
A soft-core based Lab for an Introductory
Microprocessors Course

L. Etcheverry, J. Oliver, J. Pérez Acle
Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

(letcheve, jpo, julio) @fing.edu.uy

Abstract—This paper presents a change in the methodology of the
laboratory activities in an undergraduate microprocessor
systems design course focused on I/O methods and small
microprocessors system integration. The laboratory was changed
on two main aspects: firstly the assignments are done at home,
shortening the time between design activity and experimental
verification; secondly a soft-core processor synthesized on an
FPGA is exploited to enable the students to exercise hardware
design activities on a running system.

A suite of development tools combining vendor, third party and
in house developed software and hardware cores is presented.

These changes are still a work in progress. A transitional version
of the course was held during 2011 and the second edition
incorporating the rest of the changes is planned for the first half
of 2012. Some preliminary results are reported.

Microprocessors; education; lab at home; FPGA

I. INTRODUCTION

The aim of this paper is to present a change in the
methodology of the laboratory activities in a microprocessor
systems design course.

This is an introductory undergraduate course, intended to
suit students that will follow different academic paths within
electrical engineering [1]. The course sets the emphasis on the
integration of peripherals in small microprocessor systems and
the I/O methods to access them, avoiding advanced processor
architecture concepts and internal processor design details.

The course lasts 15 weeks with a weekly schedule of 3
lecture hours, 1.5 exercise discussion hours and several
laboratory assignments.

The course was modified on two main aspects.

Firstly, the lab assignments are done at home instead of the
University labs as it used to be. This “lab at home”
methodology has been previously reported in [2][3] for a logic
design course. It has several advantages when it comes to time
and work place management, both for students and faculty.
Also, it shortens time between the design activity and
experimental verification, resulting in a greater motivation for
the students.

Secondly, the laboratory kit used in the new lab
assignments is based on a “system on a chip” synthesized on
an FPGA which allows to introduce hardware design tasks
into the lab assignments. Formerly the kit was a fixed
microcontroller system which restricted the student
responsibilities to the understanding of the provided hardware.

These changes are being implemented in two stages. The
first one was held on the 2011 edition of the course, during
which the new FPGA based kit and software development
tools were perfected, the “lab at home” methodology was
introduced, but the hardware design was still provided by the
teachers. On the second edition of the course, starting on
March 2012, the process will be completed.

The use of soft-cores synthesized into an FPGA for small
microprocessor systems education is relatively new.

An introductory microprocessor course based on Xilinx
development tools for the MicroBlaze soft-core is reported in
[4][5]. Hardware design is done using the Embedded
Developer’s Kit (EDK) from Xilinx,

In [6] a sequence of an introductory microprocessor course
plus an advanced embedded systems course is described. The
authors point out that for the introductory course students, the
number and complexity of tools required to get a soft-core
system running from scratch quickly becomes overwhelming
distracting them from the learning experience. To avoid this
problem they give students the bitstream of the system
hardware ready to download to the FPGA. Consequently, most
of the advantages of having a flexible system are lost. As
shown later, the preferred alternative for the course presented
here is to use a simpler processor and schematic capture
design entry in order to simplify the toolset required without
losing the ability to introduce changes to the hardware by the
students.

In [7][8] an open source FPGA platform is presented. The
platform is used with soft-core processors in a series of
courses on embedded systems. The hardware design entry
method used is Verilog HDL with open-source tools for
synthesis.

The first examples of “lab at home” activities were due to
PC popularization and related to software courses. Then,
following the spread of microprocessors, take-home
educational kits were introduced for microprocessors and

control courses [9][10][11]. Later on, programmable logic,
combined with the availability of free software tools, made it
possible to introduce take-home kits to digital design courses.
An early experience is briefly presented in [12], where kits
based on breadboards were distributed. However, software
tools were not freely available outside school in this case.

There are different approaches that also enable students to
perform hands-on home activities including: mounting
electronic circuits using components kits for later
experimentation in class [13], the use of real laboratory
instrumentation at home [14], or the costly loaning of
equipment during the course [15].

