
The Practice of Software Detailed
Design of Graduating Students: A

family of experiments

MSc. Silvana Moreno

Programa de Posgrado en Ingenieŕıa en Computación

Facultad de Ingenieŕıa

Universidad de la República

Montevideo – Uruguay

Agosto de 2022

The Practice of Software Detailed
Design of Graduating Students: A

family of experiments

MSc. Silvana Moreno

Examen de Calificación de Doctorado presentado

al Programa de doctorado en informática de

PEDECIBA, Universidad de la República, como

parte de los requisitos necesarios para la obtención

del t́ıtulo de Doctor en Informática.

Directores:

Dr. Prof. Diego Vallespir

Dr. Prof. Mart́ın Solari

Director académico:

Dr. Prof. Álvaro Tasistro

Montevideo – Uruguay

Agosto de 2022

Moreno, MSc. Silvana

The Practice of Software Detailed Design of Graduating

Students: A family of experiments / MSc. Silvana Moreno.

- Montevideo: Universidad de la República, Facultad de

Ingenieŕıa, 2022.

XII, 104 p.: il.; 29, 7cm.

Directores:

Diego Vallespir

Mart́ın Solari

Director académico:

Álvaro Tasistro

Programa de doctorado en informática de PEDECIBA,

2022.

Referencias bibliográficas: p. 97 – 104.

1. software detailed design, 2. graduating students,

3. family of experiments. I. Vallespir, Diego, Solari,

Mart́ın, . II. Universidad de la República, Programa de

Posgrado en Ingenieŕıa en Computación. III. T́ıtulo.

INTEGRANTES DEL TRIBUNAL DE DEFENSA DE PROGRAMA DE

DOCTORADO EN INFORMÁTICA

D.Sc. Prof. Nombre del 1er Examinador Apellido

Ph.D. Prof. Nombre del 2do Examinador Apellido

D.Sc. Prof. Nombre del 3er Examinador Apellido

Ph.D. Prof. Nombre del 4to Examinador Apellido

Ph.D. Prof. Nombre del 5to Examinador Apellido

Montevideo – Uruguay

Agosto de 2022

iv

Acknowledgments

I want to thank my tutors, Diego Vallespir and Mart́ın Solari, who supported

and guided me throughout my thesis work, and Álvaro Tasistro for being my

academic director.

I thank those who collaborated with me in the PSP Principles and Funda-

mentals course and in the research projects carried out throughout my Ph.D.

work: Diego Vallespir, Leticia Pérez, Vanessa Cassella, Patsy Jones, Guillermo

Kuster, and Guillermo Tavidian.

I would also like to thank the Software Engineering Group, in particular,

Sebastián Pizard and Cecilia Apa, with whom I could talk and discuss my

work on several occasions.

To Angélica Aldecoa, my translator and English teacher who helped me in

the translation of this thesis and in the articles we have published.

I thank my family, Nico, Luana, and my in-laws for always being available,

understanding, and supportive throughout this time.

v

ABSTRACT

Software design is one of the essential components to ensure the success of

a software system. It has two main activities: architectural design and detailed

design. During architectural design, high-level components are structured and

identified. During detailed design, every component is specified in detail.

Several authors consider design is a complex discipline for undergradu-

ate students to understand, and success (i.e., building a good design) seems to

require a certain level of cognitive development that few students achieve. Nor-

mally, students do not manage to produce a good software design. Some of the

problems detected are lack of consistency between design artifacts and code,

incomplete designs, and the lack of understanding of what kind of information

to include when designing software.

The general objective of this thesis is to contribute to the knowledge of

how graduating students practice software detailed design. Specifically, we

conducted a family of experiments in the context of a course at the School

of Engineering of Universidad de la República, in Uruguay. The family of

experiments is composed of 3 sub-families of experiments: Baseline, Template,

and Habitual. Baseline experiments are made up of an initial experiment

(executed in 2012) and two replicates (executed in 2013 and 2014). Template

experiments are made up of an initial experiment (executed in 2015) and two

replicates (executed in 2016 and 2017). Finally, Habitual experiments consist

of an initial experiment (executed in 2018) with one replicate (executed in

2021). Through the family of experiments, we studied the detailed design

practice of graduating students from different points of view.

The results indicate that our graduating students do not take time to think

of a solution (design) before coding. They spend at least three times less time

designing than coding. In addition, we introduced design templates with the

intention that they would be a tool to help them in the design task. However,

although the design time significantly increases, the quality of the software,

measured in the unit testing phase, does not change. Lastly, the analysis of the

design representation delivered by the students reveals simple, basic designs

vi

with little elaboration.

Keywords:

software detailed design, graduating students, family of experiments.

vii

List of Figures

1.1 Overview of research methods 6

2.1 Summary of the forward snowballing process 16

2.2 Summary of the SLR selection process 18

2.3 Process followed to collect the evidence reported 19

3.1 PSP structure levels . 31

3.2 PSP0 process . 31

3.3 Development script . 32

3.4 PSP Template Structure . 33

3.5 PF-PSP course schedule . 36

4.1 Family of experiments . 39

5.1 Baseline experiment design . 45

5.2 boxplot of the average TCOD/TDLD of each student 49

5.3 frequency of the average TCOD/TDLD of each student 50

5.4 TCOD/TDLD ratio variation for eight students throughout the

seven projects . 51

5.5 Questions in the questionnaire 55

6.1 Functional Template . 58

6.2 Experimental design . 60

7.1 Experimental design . 77

7.2 Eckerdal’s and Thomas’ categories for the seven students in

projects 5 to 8 . 83

7.3 Habitual design representation for students 5, 6 and 7 in project 8 87

viii

List of Tables

2.1 Source papers . 15

2.2 Papers resulting from the forward snowballing process 16

2.3 SLR search string . 17

2.4 Papers resulting from the SLR filtering 18

3.1 Brief description of the programs 37

5.1 Data pairs (TDLD, TCOD) in minutes 47

5.2 median and the interquartile range (minutes) of the 35 data for

TDLD and TCOD . 47

5.3 Q1, Q3 values and IQR per student in the seven projects 51

5.4 median and the interquartile range (#def/kLOC) 53

5.5 PIP Description . 54

6.1 Median and interquartile range (#def/kLOC) in projects 1, 3

and 4 . 62

6.2 Average defect density in UT for the students of the TRD group

and noTRD group in projects 5 to 8 63

6.3 Median and the interquartile range (#def/kLOC) in projects 5

to 8 . 64

6.4 Defect density in UT for the students of the TRD group in

projects 1, 3 and 4, and in projects 5 to 8 65

6.5 Median and the interquartile (#def/kLOC) 65

6.6 Percentage of students who incur at least one code smell by code

smell type and student group 68

6.7 Data pairs for the TRD group and the noTRD group 71

6.8 Median and the interquartile range (minutes) for the noTRD

and TRD groups . 72

ix

6.9 Wilcoxon test for the noTRD group in projects 5 to 8 72

6.10 Wilcoxon test for the TRD group in projects 5 to 8 73

6.11 Median and the interquartile range (minutes) of the pairs

(TDLD, TCOD) for the TRD group in projects 1, 3 and 4 . . . 73

6.12 Wilcoxon test for the TRD group in projects 1, 3 and 4 73

7.1 average defect density (number of defects in the unit test phase

per every thousand lines of code) for the students in both groups 79

7.2 median and the interquartile range (#def/kLOC) 80

7.3 median and the interquartile range (#def/kLOC) in projects 5

to 8 . 80

7.4 median and the interquartile range (#def/kLOC) for HDD group 81

7.5 Classification of the designs using the categorizations by Eck-

erdal et al. and Thomas et al. 84

7.6 Main characteristics of the design submitted, the defect density

in UT, the Eckerdal’s category and Thomas’ category for project 8 85

x

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Research goal and questions . 3

1.2 Research methods overview . 3

1.3 Research results overview . 7

1.4 About the thesis document . 8

1.5 Main achievements . 8

1.5.1 Publications related to this thesis 8

1.5.2 Projects framed to this thesis 9

2 Related work 11

2.1 Detailed software design . 11

2.2 Teaching detailed software design 13

2.3 Experimental works with students on detailed software design . 14

2.3.1 Searching method for previous research 15

2.3.2 Synthesis of the works obtained related to how under-

graduate students design software 19

2.3.3 Synthesis of the works obtained related to undergraduate

students’ understanding of design 26

3 Theoretical framework 30

3.1 Personal Software Process . 30

3.2 Principles and fundamentals of the Personal Software Process . 35

4 The family of experiments 38

4.1 Goals . 38

xi

4.2 Experimental context . 40

4.3 Experimental design . 40

5 Baseline experiments 43

5.1 Definition . 43

5.2 Planning: research questions and experimental design 44

5.3 Operation . 45

5.4 Analysis and interpretation . 46

5.5 Discussion . 55

6 Template experiments 57

6.1 Definition . 57

6.2 Planning: research questions and experimental design 58

6.3 Operation . 59

6.4 Analysis and interpretation . 61

6.4.1 External quality . 61

6.4.2 Internal quality . 66

6.4.3 Effort dedicated to designing and coding 69

6.5 Discussion . 74

7 Habitual experiment 75

7.1 Definition . 75

7.2 Planning: research questions and experimental design 76

7.3 Operation . 76

7.4 Analysis and interpretation . 78

7.5 Discussion . 86

8 Conclusions and future work 89

8.1 Conclusions . 89

8.2 Contributions of the research 93

8.3 Future work . 94

Bibliography 97

xii

Chapter 1

Introduction

Software design is an important activity to ensure the quality of a software

system (Hu, 2013; Taylor, 2011). It involves identifying and abstractly de-

scribing the software system and its relationships. Software design involves

two stages between the analysis of the requirements and software construc-

tion: the architectural design and the detailed design (Bourque and Fairley,

2014).

The architectural design stage is responsible for decomposing requirement

specifications to form a system structure. It emphasizes the module-level sys-

tem representations, which can be evaluated, refined, or modified in the early

software development process.

The detailed design stage is responsible for transforming the system struc-

ture produced by the architectural design stage into a procedural description

of a software system. This stage emphasizes the selection and evaluation of

algorithms to implement each module. At this stage, each module’s details and

decisions are well defined and can be easily implemented (Bourque and Fairley,

2014). Software detailed design involves identifying and abstractly describing

the software system and its relationships. Detailed design is a creative activ-

ity which can be done in different ways: implicitly, in the developer’s mind

before coding, on a sketch on paper, through diagrams, using both formal and

informal languages, or tools (Chemuturi, 2018).

Developing high-quality software is one of the objectives of software en-

gineering. To achieve such an objective, engineering professionals should use

methods, methodologies, and tools to improve the performance and quality

during the software development process.

1

Software design has a direct effect on software quality. The choice of a

design can affect (positively or negatively) different properties of the soft-

ware quality (Prabha and Shivakumar, 2020). Good designs help develop

robust, maintainable software with few critical defects (Pierce et al., 1991;

Sommerville, 2016; McDonald et al., 2007). The cost of repairing defects in-

creases exponentially as the software develops through the development life

cycle. The cost of fixing defects after release is up to 30 times more expensive

than catching them in the design and architecture phase (Oktafiani and Hen-

dradjaya, 2018). Also, there is an essential link between testability (ability

to test systems and their components) and good design. Easy testability is

tightly correlated to loose coupling and strong cohesion (Whalley and Kasto,

2014).

Universities should train students of software engineering to be prepared,

among other things, to design software. Students’ ability to build a good design

is related to their abstraction, understanding, reasoning, and data-processing

ability (Kramer, 2007; Leung and Bolloju, 2005; Siau and Tan, 2005). In fact, it

is more difficult for students learning to design than learning to code. Besides,

there is no single method for designing software. Students may confuse the

different methods and not appreciate their similarities, differences, and their

uses (Carrington, 1998).

Research shows that students have difficulties in designing. Building good

designs requires a certain level of cognitive development that few students

achieve (Carrington and K Kim, 2003; Hu, 2013; Linder et al., 2006). This

cognitive development is related to the ability to recognize design patterns,

architectural design styles, and related data and actions that can be extracted

into appropriate design abstractions (Hu, 2013).

Several studies found that students do not manage to produce a good soft-

ware detailed design (Sien, 2011; Eckerdal et al., 2006a,b; Loftus et al., 2011;

Tenenberg, 2005). Students do not describe the behavior of the system (Lof-

tus et al., 2011), do not seem to understand what kind of information they

should include (Eckerdal et al., 2006a), and produce incomplete class diagrams,

sequence diagrams with missing responsibilities, and objects at inconsistent

abstraction levels (Sien, 2011).

Unfortunately, the evidence found on students’ detailed design practice

focuses primarily on how students represent software designs. The main focus

of this thesis is the study, through a family of experiments, of the detailed

2

design practice of graduating students from different points of view.

1.1 Research goal and questions

The main objective of this thesis is to study how graduating students practice

detailed design.

To achieve the stated goal, this thesis aims to answer the following General

Research Questions (GRQs):

GRQ1: How much effort do students spend on software detailed design?

By answering this question, we intend to provide evidence that relates to

the time students spend on detailed design and code.

GRQ2: What is the effect of detailed design on software quality?

Answering this question lets us know if the design representation delivery

contributes to better quality software products.

GRQ3: How do students represent software detailed design?

Finally, with GRQ3, we want to know what artifacts and ways of design

representation the students habitually use.

To answer the GRQs, we carried out a family of experiments.

1.2 Research methods overview

An experiment is a formal, rigorous, and controlled investigation. In an exper-

iment, key variables are identified and manipulated (Wohlin et al., 2012). The

variables under study take different values, and the experimental research aims

to determine the effects of such variations. During these investigations, quanti-

tative data is collected, and then statistical methods are applied. Experiments

are proposed when we want a controlled situation and want to manipulate be-

3

havior directly, precisely, and systematically. Also, experiments involve more

than one treatment to compare the outcomes (Wohlin et al., 2012).

When conducting a controlled experiment, we want to study the outcome

when we vary some input variables to a process. An experiment has two

types of variables: independent and response variables (Wohlin et al., 2012).

The response variables are those that we want to study to see the effect of

the changes in the independent variables. All variables in a process that are

manipulated and controlled are called independent variables.

An experiment studies the effect of changing one or more independent

variables. Those variables are called factors. The other independent variables

are controlled at a fixed level during the experiment, or else we cannot say if

the factor or another variable causes the effect. A treatment is one particular

value of a factor. The people that apply the treatment are called subjects.

The characteristics of both the objects and the subjects can be independent

variables in the experiment (Wohlin et al., 2012). The experiment process can

be divided into the following steps:

• Definition

• Planning

• Operation

• Analysis and interpretation

• Presentation and package

During definition, the experiment is established in terms of the problem

to be solved, the objective, and the goals. In the planning step, where the

experiment design is determined, the instrumentation is considered and the

threats to the experiment are evaluated. The operation of the experiment

follows from the design. In the operational phase, measurements are collected

and then analyzed and evaluated in the analysis and interpretation. Lastly,

the results are presented and packaged in the presentation and package step.

Experimental results must be extensively verified to consolidate a body of

knowledge built upon evidence. Experiments need replication at other times

and under other conditions before they can produce an established piece of

knowledge. Experimental replications are necessary to strengthen the evi-

dence (Juristo, 2013). Without replication, it is difficult to distinguish between

chance results (occurred accidentally) and results that, in reality, do exist (Ju-

risto, 2016). The replication of an experiment aims to repeat the experiment

4

under the most similar conditions possible. Otherwise, it may be run by vary-

ing one or more parameters of the original experiment (Juristo and Moreno,

2001).

A family of experiments is a set of experimental replications that pursue the

same goal and whose results can be combined into common findings as those

that can be achieved in isolated experiments (Basili et al., 1999). Replication

aims to provide a family of experiments to aggregate separate experiments and

get more reliable results, as well as to analyse aspects that individual exper-

iments have overlooked, providing accurate information for decision making

and more in-depth knowledge of the issue under investigation (Santos et al.,

2020).

To achive our research goal, we conducted a family of experiments com-

posed of sub-families of experiments. The family of experiments’ main objec-

tive is to know how graduating students practice detailed design.

Each sub-family’s objectives, research questions and experimental designs

evolved as we were executing and analyzing the results of the previous sub-

family(s).

The family of experiments is composed of 3 sub-families: Baseline sub-

family, Template sub-family, and Habitual sub-family. The Baseline sub-family

of experiments, which we simplify to Baseline experiments, is aimed at learn-

ing about the effort dedicated to software design by graduating students, how

is the effort variation throughout different projects, how is the effort variation

between students, and what is the students’ perception of the problems they

face. Template sub-family of experiments, which we simplify to Template

experiments, is aimed at knowing about the effect on software quality when

students represent the design using a specific set of design templates. Also, we

want to know the efforts students dedicate to software design. Finally, the Ha-

bitual sub-family of experiments, which we simplify to Habitual experiments,

finds out how students usually design and the effect on software quality when

they deliver the usual design representation to professors.

Baseline experiments are made up of an initial experiment (executed in

2012) and two replicates (executed in 2013 and 2014). Template experiments

are made up of an initial experiment (executed in 2015) and two replicates (ex-

ecuted in 2016 and 2017). Finally, Habitual experiments consist of an initial

experiment (executed in 2018) with one replicate (executed in 2021). In the

context of this thesis, we do not report the replication of the Habitual exper-

5

iment because the data collected from this replication has not been analyzed

yet.

Figure 1.1 summarizes the family of experiments and the research ques-

tions. The red boxes denote the GRQs, and the blue ones represent the empir-

ical studies we conducted to answer the GRQs. Through Baseline experiments

and Template experiments, we answer GRQ1: How much effort do students

spend on software design? During Template and Habitual experiments, we in-

vestigated the quality of the software developed by students (GRQ2). Finally,

with the Habitual experiment, we answer GRQ3: How do students represent

software?

Figure 1.1: Overview of research methods

6

1.3 Research results overview

The results of this thesis contribute to the knowledge of how graduating stu-

dents design software. We conducted a family of experiments in the context

of an graduating course at the School of Engineering of Universidad de la

República, in Uruguay. The results obtained through the family of experi-

ments show that our students have difficulties designing simple exercises.

Baseline experiment results indicate that students do not seem to be aware

of the importance of the design phase, spending three times more time on

coding than on designing. Considering quality (measured as defect density in

unit testing), we found that students did not produce better quality products

in the latest exercises compared with the first ones. That is, students did not

find ways to improve, neither looking at their products (intermediate as design

or final as tests or code), nor looking at their own process.

The results of the Baseline experiment led to the introduction of design

templates intended to help students with the design task. Template exper-

iments revealed results that we did not expect. Although the time spent on

design increases significantly, the quality of the software does not improve when

students represent the design using templates. Using templates to represent

the design does not improve the external quality of the software measured as

defect density in unit tests. From the perspective of internal quality, the use of

templates does not significantly affect the code smells in which students incur

when developing software.

Template experiments’ results, added to those found in Baseline exper-

iment, generated new questions about the practice of software design: What

do students habitually design? What kind of information do they include

when designing? Is it possible for them to make their designs mentally with-

out representing them? This prompted the latest experiment in the family

to know how students design the software. In the Habitual experiment, the

submission of the habitual design representation does not impact the software

quality produced by students. Also, the analysis of the design representation

indicates that students (in our School of Engineering) design on, what we call,

a basic level. The designs delivered vary between text notations, the incom-

plete identification of the parts of the system, and the use of static notations

to describe the system. Students do not achieve complete designs combining

several artifacts to model dynamic and static aspects simultaneously.

7

1.4 About the thesis document

This document is made up of this introduction and seven chapters. State of the

art is presented in chapter 2. Chapter 3 presents the Personal Software Process

and the graduating course where the family of experiments is framed. Chapter

4 presents the generalities of the family of experiments and its sub-families.

Each sub-family is described in an independent chapter; specifically, chapter

5 describes Baseline experiments; chapter 6 describes Template experiments;

and lastly, the Habitual experiment is described in chapter 7. Each of the

experiment chapters includes a discussion section. The conclusions and future

work are presented in chapter 8.

1.5 Main achievements

This section presents the papers published with the results of this thesis, and

the projects that arose during the thesis.

1.5.1 Publications related to this thesis

• Moreno, Silvana; Vallespir, Diego; Solari, Mart́ın; (2022). An experiment

on how graduating students represent software designs. XXV Ibero-

American Conference on Software Engineering (CIBSE 2022). (Moreno

et al., 2022). This paper was selected as one of the best five papers of

the conference and invited to submit an extended version of the paper

to the Special Issue of the Science of Computer Programming journal.

• Moreno, Silvana; Vallespir, Diego; Solari, Mart́ın; Casella, Vanessa.

