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Levitation of solids and liquids by ultrasonic standing waves is a promising technique to

manipulate materials without contact. When a small particle is introduced in certain areas of a

standing wave field, the acoustic radiation force pushes the particle to the pressure node. This

movement is followed by oscillations of the levitated particle. Aiming to investigate the particle

oscillations in acoustic levitation, this paper presents the experimental and numerical

characterization of the dynamic behavior of a levitated sphere. To obtain the experimental

response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a

damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a

mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the

sphere is theoretically predicted by the Gor’kov theory and the viscous forces are modeled by two

damping terms, one term proportional to the square of the velocity and another term proportional to

the particle velocity. The proposed model was experimentally verified by using different values of

sound pressure amplitude. The comparison between numerical and experimental results shows that

the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901579]

I. INTRODUCTION

Trapping, separation, and manipulation of small par-

ticles by ultrasonic standing waves have many potential

applications in biology,1–6 medicine,7 analytical chemis-

try,8,9 and in other fields.10–14 Handling techniques by ultra-

sonic standing waves have been applied in many different

studies, which include separation of lipids from blood,7 mea-

surement of surface tension of liquids,13 and in the develop-

ment of amorphous drugs.15 Contrary to other noncontact

manipulation techniques, such as magnetic levitation,16 opti-

cal manipulation,17 and electrostatic levitation,18 acoustic

handling techniques have the main advantage of not requir-

ing any special property of the levitated particle.

The manipulation of particles by ultrasonic waves is

possible due to the acoustic radiation force produced by a

standing wave field,19–21 which can act on particles

immersed in liquids2,4,22–24 and gases.25–35 Depending on

the density and the compressibility of the particle, and on the

characteristics of the surrounding medium, the acoustic force

can move the particle to a pressure node or to an antinode of

a standing wave.4 In the case of acoustic levitation in air, the

acoustic radiation force normally moves the particle to a

pressure node, because in most cases, the particle density is

much higher than that of air and its compressibility is much

lower than that of the surrounding fluid.27

Although it has been demonstrated that acoustic manip-

ulation of particles can be performed in liquids and in the

air, the manipulation in the air is more challenging, because

the acoustic radiation force on the particle should be strong

enough to counteract the gravity force. This contrasts with

the manipulation of particles in liquids, in which the main

contribution to the levitation is the buoyancy force.

Recently, new acoustic devices have been proposed to sus-

pend and to manipulate particles in the air.25–29,36,37 With

the manipulation systems proposed by Koyama and

Nakamura, it is possible to transport particles in a linear25

and in a circular trajectory.26 The manipulation concept pro-

posed by Foresti and coauthors allows the noncontact trans-

portation and merging of liquid droplets in the air.27 Another

device proposed by the same authors was able to rotate par-

ticles and droplets in the air.29

In acoustic levitation experiments, samples of liquids

and solids are normally inserted into the levitator by using

tweezers and syringes. In order to fully explore the potential

of acoustic levitation, an automatic system for sample

deployment can increase the applicability of noncontact

manipulation systems. For liquid samples, automatic drop

dispensers have been used to insert droplets into the levita-

tor.9,38 In a single-axis acoustic levitator, consisting of an ul-

trasonic transducer and a reflector, a solid particle lying on

the reflector can be lifted to the pressure node by just turning

on the levitator. In both cases, liquid and solid samples oscil-

late around the equilibrium levitation position after they are

inserted into the pressure node of the standing wave field.

Oscillations of the levitated particle can also occur in
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noncontact manipulation devices, especially when the posi-

tion of the pressure node is rapidly switched, causing the par-

ticle to jump from one position to another.29,36 Oscillational

instabilities of the levitated particle have also been

reported,39–42 possibly caused by acoustic streaming43,44 and

a time delay in the acoustic cavity response.40

The objective of this paper is to investigate the sample

dynamics after it is inserted into the pressure node of an

acoustic levitator. To study the sample dynamics, a small

sphere is placed on the reflector of a single-axis acoustic lev-

itator, and when the levitator is switched on, the acoustic

radiation force pushes the sphere to the pressure node of the

standing wave field. Immediately after the levitator is turned

on, the sphere presents a damped oscillatory motion around

the pressure node. This motion is recorded by a high speed

camera and a tracking algorithm is used to obtain the sphere

vertical position as a function of time. The sphere motion is

analyzed by using the Finite Element Method and the

Gor’kov theory,20 which are applied to calculate the acoustic

radiation force that acts on the sphere.

