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Abstract

We study homotopic-to-the-identity torus homeomorphisms, whose rotation set
has nonempty interior. We prove that any such map is monotonically semicon-
jugate to a homeomorphism that preserves the Lebesgue measure, and that has
the same rotation set. Furthermore, the dynamics of the quotient map has several
interesting chaotic traits: for instance, it is topologically mixing, it has a dense set
of periodic points and it is continuum-wise expansive. In particular, this shows
that a convex compact set of R2 with nonempty interior is the rotation set of the
lift of a homeomorphism of T2 if and only if it is the rotation set of the lift of a
conservative homeomorphism.





Resumen

Estudiamos homeomorfismos del toro homotópicos a la identidad, cuyo conjunto
de rotación tiene interior no vaćıo. Probamos que cualquier mapa de ese tipo es
monótonamente semiconjugado a un homeomorfismo que preserva la medida de
Lebesgue, y que tiene el mismo conjunto de rotación. Más aún, la dinámica del
mapa cociente tiene varios aspectos interesantes: por ejemplo, es topológicamente
mixing, tiene un conjunto denso de puntos periódicos y es continuum-wise expan-
siva. En particular, esto muestra que un conjunto compacto convexo de R2 con
interior no vaćıo, es el conjunto de rotación del levantamiento de un homeomor-
fismo de T2 si y solamente si es el conjunto de rotación del levantamiento de un
homeomorfismo conservativo.





Resumo

Estudamos homeomorfismos do toro homotópicos à identidade, cujo conjunto de
rotação tem interior não vazio. Provamos que qualquer mapa desse tipo é monoton-
amente semiconjugado a um homeomorfismo que preserva a medida de Lebesgue e
que tem o mesmo conjunto de rotação. Além disso, a dinâmica do mapa quociente
tem várias qualidades caóticas interessantes: por exemplo, ela é topologicamente
mixing, tem um conjunto denso de pontos periódicos e é continuum-wise expansiva.
Em particular, isso mostra que um conjunto compacto convexo de R2 com interior
não vazio é o conjunto de rotação do levantamento de um homeomorfismo de T2,
se e somente se for o conjunto de rotação do levantamento de um homeomorfismo
conservativo.
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CHAPTER 1

Introduction

1. Motivation

The study of arbitrary dynamical systems on a manifold is a very hard task, as
there can be too much information and features for one to get the grasp of. One
of the most well established ways to parse all that information is to try to relate
a given dynamical system to some simpler model dynamics which still encompass
central attributes from the original system, but where our understanding of the
phenomena is more robust. This is typically done by finding semiconjugacies
between the original system or some restriction of it, to certain factor dynamics.
Information may be lost in this process, but several aspects of the original system
become clearer in the study of these factors.

This strategy has so far been very successfully used in the study of one-
dimensional dynamics. For instance, the Poincaré Rotation Theory provides sim-
ple models for homeomorphisms of the circle, and the Kneading Theory of Milnor
and Thurston showed the existence of semiconjugacies from positive entropy mul-
timodal maps of the interval, to simple piecewise-linear constant-slope models.

The use of models by factors is also a prevalent strategy in the study of surface
homeomorphisms. It started with the study of Smale’s Horseshoes and their semi-
conjugacy with the shift in the symbolic space, one of the most well understood
models in dynamics. Katok in [Kat80] showed that, if a C1+α diffeomorphism
f of a surface has positive topological entropy, then there exists some invariant
subset for a power fk of f such that the restriction of fk to this invariant set is
semiconjugate to the Bernoulli shift.

Other deep interesting models are obtained when one considers the isotopy
classes of maps in surfaces. Nielsen-Thurston Theory has classified all the possible
isotopy classes, and it has been shown that maps which are isotopic to Linear
Anosov diffeomorphisms of T2, are extensions of these ([Fra69]). For closed sur-
faces it is also known that if a map is isotopic to a pseudo-Anosov map, then there
exists a semiconjugacy between some invariant closed set of the original dynamics
to the pseudo-Anosov homeomorphism ([Han85]). One therefore has very good
models to understand the dynamics when the induced action in the homotopy
group is sufficiently complex.

But none of those models help in understanding the rotational behaviour of a
dynamical system on a surface if it lies in the isotopy class of the identity. In this
paper we attempt to provide models that preserve this specific feature, which has
been increasingly relevant in Surface Dynamics. We will concentrate our work in
the study of homeomorphisms of T2 which are homotopic to the identity, a set we

17



18 1. INTRODUCTION

denote by Homeo0(T2), but we imagine most of what is done here will be able to
be extended in the correct circumstances to other closed surfaces. For this study,
we will make use of Rotation Theory and the modern Equivariant Brouwer Theory
techniques. We will postpone the description of the latter to the body of the text,
let us say a few words on Rotation Theory.

2. Torus Rotation Theory

Given a surface S with a non-trivial fundamental group and an isotopy (ft)t∈[0,1]
connecting the identity f0 to a homeomorphism f = f1 of S, one can ask how the
trajectories of points by the isotopy loop around the surface. For the torus case,
the classical notion of rotation set was given birth in [MZ89].

Definition 1.1 (Rotation set). Given f in Homeo0(T2) and a lift f̂ of f to

R2, one defines the rotation set of f̂ as

ρ(f̂) :=
{
v ∈ R2 : ∃ ẑk ∈ R2, nk → +∞ such that lim

k→∞

f̂nk(ẑk)− ẑk
nk

= v
}
.

This can be proved to be equivalent to the set of mean rotations of f -invariant
measures, that is,

ρinv(f̂) :=
{
v ∈ R2 : ∃µ which is f − invariant s.t.

∫
f̂(ẑ)− ẑ dµ = v

}
In [MZ89] it is proven that ρ(f̂) is a compact convex subset of R2 (in particular

it is connected), which is then either a point, a segment or a set with nonempty

interior. Given every lift f̂ commutes with the deck transformations, the rotation
set of two different lifts will be the same up to integer translations. We will then say
that the rotation set of f has non-empty interior if this is true for the rotation set

of a lift f̂ of f . One notes that the notion of rotation sets was already introduced
by Schwartzmann using invariant measures in [Sch57], and a topological version
was later given by Fried in [Fri82].

Rotation sets have been a very effective tool in the study of torus homeo-
morphisms, as they can in some cases encode several dynamical properties. For
instance, when the rotation set has nonempty interior, it is known that the home-
omorphism has positive topological entropy, as proved in [LM91], using Nielsen-
Thurston classification of surface homeomorphisms from [Thu88], after having
punctured the surface on an f -invariant set and restricting the dynamics to the
resulting surface. Franks shows the abundance of periodic orbits in [Fra89]),
and ergodic measures realizing each rotation vector in the interior of the rota-
tion set are found in [MZ91]. New proofs of these results and several improve-
ments are recently obtained using Forcing Theory by Le Calvez and Tal, found in
[LCT18, LCT22], using Brouwer-Le Calvez’s dynamically transverse decompo-
sition built in [LC05a].

Also, assuming some extra regularity, inside the class of C1+α diffeomorphisms,

if f has a lift f̂ such that ρ(f̂) has the origin in its interior, then Addas-Zanata in
[AZ14] and [AZ15] uses Pesin Theory (see for example [Pol93, Part I]) to find
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saddle periodic points with different rotation vectors such that, for any lift of that
point, its unstable manifold intersects the stable manifolds of each of its integer
translates in a topologically transverse way. If, furthermore, one assumes that f is

transitive, then one obtains that f̂ (and therefore f itself) must be topologically
mixing.

Given all this aplications, the study of the realization of rotation sets, i.e. un-
derstanding which subsets of R2 are rotation sets of lifts of elements of Homeo0(T2),
became also a popular topic. One says that a subset D of R2 is realized as a rota-
tion set of a homeomorphism f if f has a lift whose rotation set is D. For the case
in which it has nonempty interior, Kwapisz proved in [Kwa92] that every rational
polygon (i.e. its vertices have rational coordinates) can be realized as the rotation
set of a torus homeomorphism: Passeggi proves that rational polygons are yielded
as rotation sets for a generic set of homeomorphisms ([Pas13]), and Guihéneuf
and Koropecki prove ([GK17]) that this is a necessary condition for the rotation
set to be stable under small perturbations.

Kwapisz found in 1995 the first example of a rotation set with infinitely many
extremal points ([Kwa95]), and in 2017 Boyland, De Carvalho and Hall find
a one-parameter family of examples, many of them also having this property
([BdCH15]). They also describe explicitly how the rotation set changes as the
parameter changes, and obtain examples for which there exists an extremal point
which is not the rotation of any ergodic measure for the homeomorphism. Also,
a result by Béguin, Crovisier and Le Roux proves that every irrational vector can
appear as the extremal point of a rotation set with nonempty interior ([B0́6]).

There are examples of compact convex sets that have been proven to never be a
rotation set of a torus homeomorphism, but only in a very specific case ([LCT18]).
But it is not known if there exists a rotation set with uncountable many extremal
points. In particular, one does not know if for instance the closed unit ball is a
realized as a rotation set.

3. Statement of results

Our main result shows that, whenever f has a rotation set with nonempty
interior, then it is always an extension of another homeomorphism with much
better understood dynamics, and with the same rotation set. Let us first introduce
some notions for the sake of precision.

Factors and extensions. Given two metric spaces X and Y , and two con-
tinuous maps f : X → X, g : Y → Y , we will say that g is a factor of f (and
equivalently, we will also say that f is an extension of g) if there exists a semi-
conjugacy h from f to g, that is, a continuous surjection h : X → Y such that
h ◦ f = g ◦ h. A map h : X → Y is monotone if the preimage of every point is
connected.

Diameter of continua. Let π̂ : R2 → T2 be the classical covering projection.

Definition 1.2. Given an open set U ⊂ T2, we will say that U is inessential if
every loop in U is homotopically trivial in T2. Otherwise, we will say it is essential.
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We will say an arbitrary set X ⊂ T2 is inessential if it has an inessential
neighbourhood. Otherwise we will say it is essential.

Note that a connected set D ⊂ T2, holds that every lift of D (which is a
connected component of π̂−1(D)), is homeomorphic to D. D is then said to be

inessential if a lift of D̂ of D satisfies that D̂∩D̂+v = ∅ for every non-null v ∈ Z2.

Definition 1.3. Given a continuum K ⊂ T2, we will define its lifted diameter

diam(K) as the euclidean diameter of any connected component of its lifts K̂ to
the universal covering R2 of T2.

Note that the diameter of K in this case is finite if, and only if, it is inessential.
Thus, for the context of inessential continua we will abuse notation and write
diameter for its lifted diameter.

Definition 1.4 (Dynamical diameter). Let K ⊂ T2 be a continuum, and
f : T2 → T2 a homeomorphism. We will define the dynamical diameter Df (K) as

Df (K) := sup
j∈Z

{diam(f j(K))}

A continuum K will be dynamically bounded if Df (K) < ∞, and it will be
dynamically unbounded otherwise.

A homeomorphism h of a metric space is continuum-wise expansive if there
exists ε > 0 such that, for any non-trivial continuum K, the supremum of the
diameters of hj(K) with j ∈ Z is greater than ε. Continuum-wise expansive maps
have several strong properties, see for instance [Her04]. For f in f ∈ Homeo0(T2)
we say that it is infinitely continuum-wise expansive if, for any continuum K, we
have that Df (K) = ∞.

Topological entropy. Let us recall a definition of topological entropy by
Bowen in [Bow71]. Let f be a uniformly continuous map of a metric space (X, d).
For every n ∈ Z+, we define the distances

dn(x, x
′) = sup{ d(f j(x), f j(x′)) : 0 ≤ j ≤ n},

d±n(x, x
′) = sup{ d(f j(x), f j(x′)) : −n ≤ j ≤ n}

We will say a subset Y ⊂ X is (n, ε)-separated (similarly (±n, ε)-separated) with
respect to f , if for every pair y, y′ ∈ Y we have that dn(y, y

′) > ε (similarly
d±n(y, y

′) > ε).
Define sn(ε,K) as the maximal number of elements of an (n, ε)-separated sub-

set of K, with respect to f , and define s±n(ε,K) in the same fashion. Let us
define

(1.1) h(f,K) = lim
ε→0

(
lim sup
n→+∞

1

n
log
(
sn(ε,K)

))
We define the (topological) entropy of f carried by K as

h±(f,K) = lim
ε→0

(
lim sup
n→+∞

1

n
log
(
s±n(ε,K)

))
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We will say that K carries positive entropy whenever h(f,K) is positive. We then
define the topological entropy h(f) of f as

h(f) = sup
Kcompact

h(f,K).

We will say f is tight if for every non-trivial continuum K, we have that
h±(f,K) is positive. Note that this notion has been of interest during these last
years: De Carvalho and Paternain define the 0-entropy quotient to recover tight
dynamics in a more complex topological space in [dCP02], this result has been
retaken for example in [BdCH23] by Boyland, De Carvalho and Hall.

Theorem A. Let f ∈ Homeo0(T2) have a lift f̂ such that ρ(f̂) has nonempty
interior. Then, there exists a factor map g ∈ Homeo0(T2) by a monotone semi-
conjugacy, having a lift ĝ with the following properties:

• ρ(ĝ) = ρ(f̂).
• g is area preserving.
• g is topologically mixing, and if 0⃗ ∈ int(ρ(ĝ)), ĝ is topologically mixing.
• g is infinitely continuum-wise expansive.
• g is tight: for each non-trivial continuum K ⊂ T2, we have h±(g,K) > 0.
• For each open set U ⊂ T2, g has a Markovian horseshoe X ⊂ U (see

Definition 2.28). In particular, Per(g) = T2.

Note that Theorem A, in addition to presenting dynamical consequences for
homeomorphisms of T2, has a direct consequence for the study of the realization
of rotation sets in the form of the following corollary:

Corollary B. A convex compact subset of R2 with nonempty interior is real-
ized as the rotation set of an homeomorphism of T2 if an only if it is also realized
as the rotation set of an area-preserving homeomorphism of T2.

In particular, this holds for the closed unit disk.
We remark that Theorem A for the case where f is a C1+α diffeomorphism

was obtained in a recent work by De Carvalho, Koropecki and Tal, in an yet
unfinished pre-print. That work relied on Pesin’s theory and the work of Addas-
Zanata in [AZ14], and the main structure of the proof is similar to ours. There
are some technical difficulties that appear in the proof since we are working with
no regularity, particularly in showing the existence of dense horseshoes, but the
most crucial point is the proof of the Theorem C below. In any case, we outline
here every step so that the work is self-contained.

Theorem C. Let f ∈ Homeo0(T2), such that ρ(f) has nonempty interior.
Then there exists M > 0 such that, if K is a continuum and diam(K) > M , then
Df (K) = ∞.

The main improvement here is that we showed this result using equivariant
Brouwer techniques and Forcing Theory, bypassing Pesin’s Theory and the need
for regularity.
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Note that if f belongs to the isotopy class of an linear Anosov automorphism A,

then any lift f̂ to R2 has that d(f̂(ẑ)−A(ẑ)) is uniformly bounded, and therefore
we obtain that

Remark 1.5. If we take f ∈ Homeo(T2) to be in the isotopy class of an Anosov
linear automorphism, the thesis from Theorem C still holds.

This allows us to get a monotone semiconjugacy for this isotopy class using
analogous anchoring arguments, and obtain a factor g which is again infinitely
continuum-wise expansive, is area-preserving and has a dense set of topological
horseshoes.

Apart from its use in the proof of Theorem A, Theorem C has also a few
other applications. For instance, one can now obtain for homeomorphisms a result
known before only for diffeomorphisms (see [AZ14]):

Theorem D. Let f ∈ Homeo0(T2) be a transitive homeomorphism.

(1) If ρ(f) has nonempty interior, then f is topologically mixing.

(2) Furthermore, if f has a lift f̂ with 0⃗ ∈ int(ρ(f̂)), then f̂ is also topologi-
cally mixing.

Finally, Theorem C also solves a relevant question (Question G from [KT13]).
It was known that, if f is a non-wandering isotopic-to-the-identity homeomorphism
whose rotation set has nonempty interior, then the lifted diameter of any periodic
open topological disk (usually thought as elliptic islands) is bounded, and the
bound only depended on the period of the disk. But it was not known if the
bound could be independent of the period, except in the C1+α setting where it was
proven in [AZ14].

Theorem E. Let f ∈ Homeo0(T2) be a non-wandering homeomorphism whose
rotation set has nonempty interior. Then, there exists M > 0 such that the lifted
diameter of any periodic topological disk is less than or equal to M .

We will say a homeomorphism f is under the General Hypothesis if it satisfies
the hypothesis of Theorem A.

4. Organization of the article

Looking at the big picture, the proof of Theorem A, can be split into two big
parts. In the first one we will build a factor g, by collapsing dynamically bounded
continua for f (assuming that even makes sense). This is done in Sections 3 through
5. The second part (Sections 6 through 9) is dedicated to fully understanding the
dynamics of g and recovering every piece for the proof of Theorem A. Let us now
comment on the role of each section.

As usual, Chapter 2 is devoted to settle notation and explain some preliminary
results and techniques we will use later.

In Chapter 3 we introduce the notion of canonically foliated strip, which is
the notion of the article and will aid us throughout the whole work. In Chapter
4 we already use it to develop anchoring techniques for inessential continua, to
prove that there is a uniform bound for the diameter of dynamically bounded
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continua for f , which is Theorem C (we also obtain Theorem E as a result). The
whole existence of the factor g relies on this theorem: this is showed in Chapter 5,
where we build the mentioned factor and immediately obtain some basic dynamical
properties for it:

• There exists a lift ĝ of g such that ρ(ĝ) = ρ(f̂),
• g is infinitely continuum-wise expansive,
• g is tight.

In Chapter 6 we prove some topological and dynamical properties for stable and
unstable sets of points, which we use in the following three sections. In Chapter 7
we make a refinement of the anchoring arguments from Chapter 4 which we call
total anchoring, and use it to prove that g is rotationally mixing.

Sections 8 and 9 are a little bit technical, and dedicated to proving the density
of Markovian horseshoes for g: in Chapter 8 we introduce the notion of heteroclinic
pseudo-rectangle using stable and unstable sets, and prove their density in 8.9; in
Chapter 9 we show that inside any heteroclinic pseudo-rectangle there exists a
Markovian horseshoe, using the total anchoring we previously developed.

The article finishes in Chapter 10, where we show that that up to choosing a
topological model for the quotient torus, g is area-preserving. This allows us to
prove Theorem A, which we also do in this section.

5. Some open questions

Here are some questions which appeared with the development of the tech-
niques used in this article.

(1) Can the uniform bound M for the diameter of dynamically bounded con-
tinua, be in turn bounded by only using some dynamical invariants of f?
Our construction heavily depends on the choice of an isotopy I from the
identity to f , and a transverse foliation F (see Definition 2.20 for details).

(2) Can we give a lower bound for the period for f , of the realizing points
built in Proposition 3.5, using the size of the rotation set? This could
yield lower bounds for the topological entropy of f , and (more subtly) for
the topological entropy carried by continua.

(3) Which conditions on the realizability of rotation sets, imposes the fact
that g is area-preserving?

(4) Consider the action of f in the fine curve graph of the torus (see Definition
2.44). Can we use it to fully describe the action of g?

(5) Suppose on top of the General Hypotheses that f is nonwandering: in
which case it is also strictly toral. Is the set of periodic points dense in
Ess(f)? (see Definitions 2.14 and 2.15).

(6) Even simpler: when f is transitive (and therefore Ess(f) = T2), is it true
that f has a dense set of periodic points? (Note that the answer is indeed
positive for the factor g). This was the very first motivating question we
faced in the production of this article, and there are no proofs known to
us, even for the C∞, area-preserving case.
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(7) Let us go to the context of cloed orientable hyperbolic surfaces Sg, of genus
g ≥ 2. It seems reasonable to search for an analogous semiconjugacy to the
one in Theorem A. Which conditions on the homological or homotopical
rotation sets (See Definitions 2.42 and 2.43), would allow us to replicate
the anchoring techniques from Chapter 4 and get a uniform bound for the
diameter of dynamically bounded continua, as in Theorem C? We imagine
that a condition as the one in the main result in [?] is sufficient, but this
can probably be improved.

(8) A very recent pre-print by Militon [?] provides, for a homeomophism g
of a surface S of genus ≥ 2 homotopic to a pseudo-Anosov (pA) map, a
pártition of the S into stable sets as well as a partition of the surface into
unstable sets, which immitates the well known foliations of a pA map. It
appears that, in that context, a continuum K is dinamically bounded if
and only if it is contained in a connected component of the intersection
of a stable set and an unstable set. Is this sufficient to obtain a result as
Theorem C in this case? And does this imply that a factor with similar
properties exists?



CHAPTER 2

Preliminaries

1. Basic notation

Surfaces. Throughout this paper, a surface S will be a two dimensional ori-
entable topological manifold. We will say that S is respectively a plane, annulus,
sphere or torus if it is homeomorphic to R2,R2\{0},S2 or T2. A set U ⊂ S will
be a disk if it is homeomorphic to D = {(x, y) ∈ R2 : x2 + y2 < 1}.

Homeomorphisms. All maps considered in this work are continuous. More-
over, we will say that a map f : S → S is a homeomorphism if f is bijective, and
both f and and its inverse are continuous.

Definition 2.1. Given two surfaces S, S ′ and two endomorphisms f : S → S
and f ′ : S ′ → S ′ we will say that f and f ′ are topologically conjugate if there
exists a homeomorphism h : S → S ′ such that hf = gh.

Covering spaces. Given two surfaces S and S̃, we will say that π̃ : S̃ → S
is a covering projection if every point z ∈ S has a neighbourhood U , such that
π̃−1(U) is a disjoint union of disks D̃i in S̃, such that for every value of i, we have
that π̃|D̃i

is a homeomorphism.

Under these conditions, we will say that S̃ is a covering space of S, and it
will be the universal covering if it is simply connected. It is very well known that
the universal covering of a surface is unique up to homeomorphisms, and it is
homeomorphic to R2 whenever S ̸= S2. When there is no place for ambiguity, we
will lighten notation and simply call π̃ and S̃ a covering, indistinctively.

For the particular case when S = qA ≃ R2\{0} is an annulus, we will take

the universal covering Ă which is a plane, and the covering projection will be
π̆(x, y) = (e−ycos(2πx), e−ysin(2πx)). We will then have the deck transformation

T ∈ Homeo+(Ă) defined by T (x, y) = (x+1, y). Similarly, for the case of the torus
T2 = R2/Z2, simply take the universal covering R2 with the natural projection,
and we will have that the group of deck transformations will be generated by
Tx(x, y) = (x+ 1, y) and Ty(x, y) = (x, y + 1).

Given f : S → S, and considering S̃ the universal covering of S, we may take
f̃ : S̃ → S̃ a lift of f , as a map such that fπ̃ = π̃f̃ (we know that f̃ is determined
up to postcomposition with a deck transformation). Notice that, for the case in
which S is hyperbolic, there exists a unique lift F of f , which commutes with the
deck transformations.

Curves and foliations.

25
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Definition 2.2. Given two points p, p′ ∈ S, a path or curve from p to p′ will
be a continuous function γ : [0, 1] → S such that γ(0) = p, γ(1) = p′. We will say
the path is simple when γ is injective, and closed when p = p′.

We will say γ is respectively a segment, line, circle if it is homeomorphic to
[0, 1],R,S1 by a proper application h to R2.

Definition 2.3. Given a surface S, an oriented topological foliation F is a
partition of S in one-dimensional manifolds such that for each p ∈ S, there exists
a neighbourhood Up and a homeomorphism h : Up → (−1, 1) × (−1, 1) which
preserves orientation and sends F into the foliation by vertical lines, oriented from
top to bottom.

Given z ∈ S, we define ϕz as the leaf going through z, similarly we define
ϕ+
z , ϕ

−
z as the semi-leaves starting at z, which respect the orientation.

Given a leaf ϕ of a singular oriented topological foliation in a surface S, we
define α(ϕ), ω(ϕ) as the usual α and ω limits of curves in surfaces.

Topological notions.

Definition 2.4. Let X ⊂ T2 be a set, U ⊂ T2 an open set, and f : T2 → T2

a homeomorphism.

• An open set U ⊂ T2 is said to be inessential if every closed curve in U is
homotopically trivial. X is said to be inessential when it has an inessen-
tial neighbourhood. For the case of connected sets, this is equivalent to
Definition 1.2.

• X is essential when it is not inessential. Moreover, it is fully essential
when T2\X inessential.

• U is said to be annular if it is homeomorphic to an open annulus.
• We define the filling Fill(X) of X, as the union of X with every inessential
component of its complement. We will say that X is filled whenever
X = Fill(X).

• We will define the orbit of X as the union of the past and future iterates
of X by the homeomorphism f .

Definition 2.5. Let f be a uniformly continuous homeomorphism of the sur-
face S. We will say that f is mixing if given two open sets U, V ⊂ S, there exists
n0 such that

f j(U) ∩ V ̸= ∅, for every n ≥ n0.

Lemma 2.6. If f has a power f j which is topologically mixing, then f is also
topologically mixing.

Proof. Let U, V ⊂ S be two open sets. And let us write Vk = f−k(V ), where
k > 0. By hypothesis, there exists m0 such that

(f j)m(U) ∩ Vk ̸= ∅, for every 0 ≤ k ≤ j − 1, m ≥ m0.

This means that we may take n0 = jm0 and obtain that

fn(U) ∩ V ̸= ∅, n ≥ n0,

which concludes the proof. □
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Definition 2.7 (Hausdorff distance). Let (X, d) be a metric space, and
let K1, K2 ⊂ X be two nonempty subsets. We define the Hausdorff distance
dH(K1, K2) between K1 and K2 as

dH(K1, K2) = inf{r ≥ 0 : K2 ⊂ B(K1, r), K1 ⊂ B(K2, r)},

where

B(K, r) = {x ∈ X : d(x,K) < r}.

We recall that whenever X is compact, the metric space (K(X), dH) of continua
of X with the Hausdorff distance, is also compact.

The following definition precises when a curve crosses another one from left to
right, or viceversa.

Definition 2.8 (Intersection number). Given a surface S, and two curves
γ, γ′ : [0, 1] → S with a simple isolated intersection point γ(t0) = γ′(t′0) in their
interior, we will say that γ ∧ γ′ = 1 whenever there exists a homeomorphism h
from a neighbourhood of z to (0, 1)2, such that h(γ(t)) = (t, 1

2
) and such that the

vertical coordinate of h ◦ γ′ is strictly increasing in a neighbourhood of t′0.

Note that this notion extends naturally for pairs of curves with finitely many
transversal intersections, is bilinear and behaves as expected when concatenating
curves.

Definition 2.9 (Lines’ relative position). Let λ0, λ1, λ2 ⊂ R2 be oriented
lines. We will say that λ2 is above λ1 relative to λ0 (or equivalently, λ1 is below
λ2 relative to λ0), if

• The three lines are pairwise disjoint
• None of the lines separate the other two,
• If η1, η2 are two disjoint paths that respectively join z1 = λ0(t1) to z′1 ∈ λ1

and z2 = λ0(t2) to z′2 ∈ λ2, and the paths do not meet the three lines
except at their endpoints, then t2 > t1.

Note that this definition only depends on the orientation of λ0.

2. Torus topological dynamics

Definition 2.10. Let f ∈ Homeo(T2). We will say that f is rotationally

mixing if there exists a lift f̂ j of a power f j to R2, such that f̂ j is topologically
mixing.

Let T2 be 2-dimensional torus, and let f ∈ Homeo(T2). Then, the class [f ] ∈
MCG(T2) of homeomorphisms isotopic to f is determined by the action on the
homology group, which for the torus is equivalent to the fundamental group and
equal to Z2. There is an extensive explanation on surface mapping class groups in
[FM12].

This action is determined by the action of the homeomorphism on a fixed base
of the fundamental group (we may very well take the canonical basis for this),
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which in turn is defined by a 2 × 2 integral matrix. We then have a natural
association

[f ] 7→
(
a b
c d

)
The idea is obtain dynamical results from algebraic properties of this matrix.

We know that we have two eigenvalues λ, λ−1 (its product must be one because if

we take a lift f̂ to R2, the image of a fundamental domain must have area equal
to 1).

Take a look to the trace of this matrix. We know that tr(M) = a+d = λ+λ−1.
If |tr(M)| < 2, then both λ and λ−1 must belong to the unit complex ball (so that
their product is equal to 1). Given that the trace is an integer, it can only be −1,
0 or 1, each of these cases yielding exactly one possibility (up to permutation) for
the pair λ, λ−1. Easy computations for each of these cases we have that [f 12] = Id.
We will say in this situation that f has finite order.

