
An Evaluation of Free/Open Source Static Analysis Tools Applied to Embedded
Software

 Lucas Torri Guilherme Fachini Leonardo Steinfeld Vesmar Camara Luigi Carro Érika Cota
Universidade Federal do Rio Grande do Sul

PPGC - Instituto de Informática
Po Box 15064, ZIP 91501-970, Porto Alegre, RS, Brazil

{lucas.torri, gjafachini, lsteinfeld, vesmar.camara, carro, erika}@inf.ufrgs.br

Abstract
Static analysis can be a valuable strategy to improve

the quality of embedded software at a lower development
cost. In this paper, we have surveyed ten different
free/open source tools that perform static software
analysis and evaluated their use in embedded software.
Experimental results show that the studied tools present
widely different results, and most of them are not ready
to be applied to embedded systems. Furthermore, we
discuss possible directions to improve the use of static
analysis tools in the embedded domain.

1. Introduction
Embedded systems assume day by day a more

important position in global economy, with a worldwide
market evaluated in 160 billion Euros and an annual
growth of 9 percent [1]. Although embedded systems are
more commonly associated to a hardware platform and
hardware constraints, current systems are actually
defined by the software whereas a single hardware can be
used for a number of applications. This means that
embedded software is no longer composed only of a few
lines of assembly code, but can reach thousands of lines
in assembly and high-level code, whose verification
becomes a non-trivial task.

Differently than other kind of software though,
embedded software has a stronger dependency with the
hardware platform and development tools used. Even
though high-level languages such as C or C++ have been
largely used in this domain, the necessary proximity to
the hardware requires the use of tools (compilers and
associated development tools) that are tailored to specific
processors or boards.

Despite these differences, software bugs in embedded
systems are as or even more important matter than any
other computer system, since failures in these systems
can cause not only health risks, but also great money
losses. According to [2], 80 percent of embedded systems
fails are caused by the embedded software, and not the
hardware. Therefore, testing embedded software is not
only a very important task, but also a very expensive one.

Static code analysis is applied to detect defects early
in the coding process and it focuses on typical errors that

otherwise remain undetected during compilation. Thus,
static analysis (SA) is applied after the code successfully
compiles and before the start of code inspections and unit
testing [3]. Since the cost of correcting bugs increases
with the product development level, static analysis tools
are an important aid for any software development
process. For an embedded software, the most prominent
advantage of SA is the ability of detecting faults that can
compromise the reliability and safety of the embedded
application, as reinforced in [3]. However, the potential
reduction in the development costs and time-to-market
are also very important reasons to include SA in the
embedded software development flow.

Free and open source software (FOSS) is a widely
adopted solution in software industry, providing quality
de facto standards tools for developers, and helping to
not aggravate projects costs [4]. This is not different with
testing tools. Two good examples of FOSS testing tools
are the ubiquitous unit testing framework for Java, JUnit,
and the GUI testing tool, Selenium. Many automated
static analysis FOSS tools have been developed in recent
years to detect software anomalies such as dead code and
unused data, security leaks, null pointer dereferencing,
endless loops, and floating-point arithmetic problems [5-
14].

Due to the advantages presented both by the static
analysis tools and free/open source software, we have
surveyed FOSS tools that perform static software
analysis and evaluated their use in embedded software.
Our main objective is to determine the quality of FOSS
static analysis tools when applied, out of the box, to
embedded software written in the C language, which is
by far the most used language in embedded software
development [1]. Although a few works have evaluated
the use of static analysis tools [15,16], to the best of our
knowledge, this is the first evaluation of such tools in the
embedded software domain. Our experimental results
show that such an evaluation brings an important
contribution towards the definitions of a cost-effective
verification strategy for embedded software.

The paper is organized as follows: Section 2 reviews
the main concepts of static analysis and related works.
Section 3 presents our experimental setup, including the
tools and the used embedded applications. Section 4

presents the results which are discussed in section 6.
Section 5 concludes the paper.