II. THEORY

The acoustic radiation force that acts on a small sphere

in the presence of a standing wave field can be calculated by

applying the Gor’kov theory.20 According to this theory, the

force F that acts on a rigid sphere of radius R is calculated

by

F ¼ �rU; (1)

where U is the Gor’kov potential, given by20,21

U ¼ 2pR3 hp2i
3qc2

� qhu2i
2

" #
; (2)

where hp2i and hu2i are the mean square amplitudes of the

sound pressure and velocity, respectively, q is the density of

the fluid medium and c is the fluid sound velocity. The

Gor’kov theory assumes that the sphere radius is much

smaller than the wavelength k.

In this paper, the acoustic radiation force is produced by

a single-axis acoustic levitator consisting of a 20.34 kHz ul-

trasonic transducer with a concave radiating surface and a

concave reflector. The complete description and the geome-

try of this levitator were previously presented34 as well as its

nonlinear characterization.45 In order to predict the acoustic

radiation force that acts on a sphere, a linear Finite Element

Method (FEM) was used to simulate the acoustic pressure

and velocity distributions in the air gap between the trans-

ducer and the reflector. Due to the large number of elements

to ensure the convergence in a 3D simulation, the air gap

was discretized with 2D axisymmetric elements with a mesh

size of 0.2 mm, neglecting the influence of the groove on the

acoustic radiation force. The simulation was performed by

considering a sound velocity of 340 m/s and an air density of

1.2 kg/m3. With the pressure and velocity distributions, the

Gor’kov potential was calculated for a sphere of 3 mm diam-

eter. The acoustic pressure amplitude and the Gor’kov

potential are presented in Fig. 1. In the simulations, the

Gor’kov potential was obtained for the levitator operating at

20 340 Hz with transducer displacement amplitude of 1 lm

and separation distance of 28.6 mm between the transducer

and the reflector. As the numerical model is linear, only one

simulation is required to obtain the pressure distribution in

the air gap between the transducer and the reflector.

Although the pressure distribution of Fig. 1(a) was deter-

mined using a transducer displacement amplitude of 1 lm, it

can be multiplied by a constant to find the pressure distribu-

tion for other displacement amplitudes. For a separation dis-

tance of 28.6 mm, a standing wave with three levitation

positions is produced. These positions are denoted by the

cross marks in Fig. 1. The levitation positions are located

along the levitator main axis at 4.5, 14.2, and 24.0 mm from

the bottom of the reflector. To find the spheres levitation

positions, the gravity force was assumed to be small when

compared to the acoustic forces. In this case, the particles

are considered to be levitating at the positions of minimum

acoustic potential, although, in practice, the equilibrium

position is slightly below the positions of minimum Gor’kov

potential due to the gravity force.

Figure 2 presents the Gor’kov potential along the z-axis.

This figure also presents the vertical component of the acous-

tic radiation force that acts on the 3-mm sphere as a function

of z. As can be observed in this figure, the acoustic radiation

force is zero at the positions of minimum Gor’kov potential.

It is also interesting to note that if the sphere is slightly

FIG. 1. (a) Simulated acoustic pressure and (b) Gor’kov potential calculated

for a sphere of 3 mm diameter. In the simulation, the transducer face vibrates

at 20 340 Hz with displacement amplitude of 1 lm and a separation distance

of 28.6 mm was considered between the transducer and the reflector.
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displaced from the minimum of the Gor’kov potential, the

acoustic radiation force pushes the particle back to the equi-

librium position. In the case of positions of maximum

Gor’kov potential, the acoustic forces are also zero, but these

positions are not used for levitation, because they correspond

to unstable equilibrium states.

In the neighborhood of a minimum Gor’kov potential,

the potential can be approximated by a parabola and the

acoustic radiation force can be described by a linear restoring

force (Hooke’s law).21,46 This allows to define an equivalent

elastic constant for each equilibrium position, and as a con-

sequence of Eq. (2), the equivalent elastic constant should

have a quadratic dependence on the acoustic pressure

amplitude.

