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Abstract. Network convergence and new applications running on end-
hosts result in increasingly variable and unpredictable traffic patterns.
By providing origin-destination pairs with several possible paths, load-
balancing has proved itself an excellent tool to face this uncertainty. For-
mally, load-balancing is defined in terms of a convex link cost function
of its load, where the objective is to minimize the total cost. Typically,
the link queueing delay is used as this cost since it measures its conges-
tion. Over-simplistic models are used to calculate it, which have been
observed to result in suboptimal resource usage and total delay. In this
paper we investigate the possibility of learning the delay function from
measurements, thus converging to the actual minimum. A novel regres-
sion method is used to make the estimation, restricting the assumptions
to the minimum (e.g. delay should increase with load). The framework
is relatively simple to implement, and we discuss some possible variants.

Keywords: Traffic Engineering, Wardrop Equilibrium, Convex Non-
parametric Least Squares, Next Generation Internet

1 Introduction

As network services and Internet applications evolve, the traffic is becoming in-
creasingly complex and dynamic. The convergence of data, telephony and televi-
sion services on an all-IP network as well as user-mobility (which implies service-
mobility) directly translates into a much higher variability and complexity of the
traffic injected into the network. Moreover, new architectures with relatively low
link capacities (such as Wireless Mesh Networks) cannot foresee overprovisioning
as a viable solution. To cope with both the traffic increasing dynamism and the
need for cost-effective solutions, a self-managing network architecture is required.

Dynamic load-balancing has proved itself a very efficient solution to the above
issues [1–3]. If an origin-destination (OD) pair is connected by several paths, the
problem is simply how to distribute its traffic among these paths in order to
achieve a certain objective. In these dynamic schemes, paths are configured a
priori and the portion of traffic routed through each of them depends on the
current demand and network condition. Since the considered time-scale is in the
order of minutes, a distributed algorithm is a requirement in this kind of schemes.
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Mathematically, the problem is generally defined in terms of a certain convex
link-cost function of the link load (fl(ρl)), and the objective is to minimize the
total network cost. For instance, if the cost function is the link utilization, the
objective could be to minimize the maximum utilization on the network. Due
to its simplicity, this particular objective has been considered in several routing
[4] and load-balancing [2, 3] mechanisms. However, it may result in inefficient
resource usage [5]. Another possible approach is to define fl(ρl) as a measure of
the congestion in the link and minimize its sum over all links. A typical link-
cost function is the queueing delay function of an M/M/1 queue [1]. However,
such simplistic model may result in bigger delays [6] and a greater maximum
utilization [5] with respect to the actual minimum.

In this paper we study the possibility of designing a load-balancing mecha-
nism that makes no assumptions on the delay function (except for some natural
hypothesis on its shape). We will assume that fl(ρl) exists, but is not known, and
we will estimate it from measurements. The proposed framework allows to con-
verge to the actual minimum-delay configuration (or a very good approximation
of it), thus maximizing performance. Besides, its implementation is relatively
easy. The required measurements (mean incoming rate and queue size) are read-
ily available in most routers, and the greatest upgrade required of routers is
to enable load-balancing itself. Moreover, adaptations to the estimation tech-
nique are made that assure convergence of the load-balancing algorithm. The
parametrization of this algorithm is also discussed.

The next section discusses the network model, our particular objective, and
the distributed optimization algorithm we used. Section 3 presents the non-
parametric regression algorithm we used to estimate fl(ρl) and some necessary
adaptations to jointly use it with the distributed optimization algorithm. Imple-
mentation issues and some packet-level simulations that verify the performance
of the framework are discussed in Sec. 4. The paper is concluded in Sec. 5.

2 Greedy Load-Balancing

2.1 Network Model

The network is defined as a graph G = (V, E). In it there are S so-called com-
modities (or OD pairs), indexed by s and specified in terms of the triplet os, qs

and ds; i.e. origin and destination nodes, and a fixed demand of traffic from the
former to the latter. Each commodity s can use ns paths connecting os to qs

(each noted as Psi), and can distribute its total demand arbitrarily among them.
Commodity s sends an amount dsi of its traffic through path Psi, where dsi ≥ 0
and

∑
dsi = ds. This traffic distribution induces the demand vector d = (dsi).

