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Abstract— Computer Tomographic Colonography, combined
with computer-aided detection (CAD), is a promising emerging
technique for colonic polyp analysis. We present a CAD scheme
for polyp flagging based on new texture and geometric features
that consider both the information in the candidate polyp
location and its immediate surrounding area, testing multiple
sizes. The proposed algorithm is tested with ground truth data,
including flat and small polyps, with very promising results.

Index Terms— Virtual Colonoscopy, CT Colonography,
computer-aided detection, colonic polyp detection.

I. INTRODUCTION

Colorectal cancer is the second leading cause of cancer-
related deaths in the United States (only surpassed by lung
cancer), and the third cause worldwide. The early detection
of polyps is fundamental, allowing to reduce mortality rates
up to 90%. Nowadays, optic colonoscopy (OC) is the most
used detection method because of its relative high perfor-
mance. However, this technique is invasive, very expensive,
and still prone to miss polyps, making it hard to use in large
screening campaigns.

The Computer Tomographic Colonography (CTC), or Vir-
tual Colonoscopy, is a promising alternative technique that
emerged in the 90’s. It uses volumetric Computed Tomo-
graphic data of the cleansed and air-distended colon. It is less
invasive and less expensive than optical colonoscopy, and as
a consequence, much more suitable for screening campaigns.
It also has the potential to outperform OC, in particular for
small or flat polyps, or those in certain regions of the colon
where OC has been shown to perform poorly.

Nevertheless, it takes more than 15 minutes for a trained
radiologist to complete a CTC study, and the performance of
the overall optical colonoscopy is still better. In this regard,
Computer-Aided Detection (CAD) algorithms can play a key
role, assisting the expert to both reduce the procedure time
and improve its accuracy.

Colon lesions can be classified according to their size,
measured in diameter; and according to their morphology,
into pedunculated, sessile, or flat. Flat lesions are of special
interest because these are an important source of false
negatives in CTC, and they are around 10 times more likely
to contain high-grade epithelial dysplasia [1], [2], [3].

The goal of the work presented in this paper is to flag
colon regions with high probability of being polyps. Toward
this aim, we introduce geometrical and textural features that
take into account not only the candidate polyp region, but
the surrounding area as well. For each region, several sizes
are explored. This way, our proposed CAD algorithm is
able to precisely detect candidate polyps by measuring local
variations of these features.

The rest of the paper is organized as follows. In Section
II we briefly review prior work. In Section III we introduce
our proposed CAD method. In Section IV we describe the
evaluation method and results. We conclude in Section V.

II. CAD VIRTUAL COLONOSCOPY TODAY

Automatic polyp detection is a very difficult problem,
not only because the polyps can have different shapes and
sizes, but also because they can be located in very different
surroundings. Most of the previous work on CAD of colonic
polyps is based on geometric features, some of them use
additional CT image density information, but none of them
takes into account the (geometric and texture) information
of the tissues around the polyp. This is a crucial issue since
it is well known that the tissue properties of the colon vary
with location. This is part of the contribution of this work.

Early work on CAD methods by Vining et al., [4] is based
on the detection of abnormal wall thickness. Summers et
al., [5], detect polyps greater than 10mm by computing
mean curvatures and sphericity ratio, and present results
over a large screening patient population. Yoshida et al., [6],
use the Shape Index and Curvedness as geometric features,
applying fuzzy clustering and then using directional gradient
concentration to reduce false positives. Paik et al., [7], also
use geometrical features, but computing the Surface Normal
Overlap (SNO) instead of calculating curvatures. Wang et
al., [8], compute a global curvature, extract an ellipsoid, and
analyze morphological and texture features on this ellipsoid.
They reach a 100% sensitivity with a relative low FP rate,
using heuristic thresholds and improvable texture features.
Hong et al., [9], map the 3D surface to a rectangle, use
2D clustering, and reduce false positives with shape and
texture features. Sundaram et al., [10], compute curvatures
via the Smoothed Shape Operators method, and use principal
curvatures and Gaussian curvatures to detect polyps. Götkürk
et al., [11], propose a technique to reduce the false positives
based on features calculated from three random orthogonal
sections, and then classifying with SVM. Proprietary algo-
rithms, [12], [13], have been reported as well, but with no
better results than the methods listed above. However, the
comparison is delicate since different databases were used.

