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PACO: Signal Restoration via PAtch COnsensus
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Abstract—Many signal processing algorithms operate by
breaking the target signal into possibly overlapping segments
(typically called windows or patches), processing them separately,
and then stitching them back into place to produce a unified
output. In most cases where pach overlapping occurs, the final
value of those samples that are estimated by more than one
patch is resolved by averaging those estimates; this includes many
recent image processing algorithms. In other cases, typically
frequency-based restoration methods, the average is implicitly
weighted by some window function such as Hanning, Blackman,
etc. which is applied prior to the Fourier/DCT transform in
order to avoid Gibbs oscillations in the processed patches. Such
averaging may incidentally help in covering up artifacts in the
restoration process, but more often will simply degrade the
overall result, posing an upper limit to the size of the patches
that can be used. In order to avoid such drawbacks, we propose
a new methodology where the different estimates of any given
sample are forced to be identical. We show that, together, these
consensus constraints constitute a non-empty convex feasible
set, provide a general formulation of the resulting constrained
optimization problem which can be applied to a wide variety of
signal restoration tasks, and propose an efficient algorithm for
finding the corresponding solutions. Finally, we describe in detail
the application of the proposed methodology to three different
signal processing problems, in some cases surpassing the state of
the art by a significant margin.

I. INTRODUCTION

Patch restoration refers to a family of methods where a
signal, typically and image, is first broken down into smaller,
possibly overlapping patches of some size and shape, some
restoration method is applied to each patch separately, and
finally the patches are stitched back together into the image
to obtain a result. This is a common technique, with many
examples in audio (e.g. [1], [2], [3], [4]) and image processing
(see e.g., [5], [6], [7], [8], [9], [10], [11], [12], [13]). A recent
review for the latter case can be found in [14]. The major
drawback in most patch-based methods lies in their stitching
phase, where the final value of a given sample is simply
the average of all the recovered patches to which it belongs;
we will refer to this stitching method as Patch AVEraging
(PAVE) method hereafter. Applying PAVE generally results in
a blurring effect. Furthermore, this blurring effect becomes
larger with the size of the patches, thus limiting their maximum
size in practice.

The patch blurring effect of PAVE is a well known problem
to which many works have been devoted in recent years.
Most of them [11], [12], [15], [16], [17] are based on patch
weighting schemes, that is, they give more or less weight to
each patch in the average. The work [18] also uses weighting,
but does so at the single pixel level. On the other extreme, [19]
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uses a global formulation for optimizing the stitched image in
terms of overall sparse representation.

A. Contributions

In contrast to the existing literature, this work does not
propose any implicit or explicit weighting strategy. Instead,
it enforces that the estimated patches coincide exactly at their
intersections; this is generally known as a consensus con-
straint, hence we call our method PAtch COnsensus (PACO).
Despite this constraint being conceptually very simple, we
have not found any similar formulation in the literature,
perhaps because it may seem overly strict at first look. As
we will formally prove later, the consensus constraint is a
non-empty linear feasible set whose dimension is equal to the
length of the signal.

We then develop a general formulation for patch-based
restoration problems under the PACO constraint which can be
used applied to any pre-existing method that can be written as
the minimization of a cost function of the estimated patches
and/or signal. We propose a method for solving the aforemen-
tioned family of problems based on a splitting strategy and the
standard ADMM [20] algorithm. This method has advantages
of its own, such as allowing us to impose additional problem-
specific constraints directly in signal space; in Section IV we
present two algorithms that use this feature.

Although parallelization is not the main objective of this
work, it turns out that the consensus strategy put forward
here was developed, and is most commonly found in the
literature about parallel and distributed computation (see [21]
for a review.) It is thus a natural byproduct of our PACO
framework to allow for parallel processing, making PACO an
ideal framework for distributed processing of very large signals
such as high resolution astronomical data, large 3D volumes,
or audio, with the additional benefits that the PACO constraint
brings in terms of restoration quality.

Finally, we show that PAVE can be interpreted as the first
iterate of the PACO ADMM formulation, thus showing its sub-
optimality with respect to the global optimum of the PACO
optimization problem, which is guaranteed to be attained as
long as the cost function and the constraint set are convex.

In summary, this paper makes the following contributions:
1) a formal mathematical framework for the patch stitching

problem,
2) PACO, an optimal patch stitching strategy in the form of

a family of optimization problems involving consensus
constraints on the overlapping patches,

3) a general study of the feasibility and degrees of freedom
of the PACO problem,

4) a general algorithm for efficiently solving instances of the
aforementioned family of problems,
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Fig. 1. Patch extraction for a one dimensional signal x of length N = 6
and patches of size m = 3; the patches are arranged as columns on an m×n
matrix Y where the column yk contains the patch starting at offset k in x.
Observe that Y is a Hankel matrix. This will be our running example.

5) a formal proof showing that PAVE corresponds to the first
step of our algorithm, thus proving its sub-optimality,

6) efficient implementations of the algorithm for missing
data (inpainting) and/or denoising problems for both
audio and 2D images. In the case of image inpainting,
our results surpass the state of the art by a significant
margin.

II. BACKGROUND: PATCH-BASED SIGNAL PROCESSING

A. Patch Extraction

Although the methods described hereafter are applicable to
signals of any number of dimensions, the following discussion
will be based on the one-dimensional case for simplicity. Such
a signal is represented as x = (x1, . . . , xN ) ∈ RN ; here X =
RN is the space of all discrete finite signals of length N . Given
m ∈ N, 0 < m ≤ N , the maximum number of different
contiguous patches of length m that we can extract from x
is n = N − m + 1. This corresponds to the case where the
starting index of any two contiguous patches in the signal
differs by s = 1. This distance s is called the stride of the patch
extraction process. Again, in order to keep the notation and the
discussion simple, we will restrict ourselves to the case s = 1.
However, the results developed hereafter are easily extended
to strides larger than 1. In fact, in Section V we report on
results obtained with our implementation for 2D images and
values s > 1.