Given the demand vector, the total load on link l is then ρl =
∑

s

∑
i:l∈Psi

dsi.
The presence of this traffic on the link induces a certain mean queueing delay
given by the non-decreasing function Dl(ρl). The total delay of path P is defined
as DP =

∑
l:l∈P Dl(ρl). As a measure of the congestion in the network, we shall



Minimum-Delay Load-Balancing Through Non-Parametric Regression 3

use the mean total delay D(d) defined as:

D(d) =

S∑

s=1

ns∑

i=1

dsiDPsi
=

L∑

l=1

Dl(ρl)ρl :=

L∑

l=1

fl(ρl)

That is to say, a weighted mean delay, where the weight for each path is how
much traffic is sent through it, or in terms of the links, the weight of each link is
how much traffic is traversing it. Note that, by Little’s law, fl(ρl) is proportional
to the average number of bytes in the queue of link l. We will then use this last
value as fl(ρl) which is easier to measure than the queueing delay.

We are now in conditions to write the problem explicitly:

minimize
d

L∑

l=1

fl(ρl) s.t. dsi ≥ 0

ns∑

i=1

dsi = ds (1)

Note that no explicit constraint on ρl was made. This is assumed to be
implicitly included in the link-cost function. For instance, fl(ρl) goes to infinity
(or a relatively high value) as ρl reaches cl (the link capacity) and remains at
infinity after this point. It should also be noted that in the framework described
above the destination for a commodity is not necessarily a single node (e.g. two
gateways to the internet may be seen as a single destination).

2.2 Wardrop Equilibrium

In this section we present and discuss how to solve problem (1) in a distributed
fashion. In particular, we will consider mechanisms where each commodity greed-
ily minimizes a certain cost function of its paths (φP ), which require minimum
coordination. This context constitutes an ideal case study for game theory, and
is known as Routing Game in its lingo [7]. The case in which the path cost is
the sum over its links of a positive non-decreasing link-cost function of the load
(φP =

∑
l:l∈P φl(ρl)) is known as Congestion Routing Game and has several

important properties such as uniqueness of the equilibrium.
In a routing game, commodities are assumed to be constituted by infinitely

many agents, each controlling through which path an infinitesimal amount of
traffic is sent. In this context the division dsi/ds represents the portion of agents
of commodity s that have Psi as their choice. If every agent acts selfishly, then
the system will be at equilibrium when no agent can decrease its cost by changing
its path choice. This defines what is known as a Wardrop Equilibrium (WE) [8].
Formally, a demand vector is a WE if for each commodity s = 1 . . . S and for
each path Psi with dsi > 0 it holds that φPsi

≤ φPsj
for all Psj with j = 1, .., ns.

It can be proved that a WE results in a local minimum of the so-called poten-
tial function Φ(d) =

∑L

l=1

∫ ρl

0 φl(x)dx [7]. This means that the WE of a conges-
tion routing game where the link cost is the derivative of fl(ρl) (φl(ρl) = f ′

l (ρl))
is the solution of (1) (if fl(ρl) is convex, a local minimum is actually the global
minimum). A distributed algorithm that converges towards such equilibrium is
described in the following subsection.
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2.3 REPLEX: Exploration-Replication Policy

The concept of Wardrop Equilibrium was first proposed in the context of trans-
portation to characterize the equilibrium of users who greedily want to minimize
their travel time. In this context, users are assumed rational and their behavior
is the mechanism through which the equilibrium is attained. In our case however,
routers make the choice for every user (i.e. packets). It is then necessary to spec-
ify an algorithm that when independently ran in every router, the equilibrium is
achieved as fast as possible and without oscillations. In [9] the authors present
such mechanism and use it to design a load-balancing scheme in [3]. Below, we
can see the algorithm that each commodity executes in turn (where psi is the
portion of demand ds routed through path Psi).

