierarchical data such as XML. A novel aspect of
our work is a distinction between �why� provenance (refers to the source
data that had some in�uence on the existence of the data) and �where�
provenance (refers to the location(s) in the source databases from which
the data was extracted).

1.2.1 Reference 1.1.1
1.2.2 Reference 1.1.2
1.2.3
[35]

@article{bhagwat2005annotation,
title={An annotation management system
for relational databases},
author={Bhagwat, D.; Chiticariu, L. et al.},
journal={The VLDB Journal},
year={2005}}

253 Read

Abstract: We present an annotationmanagement system for relational
databases. In this system, every piece of data in a relation is assumed
to have zero or more annotations associated with it and annotations are
propagated along, from the source to the output, as data is being trans-
formed through a query. Such an annotation management system could
be used for understanding the provenance (aka lin- eage) of data, who
has seen or edited a piece of data or the quality of data, which are useful
functionalities for applica- tions that deal with integration of scienti�c
and biological data.
We present an extension, pSQL, of a fragment of SQL that has three dif-
ferent types of annotation propagation schemes, each useful for di�erent
purposes. The default scheme propagates annotations according to where
data is copied from. The default-all scheme propagates annotations ac-
cording to where data is copied from among all equiv- alent formulations
of a given query. The custom scheme al- lows a user to specify howanno-
tations should propagate.We present a storage scheme for the annotations
and describe algorithms for translating a pSQL query under each prop-
agation scheme into one or more SQL queries that would correctly retrieve
the relevant annotations according to the speci�ed propagation scheme.
For the default-all scheme, we also showhowwe generate �nitely many
queries that can simulate the annotation propagation behavior of the set
of all equivalent queries,which is possibly in�nite. The algorithms are
implemented and the feasibility of the system is demon- strated by a set
of experiments that we have conducted.
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1.2.4
[72]

@inproceedings{pancerella2003metadata,
title={Metadata in the collaboratory for
multi-scale chemical science},
author={Pancerella, C.; Hewson, J.; et al.},
booktitle={International Conference on
Dublin Core and Metadata Applications},
year={2003}}

57 Read

Abstract: The goal of the Collaboratory for the Multi-scale Chemical
Sciences (CMCS) [1] is to develop an informatics-based approach to syn-
thesizing multi-scale chemistry information to create knowledge in the
chemical sciences. CMCS is using a portal and metadata-aware content
store as a base for building a system to support inter-domain knowledge
exchange in chemical science. Key aspects of the system include con�g-
urable metadata extraction and translation, a core schema for scienti�c
pedigree, and a suite of tools for managing data and metadata and visu-
alizing pedigree relationships between data entries. CMCS metadata is
represented using Dublin Core with metadata extensions that are useful
to both the chemical science community and the science community in
general. CMCS is working with several chemistry groups who are using
the system to collaboratively assemble and analyze existing data to derive
new chemical knowledge. In this paper we discuss the project's metadata-
related requirements, the relevant software infrastructure, core metadata
schema, and tools that use the metadata to enhance science.

1.3 @incollection{buneman2000data,
title={Data provenance: Some basic issues},
author={Buneman, P.; Khanna, S.; Tan,
Wang-Chiew},
booktitle={FST TCS 2000: Foundations of
Software Technology and Theoretical
Computer Science},
year={2000},
publisher={Springer}}

183 Speci�c.
Data from
the web.

Abstract: The ease with which one can copy and transform data on the
Web, has made it increasingly dicult to determine the origins of a piece of
data. We use the term data provenance to refer to the process of tracing
and recording the origins of data and its movement between databases.
Provenance is now an acute issue in scientic databases where it central
to the validation of data. In this paper we discuss some of the technical
issues that have emerged in an initial exploration of the topic

1.4 @article{moreau2008provenance,
title={The provenance of electronic data},
author={Moreau, L.; Groth, P.; Miles,
S.;Vazquez-Salceda, J.; and others},
journal={Communications of the ACM},
year={2008},
publisher={ACM}}

141 Speci�c.
Provenance
life cycle.
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Abstract: In the study of �ne art, provenance refers to the documented
history of some art object. Given that documented history, the object
attains an authority that allows scholars to appreciate its importance
with respect to other works, whereas, in the absence of such history, the
object may be treated with some skepticism. Our IT landscape is evolving
as illustrated by applications that are open, composed dynamically, and
that discover results and services on the �y. Against this challenging
background, it is crucial for users to be able to have con�dence in the
results produced by such applications. If the provenance of data produced
by computer systems could be determined as it can for some works of art,
then users, in their daily applications, would be able to interpret and
judge the quality of data better. We introduce a provenance lifecycle
and advocate an open approach based on two key principles to support a
notion of provenance in computer systems: documentation of execution
and user-tailored provenance queries.

1.5
[57]

@inproceedings{hartig2009provenance,
title={Provenance Information in the Web of
Data.},
author={Hartig, Olaf},
booktitle={LDOW},
year={2009}}

128 Speci�c.
Linked
data and
data usage.

Abstract: The openness of the Web and the ease to combine linked data
from di�erent sources creates new challenges. Systems that consume
linked data must evaluate quality and trustworthiness of the data. A
common approach for data quality assessment is the analysis of prove-
nance information. For this reason, this paper discusses provenance of
data on the Web and proposes a suitable provenance model. While tra-
ditional provenance research usually addresses the creation of data, our
provenance model also represents data access, a dimension of provenance
that is particularly relevant in the context of Web data. Based on our
model we identify options to obtain provenance information and we raise
open questions concerning the publication of provenance-related meta-
data for linked data on the Web.