The patches are arranged as columns of a matrix Y ∈
Rm×n so that the first column y1 corresponds to the patch
(x1, x2, . . . , xm), the second y2 = (x2, x3, . . . , xm+1), and
so forth. The resulting patches matrix Y is shown for the
case N = 6, m = 3 (n = 4) in Figure 1. As can be seen
in Figure 1, with the proposed column ordering, the patch
extraction procedure is a linear mapping from the signal space
X = RN onto the space H of matrices whose anti-diagonals
have a constant value (Hankel matrices) of size m×n; we will
denote this mapping as E so that Y = E(x). Note that H is a
linear subspace of Y = Rm×n; we call Y the patches space.

The linear operator E(x) defines an isomorphism between
the signal space X and H. This implies in particular that
dim(H) = dim(X) = n.

B. Patch-based Restoration

In a general signal restoration setting one does not observe
the true or clean signal x, but a distorted version x̃ (which
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Fig. 2. Patch stitching operator. Each sample x̂j is the average of all its
estimates across the intervening patches. In terms of Ŷ, this corresponds to
the average of each anti-diagonal.

usually has the same size and dynamic range as x), and the
task is to infer x from x̃. We denote the result of this inference
as x̂, and call it the restored or estimated signal indistinctly.
The matrix of patches extracted from x̃ is correspondingly
denoted by Ỹ. The idea is to estimate the signal x by
recomposing it from an estimation of the clean patches, Ŷ,
which is a function of Ỹ. In general, however, Ŷ /∈ H. A
typical example where this occurs, and which we will deal with
as a particular example later in Section IV-B, is the penalized
regression problem. Here, each patch ŷj is inferred from ỹj
as follows

ŷj = Dâj , âj = arg min
a

1

2τ
‖Da− ỹj‖22 + ‖a‖qp, ∀ j (1)

where D is an m×p matrix, for example the matrix form of a
linear operator such as the Discrete Fourier Transform (DCT).
Each coefficients vector aj ∈ Rp defines the combination of
columns of D that results in the estimated patch ŷj .

C. Patch Stitching

Once Ŷ has been computed, the final estimation x̂ must
be recomposed from it; we call this procedure patch stitch-
ing. In our example, each column ŷj is an estimate of
(xj , xj+1, . . . , xj+m−1). However, as patches overlap, each
single signal sample (e.g., xj) will be estimated many times,
once for each patch whose mapping includes xj . For example,
if m > 1, we have that both ŷ12 and ŷ21 are estimates of x2.
In general, we have that xj will be estimated once for each
element in the j-th anti-diagonal of Ŷ. The straightforward
procedure in this case, followed by many successful restoration
algorithms such as K-SVD [22], is to simply average all such
estimations to produce the final result; this is what we defined
as PAVE in Section I. Formally, the PAVE estimate at index j,
x̂j is the average of the values along the j-th anti-diagonal of
Ŷ; this is depicted in Figure 2. We note that this can be written
as a non-invertible linear mapping S : Y→ Rn, x̂ = S(Ŷ).

D. Issues with PAVE stitching

In many patch-based restoration algorithms, the different
patches are estimated independently of each other. In such
cases, if m is too large, the averaging of many estimates can
result in a blurred result, thus posing an upper limit on the
practical size of m. This is evident in works such as [22],
which are effective only for small patch sizes. The above
problem can be alleviated by pre-multiplying each patch by
a window (e.g., Gaussian, Blackman, Hamming, etc.) prior
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to stitching. This is a “softer” way of stitching which also
has theoretical advantages when combined with traditional
frequency domain filtering, but it is not necessarily optimal
in terms of the task at hand (e.g., in removing artifacts or
blur).

The main contribution of this work arises from a simple
premise: instead of estimating each patch independently, we
force all patch estimations to coincide at the intersections, that
is, we will seek solutions to our restoration problem that lie
within the consensus set C defined by the problem. In this
way, blurring is effectively eliminated regardless of the patch
size. (Actually, there is no need for patch averaging, as all the
estimates are identical at the optimum.) We will now describe
our method in detail, its feasibility, and its exact resolution for
a wide range of problems.

III. PACO: PATCH CONSENSUS

As mentioned in the previous section, our strategy is based
on enforcing that all the estimated patches should coincide
where they intersect. In the example we have been following
so far, we require all feasible matrices Ŷ to be of the Hankel
type. In general, we refer to the set of feasible matrices as
the patch consensus set and denote it by C. An alternative
representation of the set, again for one-dimensional signals, is
given by,

C =

 ŷj−i+1[i] = ŷj−i[i+ 1],
max{1, j − n+m} < i < min{j,m}
j = 2, . . . , n− 1,

 , (2)

As discussed in II, the set C is a linear subset of Y of
dimension equal to the dimension of the signal, n. It turns out,
as we prove next, that projecting onto C can be performed very
efficiently in terms of the stitching and extraction operations
defined earlier.

Proposition 1 (Projection onto H). Let ΠH(A) be the projec-
tor operator from Y onto H in Frobenius norm,

A+ = ΠH(A) = arg min
B∈Y
‖A−B‖2F .

Then A+ = ΠH(A) = (E ◦S)(A). (here (f ◦g)(x) = f(g(x))
denotes the composition of functions f and g.)