The alternative presented in this work, which is based on
the massive lending of low-cost programmable logic hardware
kits to students for the whole semester, keeps every
characteristic of the real hands-on hardware experimentation
and at the same time has all the potential of a distance learning
tool. Programmable logic is a technology very suitable for
teaching digital logic in traditional labs [16][17], and is also
widely used in industrial applications.

The paper is organized as follows. Section II details the
course characteristics and the laboratory methodology used,
Section III describes the hardware and software tools
developed. Finally in section IV some conclusions and future
activities are presented.

II. COURSE DESCRIPTION

This new learning experience was implemented for the
microprocessors introductory course, a core electrical
engineering course taught to more than 120 students. This
course integrates lectures, problem discussion groups and
laboratory instruction.

As mentioned in the Introduction section, the course is
focused on peripherals and memory integration and I/O
methods on small microprocessor systems. The well known
Z80 architecture from Zilog is the processor architecture used
during the course. The fact that a processor with no pipeline is
used greatly simplifies the understanding of the fetch-decode-
execute sequence by studentswho are getting in touch with
microprocessor systems for the first time. Despite of its
simplicity, the selected architecture allows to introduce the
students to some important concepts that are of common use
in newer processors. Good examples of this concepts are
priority arbitration and vectorized management of interrupt
requests.

Before the methodology change presented on this paper,
the laboratory activity of the course consisted of two
mandatory assignments with pass/fail grading. Course grading
was based on the marks obtained on a midterm and a final test.
A fixed microcontroller kit was used in the lab assignments,
and consequently the student had no opportunity to modify the
hardware design. The effort demanded of the students was
limited to the understanding of the given hardware and writing
down the programs to control it properly.

The course was modified on two main aspects. Firstly, lab
assignments are now done at home by the students as reported

in [2][3] for a logic design course. Secondly, the laboratory kit
is not “fixed hardware” anymore, but it is a “system on a chip”
synthesized on an FPGA.

Even though the existing course syllabus leans heavily on
hardware integration (glue logic, bus timings, address
decoding, etc.) there was no way for students to put this
knowledge into practice. The introduction of programmable
logic devices now allows students to have greater control on
the hardware design surrounding the microprocessor.

The new “system on a chip” kit avoids restricting the
student to writing down the software, and enables the
inclusion of hardware design tasks on the assignments. This
seeks to reinforce, by means of experimentation, concepts that
were only introduced theoretically in the former course
methodology, which is the most relevant novel aspect of the
proposed methodology. Students will now integrate existing
peripherals and add the necessary glue logic for their designs.
Given the introductory nature of the course, schematic
oriented design is chosen over an HDL based approach.

It is worth noting that FPGA vendors such as Altera and
Xilinx already provide tools which greatly simplify
development of “system on a chip” designs. While these tools
are fairly well integrated and provide a great enhancement in
productivity for day-to-day work, they tend to hide a lot of
complexity regarding the integration of hardware to a
microprocessor based system.

Although the lab methodology is very similar to the one
reported on [3] for a logic design course, it is worthy to
describe it with some detail here for the sake of paper
coherence.

The main characteristic of this new methodology is that
most of the students’ laboratory work is done at home with
real hardware. In order to achieve this, at the beginning of the
semester, students form groups of three and each group is
given a hardware kit (Fig. 1) that they keep until the end of the
course.

Figure 1. Hardware Kit, DE0 board (source Terasic Technologies Inc.)

There are three assignments during the semester, with
deadlines known since the beginning of the semester. The
students in each group are expected to work together, at home
using their own computers, or at the university in the PC
rooms. The teacher’s support is provided during this stage. For
each assignment the groups must hand in a written report and
orally present their designs to a teacher. At these evaluation
sessions teachers also ask them questions and grade their
work.

The kits consist of a DE0 board, the soft-core, design
software tools and the user manual. The students know the
board and the Quartus software from a previous digital design
course.