1.6 @incollection{szomszor2003recording,
title={Recording and reasoning over data
provenance in web and grid services},
author={Szomszor, Martin and Moreau,
Luc},
booktitle={On the move to meaningful
Internet systems 2003: CoopIS, DOA, and
ODBASE},
year={2003},
publisher={Springer}}

120 Speci�c.
Grid and
Web
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Abstract: Large-scale, dynamic and open environments such as the Grid
and Web Services build upon existing computing infrastructures to sup-
ply dependable and consistent large-scale computational systems. This
kind of architecture has been adopted by those working with business
and scienti�c information systems allowing them to exploit extensive and
diverse computing resources to perform complex data processing tasks.
In such systems, results are often derived by composing multiple, geo-
graphically distributed, heterogeneous services as speci�ed by intricate
work�ow management. This leads to the undesirable situation where the
results are known, but the means by which they were achieved is not.
With both scienti�c experiments and business transactions, the notion
of lineage and dataset derivation is of paramount importance since with-
out it, information is potentially worthless. We address the issue of data
provenance, the description of the origin of a piece of data, in these envi-
ronments showing the requirements, uses and implementation di�culties.
We propose an infrastructure level support for a provenance recording
capability for service-oriented architectures such as the Grid and Web
Services. We also o�er services to view and retrieve provenance and we
provide a mechanism by which provenance is used to determine whether
previous computed results are still up to date.

1.7 @inproceedings{simmhan2006framework,
title={A framework for collecting provenance
in data-centric scienti�c work�ows},
author={Simmhan, Yogesh L and Plale,
Beth and Gannon, Dennis},
booktitle={Web Services, 2006. ICWS'06.
International Conference on},
year={2006},
organization={IEEE}}

112 Speci�c.

Abstract: As wireless networking becomes more robust and sensor tech-
nology, cameras, and low-power compute devices reach the consumer mar-
ket as inexpensive commodity products, the proliferation of relatively in-
expensive specialized sensors and networks will have an impact on scien-
ti�c computing that parallels that of the commercial space. Speci�cally,
the increasing ability to sense the world around us will result in a growing
need for scienti�c data-driven applications that are under the control of
data-centric work�ows. These work�ows are complex, nondeterministic,
and event-driven. The focus of our work is on provenance collection for
data-centric work�ows. The challenge we address is to record uniform and
usable provenance metadata that meets the domain needs while minimiz-
ing the modi�cation burden on the service authors and the performance
overhead on the work�ow engine and the services. The framework, which
is based on a loosely-coupled publish-subscribe architecture for propa-
gating provenance activities, is argued on the grounds that it reduces
programmer overhead and can satisfy the needs of detailed provenance
collection with minimal performance overhead (in the range of 1%).
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1.8 @incollection{bowers2006model,
title={A model for user-oriented data
provenance in pipelined scienti�c work�ows},
author={Bowers, S.; McPhillips, T.; et al.},
booktitle={Provenance and Annotation of
Data},
year={2006},
publisher={Springer}}

104 Speci�c.

Abstract: Integrated provenance support promises to be a chief advan-
tage of scienti�c work�ow systems over scriptbased alternatives. While
it is often recognized that information gathered during scienti�c work-
�ow execution can be used automatically to increase fault tolerance (via
checkpointing) and to optimize performance (by reusing intermediate data
products in future runs), it is perhaps more signi�cant that provenance in-
formation may also be used by scientists to reproduce results from earlier
runs, to explain unexpected results, and to prepare results for publica-
tion. Current work�ow systems o�er little or no direct support for these
"scientistoriented" queries of provenance information. Indeed the use of
advanced execution models in scienti�c work�ows (e.g., process networks,
which exhibit pipeline parallelism over streaming data) and failure to
record certain fundamental events such as state resets of processes, can
render existing provenance schemas useless for scienti�c applications of
provenance. We develop a simple provenance model that is capable of
supporting a wide range of scienti�c use cases even for complex models of
computation such as process networks. Our approach reduces these use
cases to database queries over event logs, and is capable of reconstructing
complete data and invocation dependency graphs for a work�ow run.

1.9
[77]

@article{simmhan2005survey-techniques,
title={A survey of data provenance
techniques},
author={Simmhan, Yogesh L and Plale,
Beth and Gannon, Dennis},
journal={Computer Science Department,
Indiana University, Bloomington IN},
volume={47405},
year={2005}}

94 Read
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Abstract: Data management is growing in complexity as large-scale appli-
cations take advantage of the loosely coupled resources brought together
by grid middleware and by abundant storage capacity. Metadata de-
scribing the data products used in and generated by these applications is
essential to disambiguate the data and enable reuse. Data provenance,
one kind of metadata, pertains to the derivation history of a data prod-
uct starting from its original sources. The provenance of data products
generated by complex transformations such as work�ows is of consider-
able value to scientists. From it, one can ascertain the quality of the
data based on its ancestral data and derivations, track back sources of
errors, allow automated re-enactment of derivations to update a data,
and provide attribution of data sources. Provenance is also essential to
the business domain where it can be used to drill down to the source of
data in a data warehouse, track the creation of intellectual property, and
provide an audit trail for regulatory purposes. In this paper we create a
taxonomy of data provenance techniques, and apply the classi�cation to
current research e�orts in the �eld. The main aspect of our taxonomy cat-
egorizes provenance systems based on why they record provenance, what
they describe, how they represent and store provenance, and ways to dis-
seminate it. Our synthesis can help those building scienti�c and business
metadata-management systems to understand existing provenance system
designs. The survey culminates with an identi�cation of open research
problems in the �eld.