Proof. We can write ‖A−B‖2F =
∑
ij(aij−bij)2 and reorder

this summation so that it is grouped along the anti-diagonals,

‖A−B‖2F =

n∑
k=1

min{k,m}∑
l=max{1,k−n+m}

[
al(k−l+1) − bl(k−l+1)

]2
.

Since A+ ∈ H we have that a+
l(k−l+1) = h+

k ∀ l. As the
problem is separable in the anti-diagonals, we can solve for
each hk independently,

h+
k = arg min

h

min{k,m}∑
l=max{1,k−n+m}

[
al(k−l+1) − h

]2
,

whose solution is the average of the k-th anti-diagonal.
Now, by the definition of the stitching operator S(·), if

h = S(A) we have that hk = h+
k , ∀k. If we then apply

the extraction operator E(·) to h we get a matrix A+ = E(h)
where each k-th anti-diagonal has a constant value h+

k = hk.
We have thus proven that A+ = (E ◦ S)(A) = ΠH(A).

The space of Hankel matrices H is a simple example of
the consensus set C. It is easy to verify that the same result
carries on to a more general case (n-dimensional signals, s1).
In general, C is given by the span of the patch extraction
operator co-domain, which we denote by span(E). Here we
will only give a sketch the proof, which is a tedious extension
of Proposition 1.

Proposition 2 (Projection onto C). Consider a real-valued
signal x defined over any discrete domain Γ ⊂ ZM ,M ≥
1, and a pair of corresponding patch extraction operators S
and E , where by corresponding we mean that (S ◦ E)(x) =
x. Consider the consensus set given by C = span(S). Then
A+ = ΠC = (E ◦ S)(A).

Proof. It is a well known result that projecting onto consensus
sets is equivalent to replacing the discordant values by their
average. Any extraction operator E defines a partition of the
entries in the patches matrix A so that each group in the
partition has a number of “copies” of some given sample of
x. Consider any patches matrix A /∈ C. The corresponding
stitching operator S will, by definition, average the values
of A in each group defined by E and place the result into
the corresponding position in the signal. Then, the extraction
operator E will extract that average and copy its value into
all the elements belonging to the corresponding group of A.
Thus, the equality ΠC = (E ◦ S) will always hold.

A. Problem formulation

Let c(·) be the convex indicator function associated to the
consensus subset C, c : Y→ R ∪ {+∞},

c(Y) =

{
0 , Y ∈ C
+∞ , Y /∈ C (3)

In its most general form, the PACO restoration problem is
given as follows,

Ŷ = arg min
Y

f(Y) + c(Y) s.t. Y ∈ Ω. (4)

where the problem and algorithm dependent function f(Y)
measures the quality of Y as an estimation of the unobserved
true patch matrix Y, c(Y) enforces the solution to lie within
C, and Ω represents any additional constraint set imposed by
the particular problem at hand.

As c(·) is a convex function, the problem (4) will also be
convex if the function f(·) and the set Ω are convex. This is
an enormous advantage compared to patch-based estimation
problems which are non-convex and thus depend heavily
on the initialization (e.g. [7]). In our case, the convexity
in f(·) and Ω are sufficient guarantees to achieve global
convergence. In Section V we will show how we can tackle
some mainstream restoration problems using PACO, in some
cases surpassing the state of the art.
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B. Feasibility of PACO-based problems

A natural question about PACO is how much freedom is left
to a restoration problem for obtaining a useful solution if the
consensus constraint is imposed. The following proposition 3
provides an answer.

Proposition 3. Consider a signal of length n, decomposed
in fully-overlapping patches of size m. Consider a matrix of
estimated patches Ŷ of size m×(n−m+ 1). Assume w.l.o.g.
that 2m ≤ n. The following properties hold:

i) The number of constraints imposed by the PACO consen-
sus set is (m− 1)(n−m).

ii) For a linear problem where Ŷ = DA and D ∈ Rm×p
has full column rank, the number of degrees of freedom
is k = p(n−m+ 1)− (m− 1)(n−m).

iii) In particular, if p = m or the constraints are imposed
directly on Ŷ, the number of degrees of freedom is n,
the length of the signal.

Proof. i) The first element x1 is estimated by only one
patch, so no restriction is imposed on ŷ11. The second el-
ement is estimated by ŷ12 and ŷ21, which are constrained
to be equal. This adds one linear constraint to the problem.
The third element is estimated by three different values
of Ŷ and so forth. Therefore, for i = 0, . . . ,m − 1 we
have

∑m−1
i=0 i constraints. The exact same thing happens

for the last m samples of the signal. The middle n− 2m
samples involve (m − 1) constraints each. Adding these
three constraint numbers in order we get:

k =
∑m−1
i=0 i+ (n− 2m)(m− 1) +

∑m−1
i=0 i (5)

= 2 (m−1)m
2 + (n− 2m)(m− 1)

= (m− 1)(m+ n− 2m) = (m− 1)(n−m).

ii) For the linear model Ŷ = DA, the matrix A has p×(n−
m + 1) linear coefficients. From the previous item, the
number of linear constraints is k = (n − m)(m − 1).
Adding these two we get

p(n−m+ 1)− (n−m)(m− 1).

iii) If p = m, the number of degrees of freedom will be

k = (n−m+ 1)m− (n−m)(m− 1)
= (n−m)m+m− (n−m)m+ (n−m)
= m+ n−m
= n.

The last case is trivially derived also from the fact that E
defines an isomorphism between X and C, as discussed
in Section II-B.