Due to the low cost of the kit components, students can
afford to pay for replacements in the event that they break or
lose them.

In the course Web page students can find data sheets,
tutorials, and links to all the software they need to design the
system hardware, program the FPGA device, write the
programs and debug them running on the soft-core. The
tutorial was designed specifically for these boards and guides
students through the complete design process of a simple
example.

At the end of the semester, when students return the kits,
the boards are programmed with a design that tests all of the
board features to verify that these are still working properly.

A. Assignments

The assignment sequence consists of three assignments
with increasing difficulty. Each assignment reuses the
subroutines and modules developed in the previous ones. As
explained in the introduction section, during the first edition of
the new course on 2011 the hardware design of the system was
provided to the students with the assignment statement. On the
second edition starting on March 2012, the hardware
flexibility provided by the new lab platform is exploited, and
the proper addition to the system of some of the peripherals
used are now responsibility of the students.

In the first assignment the students take contact with the
FPGA board, the soft-core and the development tools. They
develop small subroutines to make some data conversions
(bcd to seven segment, binary to bcd, etc.) and to access
simple I/O devices (push-buttons and displays).

In the second assignment the students must add a
handshake controlled I/O device to receive data from a serial
PS2 keyboard, and they must write and validate input
subroutines.

Finally, in the third assignment the concepts of interrupts
and programmable peripherals are introduced: a
programmable timer is used to generate periodic interrupts and
the whole system is used to develop a clock that shows the
time in a seven segment display. Time can be set using the
keyboard interface validated in the second assignment.

B. Evaluation methodology

The three assignments are distributed in the course of the
semester. Although the groups are composed of three students
that work together during the entire course, at the end of the
semester each student will have an individual laboratory grade
which will be part of the final grade.

The lab assignments are evaluated orally during an
approximately one-hour long session with one teacher at a
scheduled date.

On these occasions, the group shows the teacher a demo of
their design with a working system implemented on the board.
Before this presentation, students must write and submit a lab
report that should include the information required in the
assignment.

This process helps the teacher to discover difficulties and
errors that must be corrected or explained during the
evaluation. Each member of the group explains one particular
part of the project and then answers some oral questions,
which often require a slight modification to the designed
circuit to make it work in a different fashion. If the student has
a good comprehension of the problem he/she should easily
solve it. A checklist containing the main concepts that must be
evaluated is available for the teachers to guide them during
this process and homogenize the evaluating criteria.

This evaluation method is also a learning experience since
it allows students to reinforce good concepts and correct
mistakes.

The evaluation also lets teachers detect any uneven
distribution of work among the students in a group and
cheating between groups.

III. DEVELOPMENT TOOLS USED

To provide a working development environment the “lab at
home” kit integrates open-source hardware cores as well as
free software. Hardware cores include a Z80-compatible CPU
core, I/O peripherals, timers and debug modules. Software
tools include Z80 GNU toolchain (assembler, linker and
debugger), a QEMU-based emulator and debug support
programs.

Cores and software used in the kit categorize as pre-
existing third-party modules, modified third-party modules
and in-house developed modules. Table I and Table II
summarize each module's features as well as its required
modifications and added features.

TABLE I. HARDWARE MODULES

Module Origin Added Features

T80 CPU 3rd party –

JTAG UART 3rd party (modif.)
T80-compatible
interface

Configurable Timer/Counter In-house –

Mode-2 Interrupt Controller In-house –

TABLE II. SOFTWARE MODULES

Module Origin Added Features

GNU Binutils 3rd party –

QEMU-Z80 3rd party (modif.) GDB support

GDB-Z80 In-house
ASM source
level support

GDB-Z80 monitor (stub) In-house
software

breakpoints
support

JTAG Connector In-house
TCP to JTAG
UART tunnel

A. T80-based SoC system

The kit is based on the T80 CPU, a configurable Z80 CPU
core, freely available as a VHDL design.

