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Abstract 
Static analysis can be a valuable strategy to improve 

the quality of embedded software at a lower development 
cost. In this paper, we have surveyed ten different 
free/open source tools that perform static software 
analysis and evaluated their use in embedded software. 
Experimental results show that the studied tools present 
widely different results, and most of them are not ready 
to be applied to embedded systems. Furthermore, we 
discuss possible directions to improve the use of static 
analysis tools in the embedded domain.   

1.  Introduction 
Embedded systems assume day by day a more 

important position in global economy, with a worldwide 
market evaluated in 160 billion Euros and an annual 
growth of 9 percent [1]. Although embedded systems are 
more commonly associated to a hardware platform and 
hardware constraints, current systems are actually 
defined by the software whereas a single hardware can be 
used for a number of applications. This means that 
embedded software is no longer composed only of a few 
lines of assembly code, but can reach thousands of lines 
in assembly and high-level code, whose verification 
becomes a non-trivial task.  

Differently than other kind of software though, 
embedded software has a stronger dependency with the 
hardware platform and development tools used. Even 
though high-level languages such as C or C++ have been 
largely used in this domain, the necessary proximity to 
the hardware requires the use of tools (compilers and 
associated development tools) that are tailored to specific 
processors or boards.  

Despite these differences, software bugs in embedded 
systems are as or even more important matter than any 
other computer system, since failures in these systems 
can cause not only health risks, but also great money 
losses. According to [2], 80 percent of embedded systems 
fails are caused by the embedded software, and not the 
hardware. Therefore, testing embedded software is not 
only a very important task, but also a very expensive one. 

Static code analysis is applied to detect defects early 
in the coding process and it focuses on typical errors that 

otherwise remain undetected during compilation. Thus, 
static analysis (SA) is applied after the code successfully 
compiles and before the start of code inspections and unit 
testing [3]. Since the cost of correcting bugs increases 
with the product development level, static analysis tools 
are an important aid for any software development 
process. For an embedded software, the most prominent 
advantage of SA is the ability of detecting faults that can 
compromise the reliability and safety of the embedded 
application, as reinforced in [3]. However, the potential 
reduction in the development costs and time-to-market 
are also very important reasons to include SA in the 
embedded software development flow.   

Free and open source software (FOSS) is a widely 
adopted solution in software industry, providing quality 
de facto standards tools for developers, and helping to 
not aggravate projects costs [4]. This is not different with 
testing tools. Two good examples of FOSS testing tools 
are the ubiquitous unit testing framework for Java, JUnit, 
and the GUI testing tool, Selenium. Many automated 
static analysis FOSS tools have been developed in recent 
years to detect software anomalies such as dead code and 
unused data, security leaks, null pointer dereferencing, 
endless loops, and floating-point arithmetic problems [5-
14]. 

Due to the advantages presented both by the static 
analysis tools and free/open source software, we have 
surveyed FOSS tools that perform static software 
analysis and evaluated their use in embedded software. 
Our main objective is to determine the quality of FOSS 
static analysis tools when applied, out of the box, to 
embedded software written in the C language, which is 
by far the most used language in embedded software 
development [1]. Although a few works have evaluated 
the use of static analysis tools [15,16], to the best of our 
knowledge, this is the first evaluation of such tools in the 
embedded software domain. Our experimental results 
show that such an evaluation brings an important 
contribution towards the definitions of a cost-effective 
verification strategy for embedded software. 

The paper is organized as follows: Section 2 reviews 
the main concepts of static analysis and related works. 
Section 3 presents our experimental setup, including the 
tools and the used embedded applications. Section 4 



presents the results which are discussed in section 6. 
Section 5 concludes the paper.  

2. Static Analysis and Related Work 
Embedded software testing has been studied in the last 

few years and a number of approaches can be found [17-
24]. Some dynamic testing strategies are proposed for 
specific platforms [17-20, 24]. Another line of research is 
the use of formal approaches, such as model-checking, 
for system verification [22, 26, 27]. Both approaches are 
of great value but suffer from the lack of flexibility and 
scalability.  