C. Numerical resolution

In the preceding subsection we defined the general form of
a PACO-based restoration problem, showed it to be a convex
problem with a linear non-empty convex consensus constraint
(plus other possible constraints imposed by the specific task
at hand). We now describe a simple and efficient method
which can be applied to any such formulation. The method

is based on the proximal operator form [21] of the popular
Alternating Directions Method of Multipliers (ADMM) [20].
Let f(·) be any convex function. The proximal operator of
f(·) with parameter λ is given by,

proxλf (y) := arg min f(x) +
1

2λ
‖y − x‖2 (6)

The proximal operator has many interpretations. In particular,
it can be seen as a generalization of the concept of gradi-
ent to non-differentiable functions. (See [21] and references
therein). The ADMM method is an old method which is
broadly applicable to a wide range of problems. Its proximal
operator formulation simplifies the application of ADMM to
non-differentiable functions. In particular, it is easy to check
that the proximal operator of the convex indicator function
c(·) of a set C is precisely the projection operator ΠC .
This is particularly important in our case since, by means of
Proposition 2, we can perform such projection efficiently when
C is a patch consensus set.

What remains now is to reformulate (4) so that it can be
solved using ADMM,

(Ŷ, Ẑ) = arg min f(Y) + g(Z) +
1

2λ
‖Y − Z‖2F s.t. Y = Z,

(7)
where g(Z) is the indicator function of the set C∩Ω. Problem
(7) is clearly equivalent to (4). The key difference is that (7)
is separable in Y and Z and also strongly convex if λ > 0.
The ADMM algorithm for (7) is given by,

Y(t+1) ← proxλf

(
Z(t) −U(t)

)
, (8)

Z(t+1) ← ΠC∩Ω(Y(t+1) + U(t)), (9)
U(t+1) ← U(t) + Y(t+1) − Z(t+1). (10)

Steps (8)–(10) are repeated until convergence is attained to
within a specified tolerance. Step (10) is trivial and identical
regardless of the function f(·). If Ω = Y, g = c and Step (9)
is given by,

Z(t+1) = (E ◦ S)
(
Y(t+1) + U(t)

)
.

If Ω ⊂ Y is convex, a general solution to step (9) can be
obtained iteratively using Dykstra’s Projection Algorithm [23].
In other cases, as we will see later, the solution can be found
in closed form. Finally, Step (8) will depend on the form
of f(·). In fact, any previously existing restoration method
which can be formulated as the minimization of f(·) can
be accommodated to the PACO framework by replacing this
step with the corresponding solution. This in turn leads to the
following crucial observation:

Proposition 4. Given a fitting function f(·) and a constraint
set Ω ⊆ Y, the solution to (4) is optimal with respect to all
patch-based methods that are defined in terms of f and Ω.

Proof. By its definition, the solution Ŷ to (4) minimizes f
over C ∩Ω. Let Ŵ be a solution to arg min f(W) s.t.W ∈
Ω. After stitching, the effective Ŵ+ in use will be the
projection of Ŵ onto C. By the optimality of Ŷ we then
have that f(Ŷ) ≤ f(Ŵ+).
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Aside from Proposition 4, note that, in general, there is no
guarantee that Ŵ+ is the projection of Ŵ onto C ∩ Ω.

IV. RESTORATION USING PACO

In this section we describe in detail two particular signal
processing methods based on PACO.

A. PACO-DCT inpainting

The problem of inpainting, more generally known as data
completion, is to estimate the unknown or missing samples
of a signal x given that we do know its values values at a
known subset of indexes O ⊂ {1, 2, . . . , n}. In this case, the
set of feasible solutions is specified in signal space, that is
Ω ⊂ X, with Ω = {z : zi = xi, i ∈ O}. We seek for the
estimate X̂ ∈ Ω for which the DCT coefficients matrix of the
corresponding patches Ŷ, Ŷ = DᵀŶ,1 has minimum possible
weighted `1 norm,

f(A) =
∑
ij

wij‖aij‖. (11)

The corresponding PACO problem is given by,

Â=arg min
A

∑
ij

wij‖aij‖+ g(DZ) s.t. Z = A. (12)

where g(DZ) is the indicator function of C ∩Ω. The idea of
using the weighted `1 norm is to favor the most likely solution
according to the commonly accepted fact that DCT coefficients
follow a heavy tailed distribution, although with different scale
parameter in each case (see [25] for an in-depth analysis). As
the function f(A) is separable in the elements of A, so is its
proximal operator, known as the soft-thresholding operator

Tλij
(·)(aij) = min{x+ λij ,max{0, x− λij}}

where λij = λwij .
An interesting side effect of PACO is that the projection onto

the consensus constraint set C is a composition of two linear
mappings, ΠC(Y) = (E ◦ S)(Y), the first going from patch
space Y to signal space X, and the second one going back from
X to patch space Y. Therefore, if the feasible subset Ω is a
linear subspace of X as in this case, then the projection onto
C ∩ Ω can be efficiently obtained by applying the projection
onto Ω “while in” X, that is,

ΠC∩Ω(Ŷ) = (E ◦ΠΩ ◦ S)(Ŷ). (13)

The following pseudocode implements (13),

v ← S(DA(t+1) + U(t))

vi ← xi, ∀ i ∈ O (this is ΠΩ)

Z(t+1) ← E(v).

As with (13), we can easily impose any number of additional
constraints in signal space X as long as they correspond to
convex subsets of that space. An examples of such constraint
is the clipping constraint, which forces the estimated samples
to lie within a valid range (e.g., 0–255 for grayscale images).

1For D we use the orthonormal variant of the DCT type II.