(2021). Representation of software design using templates: impact on

software quality and development effort. Journal of Software Engineer-

ing Research and Development (Moreno et al., 2021).

• Moreno, Silvana; Casella, Vanessa; Solari, Mart́ın; Vallespir, Diego.

(2020). Detailed design representation using templates and its effect

on software quality. XXIII Ibero-American Conference on Software En-

gineering (CIBSE 2020) (Moreno et al., 2020). Written in Spanish. This

paper was selected as one of the best three papers of the conference.

• Moreno, Silvana; Vallespir, Diego. (2018). Are undergraduate students

capable of designing software? A study of the relationship between cod-

8

ing time and design time in software development. XXI Ibero-American

Conference on Software Engineering (CIBSE 2018) (Moreno and Valle-

spir, 2018). Written in Spanish.

My doctoral thesis work started focusing on experimenting with the

PSPvdc process. PSPvdc is an adaptation to the Personal Software Devel-

opment Process (PSP). PSPvdc proposes new phases and activities to support

formal methods to produce software verified by construction. PSPvdc was

elaborated as part of my master’s work, and initially, experiment and apply-

ing PSPvdc in the context of an undergraduate course was proposed as doc-

toral work. During the first two years of the doctorate, courses were planned,

changes were analyzed to be able to execute PSPvdc, formal verification tools

were studied, and an SLR was executed to know how formal methods are

taught in other universities. This initial proposal for a doctoral thesis was re-

jected because it was not feasible to experiment with PSPvdc in the context of

a course at our school. The estimated times involved more than one semester

of activities, which hindered the motivation of students and the logic of sev-

eral courses. The systematic literature review was presented and published at

CIBSE 2019.

• Moreno, Silvana; Vallespir, Diego and Tasistro Álvaro. (2019). Teaching

of formal methods: evidence of its inclusion in curricula, results, and

difficulties. XXII Ibero-American Conference on Software Engineering

(CIBSE 2019)(Moreno et al., 2018).

1.5.2 Projects framed to this thesis

This research has several related support projects; in particular, two graduat-

ing projects and a master’s project were conducted.

Title: How do undergraduate students design software? A systematic litera-

ture review.

Program: Master in Software Engineering, School of Engineering, Universi-

dad de la República

Student: Patsy Helen Jones

Advisors: Diego Vallespir and Silvana Moreno

9

Description: This project provides knowledge about the existence of scien-

tific studies on the teaching and learning of software design by undergraduate

and graduating students. This thesis is not yet finished. Written in Spanish.

Title: PSPCode Tool: PSP support tool.

Program: Computer Engineer, School of Engineering, Universidad de la

República

Student: Guillermo Kuster and Guillermo Tavidian.

Advisors: Silvana Moreno

Description: This graduation project built a web support tool for the PF-

PSP course that allows data collection and recording, and teachers’ correction

of deliveries and course configuration. The thesis was defended in 2018. Writ-

ten in Spanish.

Title: PSPCode Tool: extension to the PSP support tool

Program: Computer Engineer, School of Engineering, Universidad de la

República

Student: Ĺıa Malvarez and Gustavo Samir

Advisors: Silvana Moreno

Description: This graduation project aims to extend the above mentioned

tool, generating automatic corrections, integrating with the R statistical tool,

and allowing process adaptations, among others. The project is in progress; it

started in March 2022.

10

Chapter 2

Related work

This chapter presents in section 2.1 relevant concepts of detailed software de-

sign and in section 2.2 aspects of teaching detailed design. Lastly, section 2.3

presents the evidence collected from studies with students on detailed software

design.

2.1 Detailed software design

Software design is the stage of software development that transforms require-

ments specifications into a structure suitable for implementation. The design

has two stages between the requirements analysis and software construction:

the architectural design and the detailed design(Bourque and Fairley, 2014).

The architectural design stage is responsible for decomposing requirement spec-

ifications to form a system structure. It emphasizes the module-level system

representations, which can be evaluated, refined, or modified in the early soft-

ware development process. The detailed design stage is responsible for trans-

forming the system structure produced by the architectural design stage into

a procedural description of a software system. This stage emphasizes the se-

lection and evaluation of algorithms to implement each module. At this stage,

all the details and decisions of each module are well defined and can be easily

implemented.

Object-oriented design is one of the industry’s most widely used design

approaches, and one of the subjects usually taught in universities (Flores and

Medinilla, 2017). The object-oriented (OO) approach provides a powerful and

effective environment for modeling and building complex systems. Object ori-

11

entation helps a developer achieve a modular, extensible, maintainable, and

reusable system (Booch et al., 1999). Object orientation supports modeling

solutions at a higher level of abstraction in terms of classes, a hierarchy of re-

lated classes (inheritance), an association among classes, and dynamic binding

(dynamic polymorphism). Designers must master these concepts to elaborate

good-quality programs (Ganesh and Sharma, 2013).

The Unified Modeling Language (UML) was adopted as a standard for OO

modeling by the Object Management Group in 1997. UML can be used for

visualizing, specifying, constructing, and documenting the artifacts of software

systems. The UML notation is helpful for graphically depicting OO models.

UML allows designers to represent multiple independent views of a system

using a variety of graphical diagrams, such as the use case diagram, class

diagram, state diagram, sequence diagram, and collaboration diagram (Object

Management Group, 2000).

In 2000, Robert C. Martin introduced the 5 SOLID principles: Single Re-

sponsibility Principle, Open/Closed Principle, Liskov Substitution Principle,

Interface Segregation Principle, and Dependency Inversion Principle. The

SOLID principles’ design allows the management of most quality problems

of software design. They can provide an understanding of the design to avoid

symptoms of bad design, helping to reduce code complexity, maintainability,

and error reduction (Martin et al., 2003). Years later, it gave rise to clean code

practices. Clean code is a set of design principles in the agile methodologies

framework that help produce intuitive and easy-to-modify code.

On the other hand, the existence of a large number of poorly designed sys-

tems has resulted in applications that are inefficient and difficult to maintain.

Refactoring is becoming a powerful and agile technique to improve existing

source code. When refactoring is applied, the design of the written code is

being improved (Martin and Beck, 1999). That is, one transforms a design full

of bad practices into a good one through simple steps such as moving prop-

erties and methods, renaming classes, methods and properties, deleting code,

etc. (Saca, 2017). Weaknesses in designs have given rise to the concept of

code smells. Code smells are structures in the code that indicate a violation

of fundamental design principles and negatively impact design quality. It is a

good practice to identify design smells in a software system and apply the ap-

propriate refactoring to eliminate them to avoid an accumulation of technical

debt (Martin and Beck, 1999).

12

2.2 Teaching detailed software design

The teaching of software design encompasses the product of the design activity

(the design representation) and the process by which this product is created.

Teaching these aspects is fundamental to software engineering and is challeng-

ing for educators, as they are not easy to teach. Design is an inherently creative

process, and creativity is difficult to teach in any field (Cowling, 2007).

Teaching design through theoretical-practical classes (lectures) continues

to be a traditional way of teaching. However, the search for different teaching

approaches has evolved with the passing of time and emerging technologies.

Carrington proposes teaching design using open-source tools. He proposes

that students start from projects with large amounts of code and design doc-

umentation. The goal is for students to gain experience by reading, under-

standing, and modifying what others have developed (Carrington and K Kim,

2003). This approach is intended to change the traditional one and not have

the student focus on building a new design and code.

Linder et al. propose teaching cooperative design (working in groups). The

authors consider that collaboration among peers allows new understandings

that could not be reached individually (Linder et al., 2006).

Another approach is the teaching of design through pseudocode based mod-

els. The use of the P-coder tool allows students to develop their design skills

from the top down and through progressive refinement (Armarego and Roy,

2004).

Moreover, it has been several decades since the Object Oriented Paradigm

(OOP) and the Unified Modeling Language (UML) were introduced (Booch

et al., 1999).

Object-oriented design is one of the most widely used design approaches

in the industry and one of the subjects usually taught in universities (Flores

and Medinilla, 2017). OO modeling diagrams and languages allow one to

model static and dynamic aspects of the system. Teaching this paradigm

appears easy because it is independent of a programming language. This makes

its basic units (object/class/relationship structures) intuitively easier to teach

and understand (Judith and Upchurch, 1993; Ali et al., 2013; Ramollari and

Dranidis, 2007).

However, in other studies, students failed to obtain design benefits using

UML diagrams (Gravino et al., 2015; Torchiano et al., 2017). Gravino et al.

13

found that students who use UML diagrams to design do not significantly im-

prove their source code comprehension tasks compared to students who do not

use them. Also, students who use diagrams spend twice as much time on the

same source code comprehension task as students who do not use them. When

analyzing the experience factor, they find that the most experienced students

achieve an improvement in the understanding of the source code (Gravino

et al., 2015; Soh et al., 2012).

For practitioners of this industry, the use of UML continues to be resisted

to a certain degree (Stevenson and Wood, 2018). A survey conducted on 50

software practitioners indicates that although the quality of the software is an

important aspect, the use of UML is selective (informal, only for a while, then

it is discarded) and with low frequency (Petre, 2013).

In recent years there have been many efforts to contribute to the teaching

of design. Thevathayan and Hamilton (2017) combines project-based learn-

ing with weekly quizzes, tests, and active learning tasks aimed at improving

students’ performance and motivation when designing software. Other stud-

ies use different methods such as Teaching Assistance, Just-in-Time-Teaching,

and cooperative learning, generating positive results in teaching and learning

design (Stikkolorum et al., 2018; Tao et al., 2015; Magana et al., 2018).

In addition, academia and industry are focusing on the importance of

design quality, design practice in the agile context, and evolutionary design

processes, including technical debt management. The teaching of clean code

practices, reviews, refactoring, Test-Driven Development, Behaviour-Driven

Development, and Domain Driven Design contribute to this regard (Brown

et al., 1998; Fowler, 2018).

2.3 Experimental works with students on de-

tailed software design

This section presents the evidence collected from studies with students on

software detailed design. We present the method applied to search for works

and a summary of the results obtained.

14

2.3.1 Searching method for previous research

The search for related works begins with preliminary identifying papers related

to students’ software design practice. This search yields a set of 6 research pa-

pers that study how students carry out software design. These works, presented

in table 2.1, analyze the design representation done by students from a specific

requirement. The initial study reported by Tenenberg led to the remaining

studies (Tenenberg, 2005). Some of these use Tenenberg’s data (Tenenberg,

2005), while others run in their own contexts, comparing, validating and/or

refuting the results of previous work.

Table 2.1: Source papers

Article Id. Article tittle
1 Students designing software: a multi-national, multi-

institutional study (Tenenberg, 2005)
2 Can graduating students design software systems? (Eckerdal

et al., 2006a)
3 Categorizing student software designs: methods, results, and

implications (Eckerdal et al., 2006b)
4 Can graduating students design: revisited (Loftus et al., 2011)
5 Graduating students’ designs - Through a phenomenographic

lens (Thomas et al., 2014)
6 Can students design software? The answer is more complex

than you think (Hu, 2016)

The forward snowballing search strategy was performed from these six pa-

pers to identify more recent studies. “Forward snowballing” refers to identify-

ing new papers based on those papers citing the paper being examined (Wohlin,

2014). This strategy was applied in April 2022, using Scopus as search engine,

and we selected articles dated after 2017. The six source articles are broadly

focused on our topic of interest, so we believe that the forward snowballing

search allows us to obtain recent related papers interesting to us concerning

the objective of the thesis and, at the same time, limited in number. The result

of applying forward snowballing to the six source items returned 127 items.

The screening process applied to the 127 articles resulting from the forward

snowballing search strategy consists of the following three stages:

1. Selection of publications by reading title and abstract.

2. Selection of publications by full reading

15

3. Removal of duplicate publications

Fig. 2.1 presents the results of the forward snowballing strategy process

and table 2.2 shows the resulting papers. The forward snowballing strategy

finished with four new articles, that is, no more iterations were made from the

four selected articles.

Figure 2.1: Summary of the forward snowballing process

Table 2.2: Papers resulting from the forward snowballing process

Article tittle Year
How do Graduating Students Evaluate Software Design Diagrams?
(Prasad and Iyer, 2020)

2020

Novice Learner Experiences in Software Development: A Study of
Freshman Undergraduates (Higgins et al., 2019)

2019

Exploring Software Design Skills of Students in different Stages of
their Curriculum (Perez-Gonzalez et al., 2019)

2019

Student software designs at the undergraduate midpoint (Thomas
et al., 2017)

2017

Additionally, we consider the results obtained from a systematic literature

review (SLR) elaborated by Patsy Jones, Diego Vallespir, and the author of

this thesis. This SLR is a central part of Patsy’s master’s thesis. A systematic

literature review is a research method that allows the evaluation and inter-

pretation of all available research relevant to a particular research topic in a

subject area or phenomenon of interest (Kitchenham, 2004). The objective of

the SLR is to learn about the reported evidence regarding the teaching and

learning of software design by graduating and undergraduate students.

A working protocol was defined that allows a conceptual description of each

SLR stage in a rigorous and reproducible way for future researchers.

The general research question posed is: How do undergraduate students

design software?

The specific research questions proposed are:

1. What are the software design techniques/methods/principles used by

undergraduate students in the software designs performed?

16

2. Is the quality of the software designs made by the undergraduate students

evaluated?

3. How is the evaluation of the quality of the software design made by the

undergraduate students performed?

4. What ways of software design education are reported?

The protocol was adjusted based on the execution of a pilot. In particular,

the initial search string was iteratively adjusted until a good coverage of the

research questions was obtained and the number of non-relevant papers was

minimized. Table 2.3 presents the finally-defined search string, run in March

2019 in Scopus digital library. We decided to run this article-narrowing string

to minimize the time-consuming process of screening a large volume of papers,

which largely end up being discarded.

Table 2.3: SLR search string

TITLE (design* AND
(student* OR undergrad* OR teach* OR learn* OR train*
OR impart* OR comprehend*))
AND
(ABS (“software design*” OR “design of software” OR “design soft-
ware”) OR
AUTHKEY (“software design*” OR “design of software” OR “design
software”))
AND ABS (student* OR undergrad*)
AND LIMIT-TO (LANGUAGE , “English”)

As a result of the application of the string in Scopus, 119 articles were

obtained, to which the selection process was applied. The selection process

(carried out by Patsy and the author of this thesis) consists of the following

three stages:

1. Selection of publications by reading title and abstract

2. Consensus meeting

3. Selection of publications by full reading

Stage 1 is performed independently by Patsy Jones and the author of this

thesis. Then, in stage 2, both reviewers unify the selections made in stage 1 in

a consensus meeting. Finally, stage 3 is performed only by Patsy Jones. Fig.

2.2 presents a summary of the search and selection process.

17

Figure 2.2: Summary of the SLR selection process

As the objectives of the SLR involve experiences regarding software design

education and teaching that are not covered in this thesis, we decided to per-

form another filtering of the 18 articles resulting from the SLR. This filtering

is performed by the author of this thesis and aims to select only those papers

that focus on the software design practice of undergraduate students.

This work involved selecting articles by full reading, data extraction, and

synthesis. Of the eighteen papers resulting from the SLR, eleven were dis-

carded. Table 2.4 presents the seven papers resulting from the filtering.

Table 2.4: Papers resulting from the SLR filtering

Article tittle
Uncovering Students’ Common Difficulties and Strategies During a Class Di-
agram Design Process: an Online Experiment (Stikkolorum et al., 2015)
Student Software Designs at the Undergraduate Midpoint (Thomas et al.,
2017)
A Study of the Use of a Reflective Activity to Improve Students’ Software
Design Capabilities (Coffey, 2017)
Can students design software? the answer is more complex than you think
(Hu, 2016)
Graduating students’ designs: Through a phenomenographic lens (Thomas
et al., 2014)
Can graduating students design: Revisited (Loftus et al., 2011)
Conceptions of the students around object-oriented design: A case study (Flo-
res and Medinilla, 2017)

Fig. 2.3 presents the process to collect the evidence reported from studies

with students on detailed software design. A total of 17 papers were obtained

from this process. Their extraction and synthesis are presented in the next

section.

18

Figure 2.3: Process followed to collect the evidence reported

2.3.2 Synthesis of the works obtained related to how

undergraduate students design software

Undergraduate students’ design skills are reported by previous studies exam-

ining artifacts produced by them to learn how they design software (Eckerdal

et al., 2006a,b; Thomas et al., 2014, 2017; Loftus et al., 2011; Tenenberg, 2005;

Hu, 2016; Perez-Gonzalez et al., 2019; Stikkolorum et al., 2015). The stud-

ies use different approaches: designs produced individually, designs made in

groups, and designs produced at different levels of training.

A study reported by Tenenberg describes the skills that students have when

designing software (Tenenberg, 2005). They conduct a multi-institutional and

multi-national study of 314 Computer Science (CS) students and educators

from 21 institutions in 4 countries. The participants are recruited from 21

institutions of post-secondary education in the USA, UK, Sweden, and New

Zealand. Three types of participants were represented within the study pop-

ulation: 136 first competency students (FC), 150 graduating students (GS),

and 28 educators (E).

Each participant is given the specification of a “super alarm clock” (that

helps students manage their sleep patterns) to produce a design. Students

19

must develop a design and divide it into not less than two and not more than

ten parts, giving each a name and adding a short description of what it is and

what it does - in short, why it is a part. At the end they must present their

written representation, the number of parts in their design, the name for each

part and the time they dedicated to developing the design.

Each design artifact was examined and categorized into one of the next

categorizations based on its predominating characteristic:

• Standard Graphical: This was used to include recognized notations of

software design. Different types were represented in the corpus: Architec-

ture Diagram, Class Diagram, Class-Responsibility-Collaborator (CRC)

Cards, Data Flow Diagram (DFD), Entity-Relationship Diagram (ER),

Flowchart, Graphical User Interface (GUI), Sequence Diagram, State

Transition Diagram (STD) and Use Case Diagram.

• Ad-hoc Graphical: This category included diagrams of any form not

recognized as standard notations of software design. Large sections of

text were accepted in this category providing that they were considered

refinements of items identified in the diagram.

• Code or pseudo-code: This was used for any software design that included

code segments such as assignments, iteration and selection.

• Textual: This category was used for free text descriptions but allowed an

occasional diagram used for illustration: for example, graphical interface

or report layout.

• Mixed: This was used when there was no clear dominance between differ-

ent styles. For example a participant might start with a textual descrip-

tion and then proceed with a Class Diagram. If there was no connection

between the descriptions and the identified classes then the category was

Mixed (Text and Class Diagrams).

To ensure consistency, three researchers categorized the designs. The re-

sults indicate that while 47% of FC participants used predominantly textual

representations, only 28% of GS participants and 21% of E participants did

so. For standard graphical representations, the numbers are opposite, with

50% of E participants, 29% of GS participants, and 15% of FC participants

predominantly using standard graphical representations. That is, as the level

of education becomes higher, there is a progression away from the textual and

toward standard graphical notations.

20

Eckerdal et al. undertook a detailed examination of the design artifacts

produced by graduating students also using the “super alarm clock” task (Eck-

erdal et al., 2006a,b). In order to examine the students’ design skills, this work

also uses the design representations developed by 149 graduating students,

elaborated within the context of Teneberg’s study (Tenenberg, 2005). These

representations are grouped using a categorization of six levels developed by

Eckerdal:

• 0N - Nothing: little or no intelligible content.

• 1R - Restatement: merely restating requirements in some fashion from

the task description.

• 2S - Skumtomte: a small amount restatement of the task with a small

amount of information in text, a drawing of a GUI, or some unimportant

implementation details with no description of its design.

• 3FS - First step: some significant work beyond the description. Either

a partial overview of the system with the parts identified, but generally

no identification of how they are related in the system; or the design of

one of the system’s components, such as the GUI or the interface to the

database.

• 4PD - Partial design: providing an understandable description of each of

the parts and an overview of the system that illustrates the relationships

between the (may be incomplete) parts without completely described

communications between the parts.

• 5C - Complete: showing a well-developed solution, including an under-

standable overview, part descriptions that include responsibilities, and

explicit communication between the parts.

They found poor performance from students who are near graduation. Over

20% did not produced a software design (nothing and restatment categories)

and over 60% communicated no significant progress toward a design. The

percentages associated with the proposed categories were: 3% nothing, 18%

restatement, 41% skumtomte, 29% first step, 7% partial design, and 2% com-

plete.

The study published by Eckerdal et al. (2006a) was subsequently reviewed

by Loftus et al. (2011). They reconsidered the experiment and extended it at

Aberystwyth University. This work aims to find out if graduating students

can design in groups. The study was conducted in the context of a final-year

21

undergraduate course when software design and Agile Methodologies concepts

are consolidated. Six groups of 10 students each participated, and the assigned

task was again the “super alarm clock.”