Note that we have covered every case with non-real eigenvalues. For the rest
of the analysis, we may have that the trace is equal to or greater than 2. If
|tr(M)| = 2, then either λ = 1 = λ−1 or λ = −1 = λ−1. For the first case, we have
that

either [f ] = Id or [f ] is conjugate to

(
1 n
0 1

)
,

. Note that for this case we have (1, 0) as an eigenvector. The second case is
analogous,

either [f ] = Id or [f ] is conjugate to

(
−1 n
0 −1

)
.

We again that (1, 0) is an eigenvector, which is equivalent to saying that (up to
isotopy), the closed curve associated to this element of the fundamental group
is preserved by the homeomorphism. For these two cases we will say that f is
reducible.

We finish the analysis with |tr(M)| > 2. We may assume that |λ| > 1 > |λ−1|.
We will write λ+ = λ, λ− = λ−1 and note that our associated matrix has a
diagonal form such that

[f ] 7→
(
λ+ 0
0 λ−

)
.

By the Spectral Theorem, we know that this linear representative has two
perpendicular eigenvectors v+, v− such that the foliations in this directions are
respectively λ-expanded and λ-contracted. For this case we will say that [f ] is
Anosov.

We are now able to state the central result from Nielsen-Thurston Theory,
which is the surface homeomorphism classification for the much simpler case of
the torus:

Theorem 2.11 (Torus Homeomorphisms Classification). Let f be a torus
homeomorphism. Then one of the following holds:

• f has finite order: there exists a power fn of f such that fn ∼ Id.
• f is reducible: there exists a closed curve class which is invariant by f .
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• f is isotopic to a linear Anosov homeomorphism.

3. Strictly Toral Dynamics

The results for this section come from [KT13]. The following notion tries
to encode torus homeomorphisms whose dynamics can not be reduced to simpler
subsurfaces. Throughout this section we will assume that f is a non-wandering,
isotopic-to-the identity torus homeomorphism.

Definition 2.12. We will say f is irrotational if there exists a lift f̂ in R2

such that ρ(f̂) = (0, 0).

Definition 2.13. We will say that f is annular if there exists a lift f̂ of f , a
vector v ∈ Z2

∗ and some M ∈ R, such that for every ẑ ∈ R2 and every j ∈ Z, we
have that

−M < ⟨f̂ j(ẑ)− ẑ , v⟩ < M,

that is, the displacement of any orbit in one particular rational direction is uni-
formly bounded.

It can be proved in this case that there exists a finite covering of T2 by another
torus, such that the corresponding lift of f acting in this torus has an invariant
annular set (see for example [Jä08][Remark 3.10]).

Definition 2.14 (Strictly toral, [KT13]). Let f ∈ Homeo0(T2), and assume
that f non-wandering. We will say that f is strictly toral if neither of the following
properties hold:

(1) There exists a power fk of f such that Fix(fk) is fully essential, and such
that fk is irrotational,

(2) There exists a power fk of f such that fk is annular

Note that the first item is essentially saying that f is planar, in the sense that,
up to taking a power of f , understanding its dynamics is as difficult as under-
standing plane dynamics (i.e. the return maps for each disk in the complement of
the set of fixed points). For the annular case, up to a finite covering we have an
invariant annular set, whose complement is also annular, and therefore it suffices
to understand annulus dynamics.

Let us now explain how the dynamics in the complement of these two cases is
rightfully called strictly toral.

Definition 2.15. We define the set Ine(f) of inessential points (or simply
inessential set) of f , as

Ine(f) = {z ∈ T2 : ∃ a neighbourhood U of z such that the orbit of U is inessential}.

We define Ess(f) the set of essential points of f as

Ess(f) = T2\Ine(f)
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Note that both of these sets are invariant. Moreover, we have by [KT13,
Theorems A and B] that, if f is strictly toral, then Ine(f) is an open inessential set,
which is in turn the union of bounded periodic disks, whose diameter is uniformly
bounded if we look at the set of disks with a fixed period q. Therefore, Ess(f) is
a fully essential closed set. We also now from [KT13] that

Remark 2.16. If f is strictly toral, then f is transitive ⇐⇒ Ess(f) = T2.

Note that if the rotation set ρ(f) has nonempty interior, then f is strictly toral.

A topological model for the Chirikov-Taylor Standard map. Strictly
toral maps have been extensively studied by mathematicians and physicists with
different approaches, as they appear naturally from several physical dynamical
systems, the most well-known being the Chirikov-Taylor Standard map (see for
example [Chi79]), defined as S(x, y) = (x, y), where

y = y + k sin(x),

x = x+ y + k sin(x),

which is obtained as the return map for the quantum periodically kicked rotator.
In the context of KAM theory, the set Ine(f) is called the set of elliptic islands,
and Ess(f) is known as the chaotic sea. Very little is understood for the properties
of Ess(f), appearing for large values of k. Another examples of physical relevance
can be found in [LKFA90].

4. Equivariant Brouwer Theory

This theory was developed by Le Calvez, and generalizes the foliations by
Brouwer lines for fixed-point-free orientation-preserving homeomorphisms of the
plane.

Definition 2.17. Given a closed surface and an isotopy I : [0, 1]×S → S, we
will define the set Fix(I) of fixed points of I by

Fix(I) = {z ∈ S : I(t, z) = z for every t ∈ [0, 1]}.
We will also define Dom(I) = S\Fix(I).

Definition 2.18. Given f : S → S and an isotopy I : [0, 1]×S → S from the
identity to f , we will say that I is maximal if for every z ∈ Fix(f) ∩ Dom(I), we
have that the path Iz(t) is not homotopically trivial in Dom(I).

The following result is due to Béguin, Crovisier and Le Roux, and can be found
in [BCLR20].

Theorem 2.19 ([BCLR20]). Gvien an isotopy I ′ from the identity to a home-
omorphism f of a closed surface S, there exists a new isotopy I which is homotopic
to I ′ with fixed endpoints (seen as paths in the space of homeomorphisms of S) such
that I is a maximal isotopy.

This allows us to use the equivariant version of the Brouwer-Le Calvez trans-
verse foliation built in [LC05b] and work with the following object:
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Definition 2.20 (Maximal dynamically transverse decomposition).
Let f be a homeomorphism of the surface S which is isotopic to the identity,
by the maximal isotopy I. We will say that a singular oriented foliation F of S is
dynamically transverse to I if

• Sing(F) = Fix(I)
• Every path by the isotopy γz(t) : [0, 1] → Dom(I), γz(t) = I(t, z) has a
representative γ′z : [0, 1] → Dom(I) which is homotopic to γ with fixed
endpoints in Dom(I), such that F is positively transverse to γ′z (i.e. the
new path only crosses leaves from right to left).

In this context, we will say that (f, I,F) is a maximal dynamically transverse
decomposition (MDTD) for f . The desired foliation appears as the projection of
an equivariant version of the plane foliation by Le Calvez for the universal covering
M̃ of M = Dom(I), that is, we first obtain a maximal dynamically transverse

decomposition (f̃ , Ĩ , F̃) in the universal covering of Dom(I) (where F̃ is a non-
singular equivariant foliation), and then we project it to obtain (f, I,F).

We will define I tF(z) = γ′z(t) the transverse path for z, which is defined for
times in [0, 1], and we will simply write IF(z) for said path. We will extend this
map in the usual way for other values of t, by concatenating respective transverse
paths of iterates by f :

InF(z) =
∏

0≤j≤n−1

IF(f
j(z)), IZF(z) =

∏
j∈Z

IF(f
j(z))

We can also lift these transverse paths to the universal covering of the surfaces we
are working in.

We will write ϕ to denote leaves in F , and similarly ϕ̃ for their lifts in F̃ . Given
a transverse path γ : [a, b] → Dom(I) and t ∈ [a, b], we will write ϕγ(t) to denote
the leaf such that γ(t) ∈ ϕγ(t) (and similarly for their respective lifts).

5. Forcing Theory

The Theory of Forcing for transverse trajectories has less than ten years of ex-
istence, and has been developed in [LCT18], and [LCT22], the latter having been
published in 2022. It has already yielded several strong results in the description
of surface topological dynamics, and uses the elements from Definition 2.20.

We say that two transverse paths γ̃, γ̃′ whose images are in Dom(Ĩ) are equiv-
alent if they have lifts to M̃ that start and finish at the same leaf.

We say a path γ̃ : [a, b] → M̃ from ϕ̃γ̃(a) to ϕ̃γ̃(b) is admissible of order n if it is

equivalent to a transverse path ĨnF̃(z̃), that is, if

f̃n(ϕ̃γ̃(a)) ∩ ϕ̃γ̃(b) ̸= ∅.

We say a path γ : [a, b] → Dom(I) is admissible of order n if it has a lift that
is admissible of order n.

The following definition comes from [LCT18, Section 3].
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Definition 2.21 (F̃-transverse intersection, [LCT18]). Let F̃ be an ori-

ented foliation of the plane and let (f̃ , Ĩ , F̃) be a dynamically transverse decom-
position. Let γ̃1 : J1 → R2, γ̃2 : J2 → R2 be two transverse paths such that
ϕ̃γ1(t1) = ϕ̃γ2(t2) = ϕ̃.

We will say that γ̃1 intersects γ̃2 F̃ -transversely and positively (or equivalently,
that γ̃2 intersects γ̃1 F̃ -transversely and negatively) if there exist a1, b1 ∈ J1 with
a1 < t1 < b1, and a2, b2 ∈ J2 with a2 < t2 < b2, such that

• ϕ̃γ̃2(a2) is below ϕ̃γ̃1(a1) relative to ϕ̃,

• ϕ̃γ̃2(b2) is above ϕ̃γ̃1(b1) relative to ϕ̃.

In this context we can also say that γ̃1 and γ̃2 have an F̃ -transverse intersection

We will say that two transverse paths γ1, γ2 intersect F -transversally whenever
they have lifts γ̃1, γ̃2 that intersect F̃ -transversally.

If two lifts of γ1 have a F̃ -transverse intersection, we will say that γ1 has a
transverse self-intersection.

The fundamental result of [LCT18] is without a doubt Proposition 20, which
roughly says we may concatenate pieces of transverse trajectories, whenever these
paths intersect F̃ -transversally:

Proposition 2.22 (Forcing, [LCT18]). Let γ1 : [a1, b1] → S, γ2 : [a2, b2] → S
be two admissible transverse paths, which are respectively admissible of order n1

and n2, and intersect F-transversally at γ1(t1) = γ2(t2). Then,

• γ1|[a1,t1]γ2|[t2,b2] and γ2|[a2,t2]γ1|[t1,b1] are both admissible of order n1 + n2.
• Furthermore, either one of these paths is admissible of order min(n1, n2),
or both are admissible of order max(n1, n2).

We will use [LCT18, Propositions 7 and 26], and [LCT22, Theorem M] to
build the canonically foliated strips in Chapter 3. For the reader who wants some
insight on how these techniques work, going through [LCT18, Sections 3 and 4],
could be a useful practice.

6. Topological and Markovian horseshoes

Here we introduce two objects with horseshoe-like dynamics, the former is
easier to detect, the latter yields stronger consequences.

Topological horseshoes. We start by defining a purely topological notion of
horseshoe, introduced by Kennedy and Yorke in [KY01].

Definition 2.23. Let C be a compact set of a surface S, and let C0, C1 be
two fixed disjoint compact subsets of C, each of them intersecting each connected
component of C. We will say that a continuum K of C is a connection if it
intersects both C0 and C1.

We will say that a continuum K ′ of C is a preconnection (for the homeomor-
phism f) when f(K ′) is a connection.

Definition 2.24. We will say that the homeomorphism f has crossing number
equal to m for the compact set C, if m is the greatest integer for which there exist
C0, C1 ∈ C such that each connection contains m disjoint preconnections.
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Theorem 2.25 ([KY01]). Suppose that a power f j of a homeomorphism f of
the surface S has crossing number m > 1 for the locally connected, compact set
C ⊂ S. Then, there exists a compact subset Q ⊂ C, such that f j|Q is semiconjugate
to the Bernoulli shift in m symbols.

In particular, htop(f) is positive.

In this case, we will say that Q is a topological horseshoe in m symbols for f ,
with period j.

This notion generalizes the classical Smale’s Horseshoe, which satisfies the
hypothesis of Theorem 2.25, see Figure 1 for a brief explanation.

Note that although we obtain positive topological entropy, we do not recover
the existence periodic points for f as we can not make sure that the preimages
by the semiconjugacy of periodic points for the Bernoulli shift, contain periodic
points for f .

f(C0)

C1C0

f(C1)

Figure 1. For the classical Smale Horseshoe, every connection
(green) has at least two respective subcontinua (red) connecting the
vertical sides of the blue and orange regions, which implies it has at
least two disjoint preconnections.

Markovian horseshoes. Stronger notions of horseshoe than the one in [KY01]
are described for example in [PPS18], [LCT22] and [GM22, Section 9.2]. The
notion used in [GM22] is slightly stronger and adapted to the particular context
of hyperbolic surface homeomorphisms.

This will be our case for the surface S = R2\Dom(Î), whenever Dom(Î) is
nonempty. Furthermore, be aware that although this notion is called rotational
horseshoe when defined, in our context the horseshoes will rotate around singu-

larities os F̂ , which is not itself rotation in our original torus.

Definition 2.26. We will say a compact connected set R ⊂ S is a rectangle
if it is homeomorphic to [0, 1]2 by a homeomorphism h : [0, 1]2 → h([0, 1]2) ⊂ S.
We will call sides of R, the image of the sides of [0, 1]2 by h, the horizontal sides
being R− = h([0, 1]× {0}) and R+ = h([0, 1]× {1}).

Definition 2.27. Let R1, R2 ⊂ S be two rectangles. We will say that R1∩R2 is
aMarkovian intersection if there exists a homeomorphism h from a neighbourhood
of R1 ∪R2 to an open subset of R2, such that
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• h(R2) = [0, 1]2;
• Either h(R+

1 ) ⊂ {(x, y) ∈ R2 : y > 1} and h(R−1 ) ⊂ {(x, y) ∈ R2 : y < 0};
or h(R+

1 ) ⊂ {(x, y) ∈ R2 : y < 0} and h(R−1 ) ⊂ {(x, y) ∈ R2 : y > 1};
• h(R1) ⊂ {(x, y) ∈ R2 : y > 1} ∪ [0, 1]2 ∪ {(x, y) ∈ R2 : y < 0}.

Definition 2.28 (Markovian horseshoe. [GM22]). Let f be a homeomor-

phism of a hyperbolic surface S, let f̃ its lift to the universal covering S̃, and let
m > 1 be an integer.

We will say that f has a Markovian horseshoe in m symbols with deck trans-
formations W1, . . . ,Wm, if there exists a rectangle R̃ ⊂ S̃, and some j ≥ 1 such
that

for every 1 ≤ i ≤ m, the intersections Wi(R̃) ∩ f̃ j(R̃) are Markovian.

In this context, we will say that j is the period of the horseshoe. Whenever R̃
projects injectively by the covering projection, we may also say that R contains a
Markovian horseshoe in m symbols for f . In this case, the set⋂

n∈Z

fnj(R)

is the Markovian horseshoe, and j is again its period.

For the purpose of this work, we will adapt this notion and say that a home-
omorphism f ∈ Homeo0(T2) has a Markovian horseshoe if that happens for the

restriction f̂k|Dom(Î) of a lift of some power fk, where Î is taken as in 2.20.

The proof of the following result can be found in [GM22].

Proposition 2.29. Let f ∈ Homeo(S). Suppose that f has a Markovian
horseshoe X of period j contained in the rectangle R, and with associated deck
transformations W1, . . . ,Wm (m ≥ 2), which generate a free group. Then, there
exists a compact subset Ỹ ⊂ S̃ such that

• The map f j|X has an extension g̃ : Ỹ → Ỹ , which in turn is an extension
of the Bernoulli shift σ : {1, . . . ,m}Z → {1, . . . ,m}Z in m symbols by the
semiconjugacy h.

In particular, the following diagram commutes:

X X

Ỹ Ỹ

{1, . . . ,m}Z {1, . . . ,m}Z

f j

g̃

σ

h h

π π

• the preimage by h of every periodic sequence by the shift σ, contains a
periodic point of g (which then projects to a periodic point of f j).
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Remark 2.30. If f ∈ Homeo(S) has a Markovian horseshoe X of period j

in m symbols, then htop(f) ≥ log(m)
j

. In particular, the existence of a Markovian

horseshoe for f implies positiveness of topological entropy of f .

Note that the existence of a Markovian horseshoe implies the existence of a
topological one. The Markovian ones behave better, in particular

Remark 2.31. Markovian horseshoes coming from deck transformations form-
ing a free group yield exponential growth of the amount of periodic orbits, as the
period goes to infinity. Topological horseshoes do not ensure the existence of
periodic points.

7. Prime End Theory

We will use classical Prime End Theory by Carathéodory in order to prove the
density of horseshoes, in Chapter 9. An exhaustive construction of the definitions
and results we exhibit can be found for example in [Mil06, Chapter 17] or [CL66,
Chapter 9], we include the results we will use later for the sake of completeness.

Let us take O ⊂ S2 a simply connected open set, whose complement has more
than one point. By the Riemann mapping theorem, it is holomorphic to the
canonical disk D = B(0, 1) ⊂ R2.

Definition 2.32. We will say γ : (0, 1) → O is a crosscut if it is homeomorphic
to (0,1), and its closure is homeomorphic to [0,1], with its two endpoints in ∂O.

Using the Jordan Curve Theorem, we know that every crosscut γ separates
O into two connected components. Each component N of O\γ will be called a
cross-section, which holds γ = U ∩ ∂N .

Definition 2.33. A fundamental chain N = {Nj}j∈N will be a decreasing
sequence (Nj+1 ⊂ Nj for every j) of cross-sections Ni ⊂ O, such that the diameter
of the corresponding crosscuts tends to 0 as j tends to infinity.

Two fundamentals chains N = {Nj}j∈N and N ′ = {N ′j}j∈N will be equivalent
if every Nj contains some N ′k and conversely every N ′j′ contains some Nk′ .

Definition 2.34. A prime end z̆ for the pair (cl(O), ∂O) is an equivalence
class of fundamental chains.

Definition 2.35. We define the impression Imp(z̆) ⊂ cl(O) of a prime end z̆
as ⋂

j∈N

cl(Nj),

where {Nj} is any fundamental chain which defines z̆.

Remark 2.36. For every prime end z̆, we have that Imp(z̆) is a compact
connected subset of ∂O.

Definition 2.37. We define the Caratheodory compactification Ŏ of O as the
disjoint union of O and the set of prime ends of O, with the topology having
O ∪ N as a base, where
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• O is the set of open subsets of O,
• N =

⋃
N , where N is the union of any cross-section N with the set of

prime ends which are given by a fundamental chain {Nj} with N1 ⊂ N .

Theorem 2.38 (Caratheodory compactification). Any conformal isomor-

phism h : D → O extends uniquely to an isomorphism from D̆ = cl(D) to Ŏ.

We will write z̆ for points in D̆, note that the set of prime ends is then home-
omorphic to ∂D̆ ≃ S1.

We will say a curve η : [0, 1) → O lands at z ∈ ∂O if we can extend η
continuously in cl(O) with γ(1) = z.

We will say z ∈ ∂O is accessible if there exists a curve in O which lands
at z. Note that any neighbourhood U of a point z in O intersects both O and
its complement. By drawing a curve inside U between points in each of these
components, and which does not go through z, we obtain the following result.

Remark 2.39. The set of accessible points is dense in ∂O.

For this paper, we will say a prime end z̆ = eiθ is accessible, if there exists a
simple curve γ̆ : [0, 1] → D with γ̆|[0,1) ⊂ D, γ̆(1) = eiθ, which holds that

h(γ̆) lands at some z ∈ ∂O

Theorem 2.40 (17.4, [Mil06]). The set of accessible prime ends has full
Lebesgue measure in S1. In particular, it is dense.

8. Higher genus Rotation Theory

We have studied the torus case in Chapter 1. For closed orientable hyperbolic
surfaces S = Sg, of genus g ≥ 2, the study of rotation sets for homeomorphisms is
very much different: the geometry is now hyperbolic so geodesics drift exponen-
tially, and the fundamental group of the surface is not abelian anymore. Thus, we
get two different rotation notions: a homological and a homotopical one.

Homological rotation. Fix a bounded fundamental domain D for the action
of the fundamental group Γ by deck transformations in the universal covering S̃.
Let f̃ be the only lift of f which commutes with the deck transformations. For each
z ∈ S, let z̃ is the lift of z in D, and define az ∈ Γ as the only deck transformation
such that a−1z f̃(z̃) ∈ D. For a ∈ Γ, we will denote [a] ∈ H1(S,R) its homology
class.

Definition 2.41. Given an f -ergodic probability measure µ, the homological
rotation vector of µ is

ρH1(µ) :=

∫
S

[ay] dµ(y) = lim
n→+∞

1

n

n−1∑
i=0

[af i(x)], for µ− almost every x ∈ S.

Definition 2.42. The homological rotation set ρH1(f) of f is the set of vectors
r ∈ H1(S,R) such that there exists (xk)k ∈ SN and (nk)k ∈ NN with limk→+∞ nk =
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+∞ and such that

lim
k→+∞

1

nk

nk−1∑
i=0

[af i(xk)] = r.

The ergodic (homological) rotation set ρergH1
(f) of f is

ρergH1
(f) =

{
ρH1(µ) | µ is f -ergodic}.

Sufficient homological-rotation conditions for positive topological entropy are
found by Pollicott in [Pol92] and [Mat97]. Katok proves that for the case of
flows the homological rotation set is totally isotropic. ([KH95]). Lellouch gets
several results for this rotation set in his PhD work ([Lel19]), and Alonso, Brum
and Passeggi describe this rotation set for a generic set of homeomorphisms in
[ABP20].

Homotopical rotation. Using the classical model, define the set of geodesics
os S̃ as S1×S1\∆, and given a geodesic (α, ω) given by its ends, we define πα,ω(x̃)
as the orthogonal projection of x̃ on πα,ω.

Definition 2.43. The homotopical rotation set ρ(f) consists of the triples
(α, ω, v) with α, ω ∈ ∂S̃ ≃ S1, v > 0 such that there exist sequences {x̃k}k ∈ S̃
and nk → +∞ such that

lim
k→+∞

(
x̃k, f̃

nk(x̃k),
d
(
πα,ω(x̃k), πα,ω

(
f̃nk(xk)

))
nk

)
→
(
α, ω, v

)
.

Guihéneuf and Militon obtain in [GM22] sufficient homotopical-rotation con-
ditions for the existence of topological horseshoes. A slightly stronger notion called
geodesic tracking is introduced by Lessa in [Les11]. Using both homological and
homotopical arguments, Lessa, Militon and the author partially describe the shape
of ergodic rotation sets in [GSGL23].

9. The Fine Curve Graph

A brand new object which yielded intensive research for surface homeomor-
phisms during the last five years is the fine curve graph, which was introduced by
Bowden, Hensel and Webb in [BHW22], published in 2022.

Definition 2.44 (Fine Curve graph, [BHW22]). Let S be a closed orientable
surface of genus g ≥ 1. Let the fine curve graph C†(S) be the graph whose vertices
correspond to essential simple closed curves in S. Two such vertices are joined by
an edge when the corresponding curves are disjoint. We denote by d† the distance
in C†(S), where the length of each edge is equal to 1.

When S is the 2-torus we change the definition of the edges of C†(S): two
vertices are joined by an edge when the corresponding curves intersect at most
once.

In this work [BHW22] it is also proven that C†(S) is a Gromov hyperbolic
space, taking the distance d† which is induced by the graph structure. A home-
omorphism f of S acts naturally as an automorphism of this graph, in fact
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Homeo(S) is isomorphic to Aut(C†(S)), combining the proofs by Long, Margalit,
Pham, Verberne, Yao in [LMP+21], and by Le Roux and Wolff in [RW22]. Such
an automorphism induces a well defined translation length

|f | = lim
k→+∞

1

k
d†(fk(x), x),

which lets us classifies these automorphisms as either hyperbolic (|f | > 0), para-
bolic (|f | = 0 but no finite diameter orbits) or elliptic (f has finite diameter orbits).
For the case of Homeo0(T2), results by Bowden, Hensel, Mann, Militon and Webb
prove in [BHM+22] and by Guihéneuf and Militon in [GM23] uniquely deter-
mine this class for the action, only by looking at the rotation set and at sublinear
deviations from it.



CHAPTER 3

Canonically foliated strips

The purpose of this chapter is to build the main tool for the proof of Theorem
C, which is called a canonically foliated strip. Its construction uses some notions
of Le Calvez-Tal Forcing Theory for surface homeomorphisms. Given our homeo-
morphism f under the hypothesis of Theorem C, we may assume up to taking a

power and an adequate lift, that the origin 0⃗ ∈ ρ(f̂) for some lift f̂ .
Let us settle notation for the remainder of the current and the following chap-

ters. We will take a maximal dynamically transverse decomposition (f, I,F) for
f , where F is a singular foliation with Sing(F) = Fix(I), and such that I lifts

to an isotopy Î from the identity to f̂ . We may then take a lift of this decompo-

sition to the universal covering R2 of T2, obtaining (f̂ , Î , F̂). Restricting to our

domain Dom(Î) = R2\Fix(Î), we may then lift again to the universal covering

D̃ of Dom(Î), and get the corresponding (f̃ , Ĩ , F̃), where f̃ acts as a Brouwer

homeomorphism on the topological plane D̃.
Unless explicitly stated, we shall use for the remainder of the work the diacritiĉ (i.e. f̂) to denote objects in the universal covering R2 of T2, and we shall use the

diacritic ˜ (i.e. f̃) to denote objects in the universal covering D̃ of Dom(Î).
Be aware that we will develop the proofs without going to the -more frequent-

universal covering of the punctured torus Dom(I). In our context, for instance,

the group of deck transformations acting in D̃ is necessarily not finitely generated,

as Dom(Î) has infinitely many punctures for each puncture of Dom(I).
For the particular case of Proposition 3.5 we will use maximal dynamically

transverse decompositions in two other auxiliary spaces, which will be explained
in its proof.

Definition 3.1 (Canonically foliated strip). Let f̂ be a lift to R2 of a

homeomorphism f ∈ Homeo0(T2), and let (f̂ , Î , F̂) be an MDTD for f̂ . We will

say that Â ⊂ R2 is a canonically foliated strip (CFS) for f̂ if

(1) There exists v ∈ Z2, ẑ ∈ R2 and some j > 0, such that f̂ j(ẑ) = ẑ+ v, and

such that Â is the saturated set of Â ÎZF̂(ẑ) by leaves of F̂ .

(2) There exists a homeomorphism h : Â → R2, such that h(F̂ |Â) is the
foliation by vertical lines, oriented from top to bottom.

In this context, we will say that ẑ is a realizing point for Â.

Remark 3.2. If Â is a CFS, there exists a non-null vector v ∈ Z2 such that

Â+ v = Â.

The goal is then to prove the following result.

39



40 3. CANONICALLY FOLIATED STRIPS

Proposition 3.3. Let f̂ be a lift to R2 of f ∈ Homeo(R2), with 0⃗ ∈ int(ρ(f̂)).
Then, there exist j, p ∈ Z+, and four families

Â→ = {Â→k }k∈Z, Â↑ = {Â↑k}k∈Z, Â← = {Â←k }k∈Z, Â↓ = {Â↓k}k∈Z

of canonically foliated strips Â→k , Â↑k, Â
←
k , Â↓k, with respective realizing points ẑ

→
k , ẑ↑k, ẑ

←
k , ẑ↓k,

such that

(1) For every k ∈ Z, we have that

f̂ j(ẑ→k ) = ẑ→k + (p, 0), f̂ j(ẑ↑k) = ẑ↑k + (0, p),

f̂ j(ẑ←k ) = ẑ←k + (−p, 0), f̂ j(ẑ↓k) = ẑ↓k + (0,−p),

(2) For every pair of values k, k′ ∈ Z with k ̸= k′, we have that

cl(Â→k ) ∩ cl(Â→k′ ) = ∅, cl(Â↑k) ∩ cl(Â↑k′) = ∅,

cl(Â←k ) ∩ cl(Â←k′ ) = ∅, cl(Â↓k) ∩ cl(Â↓k′) = ∅.

Let us start with an elementary result regarding transverse foliations:

Lemma 3.4. If 0⃗ ∈ ρ(f̂), the diameter of leaves ϕ̂ ∈ F̂ is uniformly bounded.