We note that, for a general matrix D, the proximal operator
of g′(Z) = g(DZ) may be hard to compute even if that
of g(Z) has a simple closed form. However, for unitary
transforms such as the orthonormal DCT, we have that [21],

proxλg′ (Z) = Dᵀproxλg (DZ) . (14)

We will describe how to tackle the non-orthonormal case later
in Section IV-C.

The complete PACO-DCT inpainting algorithm consists of
repeating the following steps until convergence:

a
(t+1)
ij ← Tλwij (z

(t)
ij − u

(t)
ij ), ∀ i, j

Ŷ(t+1) ← D(A(t+1) + U(t) )

x̂(t+1) ← S(Ŷ(t+1))

x̂
(t+1)
i ← x̂

(t+1)
i , ∀ i ∈ Ω

Z(t+1) ← DᵀE(x̂(t+1))

U(t+1) ← U(t) + A(t+1) − Z(t+1) (15)

Estimation of the weights: The success of (15) relies
heavily on the weights W = {wij}. Following the assumption
that DCT coefficients follow a heavy-tailed distribution whose
scale depends on the corresponding basis vector. One possi-
bility is to have these coefficients pre-calculated. In our case,
we run (15) a first time using wij = 1, and use the resulting
matrix Ŷ to estimate W as follows,

wij =
ε

ε+ (1/n)
∑
k Aik

, i = 1, . . . , n,

where ε is a parameter chosen by the user, which should be
small compared to the average absolute value of the elements
of A. The preceding strategy can be repeated any number of
times to further refine W and the final solution; we call this
a reweighting strategy. In our experiments we do it at most
once. Note that other alternatives exist, including assigning
a different weight to each coefficient. This could yield better
results, but would deserve a longer discussion which we cannot
entertain here for lack of space (see [25]).

Choice of the penalty parameter λ: There is no general
recipe for choosing the ADMM penalty parameter λ in (7)
that works in all cases. However, by inspecting the terms that
are at play (the cost function f(·) and the squared `2 term),
we observe that the first scales as n×p×α2, where α is the
dynamic range of the signal (typically α = 2b − 1 for b-
bit digital samples.) In the weighted `1 case, f(·) scales as
n×p×α. Thus, we use instead

λ′ =
n×p×α2

n×p×α
= λα, (16)

and adjust λ once for all problems in the same class.

B. Gaussian denoising using PACO

In this case we have x̃ = x+ η, were the elements of η are
i.i.d. samples of a Gaussian distribution ηi ∼ N (0, σ2). We
now show three alternative ways of using PACO for denoising
under such hypothesis.
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1) Projection onto `2 balls: A popular method for estimat-
ing the patches of Ŷ is given by,

ŷj = arg min
ζ
f(ζ) s.t. ‖Dζ − ỹj‖2 ≤ Kσ. (17)

Where K is chosen so that the ball Bj,Kσ =
{ζ : ‖Dζ − ỹj‖2 ≤ Kσ} includes with high probability
the unobserved clean sample y. Under the i.i.d. Gaussian
assumption, 1

σ2 ‖yj − ỹj‖22 has a χ2
m distribution. We then

choose K so that

P (‖yj − ỹj‖2 ≤ Kσ) = P

(
1

σ2
‖yj − ỹj‖22 ≤ K2

)
= Fχ2

m

(
K2
)

= q

K =
√
F−1
χ2
m

(q).

As each ball Bj,Kσ ⊂ Y is convex, so is the intersection
BKσ =

⋂
j Bj,Kσ . If we now define g to be the indicator

function of BKσ ∩ C and use (11) as the cost function, we
arrive at what we call the patch ball denoising. The drawback
with this method is that the intersection between the constraint
set and the patch ball needs to be computed iteratively using
Dykstra’s algorithm [23]. Nevertheless, in our experiments,
convergence of the latter method is achieved in as little as
two or three iterations.

An alternative approach similar to the one we used for
inpainting is possible too: we can impose the estimated and
observed signals to be close in `2 norm directly

Ŷ = arg min
ζ

∑
j

‖ζj‖ s.t. ‖S(Dζ)− x̃‖2 ≤ K ′σ. (18)

Now the constraint set is a ball defined in signal space,
B′K′σ = {x̂ : ‖x̂− x̃‖ ≤ K ′σ} ⊂ X; thus call this the signal
ball constraint. Using g as the indicator function of B′K′σ ∩C
and using (11) as the cost function, we obtain what we call
the signal ball denoising method. This method has at least two
advantages. First, the projection is computed in closed form,
as with the inpainting case by interleaving the projection onto
B′K′σ between E and S. Also, for most signals n� 100 and
K ′ =

√
F−1
χ2
n

(q) ≈ 1 for a wide range of values of q, so that
we can fix K ′ = 1. However, the method has one potential
drawback: the constraint set might be too large or general in
order to pinpoint good solutions. With this in mind, we define a
third denoising variant which simply combines both constraint
sets BKσ ∩B′K′σ , which leads to what we call the double ball
denoising method and which gives the best results as reported
in Section V. We will not write down the pseudocode in this
case for lack of space; the interested reader can refer to the
implementations provided along with this paper.

