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Resumen

El objetivo de esta tesis es analizar el rol de las propiedades intŕınsecas de las neu-
ronas en la comunicación a través de sinapsis eléctricas. Las neuronas del nervio
trigeminal del mesencéfalo constituyen un excelente modelo experimental para es-
tudiar la comunicación entre neuronas, debido a su fácil acceso experimental y su
sencilla morfoloǵıa. Sin embargo, el análisis de neuronas reales está limitado por
restricciones experimentales que impiden explorar todos los aspectos del modelo.

En el marco de esta tesis, se construye un modelo matemático basado en reg-
istros electrofisiológicos realizados por Sebastián Curti en la Facultad de Medicina
de la Universidad de la República. El modelo consiste en un sistema de ecuaciones
diferenciales, que puede ser representado por un circuito eléctrico con componentes
no lineales. Algunas de las ecuaciones diferenciales son obtenidas de bibliograf́ıa
y se realizan algunos ajustes menores de parámetros. Por otro lado, durante la
tesis evaluamos que se necesitaba más información para reproducir algunas de las
caracteŕısticas más importantes del comportamientos de las neuronas, como la
duración del potencial de acción. Por eso, se debieron realizar nuevos registros
experimentales, que permitieron refinar el modelo.

El modelo permite evaluar la respuesta de la neurona ante diferentes est́ımulos
(corrientes o voltajes impuestos por un electrodo), posibilitando nuevos “experi-
mentos” que no son posibles en un laboratorio. Se analizan diversas alternativas
de modelado (variando corrientes iónicas y morfoloǵıa) usando información ex-
perimental para validarlos. Luego, el modelo es utilizado para entender algunas
caracteŕısticas inusuales de la comunicación entre neuronas. En primer lugar, se
estudia la transferencia subumbral (i.e.: sin potenciales de acción) entre neuronas
acopladas por sinapsis eléctricas. Se utiliza un modelo reducido, que es linealizado
para obtener una expresión anaĺıtica de la transferencia, cuyo comportamiento es
coherente con los resultados experimentales. Asimismo, se realizan simulaciones
numéricas para analizar el rol en la sincronización de las propiedades intŕınsecas de
las neuronas. Se muestra que las mismas propiedades que determinan el compor-
tamiento subumbral son relevantes para mejorar la sincronización entre neuronas.
Finalmente, esta tesis no sólo contribuye con nuevos modelos y respuestas, sino
con nuevas preguntas, que deberán ser estudiadas usando modelos experimentales
también.

Esta tesis hace uso de diversas herramientas utilizadas por la ingenieŕıa eléctrica



(comportamiento en frecuencia de sistemas, ecuación del cable, cadenas de Markov,
algoritmos evolutivos, etc) para modelar y analizar un sistema biológico. Se real-
izan diversos aportes, por ejemplo: modelado completo de las corrientes de sodio,
aśı como de la modulación de otra corriente; explicación de la preferencia en fre-
cuencia de la transferencia subumbral entre neuronas; estudio de la sincronización
en función de las propiedades de los osciladores y de su acople.

Algunos resultados preliminares de este trabajo han sido presentados en con-
gresos internacionales.
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Abstract

The objective of this thesis is to analyze the role of the intrinsic properties of neu-
rons in the communication through electrical synapses. Mesencephalic trigeminal
neurons constitute an excellent experimental model to study the communication
between neurons, because of its easy experimental access experimental and sim-
ple morphology. However, the analysis of real neurons is limited by experimental
constraints that do not allow to explore all aspects of the model.

Within the context of this thesis, a mathematical model is built, based on elec-
trophysiological recordings made by Sebastian Curti at the School of Medicine of
Universidad de la República. The model consists of a set of differential equations,
which can be represented by a nonlinear electrical circuit. Some of the differential
equations are obtained from literature and only some minor parameters’ adjust-
ments are made. Moreover, during the thesis we have found that more data was
needed in order to explain some of the most important features of the behavior of
neurons, such as the duration of the action potential. Therefore, more experimen-
tal recordings were made, allowing to refine the model.