Two of the authors analyzed and score the designs independently, and the

criteria were unified in a consensus meeting.

They use a scoring method based on a grade and a weighting that is then

mapped into one of Eckerdal et al.’s six categories.

The results indicate that three of the six groups are classified in the Skum-

tomte category, one in the Restatement category, one in the First step category,

and one in the Partial design category.

The results confirm those reported by Eckerdal et al., that many graduating

students cannot design software systems. In addition, they found that the main

things missing from the students’ designs were descriptions of system behavior

and consistency between the use case diagrams and the implemented designs.

A study by Lynda Thomas et al. (Thomas et al., 2014) also expanded

on the research of Eckerdal et al. (2006a). This study aims to determine the

students’ understanding when asked to “produce a design.” They used the

same design task, “super alarm clock,” and Eckerdal’s categorization. Thirty-

five students who were taking a compulsory year-long final year projects course

participated.

The results obtained do not turn out to be as bad in the area of students’

design skills as reported by Eckerdal et al. (2006a) and Loftus et al. (2011).

Specifically, the authors found a somewhat shifted distribution between their

classifications and those reported by Eckerdal et al. (2006a). There was a

greater proportion of the top three categories (first step, partial design, and

complete designs) and a smaller proportion of the first three categories (noth-

ing, restatement, and skumtomte designs). Regarding understanding the in-

struction “produce a design,” some students meant drawing a picture, and

some drew quite complex attractive GUIs. Other students understood that

they were expected to use some special design notation but could not use it to

produce a design. Also, some students understood that they must use design

artifacts such as class and interaction diagrams. However, these artifacts were

presented independently from each other and were not linked to the original

problem.

Furthermore, the authors built a list of fundamental characteristics that

differentiate how students understand the design phenomenon. Thomas’ cat-

22

egory is described as follows:

• 0ID - Informal design: does not include formal artifacts. Generally, text

but may include detailed pictures without reference to software.

• 1A - Analysis: uses some formal notation for analysis, such as use case

diagrams, but does not describe system structure or behavior.

• 2SS - Static structure: focus on design techniques of software engineering,

expressing the components and their structural (i.e., static) relationships

using notations like class or architecture diagrams.

• 3DB - Dynamic behavior: focus on design techniques of software en-

gineering, expressing the components and some sequential (dynamic)

behavior using notations like sequence diagrams or flowcharts.

• 4MRA - Multiple related artifacts: use multiple artifacts and relates

components across different artifacts - the static and the dynamic are

linked.

• 5EC - Expert category: the notations are relaxed, and only the essential

artifacts are included.

Although the study does not present the mapping of the designs submitted

by students using the proposed categorization, it illustrates in each category

a student’s design as an example.

Chenglie Hu continues this line of work by reporting an experiment in which

graduating students perform the design to the same “super alarm clock” (Hu,

2016). Twelve advanced students participated in the study and performed

the task individually in the context of a course. In addition to the design

representation, the students must submit the skeleton code based on the design.

The design representations were categorized using Eckerdal et al.’s six cat-

egories. The results show that 50% of the designs were categorized in the

partial design category, 16.6% in the first step, and 33.3% in the complete

category. Although the above results seem good, the authors consider that

students could not identify opportunities to create functional, structural de-

sign elements. Many created design elements and their behaviors often based

on intuition, not analysis.

Years later, Thomas et al. studied software designs of students halfway

through their 3rd-year undergraduate computing degree (Thomas et al., 2017).

They were looking for characteristics of skills development in software design

as students progress through the curriculum. Students were asked to “produce

23

a design” using a problem that appeared to require about the same design skill

level as the “super alarm clock” problem (The Parking problem).

Although 161 students enrolled in the course, 96 software designs were

collected and categorized using Eckerdal’s categorization. The remaining stu-

dents either dropped out before the course, did not attend, or took home the

assignment; thus, the assignment was disregarded. The 96 designs were cate-

gorized by two researchers independently, and discrepancies were resolved by

discussion.

The results show that most designs were in the first step category, followed

by the skumtomte category and partial. Then, the authors compared the

results with those obtained from a group of graduating students from the

same university (Thomas et al., 2014). The comparison shows similarities in

the classifications from both cohorts. The graduating students produced a

few more partial and complete designs but were relatively low cases. From an

optimistic point of view, these results suggest that students improve between

the halfway and the final point of their studies. However, less optimistically,

the improvement was minimal. It appears that many students reach a basic

level of design capability and no more.

More recently, Perez-Gonzalez et al. (2019) conducted a study that seeks to

know how design skills are acquired throughout a 5-year university program.

The study conducted at the University of Mexico seeks to answer the following

research question: “How do students’ software design skills differ according to

the stages of their curriculum?” Seventy-seven students participated in the

study between semester 2 and semester 8 of their degree program. Students

participated voluntarily but received motivation from their teacher (i.e., extra

points in the final exam).

The task is to produce design artifacts according to The Parking problem

proposed by Thomas et al. (2017). The designs were also classified using the

categorizations proposed by Eckerdal et al. The results show that students

who have recently taken design and programming courses produce the best

designs. Most of the better-classified designs (Complete and Partial) were

produced by students in the middle of their academic program (semesters 4,

5, and 6). Students at the beginning of their career (2nd and 3rd semester)

produce the worst designs, but surprisingly these results are similar to those

of the 7th semester of their career.

The results of the last two semesters (8 and 9) are not as good as semesters

24

4, 5, and 6 but not as bad as the first semesters. In this case, the authors

believe that it could be because, in the last years of the course, the design

tasks are not demanded to the students, emphasizing only the delivery of the

code. They conclude that the learning of software design by students can be

achieved from courses and practices during the first half of a career, but these

skills may decrease if they are not applied later in the academic program.

Finally, Stikkolorum et al. proposed an experiment involving 196 students

working in pairs to work out a simple design task (Stikkolorum et al., 2015).

They are 3rd-year Software Engineering students. The task is to design the

class diagram of a game using the WebUml tool for modeling and registration.

Experts evaluate the quality of the designs, considering how well the diagram

relates to the problem and how well the diagram is organized. From the anal-

ysis of the diagrams, it is observed, that they are not clear about which design

elements to include. They tend to add unnecessary elements to the design,

and choosing between attributes or classes (that address OO comprehension)

seems to be a general difficulty for students. On the other hand, the design

strategy (Breadth First or Depth First) chosen by students does not seem to

have an impact on the quality of the design achieved (as assessed by experts).

Summary of results

In general, studies have shown that most graduating students are not compe-

tent in designing software (Eckerdal et al., 2006a,b; Loftus et al., 2011; Tenen-

berg, 2005). Students do not describe the behavior of the system (Loftus et al.,

2011), do not understand what sort of information a software design should

include (Stikkolorum et al., 2015), and how to effectively communicate that

information (Eckerdal et al., 2006a,b). In addition, students seem not to know

how to iterate in the design process, tending to make the design they started

with work unless something really went wrong (Hu, 2016).

Some studies investigate design skills throughout a career (Perez-Gonzalez

et al., 2019; Tenenberg, 2005; Thomas et al., 2017). The reported results

do not agree on the fact that students’ advance in educational level is the

factor that influences the construction of better designs. In Thomas’ study, as

students advance in their degree, they achieve a decrease in the use of textual

notations and an increase in the use of standard graphical notations (Thomas

et al., 2017). Furthermore, Perez et al. find that the best designs are produced

25

by students who have new knowledge (took courses recently) (Perez-Gonzalez

et al., 2019).

2.3.3 Synthesis of the works obtained related to under-

graduate students’ understanding of design

Undergraduate students’ understanding of design has also been analyzed from

different points of view.

In the study reported by Higgins et al., 82 first-year undergraduate students

performed a software development task following an informal development pro-

cess (Higgins et al., 2019). They are taught to program in Java and then they

must solve specific problems using this language. Students were also taught to

use pseudocode as a design technique in order to design solutions for the ex-

ercises. Follow-up surveys with students, a post-test survey, and focus groups

were conducted. From the results, it can be observed that students regard

engaging in software development to be primarily about programming; and

they consider that designing solutions are not useful and avoid them where

possible. This result generates concern for the authors since, apparently, the

problem is not that students do not have the aptitude to be software devel-

opers but that they are not developing the skills of analysis and design. 94%

of students see the programming process as more important than the analy-

sis and design stages, suggesting that they do not see the value of carrying

out planning before writing a program. This difficulty is reflected by many

students indicating that they move immediately to the coding phase before

adequately decomposing a problem or carrying out at least some design for a

solution.

Flores and Medinilla propose a study that focuses on what kind of ideas the

students have regarding object-oriented design (Flores and Medinilla, 2017).

The study was carried out in the context of the subject called Software Engi-

neering in the sixth semester of the Degree in Informatics Engineering. Eigh-

teen students of different nationalities participated voluntarily. An initial sur-

vey of ten questions was carried out that aimed to know in general terms the

ideas and knowledge about object-oriented design. Then, an interview was

conducted with open questions. The main questions focused on discussing the

object-oriented design, objects, difficulties in the concepts, and understand-

ing the Information Hiding Principle. Results show that the most challenging

26

concepts to understand are “Uncertainty” and implementing the Information

Hiding Principle. Many students believe that object-oriented design is not as

important as coding. Some students ignore basic principles of design, such as

concepts like object, inheritance, ambiguity, etc.

Another way to assess students’ understanding of design is to ask them

to reflect on their designs (Coffey, 2017) or to evaluate the designs of others

(Prasad and Iyer, 2020). In the study reported by Coffey, thirteen students

participated who were asked to design using a UML class diagram (Coffey,

2017). Students have five opportunities to reflect on their design and change

it throughout the semester. These reflections are evaluated as part of the

course and are factored into the final grade. In each of the five reflective in-

stances, students must describe what changed between the preliminary and

final designs and why those changes were necessary. The reflections of the first

projects were broad ideas, such as that lack of a good design makes coding

more complex, that prototyping might help get a better design, and that as-

signing responsibilities is complex and important. The reflections for the fifth

project were often quite focused, such as designing for readability or creating

the most straightforward design solution possible. In general, the results indi-

cate that students achieve insightful reflections on lessons learned from their

design activities, which change positively between the first and fifth reflective

instances. However, requiring students to perform reflective activities in no

way ensures that students recognize the value of performing such activities or

internalize reflection on the quality of their work as an ongoing strategy for

improvement.

Prasad et al. studied how graduating students evaluate software design

diagrams against stated requirements (Prasad and Iyer, 2020). The study

was conducted with one hundred senior-year (fourth-year) students of Com-

puter Engineering and Information Technology Engineering. The requirements

and design of an ATM system were given to students. The design provided

consisted of a class diagram and three sequence diagrams. Students must

identify defects in the design diagrams based on the requirements. The au-

thors introduced defects in the diagrams, focusing on including semantic and

non-syntactic defects. Specifically, five semantic defects were injected into

the diagrams (five scenarios that do not satisfy the requirements). Syntac-

tic defects can be uncovered by a superficial search on the design diagrams,

while semantic defects no. Semantic defects quality refers to how faithfully the

27

modeled system is represented. Detecting semantic defects require students to

think deeply about the design, understand the relationship between different

diagrams and evaluate the diagrams against the given requirements. Based on

the defect explanations by the students, the authors created the following set

of 6 categories:

• category 1: identify scenarios that do not satisfy the requirements

• category 2: identify necessary functions which are not used

• category 3: change existing functionalities and requirements

• category 4: add new functionalities in the design

• category 5: change data types, functions, and structure of the class dia-

gram

• category 6: blank responses and no defects

These categories describe the defects’ generalities and allow grouping the

students’ answers. In categories 1 and 2, students evaluate the design dia-

grams against the requirements by identifying alternate scenarios and simu-

lating function execution. The analysis shows that none of the students could

identify all the scenarios (all defects injected). Twenty-three students identified

exactly one scenario and only seven students identified exactly two scenarios

(category 1). Also, twelve students identified at least one function present in

the class diagrams that is not being used in the sequence diagram, and hence

not satisfying a particular requirement (category 2). Considering the syntactic

elements in the design, thirteen students identified defects based on the syn-

tactic elements in the design diagrams (category 5). Out of the thirteen, five

students exclusively focused on syntactic defects and did not identify other

types of defects. Focusing on new elements absent in the design, forty-three

students mentioned either adding new functionalities to the design or chang-

ing the existing functionalities and requirements (categories 3 and 4). Of these

forty-three, twenty-four focused only on changing functionalities and did not

detect any other type of defect. These students are not evaluating the design

against the requirements but are attracted to introducing new functionalities

to the proposed reality. The authors conclude that many students could not

evaluate the design against the requirements, which provides indicators of the

difficulties students face when designing.

28

Summary of results

Students seem unaware of the importance of detailed software design. For

them, the software development process mainly focuses on coding, preventing

design activity (Flores and Medinilla, 2017; Higgins et al., 2019). In addition,

Flores and Medinilla (2017) found that many students ignore certain basic

design principles.

Students’ understanding of the design also reveals difficulties. When they

reflect on their design, they get interesting insights, although the authors men-

tion that reflection does not ensure that they can achieve a better quality of

their work (Coffey, 2017). On the other hand, when students evaluate designs

produced by others, the results reveal that some students do not succeed in

evaluating designs, while others focus on evaluating only particular aspects

(syntactic or semantic) of a design (Prasad and Iyer, 2020).

29

Chapter 3

Theoretical framework

This chapter presents the relevant concepts framed in the thesis. Specifically,

section 3.1 presents an introduction to the Personal Software Process used as

a development framework throughout the family of experiments. Section 3.2

presents the characteristics of the course proposed for the family’s execution.

3.1 Personal Software Process

The Personal Software Process (PSP) was proposed in 1995 by Watts

Humphrey at the Software Engineering Institute (SEI) (Humphrey, 1995). It

aims to increase the quality of the products manufactured by individual pro-

fessionals by improving their personal methods of software development. It

considers diverse aspects of the software process, including planning, quality

control, cost estimation, and productivity.

Since the PSP process has several methods that engineers do not generally

practice, the PSP methods are introduced in a series of seven process versions.

These versions are labeled PSP0 through PSP3, as shown in Figure 3.1.

PSP level 0, called “Personal Measurement,” aims at engineers to gather

data on the time they spend per phase and the defects they find.

The PSP0 is divided into phases, as shown in Figure 3.2. A project begins

with the requirements for a software module and ends when the software is

released. The phases are planning, design, code, compile, unit test, and post-

mortem. In the context of this thesis, the process defined in PSP0 and the

design templates proposed in level 2.1 are used as a framework.

In the PSP, all tasks and activities to be performed during software devel-

30

Figure 3.1: PSP structure levels

Figure 3.2: PSP0 process

opment are defined in a set of documents called “scripts.” Scripts dictate the

course of the work and are to be followed in a disciplined manner. They also

facilitate data collection of the software process, including time spent at each

phase, defects detected at each phase, time spent in detection and correction,

the phase at which each defect is detected and removed, and the classification

of defects into types. This data is collected into logs and used to evaluate the

31

process’s quality using indicators like defect density, review rate, and yield.

All these measurements render a highly instrumented process, ideal for the

realization of empirical studies (Wohlin et al., 2012). Every script comprises a

purpose, a set of entry criteria, the activities to perform, and the expected out-

comes (i.e., exit criteria). The Process Script contains a general program for

planning, development, and postmortem activities. The development script, in

turn, consists of the phases of design, code, compile, and unit testing. Figure

3.3 presents the development script as an example.

Figure 3.3: Development script

The design phase consists of designing the program completely and un-

ambiguously. During PSP0, the design script states that the engineer must

review the requirements and produce a design that satisfies them. At this level,

the engineer produces the design without specific guidelines on how to design,

choosing the design method they deems appropriate. During PSP2, PSP uses

four templates to document the design in four dimensions: static, dynamic,

internal, and external. The PSP considers a design to be complete when it

defines all four of these dimensions. Figure 3.4 illustrates the four templates.

In particular, the operational specification template describes the interac-

tion between user and system (i.e., the dynamic-external view). The functional

specification template allows the definition of the structural features to be pro-

32

Figure 3.4: PSP Template Structure

vided by the software product, classes and inheritance among them, externally

visible attributes, and relations to other classes or parts (i.e., the dynamic-

external and static-external views). The state specification template describes

the set of states of the program, the transitions between states, and the actions

to be taken at each transition (i.e., the dynamic-internal view). Finally, the

logic template specifies the program’s internal logic (i.e., the static-internal

view) concisely and conveniently. Pseudo-code is appropriate for this task.

Once the design is finished, the program is constructed using a program-

ming language and a coding standard during the code phase.

After code comes the compile phase, which is the translation of the source

program into machine language using a compiler. This phase involves correct-

ing defects detected by the compiler.

The unit test phase consists of executing the test cases specified during the

design phase. The defects detected in the unit test allow the quality of the

product to be assessed. In PSP, a program is considered to be of adequate

quality if it contains five or fewer defects per KLOC at unit test.

Finally, the postmortem script describes the activities of the postmortem

phase, which includes an assessment of both process and product, and an

analysis of the injected defects, noting the phases at which they were removed.

Analyzing the process and understanding where and why mistakes are com-

mitted allows developers to improve their own processes and outputs.

During the family of experiments described in this thesis, students collected

their data as they performed their work and recorded it in a tool. In the Base-

line and Template experiments, the Student WorkBook tool was used; and in

the Habitual experiment, the PSPCode tool was used. Student WorkBook is

a tool developed in Access, which provides a set of forms that allow data man-

agement throughout the process. PSPCode arose due to certain limitations of

Student WorkBook. PSPCode is a web tool with the same functional char-

acteristics as Student WorkBook but with additions that allow better course

33

management. This tool was created in the context of a degree project directed

by the author of this thesis.

Some of the metrics that the student records throughout the process are:

Time: A record of the time (in minutes) spent per phase is kept, allowing

the evaluation of the student’s performance. For this purpose, the current

phase, the start and end date and time of each task performed, the interruption

time, and any pertinent comments are recorded for each project.

Number of defects: A record is kept of which defects are injected, in which

phase they are injected, and in which phase they are removed. It helps to

evaluate at which stage effort should be increased to improve productivity and

product quality. For each defect, the type of defect, the phases in which it was

injected and removed, the time it took to correct it, and a brief description of

the defect are recorded.

Software size: Lines of code were chosen because they meet the following

criteria: they can be automatically counted, precisely defined, and are well

correlated with development efforts based on PSP research (Humphrey, 1995).

Size is also used to normalize other data, such as productivity (LOC per hour)

and defect density (defects per KLOC). In PSP, the main measure of size

used is logical lines of code (logical LOCs). This measure can be defined as

the count of basic execution structures. There are, therefore, different ways of

measuring LOCs depending on factors such as the programming language. For

this reason, each student defines their own standard, and once defined, they

must adhere to it without altering it or changing it for another one throughout

the different projects. The student develops the project following the standard

and counts the LOCS produced at the end. PSP classifies the LOCS into

different categories. These categories are:

• Base: When an existing product is enhanced, base LOC is the size of the

original product version before any modifications are made.

• Added: The added code is that code written for a new program or added

to an existing base program.

• Modified: The modified LOC is the part of the Base code that is changed.

• Deleted: The deleted LOC is the part of the Base code that is subse-

quently removed.

• New and Modified: When engineers develop software, it takes them much

more time to add or modify a LOC than to delete or reuse one. Thus,

34

in the PSP, engineers use only the added or modified code to make size

and resource estimates. This code is called the New and Modified LOC

and is the sum of the Added and Modified LOC.

• Reused. In the PSP, the reused LOC is the code that is taken from

a reuse library and used, without modification, in a new program or

program version.

In the context of our family of experiments, we consider the total product

size as the sum of LOCs Added and Modified.

3.2 Principles and fundamentals of the Per-

sonal Software Process

As mentioned above, PSP is based on some practices to improve software de-

velopment and product quality (Humphrey, 2005a). However, these practices

are not commonly used among practitioners. This is why Humphrey, to teach

PSP to engineers, uses a form of adoption whereby familiarization with the

process occurs gradually through the levels (PSP0 to PSP2.1). The PSP is

taught through courses. The courses Humphrey proposed are “PSP for engi-

neers 1” and “PSP for engineers 2.” During these courses, as programming

exercises (projects) are carried out, PSP practices are introduced.

The course we propose for the execution of the family of experiments is

called Principles and Fundamentals of the Personal Software Process (PF-

PSP). PF-PSP is a reduced and simplified version of the courses proposed by

Humphrey. We use a simplification of the process that serves as a framework

to follow a disciplined and measurable process. PF-PSP is an elective course

in the last year of the School of Engineering of Universidad de la República

in Uruguay. During the PF-PSP course, only levels 0 and 0.1 and the set of

templates of level 2.1 are taught (the latter only in Template experiments).