The main goal we are addressing in this paper is to
highlight/flag all the candidate polyps, so the radiologist
can quickly check them. It is crucial to minimize the false
negatives, keeping a reasonable false positives number. We
achieve this by a two-step process: in the first one we
perform a multiscale search of candidates in order to capture
the appropriate polyp size, and in the second one we use
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the proposed differential geometry and textural features to
eliminate false positives.

III. FEATURE EXTRACTION

For each case study, we consider as input both the CT
images and the segmentation of the colon volume (i.e., a 3D
image whose values are 1 inside the colon and zero outside).
We smooth this image with a Gaussian filter and then extract
the surface of the colon, using the marching cubes algorithm
[14]. The result is a triangulated surface S.

The first stage of the CAD algorithm consists in detecting
surface patches that are candidates of being polyps. The com-
plete set of connected points that constitutes the candidate
patch is found growing the patch and keeping the one that
maximizes the geometric dissimilarity with the surrounding
area, in the sense of the features presented below (the starting
point for this growth is also detailed below).

It is important to analyze the context in which the candi-
date patch is located, not only because different sections of
the colon present different characteristics, but also because
polyps can be situated over different structures such as folds
or plain colonic wall. In this regard, most of the features
described below take into account the local information of
the area around the candidate patch. Polyps are then char-
acterized not only by their intrinsic geometry and structure,
but also by their relationship with the surrounding area.

A. Geometrical features

A good measure of the local shape of a surface is the
so-called Shape Index [15]

S := − 2

π
arctan

(
κmax + κmin
κmax − κmin

)
,

where κmax and κmin are the principal curvatures computed
from S. A complementary measure called curvedness C, is
defined as

R :=

√
κ2max + κ2min

2
, C :=

2

π
lnR

Under this coordinate transformation, the (κmax, κmin)
plane is transformed into the (S,C) plane. While the value
of S is scale-invariant and measures the local shape of the
surface, the value of C indicates how pronounced it is. Figure
1 shows different shapes and their corresponding Shape
Index. Due to the chosen orientation, Shape Index values
close to −1 are of special interest for polyp detection.

Considering the Shape Index as a function S : S → R, for
each local minimum x0 of S, the level sets around x0 are
tested as candidate patches, and the level set that maximizes
the distances between the histograms described below, is the
final considered patch.

Given a candidate patch P , a ring R around P is
calculated, in order to consider geometrical measurements
with respect to the area surrounding the patch. The ring is
calculated by dilating the patch P a certain geodesic distance.
The geodesic distance computation is made using the algo-
rithm in [16]. Figure 2 shows a candidate patch (actually
a true polyp), and its corresponding ring. Histograms of

Fig. 1. Some shapes and their corresponding Shape Index values.

the Shape Index values are then computed for the patch
P and the ring R, and two different distances between
them are computed: the L1 distance and the symmetric
Kullback-Leibler divergence. These two features measure
the geometric local variation of the candidate patch P . We
assume that there are no other polyps in R or that they do
not significantly affect the statistics on the ring.

Fig. 2. Ring (in blue) surrounding a candidate polyp (in orange).

Additionally, three different variance values for the
smoothing Gaussian filter are used1, in order to obtain
three different surfaces when applying the marching cubes
algorithm to each one of the filtering results. The original
patch is projected to these surfaces, and the mean values of
the respective Shape Index computation are three additional
multiscale geometric features.

Finally, the Shape Factor of the patch is also considered,
defined as SF := 4π·Area

Perimeter2 . This feature allows to favor
circle-like patches (like the polyp patch in Figure 2), avoiding
elongated patches (like the false positives in folds).