1.10 @article{cli�ord2008tracking,
title={Tracking provenance in a virtual data
grid},
author={Cli�ord, B.; Foster, I.; Voeckler, J.;
et al.},
journal={Concurrency and Computation:
Practice and Experience},
year={2008},
publisher={Wiley Online Library}}

73 Speci�c.
Virtual

data grids.

Abstract: The virtual data system (VDS) was developed within the Grid
Physics Network (GriPhyN) project with the goal of allowing data sets to
be described prior to, and separately from, their physical materialization.
A virtual data language (VDL) is used to describe how data �les are com-
puted from input data �les and parameters. A runtime system provides
for the on-demand derivation of �les in a variety of execution environ-
ments, including distributed Grids. A virtual data catalog (VDC) stores
descriptions of both virtual data sets and computational procedures, to-
gether with logs of process executions and metadata annotations on both
procedures and data, provided by users or applications. This integration
of three types of provenance data�program structure, runtime logs, and
annotation�into a uni�ed relational schema enables powerful discovery
and analysis operations.
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B.2 Search 2

Search Id 2
Search date 2014 August
Site scholar.google.com
Search terms data provenance map reduce
Other since 2010

Results

Id Reference Description Citations Assessment

2.1 @inproceedings{zaharia2010spark,
title={Spark: cluster computing with
working sets},
author={Zaharia, Matei and Chowdhury,
Mosharaf and Franklin, Michael J and
Shenker, Scott and Stoica, Ion},
booktitle={Proceedings of the 2nd USENIX
conference on Hot topics in cloud
computing},
pages={10�10},
year={2010}}

320 Not to read

Abstract: MapReduce and its variants have been highly successful in
implementing large-scale data-intensive applications on commodity clus-
ters. However, most of these systems are built around an acyclic data
�ow model that is not suitable for other popular applications. This paper
focuses on one such class of applications: those that reuse a working set
of data across multiple parallel operations. This includes many iterative
machine learning algorithms, as well as interactive data analysis tools.
We propose a new framework called Spark that supports these applica-
tions hile retaining the scalability and fault tolerance of MapReduce. To
achieve these goals, Spark introduces an abstraction called resilient dis-
tributed datasets (RDDs). An RDD is a read-only collection of objects
partitioned across a set of machines that can be rebuilt if a partition is
lost. Spark can outperform Hadoop by 10x in iterative machine learn-
ing jobs, and can be used to interactively query a 39 GB dataset with
sub-second response time.

2.2
[61]

@article{ikeda2011provenance,
title={Provenance for generalized map and
reduce work�ows},
author={Ikeda, Robert and Park, Hyunjung
and Widom, Jennifer},
year={2011},
publisher={Stanford InfoLab}}

29 Read
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Abstract: We consider a class of work�ows, which we call generalized map
and reduce work�ows (GMRWs), where input data sets are processed by
an acyclic graph of map and reduce functions to produce output results.
We show how data provenance (also sometimes called lineage) can be cap-
tured for map and reduce functions transparently. The captured prove-
nance can then be used to support backward tracing (�nding the input
subsets that contributed to a given output element) and forward tracing
(determining which output elements were derived from a particular input
element). We provide formal underpinnings for provenance in GMRWs,
and we identify properties that are guaranteed to hold when provenance
is applied recursively. We have built a prototype system that supports
provenance capture and tracing as an extension to Hadoop. Our system
uses a wrapper-based approach, requiring little if any user intervention in
most cases, and retaining Hadoop's parallel execution and fault tolerance.
Performance numbers from our system are reported.

2.3 @inproceedings{olston2011inspector,
title={Inspector Gadget: A framework for
custom monitoring and debugging of
distributed data�ows},
author={Olston, C.; Reed, B.},
booktitle={Proceedings of the 2011 ACM
SIGMOD International Conference on
Management of data},
year={2011},
organization={ACM}}

13 Speci�c.
Framework

for
debugging.

Abstract: We consider how to monitor and debug query processing
data�ows, in distributed environments such as Pig/Hadoop. Our work
is motivated by a series of informal user interviews, which revealed that
monitoring and debugging needs are both pressing and diverse. In re-
sponse to these interviews, we created a framework for custom data�ow
instrumentation, called Inspector Gadget (IG). IG makes it easy to write
a wide variety of monitoring and debugging behaviors, and attaches seam-
lessly to an existing, unmodi�ed data�ow environment such as Pig. We
have implemented a dozen user-requested tools in Inspector Gadget, each
in just a few hundred lines of Java code. The performance overhead is
modest in most cases. Our Pig-based implementation of IG, called Penny,
is slated for public release in mid-2011, in conjunction with the upcoming
Apache Pig v0.9 release.
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2.4 @inproceedings{sarma2013upper,
title={Upper and lower bounds on the cost
of a map-reduce computation},
author={Sarma, Anish Das and Afrati, Foto
N and Salihoglu, Semih and Ullman, Je�rey
D},
booktitle={Proceedings of the VLDB
Endowment},
volume={6},
number={4},
pages={277�288},
year={2013},
organization={VLDB Endowment}}