These levels also require minimal adaptation to the data collection process.

The PF-PSP course lasts nine weeks and uses the same eight development

projects used in the courses “PSP for engineers 1” and “PSP for engineers 2.”

In the first week (Week 1), the PSP0 (Base process) is taught, and the dynamics

of the practical work to be followed throughout the remaining eight weeks are

explained. The practical work consists of each student developing eight small

projects following the base process and recording the data in the PSP tool.

35

Students carry out the projects individually and consecutively. Project 2 does

not begin until Project 1 has been completed, and so on with the remaining

projects. From weeks 2 to week 9, one project is assigned per week. The

assignment consists of a professor sending the requirements of each project.

The delivery of each student must contain the code that solves the problem,

the test cases executed, and the export of the data that was registered in the

tool. Once the student delivers the solution, the professor reviews the delivery

and sends corrections to the student if necessary.

The schedule of the course is shown in Figure 3.5. This schedule undergoes

a modification in Template and Habitual experiments. In the Template ex-

periment, the design templates are introduced in the middle of the course. In

the Habitual experiment, the delivery of the habitual design representation is

required in the middle of the course. The adjustment to the specific schedule

in these cases is explained in detail in the chapters 6 and 7, corresponding to

Template and Habitual experiments.

Figure 3.5: PF-PSP course schedule

Students carry out the projects at home and have a professor assigned who

will be responsible for assigning the projects, correcting them, and answering

questions. Projects are small in size and of low and similar complexity, so the

design phase refers to detailed design (i.e., identifying classes, attributes, op-

erations, program scenarios, status changes, and pseudo-code). Seven projects

deal with numerical and statistical analysis problems, and one deals with a

text-processing problem (project 2). Table 3.1 provides a brief description of

the projects.

36

Table 3.1: Brief description of the programs

Proy. Description
1 Calculate the average and standard deviation of a set of num-

bers stored in a linked list
2 Size-measuring software
3 Calculate the linear regression parameters b0 and b1, as well

as the correlation coefficients r and r2 given a set of pairs of
values

4 Calculate the relatives of a class for the ranges: very small,
small, medium, large, and very large

5 Numerically integrating a function using Simpson’s rule
6 Calculate the t-student function: find the value of x for which

integrating the function t from 0 to x gives the result p
7 Calculate the correlation between two sets of numbers X and

Y and the significance of the correlation. Calculate the linear
regression parameters b0 and b1 for a set of n data pairs, give
an estimate XK, calculate the projection YK, where YK = b0
+ b1*XK. Finally, calculate the 70% prediction interval for
that estimate

8 Calculate the estimation parameters (b0, b1, b2, b3) for mul-
tiple regression with three variables

37

Chapter 4

The family of experiments

In chapter 2, we present related works to the design practice and the experi-

mental works on how students design software in detail. Our goal is to know

how graduating students practice software detailed design. To achieve this, we

proposed to study the effort they dedicate to software design, how they usually

represent their software designs, and the effect of the design on the quality of

the software produced. In this sense, we carried out a family of experiments.

4.1 Goals

The aim of the family of experiments is to know how graduating students

design detailed software in the context of a course at the School of Engineering

of Universidad de la República in Uruguay

We designed and conducted a family of experiments. The family was com-

posed of seven experiments conducted from 2012 to 2018.

The Baseline experiments, carried out in 2012, 2013, and 2014, were aimed

at learning about the effort dedicated to software design by graduating stu-

dents, how is the effort variation throughout the different projects, how is

the effort variation between students, and what is the students’ perception

of the problems they face. They also seek to confirm that the experimental

framework used is suitable for future experiments.

The Template experiments, carried out in the years 2015, 2016, and 2017,

were aimed at knowing the effect and the effort of design on software quality

when students represent the design using a specific set of design templates.

Finally, in 2018, we conducted an experiment called Habitual to find out

38

how students usually design and the effect on software quality when they de-

liver their usual design representation to the teachers. This experiment does

not use design templates to avoid biasing the students’; usual practice. As we

mentioned in chapter 1, the Habitual experiment had a replication in 2021.

However, this replication is not described in the thesis since its results are still

under analysis.

Fig. 4.1 summarizes the family of experiments. Each rectangle represents

an experiment horizontally aligned to the experimental objective. The figure

also shows the execution order of the experiment (execution year) and the

number of students involved.

The Baseline experiment was initially carried out in 2012 and replicated

with the same objectives and experimental design in 2013 and 2014. The

experiment Template was initially carried out in 2015 and replicated with

the same objectives and experimental design in 2016 and 2017. Finally, the

Habitual experiment was carried out in 2018.

Figure 4.1: Family of experiments

39

4.2 Experimental context

Each experiment in the family of experiments corresponds to a PSP Principles

and Foundations course (PF-PSP). Students who participated in one course

do not participate again in a later course. The teachers participating were the

same throughout the seven experiments.

The experiments involved graduating students of the School of Engineer-

ing of Universidad de la República in Uruguay. Their participation in the

experiment is through voluntary enrollment in the PF-PSP course.

All the students have passed the courses Programming 3, Programming

4, Programming Workshop, and Software Engineering. These courses teach

software design artifacts and techniques, programming languages, algorithms,

and fundamental software engineering concepts. We consider the group of

students who participated to be homogeneous since they are students at a

similar stage in the career.

The students gave their written consent for the data they recorded during

the process to be used in research work without ever revealing their identities.

4.3 Experimental design

In order to study how students design, we collected accurate data on how

students develop software. In particular, we are interested in knowing the

effort dedicated to each phase, the defects removed in the unit testing phase,

and how students represent their designs. For the data from the students to

be comparable, a pre-established process is needed to collect measurements

during its execution. We decided to use the PSP framework (Base process) to

achieve the collection of these data as already presented in chapter 3.

To have quality data, it is essential that students collect their measurements

properly and can follow the process correctly. The proper use of the PSP

is achieved through practice, developing some projects (Humphrey, 2005b).

Although the PF-PSP uses only PSP0 and PSP0.1 (and therefore, it is easier

to learn), we believe it requires some practice to be adopted. For this reason,

our experimental design implies that students develop eight projects. During

the first or second project (depending on the subject), they already follow the

process adequately.

People have high variability when applying software development tech-

40

niques or processes (Humphrey, 2005b). In the presence of high variability

on subjects, a within-subjects design is preferable to a between-subjects ex-

perimental design (Senn, 2002). In repeated-measures experiments, subjects

serve as their own control (Jones and Kenward, 2014). This reinforces the

choice of our design in which each student carries out various projects (i.e., a

repeated-measures design).

Repeated-measures designs have a particular problem: the period by treat-

ment interaction. Period by treatment interaction refers to the particular

conditions present in the different periods that could affect the treatments,

and so the dependent variable (Jones and Kenward, 2014; Senn, 2002). Our

design is a repeated-measures design with eight periods (one period for each

project the students develop).

One source of period-by-treatment interaction in our experiment could be

the learning effect. Students improve the quality of their production due to

the knowledge they acquire every time they finish one project and move to the

following one. Both our experiment design and our analysis contemplate this.

Another source of period-by-treatment interaction is the different programs

the students develop. That is, each program’s difficulty or other particularities

could affect the dependent variables we want to study.

In our design, we cannot distinguish between these two periods by treat-

ment interaction (learning effect and program). Both effects are confounding

with the period.

Repeated-measures designs also have benefits. An important one is that all

other things being equal, repeated-measures designs have more power to detect

effects than independent designs (between-subjects designs) (Field, 2018). So,

in a repeated-measures design, fewer subjects are needed to have the same

power. As our PF-PSP course has a few students each year, this is (again) a

good design considering the course’s characteristics.

As mentioned in chapter 3, the nature of project 2 differs from the other

projects. In project 2, students must build a size-measuring software, while

in the remaining projects, they must produce mathematical solutions (stan-

dard deviation, Simpson’s rule, correlation parameters). Previous studies show

that the quality of program 2 is usually lower than that of the other projects

(Vallespir et al., 2014). Therefore, we excluded the data of this project from

the analyzes presented in this thesis. However, it is relevant to mention that

project 2 is an integral part of our course, and it is used by students from

41

projects 3 to 8 to count the lines of code they produce in each project.

Some response variables are common to the different families of exper-

iments. External quality is common to all three family experiments. We

measure the external quality as the number of defects found in the unit test

phase (UT) per every thousand lines of code (defect density). The conse-

quence of high defect density in UT in software engineering is typically seen as

defect-fixing or rework effort incurred in projects, which results in poor quality

products. The effort dedicated by the students to the design and code phases

is another response variable, in this case, common to the Baseline and Tem-

plate experiments. The effort is measured as the time in minutes the student

dedicates to the phase in question.

The remaining response variables are described in each experiment because

they depend on each experiment’s specific objectives.

42

Chapter 5

Baseline experiments

The Baseline experiment process and the subsequent experiments of the fam-

ily were carried out following the experimental design and conduction steps

proposed by Wohlin et al. (2012).

5.1 Definition

The aims of Baseline experiments are to know the effort dedicated to soft-

ware design by graduating students, how is the effort variation throughout

the different projects and how is the effort variation between students. Such

effort is measured as the time spent thinking of a solution for the problem and

constructing that solution before coding.

In addition, we also want to investigate software quality during the projects.

Proving that software quality does not change for the mere fact of carrying

out seven consecutive projects lets us establish and validate the experimental

framework for the subsequent experiments of this family. Finally, we are in-

terested in getting to know the students’ perception of the problems they face

(related to design).

Our interest is that students solve each exercise in their own way, applying

their skills and knowledge. The course does not require students to hand in

the completed design. We believe that a mandatory delivery of the design

would cause students to exert more effort than they would to produce it; thus

biasing our research.

The PSP proposes, as one of the quality measures of the process, indicating

the quality of the design as an indirect measure, the ratio between the detailed

43

design time and the coding time. Empirically, it has been shown that when this

ratio is close to 1 (equal design and coding time), products of better quality

are produced than those produced when this ratio is far from 1 and developers

use more time in coding than in designing (Humphrey, 2000, 2005b). We are

interested in knowing this relationship in the projects carried out by graduating

students of our career.

5.2 Planning: research questions and experi-

mental design

In the Baseline experiment, we propose the following research questions and

the corresponding research hypotheses:

RQ1: What is the ratio between the effort spent designing and the

effort spent coding?

H1.0: The time spent on designing equals the time spent on coding.

H1.1: The time spent on designing does not equal the time spent on coding.

Empirically, it has been shown that when the ratio between the detailed

design time and the coding time is close to 1 (equal design and coding time),

products of better quality are produced than those produced when this ratio

is far from 1 (Humphrey, 2005b).

To learn more about the variability of the time used in Detailed Level De-

sign (TDLD) and time used in Coding (TCOD) ratio, between students and

from each student across projects, we added the following two questions:

RQ2: What is the variability of the ratio (TCOD/TDLD) among

students?

RQ3: What is the variability of the ratio (TCOD/TDLD) across the

projects performed by each student?

To know if students produce better quality products as they develop the

projects:

RQ4: Is there any improvement in product quality as students de-

velop the projects?

44

H2.0:Defects density in UT is the same as the student develops projects.

H2.1: Defects density in UT is not the same as the student develops projects.

Finally, we want to know how students feel about the design activity:

RQ5: What is the student’s perception of software design?

Baseline experimental design is a repeated measures design, where stu-

dents apply the base process along eight projects (see chapter 3).

5.3 Operation

A total of thirty-six students participated in the course. However, for the

analysis in Baseline experiments only 35 were considered: 12 in 2012, 10 in

2013 and 13 in 2104. All students developed the same eight projects in the

same order. Figure 5.1 presents the Baseline design.

Figure 5.1: Baseline experiment design

In each period, there is a different project to develop, which can affect

the dependent variables as explained in chapter 4. As already mentioned, the

effect of the different projects is confused with the learning effect.

Applying the base process in eight projects reduces the effect of the stu-

dents’ intrinsic variation. These variations can occur due to motivation, or a

particular state of mind during a specific period, among other factors. In addi-

tion, as already mentioned in chapter 4, repeated measures allow the student

to incorporate the process. This normally occurs in the first or second project

45

developed.

The response variables are time spent designing the solution, time spent

coding, defect density (defined in chapter 4), and student perception of the

design (measured through the PIP (personal improvement process) and final

course questionnaire).

5.4 Analysis and interpretation

To answer RQ1: “What is the relation between the effort dedicated to design-

ing and the effort dedicated to coding?”, we analyze the following hypothesis

test:

H1.0: Median (TCOD) <= Median (TDLD)

H1.1: Median (TCOD) > Median (TDLD)

The data to be used consists of seven pairs of values (TDLD, TCOD) per

student, since we considered seven projects per student. Initially, a total of 36

students participated, so we have 252 pairs of values.

We analyzed the existence of outliers using a box and whisker diagram.

Twenty-one outliers belonging to eight different students are detected and

each outlier’s data is analyzed manually one by one. From this analysis, we

detected that one of the students has data that reflect that he did not follow

the established process properly. Therefore, we removed the seven pairs of

data from that student from the analysis (these data have three outliers). The

analysis of the remaining outliers shows no errors, so we have a total of 245

pairs of data and 35 students in our analysis.

We analyzed the total time in design and the total time in code for each

student, considering the seven projects. Using the total time reduces the possi-

ble variation caused by the motivational effect of the student and the intrinsic

difficulty of a particular project. Therefore, we have a pair of data (TDLD,

TCOD) for each of the 35 students. The calculation for each pair of data is:

(
7∑

i=1

TDLDi,

7∑
i=1

TCODi) (5.1)

where TDLDi is the time spent in the design phase for project i, TCODi is

the time spent in the code phase for project i, and where i varies from 1 to 7.

Table 5.1 presents the 35 data pairs (TDLD, TCOD).

46

Table 5.1: Data pairs (TDLD, TCOD) in minutes

Sample TDLD TCOD Sample TDLD TCOD

1 388.40 635.80 19 169.10 536.00
2 10.28 305.10 20 224.28 829.60
3 87.03 744.10 21 198.00 486.00
4 248.28 745.90 22 240.66 288.40
5 209.50 566.60 23 182.46 547.10
6 26.36 440.40 24 98.93 471.50
7 203.58 554.90 25 52.23 570.80
8 108.62 650.60 26 162.53 569.20
9 663.90 942.70 27 120.00 754.38
10 210.50 838.30 28 128.10 1242.40
11 20.70 471.28 29 56.00 338.00
12 112.30 747.40 30 82.05 548.00
13 67.40 525.60 31 116.50 363.20
14 168.61 631.50 32 71.18 727.60
15 51.20 428.00 33 55.68 418.80
16 65.10 451.50 34 166.91 531.30
17 371.60 502.20 35 39.65 375.70
18 64.00 963.00

To determine the statistical test that best fits the problem to be solved,

the distribution of the data was previously studied. When applying the

Kolmogorov-Smirnov test, a significance value of 1.443e-15 is obtained, in-

dicating that the values do not fit a normal distribution.

Table 5.2 presents the median and the interquartile range of the 35 data

for TDLD and TCOD. The medians of TDLD and TCOD show a significant

difference, while in the dispersion of the data the difference is less. The values

obtained with the descriptive statistics give us an idea of the variability of the

students.

Table 5.2: median and the interquartile range (minutes) of the 35 data for TDLD
and TCOD

Median Interquartile range

TDLD 21.39 19.46
TCOD 84.66 39.21

Therefore, and because the sample size is small, we used the Wilcoxon’s

47

one-tailed for paired samples test (Gibbons and Chakraborti, 2011). The sam-

ples are paired since the sampled pairs (TDLD, TCOD) correspond to the same

student. For each student, the total time in design (Mdn = 21.39) did differ

significantly from the total time in code (Mdn = 84.66) considering projects

1 to 8, p-value = 5.821e−11. That is, students spend more time coding than

designing.

So, to find out how much more or what the relationship is between these

times (TCOD = N*TDLD), we proposed to apply the test again but now

multiplying TDLD by an N value varying between 2, 3 and 4 until the null

hypothesis is not rejected. The execution of the statistical tests throughout

the thesis is carried out by the author of the thesis using the R tool. One of the

thesis tutors validated them using the SPSS tool for the Baseline experiment

and Jamovi tool for Templates and Habitual experiments.

H1.0: Median (TCOD) <= Median (N*DLD)

H1.1: Median (TCOD) > Median (N*TDLD)

The results indicate that our students generally spent at least three times

more coding than designing. For N=2 and N=3 the total time in design did

differ significantly from the total time in code (p-value = 8.57e−07 and p-value

= 0.0056 correspondingly). For N=4, the null hypothesis cannot be rejected

(p-value = 0.35, so the coding time is greater than three times the design time.

RQ2: What is the variability of the ratio (TCOD/TDLD) among

students?

To determine the statistical test that best fits the problem to be solved,

we studied the data distribution, checking that some students’ values do not

fit a normal distribution. Then, to know the variation among students, we

applied the Kruskal-Wallis non-parametric test. We analyzed each student’s

ratio (TCOD/TDLD) considering the seven projects. Therefore, we have seven

data (TDLD/TCOD) for each of the 35 students.

The hypotheses for the test are:

H2.0: The median of the ratio (TDLD/TCOD) for all of the 35 students is the same

H2.1: There is a at least one median from one student that it is different

The Kruskal-Wallis H test showed that there was a statistically significant

difference in (TCOD/TDLD) ratio among students (Chi square = 151.68, p <

0.001, df = 34).

48

To analyze the variation among students graphically , we used a boxplot

and histogram diagram presented in Figure 5.2 and in Figure 5.3 respectively.

For both diagrams we plotted 35 values, corresponding to each of the 35 stu-

dents. For each student, the average TCOD/TDLD relation of the seven

projects is calculated as:

(

∑7
i=1 TCODi∑7
i=1 TDLDi

) (5.2)

Figure 5.2: boxplot of the average TCOD/TDLD of each student

The boxplot diagram clearly shows the vast variation between students in

the relation of effort spent on code and design. For all students, this varies

from 1.20 to 29.68. The interquartile range (IQR) is 5.39, quartile 1 is 3.06,

quartile 3 is 8.45 and the median is 6.97. This indicates a significant dispersion

in the data.

The histogram diagram allows us to observe the variability among the 35

students in a different way. It can be observed that 23 students (65%) have

a TCOD/TDLD ratio between 1 and 6. Also, the histogram shows that 31

students (88%) have a TCOD/TDLD ratio between 1 and 11.

Both diagrams allow us to observe that students behave differently and

are highly variable between them concerning the relationship of effort between

coding and design.

49

Figure 5.3: frequency of the average TCOD/TDLD of each student

RQ3: What is the variability of the ratio (TCOD/TDLD) across the

projects performed by each student?

In order to know the individual variation we analyzed each student’s

TCOD/TDLD ratio in the seven projects. This variation can be analyzed

from the value of the first quartile, third quartile and the interquartile range

of each student presented in Table 5.3.

It can be seen that the individual variation is very uneven. Some students

such as 1, 9, 17, 20 and 22 have little variation throughout their projects. In

these cases we could say that students are “consistent” in relation to the time

they spend on design and coding in the different projects. In other cases, for

example students 2, 6, and 11 present a significant (for example, with an IQR

of 20.63) variation in the TCOD/TDLD ratio during the performance of their

projects.

Figure 5.4 shows the variation in TCOD/TDLD ratio throughout the seven

projects for students 1, 2, 6, 9, 11, 17, 20, and 22. This also clearly shows that

some students are more consistent (predictable) and others are not regarding

the TCOD/TDLD ratio.

50

Table 5.3: Q1, Q3 values and IQR per student in the seven projects

St. 1 2 3 4 5 6 7 8 9

Q1 1.16 23.80 5.67 2.58 1.88 15.17 2.26 4.07 1.46
Q3 2.64 44.42 11.71 4.54 4.66 24.97 4.41 8.55 1.84

IQR 1.49 20.62 6.04 1.96 2.77 9.79 2.15 4.49 0.38
St. 10 11 12 13 14 15 16 17 18

Q1 3.07 14.37 5.23 5.71 2.78 6.46 6.93 1.00 13.17
Q3 5.09 32.13 12.07 10.04 5.53 9.17 8.45 1.56 17.05

IQR 2.03 17.76 6.84 4.33 2.74 2.72 1.52 0.56 3.88
St. 19 20 21 22 23 24 25 26 27
Q1 2.02 3.38 1.71 1.25 2.46 4.72 6.97 2.55 3.51
Q3 4.28 4.00 3.58 1.91 3.98 7.07 12.96 4.67 11.17

IQR 2.26 0.61 1.87 0.66 1.52 2.35 5.99 2.12 7.66
St. 28 29 30 31 32 33 34 35
Q1 5.98 4.20 4.30 3.03 5.75 5.45 2.00 7.70
Q3 14.81 7.64 13.03 4.85 12.24 10.11 5.67 14.42

IQR 8.83 3.45 8.73 1.82 6.49 4.66 3.67 6.72

Figure 5.4: TCOD/TDLD ratio variation for eight students throughout the seven
projects

RQ4: Is there any improvement in product quality as students de-

velop the projects?