Proof. By Franks realization result in [Fra89], let us take ẑ1, ẑ2, ẑ3 three

periodic points realizing different rotation directions and such that 0⃗ belongs to
the convex hull of the set containing the respective three rotation vectors. Let
γ̂1, γ̂2, γ̂3 be their respective transverse paths for their whole orbits,

γ̂j = ÎZF̂(ẑj), 1 ≤ j ≤ 3.

which we will build as periodic by respective integer translations, given that
they come from periodic orbits. Furthermore, note that these paths have a well
defined slope, again because they come from periodic orbits (and the three slopes
are different from each other). We may then take three sufficiently long pieces

γ̂′1, γ̂
′
2, γ̂
′
3 such that their concatenation defines a region R̂ on its right (i.e. we

obtain a triangle with its sides being positively and cyclically oriented), such that

R̂ contains a fundamental domain. Given that the used paths are positively trans-
verse with respect to the foliation, we obtain that the future half-leaf of any point

inside the region R̂, must also stay inside R̂, which proves that the diameter of

these half-leaves is uniformly bounded since R̂ contains a fundamental domain.
The same argument reiterated implies the diameter of past half-leaves is also uni-
formly bounded, which completes the proof. □

1. Construction

We will use this section to prove Proposition 3.3, by constructing the respective
families. The following result is key for this construction.

Proposition 3.5. If 0⃗ ∈ int(ρ(f̂)), then
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(1) There exists ẑ→ ∈ R2 and two integers p→, q→ > 0, holding f̂ q→(ẑ→) =

ẑ→+(p→, 0), and such that the transverse path ÎZF̂(ẑ
→) has no F̂-transverse

self-intersections.
(2) Moreover, for every q′→ ≥ q→, there exists ẑ′→ ∈ R2 such that

f̂ q′→(ẑ′→) = ẑ′→ + (p→, 0)

and such that the transverse path ÎZF̂(ẑ
′→) has no F̂-transverse self-intersections.

Proof. (1). By the realization result in [Fra89], there exists ẑ0 such that

f̂ q0(ẑ0) = ẑ0+(1, 0). Let us take a dynamically transverse decomposition (f̂ , Î , F̂).

Given the foliation F̂ is equivariant by integer translations, we can project our

decomposition to the annulus qA = S1 × R, by taking (x̂, ŷ) ∼ (x̂′, ŷ′) whenever

x̂′ − x̂ ∈ Z, and obtain the corresponding ( qf, qI, qF). Let us then take qz as the
projection to the annulus of a point ẑ ∈ R2.

Let us define qγ0 : R → qA by

qγ0(t) = qIq0t
qF
(qz0)

Note that qγ0(0) = qγ0(1), we may then think it as a loop in the annulus (with the

same name), with domain equal to S1. Note that it suffices to prove that qIZ
qF(qz
→)

has no qF -transverse self-intersection: this fact will then imply that ÎZF̂(ẑ
→) has no

F̂ -transverse intersection with any of its horizontal integer translates, which is on
its turn stronger than our conclusion.

Compactifying the annulus in the classical way to get a sphere lets us apply

Proposition 7 in [LCT18], from which we know that qγ0 has an qF -transverse self-

intersection if and only if qγ0|[0,2] has an qF -transverse self-intersection.

Given the path qγ0 is at a positive distance from the set Sing( qF), we can as-
sume up to taking an equivalent path, that qγ0|[0,1] has a finite number ℓ0 of self-

intersections counted with multiplicity (without looking at qF -transversality). If

qγ0|[0,2] has no qF -transverse self-intersection, the proof is finished.

Let us then suppose that there exists an qF -transverse self-intersection at qγ0(s) =
qγ0(t), with s, t ∈ [0, 2], s < t. In this case, we will build a process which finds
ẑ1 ∈ R2 (its projection to the annulus being qz1), holding the following properties:

• There exists q1 > 0 such that f̂ q1(ẑ1) = ẑ1 + (p1, 0), where p1 ∈ Z+,

• The transverse trajectory qIq1
qF
(qz1) is a subloop of γ0, which has at most

ℓ1 ≤ ℓ0 − 1 self-intersections counted with multiplicity (without looking

at qF -transversality).

We shall use ρ(qγ0|[s,t]) to denote the integer such that, when taking lifts to R2,
we obtain

γ̂0(t) = γ̂0(s) + (ρ(qγ0|[s,t]), 0).
We define ρ(qγ0|[t,s+1]) in the same fashion. Note that one of these two numbers is
positive, given their sum is equal to 1.
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Let us write ⋔
qF to denote qF -transverse intersection between curves. Note that

from

qγ0|[0,2](s) ⋔ qF qγ0|[0,2](t)
we derive that

qγ0|[1,3](s+ 1) ⋔
qF qγ0|[0,2](t), qγ0|[0,2](s) ⋔ qF qγ0|[−1,1](t− 1),

qγ0|[1,3](s+ 1) ⋔
qF qγ0|[−1,1](t− 1)

This means that the closed curve qγ0|[−1,3] which contains all the previous ones,
has transverse intersections at the pairs of times (s, t), (s + 1, t), (s, t − 1) and
(s+ 1, t− 1).

Let us go to the universal covering D̆ of Dom(qI), and name (f̆ , Ĭ , F̆) to the
corresponding dynamically transverse decomposition. Let γ̆0 be a lift of qγ0 to this
covering. By hypothesis on qγ0, we know there exists a deck transformation T̆ such
that there exists an F̆ -transverse intersection at T̆ j(γ̆0(t)) = T̆ j+1(γ̆0(s)) for every
j ∈ Z.

Let us first assume that t − s < 1, the other case is analogous. Given that
γ̆0|[−1,3] is admissible of order 4q0, we know by [LCT22, Theorem M] the path
γ̆0|[s,t] is realized by a periodic point z̆1 of period q1 = 4q0, and therefore by
definition we have that its projection qγ0|[s,t] is realized by a periodic point qz1 =
π̆(z̆1) of period q1 = 4q0.

If ρ(qγ0|[s,t]) is positive, then we define ẑ1 as any lift of qz1 to R2. Note that

• f̂ q1(ẑ1) = ẑ1 + ρ(qγ0|[s,t])
• qIq1

qF
(qz1) = qγ0|[s,t] is a subloop of qγ0, and therefore the number ℓ1 of self-

intersections counted with multiplicity, is strictly lower than ℓ0.

If ρ(qγ0|[s,t]) is negative, we have that ρ(qγ0|[t,s+1]) is positive, and the solution is
analogous, because again by [LCT22, Theorem M] we get that the path γ̆0|[t,s+1]

is realized by a periodic point of period q1 = 4q0.
We are left with the case where 1 < t−s < 2. In this case, note that (t−1)−s <

1, and again we will look at the two subpaths qγ0|[s,t−1] and qγ0|[t−1,s+1]. Both are
realized by periodic points of period 4q0, and one of them rotates positively in the

annulus qA, which will be our desired qz1.

If qγ1 has an qF -transverse self intersection, this process can be iterated to obtain
ẑ2, q2, ℓ2 in the same fashion as before. Note that this process ends in at most
k ≤ ℓ0 iterations. This means that the point ẑ→ = ẑk obtained after the k-th and

last iteration of the process, must have a transverse path with no qF -transverse
self-intersections (otherwise we would be able to reiterate the process), and also
holds

f̂ qk(ẑk) = ẑk + (pk, 0), for some qk > 0,

which concludes the proof of the first item.

(2). Let ẑ→ ∈ R2 as obtained in the previous item, and let us take its projection

qz→ to the annulus. Define its transverse path qγ : R → qA by

qγ(t) = qIq
→t
qF

(qz→),
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and note that for n ∈ Z+, qγ|[0,n] is an admissible path of order nq→ because qz→

has period q→.
By [LCT18, Proposition 26], it suffices to prove that there exists an admissible

path which intersects qγ qF -transversely and positively, and an admissible path

which intersects qγ qF -transversely and negatively: in that case we will obtain that
for every q′→ ≥ q→, the path qγ|[0,1] is realized up to equivalence, as the transverse
path of a periodic point of period q′, whose transverse trajectory will have no
qF -transverse self-intersection, and the proof will be then finished.

Let us find these two paths. Let qA→ be the saturated set by leaves of qF of
qγ|[0,1]. Using the result from the first item, take ẑ↑ and ẑ↓ lifts of periodic points of
f which respectively rotate (0, p↑/q↑) and (0,−p↓/q↓) (p↑, p↑ > 0), and take their

respective projections qz↑, qz↓ to the annulus qA. Using that

• The diameter of leaves of qF is uniformly bounded because qF is the pro-

jection of F̂ (see Lemma 3.4),
• The transverse paths

qγ↑(t) = qIq
↑t
qF
(qz↑), qγ↓(t) = qIq

↓t
qF
(qz↓),

both go through qA→ in opposite directions,

we obtain that the following sets

J↑ = {t ∈ R : qϕ
qγ(t) ∩ qγ↑ ̸= ∅}, J↓ = {t ∈ R : qϕ

qγ(t) ∩ qγ↓ ̸= ∅}
are both bounded. Finally, by [ST21, Proposition 15], we obtain that for

sufficiently long pieces qγ↑|[s↑,t↑], qγ↓|[s↓,t↓], we have that

(3.1) γ↑|[s↑,t↑] intersects qγ→ qF -transversally and positively,

(3.2) γ↓|[s↓,t↓] intersects qγ→ qF -transversally and negatively,

which concludes the proof.
□

We emphasize that the saturated setX of ÎZF̂(ẑ
→) by leaves of F is a topological

trivially foliated plane: given that ÎZF̂(ẑ
→) is has no F̂ -transverse self intersection,

by the Poincaré-Bendixson Theorem, we obtain that every leaf ϕ̂ ⊂ X intersects

ÎZF̂(ẑ
→) in exactly one point. This, together with the fact that can parametrize

each leaf varying continuously, gives us coordinates (s, t) for every point in X,
where we have the homeomorphism R2 → X given by

(s, t) 7→ ϕ̂t(Î
s
F̂(ẑ

→))

We now build the four families of closure-disjoint CFS.

Proof of Proposition 3.3. Using the first item in Proposition 3.5, we find
the existence of four periodic points ẑ→, ẑ↑, ẑ← and ẑ↓, with respective periods
q→, q↑, q←, q↓, which respectively rotate (p→/q→, 0), (0, p↑/q↑), (−p←/q←, 0) and
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(0,−p↓/q↓), (where p→, p↑, p←, p↓ > 0), and whose transverse trajectories by the

isotopy Î have no F̂ -transverse self-intersection.
Using the second item from Proposition 3.5, let us take q′→ = (q→q↑q←q↓)p→ ≥

q→ to obtain a new periodic point which we will still call ẑ→ for the sake of

simplicity, such that its transverse trajectory has no F̂ -transverse self-intersection,
and moreover

f̂ q′→(ẑ→) + (p→, 0).

Therefore, ẑ→ has rotation vector (1/(q→q↑q←q↓), 0). In the same fashion we obtain
ẑ↑, ẑ← and ẑ↓ with the same rotation speed 1/(q→q↑q←q↓) (the speed being the
norm of the rotation vector).

Note that if we take a power f j of f , then we may take a new isotopy Îj from

the identity to f̂ j defined as Îj(t, ẑ) = Î(jt, ẑ), and we then have that (f̂ j, Îj, F̂)

is a maximal dinamically transverse decomposition for f̂ j (notice that we have
used the same singular foliation). We then also have the following equality for the
transverse paths

(Îj)nF̂(ẑ) = Îjn
F̂
(ẑ), where n ∈ Z

This implies that if ÎZF̂(ẑ
→) has no F̂ -transverse self-intersection, then (Îj)ZF̂(ẑ

→)

also has no F̂ -transverse self-intersection.
This on its turn shows that if we take

q = q→q↑q←q↓, p = |lcm(p→, p↑, p←, p↓)|,
we have that

f̂ qp(ẑ→) = ẑ→ + (p, 0), f̂ qp(ẑ↑) = ẑ↑ + (0, p),

f̂ qp(ẑ←) = ẑ← + (−p, 0), f̂ qp(ẑ↓) = ẑ↓ + (0,−p).

For this ẑ→, we can define Â→ as the saturated set by leaves of F̂ , of the

transverse path ÎF̂(ẑ
→). By construction, we obtain that Â→ is a trivially foliated

horizontal strip (i.e. homeomorphic to a plane, and invariant by integer horizontal

translations). In this context, we will say that Â→ is a canonically foliated strip

(CFS), and that ẑ→ is a realizing point for Â→.

Given that the diameter of leaves of F̂ is uniformly bounded (see Lemma 3.4)

and that Â→ is invariant by integer horizontal translations, there exists d→ ∈ Z+

such that

(3.3) cl(Â→) ∩ cl(Â→ + (0, d′)) = ∅, for every d′ ≥ d→

In the same way as before, we get three analogous canonically foliated strips,
which we will call A↑, A← and A↓, with their respective realizing points ẑ↑, ẑ← and
ẑ↓, and integers d↑, d←, d↓ as in Equation 3.3.

Let us take p the smallest multiple of p such that

p ≥= max{d→, d↑, d←, d↓} := d

. Again, we obtain that

(3.4) f̂ qp(ẑ→) = ẑ→ + (p, 0),
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and similarly for the other three realizing points.
Let us then take ẑ→ = (x̂→, ŷ→), such that 0 ≤ ŷ→ < 1, and build its corre-

sponding CFS Â→. Now, consider the family Â→ = {Â→k }k∈Z of closure-disjoint
horizontal CFS, defined by

(3.5) Â→k = Â→ + (0, pk),

and note that (x̂→k , ŷ→k ) = ẑ→k = ẑ→ + (0, pk) is a realizing point for Â→k . We then
have that

k = ⌊ ŷ
→
k

p
⌋.

We define in the same fashion the families

(3.6) Â↑ = {Â↑k}k∈Z, Â← = {Â←k }k∈Z and Â↓ = {Â↓k}k∈Z,

each made of closure-disjoint CFS, with the desired realizing points, which con-
cludes the proof. □

We will work with this four families in the following sections. We shall write

(3.7) Â = Â→ ∪ Â↑ ∪ Â← ∪ Â↓.

We shall write Â for an arbitrary canonically foliated strip in Â.

Remark 3.6. We will sometimes work with the closure of our canonically

foliated strips and use the same notation Â→,↑,←,↓ for the sake of simplicity. In
this context, we will refer to this closure as a closed CFS. However, we will refer
to the open ones unless explicitly stated.

2. Crossing continua

We will introduce the notion of crossing continuum for a closed CFS, which is
central for the remainder of our work, and describe the topology of the strips.

Boundary components: Top and Bottom. Note that by the Uniformiza-

tion Theorem, we know that the complement of a CFS Â has no bounded connected
components. Moreover, there are exactly two connected components on this com-

plement, because Â is invariant by the integer translation given by their realizing
point, but bounded in the orthogonal direction (recall that the diameter of leaves

of F̂ is uniformly bounded by Lemma 3.4). With this uniform bound we also

obtain that the boundary ∂Â has exactly two connected components.

Definition 3.7. Given a CFS Â with a realizing point ẑ, a point ŵ on its

complement will be on its top (and we will write ŵ ∈ T(Â)) if it belongs to the

connected component of its complement included in R(ÎZ
F̂
(ẑ)), and it will be on

its bottom (ŵ ∈ B(Â)) otherwise.
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In addition, we will write ∂Â = ∂TÂ ∪ ∂BÂ, where

∂TÂ = ∂(T(Â)), and ∂BÂ = ∂(B(Â)).

Note that both ∂TÂ
→ and ∂BÂ

→ are connected, since Â→ is bounded in the
vertical direction.

Once again, given the diameter of leaves in F̂ is uniformly bounded, we get that

each boundary component ∂TÂ and ∂BA of a canonically foliated strip, contains
infinitely many singularities of the foliation. This means that if we take a lift Ã ⊂ D̃
of Â ⊂ R2 (which we will also call CFS), then its boundary and its complement
will both have infinitely many connected components, each one determined by one

leaf of ∂Â. We will now settle notation for these components.

Definition 3.8. Let Â be a canonically foliated strip, Ã a lift of Â to D̃. We
will write

∂TÃ := ∂Ã ∩ {π̃−1(ϕ̂T) : ϕ̂T ∈ ∂TÂ}, ∂BÃ := ∂Ã ∩ {π̃−1(ϕ̂B) : ϕ̂B ∈ ∂BÂ}.

Moreover, we will write T(Ã) for the (closed) connected components of the

complement of Ã which are bounded by leaves ϕ̃T ⊂ ∂TÃ, and similarly we will
write B(Ã) for the (closed) connected components of the complement of Ã which

are bounded by leaves ϕ̃B ⊂ ∂BÃ.

Definition 3.9. Given a lift Ã of a canonically foliated strip, and ϕ̃T ⊂ ∂TÃ,
we will write Tϕ̃T

(Ã) for the closed connected component of ÃC bounded by ϕ̃T

(similar fashion for ϕ̃B ⊂ ∂BÃ).

Crossing continua and diameter measurement.

Definition 3.10 (Crossing continuum). Given a closed CFS Â and a con-

tinuum K̂ ∈ R2, we will say that K̂ is a crossing continuum (relative to Â) if it

intersects both connected components of ∂Â. In addition, a crossing continuum
will be minimal if it does not strictly contain any crossing subcontinua.

Remark 3.11. Given Â a closed CFS, any crossing continuum K̂ has a minimal

crossing subcontinuum K̂ ′ ⊂ Â. In particular, K̂ ′ intersects one leaf (or singularity

of the foliation) on each connected component of ∂Â.

Definition 3.12 (Vertical diameter). Given a continuum K̂ ∈ R2, we will

define its vertical diameter Vdiam(K̂) as the supremum of the difference of the

y-coordinates in pairs of points belonging to K̂.

The horizontal diameter of a continuum, Hdiam(K̂) is defined analogously,
looking at the x-coordinates. For inessential continua K ∈ T2 we recall that we

take their lifted diameter as diam(K) = diam(K̂), where K̂ is any of its lifts to

R2. Accordingly, if we go to the universal covering D̃ of Dom(Î) and take K̃ ∈ D̃,
we will write diam(K̃) = diam(K̂) = diam(π̃(K̃)). The same holds for horizontal
and vertical diameter.
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π̃

∂BÂ
→

Â→

∂TÂ
→

Â↓kÂ↓k−1 Â↓k+1

Ã→

Ã↓k+1
Ã↓k

Ã↓k−1

Figure 2. A canonically foliated strip Â→, with two boundary con-
nected components, and one of its lifts, with infinitely many of them.

We emphasize that the (lifted) diameter of any continuum (either included in

T2 or in D̃) is always measured in R2, respectively taking a lift or projecting.

Inside the strip: Left and Right.

Definition 3.13. Given a canonically foliated strip Â with a realizing point ẑ

and a crossing continuum K̂, we say a point ŵ ∈ Â\K̂ is on its left (ŵ ∈ LÂ(K̂)) if



48 3. CANONICALLY FOLIATED STRIPS

it belongs to the connected component of Â\K̂ which contains f̂ j(ẑ) for arbitrarily

large values of j, and it is on its right (ŵ ∈ RÂ(K̂)) if it belongs to the connected

component of Â\K̂ which contains f̂ j(ẑ) for arbitrarily large negative values of j.

These notions lift naturally to the lifts Ã ⊂ D̃ of our canonically foliated strips.
Moreover, note that each of the two ends of the strip belong to one of this connected
components (different from each other). For the case of CFS Ã in the universal

covering D̃, we may identify each of these ends lÃ (the future) and rÃ (the past)

with a point in the boundary of D̃.
Note that the closure of a leaf ϕ̂ ⊂ Â is a crossing continuum for Â. We may

then apply the left-right notion to leaves ϕ̂ ⊂ Â by taking their closure: we will say

that ẑ ∈ LÂ(ϕ̂) whenever ẑ ∈ LÂ(cl(ϕ̂)). Analogously, ẑ ∈ RÂ(ϕ̂) if ẑ ∈ RÂ(cl(ϕ̂))
This leads us to the following:

Remark 3.14. Let Â be a CFS and ϕ̂ ⊂ Â a leaf. Then, if Ã ⊂ D̃ is a lift of

Â, we obtain that

LÂ(ϕ̂) = π̃(L(ϕ̃) ∩ Ã), and RÂ(ϕ̂) = π̃(R(ϕ̃) ∩ Ã)

Remark 3.15. Given the relative orientation between the transverse foliation
and the paths by the isotopy, the notions of Top, Bottom, Left and Right we just

defined coincide with the visual concepts, for canonically foliated strips Â←, where
the realizing point goes from right to left.

Fundamental domains. Recall the definition of Â from Equations 3.5 through

3.7, and let us explain the notion of fundamental domains for a CFS Â→ ⊂ Â→.
Recall that every Â↓k ∈ Â↓ must cross Â→ from bottom to top at least once.

Then, we may take ϕ̂↓T,0 ⊂ Â→ ∩ ∂TÂ
↓
0, and then define

ϕ̂↓T,k = ϕ̂↓T,0 + (pk, 0),

where p is as in Equation 3.4.
These leaves define the fundamental domains

D̂→k = LÂ→(ϕ̂↓T,k) ∩ RÂ→(ϕ̂↓T,k+1).

Note that all of these fundamental domains behave nicely when taking natural
lifts, therefore obtaining that any Ã→ is divided in the following domains:

D̃→k = LÃ→(ϕ̃↓T,k) ∩ RÃ→(ϕ̃↓T,k+1).

This construction can be accordingly made with any other canonically foliated

strip Â↑, Â←, Â↓ and their respective lifts to the universal covering. We emphasize
that each of these fundamental domains has length p, more precisely, we have that

ϕ̂↓T,k ∈ ∂TÂ
↓
k.

Let us finish the Section with a result on how points travel through fundamental
domains.

Lemma 3.16. Let Â ∈ Â be a CFS, ϕ̂ ⊂ Â a leaf in the fundamental domain

D̂k, and n > 0 an integer.
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Then, there exists k′ such that for any leaf ϕ̂′ ⊂ D̂k′ ⊂ Â, when we take a set
of natural lifts Ã, ϕ̃, ϕ̃′ to D̃, we have that

f̃ j(ϕ̃′) ⊂ R(ϕ̃), for every 0 ≤ j ≤ n.

Let us write the proof for a horizontal CFS Â→, as the other cases are analo-
gous.

Proof. Fix n > 0, a leaf ϕ ⊂ Â→ ∈ Â→, and let D̂k be the fundamental

domain of Â such that ϕ ⊂ D̂→k (see the construction above). Given that f̂ is the
lift to R2 of an isotopic-to-the-identity torus homeomorphism (which is uniformly
continuous), we have that there exists M > 0 such that

(3.8) sup
ẑ∈R2

d(f̂(ẑ), ẑ) ≤ M, which implies that sup
ẑ∈R2

d(f̂n(ẑ), ẑ) ≤ nM.

Now, recall that by Lemma 3.4, the diameter of leaves is uniformly bounded,

which implies that the closure cl(D̂→) of every fundamental domain is compact.
Given fundamental domains are obtained by taking horizontal translations of one
another, we recover that there exists k′ < k, such that

d(ẑ′, D̂→k ) > 2nM, for every ẑ′ ∈ D̂→k′ .

This, together with Equation 3.8, implies that taking any leaf ϕ̂′ ⊂ D̂→k′ , and a

natural set of lifts ϕ̃′, ϕ̃ of ϕ̂′ and ϕ̂ to D̃, we have that

f̃ j(ϕ̃′) ⊂ R(ϕ̃), for every 0 ≤ j ≤ n,

which concludes the proof. □





CHAPTER 4

Anchoring techniques

The goal of this chapter is to prove Theorem C, whose statement we now recall
(see Definition 1.4 for details),

Theorem C. Let f ∈ Homeo0(T2), such that ρ(f) has nonempty interior.
Then, there exists M > 0 such that for any continuum K ∈ T2, Df (K) > M =⇒
Df (K) = ∞.

The idea of the proof resides in the canonically foliated strips we built in the
previous section, and heavily uses Brouwer-Le Calvez’s dynamically transverse
decomposition. We will use the construction and notation of Chapter 3, and recall

that up to taking a power, we may assume that 0⃗ = int(ρ(f̂)).

Remark 4.1. Let f ∈ Homeo0(T2), a continuum K ∈ T2 and n > 0. Then
Df (K) = ∞ ⇐⇒ Dfn(K) = ∞

This remark shows it is enough to prove Theorem C for any power of f .

Remark 4.2. Given each of the properties from Theorem A can be checked

up to taking a power of f , we will assume that f has a lift f̂ with 0⃗ in int(ρ(f̂)),
and we will work with such a lift from now on.

We will now prove Theorem C for f qp, where q and p are as in Equation 3.4.

Let us then rename f := f qp, f̂ = (f̂)qp (which still has the origin in the interior
of its rotation set). This implies that

(4.1) f̂(ẑ→) = ẑ→ + (p, 0),

and analogously for any other realizing point in any direction. The key fact
here is

Remark 4.3. Each realizing point from a CFS advances one fundamental

domain per iteration of f̂ .

1. Semianchors

Note that if diam(K̂) > M , then we either have Vdiam(K̂) >
√
2M
2

or Hdiam(K̂) >
√
2M
2

. This, together with the symmetry of this section’s hypothesis, shows that
in order to prove Theorem C, it is enough to prove that there exists M > 0 such
that for every continuum K ∈ T2,

Vdiam(K) > M =⇒ Df (K) = ∞.

51
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In particular, note that continua with large vertical diameter will be crossing

for some horizontal canonically foliated strip. Let us assume that Vdiam(K̂) is

sufficiently large so that there exists k ∈ Z such that K̂ goes through Â→k0 . When-
ever there is be no ambiguity for this value of k0, we will fix this horizontal strip

and denote it as Â→.
For the remainder of this section and the following one, let us assume that

K ⊂ Dom(I), that is, K does not intersect any singularity.

Lemma 4.4. Let n ∈ Z+. Then, there exists Mn > 0 such that:

For any continuum K̂ with Vdiam(K̂) ≥ Mn, there exists a horizontal CFS

Â→ ∈ Â→, and two points ẑTT, ẑBB ∈ K̂ such that

(4.2) Î t(ϕ̂ẑTT
) ∈ T(Â→) and Î t(ϕ̂ẑBB

) ∈ B(Â→), for every − n ≤ t ≤ n.

Proof. Fix n > 0. Let us then start by stating the three following facts:

• The vertical diameter of any CFS Â→ ∈ Â→ is uniformly upper-bounded.
Let us then take d1 an upper bound for that quantity.

• As proven in Lemma 3.4, the diameter of leaves is also uniformly bounded.
Let us then take d2 a bound for this diameter.

• The length of the vectors {Î t(ẑ)− ẑ : ẑ ∈ R2, |t| < n} is also uniformly

bounded. This is because Î is Z2-periodic, given it is defined as the lift of
an isotopy in the torus, which is on its turn compact. Let us then take d3
an upper bound for this family of lengths.

Finally, let us take

Mn = 2(d1 + d2 + d3) + p,

where p is as in Equation 3.4. Given a continuum K̂ given Vdiam(K̂) ≥ Mn, we
may take ẑTT and ẑBB with vertical distance equal to Mn. This means that

Vdist
( ⋃
|t|≤n

Î t(ϕ̂ẑTT
),
⋃
|t|≤n

Î t(ϕ̂ẑBB
)
)
≥ 2d1 + p.

This means that there exists a strip R × [y, y + 2d1 + p] ⊂ R2 between these two
sets, which allows us to take a realizing point ẑ→ with vertical coordinate between

y + d1 and y + d1 + p, whose associated canonically foliated strip Â→ will satisfy
Equation 4.2, which concludes the proof. □

Remark 4.5. An identical proof works with Â← for continua with large vertical

diameter, and with Â↑, Â↓ for continua with large horizontal diameter.

Definition 4.6 (Semianchor). Given n ∈ Z+, a CFS Ã, a Crossing con-

tinuum K̃ and two leaves ϕ̃B ⊂ ∂BÃ, ϕT ⊂ ∂TÃ, we will say that the quartet
(Ã, K̃, ϕ̃B, ϕ̃T) is an n-semianchor when there exist z̃TT, z̃BB ∈ K̃ such that

f̃ j(ϕ̃z̃TT
) ⊂ Tϕ̃T

(Ã), f̃ j(ϕ̃z̃BB
) ⊂ Bϕ̃B

(Ã), for every j ∈ Z; |j| ≤ n.

The following consequence of Lemma 4.4 is key to prove Theorem C.
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Lemma 4.7. Let n ∈ Z+. Then, there exists Mn > 0 such that for any K̃ in D̃
with Vdiam(K̃) > Mn, there exist Ã, ϕ̃T ⊂ ∂TÃ, ϕ̃B ⊂ ∂BÃ, such that

(Ã, K̃, ϕ̃B, ϕ̃T) is an n-semianchor.

Proof. Take Â, ẑTT, ẑBB as in Lemma 4.4, and take natural lifts Ã, z̃TT, z̃BB.
Note that z̃TT ∈ Tϕ̃T

(Ã), z̃BB ∈ Bϕ̃B
(Ã), for some unique leaves ϕ̃T ⊂ ∂TÃ, ϕ̃B ⊂

∂BÃ. By the statement 4.2 in Lemma 4.4, we immediately obtain that

Ĩj(ϕ̃z̃TT
) ∈ Tϕ̃T

(Ã→) and Ĩj(ϕ̃z̃BB
) ∈ Bϕ̃B

(Ã→), for every j with |j| ≤ n,

which concludes the proof. □

Lemma 4.8. Let n ∈ Z+, (Ã, K̃, ϕ̃B, ϕ̃T) an n−semianchor, and z̃ a realizing
point for Ã, with z̃ ∈ RÃ(K̃).