Static analysis, on the other hand, has shown to be an 
effective tool for early fault detection at reasonable costs 
[25]. In the embedded systems domain, static analysis is 
normally associated to the verification of temporal 
properties of real-time systems [26, 27] or to code 
optimization [28]. In another application of SA, 
Reinbacher et. al. propose in [29] its use to support 
model checking of Intel MCS-51 microcontroller code by 
providing information that can be statically extracted 
from the source assembly code. Venkitamaran and Gupta 
[30] also analyze assembly code to automatically check 
whether code standards defined for a family of DSP 
processors have been followed by third party software 
developers. 

A few authors have considered SA for fault detection 
in the embedded domain. Kowshik et.al. propose in [31] 
an annotation-based static analysis tool that verifies that 
critical components of an embedded control system do 
not depend on unmonitored values of other non-critical 
components. A critical component is the one that must 
ensure specific system conditions, but may share data 
with other system components. The SA tool requires an 
annotated C code (with restrictions on shared memory 
pointer usage) which is pre-processed before being 
analyzed. Chacko and Jacob [32] present a code 
validation tool that analyses machine-level code against a 
set of rules based on the instruction set and architectural 
features of a particular processor. The rules are defined 
after a thorough analysis of various instructions used for 
configuring the integrated peripherals of the target 
processor. Despite its effectiveness, one important 
disadvantage of this technique is its dependency on the 
set of rules that must be defined for each target processor, 
which constantly changes in an embedded development 
process.  

Considering the challenges associated to the 
application of dynamic test strategies for embedded 
software, and the need for a test method less tied to a 
specific platform and more adaptable to available 
development frameworks, we evaluate in this paper the 
suitability of available FOSS static analysis tools to the 
embedded software domain. Zitser et. al. [15] have 
performed a similar evaluation but considering non-

embedded open-source code (specifically network-
related applications). The main goal of our study is to 
determine whether traditional analysis and tools are 
sufficient to deal with the specificities of the embedded 
software. Furthermore, we determine possible 
improvements that can help to increase the coverage of 
static analysis in the embedded domain. Our 
experimental results show that this type of analysis must 
still be improved to deal with the specificities of 
embedded software without loosing generality and 
flexibility.   

3. Experimental Setup 

3.1 Open Source/Free Static Analysis Tools 
The Internet is a vast repository of FOSS static 

analysis tools. There are plenty of them available through 
it. We have experimented several of those, and selected 
the most prominent ones and those we did not find 
problems to run.  

In this paper, we have surveyed ten different free/open 
source SA tools and evaluated their use in embedded 
system’s software. Our main objective is to determine the 
quality of these analysis tools when applied, out of the 
box, to embedded software written in the C language, 
which is by far the most used language in embedded 
software development. A short description of the tools 
used in this work is presented below: 

•  GCC [5]: the C Compiler from the GNU 
Compiler Collection is available for a huge number of 
embedded platforms. It may sound a little bit strange that 
the GCC compiler is on this list, but in fact it is able to 
warn of some code problems that can be statically 
discovered. We used it as a reference, to check the kind 
of problems a common compiler would be able to detect. 

• CBM [6]: is a Bounded Model Checker for 
ANSI-C and C++ codes. It claims to verify buffer 
overflow, pointer safety, exceptions and user-specified 
assertions. It is also aimed for embedded software and 
supports dynamic memory allocation using malloc and 
new. 

• Splint [7]: is a well-known static analysis tool 
and the newer tool from the “lint” family. It checks C 
programs for security vulnerabilities and programming 
mistakes. According to Splint’s manual, the problems the 
tool can detect are: dereferencing a possibly null pointer, 
using possibly undefined storage or returning storage that 
is not properly defined, type mismatches, with greater 
precision and flexibility than provided by C compilers, 
violations of information hiding, memory management 
errors including uses of dangling references and memory 
leaks, dangerous aliasing, modifications and global 
variable uses that are inconsistent with specified 
interfaces, problematic control flow such as likely 
infinite loops, fall through cases or incomplete switches, 
and suspicious statements, buffer overflow 



vulnerabilities, dangerous macro implementations or 
invocations, and violations of customized naming 
conventions. 

• RATS [8]: Rough Auditing Tool for Security, is 
a tool for scanning C, C++, Perl, PHP and Python source 
code and flagging common security related programming 
errors such as buffer overflows and TOCTOU (Time Of 
Check, Time Of Use) race conditions. 