We then end-up with a total of 6 geometric features
for detecting candidate polyps, namely: L1 and Kullback-
Leibler distance between Shape Index histograms of patches
and corresponding rings, the three mean values of Shape
Index computed with different Gaussian filters, and the Shape
Factor.

1the original one, (0.75, 0.75, 0.75), and two more, (0.25, 0.25, 0.25)
and (1.25, 1.25, 1.75).



B. Texture features

Due to the differences in biological activity of polyp cells,
the gray-level of the CT image and its texture can be very
helpful for detecting polyps. Some work has been done
on the inclusion of texture features (inside the candidate
polyps only), in order to reduce false positives [8]. According
to the results reported there, there is a lot of room for
improvement in texture features. We propose both the use
of new texture features and the inclusion of the information
on the candidate’s surrounding area.

First, for each polyp candidate P ⊂ S , a volume V1 is
calculated, containing the patch P and a portion of the inner
tissue next to the patch. A second volume V2, surrounding V1
is calculated, containing normal tissue, in order to compare
it with the polyp candidate tissue.

The features chosen are a subset of the classi-
cal Haralick texture features [17], namely, entropy, en-
ergy, contrast sumMean, and homogeneity. Seven co-
occurrence matrices (considering seven directions in
R3, (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 0), (0, 1, 1) and
(1, 1, 1)) are calculated with the voxels of V1, and all the
five features are averaged over the seven directions. The
analogous computation is made for V2, and the differ-
ences between the two volumes, for each texture feature,
is considered. Additionally, the mean gray levels of the
voxels in both volumes is computed, and their difference is
considered as a feature. In this way, six texture features are
considered. This approach for computing the texture features,
measuring differences with the surrounding area, leads to
better discrimination than the features computed just for V1,
as demonstrated next.

IV. EXPERIMENTAL RESULTS

Ten cases of the WRAMC database were used to test
the proposed CAD algorithm,2 with 19 polyps detected by
optical colonoscopy, including two flat polyps. Among these
19 polyps, just one is 13mm in size, and the other 18 are
between 4mm and 10mm in size.

At the first stage, around 1300 candidates patches were
extracted (including the 19 polyps). For the purpose of
classifying them with classical machine learning techniques,
while dealing with the class imbalance problem, two ap-
proaches were considered: the synthetic over-sampling tech-
nique (SMOTE [18]) and Cost-Sensitive learning [19].

Although SMOTE is widely used, even in medical applica-
tions [20], we have observed that it artificially increases the
performance of the classifier. For example, generating five
features with random values (N (0, 1) for both classes), and
classifying with Naive Bayes, values of Area Under the ROC
Curve of almost 0.8 were reached (when 0.5 was expected,
as the features were independent and identically distributed).

In order to get more realistic results, we chose Cost-
Sensitive learning for training and evaluating the classifier.
The relative cost of false positives with respect to false

2Data provided courtesy of Dr. Richard Choi, Virtual Colonoscopy Center,
Walter Reed Army Medical Center.

negatives is chosen as the minimum value that ensures 100%
sensitivity. The numerical results listed below were obtained
by classifying with SVM, after normalizing the data; Naive
Bayes performed similarly.

Using the leave-one-out strategy (i.e., testing with one case
and training with the rest) all the 19 polyps were detected
with an average of 6.6 FP per patient case. Considering that
the false positives caused by segmentation errors are not
direct “responsibility” of the CAD algorithm, the number
of FP reduces to 3.2. In this evaluation scenario, the average
number of FP per polyp was 3.5 (1.7 FP per polyp, without
considering those due to segmentation errors). These values
are comparable with the state-of-the-art results (same order).
A more precise comparison of results is pointless, since in
general each work considers its own database.

Texture features
Absolute Differential

Sensitivity 95% 100%
FP per case (all) 7.5 6.6

FP per case (excluding seg. errors) 4.1 3.2

TABLE I
COMPARISON OF ABSOLUTE AND DIFFERENTIAL TEXTURE FEATURES.