In this paper, all levitation analysis is performed for the

bottom equilibrium point located at z¼ 4.5 mm. By fitting a

linear curve to the vertical acoustic radiation force of Fig. 2

in a neighborhood of z¼ 4.5 mm, it was obtained an equiva-

lent elastic constant of 0.130 N/m. To relate the equivalent

elastic constant with the pressure amplitude, a reference

position should be specified. Here, the position of the second

pressure antinode, located at r¼ 0, z¼ 19.1 mm, is defined

as the reference position. The pressure amplitude at this

point is denoted by P2, and in the experiments, the pressure

amplitude is measured in order to estimate the elastic con-

stant of the bottom equilibrium point. The relationship

between the elastic constant k and the pressure amplitude P2

is obtained from the FEM simulation. By considering an

elastic constant k¼ 0.130 N/m, a pressure amplitude P2 of

4033 Pa, and assuming a quadratic dependence between k
and P2, we can express the elastic constant k as a function of

P2 by

k ¼ ð8� 10�9ÞP2
2; (3)

where the unit of k is N/m and P2 is in Pa. As shown in Eq.

(3), the elastic constant of the bottom levitation point can be

calculated by using the pressure amplitude P2 at the refer-

ence position z¼ 19.1 mm.

To study the particle dynamics, it is necessary to take

into account the forces that act on the levitated object.

Assuming a particle motion in the neighborhood of a mini-

mum Gor’kov potential, the acoustic force can be modeled

by a classic spring, with a restoring force proportional to the

displacement from the equilibrium position. The other force

acting on the mass is the viscous force, which can be

described as a function of the sphere velocity. This function

can be developed in powers of the velocity, and in the pres-

ent case, the friction forces are represented by the first two

terms of the power series, with a damping term proportional

to the velocity and another term proportional to the square of

the velocity. The Newton’s equation for the levitated particle

is then

m
d2z

dt2
¼ �b2

dz

dt

���� dz

dt

����� b1

dz

dt
� kz� mg; (4)

where m is the mass of the particle, b1 is the linear damping

coefficient, b2 is quadratic damping coefficient, and g is the

gravitational acceleration. Recently, Foresti and

Poulikakos29 proposed a dynamic model similar to that

described by Eq. (4) to predict the particle oscillations in a

noncontact manipulation system. The main difference

between the two models is that Eq. (4) includes a damping

term proportional to the square of the velocity.

III. EXPERIMENTAL SETUP

The dynamic behavior of an acoustically levitated 3 mm

diameter polypropylene sphere, of density 875 kg/m3, is

investigated with the experimental setup of Fig. 3. The levi-

tator used in the experiments was described in a previous pa-

per34 and it basically consists of a 20.34 kHz Langevin

ultrasonic transducer with a concave radiating surface, and a

concave reflector. To facilitate the visualization of the sphere

by the high-speed camera, a groove with a width of 5.0 mm

and a depth of 5.6 mm was made on the surface of the reflec-

tor, as can be observed in Fig. 4. The distance between the

transducer and the reflector is adjusted to approximately

28.6 mm, which results in three pressure nodes, as shown in

Fig. 1. By comparing Fig. 1 with Fig. 4, the positions of min-

imum Gor’kov Potential can be observed to agree with the

spheres levitation positions of Fig. 4. Due to the angle at

which the picture was taken, the upper sphere cannot be seen

in Fig. 4.

FIG. 2. Simulated Gor’kov Potential and the vertical component of the

acoustic radiation force that acts on a 3-mm diameter sphere along the z-

axis. The Gor’kov Potential and the acoustic radiation force were obtained

for the same conditions of Fig. 1.

FIG. 3. Experimental setup.
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The ultrasonic transducer is driven by a function genera-

tor (33250A, Agilent Technologies Inc., Santa Clara, CA)

connected to a power amplifier (800A3, Amplifier Research

Corp., Souderton, PA). The function generator was pro-

grammed to produce a 20 340 Hz sine wave in bursts of 20 s,

with 10 s on and 10 s off. In the experiments, the polypropyl-

ene sphere is placed on the reflector, and each time the out-

put of the function generator is switched on, the acoustic

radiation force pushes the sphere to the bottom pressure

node (z¼ 4.5 mm) of the standing wave. After 10 s, the func-

tion generator is switched off and the sphere falls on the

reflector. This cycle is recorded by a high-speed camera

(Fastec Inline 1000, Fastec Imaging Corp., San Diego, CA).