19 Not to read

Abstract: In this paper we study the tradeo� between parallelism and
communication cost in a map-reduce computation. For any problem that
is not �embarrassingly parallel,� the �ner we partition the work of the
reducers so that more parallelism can be extracted, the greater will be
the total communication between mappers and reducers. We introduce
a model of problems that can be solved in a single round of mapreduce
computation. This model enables a generic recipe for discovering lower
bounds on communication cost as a function of the maximum number of
inputs that can be assigned to one reducer. We use the model to analyze
the tradeo� for three problems: �nding pairs of strings at Hamming dis-
tance d, �nding triangles and other patterns in a larger graph, and matrix
multiplication. For �nding strings of Hamming distance 1, we have up-
per and lower bounds that match exactly. For triangles and many other
graphs, we have upper and lower bounds that are the same to within
a constant factor. For the problem of matrix multiplication, we have
matching upper and lower bounds for one-round map-reduce algorithms.
We are also able to explore tworound map-reduce algorithms for matrix
multiplication and show that these never have more communication, for
a given reducer size, than the best one-round algorithm, and often have
signi�cantly less.

2.5
[60]

@inproceedings{huq2011inferring,
title={Inferring �ne-grained data provenance
in stream data processing: reduced storage
cost, high accuracy},
author={Huq, M.; Wombacher, A.; Apers,
P.},
booktitle={Database and Expert Systems
Applications},
year={2011},
organization={Springer}}

12 Read
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Abstract: Fine-grained data provenance ensures reproducibility of results
in decision making, process control and e-science applications. However,
maintaining this provenance is challenging in stream data processing be-
cause of its massive storage consumption, especially with large overlap-
ping sliding windows. In this paper, we propose an approach to infer
�ne-grained data provenance by using a temporal data model and coarse-
grained data provenance of the processing. The approach has been eval-
uated on a real dataset and the result shows that our proposed infer-
ring method provides provenance information as accurate as explicit �ne-
grained provenance at reduced storage consumption.

2.5.1 @inproceedings{chapman2008e�cient,
title={E�cient provenance storage},
author={Chapman, Adriane P and Jagadish,
Hosagrahar V and Ramanan, Prakash},
booktitle={Proceedings of the 2008 ACM
SIGMOD international conference on
Management of data},
pages={993�1006},
year={2008},
organization={ACM} }

142 Speci�c.
Provenance
storage.

Abstract: As the world is increasingly networked and digitized, the data
we store has more and more frequently been chopped, baked, diced and
stewed. In consequence, there is an increasing need to store and manage
provenance for each data item stored in a database, describing exactly
where it came from, and what manipulations have been applied to it.
Storage of the complete provenance of each data item can become pro-
hibitively expensive. In this paper, we identify important properties of
provenance that can be used to considerably reduce the amount of storage
required. We identify three di�erent techniques: a family of factorization
processes and two methods based on inheritance, to decrease the amount
of storage required for provenance. We have used the techniques de-
scribed in this work to signi�cantly reduce the provenance storage costs
associated with constructing MiMI, a warehouse of data regarding pro-
tein interactions, as well as two provenance stores, Karma and PReServ,
produced through work�ow execution. In these real provenance sets, we
were able to reduce the size of the provenance by up to a factor of 20.
Additionally, we show that this reduced store can be queried e�ciently
and further that incremental changes can be made inexpensively

2.6
[73]

@article{park2011ramp,
title={Ramp: A system for capturing and
tracing provenance in mapreduce work�ows},
author={Park, Hyunjung and Ikeda, Robert
and Widom, Jennifer},
year={2011},
publisher={Stanford InfoLab}}

16 Read
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Abstract: RAMP (Reduce And Map Provenance) is an extension to
Hadoop that supports provenance capture and tracing for work�ows of
MapReduce jobs. RAMP uses a wrapper-based approach, requiring little
if any user intervention in most cases, while retaining Hadoop's parallel
execution and fault tolerance. We demonstrate RAMP on a real-world
MapReduce work�ow generated from a Pig script that performs sentiment
analysis over Twitter data. We show how RAMP's automatic provenance
capture and tracing capabilities provide a convenient and e�cient means
of drilling-down and verifying output elements.

2.7 @inproceedings{olston2011nova,
title={Nova: continuous pig/hadoop
work�ows},
author={Olston, C.; Chiou, G.; et al.},
booktitle={Proceedings of the 2011 ACM
SIGMOD International Conference on
Management of data},
year={2011},
organization={ACM}}

55 Not to read

Abstract: This paper describes a work�ow manager developed and de-
ployed at Yahoo called Nova, which pushes continually-arriving data
through graphs of Pig programs executing on Hadoop clusters. (Pig is
a structured data�ow language and runtime for the Hadoop map-reduce
system.) Nova is like data stream managers in its support for stateful
incremental processing, but unlike them in that it deals with data in
large batches using disk-based processing. Batched incremental process-
ing is a good �t for a large fraction of Yahoo's data processing use-cases,
which deal with continually-arriving data and bene�t from incremental
algorithms, but do not require ultra-low-latency processing.