2. Static Analysis and Related Work
Embedded software testing has been studied in the last

few years and a number of approaches can be found [17-
24]. Some dynamic testing strategies are proposed for
specific platforms [17-20, 24]. Another line of research is
the use of formal approaches, such as model-checking,
for system verification [22, 26, 27]. Both approaches are
of great value but suffer from the lack of flexibility and
scalability.

Static analysis, on the other hand, has shown to be an
effective tool for early fault detection at reasonable costs
[25]. In the embedded systems domain, static analysis is
normally associated to the verification of temporal
properties of real-time systems [26, 27] or to code
optimization [28]. In another application of SA,
Reinbacher et. al. propose in [29] its use to support
model checking of Intel MCS-51 microcontroller code by
providing information that can be statically extracted
from the source assembly code. Venkitamaran and Gupta
[30] also analyze assembly code to automatically check
whether code standards defined for a family of DSP
processors have been followed by third party software
developers.

A few authors have considered SA for fault detection
in the embedded domain. Kowshik et.al. propose in [31]
an annotation-based static analysis tool that verifies that
critical components of an embedded control system do
not depend on unmonitored values of other non-critical
components. A critical component is the one that must
ensure specific system conditions, but may share data
with other system components. The SA tool requires an
annotated C code (with restrictions on shared memory
pointer usage) which is pre-processed before being
analyzed. Chacko and Jacob [32] present a code
validation tool that analyses machine-level code against a
set of rules based on the instruction set and architectural
features of a particular processor. The rules are defined
after a thorough analysis of various instructions used for
configuring the integrated peripherals of the target
processor. Despite its effectiveness, one important
disadvantage of this technique is its dependency on the
set of rules that must be defined for each target processor,
which constantly changes in an embedded development
process.

Considering the challenges associated to the
application of dynamic test strategies for embedded
software, and the need for a test method less tied to a
specific platform and more adaptable to available
development frameworks, we evaluate in this paper the
suitability of available FOSS static analysis tools to the
embedded software domain. Zitser et. al. [15] have
performed a similar evaluation but considering non-

embedded open-source code (specifically network-
related applications). The main goal of our study is to
determine whether traditional analysis and tools are
sufficient to deal with the specificities of the embedded
software. Furthermore, we determine possible
improvements that can help to increase the coverage of
static analysis in the embedded domain. Our
experimental results show that this type of analysis must
still be improved to deal with the specificities of
embedded software without loosing generality and
flexibility.

3. Experimental Setup

3.1 Open Source/Free Static Analysis Tools
The Internet is a vast repository of FOSS static

analysis tools. There are plenty of them available through
it. We have experimented several of those, and selected
the most prominent ones and those we did not find
problems to run.

In this paper, we have surveyed ten different free/open
source SA tools and evaluated their use in embedded
system’s software. Our main objective is to determine the
quality of these analysis tools when applied, out of the
box, to embedded software written in the C language,
which is by far the most used language in embedded
software development. A short description of the tools
used in this work is presented below:

• GCC [5]: the C Compiler from the GNU
Compiler Collection is available for a huge number of
embedded platforms. It may sound a little bit strange that
the GCC compiler is on this list, but in fact it is able to
warn of some code problems that can be statically
discovered. We used it as a reference, to check the kind
of problems a common compiler would be able to detect.

• CBM [6]: is a Bounded Model Checker for
ANSI-C and C++ codes. It claims to verify buffer
overflow, pointer safety, exceptions and user-specified
assertions. It is also aimed for embedded software and
supports dynamic memory allocation using malloc and
new.

• Splint [7]: is a well-known static analysis tool
and the newer tool from the “lint” family. It checks C
programs for security vulnerabilities and programming
mistakes. According to Splint’s manual, the problems the
tool can detect are: dereferencing a possibly null pointer,
using possibly undefined storage or returning storage that
is not properly defined, type mismatches, with greater
precision and flexibility than provided by C compilers,
violations of information hiding, memory management
errors including uses of dangling references and memory
leaks, dangerous aliasing, modifications and global
variable uses that are inconsistent with specified
interfaces, problematic control flow such as likely
infinite loops, fall through cases or incomplete switches,
and suspicious statements, buffer overflow

vulnerabilities, dangerous macro implementations or
invocations, and violations of customized naming
conventions.