Then, for every j ∈ Z with |j| ≤ n, we have that f̃ j(K̃) is a crossing continuum

for Ã, and f̃ j(z̃) /∈ LÃ(f̃
j(K̃)).

Proof. Note that Γ0 := ϕ̃−z̃TT
∪ K̃ ∪ ϕ̃+

z̃BB
separates the ends of Ã, and leaves

z̃ on the same component as rÃ. Name R(Γ0) to this component, and let L(Γ0) be
the one containing the other end.

By Lemma 4.7, we know that if |j| < n, then f̃ j(ϕ̃zTT
) ∩ Ã = ∅ and also

f̃ j(ϕ̃zBB
) ∩ Ã = ∅, which implies that f̃ j(K̃) is crossing for Ã through the leaves

ϕ̃T and ϕ̃B. Furthermore, f̃ j(z̃) ∈ f̃ j(R(Γ0)), and LÃ(f̃
j(K̃)) ⊂ f̃ j(L(Γ0)), which

concludes the proof. □

Definition 4.9 (Semianchored continuum). Whenever (Ã, K̃, ϕ̃B, ϕ̃T) is
an n-semianchor, we will say that K̃ is an n-semianchored continuum (or simply
that it is n-semianchored).

We do the whole dynamical arguments in the universal covering D̃, but we
measure distances in R2. Let us then define:

Definition 4.10. We will say that (Â, K̂, ϕ̂B, ϕ̂T) is an n-semianchor if there

exist lifts (Ã, K̃, ϕ̃T, ϕ̃B) forming an n-semianchor. We will then say that K̂ is
n-semianchored.

2. The Anchoring Lemma

Lemma 4.11 (Anchoring Lemma). Let Ã be a canonically foliated strip, K̃

a crossing continuum, and ϕ̃T ⊂ T(Ã), ϕ̃B ⊂ B(Ã) such that

• K̃ ∩ ϕ̃T ̸= ∅, K̃ ∩ ϕ̃B ̸= ∅
• Ã ⊂ R(ϕ̃T) ∩ R(ϕ̃B).

Then, we have that

(1) For every n > 0, f̃n(K̃) intersects both ϕ̃T and ϕ̃B

(2) For every leaf ϕ̃ ⊂ Ã with ϕ̃T, ϕ̃B ⊂ R(ϕ̃), there exists n0 > 0 such that

f̃n(K̃) ∩ ϕ̃ ̸= ∅, for every n ≥ n0.
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Proof. Let z̃T ∈ ϕ̃T ∩ K̃, z̃B ∈ ϕ̃B ∩ K̃

(1) Fix an integer n > 0. Note that we have

f̃n(z̃T) ∈ L(ϕ̃T) and f̃n(z̃B) ∈ L(ϕ̃B),

from where we obtain that

L(ϕ̃T) ∩ f̃n(K̃) ̸= ∅ and L(ϕ̃B) ∩ f̃n(K̃) ̸= ∅.

Given that Ã→ ⊂ R(ϕ̃T) ∩ R(ϕ̃B), we conclude that f̃n(K̃) is a crossing

continuum for Ã→ which intersects both ϕ̃T and ϕ̃B.
(2) Let z̃0 be a realizing point for Ã such that z̃0 ∈ RÃ(K̃), and let us name

z̃n = f̃n(z̃0). Take two open arcs γ̃T ⊂ ϕ̃−z̃T , γ̃B ⊂ ϕ̃+
z̃B
, and note that

Γ0 = γ̃T ∪ K̃ ∪ γ̃B

separates the disk D̃ into at least two connected components, one contain-
ing LÃ(K̃), which we will call L(Γ0), and another one containing RÃ(K̃),
which we will call R(Γ0).

Fix a leaf ϕ̃ ⊂ Ã. Take a sufficiently large value of n0, such that
z̃n0 ∈ LÃ(ϕ̃). Note that for every n > 0, z̃n still belongs to Ã and also

z̃n ∈ R(f̃n(Γ0)) = f̃n(R(Γ0)),

which implies that

f̃n(Γ0) ∩ ϕ̃ ̸= ∅, for every n ≥ n0.

Recalling that f̃n(ϕ̃T) ∈ L(ϕ̃T), f̃
n(ϕ̃B) ∈ L(ϕ̃B), we obtain that

f̃n(ϕ̃T) ∩ ϕ̃ = ∅; f̃n(ϕ̃B) ∩ ϕ̃ = ∅ for every n > 0

which concludes the proof.

□

Remark 4.12. If we exchange

Ã ⊂ R(ϕ̃T) ∩ R(ϕ̃B) for Ã ⊂ L(ϕ̃T) ∩ L(ϕ̃B),

in the hypothesis of the Anchoring Lemma, we may proceed in the exact same
fashion iterating f̃ to the past, to obtain that

(1) For every n < 0, f̃n(K̃) intersects both ϕ̃T and ϕ̃B

(2) For every leaf ϕ̃ ⊂ Ã with ϕ̃T, ϕ̃B ⊂ L(ϕ̃), there exists n0 < 0 such that

f̃n(K̃) ∩ ϕ̃ ̸= ∅, for every n ≤ n0.

Definition 4.13 (Stable and Unstable Anchors).

• We will say the quartet (Ã, K̃, ϕ̃B, ϕ̃T) is an unstable anchor (or simply
u-anchor) when it satisfies the hypothesis of the Anchoring Lemma.

• Accordingly, we will say the quartet (Ã, K̃, ϕ̃B, ϕ̃T) is a stable anchor (or
s-anchor) when it satisfies the hypothesis of last remark.
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π̃

ẑ0

z̃0

ϕ̃B

z̃3

ẑ3

f̃ 3(K̃)

K̃

ϕ̃T

ϕ̂T f̂ 3(K̂)

K̃ ϕ̂B

Figure 3. The sequence of iterates {z̃n} pushes K̃, the leaves

ϕ̃T, ϕ̃B serve as anchors fixing it. The blue leaves in R2 define funda-
mental domains in the canonically foliated strip. The intersections
between Ã↓k and Ã→ are in purple, the intersections between Ã↑k and

Ã→ are included in the red regions (and similarly for their projec-
tions to R2.)

• For these two cases, we will say respectively that K̃ is u-anchored (s-

anchored) to Ã, by the leaves ϕ̃B and ϕ̃T, or simply that K̃ is u-anchored
(s-anchored).
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• We will say that K̃ is an anchored continuum (or that it is anchored) if
it is u-anchored or s-anchored.

Definition 4.14. We will say that (Â, K̂, ϕ̂B, ϕ̂T) is a u-anchor (respectively

s-anchor) whenever there exist respective lifts (Ã, K̃, ϕ̃B, ϕ̃T) forming a u-anchor
(respectively s-anchor).

The following is an almost direct consequence of the Anchoring Lemma.

Proposition 4.15. Let (Â, K̂, ϕ̂B, ϕ̂T) be a u-anchor. Then

lim
n→+∞

diam(f̂n(K̂)) = ∞ and in particular, Df̂ (K̂) = ∞

Proof. Recall that by Lemma 3.4, we know that diameter of leaves ϕ̂ ∈ F̂ is

uniformly bounded. For every j ∈ Z+, let us take ϕ̂j ⊂ Â such that

ϕ̂T, ϕ̂B ⊂ ∂RÂ(ϕ̂j); and d(ϕ̂j, ϕ̂T) > j

By the Anchoring Lemma, we have there exists nj > 0 such that for every
n > nj,

f̂n(K̂) ∩ ϕ̂T ̸= ∅, f̂n(K̂) ∩ ϕ̂j ̸= ∅ =⇒ Hdiam(f̂n(K̂)) > j

which concludes the proof. □

Proceeding in the same fashion we obtain:

Corollary 4.16. Let K̂ be an s-anchored continuum. Then

lim
n→−∞

diam(f̂n(K̂)) = ∞, and in particular, Df̂ (K̂) = ∞

Remark 4.17. If a continuum K̂ is crossing for Â through singularities, that
is, when we take K̃, Ã we have that

either K̃ ∩ ∂TÃ = ∅ or K̃ ∩ ∂BÃ = ∅,

then the singularity serves as an anchor (remember that the boundary is fixed

by f̃), and therefore we may proceed in the exact same fashion as in Lemma 4.11

to obtain Df̂ (K̂) = ∞.

We can then assume without loss of generality, that our continua K̂ cross our

canonically foliated strips Â through actual leaves of F̂ .

3. Proofs of Theorems C and E

.
We have already proved that any anchored continuum has infinite dynamical

diameter, and that every sufficiently large continuum is n-semianchored for a cer-
tain n. Let us finish the proof of Theorem C by gluing these two results together.

Lemma 4.18. For any 3-semianchored continuum K̃, there exists 0 ≤ j ≤ 3
such that f̃ j(K̃) is anchored.



3. PROOFS OF THEOREMS C AND E 57

Proof. Let us assume without loss of generality that our 3-semianchor is given
by (Ã→, K̃, ϕ̃→B , ϕ̃→T ). We will face one of the following four cases:

Ã→ ⊂ R(ϕ̃→T ) ∩ R(ϕ̃→B ), Ã→ ⊂ L(ϕ̃→T ) ∩ L(ϕ̃→B ),

Ã→ ⊂ R(ϕ̃→T ) ∩ L(ϕ̃→B ), Ã→ ⊂ L(ϕ̃→T ) ∩ R(ϕ̃→B ).

For the first two cases the lemma is proved, as the original quartet would
already be respectively a u-anchor or an s-anchor. We will then assume that the
fourth case holds, as the other one is analogous.

Recall that Ã→ is crossed by infinitely many vertical CFS Ã↓k with their corre-

sponding realizing points z̃↓k (see the construction of Â↓ in Chapter 3 for details).

Moreover, we may take leaves ϕ̃↓T,k ∈ ∂TÃ
↓
k ∩ Ã→ and recall the construction of

fundamental domains D̃→k of our strip Ã→, built in Chapter 3:

D̃→k = Ã→ ∩ L(ϕ̃↓T,k) ∩ R(ϕ̃↓T,k+1)

Write ϕ̃↓B,k ∈ ∂BÃ
↓
k ∩ Ã→ for the other boundary component of the connected

component of Ã→ ∩ Ã↓ which is bounded by ϕ̃↓T,k (see Figure 4). Note that ϕ̃→B
belongs to the closure of a fundamental domain D̃→k for a certain value of k,

similarly ϕ̃→T belongs to D̃→k′ for a certain k′.

Case 1. K̃ ̸⊂ R(ϕ̃↓B,k+1). For this case we obtain that K̃ ∩ ϕ̃↓B,k+1 ̸= ∅ since K̃
is connected. Then, we have that

(Ã↓k+1, K̃, ϕ̃↓B,k+1, ϕ̃
→
B ) is a u-anchor,

which finishes the proof for this case.
In identical fashion, we easily solve

Case 2. K̃ ̸⊂ L(ϕ̃↓T,k′). For this case we get that

(Ã↓k′ , K̃, ϕ̃→T , ϕ̃↓T,k′) is an s-anchor,

which also ends this case’s analysis.

Case 3. K̃ ⊂ R(ϕ̃↓B,k+1) and K̃ ⊂ L(ϕ̃↓T,k′). For this case, we must have that

k′ ≤ k: otherwise, with k′ > k we would have that K̃ simultaneously holds cases 1
and 2, and it would then be s-anchored and u-anchored. See Figure 4 for details.

3.1. k′ = k. Let us take z̃→ a realizing point for Ã→ with z̃→ ∈ D̃→k−1, and

note that we must have z̃→ ∈ RÃ(K̃), because K̃ ⊂ L(ϕ̃↓T,k′). Now, given that

• f̃ 3(z̃→) ∈ D̃→k+2 ⊂ L(ϕ̃↓B,k+1)

• (Ã→, K̃, ϕ̃→B , ϕ̃→T ) is a 3-semianchor,

we obtain that

• f̃ 3(K̃) ̸⊂ R(ϕ̃↓B,k+1)

• f̃ 3(K̃) ∩ ϕ̃↓B,k+1 ̸= ∅, f̃ 3(K̃) ∩ ϕ̃→B
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ϕ̃→B

K̃

ϕ̃→T

ϕ̃↓T,k′

ϕ̃↓B,k′

ϕ̃↓T,k

Figure 4. An example with k′ = k + 1. Note that
(Ã↓k′ , K̃, ϕ̃→T , ϕ̃↓T,k′) is an s-anchor, and (Ã↓k′ , K̃, ϕ̃↓B,k′ , ϕ̃

→
B ) is a u-

anchor. This implies that lim
n→±∞

diam(f̂n(K̂)) = ∞.

from where we proceed as in Case 1 and conclude that

(Ã↓k+1, f̃
3(K̃), ϕ̃↓B,k+1, ϕ̃

→
B ) is a u-anchor,

which concludes the analysis for this case. See Figure 5 for details.
3.2. k′ < k. This implies that Ã↓k separates ϕ̃→B from ϕ̃→T . Let us define

ϕ̃→B,k = ∂BÃ
→ ∩ Ã↓k, ϕ̃→T,k = ∂TÃ

→ ∩ Ã↓k.

If we have K̃ ∩ ϕ̃→B,k ̸= ∅ (See Figure 6), we then get that

(Ã→, K̃, ϕ̃→B,k, ϕ̃
→
T ) is an s-anchor.

Finally, let assume that K̃ ∩ ϕ̃→B,k = ∅. Let us take z̃↓ ∈ R(ϕ̃→B,k) ∩ Ã↓k, being

the lift of z↓ which holds that f̃ 2(z̃↓) ∈ L(ϕ̃→T,k). Given that

(Ã→, K̃, ϕ̃→B , ϕ̃→T ) is a 2-semianchor

we obtain that

(Ã↓k, K̃, ϕ̃↓B,k, ϕ̃
↓
T,k) is also a 2-semianchor

This fact implies that f̃ 2(z̃↓) /∈ LÃ↓
k
(K̃), which in particular shows that

f̃ 2(K̃) ∩ ϕ̃→T,k ̸= ∅
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ϕ̃→B

K̃

ϕ̃→T ϕ̃↓T,k+2

ϕ̃↓B,k+1

ϕ̃↓T,k

f̃ 3(K̃)

z̃→ f̃ 3(z̃→)

Figure 5. An example with k′ = k. f̃ 3(K̃) is u-anchored in many

different ways, in particular (Ã↓k+1, f̃
3(K̃), ϕ̃↓B,k+1, ϕ̃

→
B ) is a u-anchor.

from where we obtain that

(Ã→, f̃ 2(K̃), ϕ̃→B , ϕ̃→T,k) is a u-anchor,

which concludes the proof. □

In Case 3.2, f̃ 2(K̃) is anchored to Ã→ by construction. For Cases 1, 2 and 3.1,

f j(K̃) is anchored to some Ã↓k (with j = 0 in Cases 1 and 2, j = 3 in Case 3.1).
Repeating the argument from the last step of Case 3.2, it is easy to check that up
to using two more iterations, we can anchor either f̃ j+2(K̃) or f̃ j−2(K̃) to Ã→

This implies that

Remark 4.19. If K̂ is 3-semianchored to Â, then at least one of the following
occurs:

• For every j ≥ 5, f̂ j(K̂) is u-anchored to Â, and so f̂ j(K̂) ∩ cl(Â) ̸= ∅,

• For every j ≤ −2, f̂ j(K̂) is s-anchored to Â, and so f̂ j(K̂) ∩ cl(Â) ̸= ∅.

Also, note that combining Lemmas 4.7 and 4.18, we immediately obtain that

Remark 4.20. Let f̂ be a lift to R2 of f ∈ Homeo0(T2), with 0⃗ ∈ int(ρ(f̂)).

Then, there exists M ′ > 0 such that, for any continuum with diam(K̂) > M ′,

there exists 0 ≤ j ≤ 3 such that f̂ j(K̂) is anchored.

Let us now reiterate this argument and put everything together.
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ϕ̃→B

K̃

ϕ̃→T

ϕ̃↓T,k

ϕ̃→T,k

f̃ 2(K̃)

ϕ̃→B,k

z̃↓2

z̃↓0

Figure 6. An example with k′ = k − 1. Either K̃ intersects ϕ̃→B,k,

or f̃ 2(K̃) intersects ϕ̃→T,k.

Proof of Theorem C. By Remark 4.17, we may assume that K̂ goes through

no singularities. Take M = 2M3 from Lemma 4.4 to see that any continuum K̂

with diam(K̂) > M is 3-semianchored, then use Lemma 4.18 to see that f̂ j(K̂) is

anchored for some 0 ≤ j ≤ 3, which by Proposition 4.15 implies that Df̂ (K̂) = ∞,
which concludes the proof. □

Theorem E is now obtained as a consequence of Theorem C.

Proof of Theorem E. By [KT13, Theorem B], we know that the lifted di-
ameter of any periodic topological disk is finite (there is a shorter improved version
of the proof of this result in [KLCT19, Theorem 6]). This implies that this disk
is dynamically bounded, which then implies that its closure must be a dynami-
cally bounded (inessential) continuum, whose diameter is uniformly bounded from
Theorem C, which concludes the proof.

□



CHAPTER 5

The essential factor

The goal of this chapter is to build an explicit monotone semiconjugacy, for a
torus homeomorphism f under the hypotheses of Theorem A, that is, a torus home-
omorphism f which is isotopic to the identity, and such that ρ(f) has nonempty
interior. For the remainder of this section, let us assume these hypotheses hold
and use the notation of said theorem. We will dedicate the following chapter to
the basic understanding of the dynamics in the resulting quotient. In particular,

let us recall that the dynamical diameter D of a continuum K̂ ∈ R2 is defined as

supremum of the diameters of the iterates of K̂ by a lift f̂ .

1. Dynamically bounded splitting

Let us define a relation ∼f̂ in R2 as follows:

Definition 5.1. Let ẑ, ẑ′ ∈ R2. We will say that ẑ ∼f̂ ẑ′ if there exists a

continuum K̂ ∈ R2 such that ẑ, ẑ′ ∈ K̂, and Df̂ (K̂) < ∞.

It follows immediately that ∼f̂ is an equivalence relation, where we write [ẑ]f̂
for the equivalence class of ẑ under ∼f̂ (or simply [z] and ∼ when there is no

ambiguity). Let us now understand the structure of these classes.

Remark 5.2. For every ẑ ⊂ R2, [ẑ] =
⋃

ŵ∈[ẑ]
K̂ŵ, where K̂ŵ is a dynamically

bounded continuum containing both ŵ and ẑ. This implies [ẑ] is connected.

Lemma 5.3 (Uniformly bounded classes). There exists M > 0, such that for
every ẑ ∈ R2, we have diam([ẑ]) < M .

Proof. Take M as in Theorem C. Suppose by contradiction that we have
diam([ẑ]) > M . Then, there exist ẑ1, ẑ2 ∈ [ẑ] such that d(ẑ1, ẑ2) > M .

This implies that any continuum K̂ which contains both ẑ1 and ẑ2 has diam(K) >

M . Using Theorem C, we instantly get that D(K̂) = ∞, which contradicts the
fact that ẑ1 and ẑ2 belong to the same equivalence class. □

Corollary 5.4. For every ẑ ∈ R2, [ẑ] is dynamically bounded. Furthermore,
their closure is also dynamically bounded. This implies that cl([ẑ]) ⊂ [ẑ], and in
particular every class is closed.

Proof. The fact that every class is dynamically bounded is due to Lemma

5.3 and the fact that f̂ sends to classes to classes. The closure of class is also
dynamically bounded because diam(cl([ẑ])) = diam([ẑ]). □
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Remark 5.5. For every ẑ, [ẑ] is filled, because diam(f̂ j([ẑ])) = diam(Fill(f̂ j([ẑ]))).

Lemma 5.6. Let K̂ ⊂ R2 be a dynamically bounded continuum for f̂ . Then,

for every deck transformation T , we have that T (K̂) ∩ K̂ = ∅.

Proof. Suppose by contradiction that there exists a deck transformation

T (ẑ) = ẑ + v where v ∈ Z2 non-zero, such that T (K̂) ∩ K̂ ̸= ∅. Start by building
a necklace

K̂T =
⋃
n∈Z

T n(K̂),

and note that diam(K̂T ) = ∞. Let us denote πv⊥ to the projection onto
the subspace generated by the vector v⊥ which is orthogonal to v. Given that

D(K̂) < M , we obtain that

sup
j∈Z

diam(πv⊥(f̂
j(K̂T ))) = sup

j∈Z
diam(πv⊥(f̂

j(K̂))) < M.

Note that the complement of K̂T has two unbounded connected components
U+, U− (think respectively of points with large positive and negative second coor-
dinate in the positively-oriented base v, v⊥). We shall use coordv⊥ to denote this
second coordinate. Again, up to taking a power and an adquate lift we will assume

that 0⃗ ∈ int(ρ(f̂)). Then, we may take two periodic points ẑ+ ∈ U−, ẑ− ∈ U+

such that coordv⊥(ρ(ẑ+)) > 0 and coordv⊥(ρ(ẑ−)) < 0. This implies that for a suf-

ficiently large value of j, we have that coordv⊥(f̂
j(ẑ+)) − coordv⊥(f̂

j(ẑ−)) > 2M ,

which on its turn implies that diam(πv⊥(f̂
j(K̂T ))) > M , which is a contradic-

tion. □

Corollary 5.7. For every ẑ, we have that π̂[ẑ] is an inessential filled contin-
uum, which is dynamically bounded.

Proof. This is due to Lemmas 5.6 and 5.3 put together. □

Proposition 5.8. The equivalence relation ∼f̂ is upper semicontinuous.

Proof. First, note that it suffices to prove that the Hausdorff limit of a se-
quence of equivalence classes is entirely contained in an equivalence class.

Let {[ẑ]n}n∈N be a sequence of equivalence classes such that [ẑ]n →
n→∞

K̂ for the

Hausdorff topology. This implies that for every δ > 0, there exists nδ such that

K̂ ⊂ B([ẑ]nδ
, δ).

Take ε > 0. Given that f̂ is uniformly continuous, we get that for every j ∈ N
there exists δj such that

sup
|i|≤j

dH(f
i([ẑ]), f i([ẑ′])) < 1, whenever dH([ẑ], [ẑ

′]) < δj.

For every j ∈ Z+, given that D([ẑ]nδj
) ≤ M and dH([ẑ]nδj

, K̂) < δj, we obtain

that

sup
|i|≤j

diam(f̂ j(K̂)) < M + 1,
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and therefore D(K̂) < M+1. We conclude that K̂ is dynamically bounded, which
concludes the proof. □

Projecting the classes. We may now induce an equivalence class ∼f for the
torus, defined as

[z]f = π̂([ẑ]f̂ ), where ẑ is any lift of z,

which is equivalent to saying z ∼f z′ if there exists a continuum K containing
both z and z′, which is dynamically bounded.

From the results of last subsection, we recover the following

Proposition 5.9 (Dynamically bounded Splitting). Let ∼f be an equiv-
alence relation on the torus, whose classes are defined by [z]f = π̂([ẑ]f̂ ). Then,

• Each equivalence class of ∼f is an inessential filled continuum.
• Equiavlence classes of ∼f are uniformly dynamically bounded.
• ∼f is upper semicontinuous.

2. Monotone quotient

We have built a partition given by an equivalence relation which is upper
semicontinuous, and whose classes are inessential filled continua. By a main result
in [RS38], we know that the quotient topological space T2 = T2

/∼, equipped with

the metric d∼([z], [w]) = min{d(z′, w′) : z′ ∼ z, w′ ∼ w} is homeomorphic to T2

(this is actually a generalization of a Moore’s result for the sphere, which can be

found in [Moo32]). Note that this induces a distance d̂∼ on the universal covering
R2 of T2 (which is on its turn homeomorphic to R2), and allows us to measure the
diameter of continua in T2. When there is no room for confusion, we will abuse
notation and use d for all of these distances.

Given that f sends equivalence classes to equivalence classes, we immediately
get natural dynamics g on the quotient space T2, defined as g([z]) = [f(z)]. Note
that the quotient map π∼ : T2 → T2 is monotone. We obtain the following
diagram:

f

g

T2 T2

T2 T2

π∼ π∼

Definition 5.10. Given f ∈ Homeo0(T2) with int(ρ(f)) ̸= ∅, and ∼ the
dynamically bounded equivalence relation, we will say that g = f/∼ is its essential
factor.

Remark 5.11. Given f under the General hypothesis and its essential factor
g, we obtain lifts ĝ : R2 → R2, g̃ : D̃ → D̃, proceeding in the same fashion as we
did for f .

Remark 5.12. A continuum K is essential in T2 if and only if K∼ = π∼(K)
is essential in T2.
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Keep in mind that the distance functions in T2 and T2 are very much different.
However, we may recover the following facts from the construction:

Remark 5.13. Let γ↓, γ→ be the canonical π1 generator of T2, based at the
origin. Then, their projections γ↓∼, γ

→
∼ to the quotient, are a π1 generator of T2.

Remark 5.14 (Canonical torus model). Our new torus T2 is topologically
conjugate to a canonical torus S1 × S1. We may then think of T2 as T2 in a
canonical way: it is enough to choose a homeomorphism h such that h(γ↓∼) = γ↓,
and h(γ→∼ ) = γ→

3. Quick dynamical consequences

We will start by stating some properties inherited by the essential factor g, due
to the structure of f . The following is a purely topological fact.

Claim 5.15. A continuum K has Df (K) = ∞ if and only if its projection K∼
has Dg(K∼) = ∞.

Proof. Having Df (K) = ∞ is equivalent to saying that there exists a se-
quence {nj}j→∞ such that fnj(K) intersects a growing-to-infinity number of lifts
γ̂ of either γ↓ or γ→. On its turn, this is equivalent to having that gnj(K∼) inter-
sects a growing-to-infinity number of lifts γ̂∼ of either γ↓∼ or γ→∼ , which is equivalent
to having Dg(K) = ∞ □

Note that not only our quotient has preserved the topological space, it has
also preserved free homotopy classes of curves. We may also send the isotopy
downstairs and note that

Remark 5.16. The essential factor g is isotopic to the identity.

Rotation in the quotient. Recall that from the classical definition, given a

standard plane torus T2, we say that v = (v1, v2) ∈ ρ(f̂) if and only if there exist
ẑk ∈ R2, nk → +∞ such that

lim
k→∞

f̂nk(ẑk)− ẑk
nk

= v

Note that this is equivalent to counting the intersections with the canonical

generators γ↓, γ→, that is, if we define γ̂k to be a curve from ẑk to f̂
nk(ẑk) in general

position respect to the infinite lifts γ̂↓, γ̂→, and take γk = π̂(γ̂k) its projection to
the torus, then

(5.1) lim
k→∞

f̂nk(ẑk)− ẑk
nk

= v ⇐⇒ lim
k→∞

γ↓ ∧ γk
nk

= v1; lim
k→∞

γ→ ∧ γk
nk

= v2

where ∧ denotes the classical intersection number with sign between two curves.
This allows to understand rotation, which is more of a topological quantity rather
than metric, for a homeomorphism of any torus, in particular for T2. Note that
this notion is well defined, as the quotient yields the same result for the whole
dynamically bounded class of ẑk.
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Proposition 5.17. Let f̂ be a lift of f ∈ Homeo0(T2) with int(ρ(f)) ̸= ∅, and
let g be its essential factor. Then,

(1) There exists a lift ĝ of g such that ρ(ĝ) = ρ(f̂).
(2) Dg(K∼) = ∞ for every non-trivial continuum K∼ ⊂ T2.

Proof. (1) As we have just explained above, v = (v1, v2) ∈ ρ(ĝ) if and
only if

lim
k→∞

γ↓∼ ∧ γ∼,k
nk

= v1; lim
k→∞

γ→∼ ∧ γ∼,k
nk

= v2

as in Equation 5.1 which lets us obtain the desired result given that the
quotient π∼ preserves the intersection number between curves, that is,

γ↓ ∧ γk = γ↓∼ ∧ γ∼,k; γ→ ∧ γk = γ→∼ ∧ γ∼,k.

(2) This is immediate from Claim 5.15 and the fact that the preimage π−1∼ (K∼)
of any non-trivial continuum K∼ ∈ T2 is dynamically unbounded.

□

From now on, and having taken the canonical model we already explained, we
will abuse notation and write T2 for T2, and similarly for the coverings R2 and D̃.
We will also eliminate the subindex ∼ and write K instead of K∼ for continua, z
instead of z∼ for points, and similarly for their lifts.

Let us now prove that g is tight, which follows easily from the fact that g is
continuum-wise expansive.

Proposition 5.18. For each non-trivial continuum K ⊂ T2 we have that
htop(g,K) > 0.