To synchronize the video recording with the function genera-

tor, the camera was triggered by the function generator. The

dynamics of the polypropylene sphere was investigated by

measuring the position of the sphere as a function of time for

different values of acoustic pressure amplitude.

To investigate the dependence of the levitator elastic

constant k with the pressure amplitude and to compare the

experimental values of k with that predicted by Eq. (3), it is

necessary to measure the sound pressure P2 at (r¼ 0,

z¼ 19.1 mm). Although the sound pressure can be measured

by using a probe microphone,47,48 it can disturb the sound

field and change the acoustic radiation force on the sphere.

To overcome this problem, the sound pressure amplitude P2

at z¼ 19.1 mm is measured indirectly by using a Laser

Doppler Vibrometer (LDV) (OFV-534 Sensor Head with an

OFV-5000 controller, Polytec GmbH, Germany). The mea-

surement of the sound pressure with a LDV is based on the

change of the refractive index of air with the sound pres-

sure.25,49 Assuming a constant acoustic pressure amplitude P
over the laser path and that the laser beam is reflected by a

reflective surface, the LDV velocity output vLDV can be cal-

culated by49

vLDV ¼
2pf

c2q
n� 1

n
PL; (5)

where n is the refractive index of air, P is the pressure ampli-

tude, f is the frequency, and L is the distance between the

LDV sensor head and the reflective surface. However, it is

clearly seen in Fig. 1(a) that the pressure amplitude varies

with the radiation position. In this case, Eq. (5) is replaced

by

vLDV ¼
ð

2pf

c2q
n� 1

n
P rð Þdr; (6)

and the integral is calculated over the laser path. To measure

the pressure amplitude P2, the LDV was positioned such that

the laser beam passed through the point (r¼ 0, z¼ 19.1 mm).

To convert the LDV velocity output vLDV to pressure ampli-

tude P2, Eq. (6) was numerically integrated (from

r¼�25 mm to 25 mm, with z¼ 19.1 mm) by using the simu-

lated pressure distribution of Fig. 1(a). At the laboratory con-

ditions (0.92 atm, 20 �C) and for a laser wavelength of

633 nm, the refractive index of air corresponds to

n¼ 1.0002496. From Eq. (6), a LDV velocity output of

15.3 mm/s was obtained. As this velocity output was calcu-

lated by considering a pressure amplitude P2¼ 4033 Pa and

there was a linear relation between the pressure and the ve-

locity output, the following relationship was obtained:

P2½Pa� ¼ 263594vLDV ½m=s�: (7)

This relation was used to obtain the experimental pres-

sure amplitude P2 from the vibrometer velocity measure-

ments. To acquire the velocities signals, the vibrometer

velocity output was connected to a 14-bit analog to digital

converter (CS144002U, Gage Applied Technologies Inc.,

Lachine, Quebec, Canada). Due to the high intensity sound

field in the air gap between the transducer and the reflector,

the LDV signals contain harmonics of the fundamental fre-

quency, which were caused by nonlinear propagation in the

air.45 The experimental value of P2 was determined by calcu-

lating the Fast Fourier Transform (FFT) of the vibrometer

signal and then taking the amplitude of the fundamental fre-

quency of vLDV , which was replaced in Eq. (7) to obtain P2.

IV. RESULTS AND DISCUSSION

Using the experimental setup of Fig. 3, the step response

of the levitating sphere is acquired by using different excita-

tion levels. A typical sequence of frames obtained from the

high-speed camera is presented in Fig. 5. This figure was

obtained by setting the camera frame rate to 500 frames per

second, and it shows the sphere position as a function of

time immediately after the levitator is turned on. At the top

left (frame A) of Fig. 5, the sphere is located at the bottom of

the reflector. The subsequent frames clearly show an oscilla-

tory motion of the sphere around the equilibrium levitation

position. By applying a tracking algorithm, the position of

the sphere was obtained as a function of time, as shown at

the bottom right of Fig. 5.