2) Penalized least squares: The function f(·) in this case
is a weighted sum of (11) and a fitting term which measures
how close the estimated patches Ŷ are to the observed patches
Ỹ in Frobenius norm,

f(Â) =
1

2τ
‖DA− Ỹ‖2F +

∑
ij

wij‖aij‖, (19)

where τ is a scalar parameter. A typical choice is τ = σ2.
By adding the PACO indicator function c(DA), we obtain the
PACO problem for this case,

Â = arg min
A

1

2
‖DA− Ỹ‖2F +

∑
ij

wij‖aij‖+ c(DZ)

s.t. Z = A. (20)

Note that (20) admits the alternative splitting

Â = arg min
A

∑
ij

wij‖aij‖+ c(DZ) +
1

2
‖Z− Ỹ‖2F

s.t. Z = A. (21)

Which splitting is more practical will depend on the case. For
unitary D, we know from (22) that the proximal operator of
c′(Z) = c(DZ) is straightforward to compute. It turns out that
the same happens with f(·) in this case. For this we apply the
definition of the proximal operator of f with parameter λ,

proxλfd (B) = arg minA

{∑
ij wij |aij |+

1
2τ ‖DA− Ỹ‖2F + 1

2λ‖A−B‖2F
}

= arg minA

{∑
ij wij |aij |+

1
2τ ‖A−DᵀỸ‖2F + 1

2λ‖A−B‖2F
}
.

(22)

So, again, the problem is separable in the elements of A. The
proximal operator in this case is given by (see Appendix A
for its derivation),

aij = Tθij
(

λ

λ+ τ
ṽij +

τ

λ+ τ
bij

)
,

where ṽij is the (i, j)-th element of the matrix Ṽ = DᵀỸ,
that is, the DCT transform of the observed patches, and the
threshold parameter is given by

θij =
λτwij
λ+ τ

.

Note that Ṽ needs to be computed only once. In our case,
the auxiliary matrix B at iteration t is given by B(t) = Z(t)−
U(t) (this matrix needs not be explicitly computed or stored;
we include it as an intermediate step for clarity). The steps of
the ADMM algorithm for PACO-DCT denoising are as follows:

B(t) ← Z(t) −U(t)

a
(t+1)
ij ← Tθij

(
λ

λ+ τ
ṽij +

τ

λ+ τ
b
(t)
ij

)
, ∀ i, j

Ŷ(t+1) ← D(A(t+1) + U(t) )

Z(t+1) ← DᵀE [S(Ŷ(t)) ]

U(t+1) ← U(t) + A(t+1) − Z(t+1).

A typical initialization would be U(0) = 0, Z(0) some simple
approximation to the input signal (for example, filling in the
missing samples by the average of the known samples), and
A(0) = 0. As long as the algorithm is convex, the final result
will not depend on the initialization, although the speed of
convergence can vary significantly depending on this.



7

C. PACO restoration for non-orthonormal linear operators

When D is non-orthonormal, a variant of ADMM known
as “Linearized ADMM” (LADMM) or “inexact Uzawa’s
Method” [24] is more adequate for solving (4). Essentially, this
method constructs the augmented Lagrangian for the constraint
Z = DA and then solves a linear approximation of it around Z
in each iteration. Global convergence is guaranteed as long as
its parameter µ obeys 0 < µ ≤ λ/‖D‖22. The general method
is given by,

A(t+1) ← proxµf

(
A(t) − (µ/λ)Dᵀ(DA(t)−Z(t) + U(t))

)
Z(t+1) ← proxλc

(
DA(t+1) + U(t)

)
U(t+1) ← U(t) + DA(t+1) − Z(t+1).

The corresponding LADMM PACO algorithm is given by

A(t+1) ← proxλf

(
A(t) − (µ/λ)Dᵀ(Ŷ(t) − Z(t) + U(t)

)
(23)

Ŷ(t+1) ← DA(t+1) + U(t) (24)
Z(t+1) ← E [S(Ŷ) ] (25)
U(t+1) ← U(t) + Ŷ(t+1) − Z(t+1). (26)

The LADMM method is usually slower than ADMM. Besides, in
the DCT case, we can compute Dx and Dᵀx in O(m log2m)
operations, whereas for general D the number of operations
is O(mp) ≈ O(m2), which also slows down each iteration.
Nevertheless, this allows for a much wider choice of D,
including wavelets and adaptive dictionaries, which can result
in significantly better results in many applications.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Here we present results of two types. The first set of results
study the rate of convergence of the PACO algorithm to the
global solution with respect to the ADMM optimization param-
eters. The second set of results demonstrate the effectiveness
of PACO on three settings: image inpainting, audio inpainting,
and image denoising.2

We use two quality metrics to measure the performance of
our algorithms. One is the root mean squared error, RMSE =
n−1/2‖x− x̂‖2.3 The other is the Structural Similarity Index
(SSIM) [26], a well established metric designed to reflect the
visual quality of the results; this is important in modern signal
restoration, as measures such as RMSE or PSNR alone can be
misleading in terms of the visual quality of the results. The
SSIM ranges between 0 and 1; larger values indicate better
quality.

A. Convergence analysis

The convergence results shown in Figure 4 are for the image
inpainting problem on a small artificial test image shown in
Figure 3; the image is shown at the bottom right. Note that

2We provide additional results, as well as C++ and Python implementations
of PACO in the supplementary material and on the project web page http://
iie.fing.edu.uy/˜nacho/paco/.

3The classic PSNR metric is not included as it is redundant with the RMSE;
the interested reader can derive it as PSNR = 20 log10(α/RMSE) where
α = 2b − 1; in our case b = 8 for images and b=16 for audio.

Fig. 3. Inpainting result on artificial test image. Top to bottom, left to
right: input image; result after 10th iteration; final output RMSE = 0.83,
SSIM = 0.99997. This was obtained using 10×10 patches, λ = 0.3 and
one reweighting iteration.