2.8 @inproceedings{olston2011ibis,
title={Ibis: A Provenance Manager for
Multi-Layer Systems.},
author={Olston, Christopher and Sarma,
Anish Das},
booktitle={CIDR},
pages={152�159},
year={2011} }

8 Read
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Abstract: End-to-end data processing environments are often comprised
of several independently-developed (sub-)systems, e.g. for engineering,
organizational or historical reasons. Unfortunately this situation harms
usability. For one thing, systems created independently tend to have dis-
parate capabilities in terms of what metadata is retained and how it can
be queried. If something goes wrong it can be very di�cult to trace execu-
tion histories across the various sub-systems. One solution is to ship each
sub-system's metadata to a central metadata manager that integrates it
and o�ers a powerful and uniform query interface. This paper describes
a metadata manager we are building, called Ibis. Perhaps the greatest
challenge in this context is dealing with data provenance queries in the
presence of mixed granularities of metadata�e.g. rows vs. column groups
vs. tables; mapreduce job slices vs. relational operators�supplied by dif-
ferent sub-systems. The central contribution of our work is a formal model
of multi-granularity data provenance relationships, and a corresponding
query language. We illustrate the simplicity and power of our query lan-
guage via several real-world-inspired examples. We have implemented all
of the functionality described in this paper.

2.9 @inproceedings{zhao2011opportunities,
title={Opportunities and challenges in
running scienti�c work�ows on the cloud},
author={Zhao, Yong and Fei, Xubo and
Raicu, Ioan and Lu, Shiyong},
booktitle={Cyber-Enabled Distributed
Computing and Knowledge Discovery
(CyberC), 2011 International Conference
on},
pages={455�462},
year={2011},
organization={IEEE}}

36 Not to read

Abstract: Cloud computing is gaining tremendous momentum in both
academia and industry. The application of Cloud computing, however,
has mostly focused on Web applications and business applications; while
the recognition of using Cloud computing to support large-scale work-
�ows, especially dataintensive scienti�c work�ows on the Cloud is still
largely overlooked. We coin the term �Cloud Work�ow�, to refer to the
speci�cation, execution, provenance tracking of large-scale scienti�c work-
�ows, as well as the management of data and computing resources to en-
able the execution of scienti�c work�ows on the Cloud. In this paper, we
analyze why there has been such a gap between the two technologies, and
what it means to bring Cloud and work�ow together; we then present
the key challenges in running Cloud work�ow, and discuss the research
opportunities in realizing work�ows on the Cloud.
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2.10
[33]

@article{amsterdamer2011putting,
title={Putting lipstick on pig: enabling
database-style work�ow provenance},
author={Amsterdamer, Y.; Davidson, S.; et
al.},
year={2011},
publisher={VLDB Endowment}}

35 Read

Abstract: Work�ow provenance typically assumes that each module is a
�black-box�, so that each output depends on all inputs (coarse-grained
dependencies). Furthermore, it does not model the internal state of a
module, which can change between repeated executions. In practice, how-
ever, an output may depend on only a small subset of the inputs (�ne-
grained dependencies) as well as on the internal state of the module. We
present a novel provenance framework that marries database-style and
work�ow-style provenance, by using Pig Latin to expose the functionality
of modules, thus capturing internal state and �ne-grained dependencies.
A critical ingredient in our solution is the use of a novel form of prove-
nance graph that models module invocations and yields a compact repre-
sentation of �ne-grained work�ow provenance. It also enables a number
of novel graph transformation operations, allowing to choose the desired
level of granularity in provenance querying (ZoomIn and ZoomOut), and
supporting �what-if� work�ow analytic queries. We implemented our ap-
proach in the Lipstick system and developed a benchmark in support of
a systematic performance evaluation. Our results demonstrate the feasi-
bility of tracking and querying �ne-grained work�ow provenance.

2.10.1 Reference 1.2
2.10.2
[41]

@book{cheney2009provenance,
title={Provenance in databases: Why, how,
and where},
author={Cheney, James and Chiticariu,
Laura and Tan, Wang-Chiew},
year={2009},
publisher={Now Publishers Inc} }

289 Read

Abstract: Di�erent notions of provenance for database queries have been
proposed and studied in the past few years. In this article, we detail
three main notions of database provenance, some of their applications,
and compare and contrast amongst them. Speci�cally, we review why,
how, and where provenance, describe the relationships among these no-
tions of provenance, and describe some of their applications in con�dence
computation, view maintenance and update, debugging, and annotation
propagation.

2.10.3 Reference 2.2
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2.10.4
[55]

@inproceedings{green2007provenance,
title={Provenance semirings},
author={Green, Todd J and Karvounarakis,
Grigoris and Tannen, Val},
booktitle={Proceedings of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database
systems},
pages={31�40},
year={2007},
organization={ACM} }

430 Read

We show that relational algebra calculations for incomplete databases,
probabilistic databases, bag semantics and why provenance are particu-
lar cases of the same general algorithms involving semirings. This further
suggests a comprehensive provenance representation that uses semirings
of polynomials. We extend these considerations to datalog and semir-
ings of formal power series. We give algorithms for datalog provenance
calculation as well as datalog evaluation for incomplete and probabilis-
tic databases. Finally, we show that for some semirings containment of
conjunctive queries is the same as for standard set semantics.