1: p′s ← ps

2: for every pair of paths Psi, Psj of commodity s do

3: if φPsi
> φPsj

then

4: δ ← λ
(
(1− β) psj + β

ns

)
φPsi

−φPsj

φPsi
+α

5: p′si ← p′si − δ
6: p′sj ← p′sj + δ
7: end if

8: end for

9: ps ← p′s
It can be seen that the portion of traffic that changes its path in a turn is

proportional to the relative gain in path delay, and in a weighted mean between
the portion of traffic using the new path (called proportional sampling in the
algorithm) and 1/ns (uniform sampling). The algorithm converges to the WE
as long as λ ≤ k/r, where k > 0 is a suitable constant and r is an upper-bound
to the relative slope of all φl(ρl), which is defined as follows [9]:

Definition 1. A differentiable cost function φl(x) has relative slope r at x if
φ′

l(x) ≤ rφl(x)/x. A cost function has relative slope r if it has relative slope r
over the entire range [0, 1].

Intuitively, migration from one path to the other should be slow if the cost
function has abrupt changes. On the other hand, if the cost function is relatively
“soft”, changes may be faster. As discussed in [3], the values of α and β are not
very influential, and β = 0.1, α = 0 turned out to be good choices.

3 Non-Parametric Regression With Shape Restrictions

3.1 Convex Non-Parametric Least Squares

The problem we address now is how to learn fl(ρl) from measurements (we are
interested in its derivative, φl(ρl), but the queue size fl(ρl) is the observable
quantity). For the sake of clarity we will concentrate on the problem for a sin-
gle link, so we shall omit the sub-index l. We are given n pairs of observations
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(ρ1, Y1), (ρ2, Y2), . . . , (ρn, Yn) (also called training set), where the response vari-
able Y (the measured mean queue size) is related to the covariate ρ (the link
load) by the equation Yi = f(ρi) + ǫi for i = 1, . . . , n.

The function f(ρ) is now called the regression function and the measurement
errors ǫ = (ǫ1, . . . , ǫn)′ are assumed to be uncorrelated random variables with
E(ǫ) = 0 and Var(ǫ) = σ2 < ∞. The problem is to “learn” f(ρ) from the

observations in the training set and obtain an estimation f̂(ρ). The idea is to
restrict the assumptions on its functional form to the minimum. So far, we have
only three necessary requirements: (i) f(ρ) should clearly be increasing (ii) φ(ρ)
should be non-decreasing, so f(ρ) should be convex (iii) φ(ρ) should have a
finite relative slope in order to make REPLEX work correctly (and probably all
distributed optimization algorithms).

We will now consider the first two requirements, which are by far the most
restrictive. For this, we turn our attention to the recent work of Kuosmanen
[10]. Let F be the set of continuous, monotonic increasing and globally convex
functions. The Convex Nonparametric Least Squares (CNLS) problem is to find

f̂ ∈ F that minimizes the sum of squares of the residuals:

min
f

n∑

i=1

(Yi − f(ρi))
2

s.t. f ∈ F (2)

Problem (2) is very difficult to solve due to the size of F . Consider instead
the following family of piecewise linear functions (where I = {1, . . . , n}):

G(P ) =

{
g(ρ) = max

i∈I
{αi + βiρ} : βi ≥ 0; αi + βiρi ≥ αj + βjρi ∀j, i ∈ I

}

It is clear that G(P ) belongs to F for any arbitrary set of observations P =
{ρi}i. In [10] the author proves that G(P ) may be substituted in (2) and the
same optimal solution is obtained. This result allows us to transform the infinite
dimensional problem (2) into the following standard finite dimensional Quadratic
Programming (QP) problem:

min
ǫ,α,β

n∑

i=1

ǫ2i (3)