• RATS [8]: Rough Auditing Tool for Security, is
a tool for scanning C, C++, Perl, PHP and Python source
code and flagging common security related programming
errors such as buffer overflows and TOCTOU (Time Of
Check, Time Of Use) race conditions.

• mygcc [9]: mygcc is an extensible version of
GCC, that can be easily customized by adding user-
defined checks for detecting, for example, memory leaks,
unreleased locks, or null pointer dereferences. User-
defined checks are performed in addition to normal
compilation, and may result in additional warning
messages. GCC already includes many built-in checks
such as uninitialized variables, undeclared functions,
format string inspection, etc. Mygcc allows programmers
to add their own checks that take into account syntax,
control flow, and data flow information.

• Yasca [10]: according to its documentation,
Yasca helps software developers ensuring that
applications are designed and developed to meet the
highest quality standards. On practical words it is related
to quality assurance testing and vulnerability scanning.
Nevertheless, it does not specify which problems it is
able to catch.

• UNO [11]: its main goal is to intercept the three
most common types of software defects: use of
uninitialized variable, null-pointer references, and out-of-
bounds array indexing. Also, it allows the specification
and checking of a broad range of user-defined properties
that can extend the checking power of the tool in an
application driven way. Properties can be specified, by
writing simple C-functions, for instance, for checking
lock order disciplines, compliance with user-defined
interrupt masking rules, rules stipulating that all memory
allocated must be freed, etc.

• Flawfinder [12]: a program, written in python,
that examines source code and reports possible security
weaknesses (“flaws”') sorted by risk level. It works by
using a built-in database of C/C++ functions with well-
known problems, such as buffer overflow risks, format
string problems, race conditions, potential shell
metacharacter dangers and poor random number
acquisition.

• Sparse [13]: Sparse provides a set of annotations
designed to convey semantic information about types,
such as which address space pointers point to, or which
locks a function acquires or releases.

• Cppcheck [14]: it claims to do scope check,
bound checking, check of deprecated functions, memory
leaks, redundant if, bad usage of the function strtol, bad
usage of the function sprintf (overlapping data), division
by zero, unsigned division, unused struct member,
passing parameter by value, check how signed char

variables are used, condition that is always true/false,
unusual pointer arithmetic, dereferencing a null pointer,
and incomplete statement.

3.2 Applications under Test
To evaluate the previous listed tools, we used five

different applications written in C:
1. Mixed Code;
2. Traffic Lights;
3. Arduino’s project bootloader;
4. Darjeeling Virtual Machine;
5. Dalvik Virtual Machine.

The purpose of the first application is to evaluate how
many errors and exactly which errors each tool can
discover. Therefore, we gathered several examples
provided by the tools themselves and united them as a
single test program. This application presents no
particular embedded system characteristic, but there are a
total of 17 errors on it. On the other hand, case studies 2
and 3 are two well tested embedded applications, and
known to be correctly working. We have not introduced
any kind of flaw on them, because our objective with
these two examples was to see how the tools would
behave when applied to code that is intended to run in
embedded platforms. The Traffic Lights is an application
capable of controlling cars and pedestrian traffic lights. It
was built using the “device driver” philosophy, where
hardware dependent parts are isolated from the main
logic of the application. Its functionality is driven by an
infinite loop, which is a common characteristic in
embedded system’s applications. Arduino is an open
source embedded prototyping platform [33]. The
platform uses a bootloader to simplify onboard
applications loading, which we used as a test application.
It is a very hardware dependent application, and includes
inline assembly onto its code. Finally, the last two case
studies are implementations of virtual machines.
Darjeeling is a Java Virtual Machine (JVM) aimed to
embedded systems [34]. It was designed for use in 8 and
16 bit microcontroller platforms. In order to achieve this,
several features from the Java language were dropped,
making it possible to run meaningful programs in as little
as 2kB, where other JVMs often require at least several
hundreds kB of RAM. On the other hand, Dalvik is the
core runtime of the Google's Android operating system
and it is optimized to run on low resources computing
systems, such as smartphones and netbooks [35]. The
build process of Dalvik VM is automated by the Android
build system who is based on the make tool and on a set
of scripts who configure the environment to the build (in
Darjeeling this is done by an ant script). Such a build
approach is not unusual for embedded systems, where
platform-specific code is located in a file hierarchy to
make it easier the constant changes in the target platform.
Both Dalvik and Darjeeling have a similar proposal of