51

To answer RQ4 we used defect density in the UT phase as the response

variable.

The research hypotheses are as follows:

H4.0: Median(Defect density in UT i) = Median (Defect density in UT j)

H4.1: Median(Defect density in UT i) <> Median (Defect density in UT j)

i are the students during projects 1, 3, and 4, and j are the same students during projects 5

to 8.

We studied if there is a difference in software quality between group 1

(projects 1, 3, and 4) and group 2 (projects 5 to 8).

Each sample corresponds to the average defect density in UT of a student.

During the development of the seven projects, students could improve due

to a learning effect based on repetition of programming or due to an analysis

of their own process data (that, at some point it is also a learning effect). For

example, they could find that their designs are not as good as they could be,

either looking at their designs or analyzing the time spent in design compared

to coding.

To know if such improvement exists, we studied the defect density of group

1 (projects 1, 3, and 4) and group 2 (projects 5 to 8). Verifying that the quality

of the software does not vary between group 1 and group 2 allows eliminating

the learning effect.

We have 35 samples corresponding to the 35 participating students. Each

sample consists of the data pair (Def. density UT i, Def. density UT j) where

i corresponds to group 1 projects and j to group 2 projects. For each student,

the data pair (Def. density UT i, Def. density UT j), is calculated as follows:

(
1000 ∗

∑4
n=1 #defectsUTn∑4
n=1 #LOCn

,
1000 ∗

∑8
n=5 #defectsUTn∑8
n=5 #LOCn

) (5.3)

Where n varies between 1, 3, and 4 for group 1 and between 5, 6, 7, and

8 for group 2. The samples are paired because they correspond to the defect

densities in UT of the same student. Therefore, the statistical test to be

applied is the one-tailed Wilcoxon test for paired samples.

Table 5.4 presents the median and the interquartile range for group 1 and

group 2.

Defects density in UT for students in the group 1 (Mdn = 28.0) did not

differ significantly from students in the group 2 (Mdn = 22.6), V = 429 and

p-value = 0.06249. That is, we cannot state that the quality of the software

52

Table 5.4: median and the interquartile range (#def/kLOC)

Median Interquartile range

group 1 28.0 21.3
group 2 22.6 16.1

developed between group 1 projects and group 2 projects is different. There-

fore, there is no learning effect or improvement in the quality of the products

as students develop the projects.

RQ5: What is the student’s perception of software design?

To answer RQ5 we analyzed all PIP records concerning the students’ views

of the design and the final questionnaire of the course. Students complete PIP

records on a mandatory basis for projects 2 through 8. Only ten PIP records

(out of 245 PIPs) from different students describe design-related problems.

The records presented in Table 5.5 show how in a specific project, these

students realized that they did not spend enough time in the early stages of

development and the effects of this.

From the description of the PIPs, we can extract common problems iden-

tified by the students. For that, we used inductive coding (assign labels repre-

senting important and recurring themes in each PIP) and analyzed the content

with a qualitative analysis. The coding was made by the author of this thesis

and Diego Vallespir independently. During a consensus meeting, criteria were

unified, resulting in the final tags.

We observed that most of the students describe the problems in a problem-

consequence way; for example: spending little time on design causes an increase

of time in the testing phase. So, we tagged three problems: too little time

spent on design, lack of understanding of the problem during design, and not

thinking about the solution to the design during the design phase; and six

consequences: too many defects detected in testing, costly defects detected in

testing, avoidable defects in testing, resolution of the design during the coding

phase, too much time spent in coding, and testing and rework in coding and

testing.

We also analyzed part of the questionnaire conducted in the last course in

the sub-family (14 participants). The questionnaire asks about the student’s

academic and professional information and the application of the development

process. We analyzed the questions presented in Figure 5.5 that are the ones

of interest for this thesis.

53

Table 5.5: PIP Description

PIP Description

“The problem I encountered was that I spent too little time on the planning
and design stage, so the coding and testing stage took more time as many of
the problems could have been prevented at those stages.”
“The problem was not understood at the design stage, wich led to further
delay at the coding stage when looking for the best solution at the time.”
“There was a poor follow-up on the description of the Gaussian method, which
led to problems in the implementation.”
“I had problems with interpretation and design; I wasted a lot of time to be
able to solve a defect that I found only at the UT stage.”
“In the planning and design stage I read the assignment and think I under-
stand what I have to do, but in testing I find problems that show I didn’t
understand.”
“I continue to have attention errors that cost me a lot of rework time. I feel
that I spend too little time on early stages of the project such as planning and
design which is then reflected in costly mistakes.”
“I’m making several mistakes because of not thinking well before coding. The
solution for this is to make a detailed design, in order to define each method
to be developed with its variables. This is going to generate more design time,
but it decreases coding time and the number of errors injected.”
“Large number of bugs (in this case related to algorithm counts) that are
discovered only at the testing stage.”
“I had logic problems in the functions. I should stop more at the planning and
design stages to understand the algorithms in more detail.”
“I think I didn’t take enough time to thoroughly understand the project at
the design stage. This caused several inconveniences at the time of coding
and testing, as I only realized at those stages that I had not understood the
project, and wasted time and rework, which I could have avoided.”

54

Regarding question 1, all 14 student who participated in the last course in

the sub-family answered that they performed pseudo-code during the design

phase. In addition, only 1 of the 14 also reported relying on class diagrams

and collaboration diagrams. For question 2, 13 affirmative responses were

obtained, while one student considered that not enough.

Figure 5.5: Questions in the questionnaire

5.5 Discussion

Baseline experiments showed that students spend (usually) little time on

design compared to coding (RQ1). In fact, we discovered that students spent

more than three times as much on coding as on design. We suppose that

students design during coding. This, as a known bad practice, probably causes

several quality problems and bad designs. Also, we confirmed there is no

improvement in the quality of the software developed (learning effect) as the

students developed the seven projects. This, allows us to confirm that the base

process is a good framework for the following experiments of the family.

We also showed that comparing students they behave differently and that

these differences are huge (RQ2). Most students (88%) have a TCOD/TDLD

ratio between 1 and 11. Nevertheless, some students have a TCOD/TDLD

ratio higher than 15. Looking at each student’s data across the seven exercises

(RQ3), they generally vary considerably their TCOD/TDLD ratio across the

different exercises. That is, their ratio behavior is not predictable, among

students but for one student in different exercises. As we already mentioned,

empirical evidence shows it is reasonable to expect a TCOD/TDLD ratio near

1.

Considering quality (measured as defect density in testing), we found that

students did not produce better quality products in the latest exercises com-

pared with the first ones (RQ4). That is, students did not find ways to improve,

looking at their products (intermediate as design or final as tests or code), or

55

their process data.

PIP records showed how some students (10/35) can detect the problems

and their consequences of not having a design (RQ5). We believe that there is

“anxiety” to start coding and finish the programming exercise that interferes

with spending enough time thinking about solutions to the problem. However,

an even more serious problem is that a significant number of students (25/35)

cannot detect problems with concerning software design.

The questionnaire results (RQ5) show that 100% of the students say that

they perform pseudo-code, and furthermore 13 out of 14 students consider

that at school they are taught how to design. It is a bit implausible that they

have done pseudo-code since the design time records are 2 or 3 minutes in

many cases. Apart from that, though, the most interesting data is that only

one student relied on other design artifacts, revealing that there is no solution

elaboration during the process’s design phase.

So, an overview of our study gives us the following understanding of stu-

dents’ software design. They do not spend enough time on designing; some

of them found that problem (recorded in PIPs), but apparently, they do not

know how to solve it. That is, to spend more time on design, one should know

what to do (e.g. is not just a matter of spending time without doing anything).

In the questionnaire we found that they only (at least 34 of the 35 students)

used pseudo-code as an artifact of software design. So, apparently they really

do not know what they should do. Moreover, they think they learned to design

at university. Furthermore, their quality does not progress, and they generally

cannot relate this to design problems.

56

Chapter 6

Template experiments

6.1 Definition

The aims of the Template experiment are to know the effect on software

quality when students represent their designs using templates and to study

the effort they dedicate to the design activity. Templates are documents with

a predefined structure in which students have to represent their designs.

The templates we used allow describing the detailed design of a project. A

brief description of each of them is presented below:

• Operational template: specifies the interaction between the program and

the users. The content may look similar to a use-case description.

• Functional template: the behavior of the program’s invocations and re-

turns are specified in this template. Variables, functions, classes and

methods are described. Figure 6.1 presents an example of the use of this

template for project 6.

• Logical template: in this template, the pseudocode of each method that

appears in the functional template is registered.

• State template: it can be used to define the transactions and conditions

of the program’s internal states. The content is similar to state machine

diagrams.

The selected templates emerge from the Personal Process (PSP) framework

(Humphrey, 1995). The PSP considers a design complete when it defines all

four dimensions (internal-static, internal-dynamic, external-static, external-

dynamic). The way to correspond to each of the four dimensions is using

57

Figure 6.1: Functional Template

the four templates (Operational, Functional, Logical, State). Completing the

four templates allows describing the designs entirely and precisely (Humphrey,

1995). Several studies have shown an improvement in developer performance

with templates insertion (Hayes and Over, 1997; Prechelt and Unger, 2001;

Gopichand et al., 2010).

6.2 Planning: research questions and experi-

mental design

In the Template experiments, we propose the following research questions

and the corresponding research hypotheses:

RQ1: Is there an improvement in the quality of the products

when students represent the design using templates?

RQ2: What is the relation between the effort dedicated to de-

signing and the effort dedicated to coding? Are there any variations

in effort when students use templates?

To answer RQ1, we analyzed each project’s external and internal quality

of the software developed. To study the external quality, we considered the

58

following research hypothesis:

H1.0: Representing software design using design templates, does not change the software

defect density in unit testing

H1.1: Representing software design using design templates, changes the software defect den-

sity in unit testing

To study the internal quality, we descriptively analyzed certain code smells

introduced by students when producing software (Fowler, 2018). We are inter-

ested in knowing if the use of templates to represent software design prevents

students from incurring some type of code smells.

To answer RQ2, we studied the time spent on the design and code phases.

We analyzed the following research hypothesis:

H2.0: The time spent designing equals the time spent coding.

H2.1: The time spent designing does not equal the time spent coding.

The design is a repeated measures design with one factor (the base process)

and two levels: with templates to represent the software design and without

templates to represent the software design. Response variables considered

in this experiment are internal and external software quality, and the effort

dedicated by the students to the design and code phases. As we already

mentioned in Baseline experiment (see chapter 5), to evaluate the external

quality, we considered the defect density in the phase of unit test of the base

process. To evaluate the internal quality, we analyzed the code smells that

which students incur. Knowing the number of code smells present in the

product’s source code gives us an idea of the maintenance costs in the future

(Fowler, 2018).

6.3 Operation

The experimental design is presented in Figure 6.2. All students applied the

base process in projects 1 to 4, in which submitting the design representa-

tion to the teachers is not required. When students finished project 4, they

were divided randomly into two groups: the control group and the experi-

mental group. The control group, called “without templates to represent the

design” (noTRD), continued applying the base process throughout projects 5

to 8. The experimental group, called “with templates to represent the design”

59

Figure 6.2: Experimental design

(TRD), continued applying the base process and started to use and deliver the

templates from projects 5 to 8.

The TRD group attends a theoretical class where the four design templates

are presented and explained (and examples are shown). The submission of the

design representation for this group was mandatory (except for the state tem-

plate which is optional). When a student submitted the project, the assigned

teacher checked the completeness of the templates and the consistency with

the code. In this way, students designing a solution and then coding another

one is reduced. However, the fact that the design is complete and verifiable is

not controlled.

Our experimental design allows us to study the groups’ behavior before and

after using the templates. On the one hand, we proposed to analyze the TRD

(representing design using template) and noTRD (representing design without

template) groups during projects 1 to 4 to confirm they are homogeneous

groups; that is, the quality of the software developed is similar in both groups

from programs 1-4 (when students do not use templates in any of the groups).

On the other hand, we were interested in knowing if students who use

templates develop better-quality software. We proposed studying the groups

TRD and noTRD during projects 5 to 8 to know if representing the design

using templates has some effect on the software quality.

The experiment was replicated in the course for three years: 2015, 2016,

and 2017. The number of students that participated in the experiment was:

25, 17, and 19, respectively.

Out of the 61 students participating in the experiment, 29 are part of the

TRD group, and 32 of the noTRD group. This unbalance between the groups

60

is due to the unbalance generated when students were assigned to the TRD

and noTRD groups in each of the three replications.

6.4 Analysis and interpretation

To answer RQ1: “Is there any improvement in the quality of the products

when students represent the design using templates?” we analyzed the quality

from the internal and external points of view.

6.4.1 External quality

To analyze the external quality, we defined the following research hypotheses:

H1.0: Representing software design using design templates does not change the software de-

fect density in UT

H1.1: Representing software design using design templates changes the software defect den-

sity in UT

We analyzed the external quality in two ways: intra groups and between

groups. Between groups refers to knowing if there is a significant difference

in the quality between the TRD group and the noTRD group. Intra group

refers to studying the quality of the software in the TRD group before and

after using templates.

Between groups

The analysis between groups consists, on the one hand, of analyzing the

TRD and noTRD groups during projects 1, 3, and 4; and on the other hand,

of analyzing the TRD and noTRD groups during projects 5 to 8.

During projects 1, 3, and 4, both groups apply the base process, so compar-

ing the software quality of both groups during those projects allows confirm-

ing that they are homogeneous groups, and thus establishing the experimental

frame. For this analysis, we defined the following hypothesis of investigation:

H1.0: Median (Def. density in UT of noTRD) = Median (Def. density in UT of TRD)

H1.1: Median (Def. density in UT of noTRD) <> Median (Def. density in UT of TRD)

For each student, Def. density UT is calculated as defined in chapter 5

61

During the analysis, we detected that the data from a student of the TRD

group was inaccurate, that is, that the process followed had not been accurately

recorded. So, data from that student was eliminated from the analysis and then

there were 28 students remaining as part of the TRD group.

The descriptive statistics of the TRD and noTRD groups considering

projects 1, 3 and 4 are presented on Table 6.1.

The values of the median and interquartile range indicate there seems not

to be significant variability between the groups.

To confirm this, we applied the Mann-Whitney test for independent sam-

ples since they correspond to different students.

Table 6.1: Median and interquartile range (#def/kLOC) in projects 1, 3 and 4

Median Interquartile range

TRD 23.47 25.54
noTRD 22.69 28.9

The total time in design for students in the TRD group (Mdn = 23.47) did

not differ significantly from students in the noTRD group (Mdn =22.69) when

considering projects 1, 3, and 4, W = 512 and p-value = 0.3467. This result

does not allow us to affirm that there is a difference in quality between TRD

and noTRD groups. We can assert that both groups have a similar or homo-

geneous behavior. This gives us more confidence to study the software quality

between the TRD and noTRD groups after using of templates, eliminating

the possibility that the result is due to the behavior of the groups rather than

to using or not using templates.

Studying the TRD and noTRD groups during projects 5 to 8 aims to know

if representing the design using templates has some effect on the software qual-

ity. For the analysis between groups during projects 5 to 8, we defined the

following hypothesis of investigation:

H1.0: Median (Def. density in UT of noTRD) = Median (Def. density in UT of TRD)

H1.1: Median (Def. density in UT of noTRD) <> Median (Def. density in UT of TRD)

Table 6.2 presents the average defect density in UT for the 28 students of

the TRD group and the 32 students of the noTRD group in projects 5 to 8.

The values of the median and of the interquartile shown in Table 6.3 in-

dicate low variability of the groups. That is to say, the use of templates by

62

Table 6.2: Average defect density in UT for the students of the TRD group and
noTRD group in projects 5 to 8

Group Student Defect density Group Student Defect density

TRD 1 8.83 noTRD 1 27.98
TRD 2 23.16 noTRD 2 24.86
TRD 3 33.78 noTRD 3 23.59
TRD 4 40.76 noTRD 4 14.35
TRD 5 83.33 noTRD 5 21.37
TRD 6 16.10 noTRD 6 12.19
TRD 7 5.74 noTRD 7 22.79
TRD 8 13.02 noTRD 8 43.33
TRD 9 28.07 noTRD 9 27.02
TRD 10 12.5 noTRD 10 36.46
TRD 11 9.49 noTRD 11 38.98
TRD 12 19.70 noTRD 12 16.80
TRD 13 11.70 noTRD 13 37.65
TRD 14 36.85 noTRD 14 18.93
TRD 15 20.53 noTRD 15 18.25
TRD 16 22.93 noTRD 16 22.98
TRD 17 11.80 noTRD 17 47.12
TRD 18 37.45 noTRD 18 30.21
TRD 19 26.05 noTRD 19 35.03
TRD 20 5.03 noTRD 20 27.84
TRD 21 23.35 noTRD 21 12.22
TRD 22 17.36 noTRD 22 24.57
TRD 23 10.08 noTRD 23 15.65
TRD 24 42.75 noTRD 24 41.17
TRD 25 33.43 noTRD 25 44.89
TRD 26 28.63 noTRD 26 20.35
TRD 27 44.02 noTRD 27 38.80
TRD 28 23.88 noTRD 28 51.54

noTRD 29 7.85
noTRD 30 27.89
noTRD 31 24.24
noTRD 32 25.49

63

the TRD group does not produce a significant difference in the defect density

compared to the noTRD group not using templates.

Table 6.3: Median and the interquartile range (#def/kLOC) in projects 5 to 8

Median Interquartile range

TRD 23.05 21.2
noTRD 25.17 16.9

To study the behavior of both groups, we used hypothesis tests. The

samples are different because they correspond to different students; thus, the

Mann-Whitney test is applied.

The defect density for students in the TRD group (Mdn = 23.05) did not

differ significantly from students in the noTRD group (Mdn = 25.17) when

considering projects 5 to 8, W = 354 and p-value = 0.165. Thus, we cannot

affirm that the students who use the templates manage to develop software

with fewer UT defect density than students who do not use templates.

Intra groups

As already mentioned, intra groups refers to knowing if students of the

TRD group improve the software quality after using templates to prepare the

design. In order to know this, the defect density in UT from the TRD group is

analyzed in projects 1 to 4 (without project 2) and projects 5 to 8. Studying

the behavior of the same group allows knowing if there is a change in the

software quality after using templates.

We defined the following research hypotheses:

H1.0: Median (Def. density in UT of TRD134) = Median (Def. density in UT of TRD58)

H1.1: Median (Def. density in UT of TRD134) <> Median (Def. density in UT of TRD58)

being TRD134 are the students of TRD group during projects 1, 3, and 4; and TRD58 are

the same students of TRD group during projects 5 to 8.

Table 6.4 presents the defect density in UT for the students of the TRD

group in projects 1, 3, and 4, and for the same students in projects 5 to 8.

The descriptive statistics presented in Table 6.5 indicate some variability

in defect density. Even though the median is similar, it seems that using

templates (after project 5) to represent the design achieves products with less

defect density.

64

Table 6.4: Defect density in UT for the students of the TRD group in projects 1,
3 and 4, and in projects 5 to 8

Group Student Defect density 1,3 and 4 Defect density 5 to 8

TRD 1 2.22 8.83
TRD 2 7.22 23.16
TRD 3 35.33 33.78
TRD 4 14.24 40.76
TRD 5 95.74 83.33
TRD 6 17.85 16.10
TRD 7 10.14 5.74
TRD 8 21.18 13.02
TRD 9 15.54 28.07
TRD 10 39.80 12.5
TRD 11 13.79 9.49
TRD 12 18.31 19.70
TRD 13 10.23 11.70
TRD 14 60.60 36.85
TRD 15 32.60 20.53
TRD 16 25.83 22.93
TRD 17 51.09 11.80
TRD 18 48.78 37.45
TRD 19 39.63 26.05
TRD 20 15.56 5.03
TRD 21 30.70 23.35
TRD 22 25.77 17.36
TRD 23 9.72 10.08
TRD 24 32.71 42.75
TRD 25 10.05 33.43
TRD 26 42.70 28.63
TRD 27 16.87 44.02
TRD 28 102.04 23.88

Table 6.5: Median and the interquartile (#def/kLOC)

Project Median Interquartile range

1, 3, and 4 23.47 25.5
5 to 8 23.05 21.2

65

To statistically study the data, we applied the Wilcoxon test (signed rank

test) for paired samples (because for this analysis the data come from the same

students).