Fig. 4. Convergence analysis of the inpainting test problem shown for
different fixed values of the parameter λ. We show, from top to bottom and
left to right, the evolution of the values of: the (restoration) cost function
f(·), the quadratic penalty term, the RMSE of the recovered images (solid
for that derived from the main variable and dashed for the one derived from
the split variable), and the corresponding SSIM index. The optimum value in
each case (which was estimated by setting a much smaller tolerance on the
stopping condition, after many more iterations) is shown as a dashed black
line; note that, by definition, this value is 0 for the Lagrangian term.

the best result in Figure 3 is significantly better than the
optimum obtained in our convergence tests, which correspond
to the first run of the of the algorithm, with equal weight
on all DCT coefficients. This leads to a significant (although
visually unnoticeable) bias which impacts the RMSE but not
the perceptual SSIM quality metric.

Figure 4 shows how the ADMM algorithm evolves for
different penalty parameters λ as defined in (16). As expected,
the algorithm converges in all cases, showing the typical
ADMM behavior depending on the value of λ: for too large
λ the main and split iterates tend to oscillate, which can
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TABLE I
SUMMARY OF INPAINTING RESULTS ON THE KODAK DATASET. WE

COMPARE OUR RESULTS WITH THOSE OF [27] AND [28] IN TERMS OF THE
THE 25, 50 (MEDIAN) AND 75 PERCENTILES OF THE RMSE AND SSIM

SCORES ON ALL 24 IMAGES. AS CAN BE SEEN, WE OBTAIN
SIGNIFICANTLY LOWER RMSES AND HIGHER SSIM IN ALL CASES. THE
CLOSEST RESULT IS THE MEDIAN RMSE OBTAINED WITH [27] ON MASK
#2, WHICH COINCIDES WITH OURS. NOTE HOWEVER THAT THE MEDIAN

SSIM IS HIGHER FOR PACO.

metric RMSE SSIM
mask #1 #2 #3 #4 #1 #2 #3 #4

PACO

p. 25 2.1 4.7 2.1 4.6 0.9946 0.9696 0.9936 0.9645
median 2.6 5.6 2.6 5.8 0.9928 0.9658 0.9920 0.9584
p. 75 3.4 7.0 3.9 8.0 0.9905 0.9609 0.9896 0.9526

Fedorov et al. [27]
p. 25 2.6 5.1 2.5 5.2 0.9920 0.9674 0.9912 0.9575

median 3.1 5.6 3.1 6.4 0.9892 0.9629 0.9898 0.9513
p. 75 4.1 7.2 4.5 8.5 0.9870 0.9571 0.9858 0.9400

Arias et al. [28]
p. 25 2.9 6.6 2.8 5.9 0.9893 0.9491 0.9890 0.9508

median 3.8 7.6 3.6 7.2 0.9858 0.9470 0.9847 0.9391
p. 75 4.8 9.2 5.4 9.9 0.9833 0.9420 0.9823 0.9294

be seen indirectly in the RMSE and SSIM of the resulting
reconstructed images, and approach each other slowly, which
is reflected in the evolution of the Augmented Lagrangian term
value (whose value is 0 at the optimum by definition of the
problem). Overall, a value of λ = 0.3 gives the best results;
this value is hereafter used by default.

B. Image inpainting

We have already shown our best results for the test image
in Figure 3; these were obtained using patches of size 10×10
pixels and one reweighting iteration. We also conducted image
inpainting experiments on all the grayscale versions of the
Kodak image dataset4 and four different masks, using patches
of size 16×16 and one reweighting iteration. Figure 5 shows
the masks and a few sample images of this dataset, whereas
Figure 6 shows a detail of the result obtained on Kodak image
#18 and mask #2. As can be observed there, the resulting
image is indistinguishable from the original image in all
regions but the large square to the center right. Table I shows
the 0 (best) 25, 50 (median), 75 and 100 (best) quantiles
of the SSIM and RMSE metrics obtained on all 24 Kodak
images for each mask and compares the corresponding results
of two recently published works [27], [28] which focus on
the inpainting problem, with results among the best found
in the literature. As can be seen, our method consistently
and significantly improves upon the results of both works on
all Kodak images, for all the four masks tested. Although
Table I cannot be considered a thorough comparative study
of inpainting methods, it provides very encouraging evidence
on the competitiveness of PACO in this case.

4This is a dataset originally released on a CD by Kodak which was later
released to the public. Many sites host a copy of this dataset. We provide our
own link at http://iie.fing.edu.uy/˜nacho/data/images/kodak_
color.7z and our grayscale versions at http://iie.fing.edu.uy/

˜nacho/data/images/kodak_color.7z.

Effect of stride: Although we did not develop the matter
of using strides larger than one, our implementation actually
handles this case. In Figure 7 we show the inpainting quality
metrics on the test image as a function of the stride (both
vertical and horizontal), including s = 1 (the case discussed
in this paper), which is the one shown in Figure 3. As the
execution time is linear in the number of patches, and these
are two dimensional images, a stride of size k will decrease
the running time by a factor of k2. It can be readily seen that
the results are excellent even for s = 5 (a 50% overlap in this
case since the patches are of 10×10 pixels), at a computational
cost which is 1/25th of the original one. The case s = 10
corresponds to the case when there is no overlapping at all,
and thus the PACO constraint does not have any effect on the
result.

C. Audio inpainting

In order to show the flexibility of the framework we report
on a sample result on audio denoising. In this case we used
the first 15 seconds of a downmixed and downsampled (from
44.1Khz to 11Khz) version of an audio track as the ground
truth.5 We then erased fragments of random length at random
positions, so that we obtained an average of one erasure every
10000 samples (about one every second), each lasting on 1000
samples (0.1s) on average. The PACO inpainting algorithm was
then run on windows of length 1024, a stride of s = 16 (1/64th
overlap), no reweighting, λ = 0.25, and a maximum of 1000
iterations and convergence tolerance of 1e−8.