transforming Java's bytecode into an optimized bytecode,
in order to execute them in an embedded environment.

Each application can be successfully compiled under
the x86, ARM, or AVR versions of the C compiler of the
GNU Compiler Collection.

4. Experimental Results
The first three applications were checked one by one

through the static analyzers. We note that the software
libraries implementations used by the applications were
not tested, as they are supposed to be reliable due to the
extensive use and support. All SA tools, together with
documentation, were fairly simple to use. All of them
work through a command line interface, receiving the list
of files to analyze as parameters.

Since each tool has a distinct range of target faults, we
considered a common set of faults composed of the six
more common problems addressed by this kind of tools
according to [3] and one extra problem that is addressed
by most of the selected tools. The target faults are
classified in seven types: division by zero (DV), memory
leak (ML), null pointer dereferences (NP), uninitialized
variable (UV), buffer overflow (BO), inappropriate cast
(IC), and local variable pointer return (LV). The local
variable return error occurs when a pointer to a local
variable is used as a return of a function as shown in the
code of Figure 1.

Figure 1: Example of a local variable return error

4.1 Evaluation for the Non-embedded
Application

Table 1 exhibits the number of errors of each type the
tools were able to discover in the Mixed Code test suite.
The last line indicates the total number of errors existed
for each kind of fault in that application. The two errors
found by GCC where pointed out when the Wall flag was
set. The other tools were run several times, using
different flags, and the total amount of errors among all
executions is presented in Table 1. Some of the tools
were configured by external files. With RATS we used
its default database and for mygcc we used a check file
available at the tool´s website.

From Table 1, one can observe that the different tools
have a completely different range of detected problems.
Many tools were not able to pinpoint errors they were
supposed to detect. This is the case, for instance, of
Flawfinder and RATS, which did not discover any buffer
overflow. Indeed, both are designed to point security

weaknesses and they issue a message every time a fixed-
size buffer is found in the code. The message only
indicates a possible source of error and is issued even if
the code is actually correct. Splint proved to be the most
effective tool, evidencing 13 out of 17 known errors.
Notice that RATS and Flawfinder were not able to find
any fault.

Besides the defined subset of faults, some tools were
able to detect unused variables (which we did not
consider as a fault), and also gave guidelines for good
programming practices. Also, Flawfinder classifies the
source code being analyzed in levels of risk. Strangely, it
gave some of the lowest risk level to the examples
application despite the three buffer overflow erros
present in the code.

Table 1 – Results for the Mixed Code Example

 DZ ML NP UV BO IC LV
GCC 1 1

CBMC 1
Splint 3 4 3 2 1
RATS
mygcc 3 1 1 1
Yasca 1
UNO 2 2

Flawfinder
Sparse 1 1

Cppcheck 3 1
faults in
the code 1 3 4 3 3 2 1

All tools but Yasca display their results, by default, in
the system's command line. Yasca is the only one that
supplies reports as an HTML file, being by far the most
polished and well finished one. Cppcheck deserves a
mention as well, because their results are displayed in a
very simple, but effective way. Reports of most tools, on
the other hand, are a little bit confusing, merging together
the results of the analysis and the messages derived from
the tool processing steps.