Defects density in UT for students in the TRD group in projects 1, 3 and

4 (Mdn = 23.47) did not differ significantly from the same students in projects

5 to 8 (Mdn = 23.05), V = 138 and p-value = 0.1438. This indicates that

we cannot affirm that students improve the quality of their software by using

design templates.

6.4.2 Internal quality

To evaluate the internal quality, we analyzed those code smells introduced

by students when developing the course projects. The aim of this analysis is

to investigate if the use of design templates prevents students from incurring

certain code smells.

The code smell types depend on the programming language. As students

can choose the language in which they develop their projects, this analysis

has to be done by considering the different languages used. To do an initial

analysis that added value to our research, the students who developed their

projects with Java, C#, C, C++ and Ruby were selected, excluding those

developed with PHP and Python. We excluded PHP and Phyton because

they do not have many code smells in common with the other languages. If we

had added PHP and Python, the number of code smells to analyze would have

been reduced too much. So, both languages were excluded from this initial

analysis. This left a total of 45 students for the analysis: 19 from 2015, 14

from 2016, and 12 from 2017.

To detect the code smells, the tool SonarQube1 was used, since it is a free-

software tool for a variety of programming languages, which presents constant

updates for the community and vast documentation, among others.

We selected 16 code smell types for the analysis. These are common for the

programming languages we chose and are detectable by SonarQube. The code

smell types are: 1) statements “if ... else if” must end with the clause “else”; 2)

statements “switch”/“case” must not be nested; 3) statements “switch”/“case”

must not have too many “case”/“when” clauses; 4) the cognitive complexity of

the functions or methods must not be too high; 5) “if” collapsible statements

1http://www.sonarqube.org

66

must merge; 6) the “if”, “for”, “while”, “switch” and “try” statements of con-

trol flow must not nest too much; 7) the expression must not be too complex;

8) files must not have too many lines of code; 9) functions or methods must not

have too many lines of code; 10) functions or methods must not have too many

parameters; 11) lines of code must not be too long; 12) functions or methods

must not be empty; 13) statements must be in separate lines; 14) two branches

in one conditional structure must not have the exact same implementation; 15)

the parameters of one function or method not used must be eliminated; 16)

the local variables not used must be eliminated. A more detailed description

of each one is not provided for article-length reasons.

Table 6.6 shows the percentage of students that incurred in at least one code

smell, segmented by project (from 1 to 8) and by group (noTRD and TRD).

Code smells 3, 8 and 12 are not present in any of the projects analyzed.

When analyzing the table between the noTRD and TRD groups, as of

program 5 (after using templates), a significant variability arises, both if it is

considered per project as it is considered per code smell.

For code smells 4, 7, 10, and 13, one group is better for certain projects,

and the other group is better for certain other projects.The difference between

groups is very small for code smells 1, 2, 5, 6, 9, and 14. To summarize, after

using templates, changes are not observed for any of these code smells.

For the case of code smell 11, a very minor percentage is observed in projects

5 and 7, and a minor percentage in project 8 on the part of the group using

templates. In project 6, both groups have an almost identical behavior. From

the point of view of templates, maybe the pseudocode template is helping the

students decrease the introduction of this code smell.

Code smells 15 and 16 show a similar behavior. For both cases, the TRD

group almost does not incur in them, while noTRD does and sometimes in a

high percentage. Number 15 refers to parameters not used in the methods, and

16 to local variables not used. Clearly, these types of code smells can be avoided

with good software design. From the point of view of the use of templates,

maybe the development of pseudocode (logic template) and the functional

template are preventing the students of the TRD group from incurring in these

code smells. In any case, it is necessary to manually analyze the templates

submitted by the students and have interviews with them to know better if

this can be happening for the reasons already described. This has not been

done yet.

67

Table 6.6: Percentage of students who incur at least one code smell by code smell
type and student group

Code
smell

Group. Project

1 2 3 4 5 6 7 8

1
noTRD 4% 29% 0% 4% 13% 13% 4% 13%
TRD 19% 19% 10% 0% 5% 5% 5% 5%

2
noTRD 0% 0% 0% 0% 0% 0% 0% 0%
TRD 0% 0% 0% 0% 0% 0% 0% 5%

4
noTRD 8% 58% 0% 13% 30% 46% 29% 50%
TRD 24% 43% 5% 10% 10% 43% 24% 95%

5
noTRD 4% 21% 0% 0% 0% 0% 0% 0%
TRD 0% 24% 10% 0% 0% 5% 0% 5%

6
noTRD 13% 63% 8% 29% 30% 38% 13% 42%
TRD 38% 67% 29% 29% 33% 52% 57% 62%

7
noTRD 0% 25% 0% 0% 0% 4% 8% 0%
TRD 0% 19% 0% 0% 0% 5% 0% 5%

9
noTRD 0% 4% 8% 17% 10% 21% 21% 67%
TRD 0% 10% 19% 14% 10% 29% 38% 71%

10
noTRD 0% 0% 0% 0% 0% 0% 8% 54%
TRD 0% 0% 5% 0% 0% 0% 19% 38%

11
noTRD 4% 46% 42% 8% 40% 4% 46% 75%
TRD 0% 29% 29% 0% 14% 5% 24% 62%

13
noTRD 0% 0% 0% 0% 10% 0% 0% 4%
TRD 5% 0% 5% 0% 0% 0% 5% 19%

14
noTRD 0% 8% 0% 0% 10% 0% 0% 0%
TRD 0% 0% 0% 0% 0% 0% 0% 0%

15
noTRD 0% 0% 8% 4% 20% 0% 13% 17%
TRD 0% 0% 0% 0% 5% 0% 0% 0%

16
noTRD 8% 13% 8% 8% 40% 8% 17% 29%
TRD 5% 5% 10% 10% 0% 0% 10% 10%

68

However, when analyzing the table, but only considering the data of the

TRD group throughout the eight projects, we do not observe that the use of

templates improves the internal quality.

It is worth noting that this group normally did not incur in code smells 15

and 16 (or did it in a very low percentage). Observing projects 1 to 4 and 5

to 8 separately, we do not see any difference between them. That means this

group’s behavior before using templates and during its usage does not change

for these code smells. So, the difference presented in the previous analysis

between the TRD and the noTRD groups does not seem to respond to the use

of templates.

Something similar happens with code smell 11. Results do not show a

decrease of this code smell when using templates.

It can be observed that in project 8, the percentage of occurrence of code

smells 4, 9 and 10 significantly increases for both groups. This increase makes

us think that project 8 is more complex for the students. These three code

smells indicate that the code developed is too complex and long for its com-

prehension. That is, the use of templates did not help the students elaborate

a less complex and understandable design.

Putting all these analyses together, we conclude that templates do not

improve the internal quality. Specifically (or more precise), the use of templates

does not seem to effect the code smells the students incur when designing

software.

6.4.3 Effort dedicated to designing and coding

To answer RQ2: “What is the relation between the effort dedicated to design-

ing and the effort dedicated to coding?, Are there any variations in effort when

students use templates?”, we analyzed the following hypothesis test:

H2.0: Median (TCOD) <= Median (TDLD)

H2.1: Median (TCOD) > Median (TDLD)

As part of the base process, each student registered the time spent in the

design phase (TDLD) and the time spent in the code phase (TCOD) for each

project.

To know the effort dedicated to designing and coding by the group that

uses the templates and the group that does not, we analyzed both groups

69

independently during projects 5 to 8. On the one hand, we analyzed the TRD

group during projects 5 to 8, and on the other hand, of the noTRD group

during projects 5 to 8.

For each student, we calculated the time spent in design and the time spent

in code for projects 5 to 8. The calculation for each pair of data is the following:

(
8∑

n=5

TDLDn,
8∑

n=5

TCODn) (6.1)

where TDLDn is the time spent in the design phase for project n, TCODn

is the time spent in the code phase for project n, and where n varies from 5 to

8.

Table 6.7 presents the 28 data pairs (TDLD, TCOD) for the TRD group,

and the 32 data pairs (TDLD, TCOD) for the noTRD group.

Table 6.8 presents the median and interquartile range for the TRD group

and the noTRD group.

The median value of the TRD group shows that the use of templates takes

more design time than the group that did not use templates. Furthermore, the

design time in the case of TRD exceeds the time spent on coding.

Regarding the TCOD’s median, even though it is similar in the TRD and

noTRD groups, a decrease in the TRD group is observed. Even though the

decrease is not quite significant, the use of templates might have helped coding

in less time.

The distribution of the data was previously studied to determine the sta-

tistical test that best fits the problem to be solved. When applying the

Kolmogorov-Smirnov test for the TRD group, a significance value of 0.00478

is obtained, indicating that the values do not fit a normal distribution. The

result of applying the Kolmogorov-Smirnov test for the noTRD group returns

7.713e-12 as a significance value; for that, the values do not fit a normal dis-

tribution.

As the data of both does not follow a normal distribution, Wilcoxon’s test

is used for paired samples. The samples of each group are paired since the

sampled pairs (TDLD, TCOD) correspond to the same student.

We executed the test for the TRD group and for the noTRD independently.

For the noTRD group, we proposed to know the value of X such that

TCOD = X*TDLD. We analyzed the following hypothesis test:

H2.0: Median (TCOD of noTRD) <= Median (X*TDLD of noTRD)

70

Table 6.7: Data pairs for the TRD group and the noTRD group

TRD group noTRD group
TDLD TCOD TDLD TCOD

178 263 60 172
748 217 44 369
940 621 51 446
522 249 63 350
178 61 16 245
204 221 53 302
163 371 100 427
295 212 67 289
665 265 64 243
175 272 23 464
626 329 31 350
407 169 65 460
757 407 23 248
238 228 18 184
392 269 132 347
288 249 163 225
212 210 140 197
278 150 116 354
573 274 69 205
518 199 33 229
336 398 193 226
453 108 58 329
401 222 103 206
330 360 83 168
515 493 43 241
327 242 92 187
160 169 21 481
296 213 107 304

35 236
205 468
64 224

168 194

H2.1: Median (TCOD of noTRD) > Median (X*TDLD of noTRD)

For students in noTRD group with X=1, the total time in design (Mdn =

64.0) did differ significantly from the total time in code (Mdn = 246.5) p-value

= 4.169e-07. That is, students spend more time coding than designing.

To know how much more or what is the relationship between these times

71

Table 6.8: Median and the interquartile range (minutes) for the noTRD and TRD
groups

Group Time Phase Median Interquartile range

TRD TDLD 333.0 287.5
TRD TCOD 245.5 26.7

noTRD TDLD 64.0 63
noTRD TCOD 246.5 132

(TCOD = X*TDLD) we applied the test again but now multiplying the TDLD

by an integer X value until the null hypothesis cannot be rejected. Table 6.9

presents the results for the Wilcoxon test.

Table 6.9: Wilcoxon test for the noTRD group in projects 5 to 8

X=1 X=2 X=3 X=4

4.169e-07 4.088e-05 0.03861 0.541

The results indicate for X=1, X=2 and X=3 that the coding time is greater

than three times the design time. For X=4, p-value=0.541, so students who

did not use templates generally spent at least three times more time coding

than designing.

In the case of the TRD group, the median value shows that students tend

to dedicate more time to design in relation to code. Therefore, we carried out

the analysis in an inverse way, calculating X such as: X*TCOD=TDLD. We

analyzed the following hypothesis test:

H2.0: Median (X*TCOD of TRD) >= Median (TDLD of TRD)

H2.1: Median (X*TCOD of TRD) < Median (TDLD of TRD)

When executing the Wilcoxon test for students in the TRD group with

X=1, the total time in design (Mdn = 333.0) did differ from the total time

in code (Mdn = 245.5) p-value = 0.0007155. To know how many times more

students spent in designing, we applied the test again but now multiplying the

TCOD by an integer X value until the null hypothesis cannot be rejected.

Table 6.10 presents the results of the Wilcoxon test applied to the TRD

group.

The results indicate that for X=2, that the design time is greater than the

code time (p-value = 0.998). So, students who use templates spend more time

designing than coding, but not double.

72

Table 6.10: Wilcoxon test for the TRD group in projects 5 to 8

X=1 X=2

0.0007155 0.998

This result indicates that the group that used templates dedicated a greater

effort to design than the group that did not use templates. To confirm that

the relationship between designing time and coding time previously obtained

by the TRD group is due to the use of templates and not to another factor

dependent on the group, we studied the relationship (TCOD, TDLD) but in

this case during projects 1, 3, and 4 (without using templates).

Table 6.11 presents the median and the interquartile range of the pairs

(TDLD, TCOD) for the TRD group in projects 1, 3, and 4.

Table 6.11: Median and the interquartile range (minutes) of the pairs (TDLD,
TCOD) for the TRD group in projects 1, 3 and 4

Median Interquartile range

TDLD 43 41.5
TCOD 242 118

The values of the descriptive statistics of the TRD group in projects 1,

3, and 4 are similar to those of the noTRD group. In other words, during

projects where students design without using templates, the time spent on

design is significantly less than the time spent on coding.

Table 6.12 presents the results of executing Wilcoxon’s test to analyze the

relation TCOD = X*TDLD of the TRD group in projects 1, 3 and 4.

Table 6.12: Wilcoxon test for the TRD group in projects 1, 3 and 4

X=1 X=2 X=3 X=4 X=5

3.725e-09 3.725e-08 0.0002701 0.01245 0.09678

The results indicate that students of the TRD group in projects 1, 3 and 4

generally spent at least four times more time coding than designing. For X=5,

the null hypothesis cannot be rejected (p-value = 0.09678), which shows that

there is an increase in the time dedicated to design after the students of the

TRD group begin to use design templates.

73

6.5 Discussion

In the context of Template experiments, we found that design representation

using templates increased the time spent designing (we were expecting this).

However, it did not help to develop better-quality software products, neither

from an internal point of view, nor from an external point of view (we were

not expecting this).

Results show that the use of templates did not improve the number of

defects the developed code has (measured as defects density in UT), or the

internal quality (measured as the number of code smells in the code). These

results are related to those reported by Gravino et al. (2015), where the use

of UML diagrams did not improve in the comprehension of the source code

vis-à-vis not using them.

In addition, the analysis of the relation between effort dedicated to coding

and effort dedicated to designing showed that the use of templates increased

design time. Students who did not use the templates tended to spend three

times more on code than design. Students who used templates spent more time

designing than coding. Moreover, students in both groups spent similar time

coding, and before using templates, the students in the TRD group behaved

similarly to the noTRD group.

We can conclude then that using templates to represent design increases

the effort dedicated to design but does not have a significant positive effect on

quality or in reducing coding time. This can be due to several factors that we

must analyze in the future. It could be, among other reasons, that students

are not used to these particular templates and so they did not get the expected

benefit. It could be that they just filled the templates but, at in that moment,

they did not care to think or develop a quality system. Or it could be that

students do not know how to design (as found in other studies).

We believe that students do not have the habit of designing and thinking

of a solution before coding. Instead, we believe that the usual student practice

is code-and-fix. Even though more analysis is needed, we agree with several

authors that graduating students have difficulties designing and do not seem to

understand what type of information to include to design software (Eckerdal

et al., 2006a,b; Loftus et al., 2011).

74

Chapter 7

Habitual experiment

7.1 Definition

In order to know how students (habitually) design, we propose another exper-

iment.

The goals of the Habitual experiment are, first, to know if there is an

effect on software quality when they deliver the design representation. We

pose this goal to determine whether asking for the delivery of the habitual

design representation changes students’ behavior and affects the software’s

quality. Second, know how students habitually represent software design (what

artifacts and ways of design representation they use).

To get students to deliver the design representation they would habitually

build, we do not request the use of templates or specific approaches to design

representation (as we did in Template experiments).

In the Baseline and Template experiments, we studied the effort dedi-

cated by students to software detailed design (as the relation TCOD/TDLD).

In Habitual, the delivery of the habitual design representation could cause

the student to make an effort to prepare and to smooth the delivery (an ex-

tra effort in addition to the elaboration of the design itself). If made by the

students during the design phase, such effort would cause an unreal time ded-

icated to design. For that, in the Habitual experiment, we decided not to

study the effort dedicated by students to software detailed design.

75

7.2 Planning: research questions and experi-

mental design

We defined the following research questions and the corresponding research

hypotheses:

RQ1: Is there any improvement in the quality of the products

when students deliver the representation of their habitual design?

H1.0: Deliver the design in the habitual way does not modify defect density in the unit test

phase.

H1.1: Deliver the design in the habitual way modifies defect density in the unit test phase.

RQ2: How do students habitually represent the design?

To answer RQ2, we did an analysis using Eckerdal’s category, Thomas’ cate-

gory, and direct observations of the delivered designs

Experimental design is repeated measures of one factor (software design

representation) with two alternatives: submitting the design representation or

not.

7.3 Operation

We carried out the experiment in 2018, and 15 students took part. To address

the goals, students submit the habitual representation of their designs as part

of the solution to each project. With the submission of the design represen-

tation, we seek to know the students’ design practices. Even though it is an

optional submission (i.e., the student can decide not to design in the design

phase of the base process, if this is their normal behaviour), we emphasize the

importance of designing in the way they habitually do, following their usual

design representation. Besides, students are told that their designs will not

influence the grading.

The experimental design is presented in Figure 7.1. As in the Template

experiment, students carry out the first four projects following the base process.

Then, students are randomly divided into two groups: the group with “habitual

design delivery” (HDD), and the group “without habitual design delivery”

(noHDD). The control group (noHDD) carries out projects 5 to 8 following

76

Figure 7.1: Experimental design

the base process.

The HDD group continues applying the base process and also has to sub-

mit their design representations. The only difference between groups is the

submission of the representation. However, it is important to remark that the

students of both groups should produce a design for each of the programs as

part of the design phase of the base process. In the HDD group, seven students

participated, and in the noHDD group, eight students participated.

The response variables considered in this experiment are external quality,

measured just as in the previous experiments, as the defect density in the unit

test phase of the base process, and the design quality. The design quality is

measured using the design categorizations proposed by Eckerdal et al. (2006a)

and Thomas et al. (2014).

Eckerdal et al. (2006b) developed a categorization of students design arti-

facts of six levels:

• 0N - Nothing: little or no intelligible content.

• 1R - Restatement: merely restating requirements in some fashion from

the task description.

• 2S - Skumtomte: a small amount restatement of the task with a small

amount of information in text, a drawing of a GUI, or some unimportant

implementation details with no description of its design.

• 3FS - First step: some significant work beyond the description. Either

a partial overview of the system with the parts identified, but generally

no identification of how they are related in the system; or the design of

one of the system’s components, such as the GUI or the interface to the

database.

77

• 4PD - Partial design: providing an understandable description of each of

the parts and an overview of the system that illustrates the relationships

between the (may be incomplete) parts without completely described

communications between the parts.

• 5C - Complete: showing a well-developed solution, including an under-

standable overview, part descriptions that include responsibilities, and

explicit communication between the parts.

Thomas et al. (2014) investigated students’ understanding by asking them

for a task to “produce a design.” The authors analyzed the designs made by

students and categorized them based on the following characteristics that ex-

press the different ways in which students understand the design phenomenon:

• 0ID - Informal design: does not include formal artifacts. Generally, text

but may include detailed pictures without reference to software.

• 1A - Analysis: uses some formal notation for analysis, such as use case

diagrams, but does not describe system structure or behavior.

• 2SS - Static structure: focus on design techniques of software engineering,

expressing the components and their structural (i.e., static) relationships

using notations like class or architecture diagrams.

• 3DB - Dynamic behavior: focus on design techniques of software en-

gineering, expressing the components and some sequential (dynamic)

behavior using notations like sequence diagrams or flowcharts.

• 4MRA - Multiple related artifacts: use multiple artifacts and relates

components across different artifacts - the static and the dynamic are

linked.

• 5EC - Expert category: the notations are relaxed, and only the essential

artifacts are included.

7.4 Analysis and interpretation

Quality Improvement

To answer RQ1: “Is there any improvement in the quality of the products when

students deliver the representation of their habitual design?” we analyzed the

following hypothesis test:

78

H1.0: Delivering the habitual design does not change the defects density in unit test

H1.1: Delivering the habitual design does change the defects density in unit test

In the same way of previous experiments, to know if the group’s HDD and

noHDD are homogeneous, we studied the quality in projects 1, 3, and 4.

Table 7.1 presents the average defect density in UT for the eight students

in the noHDD group and the seven students in the HDD group in projects 1,

3, and 4 and in projects 5 to 8.