The model allows to evaluate the response of the neuron to different stim-
uli (currents or voltages imposed by an electrode), making possible to make new
“experiments” that are not possible in a laboratory. Alternatives models are ana-
lyzed (varying ionic currents and morphology) using experimental information to
validate them. Then the model is used to understand some unusual features of
the communication between neurons. First, it is studied the subthreshold transfer
function (i.e. without action potentials) between neurons coupled by electrical
synapses. A reduced model is used and then linearized, in order to derive an
analytical expression of the transfer function, whose behaviour is consistent with
experimental results. Moreover, numerical simulations are performed to analyze
the rol of the intrinsic properties of neurons in their synchronization. It is shown
that the same properties that determine the subthreshold behavior are relevant
to improve synchronization between neurons too. Finally, this thesis contributes
not only with new models and answers, but with new questions, which should be
studied using experimental models as well.

This thesis applies several tools used for electrical engineering (frequency re-
sponse of systems, cable equation, Markov chains, evolutionary algorithms, etc.)



to model and analyze a biological system. Among the contributions of this thesis
are: the complete modeling of the sodium currents and other ionic current (and its
modulation); the explanation preference subthreshold frequency transfer between
neuronfor example and its coupling.

Some preliminary results of this work have been presented at international
conferences.
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Chapter 1

Introduction

1.1 Motivation

By definition, Neuroscience is an interdisciplinary area, where biologists, physi-
cians, physicists, engineers and psychologists work together, applying their specific
skills to answer questions. One specific branch of Neuroscience, called Computa-
tional Neuroscience, deals with mathematical models of neural systems at any
level, from molecules to large regions of the brain. In this context, this thesis is
aimed to apply some modelling and analyzing tools from engineering to a biological
system: a sensorial neuron from the rat mesencephalon (henceforth called “Mes V
neurons”). The main objective behind that is to understand how neurons coupled
by electrical synapses cooperate by synchronizing their behaviours.

Traditionally, chemical synapses have been thoroughly studied, because of its
ubiquity in the nervous system and their amazing properties, such as plasticity,
that allow them to be basis of high-level functions in the brain [145]. On the
other hand, electrical synapses have received less attention historically, given that
they are more rare in mammals brains [14] and perceived as more “primitive” (in
part because they appeared earlier in evolution) [123]. Their strength has been
observed as almost constant [57,137], impeding them to be a source of complexity
in neural circuits. On the contrary, they have been always studied as “synchro-
nizing” connections [6, 40, 54, 56, 59, 118, 136], given that they tend to keep zero
difference within the membrane potentials of coupled neurons [149], even though
they may also desynchronize transiently neural circuits [31, 180], mainly because
of their “low-pass filter” properties [59,79].

Recently, pioneering research has challenged the traditional statement that
“electrical synapses function as low-pass filters”, finding that the subthreshold
communication between coupled neurons may display frequency preference in mes-
encephalic trigeminal neurons [33], acting as band-pass filters. In addition to that,
it was seen that the efficiency of such frequency preference not only depends on the
coupling strength, but also on the membrane properties: in particular, some ionic
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channels. These findings generate new questions: why and how the membrane
properties determine the frequency response? Do these properties influence the
synchronization between neurons? How?

This thesis is an attempt to contribute with some answers, even though new
questions are generated too. The objective is to create a biologically realistic math-
ematical neuron model, with differential equations representing the behaviour of
the real neuron. This mathematical model will complement the experimental one,
in order to develop an intelligible theory [110] about how coupled neurons commu-
nicate. Therefore, it is aimed to produce a mathematical model able to interact,
to talk, with the experimental one.

There are several single-neuron models’ categories in Computational Neuro-
science [70,165]:

1. Detailed Compartmental Models: Morphologically realistic neurons
that reconstruct anatomical data, fundamental to understand complex neu-
rons (such as Purkinje [145]), where spatial information is relevent.

2. Reduced Compartmental Models: Trade-off between morphology and
mathematical complexity, used also when spatial information is not com-
pletely known but can be roughly approximated.

3. Single-Compartment Models: The last frontier between single neuron
dynamical detail and abstract high-level models, used extensively by hybrid
(experimental and theoretical) researchers.

4. Cascade Models: Used for medium and large neural networks, each indi-
vidual neuron is modelled as a function implementing an specific function,
such as linear filters, nonlinear transformations, etc.