• mygcc [9]:  mygcc is an extensible version of 
GCC, that can be easily customized by adding user-
defined checks for detecting, for example, memory leaks, 
unreleased locks, or null pointer dereferences. User-
defined checks are performed in addition to normal 
compilation, and may result in additional warning 
messages. GCC already includes many built-in checks 
such as uninitialized variables, undeclared functions, 
format string inspection, etc. Mygcc allows programmers 
to add their own checks that take into account syntax, 
control flow, and data flow information. 

• Yasca [10]: according to its documentation, 
Yasca helps software developers ensuring that 
applications are designed and developed to meet the 
highest quality standards. On practical words it is related 
to quality assurance testing and vulnerability scanning. 
Nevertheless, it does not specify which problems it is 
able to catch. 

• UNO [11]: its main goal is to intercept the three 
most common types of software defects: use of 
uninitialized variable, null-pointer references, and out-of-
bounds array indexing. Also, it allows the specification 
and checking of a broad range of user-defined properties 
that can extend the checking power of the tool in an 
application driven way. Properties can be specified, by 
writing simple C-functions, for instance, for checking 
lock order disciplines, compliance with user-defined 
interrupt masking rules, rules stipulating that all memory 
allocated must be freed, etc. 

• Flawfinder [12]: a program, written in python, 
that examines source code and reports possible security 
weaknesses (“flaws”') sorted by risk level. It works by 
using a built-in database of C/C++ functions with well-
known problems, such as buffer overflow risks, format 
string problems, race conditions, potential shell 
metacharacter dangers and poor random number 
acquisition. 

• Sparse [13]: Sparse provides a set of annotations 
designed to convey semantic information about types, 
such as which address space pointers point to, or which 
locks a function acquires or releases. 

• Cppcheck [14]: it claims to do scope check, 
bound checking, check of deprecated functions, memory 
leaks, redundant if, bad usage of the function strtol, bad 
usage of the function sprintf (overlapping data), division 
by zero, unsigned division, unused struct member, 
passing parameter by value, check how signed char 

variables are used, condition that is always true/false, 
unusual pointer arithmetic, dereferencing a null pointer, 
and incomplete statement. 

3.2 Applications under Test 
To evaluate the previous listed tools, we used five 

different applications written in C: 
1. Mixed Code; 
2. Traffic Lights; 
3. Arduino’s project bootloader; 
4. Darjeeling Virtual Machine; 
5. Dalvik Virtual Machine. 

The purpose of the first application is to evaluate how 
many errors and exactly which errors each tool can 
discover. Therefore, we gathered several examples 
provided by the tools themselves and united them as a 
single test program. This application presents no 
particular embedded system characteristic, but there are a 
total of 17 errors on it. On the other hand, case studies 2 
and 3 are two well tested embedded applications, and 
known to be correctly working. We have not introduced 
any kind of flaw on them, because our objective with 
these two examples was to see how the tools would 
behave when applied to code that is intended to run in 
embedded platforms. The Traffic Lights is an application 
capable of controlling cars and pedestrian traffic lights. It 
was built using the “device driver” philosophy, where 
hardware dependent parts are isolated from the main 
logic of the application. Its functionality is driven by an 
infinite loop, which is a common characteristic in 
embedded system’s applications. Arduino is an open 
source embedded prototyping platform [33]. The 
platform uses a bootloader to simplify onboard 
applications loading, which we used as a test application. 
It is a very hardware dependent application, and includes 
inline assembly onto its code. Finally, the last two case 
studies are implementations of virtual machines. 
Darjeeling is a Java Virtual Machine (JVM) aimed to 
embedded systems [34]. It was designed for use in 8 and 
16 bit microcontroller platforms. In order to achieve this, 
several features from the Java language were dropped, 
making it possible to run meaningful programs in as little 
as 2kB, where other JVMs often require at least several 
hundreds kB of RAM. On the other hand, Dalvik is the 
core runtime of the Google's Android operating system 
and it is optimized to run on low resources computing 
systems, such as smartphones and netbooks [35]. The 
build process of Dalvik VM is automated by the Android 
build system who is based on the make tool and on a set 
of scripts who configure the environment to the build (in 
Darjeeling this is done by an ant script). Such a build 
approach is not unusual for embedded systems, where 
platform-specific code is located in a file hierarchy to 
make it easier the constant changes in the target platform. 
Both Dalvik and Darjeeling have a similar proposal of 



transforming Java's bytecode into an optimized bytecode, 
in order to execute them in an embedded environment. 