2.11
[44]

@inproceedings{crawl2011provenance,
title={Provenance for mapreduce-based
data-intensive work�ows},
author={Crawl, Daniel and Wang, Jianwu
and Altintas, Ilkay},
booktitle={Proceedings of the 6th workshop
on Work�ows in support of large-scale
science},
pages={21�30},
year={2011},
organization={ACM}}

Read

Abstract: MapReduce has been widely adopted by many business and sci-
enti�c applications for data-intensive processing of large datasets. There
are increasing e�orts for work�ows and systems to work with the MapRe-
duce programming model and the Hadoop environment including our
work on a higher- level programming model for MapReduce within the
Kepler Scienti�c Work�ow System. However, to date, provenance of
MapReduce-based work�ows and its e�ects on work�ow execution per-
formance have not been studied in depth. In this paper, we present an
extension to our earlier work on MapReduce in Kepler to record the prove-
nance of MapReduce work�ows created using the Kepler+Hadoop frame-
work. In particular, we present: (i) adatamodelthat is able to capture
provenance inside a MapReduce job as well as the provenance for the
work�ow that submitted it; (ii) an extension to the Kepler+Hadoop ar-
chitecture to record provenance using this data model on MySQL Cluster;
(iii) a programming interface to query the collected information; and (iv)
an evaluation of the scalability of collecting and querying this provenance
information using two scenarios with di�erent characteristics.
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2.11.1
[52]

@inproceedings{franke2011distributed,
title={Distributed semantic web data
management in HBase and MySQL cluster},
author={Franke, Craig and Morin, Samuel
and Chebotko, Artem and Abraham, John
and Brazier, Pearl},
booktitle={Cloud Computing (CLOUD),
2011 IEEE International Conference on},
pages={105�112},
year={2011},
organization={IEEE}

40 Speci�c.

Abstract: Various computing and data resources on the Web are being
enhanced with machine-interpretable semantic descriptions to facilitate
better search, discovery and integration. This interconnected metadata
constitutes the Semantic Web, whose volume can potentially grow the
scale of the Web. E�cient management of Semantic Web data, expressed
using the W3C's Resource Description Framework (RDF), is crucial for
supporting new data-intensive, semantics-enabled applications. In this
work, we study and compare two approaches to distributed RDF data
management based on emerging cloud computing technologies and tra-
ditional relational database clustering technologies. In particular, we
design distributed RDF data storage and querying schemes for HBase
and MySQL Cluster and conduct an empirical comparison of these ap-
proaches on a cluster of commodity machines using datasets and queries
from the Third Provenance Challenge and Lehigh University Benchmark.
Our study reveals interesting patterns in query evaluation, shows that
our algorithms are promising, and suggests that cloud computing has a
great potential for scalable Semantic Web data management

2.11.2
[32]

@incollection{altintas2006provenance,
title={Provenance collection support in the
kepler scienti�c work�ow system},
author={Altintas, Ilkay and Barney, Oscar
and Jaeger-Frank, Efrat},
booktitle={Provenance and annotation of
data},
pages={118�132},
year={2006},
publisher={Springer} }

225 Read
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Abstract: In many data-driven applications, analysis needs to be per-
formed on scienti�c information obtained from several sources and gen-
erated by computations on distributed resources. Systematic analysis of
this scienti�c infor- mation unleashes a growing need for automated data-
driven applications that also can keep track of the provenance of the data
and processes with little user interaction and overhead. Such data analy-
sis can be facilitated by the recent ad- vancements in scienti�c work�ow
systems. A major pro�t when using scienti�c work�ow systems is the
ability to make provenance collection a part of the work�ow. Speci�cally,
provenance should include not only the standard data lineage informa-
tion but also information about the context in which the work�ow was
used, execution that processed the data, and the evolution of the work-
�ow design. In this paper we describe a complete framework for data
and process provenance in the Kepler Scienti�c Work�ow System. We
outline the requirements and issues related to data and work�ow prove-
nance in a multi- disciplinary work�ow system and introduce how generic
provenance capture can be facilitated in Kepler's actor-oriented work-
�ow environment. We also describe the usage of the stored provenance
information for e�cient rerun of scienti�c work�ows.

2.11.3
[78]

@inproceedings{wang2009kepler+,
title={Kepler+ Hadoop: a general
architecture facilitating data-intensive
applications in scienti�c work�ow systems},
author={Wang, Jianwu and Crawl, Daniel
and Altintas, Ilkay},
booktitle={Proceedings of the 4th Workshop
on Work�ows in Support of Large-Scale
Science},
pages={12},
year={2009},
organization={ACM} }

98 Read

Abstract: MapReduce provides a parallel and scalable programming
model for data-intensive business and scienti�c applications. MapRe-
duce and its de facto open source project, called Hadoop, support par-
allel processing on large datasets with capabilities including automatic
data partitioning and distribution, load balancing, and fault tolerance
management. Meanwhile, scienti�c work�ow management systems, e.g.,
Kepler, Taverna, Triana, and Pegasus, have demonstrated their ability
to help domain scientists solve scienti�c problems by synthesizing di�er-
ent data and computing resources. By integrating Hadoop with Kepler,
we provide an easy-to-use architecture that facilitates users to compose
and execute MapReduce applications in Kepler scienti�c work�ows. Our
implementation demonstrates that many characteristics of scienti�c work-
�ow management systems, e.g., graphical user interface and component
reuse and sharing, are very complementary to those of MapReduce. Using
the presented Hadoop components in Kepler, scientists can easily utilize
MapReduce in their domain-speci�c problems and connect them with
other tasks in a work�ow through the Kepler graphical user interface.
We validate the feasibility of our approach via a word count use case.
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B.3 Search 3

Search Id 3
Search date 2014 December
Site scholar.google.com
Search terms data provenance mapreduce
Other since 2013