Proof. Let us first prove that for every ε > 0, there exists nε > 0 such
that: for every non-trivial continuum K ⊂ T2 with diam(K) ≥ ε, there exists
−nε ≤ nK ≤ nε such that

(5.2) diam(gnK (K)) > 3ε

Suppose by contradiction that is not true. Then, there would exist a sequence
of continua {Kn}n∈N, such that for every n ∈ N we have that

diam(Kn) ≥ ε, diam(gj(Kn)) ≤ 3ε, for every − n ≤ j ≤ n

In this case, up to taking a subsequence we may assume that Kn → K in the
Hausdorff topology. Then by the uniform continuity of ĝ we would have that

Dg(K) ≤ 3ε,

which contradicts the fact that g is infinitely continuum-wise expansive (see Propo-
sition 5.17).

Let us now use the notation from Equation 1.1, and prove that for small values
of ε, the number sn(ε,K) grows exponentially, that is,

lim sup
n→+∞

1

n
log(sn(ε,K)) > 0.
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We may assume that diam(K) ≥ ε up to taking an iterate by some power of
g. It is now enough to prove that for every j ∈ Z+ we have that

(5.3) sjnε(ε,K) ≥ 2j

Take nK from Equation 5.2. Given that diam(gnK (K)) > 3ε, we may take two
subcontinuaK0, K1 ⊂ gnK (K) of diameter equal to ε, such that if we take one point
in each of them, they are at distance greater than ε from each other. This means
that we can take z0, z1 ∈ K which are (nε, ε) separated, that is snε(ε,K) ≥ 2.

Reiterating this process for K0 and K1 we obtain two respective subcontinua
K00, K01 ⊂ gnK0 (K0), K10, K11 ⊂ gnK1 (K1) of an iterate of each of them, such that
points in K00 and points in K01 are at distance greater than ε from each other,
and similarly for points in K10 with respect to points K11. This allows to take four
points z00, z01, z10, z11 in K which are (2nε, ε)-separated. By repeating this process
we obtain the equality from Equation 5.3, which concludes the proof.

□

Guided by the two properties held by the essential factor which were proved
in Proposition 5.17, we shall introduce the following notion.

Definition 5.19. We will say a (torus) homeomorphism g ∈ Homeo0(T2) is
frice (i.e. fully rotational, infinitely continuum-wise expansive) if

• int(ρ(g)) ̸= ∅,
• Dg(K) = ∞ for every non-trivial continuum K ⊂ T2.

By Proposition 5.17 and Remark 5.16, we have that the essential factor of a
torus homeomorphism in the General Hypothesis, is frice. Moreover, if we take a
frice torus homeomorphism, then its essential factor will be the map itself, because
the equivalence classes for ∼ will be trivial. We then have that

Remark 5.20. A torus homeomorphism g is frice, if and only if it is the
essential factor of a torus homeomorphism f in the General Hypothesis.

For the sake of clarity, we will generally state future results for the essential
factor by using the definition of frice (torus) homeomorphism instead.

Throughout the following sections, we will use some of the techniques and
results we developed in Sections 3 and 4 for the context of frice homeomorphisms,
as they satisfy the General Hypothesis. Keep in mind that in this context, any
essential continuum is dynamically unbounded both to the past and to the future,
therefore, all the anchoring techniques will be done for inessential continua.



CHAPTER 6

Stable and unstable sets

This brief chapter is devoted to introducing and studying the following three
stability-related notions, which will be strongly used in Sections 7 and 8:

• Weakly stable and weakly unstable continua,
• Stable and unstable sets of a point,
• Stable and unstable continua.

1. Weak stability

Definition 6.1. Let f̂ be a lift to R2 of a homeomorphism f in the General

Hypothesis. We will say that a continuum K̂ is weakly stable for f̂ if there exists

n < 0 such that f̂n(K̂) is s-anchored, and analogously it is weakly unstable for f̂

if there exists n > 0 such that f̂n(K̂) is u-anchored.

In this context, the projection K = π̂(K̂) to the torus will also be called a
respectively a weakly stable (unstable) continuum for f .

We will generally use K̂ws and K̂wu for weakly stable and weakly unstable
continua of the plane, respectively.

We saw in Proposition 5.17, that the dynamical diameter for a frice torus
homeomorphism g, of every non-trivial continuum, is infinite. This fact, together
with the structure of canonically foliated strips we built in Chapter 4 applied for
g, gives us the following:

Lemma 6.2. Let ĝ be a lift to R2 of a frice torus homeomorphism g.

Then, any non-trivial continuum K̂ ⊂ R2 is either weakly stable or weakly
unstable for ĝ (it may very well be both).

Proof. Up to taking a power and changing the lift, we assume that 0⃗ ∈
int(ρ(ĝ)). Let K̂ ⊂ R2 be a non-trivial continuum. By Proposition 5.17, we know

that Dĝ(K̂) = ∞. In particular, there exists j0 such that diam(ĝj0(K̂)) > M ′,
where M ′ is taken as in Remark 4.20. By this same remark, we obtain that there

exists j0 ≤ j ≤ j0+3 such that ĝj(K̂) is anchored, which concludes the proof. □

2. Shape and size

Definition 6.3. Let f̂ be a lift to R2 of a homeomorphism f in the General
Hypothesis, and let ẑ ∈ R2. Then,

(1) The ε-stable set of ẑ for f̂ , is defined as

W s
ε,f (ẑ) = {ẑ′ ∈ R2 : d(f̂ j(ẑ′), f̂ j(ẑ)) ≤ ε, for every j ≥ 0},

67
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(2) Similarly, the ε-unstable set of ẑ for f̂ is defined as

W u
ε,f (ẑ) = {ẑ′ ∈ R2 : d(f̂ j(ẑ′), f̂ j(ẑ)) ≤ ε, for every j ≤ 0},

(3) For z ∈ T2, z = π̂(ẑ), we define

W s
ε,f (z) = π̂(W s

ε,f (ẑ)), W u
ε,f (z) = π̂(W u

ε,f (ẑ)).

(4) Ks
ε,f (ẑ) is defined as the connected component of W s

ε,f (ẑ) containing ẑ,

(5) Ku
ε,f (ẑ) is defined as the connected component of W u

ε,f (ẑ) containing ẑ,

(6) For z ∈ T2, z = π̂(ẑ), we define

Ks
ε,f (z) = π̂(Ks

ε,f (ẑ)), Ku
ε,f (z) = π̂(Ku

ε,f (ẑ)).

We will omit the homeomorphism as a subindex when there is no room for
ambiguity.

Definition 6.4 (Stable set of a point). Let f̂ be a lift to R2 of a torus
homeomorphism f in the General Hypothesis, and let ẑ ∈ R2. We define the

stable set of ẑ and the unstable set of ẑ for f̂ , respectively as

Ks(ẑ) =
⋃
ε>0

Ks
ε(ẑ), Ku(ẑ) =

⋃
ε>0

Ku
ε (ẑ).

Note that the orbit of every ẑ′ ∈ Ks(ẑ) remains at a bounded distance from
the orbit of ẑ. Again, for z ∈ T2 with z = π̂(ẑ), we define

Ks(z) = π̂(Ks(ẑ)).

Definition 6.5 (Stable Continuum). Let f̂ be a lift to R2 of a torus home-

omorphism f in the General Hypothesis. We will say that K̂ ⊂ R2 is a stable

continuum if K̂ ⊂ Ks(ẑ) for some z ∈ R2, and it will be an unstable continuum if

K̂ ⊂ Ku(ẑ) for some z ∈ R2.

While the definitions in this section can be applied in a broader context, the
work in what follows will be done for frice torus homeomorphisms, which we shall
denote by g.

Recall that by Proposition 5.17, we have that any such g is continuum-wise
expansive (i.e. there exists a positive uniform lower bound for the dynamical
diameter of non-trivial continua), and so is any lift ĝ of g to R2. We may then
apply a result from Rodŕıguez Hertz, which can be found in [Her04, Theorem
0.2], and obtain the following:

Lemma 6.6. Let g be a frice torus homeomorphism. Then, for any ε > 0, there
exists δ > 0 such that

inf
z∈T2

diam(Ks
ε(z)) ≥ δ, inf

z∈T2
diam(Ku

ε (z)) ≥ δ

.
In particular, for every z ∈ T2 we have that Ks(z) is nonempty.

Note that this result for the diameter of stable sets has its natural analogous
in R2 when applied to a lift ĝ of g.
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Lemma 6.7. Let ĝ be a lift to R2 of a frice torus homeomorphism g. Then, any
non-trivial stable continuum is also weakly stable, and any non-trivial unstable
continuum is also weakly unstable. In particular, they project onto inessential
continua.

Proof. It suffices to prove the result for stable continua, as the other case is

analogous. Let K̂ ⊂ Ks(ẑ) be a non-trivial stable continuum for ĝ. Note that

there exists ε > 0 such that K̂ ⊂ Ks
ε(ẑ), which implies that

sup
j∈Z+

diam(ĝj(K̂)) ≤ 2ε.

Given the diameter of K̂ does not grow to infinity for future iterates, we obtain

by Proposition 4.15 that K̂ is not weakly unstable. Then, Remark 6.2 yields that

K̂ is weakly stable, which concludes the proof. □

Lemma 6.8. Let ĝ be a lift to R2 of a frice torus homeomorphism. Then, for

every open set V̂ ⊂ R2, there exist two non-trivial continua K̂ws, K̂wu ⊂ V̂ , which
are respectively weakly stable and weakly unstable continua for ĝ.

Proof. Let V̂ ⊂ R2 be an open set. Take ẑ ∈ V̂ , let ε < d(ẑ, ∂V̂ ), and note
that Ks

ε(ẑ) is a stable continuum, which is non-trivial by Lemma 6.6, and is also

included in V̂ . By Lemma 6.7, we obtain that K̂ws = Ks
ε(ẑ) is a weakly stable

continuum. We proceed for weakly unstable continua in identical fashion and thus
conclude the proof. □

As a consequence we obtain the following two results:

Remark 6.9. Let ĝ be a lift to R2 of a frice torus homeomorphism g. Then,
any closed ball in R2 is simultaneously weakly stable and weakly unstable for ĝ.

Remark 6.10. Let ĝ be a lift to R2 of a frice torus homeomorphism g. Then, for
every ε > 0, both Ks

ε(ẑ) and Ku
ε (ẑ) are nonempty, filled and have empty interior.

Moreover, any stable or unstable continuum is filled and has empty interior.

3. Dynamical properties

We will study some properties of the stable sets, which have their natural anal-
ogous versions for unstable sets. We obtain results using the anchoring techniques
developed in Chapter 4, the most important one of the section being Proposition
6.14.

Lemma 6.11. For every ẑ′ ∈ Ks(ẑ), we have that

lim
j→+∞

d(ĝj(ẑ′), ĝj(ẑ)) = 0

Proof. Suppose by contradiction that there exists ε > 0, and ẑ′ ∈ Ks
ε(ẑ) such

that lim
j→+∞

d(ĝj(ẑ′), ĝj(ẑ)) ̸= 0. This implies that there exists a sequence {jn}n∈N
of future iterates, with jn → +∞ and some δ > 0 such that

diam(ĝjn(Ks
ε(ẑ))) ≥ δ.
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We shall use K̂n to denote the connected component of ĝjn(Ks
ε(ẑ))∩B(ĝjn(ẑ), δ)

containing ĝjn(ẑ), which is a continuum of diameter between δ and 2δ, and we will

writeKn = π̂(K̂n) ⊂ T2. Now, given that the space of continua of a compact space,
equipped with the Hausdorff topology, is compact, we have that up to taking a
subsequence,

Kn
n→+∞−−−−→

Hff
K.

where δ ≤ diam(K) ≤ 2δ.
Fix m > 0, and let us check that diam(gm)(K) ≤ 4ε. For this, take δm,ε > 0

from the uniform continuity of g, such that any two points δm,ε-near, must be
ε-near for m iterates of g. Now, simply take n large enough such that

dH(Kn, K) < δm,ε.

Take any pair of points w′, w′′ ∈ K and note that there exist z′, z′′ ∈ Kn with

d(z′, w′) < δm,ε, and d(z′′, w′′) < δm,ε.

Moreover,

d(gm(z′), gm(z′′)) ≤ d(gm+jn(z), gm(z′′)) + d(gm(z′), gm+jn(z)) ≤ 2ε,

from where we obtain that

d(gm(w′), gm(w′′))

≤ d(gm(w′), gm(z′)) + d(gm(z′), gm(z′′)) + d(gm(z′′), gm(w′′)) ≤ ε+ 2ε+ ε ≤ 4ε.

Let us prove the same assertion for a negative value −m < 0. Note that any
two points z′, z′′ ∈ Kn are 2ε-near for all of its future, but we also have that for
any m ≤ jn,

d(g−m(z′), g−m(z′′)) ≤ d(g−m+jn(z), g−m(z′′)) + d(g−m(z′), g−m+jn(z)) ≤ 2ε,

simply because z′, z′′ ∈ gjn(Ks
ε(z)).

The proof for negative values −m < 0 is then analogous: it is enough to note
that given any pair of points w′, w′′ ∈ K, there exist z′, z′′ ∈ Kn with

d(z′, w′) < δm,ε, d(z′′, w′′) < δm,ε, and jn ≥ m,

and repeat the previous computations for positive values of m.

We have just constructed a non-trivial dynamically bounded continuum K,
which is a direct contradiction with the second item in Proposition 5.17. □

Recall that by Lemma 6.7, we know that the projections Ks
ε(z) = π̂(Ks

ε(ẑ)),
Ku(z) = π̂(Ku(ẑ)) to the torus, are inessential continua.

The following result strongly uses the techniques developed in Chapter 4.

Lemma 6.12. Fix d > 0. Then, there exists Ld > 0, such that for every stable

continuum K̂ with diam(K̂) > Ld, we have that

diam(ĝj(K̂)) > d, for every j < 0.
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Proof. As in Chapter 4, let us work with vertical diameter Vdiam without

loss of generality. Take Â→ a canonically foliated strip. Take M3 from Lemma 4.7,
and taking

Ld = 2M3 + 2d+ 1,

we obtain that any continuum K̂ with Vdiam(K̂) > Ld is 3-semianchored to two

lifts Â→k , Â→k′ of the same canonically foliated strip A→, and such that the vertical
distance dV between the closure of these strips holds

dv(Â
→
k , Â→k′ ) ≥ 2d.

Given that no iterate of K̂ can be u-anchored since K̂ is contained in a stable
set, we obtain from Corollary 4.16 and Remark 4.19 that the past iterates of K̂
intersect the closure of both strips, from where we obtain

diam(ĝj(K̂)) ≥ 2d, for every j < 0,

which concludes the proof. □

The following result is the contrapositive of what we have just proved.

Corollary 6.13. Fix d > 0. Then, there exists Ld > 0, such that for any

stable continuum K with diam(K̂) ≤ d, we have that

diam(ĝj)(K̂) ≤ Ld, for every j > 0.

We finish the section by proving the following key result, which will be used in
Chapter 8.

Proposition 6.14 (Hausdorff limit of small stable continua). Let {K̂n}n∈N
be a sequence of stable continua K̂n ⊂ Ks(ẑn), such that diam(K̂n) ≤ d for every
n > 0 and some d > 0. Suppose that

K̂n
Hff−−−−→

n→+∞
K̂.

Then, K̂ is also a stable continuum.

The proof is essentially the same as in Lemma 6.11.

Proof. Fix ŵ ∈ K̂. We will prove that for any other ŵ′ ∈ K̂ and every j > 0,
we have that d(ĝj(ŵ), ĝj(ŵ′)) ≤ Ld, which is enough to finish the lemma as it

implies that K̂ ⊂ Ks
Ld
(w).

Fix j0 > 0 and ε > 0, and take δj0,ε from the uniform continuity of ĝ, as in

Lemma 6.11. Take a large enough value of n such that dH(K̂n, K̂) < δj0,ε. We
may then finish with a similar argument to the one in Lemma 6.11: first, take

z, z′ ∈ K̂n such that
d(ẑ, ŵ) < δj0,ε, d(ẑ′, ŵ′) < δj0,ε,

which means that

d(ĝj(ẑ), ĝj(ŵ)) < ε, d(ĝj(ẑ′), ĝj(ŵ′)) < ε, for every 0 ≤ j ≤ j0.

By Corollary 6.13, we know that

d(ĝj(ẑ), ĝj(ẑ′)) ≤ Ld, for every j ≥ 0.
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Then, by the triangle inequality, we obtain that

d(ĝj(ŵ), ĝj(ŵ′)) < Ld + 2ε, for every 0 ≤ j ≤ j0.

Taking j0 growing to ∞ and ε going to 0, we obtain the desired result. □

We finish the chapter with a sufficient condition for continua to be weakly
(un)stable.

Lemma 6.15. Let f̂ be a lift of a torus homeomorphism f ∈ Homeo0(T2) with

0⃗ ∈ int(ρ(f̂)). Let ẑ1, ẑ2 be two periodic points with different associated rotation
directions, and let d > 0.

Then, every continuum K̂ such that

K̂ ∩Ks
m(ẑ1) ̸= ∅, K̂ ∩Ks

m(ẑ2) ̸= ∅,

is weakly unstable.

Proof. The proof uses the anchoring techniques from Chapter 4. Let the
respective rotation vectors for the periodic points be given by

ρ(ẑ1) = (a1, b1), ρ(ẑ2) = (a2, b2), with
b1
a1

̸= b2
a2

.

We will assume without loss of generality that the respective rotation vectors hold
a1, a2, b1, b2 < 0. The proof for the other cases is analogous, up to taking a different
CFS.

Let us take a continuum K̂ ⊂ V̂ such that

K̂ ∩Ks
m(ẑ1) ̸= ∅, K̂ ∩Ks

m(ẑ2) ̸= ∅
and note that

Ĉ := Ks
m(ẑ1) ∪ K̂ ∪Ks

m(ẑ2) is connected.

Note that

sup
j∈Z+

diam(f̂ j(Ks
m(ẑ1))) ≤ 2m, sup

j∈Z+

diam(f̂ j(Ks
m(ẑ2))) ≤ 2m.

Up to taking sufficiently large negative values of k, we have that Ĉ ⊂ B(Â→k ).

Note that, given the diameter of leaves ϕ̂ ∈ F̂ is uniformly bounded, and that
the slopes of the vectors ρ(ẑ1) and ρ(ẑ2) are different, we know that we may take

k < 0 with Ĉ ⊂ B(Â→k ), and such that the sets of leaves Φ̂1 and Φ̂2 are nonempty
and disjoint, where

Φ̂1 = {ϕ̂ ⊂ ∂BÂ
→
k : ϕ̂ ∩ Î+

F̂
(ẑ1) ̸= ∅},

Φ̂2 = {ϕ̂ ⊂ ∂BÂ
→
k : ϕ̂ ∩ Î+

F̂
(ẑ2) ̸= ∅}.

Given that b1, b2 < 0, we can take j0 > 0 such that

f̂ j0(ẑ1) ∈ T(Â→k ), f̂ j0(ẑ2) ∈ T(Â→k ),

d(f̂ j0(ẑ1), Â
→
k ) > m, d(f̂ j0(ẑ2), Â

→
k ) > m,

which means that

(6.1) f̂ j0(Ks
m(ẑ2)) ⊂ T(Â→k ), f̂ j0(Ks

m(ẑ1)) ⊂ T(Â→k )
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Let us check that f̂ j0(K̂) is u-anchored. Take two leaves ϕ̂1 ∈ Φ̂1, ϕ̂2 ∈ Φ̂2. The

key observation here is that given Φ̂1 and Φ̂2 are disjoint, we have that for every pair

of lifts ϕ̃1, ϕ̃2 of ϕ̂1, ϕ̂2 ⊂ Â→k which hold that Ĩ+F̃ (z̃1)∩ ϕ̃1 ̸= ∅, Ĩ+F̃ (z̃2)∩ ϕ̃2 ̸= ∅, we

have that ϕ̃2 ⊂ R(ϕ̃1), ϕ̃1 ⊂ R(ϕ̃2), which means that if we take two lifts Ã→k,1, Ã
→
k,2

of Â→k such that

Ĩ+F̃ (z̃1) ∩ Ã→k,1 ̸= ∅, Ĩ+F̃ (z̃2) ∩ Ã→k,2 ̸= ∅,

we will have that
Ã→k,2 ⊂ B(Ã→k,1), Ã→k,1 ⊂ B(Ã→k,2).

See Figure 7 for details.

π̃

Ks
m(ẑ1)

Ks
m(ẑ2)

ĝj0(Ks
m(ẑ1))ĝj0(Ks

m(ẑ2))

K̂

ĝj0(K̂)

Ks
m(z̃2)

Ks
m(z̃1)

g̃j0(Ks
m(z̃1))

g̃j0(Ks
m(z̃2))

K̃g̃j0(K̃)

Ã→k,2

Ã→k,1

ϕ̃1
T

ϕ̃2
T

Â→k Â→k

ϕ̂1
Tϕ̂2

T

Figure 7. Stable sets appear in light blue, the continua connecting
each respective pair of stable sets appear in green. Note that both
(Ã→k,1, f̃

j0(K̃), ϕ̃2
T, ϕ̃

1
T) and (Ã→k,2, f̃

j0(K̃), ϕ̃1
T, ϕ̃

2
T) are u-anchors.
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This fact, together with equation 6.1, shows that there exist two lifts Ã→k,1, Ã
→
k,2

of Â→k , two leaves ϕ̂1
T, ϕ̂

2
T ⊂ T(Â→k ) with their respective lifts ϕ̃1

T ⊂ T(Ã→k,1) and

ϕ̃2
T ⊂ T(Ã→k,2) ⊂ B(Ã→k,1), such that by taking natural lifts we obtain

(6.2) f̃ j0(Ks
m(z̃1)) ⊂ Tϕ̃1

T
(Ã→k,1), f̃ j0(Ks

m(z̃2)) ⊂ Tϕ̃2
T
(Ã→k,2) ⊂ B(Ã→k ),

which implies that

f̃ j0(K̃) ∩ ϕ̃1
T ̸= ∅, f̃ j0(K̃) ∩ ϕ̃2

T ̸= ∅.

We also obtain that
Ã→k,1 ⊂ R(ϕ̃1

T), Ã→k,1 ⊂ R(ϕ̃2
T),

which means that
(Ã→k,1, f̃

j0(K̃), ϕ̃2
T, ϕ̃

1
T) is a u-anchor,

which shows that K̂ is a weakly unstable continuum, and thus finishes the proof.
□



CHAPTER 7

The essential factor is rotationally mixing

So far, we have obtained the following three of the six properties described in
Theorem A for the essential factor, proved in Proposition 5.17:

• There exists a lift ĝ of g such that ρ(ĝ) = ρ(f̂),
• g is infinitely continuum-wise expansive.
• g is tight: for each non-trivial continuum K ⊂ T2, we have htop(g,K) > 0,

One of the goals of the chapter is to prove the following property:

• g is topologically mixing, and if 0⃗ ∈ int(ρ(ĝ)), ĝ is topologically mixing,

the other one being to prove Theorem D, which we will do at the end of the
Section.

Let us show that for the first purpose, it is enough to prove Proposition 7.1, as
we immediately discuss.

Proposition 7.1. Let g ∈ Homeo0(T2) be a frice torus homeomorphism.

Then, if ĝ is a lift of g with 0⃗ ∈ int(ρ(ĝ)), then ĝ is topologically mixing.

Corollary 7.2. Any frice torus homeomorphism g is rotationally mixing. In
particular, this holds for the essential factor of a torus homeomorphism in the
General Hypothesis.

Proof. Recalling that ρ(ĝj) = jρ(ĝ), we know that there exists a power gj

and an adequate lift ĝj which has 0⃗ ∈ ρ(ĝj), and is therefore mixing, which means
that g is rotationally mixing. □

Remark 7.3. Assuming Proposition 7.1 holds, we have obtained that gj is
mixing, which implies that the original g is also mixing (see Lemma 2.6).

Corollary 7.4. The essential factor g is strictly toral, and Ess(g) = T2.

Proof. Note that g is non-wandering because it is mixing. Given that g al-
ready satisfies the General Hypothesis, we conclude that it is strictly toral. More-
over, g is also transitive, again because it is mixing. By Remark 2.16, we conclude
that Ess(g) = T2, as desired. □

The idea for the proof of Proposition 7.1 is to use the existence of stable
and unstable sets for every point, together with a refinement of the anchoring
techniques, mainly developed in Proposition 7.5. For this matter, we will use the
results and notation developed in Sections 3 and 4.

75
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1. Total anchoring

The following proposition roughly states that for homeomorphisms in the Gen-

eral Hypothesis (f ∈ Homeo0(T2), int(ρ(f)) ̸= ∅), if we take a lift f̂ with 0⃗ ∈
int(ρ(f̂)), the orbit of any weakly unstable continuum is u-anchored to every
canonically foliated strip in A, and even more, the pair of leaves which serve
as anchors can be chosen to be almost anywhere in the boundary of the chosen
strip.

Proposition 7.5 (Total anchoring). Let f̂ be a lift to R2 of f ∈ Homeo0(T2),

such that 0⃗ ∈ int(ρ(f̂)). Fix a weakly unstable continuum K̂ ⊂ R2, a canonically

foliated strip Â ⊂ R2 with Â ∈ Â, and a leaf ϕ̂ ⊂ Â. Then,

(1) there exists j > 0 such that f̂ j(K̂) is u-anchored to Â.

(2) there exist two lifts Ã, ϕ̃ of Â and ϕ̂, two leaves ϕ̃B, ϕ̃T ⊂ ∂RÃ′(ϕ̃), and
some j′ > 0, such that

(Ã, f̃ j′(K̃), ϕ̃B, ϕ̃T) is a u-anchor, and f̃ j′(K̃) ⊂ RÃ(ϕ̃).

The key improvement of this statement compared to the results obtained in
Chapter 4, is that the orbit of an anchored continuum will have iterates which are
anchored to any canonically foliated strip, and the leaves serving as anchors are
as much to the right as we want.

Remark 7.6. From the second item we immediately conclude that

(Â, f̂ j′(K̂), ϕ̂B, ϕ̂T) is a u-anchor.

We also have that ϕ̂B, ϕ̂T ⊂ ∂RÂ(ϕ̂).

Remark 7.7. While the statement of Proposition 7.5 is written for the original
f , it works identically for any frice torus homeomorphism, and in particular for
the essential factor g.

Proof of Proposition 7.5.

(1). Let us assume without loss of generality that K̂ is u-anchored to Â→0 , and

let us take two leaves ϕ̂→B,0, ϕ̂T,0 such that

(Â→0 , K̂, ϕ̂→B,0, ϕ̂T,0) is a u-anchor.

Fix a lift Ã→0 , and the natural lifts K̃ ϕ̃→B,0, ϕ̃
→
T,0 such that

(Ã→0 , K̃, ϕ̃→B,0, ϕ̃
→
T,0) is a u-anchor.

We will start by proving that there exists some vertical CFS Â↓ ∈ Â↓ (recall

Equations 3.5 and 3.6), such that a future iterate of K̂ is u-anchored to Â↓. Recall

that fixing a realizing point ẑ→, we obtain a partition of Â→ in fundamental

domains, and also that the family Â↓ is naturally indexed by Z. For each of these

CFS Â↓k ∈ Â↓, we may take a lift Ã↓k ⊂ D̃, which intersects Ã→0 . Let us recover the
structure of fundamental domains we built in Chapter 3:

(7.1) D̃→k = Ã→0 ∩ L(ϕ̃↓T,k) ∩ R(ϕ̃↓T,k+1).
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Note that there exists k such that ϕ̃→B,0 ⊂ R(ϕ̃↓T,k), ϕ̃→T,0 ⊂ R(ϕ̃↓T,k) .
By the same argument of the Anchoring Lemma (see for example Lemma 4.8),

we have that there exists j0 > 0 such that

f̃ j0(K̃) ∩ ϕ̃↓B,k ̸= ∅.

Then, we can conclude that

(7.2) (Ã↓k, f̃
j0(K̃), ϕ̃↓B,k, ϕ̃

→
T,0) is a u-anchor.

Now, note that similarly Ã↓k is on its turn partitioned in fundamental domains

by taking lifts Ã→m of each of the respective Â→m which intersect Ã↓k, given by:

D̃↓m = Ã↓k ∩ L(ϕ̃→B,m) ∩ R(ϕ̃→B,m−1)

and observe that ϕ̃↓B,k ⊂ D̃↓0, and therefore for m ̸= 0, we may take leaves ϕ̃→B,m ∈
∂BÃ

→
m ∩ Ã↓k and obtain that,

ϕ̃→T,0 ⊂ R(ϕ̃→B,−1); ϕ̃↓B,k ⊂ R(ϕ̃→B,−1),

ϕ̃→B,−1 ∈ R(ϕ̃→T,0) ∩ R(ϕ̃↓B,k).