Thus, the variability of the results presented by
different AS tools reported in [15] has also been observed
in our case study. Furthermore, the excessive number of
false positives often precludes the careful analysis of the
really important directives provided by the SA tools.

4.2 Evaluation for Embedded Applications
When SA tools are fed the embedded applications, a

successful analysis may require code changes, in order to
avoid some of the syntax pitfalls presented by the tools.
Tools CBMC and Splint presented problems. Splint was
not able to recognize the asm keyword, used for inline
assembly code in GCC. In order to correctly analyze the
bootloader application, we had to comment blocks were
the keyword was used.

Most flaws reported for the embedded applications
were false positives. For example, the infinite loop of the
Traffic Lights application and also a second loop that was

char
*function_returns_pointer_to_sta
ck() {
 char foo[10];
 return foo;
}

controlled by a flag changed by an interrupt were pointed
out by Splint and CBMC as errors. With CBMC we had
to comment several lines that, despite correct, were not
recognized by the tool due to syntax problems. For the
bootloader application, this problem was such that the
suitable modified code turned into a completely different
application, thus invalidating the analysis.

Since Splint was the one with the best results for both,
the test code and the first two embedded applications, we
proceed with the analysis of the virtual machines using
only Splint. Still, in both cases, the tool was not able to
analyze the whole code at once, forcing the division of
the program into small chunks of code. The analysis of
Dalvik virtual machine was specially challenging
because of the automated build process. The Android
automated build process predefines some environment
variables which defines the right “include” files that will
be compiled with the application code. Those “include”
files are also inspected (although not analyzed) by the
Splint tool. In Darjeeling, we analyzed each module
independently, as the analysis in the complete source
code failed (Splint crashed).

Similarly to what was observed in Section 4.1, the
results of the analysis contained a considerable amount of
irrelevant warning messages, which are not considered as
real flaws. For both VMs, deliberate coding decisions
made by developers and common in this type of code,
were pointed out as errors, even though the code is
correct. On the other hand, the tool did not detected an
actual memory leak problem in Darjeeling VM (the
problem was detected by manual inspection).

5. Discussion
Static analysis can play a major role in the design of

high-quality embedded software with reduced impact in
development and test costs as well as in time-to-market.
The use of FOSS SA tools is, in its turn, an interesting
approach to reduce the dependence on specific platforms
and to help the design of portable code, which further
reduces costs and time-to-market.

However, from the results presented in Section 5, it
seems clear that available FOSS SA tools do not suffice
to deal with embedded software. Indeed, the tool that
presented the best results in terms of number and type of
faults detected (Splint), still required numerous
modifications in the source code to analyze typical
embedded software. An important issue, specially
important for embedded software, for instance, is the
need to understand and deal with automatic build
process, mainly of code that is distributed and can be
changed in a regular basis. Furthermore, the elevated
number of false positives together with additional
misleading results, preclude a careful manual analysis
over important and real error indications. This happens
because the programmer easily gets bored by the

repetition of the same message over again in the output,
thus loosing interest and completely bypassing similar
remaining messages.

Thus, despite the intrinsic limitations of the static
analysis, we believe that the adaptation of an available
FOSS SA tool for the embedded domain can not only
increase the detection rate, but also improve the quality
of the analysis by focusing on more specific problems.
For instance, it seems from the results that analysis is
performed by the tools in a very local manner whereas
the analysis of a certain depth in the code can possibly be
considered to at least reduce the number of false
negatives. FOSS tools are specially prone to these
adaptations.

For example, a kind of checking that is not done by
the current static analysis tools and could be interesting
to embedded system are memory boundaries checking. In
C embedded software it is pretty common to declare
pointers to memory positions, like in the piece of code
shown in Figure 2.

Figure 2: Example of inexistent pointer address

However, if the hardware platform does not have that
specific address, the compiler would still compile the
code without any warnings.