subject to Yi = αi + βiρi + ǫi ∀i = 1, . . . , n

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , n

βi ≥ 0 ∀i = 1, . . . , n

Regarding the set of representor functions G(P ), it may seem that a non-
parametric problem was transformed into a parametric one. However, it should
be noted that although we look for a piecewise linear function, the partition of
the linear segments is not fixed a priori. That is to say, the number and location
of the segments are endogenously determined to minimize the squared residual.
Moreover, although each observation (ρi, Yi) has an associated (αi, βi), the ac-
tual number of different values is generally a very small fraction of n. This means
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that, in contrast to kernel-type regressors [11], f̂(ρ) is completely represented by
a number of parameters that will generally be much smaller than n, and that
once these parameters are estimated, evaluating f̂(ρ) and its derivative φ̂(ρ) is
computationally very cheap. Moreover, this explicit regression function allows
one to intra/extrapolate with relative confidence.

Regarding (3), although it is a standard QP problem for which mature meth-
ods to solve it exist (e.g. interior point algorithms) and that several solver soft-
ware are available (for instance, we used MOSEK [12]), its size is considerable.
It has a total of 3n variables and n(n + 1) restrictions. The second set of con-
straints, which are the key to modeling convexity, are quadratic in the number
of observations. The size of the problem is clearly the major drawback of the
method. However, as we will discuss in Sec. 4.1, these calculations need not be
performed very frequently, and they may even be delegated to a central entity.

3.2 An Example

To illustrate the method, we will apply it to a training set obtained by injecting
a 4 hours long packet trace (obtained from [13]) to a simple queue emulator
we developed (in the absence of information on the buffer size, we assumed it
infinite). The link has a capacity of 150Mbps. Measurements are the mean queue
size in kB and the mean load in kB/s over a one minute period.

Figure 1(a) shows the measurements (240 in total), f̂(ρ) (as a reference, the
MATLAB version of MOSEK solved (3) in less than 10 sec. in this case) and
the estimation the M/M/1 model yields (ρ/(c − ρ)). First of all, it should be
noted that the M/M/1 model has little to do with the real mean queue size. It
consistently underestimates it, and its shape is almost a line when measurements
clearly indicate a more convex curve. Regarding the estimation by CNLS, we can
see that it is remarkably good, both in value and shape.

In Fig. 1(b) we show the derivative estimation through CNLS and the M/M/1
model (c/(c− ρ)2). Since the CNLS estimation is piecewise linear, its derivative
is a piecewise constant function, and after no more observations are available
it becomes constant. As a consequence, CNLS will produce a good estimation
of φ(ρ) in the support of the observations, after which it will systematically
underestimate it. The M/M/1 model again underestimates the derivative, except
at light loads where they are both small. Finally, Fig. 1(c) shows the pairs (αi, βi)
in the plane. As we mentioned, although there are 240 different values, they are
clustered around relatively few centers. Using only these cluster centers represent
an insignificant lose in precision.

3.3 How to Use CNLS for REPLEX

The final purpose of the previously described regression was to use the esti-
mated derivative φ̂(ρ) as a cost function on REPLEX in order to obtain a good
approximation to the optimal traffic distribution. Although CNLS yields a non-
decreasing cost function that approximates very well φ(ρ), it presents discon-

tinuities. This means that φ̂(ρ) has an infinite relative slope, thus making the
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Fig. 1. An example of a CNLS regression

regression method inappropriate for our purposes at first sight (cf. point (iii)

in Sec. 3.1). In this subsection we discuss a possible way to approximate φ̂(ρ)
through a smooth function.