Results

Id Reference Description Citations Assessment

3.1 @incollection{glavic2014big, title={Big data
provenance: challenges and implications for
benchmarking},
author={Glavic, Boris},
booktitle={Specifying Big Data
Benchmarks},
pages={72�80},
year={2014},
publisher={Springer} }

9 Read.

Abstract: Data Provenance is information about the origin and creation
process of data. Such information is useful for debugging data and trans-
formations, auditing, evaluating the quality of and trust in data, mod-
elling authenticity, and implementing access control for derived data.
Provenance has been studied by the database, work�ow, and distributed
systems communities, but provenance for Big Data - which we refer to
as Big Provenance - is a largely unexplored �eld. This paper reviews
existing approaches for large-scale distributed provenance and discusses
potential challenges for Big Data benchmarks that aim to incorporate
provenance data/management. Furthermore, we will examine how Big
Data benchmarking could bene�t from di�erent types of provenance in-
formation. We argue that provenance can be used for identifying and
analyzing performance bottlenecks, to compute performance metrics, and
to test a system's ability to exploit commonalities in data and processing.

3.1.1 Reference 3.3
3.1.2 Reference 2.10
3.1.3 Reference 2.2
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3.2 @article{aji2013hadoop,
title={Hadoop GIS: a high performance
spatial data warehousing system over
mapreduce},
author={Aji, Ablimit and Wang, Fusheng
and Vo, Hoang and Lee, Rubao and Liu,
Qiaoling and Zhang, Xiaodong and Saltz,
Joel},
journal={Proceedings of the VLDB
Endowment},
volume={6},
number={11},
pages={1009�1020},
year={2013},
publisher={VLDB Endowment} }

96 Not to read

Abstract: Support of high performance queries on large volumes of spa-
tial data becomes increasingly important in many application domains,
including geospatial problems in numerous �elds, location based ser-
vices, and emerging scienti�c applications that are increasingly data- and
compute-intensive. The emergence of massive scale spatial data is due to
the proliferation of cost e�ective and ubiquitous positioning technologies,
development of high resolution imaging technologies, and contribution
from a large number of community users. There are two major challenges
for managing and querying massive spatial data to support spatial queries:
the explosion of spatial data, and the high computational complexity of
spatial queries. In this paper, we present Hadoop-GIS � a scalable and
high performance spatial data warehousing system for running large scale
spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial
queries on MapReduce through spatial partitioning, customizable spa-
tial query engine RESQUE, implicit parallel spatial query execution on
MapReduce, and e�ective methods for amending query results through
handling boundary objects. Hadoop-GIS utilizes global partition index-
ing and customizable on demand local spatial indexing to achieve e�cient
query processing. Hadoop-GIS is integrated into Hive to support declar-
ative spatial queries with an integrated architecture. Our experiments
have demonstrated the high e�ciency of Hadoop-GIS on query response
and high scalability to run on commodity clusters. Our comparative ex-
periments have showed that performance of Hadoop-GIS is on par with
parallel SDBMS and outperforms SDBMS for compute-intensive queries.
Hadoop-GIS is available as a set of library for processing spatial queries,
and as an integrated software package in Hive.

3.3
[31]

@inproceedings{akoush2013hadoopprov,
title={HadoopProv: Towards Provenance as
a First Class Citizen in MapReduce.},
author={Akoush, Sherif and Sohan,
Ripduman and Hopper, Andy},
booktitle={TaPP},
year={2013} }

9 Read
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Abstract: We introduce HadoopProv, a modi�ed version of Hadoop that
implements provenance capture and analysis in MapReduce jobs. It is
designed to minimise provenance capture overheads by (i) treating prove-
nance tracking in Map and Reduce phases separately, and (ii) deferring
construction of the provenance graph to the query stage. Provenance
graphs are later joined on matching intermediate keys of the Map and Re-
duce provenance �les. In our prototype implementation, HadoopProv has
an overhead below 10% on typical job runtime (<7% and <30% average
temporal increase on Map and Reduce tasks respectively). Additionally,
we demonstrate that provenance queries are serviceable in O(k log n),
where n is the number of records per Map task and k is the set of Map
tasks in which the key appears.

3.3.1 Reference 2.6
3.3.2 Reference 2.11
3.4 @inproceedings{sarma2013upper,

title={Upper and lower bounds on the cost
of a map-reduce computation},
author={Sarma, Anish Das and Afrati, Foto
N and Salihoglu, Semih and Ullman, Je�rey
D},
booktitle={Proceedings of the VLDB
Endowment},
volume={6},
number={4},
pages={277�288},
year={2013},
organization={VLDB Endowment} }

54 Not to read

Abstract: In this paper we study the tradeo� between parallelism and
communication cost in a map-reduce computation. For any problem that
is not "embarrassingly parallel," the �ner we partition the work of the
reducers so that more parallelism can be extracted, the greater will be
the total communication between mappers and reducers. We introduce
a model of problems that can be solved in a single round of map-reduce
computation. This model enables a generic recipe for discovering lower
bounds on communication cost as a function of the maximum number of
inputs that can be assigned to one reducer. We use the model to analyze
the tradeo� for three problems: �nding pairs of strings at Hamming dis-
tance d, �nding triangles and other patterns in a larger graph, and matrix
multiplication. For �nding strings of Hamming distance 1, we have up-
per and lower bounds that match exactly. For triangles and many other
graphs, we have upper and lower bounds that are the same to within
a constant factor. For the problem of matrix multiplication, we have
matching upper and lower bounds for one-round map-reduce algorithms.
We are also able to explore two-round map-reduce algorithms for matrix
multiplication and show that these never have more communication, for
a given reducer size, than the best one-round algorithm, and often have
signi�cantly less.
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3.5 @article{chen2013big,
title={Big data challenge: a data
management perspective},
author={Chen, Jinchuan and Chen, Yueguo
and Du, Xiaoyong and Li, Cuiping and Lu,
Jiaheng and Zhao, Suyun and Zhou, Xuan},
journal={Frontiers of Computer Science},
volume={7},
number={2},
pages={157�164},
year={2013},
publisher={Springer} }