Similarly, the C standard defines size ranges to all
language variables. This means that, depending on the
used compiler, a short could have the same size in bits of
an int. In the tested analysis tools, cast from two
variables of those types would be classified as an error,
what actually would be a false positive.

In both cases, a basic configuration file with some
basic information about the target platform would
suffice. In this sense, since mygcc and RATS are able to
receive different configurations, are worth a second
evaluation.

6. Final Remarks
This paper discussed the role and applicability of

static analysis FOSS tools into embedded software. As a
conclusion, we suggest two possible adaptations to
currently open-source SA tools to address those
problems. Current work includes the evaluation of tools
RATS and mygcc with distinct configuration faults.
We´re also considering additional embedded applications
to define exactly the range of faults (specific to
embedded systems) a static tool can catch in an
embedded code. Finally, we consider the inclusion of this
verification approach in a complete and cost-effective
test methodology for embedded software.

void
change_some_memory_position() {
 int *p = (int *) 0x500000;
 *p = 5;
}

7. References
[1] C. Ebert e C. Jones, “Embedded Software: Facts, Figures,
and Future”, Computer, vol. 42, 2009, pp. 42-52.
[2] Y.K. Jooyoung Seo, “Which Spot Should I Test for
Effective Embedded Software Testing?,” 2nd. Intl. Conference
on Integration and Reliability Improvement, Jul. 2008.
[3] D. Brook & Metrowerks, "Improving Embedded Software
Test Effectiveness in Automotive Applications", Embedded
Systems Europe, vol. 8, no. 55, pp. 16-17, February 2004.
[3] Chelf,B; Ebert,C. "Ensuring the Integrity of Embedded
Software with Static Code Analysis", IEEE Software, vol. 26,
no. 3, pp. 96-99, May/June, 2009.
[4] D. A. Wheeler, "Why Open Source Software / Free
Software (OSS/FS, FLOSS, or FOSS)? Look at the Numbers!".
http://www.dwheeler.com/oss_fs_why.html, 2007 [Accessed
Oct. 7, 2009]
[5] "GCC, the GNU Compiler Collection - GNU Project - Free
Software Foundation (FSF)". http://gcc.gnu.org/. [Accessed:
Oct. 7, 2009].
[6] "The CBMC Homepage". http://www.cprover.org/cbmc/.
[Accessed: Oct. 7, 2009].
[7] "Splint Home Page". http://www.splint.org/. [Accessed:
Oct. 7, 2009].
[8] "RATS - Rough Auditing Tool for Security"
http://www.fortify.com/security-resources/rats.jsp. [Accessed:
Oct. 7, 2009].
[9] "mygcc". http://mygcc.free.fr/. [Accessed: Oct. 7, 2009].
[10] "Yasca - Yet Another Source Code Analyzer"
http://www.yasca.org/. [Accessed: Oct. 7, 2009].
[11] "Uno Tool Synopsis" http://spinroot.com/uno/. [Accessed:
Oct. 7, 2009].
[12] "Flawfinder Home Page"
http://www.dwheeler.com/flawfinder/. [Accessed: Oct. 7,
2009].
[13] "Sparse - a Semantic Parser for C ".
http://www.kernel.org/pub/software/devel/sparse/. [Accessed:
Oct. 7, 2009].
[14] "SourceForge.net: cppcheck".
http://sourceforge.net/apps/mediawiki/cppcheck/index.php?title
=Main_Page. [Accessed: Oct. 7, 2009].
[15] Zitser, M.; Lippmann, R.; Leek, T. “Testing Static
Analysis Tools using Exploitable Buffer Overflows from Open
Source Code”. ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, 2004, pp. 97-106.
[16] Wedyan,F.; Alrmuny,D. and Bieman, James M. “The
Effectiveness of Automated Static Analysis Tools for Fault
Detection and Refactoring Prediction”. International
Conference on Software Testing Verification and Validation,
2009, pp.141-150.
[17] Sung, A.; Choi, B.; Shin, S. “An interface test model for
hardware-dependent software and embedded OS API of the
embedded system,” Comput. Stand. Interfaces, vol. 29, 2007,
pp. 430-443.
[18] Seo, J.; Sung, A.; Choi, B; Kang, S. , "Automating
Embedded Software Testing on an Emulated Target Board,"