5. Black-box Models: The highest level of abstraction models a neuron by
its probability distribution p(R|S): the probability of response R given a
stimulus S

Only the first three categories are able to interact fluently with an experi-
mental model, whereas the remaining two are more suitable for large neurons
computations. On the other hand, only approximate information about Mes V
neuron morphology is available, making impossible to use a detailed compartmen-
tal model. Thus, the model developed in this thesis is a reduced compartmental
model, though a single-compartment version will be used to make same mathe-
matical calculations. The NEURON simulator [21] in Python will be used to build
the model, while Python libraries Numpy, Scipy and Matplotlib will be utilized to
analyze and plot the data.

2



1.2. Thesis contributions

1.2 Thesis contributions

Given that the objective of this thesis is to response some questions, the first
contributions are their answers and/or steps made to reach them:

• The first complete model of Mes V sodium currents was developed, using
Markov chains.

• Another ionic current, called Ih was modelled too, from experimental record-
ings.

• Single-neuron activity modulation by cyclic GMP is analyzed, with results
fully compatible with experimental results.

• It is developed the first complete model of Mes V neuron, able to explain
both subthreshold and spiking.

• Frequency preference of subthreshold communication between neurons is ex-
plained, both analytically and numerically, in agreement with experimental
recordings.

• The dependence of the level of synchronization between spiking neurons is
studied, finding that it may improve by changing/modulating the membrane
properties of coupled neurons.

• The sensorial information processing is simulated for the first time, finding
two behaviours: coincidence detection and contrast increase

Some preliminary results of this work have been presented at international
conferences:

1. Sebastián Curti, Federico Davoine and Francisco R. Morales. cGMP modu-
lates membrane excitability in mesencephalic trigeminal neurons of the rat.
Neuroscience 2013, San Diego, USA. November 2013.

2. Federico Davoine, Sebastián Curti and Pablo Monzón. Modeling of sodium
currents from mesencephalic trigeminal neurons by system identification
and sensitivity analysis. 22th Annual Computational Neuroscience Meet-
ing: CNS2013, Paris, France. July 2013.

3. Sebastián Curti, Federico Davoine, James Nagy, Gregory Hoge and Alberto
Pereda. Properties of electrical synapses between Mesencephalic Trigeminal
(MesV) neurons. Neuroscience 2011, Washington, USA. November 2011.

1.3 Document structure

This thesis is organized in an incremental level of complexity. First, some cellular
neuroscience and modelling tools are presented, to then use them to build model
parts. The full model is assembled later and employed to simulate some Mes V

3
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neuron’s behaviours.

The chapter 2 constitutes a brief introduction to single-neuron models, aimed
to people with background on differential equations but without deep biological
knowledge. Model building starts in the chapter 3, where experimental recordings
of two ionic currents (sodium and hyperpolarization-activated) are used to develop
mathematical models of them. The quality of experimental data is analyzed care-
fully and several models alternatives are presented. The complete neuron model
is finished in chapter 4, adding ionic channels from bibliography and approximate
morphological data, obtained from transmission line theory applied to experimen-
tal recordings. A reduced single-compartment model is studied both analytically
and numerically in chapter 5, in order to explain the resonance of the subthresh-
old communication between coupled neurons. The synchronization of neurons is
discussed in chapter 6, using mathematical tools and simulations, establishing con-
nections to the previous chapter. Finally, some conclusions are presented in the
chapter 7, as well as some future work proposals.

Three final appendix present: model parameters A, the basic structure of the
evolutionary algorithm used B and the state-space modelling of the sodium current
C.

4



Chapter 2

Modelling biological neurons

2.1 Introduction

This introductory chapter presents roughly some basic biological concepts that
will be used extensively along this thesis, and may be skipped by people with a
general background on neuroscience. First, a basic electrical model of the cellular
membrane is introduced. Then, some single neuron models are presented, with
their advantages and disadvantages. In particular, the behaviour of the neuron
during an action potential is studied using conductance-based models, that will be
employed as the components of the neuron model developed in this work. Finally,
mathematical models of electrical and chemical synapses are introduced, in order
to understand how neurons get connected between them.