In Fig. 5, the sphere is at rest at the bottom of the levita-

tor (instant A). Then, the acoustic field is switched on and

the sphere is pushed by the acoustic force to the maximum

vertical position (instant B). The spheres oscillates around

the equilibrium level (instants C, D, and E), and them the

oscillations are damped due to the friction forces. A picture

of the sphere at its equilibrium position is presented at the

FIG. 4. Acoustic levitation of two polypropylene spheres at the pressure

nodes of the single-axis acoustic levitator.
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bottom left of Fig. 5. This state is only perturbed by the fluc-

tuations in the pressure field. In this experiment, the levitator

was operating with a pressure amplitude P2 of 8.1 kPa. This

pressure amplitude was obtained indirectly by applying Eq.

(7) to convert the LDV velocity output to P2. For this pres-

sure amplitude, the sphere oscillates with a resonance fre-

quency of approximately 31 Hz around the equilibrium

position.

In this paper, the position of the sphere as a function of

time is modeled by using Eq. (4). This equation requires four

parameters: the sphere mass m, and three additional parame-

ters b1, b2, and k. The polypropylene sphere has a mass m of

12.2 mg, which was measured by an electronic balance. The

other three parameters are adjusted to fit the experimental

response. In order to obtain parameters b1, b2, and k, the

adjustment is performed in a temporal window of 2.5 s,

which starts from the first maximum of z. The coordinate

system is translated such that the sphere equilibrium position

corresponds to z¼ 0. Using this new coordinate system and

starting from the maximum value of z, the response can be

modeled as a mass-spring-damper system with initial condi-

tions of zero velocity and finite displacement at t¼ 0. As the

model proposed in Eq. (4) cannot be analytically solved, the

differential equation is numerically integrated using a

Runge-Kutta algorithm. The iterative procedure to find the

parameters consists in minimizing three objective functions

in parallel, each of them linked to a specific parameter. The

elastic constant k is determined by calculating the FFT of the

sphere position z(t). Then, an optimization algorithm is used

to find the value of k that minimizes the difference between

the peaks of the numerical and the experimental FFT curves,

as shown in Fig. 6. The objective functions to adjust b1 and

b2 are the error in the energy of the signal in a predefined

temporal window. For the parameter b2, corresponding to the

quadratic damping, the temporal window corresponds to the

first 0.75 s. The temporal window for the linear damping

coefficient b1 was set to the last 0.75 s of the time interval.

Figure 7 shows the result of the proposed model after the

adjustment of the coefficients b1, b2, and k.

The comparison between the numerical and experimen-

tal sphere vertical position shows that the proposed model

can predict the frequency of the sphere oscillations and the

dependence of the oscillations amplitude with time. The

sphere position obtained by the numerical model was deter-

mined by considering two damping parameters. In order to

understand the influence of the damping parameters b1 and

b2 on the damped oscillatory motion of the sphere, three dif-

ferent damping models are investigated. The first one

(b1> 0, b2¼ 0) considers a damping force proportional to

FIG. 5. The top figure presents a

sequence of frames of a 3 mm polypro-

pylene sphere obtained immediately

after the acoustic levitator is turned on.

The time between frames corresponds

to 2 ms. The bottom left figure shows

the picture of the levitating sphere at

its equilibrium position, with the center

dot representing its center of mass, and

the bottom right figure shows the posi-

tion of the sphere as a function of time.

A video of the sphere position as a

function of time is available online.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4901579.1]

FIG. 6. Comparison between the experimental and numerical frequency

spectrum of the vertical sphere position.
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the velocity. In the second model (b1¼ 0, b2> 0), the damp-

ing force is proportional to the square of the velocity, and in

the third model (b1> 0, b2> 0), the damping force is

described as the linear combination of the two previous

damping types. Figure 8 shows the influence of each damp-

ing model on the amplitude decay of the sphere oscillations.

The experimental amplitude curve of Fig. 8 was determined

by calculating the envelope of the vertical position of the

sphere.