Again by the Anchoring Lemma, for every m < 0 there exists jm > j0 such
that

f̃ jm(K̃) ∩ ϕ̃→T,m ̸= ∅, where ϕ̃→T,m ⊂ Ã↓k ∩ ∂TÃ
→
m ,

and we may then conclude that

(Ã→m , f̃ jm(K̃), ϕ̃→T,0, ϕ̃
→
T,m) is a u-anchor.

We have just proved that f̂ j0(K̂) is u-anchored to some Â↓k, and that f̂ jm(K̂) is

u-anchored for Â→m , for every m < 0. In the same fashion, we obtain that f̂ j′0(K̂)

is u-anchored to some Â↑k′ and that f̂ j′m(K̂) is u-anchored for Â→m , for every m > 0.

Therefore, the thesis is true for every Â→m .

Proceeding inductively, for example from the fact that f̂ j0(K̂) is u-anchored to

Â↓k, we conclude that there is a future iterate of K̂ which is on its turn u-anchored

to some Â←k′′ . Repeating the same argument which let us conclude that there are

future iterates of K̂ u-anchored to each of the Â→m , we conclude that there are also

future iterates u-anchored for every other Â↑,←,↓
m , which concludes the proof.

(2). Let us fix a canonically foliated strip Â→0 and a fundamental domain

D̂r ⊂ Â→0 such that ϕ ⊂ D̂r. As in the first part, and let us assume that

(Ã→0 , K̃, ϕ̃→B,0, ϕ̃
→
T,0) is a u-anchor.

Take a fundamental domain D̂′r ⊂ Â→0 to the very right of ϕ̂, more precisely,

use Lemma 3.16 with n = 3, to obtain r′ such that for every leaf ϕ̂′ in D̂r′+1, and

any natural set of lifts ϕ̃′, ϕ̃ to D (belonging to the same lift Ã→0 of Â→0 ), we have
that

(7.3) f̃ j(ϕ̃′) ⊂ R(ϕ̃), for every 0 ≤ j ≤ 3.
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We start by iterating thrice the process we built in the last item -which lead

us to Equation 7.2-, turning to the right succesively for Â↓k, Â
←
m for some m such

that Â←m ∩ Â→0 = ∅, and lastly for Â↑n such that

Â↑n ∩ Â→0 ⊂
⋃
i≤r′

D̂→i .

More precisely, we can obtain l3 > l2 > l1 > 0 such that

(Â↓k, f̂
l1(K̂), ϕ̂↓B,k, ϕ̂

→
T,0) is a u-anchor (direct from Equation 7.2,)

(Â←m , f̂ l2(K̂), ϕ̂←B,m, ϕ̂
→
T,0) is a u-anchor (reiterate the technique),

(Â↑n, f̂
l3(K̂), ϕ̂↑B,n, ϕ̂

→
T,0) is a u-anchor (repeat it once again.)

Note that the process we built allows ϕ̂→T,0 to always be the top leaf of the respective
anchors, the only one changing being the bottom one. See Figure 8 for details.

Now, simply observe that the future iterates of K̂ eventually end up intersecting

every leaf in Â↑n, in particular there exists jB such that

f̂ jB(K̂) ∩ ϕ̂→B ̸= ∅,

where we take ϕ̂→B ⊂ ∂BÂ
→
0 ∩ Â↑n as the last intersection between Â→0 and Â↑n, that

is, take a realizing point ẑ↑ for Â↑n, take

t = sup{t ∈ R : Î tF̂(ẑ
↑) ∩ Â→0 ̸= ∅},

and then define ϕ̂→B as the leaf through Î t

F̂
(ẑ↑). Note that the orientation of ϕ̂→B

implies that there exists a new lift Ã
′→
0 of Â→0 , and some lift ϕ̃→B of ϕ̂→B such that

Ã
′→
0 ⊂ R(ϕ̃→B ); ϕ̃→B ⊂ ∂BÃ

′→
0 ; and f̃ jB(K̃) ∩ ϕ̃→B ̸= ∅.

Then, notice that by construction,

ϕ̃→T,0 ⊂ T(Ã
′→
0 ); and Ã

′→
0 ⊂ R(ϕ̃→T,0),

which implies that

(Ã
′→
0 , f̃ jB(K̃), ϕ̃→B , ϕ̃→T,0) is a u-anchor.

Fix ϕ̃ the lift of ϕ̂ which belongs to Ã
′→
0 , D̃′r the corresponding lift of D̂r, and

call T(D̃′r) to the subset of T(A
′→
0 ) bounded by the boundary leaves of D̃′r. Notice

that by construction, ϕ̃→T,0 ⊂ T(D̃′r′) ⊂ R(ϕ̃), because ϕ̃ ⊂ D̃′r.

We can finally apply the Anchoring Lemma once more, and obtain ϕ̃T ⊂
∂TD̃

′
r+1 ⊂ R(ϕ̃′), and j′ > jB such that

(Ã
′→
0 , f̃ j′(K̃), ϕ̃B, ϕ̃T) is a u-anchor.

Now, if f̃ j′(K̃) ⊂ R(ϕ̃), the proof is finished. Otherwise we have that f̃ j′(K̃)∩
R(ϕ̃) ̸= ∅, which implies that f̃ j′(K̃) ∩ ϕ̃↓T,r′+2 ̸= ∅, where ϕ̃↓T,r′+2 ⊂ ∂D̃′r+1.

In this case, let us take j′′ < j′ + 3, such that

f̃ j′′(K̃) ∩ ϕ̃↓T,r′+2 = ∅, but f̃ j′′+1(K̃) ∩ ϕ̃↓T,r′+2.
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π̃

Â→0

ϕ̃→B,0

f̃ l2(K̃)

K̃

ϕ̃T,0

ϕ̂→T,0K̂

ϕ̂→B,0

Ã↓k

Â↓k

Â←m

Ã←m

ϕ̂←B,m

ϕ̃↓B,k

ϕ̃←B,m

f̂ l2(K̂)

ϕ̂↓B,k

Ã→0

Figure 8. A simple example with m = -1. Note that both
(Ã↓k, f̃

l2(K̃), ϕ̃↓T,k, ϕ̃
→
B,0) and (Ã←m , f̃ l2(K̃), ϕ̃←T,m, ϕ̃

→
B,0) are u-anchors.

One last time, by the Anchoring Lemma for the two CFS ϕ̃↑r′+1, ϕ̃
↓
r′+1, we have that

f̃ j′′+3(K̃) ∩ ϕ̃→T′ ̸= ∅, f̃ j′′+3(K̃) ∩ ϕ̃→B′ ̸= ∅,
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where ϕ̃→T′ ⊂ ∂TD̃
′
r′+1 ∩ ϕ̃↓r′+1, and ϕ̃→B′ ⊂ ∂BD̃

′
r′+1ϕ̃

↑
r′+1, which implies by Lemma

3.16 that f̃ j′′+3(K̃) ⊂ R(ϕ̃), and that

(Ã
′→
0 , f̃ j′′+3(K̃), ϕ̃B′ , ϕ̃T′) is a u-anchor,

which concludes the proof. □

Note that all techniques we have used, immediately yield us an analogous result
for weakly stable continua.

2. Mixing pairs of continua

Let us prove one last result before moving to the proof of Proposition 7.1.
We emphasize that this result already has the mixing-like structure, and that it
strongly uses Proposition 7.5.

Lemma 7.8. Let f̂ be a lift to R2 of a torus homeomorphism f ∈ Homeo0(T2),

such that 0⃗ ∈ int(ρ(f̂)), and let K̂ws, K̂wu be a pair of respectively weakly stable

and weakly unstable continua for f̂ . Then, there exists l0 ≥ 0 such that

f̂ l(K̂wu) ∩ K̂ws ̸= ∅, ∀l ≥ l0.

Proof. Fix a canonically foliated strip Â ∈ Â. By Proposition 7.5, there

exists l− < 0, and two leaves ϕ̂ws
B , ϕ̂ws

T such that

(Â, f̂ l−(K̂ws), ϕ̂ws
B , ϕ̂ws

T ) is a u-anchor.

Take ϕ ⊂ Â such that

ϕ̂ws
B , ϕ̂ws

T ⊂ ∂LÂ(ϕ̂),

and again by Proposition 7.5, there exists l+ > 0 and two leaves ϕ̂wu
B , ϕ̂wu

T such

that ϕ̂wu
B ⊂ ∂RÂ(ϕ̂), ϕ̂

wu
T ⊂ ∂RÂ(ϕ̂) and such that

(Â, f̂ l+(K̂wu), ϕ̂wu
B , ϕ̂wu

T ) is a u-anchor.

This implies that we may take natural lifts such that

(Ã, f̃ l+(K̃wu), ϕ̃wu
B , ϕ̃wu

T ) is a u-anchor,

(Ã, f̃ l−(K̃ws), ϕ̃ws
B , ϕ̃ws

T ) is an s-anchor,

and that there exists ϕ̃ ⊂ Ã lift of ϕ̂ such that

ϕ̃wu
B ⊂ R(ϕ̃); ϕ̃wu

T ⊂ R(ϕ̃); ϕ̃ws
B ⊂ L(ϕ̃); ϕ̃ws

T ⊂ L(ϕ̃).

f̃ l+(K̃wu) ⊂ R(ϕ̃); f̃ l−(K̃ws) ⊂ L(ϕ̃).

See Figure 9 for details.
Take a leaf ϕ̃′ ⊂ Ã such that ϕ̃ws

B ⊂ R(ϕ̃′); ϕ̃ws
T ⊂ R(ϕ̃′). By the Anchoring

Lemma, we know there exists l′+ > l+ such that

f̃ l(K̃wu) ∩ ϕ̃′ ̸= ∅ for every l ≥ l′+.

This implies that

f̃ l(K̃) ∩ (ϕ̃ws
B ∪ f̃ l−(K̃ws) ∪ ϕ̃ws

T ) ̸= ∅ for every l ≥ l′+,
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f̃ l+(K̃wu)

ϕ̃

ϕ̃wu
T

ϕ̃ws
B

f̃ l−(K̃ws)

ϕ̃wu
B

ϕ̃ws
T

Figure 9. Configuration after having anchored both K̂ws, K̂wu to
the same canonically foliated strip. For this particular example, we
have that f̃ l(K̃wu) ∩ K̃ws ̸= ∅, for every l ≥ l+ − l− + 4.

as the latter union separates the disk D̃. Now, the key is to observe that

f̃ l+(K̃wu) ⊂ R(ϕ̃) ⊂ L(ϕ̃ws
B ) ∩ L(ϕ̃ws

T ),

which implies that for large enough values of l (say l ≥ l′′+ ≥ l′+), we have that

f̃ l(K̃wu) ∩ (ϕ̃ws
B ∪ ϕ̃ws

T ) = ∅,

which on its turn implies that

f̃ l(K̃wu) ∩ f̃ l−(K̃ws) ̸= ∅, for every l ≥ l′′+,

from where we conclude that

f̂ l(K̂wu) ∩ K̂ws ̸= ∅ for every l ≥ l0 = l′′+ − l− > 0,

which concludes the proof. □

Note that this result, together with Lemma 6.8, show that

Remark 7.9. Let ẑ be the lift of a periodic point of a frice torus homeomor-
phism g. Then Ks(ẑ) and Ku(ẑ) are dense in R2.

We now finish with the proof of Proposition 7.1.
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Proof of Proposition 7.1. Take two open sets V̂1, V̂2 ⊂ R2. By Lemma

6.8, we may take K̂wu ⊂ V̂1, K̂
ws ⊂ V̂2, respectively weakly unstable and weakly

stable continua. By Lemma 7.8, there exists l0 > 0 such that

ĝl(K̂wu) ∩ K̂ws ̸= ∅ for every l ≥ l0,

which implies that

ĝl(V̂1) ∩ V̂2 ̸= ∅ for every l ≥ l0,

which completes the proof. □

3. Proof of Theorem D

.
The following result is central for the proof of Theorem D, and it is nothing

more than an adaptation of Lemma 6.8, which worked for frice torus homeomor-
phisms, to the context of transitive ones.

Lemma 7.10. Let f̂ be a lift of a transitive homeomorphism f ∈ Homeo0(T2),

with 0⃗ ∈ int(ρ(f̂)). Then, for every open set V̂ ⊂ R2, there exist two non-trivial

continua K̂ws, K̂wu ⊂ V̂ , which are respectively weakly stable and weakly unstable
continua for f .

Proof. Let V = π̂(V̂ ), and assume up to taking a connected component, that

V̂ is connected. By the realization result in [Fra89], let us take the lifts ẑ1, ẑ2 of
two f -periodic points z1, z2 with respective rotation vectors (a1, b1), (a2, b2) with
a1, b1, b2 < 0, a2 > 0.

Take the respective projections ẑ1∼ = π∼(ẑ1), ẑ2∼ = π∼(ẑ2) to R2
∼ for the

essential factor. By Remark 7.9, we know that Ks(z1∼), K
s(z2∼) are both dense

in R2
∼. In particular, by taking their preimage by the semiconjugacy π∼, we will

obtain that

K
′s(ẑ1) = π−1∼ (Ks(ẑ1∼)) goes through every fundamental domain,

and similarly for K
′s(ẑ2) = π−1∼ (Ks(ẑ2∼))

Given that f is transitive, by [KT13, Corollary E] we know that Ess(f) = T2,
so there exists k > 0 such that

V :=

j=k⋃
j=0

f j(V ) is fully essential.

which means there exist two respective points in the finite orbits of z1 and z2
(which we will give the same name for the sake of simplicity and without loss of
generality), such that

K
′s(z1) ∩ V ̸= ∅, K

′s(z2) ∩ V ̸= ∅.

Up to retaking the lifts ẑ1, ẑ2, we may assume without loss of generality that

K
′s(ẑ1) ∩ V̂ ̸= ∅, K

′s(ẑ2) ∩ V̂ ̸= ∅. In particular, there exists m > 0 such that

K
′s
m(ẑ1) ∩ V̂ ̸= ∅, K

′s
m(ẑ2) ∩ V̂ ̸= ∅,
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where we define

K
′s
m(ẑ1) = π−1∼ (Ks

m(ẑ1∼)), K
′s
m(ẑ1) = π−1∼ (Ks

m(ẑ1∼))

Let us take a curve γ̂ ⊂ V̂ which goes from a point in K
′s
m(ẑ1) to a point in

K
′s
m(ẑ2), we then obtain that

Ĉ := K
′s
m(ẑ1) ∪ γ̂ ∪K

′s
m(ẑ2) is connected.

Note that there exists some d > 0 such that

sup
j∈Z+

diam(f̂ j(K
′s
m(ẑ1))) ≤ d, sup

j∈Z+

diam(f̂ j(K
′s
m(ẑ2))) ≤ d,

because each iterate intersects a uniformly bounded number of fundamental do-
mains. This shows that

K
′s
m(ẑ1) ⊂ Ks

d(ẑ1), K
′s
m(ẑ2) ⊂ Ks

d(ẑ2),

which allows us to use Lemma 6.15 and conclude that γ̂ is a weakly unstable

continuum. In identical fashion we can build γ̂′ ⊂ V̂ a weakly stable continuum,
which concludes the proof.

□

We now finish the chapter with the proof of Theorem D. Let us recall the
desired statement:

Theorem D. Let f ∈ Homeo0(T2) be a transitive homeomorphism.

(1) If ρ(f) has nonempty interior, then f is mixing.

(2) Furthermore, if f has a lift f̂ with 0⃗ ∈ int(ρ(f̂)), then f̂ is also mixing.

Proof. Note that the second item implies the first. Suppose we have proven

the second: we know that a power f j of f has a lift f̂ j with 0⃗ in the interior of
its rotation set, which by the second item will be mixing, which implies that f j is
mixing, which by Lemma 2.6 then implies that f is also mixing.

Let us then take f̂ with 0⃗ ∈ int(ρ(f̂)), and two open sets V̂1, V̂2 ∈ R2. By

Lemma 7.10, we can take K̂wu ∈ V̂1, K̂
ws ∈ V̂2, and by Lemma 7.8, there exists

l0 > 0 such that
f̂ l(K̂wu) ∩ K̂ws ̸= ∅ for every l ≥ l0,

which implies that

f̂ l(V̂1) ∩ V̂2 ̸= ∅ for every l ≥ l0,

which completes the proof. □





CHAPTER 8

Heteroclinic pseudo-rectangles

We have already proven four out of the six properties in Theorem A for the
essential factor g. In this chapter we construct the main tool for the two properties
which are still left to prove:

• For each open set U ⊂ T2, g has a Markovian horseshoe X ⊂ U ,
• g is area preserving.

Assuming we have proven the density of Markovian horseshoes, the proof of the
second item appears as a consequence almost automatically; the extensive proof
is given in Proposition 10.1.

The proof of the first item is much more technical, and will require fine use of
the anchoring techniques together with the construction of a new tool, to which
this chapter is devoted.

The idea is to build a family of filled continua, which we will call fitted hete-
roclinic pseudo-rectangles (FHPR). Proposition 8.9, which shows the existence of
an FHPR inside any open set of the plane for any frice torus homeomorphism,
is the key result of the section. This will be crucial to prove the existence of a
dense family of Markovian horseshoes for the essential factor g: Proposition 9.1
will ensure that inside every FHPR there exists the Markovian horseshoe we are
looking for.

Heuristically, the idea resides on adapting to this context, the classical notion
of heteroclinic intersection for stable-unstable manifolds of hyperbolic periodic
points.

1. Topological structure

Definition 8.1. Let S be a surface. We will say R ⊂ S is a rectangle if it is
homeomorphic to [0, 1]2, as the image a homeomorphism h : [0, 1]2 → h([0, 1]2) =
R ⊂ S. We will call sides of R to the image of the sides of [0, 1]2 by h. We will
call horizontal and vertical sides to the sets RH and RV, respectively the images
of the horizontal and vertical sides of [0, 1]2 by h.

Definition 8.2 (Heteroclinic pseudo-rectangle). An inessential contin-
uum P ⊂ T2 will be a heteroclinic pseudo-rectangle (HPR) for a torus homeomor-
phism f in the General Hypothesis with associated MDTD (f, I,F) if:

(1) P contains no singularities of F ,
(2) P is the closure of an open disk D,
(3) For any z ∈ ∂P , any neighbourhood U of z intersects the fully essential

component P∞ of the complement of P ,

85
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(4) (Sides). ∂P = Ks
1 ∪ Ku

1 ∪ Ks
2 ∪ Ku

2 , respectively two stable and two
unstable continua, contained in the (un)stable sets of four periodic points
zs1, z

s
2, z

u
1 , z

u
2 , with different non-trivial associated rotation vectors.

(5) Ks
i ∩Ku

j ̸= ∅, for every i, j = 1, 2.

Remark 8.3. From the fourth item of last definition, and the definition of
stable set, we automatically obtain that Kσ

1 ∩Kσ
2 = ∅, where σ = s, u.

Note that any lift P̂ of a heteroclinic pseudo-rectangle is homeomorphic to P ,

we will then say that P̂ ⊂ R2 is a heteroclinic pseudo-rectangle if it is a connected

component of π̂−1(P ), where P is a heteroclinic pseudo-rectangle. For P̂ ⊂ R2,

the third condition is equivalent to saying that for any neighbourhood Û of a point

ẑ ∈ ∂P̂ , the set Û intersects the only unbounded component P̂∞ of the complement

of P̂ . In the same fashion, P̃ is a heteroclinic pseudo-rectangle when it is a lift of

a heteroclinic pseudo-rectangle P̂ .

Prime end model. Given a heteroclinic pseudo-rectangle P = cl(D), we will

denote P̆ ≃ cl(D) to the Caratheodory compactification (see Definition 2.37) of
the disk D, and we will call h be the Riemann map from D to D.

Let us define Xs
1 ⊂ ∂D as the set of accessible prime ends z̆ in ∂P̆ for which

there exists a ray r landing at z̆, with h(r) landing at z ∈ Ks
1 . Then we define

K̆s
1 := cl(Xs

1). We define K̆s
2 , K̆

u
1 , and K̆u

2 in the same fashion.
The following two lemmas state that P looks as a rectangle when seen in the

prime end topology.

Lemma 8.4. K̆σ
i is a closed interval for every σ ∈ {s, u}, i ∈ {1, 2}, and their

one-to-one intersections are either empty or single points.

Proof. Recall for the proof that Kσ
i , K

σ
j are at a positive distance. Note that

by construction, each K̆σ
i is a closed subset of the circle.

(1) K̆σ
i ̸= S1.
Take z ∈ Kσ

j in the opposite side of P , and take a neighbourhood U of
z which does not intersect Kσ

i (note that d(Kσ
i , K

σ
j ) > 0). Given the set

of accessible points in ∂P is dense (see Remark 2.39), take an accessible

point z′ ∈ U , and note that z̆′ /∈ K̆σ
i .

(2) K̆σ
i ̸= ∅.

By symmetry, it is enough to prove this for K̆s
1 . Note that there exists

z ∈ Ks
1 with a neighbourhood U of z such that it intersects neither Ku

1 nor
Ku

2 , as we would otherwise could write Ks
1 as the union of the two disjoint

closed sets Ks
1 ∩Ku

1 , Ks
1 ∩Ku

2 , which would be a contradiction, because
Ks

1 is connected. Then, by Remark 2.39, U must contain an accessible

point z′ ∈ Ks
1 , and we then have z̆′ ∈ K̆s

1 .

(3) K̆s
1 ∪ K̆s

2 ∪ K̆u
1 ∪ K̆u

2 = S1.

This is because the set of accessible prime ends is dense in ∂P̆ = S1

(See Theorem 2.40).

(4) K̆σ
i is connected.
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Suppose by contradiction that it has two different connected com-
ponents. This means we can take four cyclically-ordered accessible prime
ends z̆, w̆, z̆′, w̆′, such that z̆, z̆′ ∈ K̆σ

i , and w̆, w̆′ /∈ K̆σ
i . We may then build

respective rays rz̆, rw̆, rz̆′ , rw̆′ landing respectively at z̆, w̆, z̆′, w̆′, such that
• The rays h(rz̆), h(rw̆), h(rz̆′), h(rw̆′) respectively land at z, w, z′, w′

with z, z′ ∈ Kσ
i , w,w

′, /∈ Kσ
i .

• r−1z̆ · rz̆′ ∧ r−1w̆ · rw̆′ = 1 =⇒ h(r−1z̆ ) · h(rz̆′) ∧ h(r−1w̆ ) · h(rw̆′) = 1
Take sufficiently small neighbourhoods Uw, Uw′ respectively of w,w′

such that they intersect neither the crosscut h(r−1z̆ ) · h(rz̆′) nor Ksigma
i .

Note that from the heteroclinic pseudo-rectangle definition, both Uw and
Uw′ intersect P∞. This means we can build a curve γ from ∂Uw′ to ∂Uw

which is contained in P∞ except for its endpoints, and is therefore disjoint
from h(r−1z̆ )·h(rz̆′). We may then complete it with two simple arcs ηw, ηw′

respectively contained in Uw, Uw′ except for its endpoints, to obtain a
simple closed curve γ′ which holds

h(r−1z̆ ) · h(rz̆′) ∧ γ′ = h(r−1z̆ ) · h(rz̆′) ∧ h(r−1w̆ ) · h(rw̆′) = 1,

which implies that γ′ separates z from z′, which is a contradiction as Kσ
i

is connected.

So far we have proved that each K̆σ
i is a nonempty closed interval, and

that their union is the full circle. The only property left to check is that
each intersection K̆σ

i , K̆
τ
j has at most one point.

(5) No intersection K̆σ
i , K̆

τ
j contains an interval.

Again by symmetry, let us suppose by contradiction that there exists
an interval I ⊂ K̆s

1 ∩ K̆u
1 . Take two accessible prime ends z̆, z̆′ ∈ K̆s

1 ∩ I,

and respective rays rz̆, rz̆′ : [0, 1] → P̆ as in last item. Let θn be an
arc of circumference centered at the origin, connecting rz̆ to rz̆′ and at a
distance at most 1/n of I. Take their images h(θn) by h. Up to taking
a subsequence, the Hausdorff limit Θ of h(θn) is a non-trivial continuum.
Provided this continuum is contained in Ks

1 , we obtain our contradiction:

we could repeat the construction with K̆u
1 and we could take subarcs

θ′n ⊂ θn converging to a subcontinuum Θ′ ⊂ Ku
1 ∩Ks

1 , which would mean
we would have a dynamically bounded non-trivial continuum for g.

Let us then prove that the Hausdorff limit of θn is contained in Ks
1 .

This is again a connection argument. Suppose by contradiction that there
exists w /∈ Ks

1 and wn ∈ θn such that wn → w. We would have a neigh-
bourhood Uw of w which is disjoint from Ks

1 . We then take n sufficiently

large, such that wn ∈ Uw, and build a curve from h(rz̆)(⃗0) to w, which is
disjoint from Ks

1 . As in last item, we may complete this curve to a simple
closed curve γ′ which would separate Ks

1 . This finishes the proof.

□
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Let us define
Imp(K̆σ

i ) :=
⋃

z̆∈Kσ
i

Imp(z̆).

The following result exists to give a more complete understanding of the set of
HPR.

Lemma 8.5. Kσ
i ⊂ Imp(K̆σ

i ).

Proof. First, let us check that Imp(K̆σ
i ) is a closed set. From Lemma 8.4,

we know that K̆σ
i is an interval [a, b]. For sufficiently large values of n, let us

take γ̆n a crosscut connecting two accessible prime ends z̆n, z̆′n /∈ K̆σ
i , such that

dH(γ̆n, K̆
σ
i ) < 1

n
. This defines a chain {γ̆n}n≥n0 of crossucts, which on its turn

defines a nested sequence {cl(d̆n)}n≥n0 of closed regions, which define a nested

sequence of closed sets cl(dn) = cl(h(d̆n)), which hold
⋂

n≥n0

cl(dn) = K ⊂ ∂P .

Let us prove that Imp(K̆σ
i ) ⊂ K. Take z ∈ Imp(K̆σ

i ), and take a chain of

crosscuts ηn defining the prime end z̆ ∈ K̆σ
i containing z. Given that diam(ηn) → 0

as n goes to infinity, we have that up to taking a sebsequence, the corresponding
sequence {η̆n} of crosscuts, holds η̆n ⊂ d̆n, which means that ηn ⊂ dn, which proves
that Imp(z̆) ⊂ K.

For the converse inclusion, take z ⊂ K, and note that for every n we may take
a nested sequence {η′n} of crosscuts with diameter going to 0, defining regions d′n
and such that d′n ⊂ dn for every n. This implies that d̆′n ⊂ d̆n, which proves that

z ⊂ Imp(K̆σ
i ).

Now, suppose by contradiction that there exists z ∈ Kσ
i which is not on the

impression of K̆σ
i . Then we would have that

d(z, Imp(K̆σ
i )) = δ > 0,

and we may then take a neighbourhood Uz of z such Uz ∩ Imp(K̆σ
i ) = ∅. As

in the second item of Lemma 8.4, we have that there exists z′ ⊂ Uz which is
separated from the other three sides, that is, with a neighbourhood Uz′ ⊂ Uz with
an accessible point z′′ ∈ Kσ

i , which means that z′′ ∈ Imp(K̆σ
i ), which would be a

contradiction. □

We will strongly use the following two lemmas for the two main reuslts of
Chapter 9: Proposition 9.1 and Proposition 9.3.

Lemma 8.6. Let P be a heteroclinic pseudo-rectangle. For every ε > 0 there
exists a rectangle R ⊂ P with sides Rs

1, Rs
2, Ru

1 , Ru
2 such that

d(zσi , K
σ
i ) < ε, for every zσi ⊂ Rσ

i ; σ = s, u; i = 1, 2.

Proof. Go to the prime-end compactification P̆ = cl(D), and let us assume

without loss of generality that K̆s
1 , K̆u

1 , K̆s
2 , K̆u

2 are positively and cyclically
ordered. For every pair of values (i, j) ∈ {1, 2}2, let z̆ij be the only prime end in

K̆s
i ∩ K̆u

j . Fix a pair (i, j). Given that Imp(z̆ij) is defined by a chain of crosscuts
with diameter going to 0, we may take γij a crosscut with diam(γij) <

ε
2
, and note
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that the endpoints belong respectively to Ks
i and Ku

j provided ε is sufficiently

small, because the endpoints z̆sij, z̆
u
ij of γ̆ij, belong respectively to K̆s

1 and K̆u
j . We

shall use Ĭij ⊂ ∂D to denote the interval determined by the endpoints of γ̆ij, which
contains z̆ij.

Given that the set of accessible prime ends is dense, we may take accessible
prime ends z̆

′s
ij ∈ K̆s

i ∩ Ĭij, z̆
′u
ij ∈ K̆u

i ∩ Ĭij such that

z̆sij, z̆
′s
ij , z̆

′u
ij , z̆uij are cyclically ordered,

and take disjoint respective rays r̆sij, r̆
u
ij from the origin to z̆

′s
ij , z̆

′u
ij , such that their

images by h land at the respective points z
′s
ij ∈ Ks

i , z
′u
ij ∈ Ku

j , and such that they
each intersect γ̆ij exactly once.

