A Fully Differential Monolithic 2.4GHz PA for IEEE 802.15.4 based on Efficiency Design Flow

Rafaella Fiorelli

Eduardo Peralías

IMSE-CNM CSIC-Univ. de Sevilla Spain Nicolás Barabino Fernando Silveira

GME-Univ. de la República Uruguay

Outline

- 1. Introduction
- 2. PA modeling
- 3. PA Efficiency design flow
- 4. Circuit Implementation
- 5. Measurements
- 6. Conclusions and future work.

Introduction

- An optimized class C PA suited for IEEE 802.15.4 is presented.
- Class C PAs support phase modulation.
- The design is being used to evaluate the Classes A-B-C PA design methodology [1].

[1] N. Barabino, R. Fiorelli, and F. Silveira, "Efficiency based design for fully-integrated class C RFpower amplifiers in nanometric CMOS" in IEEE International Symposium on Circuits and Systems (ISCAS), 2010.

PA modeling

Rafaella Fiorelli - ICECS 2010 - Athens, Greece

(2) Inductor modeling with S-parameters: L_{ind} , Q, $R_p @ f_0$

(3) Output NW: (i) transfer power to RL
(ii) filter the harmonics
$$R_L \rightarrow R_{NW}$$
 (seen at the drain of MOS)

$$\begin{cases} \mathsf{P}_{\mathsf{out}} = \frac{\mathsf{V}_{\mathsf{out}}^2}{2\mathsf{R}_{\mathsf{L}}} \cong \frac{\mathsf{V}_{\mathsf{D}}^{\mathsf{RF}^2}}{2\mathsf{R}_{\mathsf{NW}}} \\ \mathsf{V}_{\mathsf{D}}(\mathsf{t}) = \mathsf{V}_{\mathsf{DD}} + \mathsf{V}_{\mathsf{D}}^{\mathsf{RF}} \operatorname{sin}(\omega_0 \mathsf{t}) \end{cases} \end{cases}$$

Rafaella Fiorelli - ICECS 2010 - Athens, Greece

PA design flow

(4) Choose $(V_G^{DC}, V_G^{RF}) \rightarrow v_G(t) = V_G^{DC} + V_G^{RF} \sin(\omega t)$

(5) Main hipothesis: $\hat{i}(t)$ obtained with $\hat{i}(V_G, V_D)$, the DC normalized current of step (1) By Fourier, \hat{l}_{DC} , \hat{l}_1 , \hat{l}_2 and \hat{l}_3 are calculated.

PA design flow

(6) Calculate the efficiency of MOS: $\eta_{MOS} = \frac{P_{NW}}{P_{DC}} = \frac{I_1 V_D^{RF} / 2}{I_{DC} V_{DD}} = \frac{\hat{I}_1 V_D^{RF}}{2\hat{I}_{DC} V_{DD}}$

(7) Calculate the misspent power of the output network and the total PA efficiency:

$$P_{out} = P_{NW} - P_{miss} = \frac{V_{D}^{RF^{2}}}{2R_{NW}} - \frac{V_{D}^{RF^{2}}}{2R_{p}} \rightarrow \eta_{NW} = \frac{P_{out}}{P_{NW}} = 1 - \frac{R_{NW}}{R_{p}} \rightarrow \eta = \eta_{MOS} \eta_{NW}$$

For P_{out} and L_{out} solve for: R_{NW} , P_{NW} and η . L_{out} provides the correct harmonic filtering.

(8) Calculate the transistor aspect ratio:

$$\frac{\mathsf{W}}{\mathsf{L}} = \frac{\mathsf{I}_1}{\hat{\mathsf{I}}_1} = \frac{2\mathsf{P}_{\mathsf{NW}}/\mathsf{V}_{\mathsf{D}}^{\mathsf{RF}}}{\hat{\mathsf{I}}_1}$$

PA design flow (cont'd)

Circuit Implementation

Summary of specifications

$P_{out} > 0 \text{ dBm}$	$R_{L} = 100\Omega$	$P_{harm}^{2^{nd}} \leq -40 dBm$
$V_{\text{D}}^{\text{RF}}=0.6\text{V}$	$R_{p} > 1k\Omega$	$P_{harm}^{3^{nd}} \leq -20 dBm$
$V_{DD} = 0.65V$	$\eta > 35\%$	$OP_{1dB} \geq -10dB$

1.2V RF 90nm CMOS technology, 1P9M.

Minimum V_G supported by the technology limits us to select points with higher efficiency.

Final design point: $\begin{array}{l} \mathsf{V}_{\mathsf{G}}^{\mathtt{DC}} = 0.5\mathsf{V} \\ \mathsf{V}_{\mathsf{G}}^{\mathtt{RF}} = 0.4\mathsf{V} \end{array}$

Circuit Implementation (cont'd)

Characteristic	Post-layout simulations			
V _{DD} (V)	0.65			
P _{DC} (mW)	3.16			
η (%)	46.6			
P _{out} (dBm)	1.9			
G _{pow} (dB)	26			
Î _{DC} (mA)	4.6			
P ^{2nd} (dBc)	-67			
P ^{3rd} (dBc)	-21			

Comparison with other works

Ref	Techno (nm)	PA class	P _{out} (mW)	G _{pow} (dB)	PAE (%)	freq. (GHz)	FOM (W x GHz ²)
[2]	180	AB	2.2	8	14	2.4	1.45
[3]	350	Casdode +Class C	1	15	33	2.4	2.9
[4]	350	Class A + Class C	3.1	19	14	2.4	4.8
[5]	180	w/Folded Cascode	1	12	18.5	2.4	1.3
	90	Class C	1.5	25.7	46.5	2.445	10.7

[2] Khannur RFIC 2003

[3] Choi JSSC 2003

[4] Zito ICECS 2006

[5] Nguyen TMTT 2006

$$FoM = P_{out} \cdot G_{pow} \cdot PAE \cdot freq^2$$

(ITRS roadmap 2009 system drivers).

Conclusions

A compatible IEEE802.15.4 Class C PA design in 90nm CMOS is presented.

It is based on the "Design efficiency approach" presented in [1]

Post layout results and preliminary measurements show very good agreement with Matlab results.

Final design reaches interesting efficiency values and surpass the output power specification of the standard.

A Fully Differential Monolithic 2.4GHz PA for IEEE 802.15.4 based on Efficiency Design Flow

Rafaella Fiorelli Eduardo Peralías

IMSE-CNM CSIC-Univ. de Sevilla España Nicolás Barabino Fernando Silveira

GME-Univ. de la República Uruguay

Contact: fiorelli@imse-cnm.csic.es