2.2 Excitability

Neurons are cells specialized in information processing and transmission, by electri-
cal or chemical means. They can generate electric signals, based on the movement
of dissociated ions through the cell membrane, such as sodium (Na+), potassium
(K+), calcium (Ca2+) and chloride (Cl−). These movements create electric cur-
rents that may change the membrane potential, defined as: Vm ≡ Vin−Vout, where
Vin and Vout are the voltages inside and outside the cell. Although all the cells have
membrane potentials, only neurons present an outstanding feature: they can fire
action potentials, also called spikes. The following sections are aimed to roughly
explain the biological mechanisms that generate that behaviour.

2.2.1 Equilibrium

Although the net electric charge in biological molecules is zero, there are local
charge differences that produce small voltages. In particular, the cellular mem-
brane, that is made of a lipid bilayer, acts as a leaky capacitor, because it does
not allow the free movement of ions. If [C]in and [C]out denote the concentration
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of some ion (in molecules/cm3) inside and outside the cell, respectively, the equi-
librium potential difference between both sides of the membrane can be calculated
using the Nernst equation [92]:

EC = Vin − Vout =
RT

zF
ln

[C]in
[C]out

(2.1)

where R is the universal gas constant (8.315 mJ/(K· mol)), F is the Faraday con-
stant (96.480 C/mol), z the valence of the ion (without dimensions: +1 for Na+,
K+, +2 for Ca2+ and -1 for Cl−) and T the absolute temperature (in K). The
Nernst equation is only valid at equilibrium, given that it is derivated from the
assumption that the net charge difference is constant between both sides of the
membrane1

Even though Equation (2.1) is valid for only one ion, it is extraordinarily useful
for understanding the basic electric behaviour of neurons and it will be extensively
used throughout this thesis. Let’s take the Na+ ion as an example. According to
Table 2.1, there is usually more sodium outside the cell than inside. Given that
its valence is z=+1, its equilibrium potential for the squid axon is ENa=+55 mV.
The opposite can be said about the potassium ion, whose equilibrium potential is
EK=-75 mV. From the electrical point of view, these equilibrium potentials act as
DC voltage sources, that promote the inward movement of Na+ ions and outward
of K+.

On the other hand, there is a net equilibrium potential of the cell, that is called
resting membrane potential, and results from the different concentrations of ions
and the selective permeability of the membrane2. It is usually established at a
quite negative value (from -55 to -70 mV) by a balance between Na+ and K+.
These voltages are close to the Cl− equilibrium potential, ion that can flow quite
freely at that voltage, contributing to the electric stabilization of the cell.

2.2.2 Ionic channels

Until now the cellular membrane is just a barrier for the ions. However, it is not
as simple as that, because there are several complex protein structures on it, such
as pumps and channels. The first ones contribute to maintain the concentration
gradient between the inside and outside, like the Na+-K+ pump, that exchanges 3

1In general, there are two currents flowing through the membrane: the diffusion current
Jdiff due to the concentration gradient and the drift current Jdrift due to the electric field.
In equilibrium, the sum of them equals zero: Jdiff + Jdrift = 0. More details can be read
in classic bibliography [92, 145].

2If the main ions are Na+, K+ and Cl−, the resulting membrane potential
can be calculated by means of the Goldman-Hodgkin-Katz equation: Vrest =

RT
F ln

PK[K+]
out

+PNa[Na+]
out

+PCl[Cl−]
in

PK [K+]
in

+PNa[Na+]
in

+PCl[Cl−]
out

, where [P ] is the permeability of each ion (cm/s)

[92].

6



2.2. Excitability

Inside (mM) Outside (mM) Equilibrium potential (mV)
Squid axon
K+ 400 20 -75
Na+ 50 440 +55
Cl− 40 to 150 560 -66 to -33
Ca2+ 0.4 10 +145
Typical mammalian cell
K+ 140 5 -89.7
Na+ 5 to 15 145 +90.7 to +61.1
Cl− 4 110 -89
Ca2+ 1 to 2 2.5 to 5 +136 to +145

Table 2.1: Ion concentrations and resulting equilibrium potentials for the squid axon and a
mammalian cell. In general terms, both cell types share the same features (more potassium
inside; more sodium, chloride and calcium outside), but there is a big variability in values.
Taken from [92].

sodium ions from inside with 2 potassium from outside. Channels are pores that
allow ions to flow through the membrane, driven by the voltage difference between
the membrane potential and the specific equilibrium potential of each ion. Even
though ionic pumps may regulate the excitability of certain neurons [48], their low
transport rate (around 100 ions per second for the Na+-K+ pump [94]) does not
allow them to have fast effects on the membrane potential. Conversely, more than
one million molecules can flow through ionic channels [32], making them the basic
tools to generate electric signals in neurons.