A T80-based SoC system integrating the T80-CPU core,
on-chip memory, general-purpose peripherals and a JTAG
UART endpoint, is synthesized for an Altera Cyclone III
FPGA and downloaded to the DE0 board in order to obtain a
working development kit.

B. Software development environment

To help students in the development of their lab
assignments software, they are provided with a suite of several
development tools. The development suite is based on the
GNU toolchain and other software such as an emulator and
debugger-to-target communication facility.

1) GNU Binutils
GNU binutils, specifically Z80 assembler and linker, are

used to produce application binaries capable of running both
on the T80-SoC as well as the QEMU-Z80 emulator.

2) QEMU-Z80
QEMU-Z80 is a Z80 target for the QEMU emulator and

virtualizing software. It emulates a Z80 based system and
allows for the execution of Z80 code on a current x86 PC. The
QEMU-Z80 allows students to test and debug their application
code even if they don't have access to the hardware kit at the
moment. In addition, the emulator has the potential to be used
for parallelizing testing and debugging among students within
each group by decoupling debugging from the hardware kit.

3) GDB-Z80 and monitor (GDB stub)
The GDB-Z80 is a Z80 port of the popular GNU Debugger

Project. GDB-Z80 allows students to run, test and debug their
application code both on actual hardware (T80-SoC) and on
the QEMU-Z80 emulator. At the moment, GDB-Z80 supports
assembler source level debugging and software breakpoints. A
unified target debugging interface allows for seamless
switching between hardware and emulator targets; meaning
students only need to familiarize themselves with the regular
GDB user interface independently of the underlying target.

Complementary to GDB-Z80, a monitor software (or GDB
stub) resides on the T80-SoC's ROM and is in charge of
handling all debugging commands issued by GDB-Z80.
Debugger to target communication is carried over a TCP to
JTAG UART tunnel via custom software (JTAG Connector)

making use of Altera's JTAG-over-USB facilities.

Fig. 2 shows GDB-Z80 in its usual setup to debug both
emulator and hardware targets.

The advantages of using development environment around
the GNU toolchain is twofold. Firstly, it helps students to get
acquainted with widely used tools, available for several
different architectures and platforms. Secondly, it provides a
completely open development environment, which means
students can benefit from taking a look under the hood of all
tools.

Figure 2. Alternate debugger configurations.

IV. CONCLUSIONS

Although this is still a work in progress, some preliminary
conclusions can be drawn.

Only one edition of the new course has been held on 2011,
being moved at the same time from semester 6 to semester 5 in
the curriculum. The survey of opinion conducted by the
school's Teaching Unit among students shows a score of 4.1
(in a 0 to 5 scale) for the global evaluation of the course, the
same as in previous editions. The fact that the score was
maintained even when the 2011 edition was a transitional
implementation is promising.

With respect to the “lab at home” methodology, most of
the beneficial results enumerated in [3] are starting to show,
and a confirmation of these effects is expected in the
following editions.

One of the most visible of these effects is student
motivation. Also, the fact that great part of the work is done by
the students outside the classroom optimizes teaching time,
since the teachers dedicate their time mainly for answering
questions, discussing and evaluating the results obtained by
the students.

Furthermore, this method positively impacts on the
infrastructure requirements because just one computer is
needed to meet the needs of a large number of students and
there is no need of big labs, relaxing the schedule constraints
both of professors and students.

It is too early to assess the benefits of the introduction of
hardware design activities to the lab. Beneficial results of this
change should arrive following the 2012 edition of the course.

Regarding the hardware and software development tools, a
blend of vendor, third party and in house developed open-
source tools has been obtained that covers the whole
development flow. It is remarkable that the debugging
environment developed allows to switch seamlessly between
real hardware and emulated hardware. The availability of an
emulator for the processor used in the course gives the
students still more flexibility to work on the road without the
cost of the learning curve of a new tool.