VI. CONCLUDING REMARKS AND FUTURE WORK

We have presented PACO, a simple and effective method
for solving the issue of overlapping patches in patch-based
signal processing problems by requiring explicitly that patches
coincide at their intersections. In contrast to other works
which have dealt with this issue, our method does not require
weighting functions, which usually involve further assump-
tions on the data and the degradation model, and ad-hoc
decisions. We have shown that the PACO constraint results
in non-empty feasible sets. We also provided a general and
simple optimization method for solving the general PACO
problem which accommodates a wide array of problems and
possible variants beyond patch stitching. The split formulation
and the consensus constraint are naturally suited for parallel
processing of very large scale signals such as astronomical
images. On top of all this, we have tested the method to two
classic signal processing problems, denoising and inpainting,
surpassing the state of the art by a significant margin in the
latter case.

Several research directions open up from here. For example,
we are now working on testing PACO-based variants of already
existing patch-based restoration methods. A massive parallel
implementation for large scale signal processing is also under

5We used the original, lossless version of the composition “Se Parar” by
Conrado Paulino, from the album “Quatro Climas”, which can be found online
in Spotify; the original track and the downsampled segment are included as
supporting material and can be downloaded and reproduced by courtesy of
the composer, who gave us express permission to do so.
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Fig. 5. Inpainting masks 1 to 4 and three sample images from the Kodak dataset. Masks 2 and 4 are more challenging due to the size of the erasures.

Fig. 6. Detail inpainting result on Kodak image #19 and mask #2. Top to
bottom, left to right: mask, original, degraded, inpainted. The differences
between the original and the degraded are unnoticeable with the exception
of the large square to the center-right. RMSE= 7.74, SSIM=0.96315.

Fig. 7. Effect of stride on image inpainting performance. The case 1
corresponds to the dense case studied throughout this paper. The case s = 10
corresponds to no overlapping at all, in which case the PACO constraint does
not apply. Note that the results for s = 2 are practically identical in all aspects
to s = 1, and even s = 5 (50% overlap) gives an excellent SSIM≈ 0.999.

Fig. 8. Audio inpainting example. Here we show details on the inpainting
of three erasures (two small on the left column and one large on the right).
Each column shows, from top to bottom, the output (recovered) waveform,
original waveform, and their difference; which differs from zero only where
the erasures took place. The error is larger for the wider erasure (about 300
consecutive samples), than with the shorter ones (about 100 samples each);
this is similar to what happens with large erasures in images. In all cases,
however, the output achieves a good degree of continuity at the borders,
making the result much more pleasant to listen to – the interested reader
can do so by downloading the corresponding supporting material.

Fig. 9. Frequency analysis of the audio inpainting example. Here we show,
from top to bottom, the spectrograms corresponding to the original, input
(erased), and estimated output waveforms including the three erasures shown
in Figure 8; these are clearly marked as white bands in the middle graph.
As can be seen, the spectrogram of the recovered signal (below) is able to
recover much of the low-frequency content of the signal; the high frequency
harmonics are also recovered but appear fainted with respect to the original.
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Fig. 10. Image denoising on test image. Top row: images corrupted with Gaus-
sian noise with σ = 5, 10 and 20 respectively. Bottom row: corresponding
denoised images: RMSE=1.9, 3.2, 5.2; SSIM=0.9252, 0.8940, 0.8554 The
results in this case are decent, but quite behind the state of the art [29].

way. Other directions include to extend the concept of patch
consensus to targets other than signal restoration. Last but
not least, a deep analysis of the exceptionally good inpainting
performance of PACO is required, as it is not obviously derived
from or explicitly sought by our simple inpainting method.

APPENDIX

A. Proximal operator for the penalized least squares cost
function

We have from (22) and Ṽ = DỸ that

proxλfd (B) = arg minA

{∑
ij wij |aij |+

1
2τ ‖A− Ṽ‖2F + 1

2λ‖A−B‖2F
}
.

Since (27) is separable in the elements of A, we can reduce
the problem to solving the following scalar proximal operator,

proxλfd (bij) = arg mina {wij |a|+
1
2τ (a− ṽij) + 1

2λ (a− bij)
}
.

Let ∂|a| denote the sub-differential of the absolute value
function, ∂|a| = sgn(a), a 6= 0 and ∂|0| = [−1, 1]. The
optimality condition is obtained after differentiating (27),

0 ∈ wij∂|aij |+ (1/τ)(aij − ṽij) + (1/λ)(aij − bij). (27)

We have that aij = 0 whenever

0 ∈ wij [−1, 1]− (1/τ)ṽij − (1/λ)bij

(1/τ)ṽij + (1/λ)bij ∈ [−wij , wij ]
|λṽij + τbij | ≤ λτwij (28)

For aij > 0 to happen we need that

0 = wij + (1/τ)(aij − ṽij) + (1/λ)(aij − bij)
0 = τλwij + λ(aij − ṽij) + τ(aij − bij)

(λ+ τ)aij = λṽij + τbij − λτwij . (29)

Analogously for aij < 0 we arrive at

(λ+ τ)aij = λṽij + τbij + λτwij . (30)

Dividing (28)–(30) by (λ+ τ) and defining θij = λτ
λ+τwij we

arrive at

aij = Tθij
(

λ

λ+ τ
ṽij +

τ

λ+ τ
bij

)
.
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