Each application can be successfully compiled under 
the x86, ARM, or AVR versions of the C compiler of the 
GNU Compiler Collection. 

4. Experimental Results 
The first three applications were checked one by one 

through the static analyzers. We note that the software 
libraries implementations used by the applications were 
not tested, as they are supposed to be reliable due to the 
extensive use and support.  All SA tools, together with 
documentation, were fairly simple to use. All of them 
work through a command line interface, receiving the list 
of files to analyze as parameters. 

Since each tool has a distinct range of target faults, we 
considered a common set of faults composed of the six 
more common problems addressed by this kind of tools 
according to [3] and one extra problem that is addressed 
by most of the selected tools. The target faults are 
classified in seven types: division by zero (DV), memory 
leak (ML), null pointer dereferences (NP), uninitialized 
variable (UV), buffer overflow (BO), inappropriate cast 
(IC), and local variable pointer return (LV). The local 
variable return error occurs when a pointer to a local 
variable is used as a return of a function as shown in the 
code of Figure 1.  

Figure 1: Example of a local variable return error 

4.1 Evaluation for the Non-embedded 
Application 

Table 1 exhibits the number of errors of each type the 
tools were able to discover in the Mixed Code test suite. 
The last line indicates the total number of errors existed 
for each kind of fault in that application. The two errors 
found by GCC where pointed out when the Wall flag was 
set. The other tools were run several times, using 
different flags, and the total amount of errors among all 
executions is presented in Table 1. Some of the tools 
were configured by external files. With RATS we used 
its default database and for mygcc we used a check file 
available at the tool´s website.  

From Table 1, one can observe that the different tools 
have a completely different range of detected problems. 
Many tools were not able to pinpoint errors they were 
supposed to detect. This is the case, for instance, of 
Flawfinder and RATS, which did not discover any buffer 
overflow. Indeed, both are designed to point security 

weaknesses and they issue a message every time a fixed-
size buffer is found in the code. The message only 
indicates a possible source of error and is issued even if 
the code is actually correct. Splint proved to be the most 
effective tool, evidencing 13 out of 17 known errors. 
Notice that RATS and Flawfinder were not able to find 
any fault.  

Besides the defined subset of faults, some tools were 
able to detect unused variables (which we did not 
consider as a fault), and also gave guidelines for good 
programming practices. Also, Flawfinder classifies the 
source code being analyzed in levels of risk. Strangely, it 
gave some of the lowest risk level to the examples 
application despite the three buffer overflow erros 
present in the code. 

Table 1 – Results for  the Mixed Code Example 

 DZ ML NP UV BO IC LV 
GCC      1 1 

CBMC 1       
Splint  3 4 3  2 1 
RATS        
mygcc  3 1   1 1 
Yasca  1      
UNO    2 2   

Flawfinder        
Sparse      1 1 

Cppcheck  3     1 
# faults in 
the code 1 3 4 3 3 2 1 

All tools but Yasca display their results, by default, in 
the system's command line. Yasca is the only one that 
supplies reports as an HTML file, being by far the most 
polished and well finished one. Cppcheck deserves a 
mention as well, because their results are displayed in a 
very simple, but effective way. Reports of most tools, on 
the other hand, are a little bit confusing, merging together 
the results of the analysis and the messages derived from 
the tool processing steps. 

Thus, the variability of the results presented by 
different AS tools reported in [15] has also been observed 
in our case study. Furthermore, the excessive number of 
false positives often precludes the careful analysis of the 
really important directives provided by the SA tools.   

4.2 Evaluation for Embedded Applications 
When SA tools are fed the embedded applications, a 

successful analysis may require code changes, in order to 
avoid some of the syntax pitfalls presented by the tools. 
Tools CBMC and Splint presented problems. Splint was 
not able to recognize the asm keyword, used for inline 
assembly code in GCC. In order to correctly analyze the 
bootloader application, we had to comment blocks were 
the keyword was used.  