Take Ŭ s
1 the angular region determined by r̆s12 and r̆s11 whose boundary is con-

tained in the interior of K̆s
1 . We now proceed as in Item (5) from Lemma 8.4:

take a sequence of curves {θ̆s1,n}n∈Z+ from r̆s12 to r̆s11 and uniformly approaching
the boundary, and note that up to taking a subsequence, the Hausdorff limit of
h(θ̆s1,n) is included in Ks

1 . This means we may take ns
1 such that

• h(θ̆s1,ns
1
) ⊂ B(Ks

1 ,
ε
2
),

• θ̆s1,n ∩ γ̆12 ̸= ∅, θ̆s1,n ∩ γ̆11 ̸= ∅.

Now, define θ̆s1 as a minimal-for-inclusion subarc of θ̆s1,ns
1
going from γ̆11 to γ̆12,

and define θ̆u1 , θ̆
s
2, and θ̆u2 in the same fashion. Define γ̆′ij as the subarc of γ̆ij which

goes from θ̆si to θ̆uj . See Figure 10 for details.
Finally, note that taking the correct orientation for each of these eight arcs, we

have that

θ̆s1 · γ̆′11 · θ̆u1 · γ̆′21 · θ̆s2 · γ̆′22 · θ̆u2 · γ̆′12
is a simple closed curve, and moreover we may define

Rs
1 = h(θ̆s1 · γ̆′11), Ru

1 = h(θ̆u1 · γ̆′21), Rs
2 = h(θ̆s2 · γ̆′22), Ru

2 = h(θ̆u2 · γ̆′12),

and note that it is a rectangle satisfying the required properties. □

Lemma 8.7. Let P ⊂ T2 be an HPR. Let K be a continuum, and let Q = K∩P
be a compact set such that

• Q ∩Ku
1 = ∅, Q ∩Ku

2 = ∅
• Q separates the unstable sides: for any continuum Q′ ⊂ P from Ku

1 to
Ku

2 , we have that Q′ ∩Q ̸= ∅.

Then, there exists a subcontinuum Qu ⊂ Q connecting the stable sides, that is,

Qu ∩Ks
1 ̸= ∅, Qu ∩Ks

2 ̸= ∅

Proof. Let δ1 > 0 be the distance between Q and the union of the unstable
sides. Define Q1 as the closure of the union of every connected component of Q
which intersects Ks

1 , and define Q2 in the same fashion. Suppose by contradiction
that these two compact sets are disjoint, and obtain that d(Q1, Q2) = δ2 > 0.

Take δ = min{δ1,δ2}
4

, and take respective finite coverings U1, U2 of Q1 and Q2, by
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Ks
1

Ku
2

Rs
1

Ru
2

h(γ̆′12)

h(θ̆s1)

h(θ̆u2 )

h(γ̆′11)

Figure 10. The stable and unstable sides of the HPR appear re-
spectively in light blue and pink. The sides of the new rectangle
appear in blue and red. Dotted blue and red lines come from taking
curves near the sides in the prime-end model. Solid blue and red
lines come from subarcs of crosscuts whose respective cross-sections
contain each of the vertices of the rectangle in the prime-end model.

balls of radius δ. Let U1 be the union of the balls from U1, define U2 in the same
fashion, and note that cl(U1) ∩ cl(U2) = ∅ by construction.

Going to the prime-end compactification P̆ of P , and because of Lemma 8.4,
we can take two crosscuts γ̆1 with endpoints in K̆s

1 , γ̆2 with endpoints in K̆s
2 , such

that they are disjoint and each of them separates U1 from U2. This means that the
remaining connected component of the complement of these two crosscuts contains
both K̆u

1 and K̆u
2 , which means there exists two accessible prime ends and then a

crosscut γ̆2 from K̆u
1 to K̆u

2 , such that its image by h is an arc disjoint from Q and
connecting Ku

1 to Ku
2 , which contradicts the hypothesis. □

2. Dense family of fitted heteroclinic pseudo-rectangles

We will dedicate this section to prove that inside any open set in R2 there is
a fitted heteroclinic pseudo-rectangle, we only need the fitted condition to make
the arguments in Chapter 9 simpler. Although our stable and unstable sets are
dynamically defined, the proof of this density is mostly topological.

Definition 8.8. We will say a heteroclinic pseudo-rectangle is fitted if

ρ(zs1) = (as1, b
s
1), ρ(zs2) = (as2, b

s
2), ρ(zu1 ) = (0, bu1), ρ(zu2 ) = (0, bu2),
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where

as1 < 0, as2 < 0, bs1 < 0, bs2 < 0, bu1 < 0, bu2 > 0, and
bs1
as1

̸= bs2
as2

.

We will sometimes call them FHPR for the sake of simplicity.

Note from Definition 8.2 that an HPR for a power gj of g, is also an HPR for
g. Therefore we may assume up to taking some power, that g has a lift ĝ such
that 0⃗ ∈ ρ(ĝ). We will then prove that:

Proposition 8.9. Let ĝ be a lift to R2 of a frice torus homeomorphism g. If

0⃗ ∈ int(ρ(ĝ)), then for every open set Û ⊂ R2, there exists a fitted heteroclinic

pseudo-rectangle P̂ ⊂ Û for ĝ.

Proof. This is quite an intricate construction, so we will divide it into steps.

Step 1. Accumulating small stable continua.

Let (ĝ, Î , F̂) be an MDTD for ĝ. Recall that the set Sing(F̂) of singularities
of the foliation, has no interior and does not disconnect the plane, because every
non-trivial continuum is dynamically unbounded for g (see Proposition 5.17). Let

us then assume up to taking a smaller set that Û is an euclidean ball Û = B(ẑ, ε)

with no singularities inside, and take Û ′ = B(ẑ, ε
2
). Given that 0⃗ ∈ ρ(ĝ), and using

the realization of rational vectors in int(ρ(ĝ)) in [Fra89], we shall take {ẑn}n∈Z+

a sequence of lifts of periodic points for g, such that

ρg(ẑn) = (an, bn),

such that an < 0 and bn < 0 for every n, and such that the sequence of slopes
{ bn
an
}n∈Z+ is injective. Notice that

• Each K̂s(ẑn) is dense in R2 because of the results of Lemma 7.8 and
Lemma 6.8.

• K̂s(ẑn) ∩ K̂s(ẑm) = ∅ whenever m ̸= n, because of Lemma 6.11 and the
fact that our ẑn have different rotation vectors, and therefore their orbits
separate linearly in R2.

In particular, K̂s(ẑn)∩ Û ′ ̸= ∅ for every n > 0, which means that we may take

a sequence of stable continua {K̂s
n}n∈Z+ , with K̂s

n ⊂ K̂s(ẑn) and such that K̂s
n is a

stable continuum with

K̂s
n ∩ ∂Û ̸= ∅, K̂s

n ∩ ∂Û ′ ̸= ∅,

minimal for the inclusion. Note that
ε

2
≤ diam(K̂s

n) ≤ 2ε for every n,

which implies that, up to taking a subsequence, we have that there exists K̂s such
that

K̂s
n

n→+∞−−−−→
Hff

K̂s.

We remark that K̂s cannot intersect K̂s
n1

and K̂s
n2

for n1 ̸= n2: if it did intersect
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both, it would be a weakly unstable continuum by Lemma 6.15, but we know K̂s

is a stable continuum by Proposition 6.14, so it would be a contradiction. We may

therefore assume that K̂s is disjoint from all K̂s
n.

Step 2. Understanding the local picture.

Notice that K̂s intersects both ∂Û and ∂Û ′. Moreover, K̂s is a stable continuum
by Proposition 6.14, and is therefore filled and has empty interior by Remark
6.10, which implies that it is inessential when seen as a subset of the annulus

Ŝ = cl(Û)\Û ′. This means that up to a change of coordinates, K̂s is disjoint from

an open radial region V̂0 ⊂ Ŝ (i.e. an open region contained between two disjoint

simple curves from ∂Û to ∂Û ′).

K̂s could a priori separate the annulus, but we know that Ŝ\K̂s has only

one connected component which contains our sequence of continua K̂s
n, as we

could otherwise disconnect K̂s using K̂s
n and K̂s

m included in different connected
components of its complement. Then, up to taking a subsequence, every continuum

K̂s
n belongs to the same connected component V̂ of Ŝ\(V̂0 ∪ K̂s).

Note that V̂ is a disk, and ∂V̂ = ∂RV̂ ∪ ∂TV̂ ∪ ∂LV̂ ∪ ∂BV̂ where

• ∂RV̂ is a closed arc of ∂Û ,

• ∂TV̂ is a closed arc from Û to Û ′, whose interior is in Ŝ,

• ∂LV̂ is a closed arc of ∂Û ′,

• ∂BV̂ = K̂s.

We can take a closed arc η̂ contained in Ŝ\cl(V̂ ), except for its endpoints which

belong respectively to ∂LV̂ ∩ K̂s, ∂RV̂ ∩ K̂s, and denote by V̂ ′ the rectangle whose

sides are ∂RV̂ , ∂TV̂ , ∂LV̂ and η̂. By the Jordan-Schoenflies Theorem, we can take

a new change of coordinates sending V̂ ′ to the square [0, 1]× [0, 1]; we can therefore

assume that V̂ is almost the square [0, 1]× [0, 1], more precisely

∂RV̂ = {1} × [0, 1], ∂TV̂ = [0, 1]× {1}, ∂LV̂ = {0} × [0, 1], ∂BV̂ ⊂ [0, 1]× [0, 1].

See Figure 11 for details.
Let use the following notation:

∂LK̂
s
n = K̂s

n ∩ ∂LV̂ , ∂RK̂
s
n = K̂s

n ∩ ∂RV̂ .

Each of these two sets is naturally contained in a respective closed segment
ILn , I

R
n , which are minimal for the inclusion. Again, up to taking a sebsequence,

we may assume that

{ILn}n∈Z+ , {IRn }n∈Z+ are decreasing-to-zero sequences of disjoint closed segments.

Note that
d(K̂s

n, K̂
s
n+1) = δn > 0

because they are disjoint compact sets. Then, there exists an open connected

component V̂n between K̂n and K̂n+1, that is, there exists a curve γn from ∂LV̂

to ∂RV̂ which separates K̂n from K̂n+1. Note that there exists only one of these

components for each value of n, as they would otherwise separate K̂s
n or K̂s

n+1.
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K̂s

K̂s
n

Û

Û ′V̂0

∂TV̂

K̂s

K̂s
n

∂LV̂ ∂RV̂

∂TV̂

K̂s
n+1

K̂s
n+1V̂n

Figure 11. The complement of every K̂s
n has well-defined upper

and lower components, each of them accumulating at ∂LV̂ and ∂RV̂ .

We will call V̂ +
n to the connected component of V̂ \K̂s

n which contains V̂n, and

we will call V̂ −n to the connected component of V̂ \K̂s
n which contains V̂n−1.

Fix n > 0, and note that if δ < δn, then the filling of the δ-neighbourhood of

K̂s
n does not intersect K̂s

n+1. This means there exists a curve γn included in this

filled neighbourhood except for its endpoints (in particular γn ⊂ V̂n except for its

endpoints), which respectively belong to ∂LV̂n, and ∂RV̂n.
This proves that we may take a sequence of curves {γi

n}i∈Z+ , each of them

contained in V̂n except for its endpoints, and intersecting both ∂LV̂ and ∂RV̂ , such

that the Hausdorff limit is a continuum K̂+
n ⊂ K̂s

n which also intersects ∂LV̂ and

∂RV̂ . In a identical fashion, by approximating K̂n with curves contained in V̂n+1

except for its endpoints, we obtain K̂−n ⊂ K̂s
n which also intersects ∂LV̂ and ∂RV̂ .

Given that K̂s
n is minimal for the inclusion, we obtain that K̂+

n = K̂s
n, and similarly

K̂−n = K̂s
n. This proves that

(8.1) K̂s
n ⊂ ∂V̂n−1, K̂s

n ⊂ ∂V̂n

Step 3. Intercalating unstable continua.

For each of these V̂n, in our current coordinates, take a small euclidean ball Ŵn

contained in this component, centered at wn with x−coordinate equal to 1
2
, and

radius much smaller than 1
4
.

We now take a sequence {ẑ′n}n∈Z+ of periodic points such that

ρg(ẑ
′
n) =

(
0,

(−1)n

n

)
,

As in Step 1, we obtain that

• Each K̂u(ẑ′n) is dense in R2,

• K̂u(ẑ′n) ∩ K̂u(ẑ′m) = ∅ whenever m ̸= n
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In particular K̂u(ẑ′n) must intersect Ŵn. Let us then take a sequence of unstable

continua {K̂u
n}n∈Z+ with K̂u

n ⊂ K̂u(ẑ′n), such that

K̂u
n ∩ ∂V̂ ̸= ∅, K̂u

n ∩ ∂Ŵn ̸= ∅,

minimal for the inclusion, with that property.

Step 4. Finding many transversal stable-unstable intersections.

Fix an integer j > 0. Let us define V̂ j
n as the connected component of

V̂ \(K̂s
n−j ∪ K̂s

n+j) which is between K̂s
n−j and K̂s

n+j, that is, the only component

of V̂ \(K̂s
n−j ∪ K̂s

n+j) where there is a curve joining ∂LV̂ to ∂RV̂ , which separates

K̂s
n−j from K̂s

n+j.
More over, let use the following notation:

∂LV̂
j
n = ∂V̂ j

n ∩ ∂LV̂ , ∂RV̂
j
n = ∂V̂ j

n ∩ ∂RV̂ ,

which are both segments respectively included in ∂LV̂ and ∂RV̂ .
We will prove the following:

Lemma 8.10. For up to finitely many values of n,

(8.2) either K̂u
n ∩ K̂s

n−j ̸= ∅, or K̂u
n ∩ K̂s

n+j ̸= ∅,

(8.3) K̂u
n ∩ ∂LV̂

j
n = ∅, K̂u

n ∩ ∂RV̂
j
n = ∅

Proof. Suppose by contradiction that the result from Equation 8.2 does not

hold. Then, up to taking a subsequence, we would have that K̂u
n is included in V̂ j

n .
Note that this implies that

(8.4) dn = sup{d(z, K̂s) : z ∈ K̂u
n}

n→∞−−−→ 0.

We may assume up to taking a new subsequence, that every Ku
n would intersect

∂LV̂
l
n. Given that in the current coordinates, we have that for every n > 0,

1

4
≤ diam(K̂u

n) ≤
√
2,

we would have by Proposition 6.14, that

K̂u
n

n→+∞−−−−→
Hff

K̂u.

By Equation 8.4, we obtain that K̂u would be an unstable continuum contained

in K̂s, which would be also be non-trivial.
Then, our set Ku would be simultaneously stable and unstable, therefore being

dynamically bounded for g, which would be a contradiction. This proves that the
results from 8.2 hold.

Let us now suppose by contradiction that Equation 8.3 does not hold. The ar-
gument is completely analogous: in that case, we could find an infinite subequence

{K̂u
n} which would converge in the Hausdorff topology, to a non trivial unstable

continuum K̂u ⊂ K̂s, which yields the already-obtained contradiction and thus
concludes the proof. □
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Step 5. Locating the sides.

Start by applying Lemma 8.10 to the value j = 5. Take a sufficiently large
value of n such that we avoid the finitely many pathological values from Step 4,
that is, such that Equations 8.2 and 8.3 are held for every n′ ≥ n. We suppose
without loss of generality that n is even, and we will work with the strip between

K̂s
n and K̂s

n+9.
By Equation 8.2, we have that of the following is true:

K̂u
n+4 ∩ K̂s

n ̸= ∅, or K̂u
n+4 ∩ K̂s

n+9 ̸= ∅.

We assume that the first one holds, as the proof for the other case is analogous.
This implies that

K̂u
n+4 ∩ K̂s

n+1 ̸= ∅, K̂u
n+4 ∩ K̂s

n+3 ̸= ∅, K̂u
n+4 ∩ K̂s

n+4 ̸= ∅.

Again by Equation 8.2, we have that

K̂u
n+1 ∩ K̂s

n ̸= ∅, or K̂u
n+1 ∩ K̂s

n+4 ̸= ∅.

Once again we assume that the first one holds, as the analysis for the other
case is analogous. This implies that

K̂u
n+1 ∩ K̂s

n ̸= ∅.

Putting everything together, so far we have obtained that

(8.5) K̂u
n+4 ∩ K̂s

n ̸= ∅, K̂u
n+4 ∩ K̂s

n+1 ̸= ∅, K̂u
n+1 ∩ K̂s

n ̸= ∅, K̂u
n+1 ∩ K̂s

n+1 ̸= ∅.

Letm = n+4, and let us take an unstable subcontinuum K̂
′u
m ⊂ K̂u

m intersecting

both K̂s
n and K̂s

n+1, minimal for the inclusion. Each of these continua are contained

in the closure of V̂n. For m
′ = n+ 1, define K̂

′u
m′ ⊂ K̂u

m′ in identical fashion.
Proceeding as in Step 4, we will define

∂LV̂n = ∂V̂n ∩ ∂LV, ∂RV̂n = ∂V̂n ∩ ∂RV

By Equation 8.3 we have that

K̂
′u
m ∩ ∂LV̂n = ∅, K̂

′u
m ∩ ∂RV̂n = ∅, K̂

′u
m′ ∩ ∂LV̂n = ∅, K̂

′u
m′ ∩ ∂RV̂n = ∅.

This implies that, when seen as a subset of the closure of V̂n, the unstable

continuum K̂
′u
m (and similarly K̂

′u
m′) separates ∂LV̂n from ∂RV̂n: otherwise there

would exist a curve from ∂LV̂n to ∂RV̂n included in V̂n which would separate K̂
′u
m ,

which would be a contradiction.
Thus, one of the following symmetrical statements holds:

(8.6) K̂
′u
m separates ∂LV̂n from K̂

′u
m′ , and K̂

′u
m′ separates ∂RV̂n from K̂

′u
m ,

(8.7) K̂
′u
m′ separates ∂LV̂n from K̂

′u
m , and K̂

′u
m separates ∂RV̂n from K̂

′u
m′ .

Once again we can assume that the first one holds without loss of generality. We

shall then say K̂
′u
m is on the left of K̂

′u
m′ .
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Step 6. Building the heteroclinic pseudo-rectangle.

We will now concentrate exclusively on the connected component V̂n and the
four continua

K̂s
n, K̂s

n+1, K̂
′u
m and K̂

′u
m′ .

Recall that K
′u
m is on the left of K

′u
m′ , and that V̂n is a disk.

Note that K̂
′u
m separates the disk V̂n into (at least) two connected components

L(K̂
′u
m ), R(K̂

′u
m ) being, respectively, the components containing ∂LV̂n and ∂RV̂n.

Each of these connected components is a disk, as they are simply connected because
their boundary is connected.

Note that, again, K̂
′u
m′ separates R(K̂

′u
m ) into at least two connected components

L(K̂
′u
m′) ∩ R(K̂

′u
m ) and R(K̂

′u
m′)

Given that both K̂
′u
m and K̂

′u
m′ are minimal for the inclusion, we may replicate

the argument from Equation 8.1: as in the very end of Step 2, take a sequence of

curves {γ′i
m}i∈Z+ such that each of them belongs to L(K̂

′u
m ), except for its endpoints,

which are respectively in K̂s
n and K̂s

n+1, and such that there is a subsequence of

{γ′i
m} which converges to a subcontinuum of K̂

′u
m in the Hausdorff topology, and

recall that K̂
′u
m is minimal for inclusion by construction. Repeat this process for

the other components to obtain

(8.8) K
′u
m ⊂ ∂L(K

′u
m ), K

′u
m ⊂ ∂R(K

′u
m ), K

′u
m′ ⊂ ∂L(K

′u
m′), K

′u
m′ ⊂ ∂R(K

′u
m′)

Let us define D̂ = L(K̂
′u
m ) ∩ R(K̂

′u
m′), P̂ = cl(D̂), and let us prove that it is a

fitted heteroclinic pseudo-rectangle.

Take K̂
′s
n = ∂D̂ ∩ K̂s

n and K̂
′s
n+1 = ∂D̂ ∩ K̂s

n+1. Each of these sets is connected:

if K̂
′s
n is not connected, then it would be contained in the closure of two disjoint

closed angular regions R1, R2 of the disk D̂, which on their turn define two disjoint

open regions R′1, R
′
2, which are the connected components in D̂ of the complement

of the regions R1, R2. Then, because of Equations 8.1 and 8.8, we can repeat the
argument in Item (4) of Lemma 8.4 to obtain two simple curves γ : γ′ : [0, 1] →
cl(V̂ ) which are included in V̂ except for their endpoints, such that

• γ ∩ γ′ is a single transversal intersection contained in D (and therefore
γ ∧ γ′ = ±1),

• γ has both endpoints in ∂TV̂ , and γ′ has both endpoints in ∂LV̂ ∪ ∂RV̂ ,

which would be a contradiction. Proceeding in identical fashion we get that K̂
′s
n+1

is also connected.

We finally have that have that

• P̂ contains no singularities as Û contains no singularities,

• P̂ is the closure of an open disk D̂,

• ∂P̂ = K̂
′u
m ∪ K̂

′u
m′ ∪ K̂

′s
n ∪ K̂

′s
n+1,

• Each neighbourhood of a boundary point intersects the unbounded com-
ponent of the complement of P , because of Equations 8.1 and 8.8.



2. DENSE FAMILY OF FITTED HETEROCLINIC PSEUDO-RECTANGLES 97

• K̂
′s
n ∩ K̂

′u
m ̸= ∅ by construction, and the same happens for the other three

desired intersections.

The five items from Definition 8.2 are then held, as well as the condition from

Definition 8.8 because m is even and m′ is odd, and therefore P̂ is a fitted hetero-
clinic pseudo-rectangle, which concludes the proof.

□





CHAPTER 9

The essential factor has a dense family of horseshoes

The goal of this chapter is to prove the following:

Proposition 9.1. Let f ∈ Homeo0(T2) with int(ρ(f)) ̸= ∅, and let ĝ a lift of

the essential factor, with 0⃗ ∈ int(ρ(ĝ)). Then, for every open set Û ⊂ R2, ĝ has a

Markovian horseshoe X̂ ⊂ Û .

The idea resides on using the density of the family of fitted heteroclinic pseudo-
rectangles, and proving that inside each one of these, there exists a Markovian
horseshoe. Unlike the proof of Proposition 8.9, which is almost purely topological,
this one heavily relies on dynamical notions, and we will use the techniques and
results developed in Sections 4 and 7.

The path for this result is a little bit technical, so we divide it into two big
steps, dedicating one of the following subsections to each of them:

(1) Proving that inside every FHPR there exists a topological horseshoe, in
the sense of [KY01] (this is Proposition 9.2). These horseshoes capture
some of the rotational behaviour of g.

(2) To ensure the density of periodic points, we prove in a similar way that
inside each FHPR there is a Markovian horseshoe, as in Definition 2.28.
This is done in Proposition 9.3.

1. Topological horseshoes

The central result to be proved in this section is the following:

Proposition 9.2. Let P be a fitted heteroclinic pseudo-rectangle. Then, for
every m > 0, there exists j > 0 such that P contains a topological horseshoe in m
symbols for g, with period j.

As we have seen in Chapter 2, we will use the notion of topological horseshoe
defined by Kennedy and Yorke in [KY01], for the restriction to a rectangle R ⊂ P
(taken from Lemma 8.6), of a positive iterate gj of g. We need to check the 5
Horseshoe Hypothesis, that is

(1) T2 is a separable metric space.
(2) R ⊂ P ⊂ T2 is locally connected and compact.
(3) The map g : R → T2 is continuous.
(4) The sets Rs

1 ⊂ P and Rs
2 ⊂ P are disjoint, nonempty and compact.

(5) (Multiple crossing.) gj|R has crossing number greater than or equal to
m > 1.

99
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that is, every connection contains at least m mutually disjoint preconnections.
We recall that, from Lemma 8.6, each of the sides of the rectangle R are ε-near

the respective stable and unstable continuum Ks
1 , K

s
2 , K

u
1 , K

u
2 . Given ε can be

supposed to be as small as we want, we will proceed to prove the multiple crossing
for the actual HPR P : the actual needed value for ε will be automatic from the
construction, and specified at the end of it.

Thus, in our context, a connection will be a continuum Qu ⊂ P intersecting
both Ks

1 and Ks
2 . Note that Qu is not necessarily an unstable continuum, it is

simply parallel to the unstable sides in a weak sense.

Proof of Proposition 9.2. Fix m > 0. Let us divide this proof into steps.

Step 1. Reduction to transverse crossing.

Reasoning as in Lemma 8.7, it is enough to prove the

Transverse crossing property. For every connection Q̂u, there exists an integer

j > 0 and m different lifts P̂1, ..., P̂m of P to R2, such that for every integer l

with 1 ≤ l ≤ m, and every continuum Q̂s
l ⊂ P̂l connecting the unstable sides

K̂u
1,l, K̂u

2,l ⊂ P̂l, we have that

ĝj(Q̂u) ∩ Q̂s
l ̸= ∅.

Step 2. Past anchoring of the stable sides.

Let us define an extended stable side K̂∗s1 ⊂ Ks(ẑs1) as a stable continuum which
is minimal for the inclusion, such that

K̂s
1 ⊂ K̂∗s1 , ẑs1 ∈ K̂∗s1 ,

and let
ds1 = diam(K̂∗s1 ).

Define in a similar fashion K̂∗s2 , K̂∗u1 , K̂∗u2 , ds2, d
u
1 , d

u
2 , respectively the other ex-

tended stable side and the two extended unstable sides. Let d = max{ds1, ds2, du1 , du2}.
Let us write

P̂ ∗ = P̂ ∪ K̂∗s1 ∪ K̂∗s2 ∪ K̂∗u1 ∪ K̂∗u2 ,

and call it the extended heteroclinic pseudo-rectangle.
Now, using the result and notation from Proposition 3.3 we can take two CFS

Â→k , Â→k′ ∈ Â→, such that

(9.1) P̂ ∗ ⊂ B(Â→k ), P̂ ∗ ⊂ T(Â→k′ ).

Now, take a sufficiently large negative integer j− < 0, such that

(9.2) ĝj−(ẑu1 ) ⊂ B(Â→k′ ), ĝj−(ẑu2 ) ⊂ T(Â→k ),

(9.3) d(ĝj−(ẑu1 ), Â
→
k′ ) > Ld, d(ĝj−(ẑu2 ), Â

→
k ) > Ld,

where Ld is given by Corollary 6.13. This implies that

(9.4) ĝj−(K̂u
1 ) ⊂ ĝj−(K̂∗u1 ) ⊂ B(Â→k′ ), ĝj−(K̂u

2 ) ⊂ ĝj−(K̂∗u2 ) ⊂ T(Â→k ).



1. TOPOLOGICAL HORSESHOES 101

Take a natural set of lifts P̃ ∗, K̃∗s2 , K̃∗s2 , K̃∗u1 , K̃∗u2 , Ã→k , Ã→k′ to D̃, respectively
of P̂ ∗, K̃∗s2 , K̃∗s2 , K̂∗u1 , K̂∗u2 , Â→k and Â→k′ .

Given that the past transverse path by the isotopy of any point, only crosses
leaves from left to right, and by Equation 9.4, we obtain that there exist two leaves

ϕ̃s
T ⊂ ∂TÃ

→
k , ϕ̃s

B ⊂ ∂BÃ
→
k′ ,

such that

(9.5) g̃j−(K̃u
1 ) ⊂ Bϕ̃s

B
(Ã→k′ ) ⊂ B(Ã→k ), g̃j−(K̃u

2 ) ⊂ Tϕ̃s
T
(Ã→k ) ⊂ T(Ã→k′ ),

(9.6) Ã→k ∪ Ã→k′ ⊂ L(ϕ̃s
B), Ã→k ∪ Ã→k′ ⊂ L(ϕ̃s

T).

This conveniently implies that any continuum intersecting both ϕ̃s
B and ϕ̃s

T,

will be automatically s-anchored to Ã→k and Ã→k′ by those same two leaves. See
Figure 12 for details.

Now, note that from Equation 9.5, and the heteroclinic pseudo-rectangle defi-
nition, we obtain the following key partial result:

(9.7) Any Q̃s ⊂ g̃j−(P̃ ) from g̃j−(K̃u
1 ) to gj−(K̃u

2 ), must intersect ϕ̃s
B and ϕ̃s

T.

Note that the value j− = j−(k, k
′) < 0 exists for every pair (k, k′) satisfying

Equation 9.1. Be aware that we will use this fact in the next step, where we
potentially retake the value of k.

Step 3. Anchoring of the unstable sides to the same canonically fo-
liated strip.