There are several types of ionic channels. Some of them are voltage-gated,
because their opening and closing are determined by gates that get activated
(opened) or inactivated (closed) depending on the membrane potential. Other
type of channels are sensible to chemical agents, such as neurotransmitters and
second-messengers. In all the cases, the channels open and close in a stochastic
manner. However, it is possible to calculate the total current I through a large
population of identical channels i as:

Ii = gi (V − Ei) (2.2)

where gi is the conductance (in Siemens or Ω−1), V is the membrane potential
and Ei is the reversal potential, i.e.: the voltage when the current changes of sign.
Given that most channels are selective to specific ions [71], the reversal potential
is usually the equilibrium potential of that ion (EK , ENa, etc). The voltage differ-
ence between the membrane and the reversal potentials is commonly called driving
force.

Both Ii and gi are widely used as intensive properties, dividing them by the
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area of the membrane in cm2 (current is also reported in papers in A/F , where F is
the unit of capacitance). The conductance gi may be constant, voltage-dependent
or vary with both voltage and time. The nonlinearity of most ionic channels is the
basis of the complexity of neurons’ dynamics.

2.2.3 Equivalent circuit

To sum up, the cellular membrane is a lipid bilayer that acts as a capacitor,
whereas the ionic channels are selective pores that can be represented as nonlin-
ear conductances allowing to pass current driven by the difference between the
instantaneous membrane potential and a constant DC voltage called reversal po-
tential. All this information can be represented in an equivalent circuit, shown
in Figure 2.1. According to it, the total current I flowing through the membrane

is I = IC + INa + IK + ICa + ICl, where IC = C
dV

dt
is the capacitive current,

whose dynamics is usually several times faster than the ionic currents’ ones. By
convention, the total current I will be positive if it is in the outward direction.
Therefore, membrane potential is governed by:

C
dV

dt
= IC + INa + IK + ICa + ICl (2.3)

Figure 2.1: Equivalent circuit of the cell membrane. Each parallel branch represents an ionic
current, whose DC sources are the reversal potentials. The capacitor C is the membrane
capacitance.

The differential equation (2.3) explains the membrane potential deflections of
the neuron, given a total current I. There is a convention for the voltage changes,
based on the action potential shape:

• Depolarization: if V > Vrest and
dV
dt > 0

• Repolarization: if V > Vrest and
dV
dt < 0

• Hyperpolarization: if V < Vrest

8
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Equation (2.3) is valid for a single-compartment : a cellular membrane area
that could be considered as isopotential without spatial coordinates. In some
cases, a neuron is modelled as a set of connected compartments, whose voltages
are governed by a partial differential equation in both time and spatial coordinates.
This topic will be explained more deeply in Section 4.4.1, in the context of the
model developed in this thesis.

2.2.4 Membrane excitability types

Although there is a large diversity of neuronal types, their behaviours can be
classified in two main types3, according to their frequency response to current step
stimuli [73, 165]:

• Class 1 neurons can fire at arbitrarily low frequency, depending on the
injected current amplitude.

• Class 2 neurons can fire only within certain frequency range whose mini-
mum is a fixed nonzero value.

The difference between these two classes lies in how tonic spiking starts. For
certain small injected current, both neuron types do not fire, given that the resting
potential is a stable equilibrium point. The resting potential loses its stability for
some value of the injected current and the neuron enters to a limit cycle of repet-
itive firing. However, while class 1 neurons pass from the stable equilibrium point
to a limit cycle through a saddle-node bifurcation, class 2 start spiking through
a Hopf bifurcation [88, 163]. One of the main differences between these two pro-
cesses is that class 1 neurons pass suddenly from equilibrium to constant amplitude
spikes, whereas class 2 present small amplitude oscillations (with almost constant

3There is also a third less common excitability type, called class 3, that is not able to
present tonic spiking. In this case, the resting state is always a stable equilibrium point,
regardless the injected current strength [88].