Besides the immediate goal of introducing hardware
design tasks into the lab assignments, we expect to add to the
following editions of the course ready to run demonstrations
of selected course topics and guided examples that can be
exercised by the students at home.

REFERENCES

[1] Syllabus of the course “Introducción a los microprocesadores,” Facultad
de Ingeniería, Universidad de la República, Montevideo, Uruguay, 2011,
(Available at http://iie.fing.edu.uy/cursos/course/view.php?name=imp).

[2] J.P. Oliver et. al. “Laboratorios en casa: una nueva alternativa para
cursos masivos de diseño lógico digital,” TAEE, Madrid, España, 2006.

[3] Juan Pablo Oliver, Fiorella Haim, “Lab at Home: Hardware Kits for a
Digital Design Lab,” IEEE Transactions on Education, Volume 52,
Number 1, page 46--51 - feb 2009

[4] Lynne A. Slivovsky, Albert A. Liddicoat, “Work In Progress: Future
Pedagogical Trends in the Microprocessor Course - The Soft Core
Processor,” 36th ASEE/IEEE Frontiers in Education Conference, 2006

[5] Lynne Slivovsky, Albert Liddicoat, “AC 2007-2341: Transforming the
microprocessor class: expanding learning objectives with soft core
processors,” ASEE Annual Conference 2007

[6] Sin Ming Loo, C. Arlen Planting, “Use of Discrete and Soft Processors
in Introductory Microprocessors and Embedded Systems Curriculum,”
ACM SIGBED Review, Volume 6 Issue 1, January 2009, ACM New
York, NY, USA

[7] C. Camargo, "SIE: Plataforma Hardware copyleft para la Enseñanza de
Sistemas Digitales", XVII Workshop de Iberchip, Bogotá, Colombia,
February 2011.

[8] C. Camargo, “Transferencia tecnológica y de conocimientos en el diseño
de sistemas embebidos,” PhD Thesis, Universidad Nacional de
Colombia, Facultad de Ingeniería, Departamento de Ingeniería Eléctrica
y Electrónica, Bogotá, Colombia, 2011.

[9] F. G. Martin, “Integrating hardware experiences into a computer
architecture core course,” J. of Computing Sci. in Colleges, vol. 21, pp.
39-52, June, 2006.

[10] N. Manjikian and S. Simmons, “Evolution and enhancements of a
microprocessor systems course,” IEEE Trans. Edu., vol. 42, pp. 19 pp.,
1999.

[11] W. Durfee, P. Li, and D. Waletzko, “Take-home lab kits for system
dynamics and controls courses,” in Proc. 2004 Amer. Control Conf.,
2004, pp 1319.

[12] M. D. Takach and A. T. Moser, “Improving an introductory course on
digital logic,” in Frontiers in Education Conference, 1995. Proceedings.,
1995, 1995, pp 4b6.1.

[13] D. Cyganski, D. Nicoletti, and J. A. Orr, “A new introductory electrical
engineering curriculum for the first-year student,” IEEE Trans. Edu.,
vol. 37, pp. 171-177, May, 1994.

[14] D. Millard and M. Chouikha, “Work in Progress: Hands-on Exploration
of the "Big Ideas" in Electric Circuits,” in Frontiers in Education
Conference, 36th Annual, 2006, pp 3.

[15] L. A. DaSilva, S. F. Midkiff, and I.-R. Chen, “A hands-on course on
wireless and mobile systems design,” in Proc. of the Second IEEE
Annual Conference on Pervasive Computing and Communications
Workshops., Orlando, FL, 2004, pp 241-246.

[16] L. Gomes, “Programmable logic devices supporting embedded system
design curriculum,” in Industrial Electronics Society, 2005. IECON
2005. 31st Annual Conference of IEEE, Raleigh, NC, USA, 2005, pp 6
pp.

[17] J. Cerdá, M. A. Martínez, M. Á. Larrea, R. Gadea, and R. J. Colom, “An
active methodology for teaching electronic systems design,” IEEE
Trans. Edu., pp. 355-359, 2006.