The rest of the proof is similar to the ending of Lemma 7.8.
Nevertheless, we need one more key observation: there exists M > 0 such that

if d(P̂ ∗, Â→k ) > M, then

(9.8) the sets of leaves Φ̂s
1, Φ̂s

2 and Φ̂u
2 are disjoint,

where
Φ̂s

1 = {ϕ̂ ⊂ ∂BÂ
→
k : ϕ̂ ∩ Î+

F̂
(ẑs1) ̸= ∅},

Φ̂s
2 = {ϕ̂ ⊂ ∂BÂ

→
k : ϕ̂ ∩ Î+

F̂
(ẑs2) ̸= ∅},

Φ̂u
2 = {ϕ̂ ⊂ ∂BÂ

→
k : ϕ̂ ∩ Î−

F̂
(ẑu2 ) ̸= ∅}.

This is due to the following facts put together:

• The diameter of the leaves is uniformly bounded,
• Fundamental domains from canonically foliated strips are also bounded
• The slopes of the rotation vectors of the periodic points in the extended
stable sides are different, so the x− coordinate of the intersection of the
two transverse paths with horizontal lines separate linearly.

Take a value of k satisfying Equation 9.8, and take j+ = j+(k) > 0 such that

(9.9) ĝj+(ẑs1) ⊂ T(Â→k ), ĝj+(ẑs2) ⊂ T(Â→k )

(9.10) d(ĝj+(ẑs1), Â
→
k ) > Ld, d(ĝj+(ẑs2), Â

→
k ) > Ld,
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Figure 12. Stable sides are solid light blue, unstable sides are solid
pink. Dotted lines complete the extended stable and unstable sides.
Note that any continuum Q̃s ⊂ g̃j−(P̃ ) from g̃j−(K̃u

1 ) to gj−(K̃u
2 )

holds that (Ã→k , Q̃s, ϕ̃s
B, ϕ̃

s
T) is an s-anchor.

where Ld is once again taken from Corollary 6.13. As in Step 2, this implies
that

(9.11) ĝj+(K̂s
1) ⊂ ĝj+(K̂∗s1 ) ⊂ T(Â→k ), ĝj+(K̂s

2) ⊂ ĝj+(K̂∗s2 ) ⊂ T(Â→k ).
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Recall that, from Corollary 6.13, the future orbit of the extended stable sides
will be at a uniformly bounded distance from their respective periodic points. This,
together with the result in Equation 9.11, implies that the future orbits of K̃s

1 and

K̃s
2 will only go through different lifts of Â→k in D̃, let us call them respectively

W
′−1Ã→k , and W−1Ã→k .
Note that the extended stable sides are stable continua of the lifts of two

periodic points with different rotational directions. Reasoning as in Lemma 6.15
(see in particular Equation 6.2 and the lines leading to it), this fact shows that
there exist two leaves

(9.12) ϕ̃u
B ⊂ ∂TW

′−1Ã→k ⊂ B(W−1Ã→k ), ϕ̃u
T ⊂ ∂TW

−1Ã→k ,

such that

(9.13) g̃j+(K̃s
2) ⊂ L(ϕ̃u

B) ⊂ B(W−1Ã→k ), g̃j+(K̃s
1) ⊂ L(ϕ̃u

T) = Tϕ̃u
T
(W−1Ã→k ).

Once again, see Figure 12 for details. It can be helpful to compare it with
Figure 7, from Lemma 6.15.

Now, by retaking the lifts P̃ ′ = WP̃ , and therefore taking the corresponding
lifts g̃j+(P̃ ′) = g̃j+(WP̃ ), ϕ̃

′u
B = Wϕ̃u

B, ϕ̃
′u
T = Wϕ̃u

T, we obtain analogous results to
the ones in Equation 9.13, more precisely

(9.14) g̃j+(K̃
′s
1 ) ⊂ L(ϕ̃

′u
B ) ⊂ B(Ã→k ), g̃j+(K̃

′s
2 ) ⊂ L(ϕ̃

′u
T ) = Tϕ̃u

T
(Ã→k ).

Moreover, we also have that

(9.15)
(
ϕ̃

′u
B ∪ g̃j+(P̃ ′) ∪ ϕ̃

′u
T

)
⊂ L(ϕ̃s

B),
(
ϕ̃

′u
B ∪ g̃j+(P̃ ′) ∪ ϕ̃

′u
T

)
⊂ L(ϕ̃s

T)

, which on its turn implies that

(9.16) g̃j+(P̃ ′) ⊂ L(ϕ̃s
B), g̃j+(P̃ ′) ⊂ L(ϕ̃s

T), for every j ≥ j+

provided k is a sufficiently large negative integer. It may help the heuristics of the
proof to see that the configuration we have just obtained is virtually the same as
the one obtained in Figure 9, from Lemma 7.8.

Note that we immediately obtain an analogous of Equation 9.7, that is

(9.17) Any connection Q̃u ⊂ g̃j+(P̃ ′), must intersect ϕ̃
′u
B and ϕ̃

′u
T .

See Figure 13 for details.

Step 4. Finding the transverse crossing.

The remainder of the proof is very similar to the one in Lemma 7.8.
Take any connection Q̃u ⊂ g̃j+(P̃ ′) (i.e. a continuum connecting the stable

sides), and any continuum Q̃s ⊂ g̃j−(P̃ ) connecting the respective unstable sides.

Take a minimal-for-inclusion subcontinuum Q̃
′s intersecting both ϕ̃s

B and ϕ̃s
T. Now,

as in the Anchoring Lemma, take

z̃sB ∈ Q̃
′s ∩ ϕ̃s

B, z̃sT ∈ Q̃
′s ∩ ϕ̃s

T,

and define
Γs = ϕ̃+

z̃sB
∪ Q̃

′s ∪ ϕ̃−z̃sT .
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We may then take a new leaf ϕ̃1 ⊂ Ã→k such that

Γs ⊂ R(ϕ̃1),

which in particular means that Γs separates ϕ̃
′u
B and ϕ̃

′u
T , from ϕ̃1. Note that

(9.18) (Ã→k , Q̃u, ϕ̃
′u
B , ϕ̃

′u
T ) is a u-anchor,

from where we obtain that there exists j1 > 0 such that

(9.19) g̃j1(Q̃u) ∩ ϕ̃1 ̸= ∅, for every j > j1.

This, together with Equation 9.16 and the fact that Q̃s ⊂ R(ϕ̃1), lets us conclude
that

(9.20) g̃j1(Q̃u) ∩ Q̃s ̸= ∅, for every j ≥ j1.

Let us write P̂1 = P̂ . To finish proving the Transverse Crossing Property,

simply take m− 1 horizontal translates P̂2, . . . , P̂m of P̂ , where P̂l = P̂ +(l− 1, 0),
and note that taking the natural lifts P̃2, . . . , P̃m such that g̃j−(P̃2), . . . , g̃

j−(P̃m)

are s-anchored to Ã→k , we may take a new leaf ϕ̃m ⊂ Ã→k , which is much further
to the visual right, such that

g̃j−(P̃l) ⊂ R(ϕ̃m), for every l with 1 ≤ l ≤ m,

and conclude that there exists jm > 0 such that

g̃jm(Q̃u) ∩ Q̃s
l ̸= ∅, for every j ≥ jm, 0 ≤ l ≤ m

where Q̃s
l ⊂ g̃j−(P̃l), (See Figure 13 for details). This proves the Transverse

Crossing Property for every j ≥ j+ − j− + jm.
Note that we can take ε in Lemma 8.6, such that the new sides R̃s

1, R̃
s
2, R̃

u
1 , R̃

u
2

of the rectangle R̃ still get anchored in the same way as the sides K̃s
1 , K̃

s
2 , K̃

u
1 , K̃

u
2

of the HPR P̃ (we use the uniform continuity of ĝ and the fact that we have to
control distances for a finite number of iterates of ĝ). This concludes the proof.

□

Recall that, from the Kennedy-Yorke topological horseshoe definition, we ob-
tain positive topological entropy for g|P , but we do not automatically recover the
existence of periodic points inside P .

2. Markovian horseshoes

The key result from this section comes next. It is heavily based on the tech-
niques displayed at Proposition 9.2

Proposition 9.3. Let P̂ ⊂ R2 be a fitted heteroclinic pseudo-rectangle and

let m > 0 be an integer. Then, there exists a rectangle R̂ ⊂ P̂ which contains a
Markovian horseshoe in m symbols for ĝ.

Before starting, recall Definition 2.27 of Markovian intersection.



2. MARKOVIAN HORSESHOES 105

ϕ̃
′u
T

ϕ̃s
T

ϕ̃
′u
B

ϕ̃s
B

g̃j+(P̃ ′)

g̃j−(P̃ )

g̃j++j2(P̃ ′)

g̃j−(P̃1)

g̃j−(P̃2)
Ã→k

Figure 13. Once again, stable sides are light blue, unstable sides
are pink. The unstable sides of g̃j−(P̃ ) and its translates, are in-
cluded in the green regions, the stable sides of g̃j+(P̃ ′) are included
in the purple regions. The future orbit of g̃j+(P̃ ′) can not intersect
any of the green leaves.

Definition 1 (Markovian Intersection). Let R1, R2 ⊂ S be two rectangles. We
will say that R1 ∩R2 is a Markovian intersection if there exists a homeomorphism
h from a neighbourhood of R1 ∪R2 to an open subset of R2, such that

• h(R2) = [0, 1]2;
• Either h(R+

1 ) ⊂ {(x, y) ∈ R2 : y > 1} and h(R−1 ) ⊂ {(x, y) ∈ R2 : y < 0};
or h(R+

1 ) ⊂ {(x, y) ∈ R2 : y < 0} and h(R−1 ) ⊂ {(x, y) ∈ R2 : y > 1};
• h(R1) ⊂ {(x, y) ∈ R2 : y > 1} ∪ [0, 1]2 ∪ {(x, y) ∈ R2 : y < 0}.

Once again we will make good use of the anchoring techniques. For the sake
of clarity, we will divide the proof into steps.

Proof of Proposition 9.3.

Step 1. Constructing an Initial Configuration.

Fix a lift P̃ of P̂ , and take the lifts K̃s
1 , K̃

s
2 , K̃

u
1 , K̃

u
2 of its sides. Start by

recovering a partial configuration we obtained in Proposition 9.2, that is, take

Ã→k , Ã→k′ , ϕ̃s
B, ϕ̃s

T, ϕ̃u
B, ϕ̃u

T, j− < 0, j+ > 0,W,

such that they hold every result from Equation 9.5 to Equation 9.13. See Figure
14 for details.
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The key idea is to use Proposition 7.5. From its statement, let us take ĝj+(P̂ ) =

π̃(g̃j+(P̃ )) as an unstable continuum, Â→k = π̃(Ã→k ) as our CFS, and a leaf ϕ̂ ⊂ Â→k
such that ĝj−(P̂ )∩ Â→k ⊂ LÂ→

k
(ϕ̂). Then, the second item of Proposition 7.5 allows

us, by looking at the future iterates of g̃j+(P̃ ) by g̃, to find a new lift W1P̃ by a
deck transformation W1 -think of W1 as the deck transformation associated to a
large loop going through four CFS, one in each of the four families in Â, as in
[Proposition 7.5, Step (2)]-, some j1 > 0 and three leaves

ϕ̃ ⊂ W1Ã
→
k , ϕ̃

′u
B ⊂ ∂BW1Ã

→
k , ϕ̃

′u
T ⊂ ∂TW1Ã

→
k ,

(where ϕ̃ is the lift of ϕ̂ which belongs to W1Ã
→
k , and ϕ̃

′u
B , ϕ̃

′u
T are respectively the

anchoring leaves which appear in the statement of Proposition 7.5 as ϕ̃B and ϕ̃T),
such that the following five equations hold:

(9.21) W1Ã
→
k ⊂ R(ϕ̃

′u
B ) ∩ R(ϕ̃

′u
T ), W1Ã

→
k ⊂ L(W1ϕ̃

s
B) ∩ L(W1ϕ̃

s
T),

(9.22) g̃j−(W1P̃ ) ⊂ L(ϕ̃), g̃j++j1(P̃ ) ⊂ R(ϕ̃),

To check Equations 9.21 and 9.22, think of W1 as the covering transformation
associated to a loop in R2 as in Proposition 7.5: once we project to R2 and get that

ĝj(P̂ ) is u-anchored to Â→k , we use four CFS, one in each of our four directions
and make the anchored continuum turn to the right each time it enters a new

CFS, until it enters again Â→k coming from T(Â→k ). This is thoroughly described
in [Proposition 7.5, Step (2)].

(9.23) g̃j−(W1K̃
u
1 ) ⊂ R(W1ϕ̃

s
B), g̃j−(W1K̃

u
2 ) ⊂ R(W1ϕ̃

s
T),

(9.24) g̃j++j1(K̃s
1) ⊂ L(ϕ̃u

B) ⊂ T(W1Ã
→
k ), g̃j++j1(K̃s

2) ⊂ L(ϕ̃u
T) ⊂ T(W1Ã

→
k ),

These two equations come respectively as a consequence from Equations 9.7
and 9.13, both appearing in Proposition 9.2.

(9.25) For any continuum Q̃u ⊂ P̃ from K̃s
1 to K̃s

2 , we have that

(W1Ã
→
k , g̃j++j1(Q̃u), ϕ̃

′u
B , ϕ̃

′u
T ) is a u-anchor.

For this last equations, we are applying Proposition 7.5 to the continuum Q̃u,
and using the fact that g̃j+(Q̃u) is u-anchored to W−1Ã→k . See Figures 14 and 15
for details.

For the sake of simplicity, let us rename Õ := g̃j−(W1P̃ ), and Õ′ := g̃j++j1(P̃ )
for the remainder of the proof. Then, provided

(1) the statements from Equation 9.21 to Equation 9.25 are held,
(2) Õ′ = g̃l(W−1

1 Õ), where l > 0, and W1 is a deck transformation,

we will say that (Õ, Õ′) is a pair in the Initial Configuration relative to W1, and
with Õ on the left of Õ′. Note that any set Q̃ ⊂ Õ has its natural copy Q̃′ :=
g̃l(W−1Q̃) ⊂ Õ′, and vice versa.

Let us also rename ϕ̃B := W1ϕ̃
s
B, ϕ̃T := W1ϕ̃

s
T, and Ã := W1Ã

→
k . See Figure

15.
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ϕ̃u
T

W−1Ã→k

ϕ̃u
B

W−1gj−(P̃ )

W1g̃
j−(P̃ )

W−1Ã↓

W1ϕ̃
s
T

W1ϕ̃
s
B

W1Ã
→
k

ϕ̃
′u
T

ϕ̃
′u
B

g̃j+(P̃ )

Figure 14. We recover the configuration and notation from Propo-
sition 9.2, use the Total Anchoring from Proposition 7.5 to anchor a
future iterate of g̃j+(P̃ ) to the CFS W1Ã

→
k . the deck transformation

W is taken as in Proposition 9.2. Compare this with Figure 12
.

Step 2. Finding Markovian intersections.

We will prove that given a pair (Õ, Õ′) in the Initial Configuration, there exists

j > 0 and a rectangle R̃ ⊂ Õ (with its natural copy R̃
′ ⊂ Õ′) such that g̃j(R̃

′
)∩ R̃

is Markovian.
First, note that by Lemma 8.6, we may take a rectangle R̃ ⊂ Õ, with horizontal

sides Ĩs1 , Ĩ
s
2 sufficiently close to the stable sides K̃s

1 , K̃
s
2 of the pseudo-rectangle

Õ, and similarly vertical sides Ĩu1 , Ĩ
u
2 sufficiently close to the unstable sides K̃u

1 ,
K̃u

2 , and their corresponding copies R̃′ ⊂ Õ′ with sides Ĩ
′s
1 , Ĩ

′s
2 , Ĩ

′u
1 , Ĩ

′u
2 , such that,

(recalling Equations 9.23 and 9.24), we obtain

(9.26) Ĩ
′s
1 ⊂ L(ϕ̃u

B) ⊂ T(Ã), Ĩ
′s
2 ⊂ L(ϕ̃u

T) ⊂ T(Ã),

(9.27) Ĩu1 ⊂ R(ϕ̃B), Ĩu2 ⊂ R(ϕ̃T),

and therefore we have that

(9.28) For any continuum Q̃
′u ⊂ R̃′ from Ĩ

′s
1 to Ĩ

′s
2 ,

(Ã, Q̃
′u, ϕ̃

′u
B , ϕ̃

′u
T ) is a u-anchor.
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ϕ̃u
T

Õ′ Ã = W1Ã
→
k

ϕ̃u
B

ϕ̃T

ϕ̃
′u
T

ϕ̃
′u
B

ϕ̃B

Õ
ϕ̃ ϕ̃′

Figure 15. An Initial Configuration, with Õ′ = g̃l(W−1
1 Õ). The

leaf ϕ̃ separates Õ from Õ′, and the leaf ϕ̃′ helps us find the desired
Markovian intersection.

Take a leaf ϕ̃′ ⊂ Ã, such that Õ ⊂ R(ϕ̃′). By the Anchoring Lemma (4.11),

there exists j > 0 such that g̃j(Q̃
′u) ∩ ϕ̃′ ̸= ∅, for any such a continuum Q̃

′u

as in Equation 9.28. Given that R̃′ ⊂ R(ϕ̃) ⊂ L(ϕ̃B) ∩ L(ϕ̃T), we obtain that

g̃j(R̃′) ⊂ L(ϕ̃B) ∩ L(ϕ̃T), which implies that g̃j(R̃′) intersects neither ϕ̃B nor ϕ̃T.
Let us show that using this fact and Lemma 8.7, there must be a curve γ

′s ⊂ g̃j(R̃′)
parallel to the stable sides (i.e. going from one unstable side to the other, without
intersecting the stable sides), such that γ

′s ⊂ LÃ(R̃).

The application of Lemma 8.7 is as follows: take Q̃ := ϕ̃′ ∩ g̃j(R̃′). Now, note
that Q̃ is in the hypothesis of Lemma 8.7, as it does not intersect the stable sides
and it also separates the stable sides (i.e. it intersects every continuum going from
one stable side to the other). Then by this same lemma we obtain that Q̃ must

have a subcontinuum Q̃′ ⊂ g̃j(R̃′) connecting the stable sides. As ϕ̃′ is a line (i.e.

homeomorphic to R by a proper application) in D̃, we recover that Q̃′ can be taken
as a curve, which we will be our desired γ

′s.
Observe that γ

′s divides g̃j(R̃′) into two complementary rectangles. Define

g̃j(R̃
′
) as any of the two, say for example the one with horizontal sides g̃j(Ĩ

′s
1 ), γ

′s

and for vertical sides the corresponding two subarcs γ
′u
1 , γ

′u
2 of g̃j(Ĩ

′u
1 ), g̃j(Ĩ

′u
2 ),

which go from g̃j(Ĩ
′s
1 ) to γ

′s.

Finally, define R̃ as the natural copy of g̃j(R̃
′
) which is included in R̃, and note

that as ϕ̃B and ϕ̃T respectively separate each of the vertical sides of R̃ from g̃j(R̃
′
),
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then
g̃j(R̃

′
) ∩ R̃ is Markovian.

Step 3. Iterating the process.

The rest of the proof is inductive. We will give all the details to go from m = 1

to m = 2, and we will show this is enough. Recall that Dom(Î) is an infinitely-
punctured plane, and therefore the group of deck transformations of the universal
covering is free. Given that every subgroup of a free group is also free, it is enough
to find l > 0, two deck transformations W1, W2 with no relations whatsoever (take
for example the ones induced by looping around increasing sets of singularities),
and using again Proposition 7.5 obtain two pairs (Õ, Õ′), (W2Õ, g̃l(Õ′)) which are
in the Initial Configuration respectively relative to W1 and W2W1 in the respective
canonically foliated strips Ã, W̃2Ã, and a leaf ϕ̃ ⊂ Ã such that

(9.29) Õ ⊂ R(ϕ̃), W2Õ ⊂ L(ϕ̃).

To finish the proof, observe that given (W2Õ, g̃l(Õ′)) is in the Initial Configu-

ration, there exists j > 0 and a rectangle R̃
′ ⊂ Õ′ such that

(9.30) g̃l+j(R̃
′
) ∩W2R̃ is Markovian.

Note that the corresponding new stable (horizontal) side γ
′s ⊂ g̃l+j(R̃

′
) holds

γ
′s ⊂ LW2Ã

(W2R̃) ⊂ L(ϕ̃),

which implies that R(ϕ̃B)∪ R̃∪R(ϕ̃T) separates the stable sides of g
l+j(R̃

′
), which

shows that

(9.31) g̃l+j(R̃
′
) ∩ R̃ is also Markovian,

and finishes the proof for m = 2. Figure 16 illustrates this phenomenon.

For m > 2, the argument is identical: take successive deck transformations
W1, . . . ,Wm with no relations, and positive integers l2, . . . , lm such that

(1) (Õ, Õ′) is in the Initial Configuration relative to W1, in the canonically
foliated strip Ã,

(2) There exists a leaf ϕ̃ ⊂ Ã such that Õ ⊂ R(ϕ̃), W2Õ ⊂ L(ϕ̃),
(3) For every 2 ≤ i ≤ m, (g̃li(Õ′),Wi . . .W2Õ) is in the Initial Configuration

relative to Wi . . .W1, in the canonically foliated strip Wi . . .W2Ã,
(4) For every 2 ≤ i ≤ m − 1 there exists a leaf ϕ̃i ⊂ Wi . . .W2Ã such that

Wi . . .W2Õ ⊂ R(ϕ̃), Wi+1Wi . . .W2Õ ⊂ L(ϕ̃).

To finish the proof, take j > 0 and a rectangle R̃′ such that

g̃lm+j(R̃
′
) ∩Wm . . .W2(R̃) is Markovian,

which on its turn implies that

g̃lm+j(R̃
′
) ∩Wi . . .W2(R̃) is Markovian for every 2 ≤ i ≤ m,

and that
g̃lm+j(R̃

′
) ∩ R̃ is also Markovian.
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ϕ̃u
T

g̃j+l(Õ′) W1Ã
→
k

ϕ̃u
B

ϕ̃T

ϕ̃
′u
T

ϕ̃
′u
B

ϕ̃B

Õ

W2Õ

W1Ã
↓

ϕ̃

W2ϕ̃T

W2ϕ̃B

Figure 16. We use a similar strategy to the one in Proposition
7.5: push the pseudo-rectangle until it enters a new copy of the
same canonically foliated strip, and then anchor it there.

This finishes the proof.
□

Proof of Proposition 9.1. By Proposition 8.9, we know that fitted hete-
roclinic pseudo-rectangles are dense, and by Proposition 9.3 we know that inside
each of these there is a Markovian horseshoe, which concludes the proof. □

As each Markovian horseshoe R̂ ⊂ R2 contains periodic points (at least one
per periodic sequence by the two-sided shift σm in m-symbols), we conclude that

Corollary 9.4. If 0⃗ ∈ int(ρ(ĝ)), then Per(ĝ) is dense in R2

which in particular implies that

Corollary 9.5. If 0⃗ ∈ int(ρ(ĝ)), then Per0(g) is dense in T2

where Per0(g) is the set of periodic points of g with trivial associated rotation
vector. Note that these periodic points do turn around the singularities of the
isotopy.

Remark 9.6. Apart from the General Hypothesis holding for g (namely g ∈
Homeo0(T2), int(ρ(g)) ̸= ∅), and that 0⃗ ∈ int(ρ(ĝ)), the properties of g on which
the construction of this chapter depend on are the ones in Chapter 5, in particular
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• Dg(K) = ∞ for every non-trivial continuum K (which gives us the ex-
istence of stable and unstable continua for every point, which have uni-
formly large diameter),

and the ones derived from it, as the existence of stable sets and the total anchoring
of Proposition 7.5.

This allows us to recover the following result, which was a suggestion by Pierre-
Antoine Guihéneuf.

Corollary 9.7. Let v be a rational vector in int(ρ(ĝ)). Then,

{ẑ ∈ R2 : ∃q ∈ Z, w = qv ∈ Z2 s.t. ĝq(ẑ) = ẑ + w} is dense in R2.

Proof. Let q be an integer such that w = qv ∈ Z2, and note that w ∈
int(ρ(ĝq)). Now, take a new lift ĝqw = ĝq − w, which is naturally isotopic to the
identity as ĝq also is. Last, note that ĝqw holds every property from Remark 9.6,
which means that

Xv(ĝ) = Per(ĝqw) is dense in R2,

which concludes the proof. □

Let us define Perv(g) = π̂(Xv(ĝ)), where ĝ is a lift of g, i.e. the set of periodic
points of g with rotation vector equal to v. We have then obtained that

Corollary 9.8. For every rational vector v ∈ int(ρ(ĝ)), we have that Perv(g)
is dense.





CHAPTER 10

Proof of Theorem A

1. The essential factor is conservative

We will prove that, up to a continuous change of coordinates, the essential fac-
tor of a torus homeomorphism f in the General Hypothesis preserves the Lebesgue
measure. More precisely,

Proposition 10.1. Let f : T2 → T2 be an isotopic-to-the-identity homeomor-
phism, such that ρ(f) has nonempty interior, and let g : T2 → T2 be its essential
factor (see Definition 5.10 and Remark 5.14). Then, there exists a homeomorphism
h : T2 → T2 such that hgh−1 preserves the Lebesgue measure on T2.

Proof. The whole idea of the proof is to find an atomless measure µ with total
support, which is invariant by g. Once we have done that, we know by Oxtoby-
Ulam’s Theorem (see [Rou12, Section 2]), that the desired change of coordinates
exists. We will strongly use the density of Markovian horseshoes for g.

Start by taking a countable base U = {Un}n∈Z+ for the usual topology in T2

(i.e. balls of rational radius centered at rational points), and fix n > 0. By Propo-
sition 8.9, we know that there exists a heteroclinic pseudo-rectangle P included
in Un, and hence by Proposition 9.2 we know that there exists a compact subset
Λ ⊂ P which is invariant by some power gk of g, and such that it is an extension
of the Bernoulli shift σ in 2 symbols by the surjection π, that is

gk

σ

Λ Λ

Σ2 Σ2

π π

where Σ2 = {0, 1}Z. Now, let us find a minimal subshift σα using a well-known
techinque. Choose an irrational number 0 < α < 1, and build a Sturmian sequence
ω ∈ Σ2 with density of 1’s equal to α: the j-th coordinate of ω will be 1 if and
only if

⌊nα⌋ − ⌊(n− 1)α⌋ = 1,

and it will be 0 otherwise.
We know that the closure X of the orbit of ω, is invariant by σ and is also

minimal for σ, from where we can obtain a minimal subshift σ|X (in particular it
has no periodic orbits).

113
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Take its preimage π−1(X) ⊂ Un and look at the restriction gk|π−1(X). We know
that it has no periodic orbits because its projection does not have either. By
the Krylov–Bogolyubov theorem, we know there exists a gk-invariant probability
measure µn supported in π−1(X), which must have no atoms, as their existence
would on its turn imply the existence of periodic orbits for gk|π−1(X). Let us then
define

µ′n =
1

n

j=n∑
j=1

g∗(µn).

Note that supp(µ′n) ∩ Un ̸= ∅ since µ′n(Un) ≥ 1/n, and that µ′n is a g-invariant
measure with no atoms. Let us now define the probability measure µ as

µ =
∑
n∈Z+

µ′n
2n

.

Now, note that the probability µ has the following properties:

• It is invariant by g because it is the countable sum of g-invariant measures,
• It has total support: its support intersects every open ball because {Un}n∈Z+

is a base for the usual topology,
• It has no atoms because each of the countably many µn has no atoms.

By Oxtoby-Ulam’s Theorem, we know there exists a change of coordinates
h : T2 → T2 such that h∗(µ) = Leb, the usual Lebesgue measure for T2, which
concludes the proof. □

2. The proof

We have finally gathered all the pieces to prove Theorem A.

Proof of Theorem A. Let f : T2 → T2 be an isotopic-to-the-identity home-
omorphism whose rotation set has nonempty interior, and let g : T2 → T2 be its
essential factor. Let us check that we have already obtained the required proper-
ties:

• ρ(ĝ) = ρ(f̂) for some well-chosen lifts. This comes from Proposition 5.17.
• For every non-trivial continuum K, Dg(K) = ∞. This is also proved in
Proposition 5.17.

• g is tight. This is Proposition 5.18.
• g is rotationally mixing. This is proved in Proposition 7.1.
• Density of Markovian horseshoes for g. This is proved in Proposition 9.1.
We also obtain that Per(g) = T2.

By Proposition 10.1, we obtain that for some change of coordinates h, the conjugate
hgh−1 is area preserving (we can assume that h is isotopic to the identity without
loss of generality). Note that these first five properties are invariant under this
topological conjugacy h. For the sake of simplicity, rename hgh−1 as g, which
holds the six desired properties and thus finishes the proof. □
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