Intl. Workshop Automation of Software Test , 2007. pp.9-9, 20-
26 May 2007
[19] Wu, X.; Li, J.; Lee, W. D. and Lee, Y. “Coverage-Based
Testing on Embedded Systems.” 2nd Intl Workshop on
Automation of Software Test. 2007.
[20] Guan, J.; Offutt, J.; Ammann, P. “An Industrial Case
Study of Structural Testing Applied to Safety-critical
Embedded Software”. ISESE’06, September 21–22, 2006, Rio
de Janeiro, Brazil.
[21] Okika, J. C.; Liu, Z; Ravn, A.P.; Siddalingaiah, L.
”Developing a TTCN3 Test Harness for Legacy Software”.
AST’06, May 23, 2006, Shanghai, China.
[22] Pfaller, C.; Fleischmann, A.; Hartmann, J.; Rappl, M.;
Rittmann, S.; Wild, D.” On the Integration of Design and Test -
A Model-Based Approach for Embedded Systems” AST’06,
May 23, 2006, Shanghai, China.
[23] Quynh, B.Thi and Aktouf, Oum-El-Kheir. “Diagnosis
Service for Embedded Software Component based Systems”,
EFTS'07, September 4, 2007, Dubrovnik, Croati.
[24]Yu, R. ”Fiscal Cash Register Embedded System Test with
Scenario Pattern”, International Journal of Computer Science
and Network Security, Vol.6 No.5A, May 2006
[25] Zheng, J.; Williams, L.; Nagappan, N.; Snipes,W.;
Hudepohl, J.P.; Vouk, M.A. “On the Value of Static Analysis
for Fault Detection in Software”, IEEE Transactions on
Software Engineering, Vol. 32, No. 4, April 2006.
[26] Lettnin, D; Nalla, P.K.; Ruf, J.; Kropf, T.; Rosenstiel, W.
”Verification of Temporal Properties in Automotive Embedded
Software”. IEEE Design, Automation and Test 2006.
[27] Chen,K.; Malik,S.; August, D.I. “Retargetable Static
Timing Analysis for Embedded Software”, ISSS’01, October 1-
3, 2001,pp.39-44.
[28] Regehr, J.; Reid, A. “HOIST: A System for Automatically
Deriving Static Analyzers for Embedded Systems”,
ASPLOS’04, October 9–13, 2004, pp.133-143.
[29] Reinbacher, T.; Brauer, J.; Horauer, M.; Schlicht, B.
“Refining Assembly Code Static Analysis for the Intel MCS-51
Microcontroller”, SIES, 2009, pp.161-170.
[30] Venkitaraman, R.; Gupta, G.. “Static Program Analysis of
Embedded Executable Assembly Code”, CASES, 2004,
pp.157-166.
[31] Kowshik, S.; Rosu, G.; Sha, L., "Static Analysis to Enforce
Safe Value Flow in Embedded Control Systems", Intl. Conf. on
Dependable Systems and Networks, 2006, pp.23-34, 25-28 June
2006.
[32] Chacko, M.; Jacob, P., "Validation of Embedded Software
through Static Analysis of Machine Codes," IEEe Intl.
Conference on Advance Computing, pp.1596-1601, 6-7 March
2009.
[33] "Arduino - HomePage". http://www.arduino.cc/.
[Accessed: Oct. 7, 2009].
[34] "Darjeeling - Java for micro controllers".
http://darjeeling.sourceforge.net/. [Accessed: Oct. 7, 2009].
[35] "Android | Official Website". http://www.android.com/.
[Accessed: Oct. 7, 2009].

View publication stats

https://www.researchgate.net/publication/236587406