Most flaws reported for the embedded applications 
were false positives. For example, the infinite loop of the 
Traffic Lights application and also a second loop that was 

char 
*function_returns_pointer_to_sta
ck() { 
    char foo[10]; 
    return foo; 
} 

 



controlled by a flag changed by an interrupt were pointed 
out by Splint and CBMC as errors. With CBMC we had 
to comment several lines that, despite correct, were not 
recognized by the tool due to syntax problems. For the 
bootloader application, this problem was such that the 
suitable modified code turned into a completely different 
application, thus invalidating the analysis. 

Since Splint was the one with the best results for both, 
the test code and the first two embedded applications, we 
proceed with the analysis of the virtual machines using 
only Splint.  Still, in both cases, the tool was not able to 
analyze the whole code at once, forcing the division of 
the program into small chunks of code. The analysis of 
Dalvik virtual machine was specially challenging 
because of the automated build process. The Android 
automated build process predefines some environment 
variables which defines the right “include” files that will 
be compiled with the application code. Those “include” 
files are also inspected (although not analyzed) by the 
Splint tool. In Darjeeling, we analyzed each module 
independently, as the analysis in the complete source 
code failed (Splint crashed).  

Similarly to what was observed in Section 4.1, the 
results of the analysis contained a considerable amount of 
irrelevant warning messages, which are not considered as 
real flaws. For both VMs, deliberate coding decisions 
made by developers and common in this type of code, 
were pointed out as errors, even though the code is 
correct. On the other hand, the tool did not detected an 
actual memory leak problem in Darjeeling VM (the 
problem was detected by manual inspection).  

5. Discussion 
Static analysis can play a major role in the design of 

high-quality embedded software with reduced impact in 
development and test costs as well as in time-to-market. 
The use of FOSS SA tools is, in its turn, an interesting 
approach to reduce the dependence on specific platforms 
and to help the design of portable code, which further 
reduces costs and time-to-market.  

However, from the results presented in Section 5, it 
seems clear that available FOSS SA tools do not suffice 
to deal with embedded software. Indeed, the tool that 
presented the best results in terms of number and type of 
faults detected (Splint), still required numerous 
modifications in the source code to analyze typical 
embedded software. An important issue, specially 
important for embedded software, for instance, is the 
need to understand and deal with automatic build 
process, mainly of code that is distributed and can be 
changed in a regular basis. Furthermore, the elevated 
number of false positives together with additional 
misleading results, preclude a careful manual analysis 
over important and real error indications. This happens 
because the programmer easily gets bored by the 

repetition of the same message over again in the output, 
thus loosing interest and completely bypassing similar 
remaining messages.   

Thus, despite the intrinsic limitations of the static 
analysis, we believe that the adaptation of an available 
FOSS SA tool for the embedded domain can not only 
increase the detection rate, but also improve the quality 
of the analysis by focusing on more specific problems. 
For instance, it seems from the results that  analysis is 
performed by the tools in a very local manner whereas 
the analysis of a certain depth in the code can possibly be 
considered to at least reduce the number of false 
negatives. FOSS tools are specially prone to these 
adaptations.   

For example, a kind of checking that is not done by 
the current static analysis tools and could be interesting 
to embedded system are memory boundaries checking. In 
C embedded software it is pretty common to declare 
pointers to memory positions, like in the piece of code 
shown in  Figure 2. 

 
Figure 2: Example of inexistent pointer address 

However, if the hardware platform does not have that 
specific address, the compiler would still compile the 
code without any warnings. 

Similarly, the C standard defines size ranges to all 
language variables. This means that, depending on the 
used compiler, a short could have the same size in bits of 
an int. In the tested analysis tools, cast from two 
variables of those types would be classified as an error, 
what actually would be a false positive. 

In both cases, a basic configuration file with some 
basic information about the target platform would 
suffice. In this sense, since mygcc and RATS are able to 
receive different configurations, are worth a second 
evaluation.  

6. Final Remarks 
This paper discussed the role and applicability of 

static analysis FOSS tools into embedded software. As a 
conclusion, we suggest two possible adaptations to 
currently open-source SA tools to address those 
problems. Current work includes the evaluation of tools 
RATS and mygcc with distinct configuration faults. 
We´re also considering additional embedded applications 
to define exactly the range of faults (specific to 
embedded systems) a static tool can catch in an 
embedded code. Finally, we consider the inclusion of this 
verification approach in a complete and cost-effective 
test methodology for embedded software.   

void 
change_some_memory_position() { 
  int *p = (int *) 0x500000; 
  *p = 5; 
} 
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