For a linear damping model (b1> 0, b2¼ 0), the motion

equation can be solved analytically, resulting in an exponen-

tial decay of the oscillation amplitude. This exponential decay

is represented by a straight line when plotted in a logarithmic

scale. From the experimental amplitude curve of Fig. 8, one

can observe that for times greater than 0.75 s, the logarithm of

the amplitude decreases linearly with time. In this case, a lin-

ear damping model can describe the sphere damping.

However, for times smaller than 0.75 s, the damping behavior

is better described by a quadratic damping model (b1¼ 0,

b2> 0). For the time interval between 0 and 2.5 s. two

damping parameters (b1> 0, b2> 0) are necessary to describe

the sphere damping behavior. In Fig. 8, the results of two lin-

ear damping models were presented. In the first linear model,

it is imposed the same initial conditions as in the quadratic

and two parameters model. In the second linear damping

model, the initial conditions are arbitrary and only the ampli-

tude decay at the final time interval is adjusted. From the

results of Fig. 8, the Mean Square Error (MSE) between each

numerical amplitude curve and the experimental curve was

determined in the time interval between 0 and 2.5 s. It was

obtained a MSE of 0.048 mm2 for the first linear damping

model, a MSE of 0.034 mm2 for the second linear model,

0.0016 mm2 for the quadratic damping model and 9.9 � 10�4

mm2 for the two parameters damping model. The comparison

between the three different damping models shows that only

the two parameters damping model represents the sphere

behavior in the time interval between 0 and 2.5 s.

Figure 9 presents the linear damping force and the quad-

ratic damping force for the two parameters damping model.

As can be observed in Fig. 9, few instants after the levitator

is switched on, the quadratic damping is the mainly responsi-

ble for the sphere energy dissipation, and after 1.5 s, the lin-

ear damping has a major influence on the viscous forces. For

times greater than 1.5 s, the oscillation behavior can be repre-

sented by a classical mass-spring-damper system, in which

the viscous force is proportional to the particle velocity.

According to Eq. (2), the Gor’kov potential is propor-

tional to the square of the acoustic pressure. Consequently,

the elastic constant in the neighborhood of a point of a mini-

mum potential is also proportional to the square of the pres-

sure amplitude. For the particular case of the minimum

potential located at z¼ 4.5 mm, it was found numerically

that the elastic constant k can be calculated from the pressure

amplitude P2 by using Eq. (3). In order to verify this equa-

tion experimentally, the elastic constant k was obtained by

using the adjustment procedure described previously. A total

of 18 position curves z(t) were considered in the adjustment

procedure, with each curve being obtained for a different

transducer excitation amplitude. The comparison between

the numerical elastic constant obtained from Eq. (3) with

FIG. 7. Comparison between the sphere vertical position obtained experi-

mentally and predicted by the proposed model after the parameters

adjustment.

FIG. 8. Comparison between different damping models. In the first linear

damping model, the b1 coefficient was adjusted by considering an initial ver-

tical position equal to 1.6 mm and in the second linear damping model, this

condition was not imposed. FIG. 9. Amplitude of the damping forces as a function of time.
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that obtained experimentally from the adjustment procedure

is presented in Fig. 10.

The numerical elastic constant k predicted by Eq. (3)

can be used to determine the sphere oscillation frequency as

a function of the pressure amplitude P2. From the elastic

constant k given by Eq. (3), the mass m¼ 12.2 mg of the

polypropylene sphere, and assuming that the harmonic oscil-

lator is lightly damped, the numerical oscillation frequency

can be calculated by

f ¼ 1

2p

ffiffiffiffi
k

m

r
¼ 4:07� 10�3ð ÞP2; (8)

where f is in Hertz and P2 is in Pa. A consequence of Eq. (8)

is that the oscillation frequency of the sphere increases line-

arly with the pressure amplitude P2. Another consequence is

that the oscillation frequency goes to zero when the pressure

amplitude is decreased to zero, although in practice the

acoustic radiation force that acts on the sphere is not strong

enough to keep the particle levitating for low values of pres-

sure amplitude. The comparison between the numerical and

experimental oscillation frequencies are presented in Fig. 11.