Table I shows the comparison between absolute and dif-
ferential texture features. The classification was performed
using all the geometric features and either the absolute
texture features (computed just for V1), or the differential
texture features, using the leave-one-out strategy. The results
show that, when combined with the differential geometric
features, differential texture features are significantly more
discriminative than the absolute ones.
A. Geometric and texture importance

Although the geometrical features are the most discrim-
inative ones, the texture still plays a fundamental role in
the classification. Indeed, adding the texture features to the
geometric ones, the sensitivity reaches 100%, and at the same
time the false positives rate decreases 35%.

Figure 3 shows a detected polyp, where the geometry is
crucial, because the gray-level does not present considerable
local variations. This is specially true in polyps located over
tagged material. On the other hand, in the flat polyp of
Figure 4, the geometry is weakly discriminating (although
the measure considering the ring enhances the detectability),
and the texture features lead to a correct classification.

Texture information is very important also because it is
more robust to segmentation errors, as the texture features are
computed integrating from the volumetric data itself (once
the local volumes have been considered). Moreover, the
differential texture features (the differences between V1 and
V2), outperform the absolute texture features (just computed
in V1), as shown in Table I.

B. Qualitative analysis of False Positives

In addition to the number of false positives, it is very
important to study how these FP patches look, since some
of them can be quickly ruled out by the expert and some can



Fig. 3. Polyp with no texture information.

Fig. 4. Polyp with texture information, but weak geometric information.

be avoided by improving the segmentation step. About half
of the false positives were caused by segmentation errors,
like the ones in Figure 5. About a 10% were in fold sections
of the wall, Figure 6, and another 10% were parts of the
insufflation tube. The rest of the false positives are quite
reasonable, in the sense that they are sections of the colon
that are polyp-like shaped, Figure 6.

Fig. 5. False positives due to clear segmentation errors.

Fig. 6. False positives: fold and patch similar to flat lesion.

V. CONCLUSIONS

We introduced a CAD algorithm for candidate polyp
flagging based on new geometric and texture features. In
addition to the incorporation of the Haralick texture features,
the main novelties of this work are in the consideration of the
surrounding area for each candidate polyp (we compute dif-
ferential features instead of absolute ones), and the strategy
of testing regions of multiple sizes. Differential features are
significantly more discriminative than the absolute features,
as they emphasize local deviations of the geometry and
texture over the colon. Testing regions of different sizes

allows to precisely delimitate polyps. The obtained quantita-
tive results are very promising, detecting 100% of the true-
polyps, including flat and small ones. Improvement of the
segmentation and, in collaborations with radiologists, finding
features that are tailored to polyp-like geometries, can further
improve these results.
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[6] H. Yoshida and J. Näppi, “Three-dimensional computer-aided diagno-
sis scheme for detection of colonic polyps,” IEEE Trans Med Imaging,
vol. 20, no. 12, pp. 1261–74, 2001.

[7] D. S. Paik, C. F. Beaulieu, G. D. Rubin, B. Acar, R. B. Jeffrey,
J. Yee, J. Dey, and S. Napel, “Surface normal overlap: a computer-
aided detection algorithm with application to colonic polyps and lung
nodules in helical CT,” IEEE Trans Med Imaging, vol. 23, no. 6,
pp. 661–75, 2004.

[8] Z. Wang, Z. Liang, L. Li, X. Li, B. Li, J. Anderson, and D. Harrington,
“Reduction of false positives by internal features for polyp detection in
CT-based virtual colonoscopy,” Med Phys, vol. 32, no. 12, pp. 3602–
16, 2005.

[9] W. Hong, F. Qiu, and A. Kaufman, “A pipeline for Computer Aided
Polyp Detection,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 861–868, 2006.

[10] P. Sundaram, A. Zomorodian, C. Beaulieu, and S. Napel, “Colon polyp
detection using smoothed shape operators: preliminary results,” Med
Image Anal, vol. 12, no. 2, pp. 99–119, 2008.
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