Table 7.1: average defect density (number of defects in the unit test phase per
every thousand lines of code) for the students in both groups

Group St. dd134 dd58 Group St. dd134 dd58

noHDD 1 30.51 28.05 HDD 1 27.78 58.82
noHDD 2 11.63 24.69 HDD 2 9.48 28.90
noHDD 3 8.47 21.18 HDD 3 85.71 120.00
noHDD 4 98.98 82.88 HDD 4 26.12 14.13
noHDD 5 15.56 19.17 HDD 5 31.25 15.47
noHDD 6 7.35 0.00 HDD 6 60.61 52.12
noHDD 7 62.50 21.19 HDD 7 19.48 70.51
noHDD 8 60.47 55.56

First, we studied if exists a difference in the quality of the products between

the group’s HDD and noHDD in projects 1, 3, and 4. During projects 1, 3, and

4, both groups apply the base process, so comparing the software quality of

both groups during those projects allows confirming that they are homogeneous

groups. For this analysis, we defined the following hypothesis test:

H1.0: Median(Def. density in UT i) = Median(Def. density in UT j)

H1.1: Median(Def. density in UT i) <> Median(Def. density in UT j)

being i, j the students of HDD and noHDD groups in projects 1, 3 and 4.

Table 7.2 presents the median and the interquartile range of defects density

for HDD and noHDD groups. The values of the median of the defect density

in UT indicate that they are groups with a similar behavior.

In the same way as in the previous experiments, each sample corresponds

to a student’s average defect density in UT. So, we applied the Mann-Whitney

test for independent samples.

Defects density in UT for students in the HDD group (Mdn = 27.8) did

not differ significantly from students in the noHDD group (Mdn = 23.0) when

79

considering projects 1, 3, and 4, W = 24 and p = 0.694. So, we can assume that

both groups have similar or homogeneous behavior concerning defect density.

Table 7.2: median and the interquartile range (#def/kLOC)

Median Interquartile range

HDD 27.8 26.5
noHDD 23.0 33.5

To know if software quality changes when students deliver their habitual de-

sign representation, we analyzed the defect density between and intra groups.

Between groups refers to learning if there is a significant difference in the soft-

ware quality between the groups. Intra groups refers to studying the quality

of the software in the HDD group before and after the delivery of the design

representations.

Between groups

To know if software quality changes when students deliver their usual design

representation, we analyze the defect density of the students from project 5 to

project 8. For this analysis, we defined the following research hypothesis:

H1.0: Median(Def. density in UT i) = Median(Def. density in UT j)

H1.1: Median(Def. density in UT i) > Median(Def. density in UT j)

being i, j the students of HDD and noHDD groups respectively.

The value of the median and of the interquartile range shown in Table 7.3

indicate that there is a variability between the groups. Students in the HDD

group register a higher number of defects (median value) in UT than those

in the noHDD group. That is, the submission of the habitual design repre-

sentation seems to have a negative impact on the software compared the non

submission of the habitual representation. Besides, the HDD group presents

a dispersion significantly higher than the noHDD group.

Table 7.3: median and the interquartile range (#def/kLOC) in projects 5 to 8

Median Interquartile range

HDD 52.1 37.2
noHDD 25.7 25.8

So, we applied the Mann-Whitney test for independent samples again .

80

Defects density in UT for students in the HDD group (Mdn = 52.1) did

not differ significantly from students in the noHDD group (Mdn = 25.7) when

considering projects 5 to 8, W = 20 and p-value = 0.397. That is, students who

delivered their habitual designs did not differ significantly from the students

who did not deliver their habitual designs.

This shows that requesting to submit the design representation does not

seem to have affected the habitual practice of the students in the HDD group.

The students seem to deliver the designs that they habitually make.

However, as we mentioned above, the median value shows show that stu-

dents of the HDD group register a higher number of defects (median value) in

UT than the students in the itnoHDD group.

The results of the Mann-Whitney test may be due to the low number of

subjects as well as some students data that draw attention (the defect density

for student 6 in noHDD group is 0 and the defect density for student 3 in HDD

group is 120).

Intra groups

We also studied if there was any change within the group who delivered

their habitual design (HDD group). We compared the defect density when they

did not delivered their design (projects 1, 3 and 4) and when they delivered

their design (projects 5 to 8). For this analysis, we defined the following

hypothesis test:

H1.0: Median(Def. density in UT i) = Median(Def. density in UT j)

H1.1: Median(Def. density in UT i) <> Median(Def. density in UT j)

being i the students of HDD in project 1, 3 and 4, j the students of HDD in project 5 to 8.

Table 7.4 shows the values of the median and the interquartile range for

the HDD group in projects 1, 3, and 4 and in projects 5 to 8.

Table 7.4: median and the interquartile range (#def/kLOC) for HDD group

Median Interquartile range

HDD proj. 1, 3, and 4 27.8 26.5
HDD proj. 5 to 8 52.1 37.2

Each pair sampled (Density Def. in UT i, Density Def. in UT j) corresponds

to the same student, so we applied the Wilcoxon signed-rank test.

Defects density in UT for students in the HDD group in projects 1, 3 and

4 (Mdn = 27.8) did not differ significantly from students in the HDD group

81

in projects 5 to 8 (Mdn = 52.1), V = 6, p-value = 0.219. That is, the delivery

of the design representation did not differ significantly from the non-delivery

of the design representation.

These results are similar to those mentioned above, where the median value

draws our attention. The low number of students and the defect density of

student 3 in the HDD group in projects 5 to 8 may be distorting the Wilcoxon

signed-rank test results.

Habitual software design representation

To answer research question RQ2: “How do students habitually represent the

design?”, we analyzed the 28 design representations submitted by the seven

students of the HDD group from projects 5 to project 8 using Eckerdal et al.’s

categories, Thomas et al.’s categories, and direct observations in an exploratory

way.

We mapped each design to Eckerdal’s category and to Thomass’ category.

The author of this thesis did the mapping, and one of the thesis tutors eval-

uated it.; both resolved discrepancies by discussion. Figure 7.2 illustrates the

mapping associated with Eckerdal’s and Thomas’s categories for the seven

students for projects 5 to 8; and Table 7.5 shows the result of the association

to the categories by Eckerdal’ and Thomas’ for every project for each of the

seven students. Besides, we analyzed the following aspects of a sub-group of

the submissions: design representation characteristics and defect density in

UT.

From Figure 7.2, the ranking of some students’ designs (students 1, 4, 5,

6, and 7) across the different projects does not change much. That is, their

design is relatively consistent according to these categorizations.

Furthermore, it can be observed how some students (students 4, 5, and 6)

managed to elaborate intermediately designs mapping to Eckerdal’s categories

3-4. On the other hand, students 2, 3, and 7 elaborate more basic designs that

categorize in the lowest categories by Eckerdal and Thomas categories.

Some interesting aspects of the results associated with the Eckerdal’s cat-

egory are observed. Students 4, 5, and 6 produced designs that provide an

understandable description of each of the parts and an overview of the sys-

tem that illustrates the relationships between the parts, without completely

describing communications between the parts. Students 3 (in three of the four

82

(a) Eckerdal

(b) Thomas

Figure 7.2: Eckerdal’s and Thomas’ categories for the seven students in projects
5 to 8

83

Table 7.5: Classification of the designs using the categorizations by Eckerdal et al.
and Thomas et al.

Student Category Project
5 6 7 8

1
Eckerdal 3(FS) 3(FS) 3(FS) 2(S)
Thomas 2(SS) 2(SS) 2(SS) 1(A)

2
Eckerdal 1(R) 3(FS) 1(R) 3(FS)
Thomas 0(ID) 1(A) 0(ID) 1(A)

3
Eckerdal 1(R) 3(FS) 1(R) 1(R)
Thomas 0(ID) 1(A) 0(ID) 0(ID)

4
Eckerdal 4(PD) 4(PD) 4(PD) 4(PD)
Thomas 2(SS) 2(SS) 2(SS) 2(SS)

5
Eckerdal 4(PD) 4(PD) 4(PD) 4(PD)
Thomas 2(SS) 2(SS) 2(SS) 2(SS)

6
Eckerdal 3(FS) 4(PD) 4(PD) 4(PD)
Thomas 2(SS) 2(SS) 2(SS) 2(SS)

7
Eckerdal 1(R) 1(R) 1(R) 1(R)
Thomas 0(ID) 0(ID) 0(ID) 0(ID)

projects) and 7 handled designs that merely restated the requirements (i.e., it

is not a software design). Student 1 generally manages to describe the system

and its parts partially but fails to relate them. Finally, student 2’s designs

vary, ranging from only transcribing the requirements (half of the projects) to

partially describing the system and its parts (the other half of the projects).

Using Thomas’s category, it can be observed that the students manage

basic designs. The delivery of students 2, student 3, and student 7 are in

most of the projects (in 9 projects out of 12) text notations (category 0ID). In

the remaining three projects, students managed to identify some parts of the

system in an incompetent way (category 1A).

Designs of students 4, 5, and 6 fall into category 2SS. Their designs use

static notation. Specifically, the designs elaborated by these students consist

of incomplete class diagrams of the system.

Student 1 elaborates incomplete class diagrams in the delivery of projects

5, 6, and 7 (category 2SS.), and identifies some incomplete parts of the system

for project 8 (category 1A)

Finally, no designs fall into categories 3DB, 4MRA, and 5EC, which implies

the ability to represent dynamic design with multiple related artifacts.

To add a complementary perspective to the students’ design analysis, we

84

analyzed project 8 in detail as a sample of the projects submitted. Table 7.6

presents description of the main characteristics of the design submitted, the

defect density in UT (dd), and Eckerdal’s and Thomas’ categories for project

8 for the seven students.

Table 7.6: Main characteristics of the design submitted, the defect density in UT,
the Eckerdal’s category and Thomas’ category for project 8

St. Design description dd Eck. Tho.

1 uses natural language to explain that he will
extend a class by adding a method

33.78 2S 1A

2 performs a pseudo code of a part of the
project

43.80 3FS 1A

3 transcribe the requirements to natural lan-
guage, inputs and expected outputs of the
project

66.67 1A 1R

4 performs a pseudo code of a part of the
project, identifying classes, methods and at-
tributes

14.71 4PD 2SS

5 performs a pseudo code of a part of the
project, identifying classes, methods and at-
tributes

8.40 4PD 2SS

6 makes a class diagram, identifying attributes
and relationships between classes

43.48 4PD 2SS

7 transcribe the requirements to natural lan-
guage

142.86 1R 0ID

It can be observed that students 4 and 5 manage to represent designs using

both class diagrams and pseudo-code. According to the categorizations of

Eckerdal et al. and Thomas et al., these two students (and student 6) were

the ones who categorized their designs better. It could be observed that these

two students are the ones with less defect density in UT for project 8 (see

Table 7.6).

The rest of the students represent their design more informally, transcribing

the requirements to natural language, doing a pseudo-code, or incomplete class

diagrams. In these cases, the defect density in UT is higher.

It is interesting to relate the designs delivered by the students with the an-

swers to the questionnaire (see chapter 5), where most of the students (13/14)

answered that they made pseudo-code. From Table 7.6 we can observe that

85

only students 2, 4, and 5 (3/7) perform a pseudo-code of a part of the project.

However, we firmly believe that the students consider using natural language

to transcribe the requirements as an informal way of performing pseudo-code.

In order to illustrate what kind of design the students deliver, some of the

designs are presented as they were delivered in project 8 (the most complex

project of the course). Figure 7.3 correspond to the screen prints sent by

the students of their design reflected on the sheet. This is used to illustrate

a part of the delivery of the design representation for students 5, 6, and 7.

Student 5 makes a pseudo-code of a part of the project, student 6 develops

an incomplete class diagram and student 7 transcribes the requirements into

natural language. Figures

7.5 Discussion

In the Habitual experiment, we observed that the submission of the habit-

ual design representation does not have an impact on the software quality

produced by students. The results of the statistical tests applied (intra and

between groups) indicate that the quality of the group delivering the design

representation does not vary significantly concerning the quality of the group

that does not deliver it. However, the median value indicates that the submis-

sion of the usual design representation seems to negatively impact the software

compared to the non-submission of the usual representation. This comes to our

attention because we did not expect any difference between groups (considering

that the experimental group was handling their habitual design). Furthermore,

if there were differences in the medians (as is the case), we would expect the

opposite results (i.e., students “caring” more about submitting their design

and this having a positive impact on software quality). New questions arise:

How does the design request affect the students’ usual design-code process?

Does the design request modify the student’s habitual way of coding?

Using the categorizations by Ekerdal et al. and Thomas et al., we can affirm

that students (in our School of Engineering) design on a basic level. Even

though they do not achieve complete designs that combine several artifacts

to model dynamic and static aspects simultaneously, they manage to produce

simple designs.

We can observe that using natural language to transcribe requirements (re-

statement category) is a habitual practice of some students to represent their

86

(a) Student 5

(b) Student 6

(c) Student 7

Figure 7.3: Habitual design representation for students 5, 6 and 7 in project 8

87

designs (student 2, student 3, and student 7). Two of these three students

manage to describe the system and its parts in some projects partially. Stu-

dents 4, 5, and 6 provide an understandable description of the system’s parts

that illustrates the relationships between them (partial design category). Fi-

nally, student 1 manages to partially describe the system without relating its

parts (first step category). No student used sequence, use case, collaboration,

or dynamic diagrams.

Furthermore, the delivered designs vary between text notations, incomplete

identification of the parts of the system, and static notations to describe the

system.

The results reported by Eckerdal et al. and Thomas et al. are similar to

ours (Eckerdal et al., 2006a,b; Thomas et al., 2014, 2017). Most of the designs

categorized by Eckerdal et al. (2006a,b) are associated with basic categories

(18% restatement, 41% skumtomte, 29% first step) . In the study reported

by Thomas et al. (2014), the majority of designs categorized was in the first

step and in partial design and results reported in Thomas et al. (2017) shows

that most designs categorized were in the first step, followed by the skumtomte

category. These authors agree that students do not know how to design, and

our results show the same. Also, we believe, just as Loftus et al., that students

have difficulties in designing software (Loftus et al., 2011). Within the context

of graduating students, those difficulties may be associated with several rea-

sons: the lack of experience, the lack of awareness of the importance of design

on the quality, and the lack of education regarding design techniques among

others.

88

Chapter 8

Conclusions and future work

This chapter includes conclusions, contributions of the research, and future

work.

8.1 Conclusions

Software design is one of the essential components to ensure the success of a

software system (Hu, 2013). Between the requirements analysis and software

building phase, software design has two main activities: architectural design

and detailed design. During architectural design, high-level components are

structured and identified. During detailed design, every component is specified

in detail (Bourque and Fairley, 2014).

Design is a complex discipline for undergraduate students to understand,

and success (i.e., building a good design) seems to require a certain level of

cognitive development that few students achieve (Carrington and K Kim, 2003;

Hu, 2013; Linder et al., 2006). Students’ ability to build a good design is

related to their abstraction, understanding, reasoning, and data-processing

ability (Kramer, 2007; Leung and Bolloju, 2005; Siau and Tan, 2005).

Knowing how undergraduate students design is of interest to several au-

thors (Eckerdal et al., 2006a,b; Loftus et al., 2011; Tenenberg, 2005). Most of

their studies found that students do not manage to produce a good software

design. Some of the problems detected are a lack of consistency between de-

sign artifacts and code, incomplete designs, and the lack of understanding of

what kind of information to include when designing software (Eckerdal et al.,

2006a,b; Loftus et al., 2011).

89

The general goal of this thesis is to study how graduating students practice

detailed design. To address the goal, we conducted a family of experiments

in the context of an undergraduate course. Through a family of experiments,

we studied the detailed design practice of graduating students from different

points of view. The family of experiments is composed of three sub-families of

experiments: Baseline experiments, Template experiments, and Habitual

experiment.

The Baseline experiments, carried out in 2012, 2013, and 2014, are aimed

at learning about the effort dedicated to software design by graduating stu-

dents, how is the effort variation throughout the different projects, how is the

effort variation between students, and the students’ perceptions of the prob-

lems they face.

These experiments showed that students spent more than three times as

much on coding as on design. This makes us think about several things. On

the one hand, they have not incorporated the practice of elaborating a detailed

design when building software. On the other hand, we should know why this

happens and rethink how software design is taught in university courses.

Also, we discovered that students have highly variable behavior among

themselves and a highly variable behavior when developing different programs

(of similar complexity and nature).

Considering quality (measured as defect density in testing), we found that

students did not produce better quality products in the latest exercises com-

pared with the first ones. That is, students did not find ways to improve

looking at their products (intermediate as design or final as tests or code) or

their process data. Also, this result (proving that software quality does not

change by the mere fact of carrying out seven consecutive projects) allowed

us to establish and validate the experimental framework for the rest of the

experiments in this family.

Feedback obtained through the questionnaire reveals that only 1 out of 14

students used class and collaboration diagrams. However, 13 of the 14 felt

that the school taught them how to design. We understand that there is a gap

between learning perception and design practice observed. So, what can we

do as educators in this sense? Are years of experience necessary, as Thomas

et al. (2014) conclude?

Intending to give support to the design activity, we proposed the following

experiment in the family, the Template experiments. These experiments,

90

carried out in the years 2015, 2016, and 2017, aimed at knowing about the

effect and the effort of design on software quality when students represent the

design using a specific set of design templates.

Although several studies show an improvement in developer performance

with template insertion (Hayes and Over, 1997; Prechelt and Unger, 2001;

Gopichand et al., 2010), our results were not as good. Our results show that

graduating students do not improve the software quality when using templates

for design representation. However, using templates significantly increases the

time spent on the design phase without reducing coding time.

We analyzed software quality from the internal and external points of view.

On the one hand, we statistically proved that using templates for design rep-

resentation does not improve the external software quality, measured as the

defect density in unit testing. On the other hand, from the internal quality

perspective, the use of templates does not have a significant positive effect on

the code smells students incur when developing software.

Regarding the effort, students who used templates dedicate more effort to

designing than coding (which is not double). Meanwhile, students who did not

use templates dedicated four times less effort to design than to code (similar

result as in the Baseline experiments).

These results raise new questions about software design practice: What

do students usually design? What kind of information do they include when

designing? Is it possible for them to produce their designs mentally without

representing them? Being able to answer these questions gave rise to the last

experiment of the family.

In 2018, we conducted the Habitual experiment to find out how students

habitually design and the effect on software quality when they deliver the

habitual design representation. To get students to deliver the design represen-

tation they would habitually build, we did not request the use of templates or

specific approaches to design representation.

The Habitual results showed that the submission of the habitual design

representation does not impact the software quality produced by students. The

results of the statistical tests applied (intra and between groups) indicate that

the quality of the group delivering the design representation does not vary

significantly concerning the quality of the group that does not deliver it.

Also, we analyzed the design representations delivered by the students and

categorized them using the categorizations proposed by Eckerdal et al. (2006b)

91

and Thomas et al. (2014).

We found that our students produce simple designs that do not mix dy-

namic and static artifacts. These results are in line with those found in the

Template experiment, where students failed to take advantage of templates

that combine dynamic and static views to produce better quality software.

Students use text notation, incomplete pseudo code, and incomplete static no-

tations to describe the system as design practices. Our results are similar to

those reported in the literature (Eckerdal et al., 2006a,b; Thomas et al., 2014,

2017), and we agree with them on the fact that students do not know how to

deliver a design representation beyond using basic artifacts.

Our family of experiments allowed us to know how graduating students of

Universidad de la República are currently designing, their habitual practices,

and the effects of design on software quality. From the family results, we

believe that a habitual practice of the students when developing software is to

follow the code-and-fix model. That is to say, they do not take time to think of

a solution (design) before coding; instead, they rush to code. We observed this

during the Baseline experiment and later during the Habitual experiment.

Students spend at least three times less time designing than coding, and their

design representations are poorly elaborated, simple, and basic.

We could also speculate that students spend at least three times less time

designing than coding because in design, they simply do a preliminary design,

and during the coding phase, they do the detailed design. However, the results

of the template experiment indicate that the use of templates (for detailed

design) significantly increases the time spent designing, but the time spent

coding does not change. Although we cannot say for sure, it seems that for

our students detailed design is not a practice that is routinely performed either

as part of the design or as part of coding.

Finding that the use of design templates does not help students to produce

better software products and that they habitually design in a basic and in-

complete way leads us to think that, in general, students do not have a great

domain of design techniques: they do not know when to use them and how

to combine them. Furthermore, they probably do not know what to design.

Just as Loftus et al. (2011), we believe students have (serious) difficulties in

designing software. Within the context of graduating students, those difficul-

ties may be associated with several reasons: the lack of experience, the lack

of awareness of the importance of design on quality, and the lack of education

92

regarding design techniques, among others.