Assume the regression function f̂(ρ) is defined by n′ (αi, βi) parameters so

that f̂(ρ) = max
i=1,...,n′

αi + βiρ. A good approximation of this function is the so-

called log-sum-exp function:

f̂∗(ρ) =
1

γ
log




n′∑

i=1

eγ(αi+βiρ)





This non-decreasing and convex function is clearly smooth. Moreover, the
precision of the approximation can be controlled through the parameter γ since
f̂(ρ) ≤ f̂∗(ρ) ≤ f̂(ρ)+log(n′)/γ. This means that clustering the values of (αi, βi)

not only decreases the size of the representation of f̂(ρ), but also improves the

precision of f̂∗(ρ). Finally, its derivative is the following:

φ̂∗(ρ) =
1

n′∑

i=1

eγ(αi+βiρ)

n′∑

i=1

βie
γ(αi+βiρ) (4)

We will use (4) as the link-cost function. A reasonable approximation to
its relative slope, whose demonstration we omit for the sake of space, is r ≈
γ max

i=1,...,n′

βi. This formula makes explicit the intuitive fact that the bigger γ is

(and better the approximation) the less soft the resulting φ̂∗(ρ) is.
The problem now is how to assign γ. As a rule of thumb, we recommend

using a value such that the error in the soft approximation is approximately
30%. That is to say, γ = log(n′)/(0.3Ȳ ) where Ȳ is the mean of Y . This value,
as we shall now illustrate with an example, results in a good tradeoff between
precision and convergence speed. We will consider the same f̂(ρ) as in Fig. 1,
and use three different values of γ: our recommended 30% error value (γ∗), 10γ∗
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and 0.1γ∗. In Fig. 2 we can see the resulting f̂∗(ρ) and φ̂∗(ρ) for the three
considered values. First of all, a value as big as 10γ∗ results in too much error
for all practical purposes. On the other hand, the difference between γ∗ and 10γ∗

is almost insignificant for f̂∗(ρ), and reasonably small for φ̂∗(ρ). Moreover, note
that γ∗ results in a ten times smaller relative slope than 10γ∗, thus allowing a
convergence speed ten times faster (cf. 2.3).

4000 6000 8000 10000 12000
0

5

10

15

20

25

30

ρ (kB/s)

M
e

a
n

 Q
u

e
u

e
 S

iz
e

 (
k
B

)

 

 

f(ρ)

0.1γ*

γ*

10γ*

(a) bf(ρ) and bf∗(ρ) for
some values of γ

4000 6000 8000 10000 12000
0

1

2

3

4

5
x 10

−3

ρ (kB/s)

 

 

φ(ρ)

0.1γ*

γ*

10γ*

(b) bφ(ρ) and bφ∗(ρ) for
some values of γ

Fig. 2. An example of approximating a piecewise linear function with the log-sum-exp

4 Simulations

4.1 Implementation Discussion

The application of our framework in a real-world network is relatively simple.
Once all links have been characterized (i.e. we have the parameters (αi, βi)l for
all l), each OD pair receives ρl from the links it uses1, calculates its paths cost
with (4), and applies REPLEX to update its traffic distribution. This process
is repeated indefinitely every some seconds (in particular, we used 60 sec). This
update period should be long enough so that the obtained measurements’ quality
is reasonable, but not too long to avoid unresponsiveness.

Regarding the learning phase (i.e. gathering the training set and performing
the regression) we envisage several possibilities, differing in the degree of distri-
bution of the resulting architecture and on what data is used at each moment.

With respect to who does which calculations, one possibility is that a central
entity gathers the measurements, performs the regression and communicates the
obtained parameters to all ingress routers (we assume that these routers, through
which commodities inject traffic to the network, distribute this traffic). This has
the advantage that the required new functionalities on the router are minimal.
However, as all centralized schemes, it may not be possible to implement it in
some network scenarios, and handling the failure of this central entity could be
very complicated. An alternative is that ingress routers perform the regression.

1 For this purpose, a TE-enabled routing protocol such as OSPF-TE may be used
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Links measure their load and mean queue size, communicate periodically these
measurements to all ingress routers (instead of the central entity), which in turn
perform the regression. However, the regression for any given link would be per-
formed by several routers, constituting a waste of resources. A more reasonable
alternative is that links (or better said, the router at the origin of the link)
perform the regression. Links keep the mean queue size measurements for them-
selves, perform the regression and communicate the result to ingress routers.
The regression could be done once a day, in the periods of low intensity (i.e. the
night) so that normal operation is not affected by it.