This figure shows that there is a good agreement between nu-

merical and experimental oscillation frequencies, especially

for pressure amplitudes below 15 kPa. A possible cause for

the differences that occurred above 15 kPa can be caused by

the nonlinear effects.50,51 When the levitator operates with

high pressure amplitudes, part of the energy is transferred

from the fundamental frequency to its harmonics, which can

change the sound pressure distribution and the acoustic radi-

ation force that acts on the particle.45,52 As the numerical

model used to obtain the acoustic radiation force is based on

the linear acoustic theory, it cannot predict the influence of

the harmonics on the oscillation frequency of the particle.

The particle oscillatory behavior described in this paper

occurs not only when the particle is lifted from a surface, but

also in a wide range of levitation experiments. The oscilla-

tions typically occur after inserting a small sample in the

pressure node of the levitator. Recently, Chainani and coau-

thors38 presented a new levitation setup in which a droplet

launcher was used to insert small droplets into the levitator.

In a demonstration of their setup, a small droplet is levitating

and another droplet is launched into the pressure node, which

causes the collision with the levitating droplet. After the col-

lision, the two droplets merge and the resulting droplet oscil-

lates radially around the equilibrium position. In an

interesting paper, Foresti and Poulikakos29 presented a new

acoustic manipulation device that is able to control the posi-

tion of small particles in a circular trajectory. By controlling

the amplitude of three different transducers, they could

change the position of the minimum acoustic potential, and

consequently, the particle is manipulated, because the parti-

cle follows the position of the minimum potential. In some

conditions, the position of the minimum potential changes

abruptly, which causes the particle to jump to the new mini-

mum potential position. After the particle jumps, there is an

oscillatory motion of the levitated particle, which is similar

to the oscillatory motion described herein.

In this paper, it was investigated the damped oscillatory

behavior of a solid sphere in a standing wave field. Although

many potential applications of acoustic levitation require the

levitation of liquid drops, it is simpler to analyze the dynam-

ics of a solid sphere. When compared to a solid sphere, the

dynamics of a levitating liquid drop is considerably more

challenging to analyze, because there are many factors that

can affect the dynamics of a levitating drop, such as the in-

ternal streaming53 and the oscillations of the drop surface.54

Several papers have shown that the Gor’kov theory can

accurately predict the levitation position of particles in

acoustic levitators30,34,39,55 and in noncontact manipulation

systems.27–29,35 The results presented in this paper shows

that the Gor’kov theory can be used to describe the particles

oscillations after it is inserted into the pressure node of an

acoustic levitator.

V. CONCLUSIONS

This paper described the oscillatory behavior of a small

sphere after it is lifted by the acoustic radiation force in a

single-axis acoustic levitator. It was found that the oscilla-

tory motion of the sphere, which occurs immediately after

the detaching from the surface, can be described by a mass-

spring-damper system. It was also verified that the viscous

FIG. 10. Comparison between the numerical and experimental elastic con-

stant k for the position of minimum acoustic potential located at the levitator

main axis at z¼ 4.5 mm.

FIG. 11. Comparison between the numerical and experimental oscillation

frequency of a polypropylene sphere of 3 mm diameter.
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force that acts on the sphere should be described by two

damping coefficients, one proportional to the particle veloc-

ity and the other proportional to the square of the velocity.

Additionally, it was theoretically and experimentally shown

that the acoustic radiation force that acts on the sphere in the

neighborhood of a pressure node can be modeled by a spring,

with an elastic constant proportional to the square of the

pressure amplitude. A consequence of the quadratic depend-

ence of the elastic constant on the pressure amplitude is that

the particle oscillation frequency is proportional do the pres-

sure amplitude. The comparison between the numerical and

experimental oscillation frequencies shows that the Gor’kov

theory could accurately predict the acoustic radiation force

that acts on the polypropylene sphere. The indirect measure-

ment of the sound pressure amplitude with a Laser Doppler

Vibrometer was also presented. As the pressure amplitude is

not constant over the laser path, the Finite Element Method

was used to obtain a relation between the velocity output of

the vibrometer with the acoustic pressure amplitude. The

good agreement between the experimental and numerical os-

cillation frequencies not only shows that the Gor’kov theory

can predict the acoustic radiation force on the particle, but

also that the pressure amplitude can be accurately deter-

mined by using a Laser Doppler Vibrometer.
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