It is worth mentioning that the conclusions we reach in this thesis are

dependent on the context of our family of experiments. The findings refer

to the graduating students of our Engineering School at Universidad de la

República.

Moreover, although we cannot confirm it, this software design practice

could be carried over to the industry, at least in their early days as practi-

tioners. This worries us, and we are concerned with improving the knowledge

skills of graduating students.

The work presented in this thesis provides insight into the detailed design

practice of our graduating students. In particular, we found that they do not

devote the effort we think they should to software design. We introduced the

design templates with the intention that they would be a tool to help them

in the design task. However, although the design time significantly increases

the quality of the software, as measured in the unit testing phase, it does not

change. Furthermore, in our last experiment, we found that the analysis of

the design representation they deliver reveals simple, basic designs with little

elaboration.

This work started a line of research that will continue. At this point, we

believe that another, perhaps more profound, change is needed. On the one

hand, to add another research method seeking to reach students more directly

and deeply (through interviews) to know what they think about their detailed

design activity, its importance in the development process, its relationship with

quality, and the difficulties or problems they encounter when designing. On

the other hand, at the educational level, reporting on the results we found and

encouraging a change in the teaching of detailed design in our School.

8.2 Contributions of the research

• To the software engineering community:

– Reporting the evidence found regarding the practice of detailed de-

sign by graduating students. Generally, we found that students are

not used to elaborating a design solution prior to coding. They pro-

duce very simple and incomplete designs and fail to take advantage

of design templates.

93

– Conducting a family of experiments that evolved from the results

of each sub-family contributes in itself to the empirical knowledge

in the area of software engineering experiments.

– The replication of experiments that allowed the aggregation of in-

dividual experiments in order to achieve more reliable results.

– The validation of the experimental framework used (base PSP) that

allows the use of a disciplined software development process and

support tools for the recording and collection of metrics.

– Finally, the publication of the results found in each sub-family of

the family in scientific journals and conferences.

• To the software industry: warning about the difficulties that novice en-

gineers (recently graduated students) have in designing quality software.

• To education: showing evidence that we have to do something. Is the

current practice of our graduating students what we want? We strongly

believe that is not. It is necessary to understand our teaching practices

on software detailed design and its learning effects on students.

8.3 Future work

Here we present specifically the research work we are conducting at the mo-

ment or already planned for the near future.

Habitual experiments

In the context of the family of experiments, a Habitual experiment was ex-

ecuted that was not reported in this thesis due to a lack of time for the analysis

of the results. This experiment,a replication of the Habitual experiment, was

executed in 2021, and 12 students participated. We will analyze the data of

this experiment and aggregate the results with those obtained in the Habitual

experiment (2018) to increase the evidence on how graduating students design

software. In addition, the analysis and categorization of the designs delivered

in the Habitual experiment of 2018 were carried out only for project 8. This

analysis will be extended to the remaining projects (projects 5 to 7).

Super Habitual experiment

This year (2022), we have designed and conducted a new experiment in

94

which 24 students participated.

Although in this experiment the students also submitted the habitual de-

sign representation (same as the Habitual experiment), the experimental design

was changed. In this experiment, students carry out the first four projects ap-

plying the base process (as in the other experiments), but from projects 5 to 8,

all the students submit the habitual design representation. This differs from

the Habitual experiment, where only half of the students (randomly selected)

submitted the design representation.

Also, in experiment 2022, we made two other significant modifications. We

changed the requirements of project 8 and conducted interviews with some

students at the end of the course. Project 8 became the “super alarm clock”

proposed by Eckerdal et al. Using this project allows us to know if there is a

change in the habitual design of the students when the nature of the exercise

changes. Furthermore, we can contrast our results with other studies using

this project.

After completing the eight projects, we conducted interviews with part of

the students. The aim of the interviews is to gather information on the stu-

dents’ design process, the step-by-step they followed in each phase, and to

detect the difficulties they had when designing, among others. In future work,

we will analyze the results of this new experiment, compare it with previous

studies that use the “super alarm clock” task, report it, and publish it.

Teaching of detailed design in the School of Engineering of Univer-

sidad de la República

The family of experiments described in this thesis allowed us to learn about

the software design practice of our graduating students. However, we do not

know what is happening with design teaching in our curriculum. We believe

that it is essential to know what topics are being taught regarding detailed

software design in the Computer Engineering curriculum at our school. This

knowledge will allow us to discuss some of the results obtained in the family

of experiments. In addition, educators can use the results to improve and

evaluate aspects of current software design teaching methods and content.

In order to know what software design topics are being taught in our degree,

we have already started mapping the topics presented in SWEBOK (Bourque

and Fairley, 2014) linked to detailed design covered in our degree.

The SWEBOK is the guide to the software engineering body of knowledge

95

consisting of 15 Knowledge Areas (KA). It uses a hierarchical organization

to decompose each KA into a set of topics with recognizable labels. A two

(sometimes three) level breakdown provides a reasonable way to find topics of

interest. The definition of the topics serves to know what is covered themati-

cally in a given course or subject.

As part of the work we have already carried out, the courses with detailed

design topics throughout our curriculum were selected. Then, we mapped from

the topics taught in our courses to the topics of the SWEBOK Design KA. This

work is incomplete since the mapping was not yet validated by the teachers

responsible for each course. We are planning to conduct this work in the next

few months.

For future work, it is also interesting to carry out the mapping considering

the Software Engineering Education Knowledge (SEEK), which is the body of

knowledge that should be included as a minimum in undergraduate software

engineering programs (Frezza et al., 2006).

How professionals design software in software development industry

For future work, we are also interested in designing and executing a survey

aimed at Uruguayan software companies in order to learn about their software

development processes. In particular, focusing on what techniques, methods,

and tools are used to design software, how important detailed design is within

the development process, and what is the perception of the design skills of

novice designers.

96

Bibliography

Ali, N. M., Admodisastro, N., and Abdulkareem, S. M. (2013). An educational

software design critiquing tool to support software design course. In 2013

International Conference on Advanced Computer Science Applications and

Technologies, pages 31–36.

Armarego, J. and Roy, G. G. (2004). Teaching design principles in software

engineering. In Australasian Society for Computers in Learning in Tertiary

Education 2004 Conference.

Basili, V., Shull, F., and Lanubile, F. (1999). Building knowledge through fam-

ilies of experiments. Software Engineering, IEEE Transactions on, 25:456 –

473.

Booch, G., Rumbaugh, J. E., and Jacobson, I. (1999). The unified modeling

language user guide. J. Database Manag., 10:51–52.

Bourque, P. and Fairley, R. E. (2014). Guide to the Software Engineering

Body of Knowledge - SWEBOK v3.0. IEEE Computer Society, 2014 version

edition.

Brown, W. H., Malveau, R. C., McCormick, H. W., and Mowbray, T. J.

(1998). AntiPatterns: refactoring software, architectures, and projects in

crisis. John Wiley & Sons, Inc.

Carrington, D. (1998). Teaching software design and testing. In

28th Annual Frontiers in Education Conference. Moving from’Teacher-

Centered’to’Learner-Centered’Education. Conference Proceedings (Cat. No.

98CH36214), volume 2, pages 547–550. IEEE.

Carrington, D. and K Kim, S. (2003). Teaching software design with open

source software. In Proceedings - Frontiers in Education Conference, pages

S1C– 9.

97

Chemuturi, M. (2018). Software Design: A Comprehensive Guide to Software

Development Projects. CRC Press/Taylor & Francis Group.

Coffey, J. W. (2017). A study of the use of a reflective activity to improve stu-

dents’ software design capabilities. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education, SIGCSE ’17, page

129–134, New York, NY, USA. Association for Computing Machinery.

Cowling, A. J. (2007). Stages in teaching software design. In 20th Conference

on Software Engineering Education & Training (CSEET’07), pages 141–148.

IEEE.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Zander, C.

(2006a). Can graduating students design software systems? In SIGCSE

Bull., page 403–407. ACM, Association for Computing Machinery.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Zander, C.

(2006b). Categorizing student software designs: Methods, results, and im-

plications. Computer science education, 16(3):197–209.

Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics. SAGE

Publications Ltd, 5th edition.

Flores, P. and Medinilla, N. (2017). Conceptions of the students around object-

oriented design: A case study. In XII Jornadas Iberoamericanas de Inge-

nieria de Software e Ingenieria del Conocimiento.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-

Wesley Professional.

Frezza, S., Tang, M.-H., and Brinkman, B. (2006). Creating an Accreditable

Software Engineering Bachelor’s Program. IEEE Software, 23:27–35.

Ganesh, S. and Sharma, T. (2013). Object-Oriented Design Principles. Apress,

Berkeley, CA.

Gibbons, J. D. and Chakraborti, S. (2011). Nonparametric Statistical Infer-

ence, pages 977–979. Springer Berlin Heidelberg, Berlin, Heidelberg.

Gopichand, M., Swetha, V., and Ananda Rao, A. (2010). Software defect de-

tection and process improvement using personal software process data. In

98

International Conference on Communication Control and Computing Tech-

nologies, pages 794–799.

Gravino, C., Scanniello, G., and Tortora, G. (2015). Source-code compre-

hension tasks supported by uml design models: Results from a controlled

experiment and a differentiated replication. Journal of Visual Languages &

Computing, 28:23 – 38.

Hayes, W. and Over, J. (1997). The personal software process (psp): An

empirical study of the impact of psp on individual engineers. Technical Re-

port CMU/SEI-97-TR-001, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA.

Higgins, C., O’Leary, C., McAvinia, C., and Ryan, B. (2019). Novice learner

experiences in software development: A study of freshman undergraduates.

In International Conference on Computer Supported Education, pages 308–

330. Springer.

Hu, C. (2013). The nature of software design and its teaching: an exposition.

ACM Inroads, 4(2).

Hu, C. (2016). Can students design software? the answer is more complex than

you think. In Proceedings of the 47th ACM Technical Symposium on Com-

puting Science Education, Computer Science Education 2016, page 199–204,

New York, NY, USA. Association for Computing Machinery.

Humphrey, W. (2000). The personal software process (psp). Technical Report

CMU/SEI-2000-TR-022, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA.

Humphrey, W. (2005a). PSP: A Self-Improvement Process for Software Engi-

neers. Addison-Wesley Professional.

Humphrey, W. (2005b). PSP: A Self-Improvement Process for Software Engi-

neers. Addison-Wesley Professional.

Humphrey, W. S. (1995). A discipline for software. Addison-Wesley Longman

Publishing Co., Inc.

Jones, B. and Kenward, M. G. (2014). Design and Analysis of Cross-Over

Trials. Chapman and Hall/CRC, 3rd edition.

99

Judith, S.-K. and Upchurch, R. L. (1993). Teaching object-oriented design

without programming: A progress report. Computer Science Education,

21:135–156.

Juristo, N. (2013). Towards understanding replication of software engineering

experiments. 2013 ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, page 4.

Juristo, N. (2016). Once is not enough: Why we need replication. In Men-

zies, T., Williams, L., and Zimmermann, T., editors, Perspectives on Data

Science for Software Engineering, pages 299–302. Morgan Kaufmann.

Juristo, N. and Moreno, A. M. (2001). Basics of Software Engineering Exper-

imentation. Springer New York, NY, 2001 edition.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele,

UK, Keele University, 33(2004):1–26.

Kramer, J. (2007). Is abstraction the key to computing? Commun. ACM,

50(4):36–42.

Leung, F. and Bolloju, N. (2005). Analyzing the quality of domain models de-

veloped by novice systems analysts. In 38th Hawaii International Conference

on System Sciences.

Linder, S. P., Abbott, D., and Fromberger, M. J. (2006). An instructional

scaffolding approach to teaching software design. Journal of Computing

Sciences in Colleges, 21:238–250.

Loftus, C., Thomas, L., and Zander, C. (2011). Can graduating students

design: revisited. In Proceedings of the 42nd ACM technical symposium on

Computer science education. ACM.

Magana, A., Seah, Y., and Thomas, P. (2018). Fostering cooperative learning

with scrum in a semi-capstone systems analysis and design course. Journal

of Information Systems Education, 29:75–92.

Martin, F. and Beck, K. (1999). Refactoring: improving the design of existing

code, volume 1. Addison-Wesley.

100

Martin, R. C., Newkirk, J., and Koss, R. S. (2003). Agile software development:

principles, patterns, and practices, volume 2. Prentice Hall Upper Saddle

River, NJ.

McDonald, M., Musson, R., and Smith, R. (2007). The Practical Guide to

Defect Prevention. Microsoft Press, USA, first edition.

Moreno, S., Casella, V., Solari, M., and Vallespir, D. (2020). La representación

del diseño detallado utilizando plantillas y sus efectos en la calidad del soft-

ware. In XXIII Ibero-American Conference on Software Engineering (CIBSE

2020).

Moreno, S. and Vallespir, D. (2018). ¿los estudiantes de pregrado son capaces

de diseñar software? estudio de la relación entre el tiempo de codificación

y el tiempo de diseño en el desarrollo de software. In XXI Conferencia

Iberoamericana de Ingenieŕıa de Software 2018 (CIBSE 2018).

Moreno, S., Vallespir, D., and Solari, M. (2022). An experiment on how grad-

uating students represent software designs. In XXV Ibero-American Con-

ference on Software Engineering (CIBSE 2022).

Moreno, S., Vallespir, D., Solari, M., and Casella, V. (2021). Representation

of software design using templates: impact on software quality and devel-

opment effort. Journal of Software Engineering Research and Development,

9(1):1 – 15.

Moreno, S., Vallespir, D., and Álvaro Tasistro (2018). Teaching of formal

methods: evidence of its inclusion in curricula, results, and difficulties. In

Conferencia Iberoamericana de Ingenieŕıa de Software 2019.

Object Management Group (2000). Unified Modeling Language (OMG UML).

Object Management Group v1.3.

Oktafiani, I. and Hendradjaya, B. (2018). Software metrics proposal for con-

formity checking of class diagram to solid design principles. In 2018 5th In-

ternational Conference on Data and Software Engineering (ICoDSE), pages

1–6.

Perez-Gonzalez, H. G., Nunez-Varela, A. S., Martinez-Perez, F. E., Hernandez-

Castro, F. E., Torres-Reyes, F., Juárez-Ramı́rez, R., Bauer, K., and Guerra-

Garćıa, C. (2019). Exploring software design skills of students in different

101

stages of their curriculum. In 2019 7th International Conference in Software

Engineering Research and Innovation (CONISOFT), pages 65–71.

Petre, M. (2013). Uml in practice. International Conference on Software

Engineering (ICSE), 35:722–731.

Pierce, K., Deneen, L., and Shute, G. (1991). Teaching software design in the

freshman year. In Software Engineering Education. Springer Berlin Heidel-

berg.

Prabha, C. L. and Shivakumar, N. (2020). Improving design quality of software

using machine learning techniques. In 2020 6th International Conference on

Advanced Computing and Communication Systems (ICACCS), pages 583–

588.

Prasad, P. and Iyer, S. (2020). How do graduating students evaluate software

design diagrams? In Proceedings of the 2020 ACM Conference on Interna-

tional Computing Education Research, ICER ’20, page 282–290, New York,

NY, USA. Association for Computing Machinery.

Prechelt, L. and Unger, B. (2001). An experiment measuring the effects of

personal software process (psp) training. IEEE Transactions on Software

Engineering, 27(5):465–472.

Ramollari, E. and Dranidis, D. (2007). Dranidis d. studentuml: An educational

tool supporting object-oriented analysis and design. In in Proceedings of the

11th Panhellenic Conference on Informatics (PCI 2007).

Saca, M. A. (2017). Refactoring improving the design of existing code. In

2017 IEEE 37th Central America and Panama Convention (CONCAPAN

XXXVII), pages 1–3.

Santos, A., Gómez, O., and Juristo, N. (2020). Analyzing families of experi-

ments in se: A systematic mapping study. IEEE Transactions on Software

Engineering, 46(5):566–583.

Senn, S. (2002). Cross-over Trials In Clinical Research. John Wiley & Sons,

Ltd, 2nd edition.

102

Siau, K. and Tan, X. (2005). Improving the quality of conceptual modeling

using cognitive mapping techniques. Data & Knowledge Engineering, 55(3).

Quality in conceptual modeling.

Sien, V. Y. (2011). An investigation of difficulties experienced by students

developing unified modelling language (uml) class and sequence diagrams.

Computer Science Education, 21(4):317–342.

Soh, Z., Sharafi, Z., Van den Plas, B., Cepeda Porras, G., Guéhéneuc, Y.-G.,

and Antoniol, G. (2012). Professional status and expertise for uml class dia-

gram comprehension: An empirical study. In IEEE International Conference

on Program Comprehension, pages 163–172.

Sommerville, I. (2016). Software Engineering. Pearson.

Stevenson, J. and Wood, M. (2018). Recognising object-oriented software

design quality: a practitioner-based questionnaire survey. Software Quality

Journal, 26(2):321–365.

Stikkolorum, D., Gomes de Oliveira Neto, F., and Chaudron, M. (2018). Eval-

uating didactic approaches used by teaching assistants for software analysis

and design using uml. In Proceedings of the 3rd European Conference of

Software Engineering Education (ECSEE), pages 122–131.

Stikkolorum, D. R., Ho-Quang, T., Karasneh, B., and Chaudron, M. R. (2015).

Uncovering students’ common difficulties and strategies during a class dia-

gram design process: an online experiment. In EduSymp@ MoDELS, pages

29–42. Citeseer.

Tao, Y., Liu, G., Mottok, J., Hackenberg, R., and Hagel, G. (2015). Just-in-

time-teaching experience in a software design pattern course. In 2015 IEEE

Global Engineering Education Conference (EDUCON), pages 915–919.

Taylor, R. N. (2011). Conference welcome message. In Proc. 33rd International

Conference on Software Engineering. Association for Computing Machinery.

Tenenberg, J. (2005). Students designing software: a multi-national, multi-

institutional study. Informatics in Education, 4.

103

Thevathayan, C. and Hamilton, M. (2017). Imparting software engineering

design skills. In Proceedings of the Nineteenth Australasian Computing Ed-

ucation Conference, pages 95–102.

Thomas, L., Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., and

Zander, C. (2014). Graduating students’ designs: Through a phenomeno-

graphic lens. In Proceedings of the Tenth Annual Conference on Interna-

tional Computing Education Research, page 91–98. Association for Comput-

ing Machinery.

Thomas, L., Zander, C., Loftus, C., and Eckerdal, A. (2017). Student software

designs at the undergraduate midpoint. In Proceedings of the 2017 ACM

Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’17, page 34–39, New York, NY, USA. Association for Computing

Machinery.

Torchiano, M., Scanniello, G., Ricca, F., Reggio, G., and Leotta, M. (2017). Do

uml object diagrams affect design comprehensibility? results from a family

of four controlled experiments. Journal of Visual Languages & Computing,

41.

Vallespir, D., Grazioli, F., Pérez, L., and Moreno, S. (2014). Demonstrating

the impact of the psp on software quality and effort: Eliminating the pro-

gramming learning effect. In Team Software Process Symposium 2014, pages

12–20.

Whalley, J. and Kasto, N. (2014). A qualitative think-aloud study of novice

programmers’ code writing strategies. In Proceedings of the 2014 conference

on Innovation & technology in computer science education, pages 279–284.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies

and a replication in software engineering. In Proceedings of the 18th inter-

national conference on evaluation and assessment in software engineering,

pages 1–10.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén,

A. (2012). Experimentation in software engineering. Springer Science &

Business Media.

104

	List of Figures
	List of Tables
	Introduction
	Research goal and questions
	Research methods overview
	Research results overview
	About the thesis document
	Main achievements
	Publications related to this thesis
	Projects framed to this thesis

	Related work
	Detailed software design
	Teaching detailed software design
	Experimental works with students on detailed software design
	Searching method for previous research
	Synthesis of the works obtained related to how undergraduate students design software
	Synthesis of the works obtained related to undergraduate students’ understanding of design

	Theoretical framework
	Personal Software Process
	Principles and fundamentals of the Personal Software Process

	The family of experiments
	Goals
	Experimental context
	Experimental design

	Baseline experiments
	Definition
	Planning: research questions and experimental design
	Operation
	Analysis and interpretation
	Discussion

	Template experiments
	Definition
	Planning: research questions and experimental design
	Operation
	Analysis and interpretation
	External quality
	Internal quality
	Effort dedicated to designing and coding

	Discussion

	Habitual experiment
	Definition
	Planning: research questions and experimental design
	Operation
	Analysis and interpretation
	Discussion

	Conclusions and future work
	Conclusions
	Contributions of the research
	Future work

	Bibliography