A second aspect that has different possibilities is what characterization (i.e.
(αi, βi)l) use at each moment. For instance, measurements could be gathered
every day, the regression performed, and its result used the next day. Another
possibility is to use the result of the measurements of the same day the previous
week. More granularity could be added, and we could use different characteri-
zations for different moments of the day. What granularity is needed and if it is
actually necessary is an analysis that we let for future work.

4.2 Examples

In this subsection we will consider two relatively simple examples we imple-
mented in ns-2 [14] that will help us gain further insight into the framework and
verify its correctness in the presence of delayed and noisy measurements. We will
assume that the training set has been obtained and the regression performed by
a central entity. Routers only have the pairs (αi, βi)l, their associated γl (which
was calculated with the formula discussed in Sec. 3.3) and already know λ (cf.
Sec. 2.3). As a final remark, in all the simulations load balancing is performed
at the granularity of flows (i.e. once a flow is routed through a path, it rests
there throughout its lifetime) and is random (i.e. new incoming flows are routed
through path Psi with probability psi).

We will begin with the simplest example: one commodity has two one-hop
paths (see Fig. 3(a)). Traffic is a mixture of elastic and streaming flows. The
elastic ones (whose size is exponentially distributed with mean 20 kB) are gen-
erated as a Poisson process. The streaming part of traffic is constituted of CBR
flows (at a bitrate of 10 kbps and an exponentially distributed duration with
mean 20 sec.) also arriving as a Poisson process, and it represents 10% of the
total traffic. The measurements (467 for each link) were obtained by averaging
the link load and the queue size over a minute period. In Fig. 3(b) we can see the
measurements together with the resulting regression, and in Fig. 3(c) we show
the corresponding cost function φl(ρl) and its soft approximation φ∗

l (ρl).
Using this topology we will run a two-parts simulation. In its first half the

total demand is approximately 100 kbps, after which it abruptly increases to
1200kbps (this moment is marked in Fig. 4 by a vertical line). The traffic dis-
tribution is updated after second 1800 (marked by the first vertical line in Fig.
4(a)). Notice in Fig. 4(a) how at first p2 (the portion of traffic routed through the
lower path) changes relatively slow, but as it decreases the change grows faster.
This is a consequence of the sampling step of REPLEX, in particular of the
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Fig. 3. The single-source case example topology and regression

proportional one. The small (but inevitable) oscillations around the optimum
traffic distribution should also be noted. They are inevitable since ρl measure-
ments are noisy (see Fig. 4(b)), but the effect of this noise on the convergence is
minimized by the algorithm. Finally, notice how at the beginning of the second
half of the simulation load on link 1 momentarily goes to values outside the
support of the training set. As discussed in Sec. 3.2, for all such values of ρ, φ(ρ)
is constant when it should actually increase. Although this does not prevent the
algorithm from reaching the optimum, the convergence speed is slower than it
should, resulting in an overloaded link for almost 30 iterations (or 30 minutes in
our case). Although such an abrupt increase in traffic should be rare to say the
least, this highlights the importance of a training set that encompasses as much
operational points as possible.
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Fig. 4. Simulation results in the single-source case example

We will now consider a somewhat more complex case scenario. The network
(see Fig. 5(a)) consists of six links, all with a capacity of 1Mbps. There are a
total of 4 commodities whose destination is the same node q, but only commodity
1 can use more than one path. The traffic generated by each commodity has the
same characteristics as in the previous example.

In Fig. 5(b) and Fig. 5(c) we can see the training set and the corresponding
regression for four of the links. The training set was obtained by changing the
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Fig. 5. The second example: two paths and four commodities

traffic intensity of the four commodities at the same time (with p1 fixed at 0.5).
Notice how the mean queue size of link n1b-q is near zero regardless of its load,
and how its “symmetric” link (n2b-q) is quiet the opposite and may be considered
identical to n2-n2b. Traffic through link n1b-q does not generate significant queue
because link n1-n1b already shaped the traffic.