29 Not to read

Abstract: There is a trend that, virtually everyone, ranging from big
Web companies to traditional enterprisers to physical science researchers
to social scientists, is either already experiencing or anticipating unprece-
dented growth in the amount of data available in their world, as well as
new opportunities and great untapped value. This paper reviews big data
challenges from a data management respective. In particular, we discuss
big data diversity, big data reduction, big data integration and cleaning,
big data indexing and query, and �nally big data analysis and mining.
Our survey gives a brief overview about big-data-oriented research and
problems.

3.6
[38]

@article{carata2014primer,
title={A primer on provenance},
author={Carata, Lucian and Akoush, Sherif
and Balakrishnan, Nikilesh and Bytheway,
Thomas and Sohan, Ripduman and Selter,
Margo and Hopper, Andy},
journal={Communications of the ACM},
volume={57},
number={5},
pages={52�60},
year={2014},
publisher={ACM} }

11 Read

Abstract: Assessing the quality or validity of a piece of data is not usually
done in isolation. You typically examine the context in which the data
appears and try to determine its original sources or review the process
through which it was created. This is not so straightforward when deal-
ing with digital data, however: the result of a computation might have
been derived from numerous sources and by applying complex successive
transformations, possibly over long periods of time. As the quantity of
data that contributes to a particular result increases, keeping track of how
di�erent sources and transformations are related to each other becomes
more di�cult. This constrains the ability to answer questions regarding a
result's history, such as: What were the underlying assumptions on which
the result is based? Under what conditions does it remain valid? What
other results were derived from the same data sources?
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3.7 @article{talia2013toward,
title={Toward Cloud-based Big-data
Analytics},
author={Talia, Domenico},
journal={IEEE Computer Science},
pages={98�101},
year={2013} }

38 Not to read

Abstract: Extracting useful knowledge from huge digital datasets requires
smart and scalable analytics services, programming tools, and applica-
tions.

3.8 @inproceedings{aji2013demonstration,
title={Demonstration of hadoop-gis: A
spatial data warehousing system over
mapreduce},
author={Aji, Ablimit and Sun, Xiling and
Vo, Hoang and Liu, Qioaling and Lee, Rubao
and Zhang, Xiaodong and Saltz, Joel and
Wang, Fusheng},
booktitle={Proceedings of the 21st ACM
SIGSPATIAL International Conference on
Advances in Geographic Information
Systems},
pages={528�531},
year={2013},
organization={ACM} }

9 Not to read

Abstract: The proliferation of GPS-enabled devices, and the rapid im-
provement of scienti�c instruments have resulted in massive amounts
of spatial data in the last decade. Support of high performance spa-
tial queries on large volumes data has become increasingly important
in numerous �elds, which requires a scalable and e�cient spatial data
warehousing solution as existing approaches exhibit scalability limita-
tions and e�ciency bottlenecks for large scale spatial applications. In
this demonstration, we present Hadoop-GIS � a scalable and high perfor-
mance spatial query system over MapReduce. HadoopGIS provides an
e�cient spatial query engine to process spatial queries, data and space
based partitioning, and query pipelines that parallelize queries implicitly
on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spa-
tial query language for workload speci�cation. We will demonstrate how
spatial queries are expressed in spatially extended SQL queries, and sub-
mitted through a command line/web interface for execution. Parallel to
our system demonstration, we explain the system architecture and details
on how queries are translated to MapReduce operators, optimized, and
executed on Hadoop. In addition, we will showcase how the system can
be used to support two representative real world use cases: large scale
pathology analytical imaging, and geo-spatial data warehousing.
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3.9 @inproceedings{che2013big,
title={From big data to big data mining:
challenges, issues, and opportunities},
author={Che, Dunren and Safran, Mejdl and
Peng, Zhiyong},
booktitle={Database Systems for Advanced
Applications},
pages={1�15},
year={2013},
organization={Springer} }

27 Not to read

Abstract: While �big data� has become a highlighted buzzword since last
year, �big data mining�, i.e., mining from big data, has almost immedi-
ately followed up as an emerging, interrelated research area. This paper
provides an overview of big data mining and discusses the related chal-
lenges and the new opportunities. The discussion includes a review of
state-of-the-art frameworks and platforms for processing and managing
big data as well as the e�orts expected on big data mining. We address
broad issues related to big data and/or big data mining, and point out op-
portunities and research topics as they shall duly �esh out. We hope our
e�ort will help reshape the subject area of today's data mining technology
toward solving tomorrow's bigger challenges emerging in accordance with
big data.

3.10 @article{mattmann2013computing,
title={Computing: A vision for data
science}, author={Mattmann, Chris A},
journal={Nature},
volume={493},
number={7433},
pages={473�475},
year={2013},
publisher={Nature Publishing Group} }

36 Not to read

Abstract not available.

128