This example introduces the problem of links that have an insignificant queue
size independently of its load. This may be due to traffic characteristics (as
before), or because the link buffer is small. A link of such characteristics clearly
presents a problem for our framework. For instance, let us consider an alternative
training set, obtained in a situation where commodity 2 sends little or no traffic
and commodity 1 sends most of its traffic through the lower path. In Fig. 6(a)
we can see that although the small amount of traffic generated by commodity
2 results in a little bit of queue in link n1-n1b, the mean queue size fl(ρl) (and
thus φl(ρl)) for this link is almost zero except at big loads.
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Fig. 6. An alternative training set for the second example

Consider now the following situation. Commodities 2, 3 and 4 all generate the
same demand (approximately 450kbps). Commodity 1 generates approximately
100kbps during the first fourth of the simulation, and then abruptly increases its
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demand to the same value as the rest (this moment is marked with a vertical line
in Fig. 6). Figure 6(b) shows the evolution of p1 over time when using the results
of both training sets. In the first part they both converge to p1 = 0, but when
d1 increases we can appreciate the difference between the training sets. While
the “right” training set (i.e. the one of Fig. 5(b)) moves towards a reasonable
p1 = 0.4, the other training set gets stuck in p1 = 0.05 which results in a higher
total delay (see Fig. 6(c)) and two almost overloaded links (n1-n1b and n1b-q).

5 Concluding Remarks

In this paper we presented a dynamic load-balancing mechanism that converges
to an excellent approximation of the minimum-delay traffic distribution without
assuming any given delay model. This was achieved on the one hand by “learn-
ing” the delay function from measurements, and on the other hand by applying
a greedy load-balancing algorithm with provable convergence (and verified by
our packet-level simulations). The chosen regression method is a piecewise lin-
ear fitting method, where the number and position of the lines are endogenously
determined to minimize the squared residual. The cost function, which is the
derivative of this regressor, was then not continuous, a fact that poses a problem
to the distributed algorithm. This forced us to make a soft approximation of the
regressor function, controlled by a single parameter γ, for which we gave hints
on how to assign it. The few parameters the distributed algorithm requires were
also discussed in the paper.

In Sec. 4 we highlighted two shortcomings of our framework which may result
in overloaded links: the regression outside the support of the observations is
not reliable (since the cost function does not increase any further) and links
that present little or no queueing delay always have a negligible cost. A possible
solution to both problems is adding to the link cost a known parametric function
that is negligible with respect to φl(ρl) except at very high loads. This will
increase the cost of loaded links both when no observations are available or
when their actual mean queueing delay is small. Moreover, if the optimum does
not load considerably any link, it will be attained with a very small error. Further
development of such correction is the subject of future work.

It would also be very interesting to perform a deeper statistical analysis of
the behavior of the mean queue size with respect to load. A possible analysis
would be to study how often does the regression function change over time (i.e.
answer the question of whether the mean queue size function changes over time,
and how often it does).

Regarding the queueing model, we considered that the mean queue size is
a function of the mean incoming rate only. This is naturally not true, as it ac-
tually depends on the complete packet arrival process. Methods that estimate
φl considering the whole process exist, such as the one used in [6]. Apart from
being more complicated (they require to measure the arrival and departure time
of every packet), the problem with such methods is that φl now depends on a
number of unknown and uncontrollable variables. This results in the impossi-
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bility of guaranteeing convergence to the optimum by changing the portions of
traffic only, and it does result in oscillations as presented (but not explained)
in [6]. A possible improvement to our model is to consider that φl depends on
the mean load of its incoming links. For instance, in Fig. 5(a), that the mean
queueing delay in link n1-n1b depends on the load on links n3-n1 and the one
connecting commodity 2 and n1. For this now multi-dimensional regression prob-
lem the same method may be used. A deeper analysis of this alternative model
represents also interesting future work.
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