Figure 2.2: Schematic representation of frequency-current curves for different excitability types.
Class 1 neurons present continuous curves, unlike class 2, that jump from equilibrium to high-
frequency spiking.

9
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frequency) before they start to fire.

A neuron may pass from being class 1 to class 2, and viceversa, depending on
their membrane properties. Some of them will be studied later in this thesis, in
chapters 5 and 6, within the context of mesencephalic trigeminal neurons.

2.3 Single neuron models

2.3.1 Conductance-based models

In a pioneering series of papers published in 1952, Hodgkin and Huxley developed
an amazingly accurate model of the squid giant axon [74], based on experimental
data [75–78], from voltage-clamp and current-clamp protocols: i.e.: setting either
membrane potential or net current through it. Their model, that is still the basis
of mathematical neuroscience, is also known as conductance-based model, because
it is based on ionic currents that they were able to isolate and describe. They
discovered that the main ions involved in action potential initiation and propaga-
tion in the squid axon are sodium and potassium, and that the resulting currents
can be described by equations like (2.2), where gNa and gK are both voltage and
time dependent, via gating variables. Each gating variable represents the fraction
of gates that are in a given state. The simplest case is the potassium ion, for
which they defined an activation variable n that represents the fraction of gating
particles that are in the open state:

gK = gKn4 (2.4)

where gK is the maximum potassium conductance. Due to the exponent 4 (that
was intended to fit the experimental data), Hodgkin and Huxley guessed that there
are four gating particles that have to be open to completely open the channel4.
According to them, the activation variable, n, satisfies the following first order
differential equation:

dn

dt
= αn (1− n)− βnn (2.5)

where, αn and βn are the forward and backward rate coefficients between the closed
and the open state, and depend on the membrane potential V . By defining the
asymptotic activation curve n∞ and the time constant τn as

n∞ =
αn

αn + βn
, τn =

1

αn + βn
(2.6)

4More details in Section 3.3
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Equation (2.5) can be expressed as:

dn

dt
=

n∞ − n

τn
(2.7)

The activation (and inactivation) variables for other currents are usually mod-
elled using equations like (2.7), because of their intuitive biophysical interpretation:
for a fixed voltage V , the activation variable tends to reach its asymptotic value
n∞ = n∞(V ), with a time constant τn = τn(V ). The main strength behind this
kind of model for ionic currents is that it can be tested experimentally by apply-
ing voltage steps to the cell, a standard procedure for an electrophysiology lab.
Moreover, n∞ = n∞ (V ) is usually a sigmoid-like (also called Boltzmann) function:

n∞ (V ) =
1

1 + e
−(V −V1/2)

kn

, (2.8)

where V1/2 is the half-value of the curve and kn its slope at this value. Currents
with half-values around the resting potential are called “low-threshold”, whereas
those far above it (> −20 mV, approx.) are said to be “high-threshold”. The
slope sign may be positive or negative, making the state variable n to be more
open (more activated) or closed (more inactivated) as it gets away from the rest-
ing potential.

On the other hand, the time constant τn = τn(V ) can depend on voltage
according to diverse shapes (constant, exponential, etc). Its value at different
voltages gives the speed of the state-variable dynamics.

When the neuron get depolarized, the variable n increases till certain value,
according to (2.7), opening the potassium channels permanently. However, sodium
channels are transient : they become inactivated after some time. Therefore,
Hodgkin and Huxley modeled them using two variables:

gNa = gNam
3h (2.9)

where both variables are governed by nonlinear first-order differential equation,
such as Equation (2.7). m stands for activation and h for inactivation, because
m∞ increases with depolarization (km > 0), whereas h∞ decreases (kh < 0). The
time constant of the activation τm is faster than the inactivation one τh. This
model will be discussed later, in Section 3.3.
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Figure 2.3: Top: asymptotic curves for the gating variables of potassium activation n∞, sodium
activation m∞ and inactivation h∞ variables. Bottom: the corresponding time constants.
Note that sodium activation time constant is several times faster than the potassium one.

Finally, Hodgkin and Huxley added a linear term called leak to model the
remaining current, that is carried mainly by Cl−1 [92]:

IL = gL (V −EL) (2.10)

In conclusion, the Hodgkin and Huxley model for the squid axon accounts
for three ionic currents: potassium, sodium and leak. Action potentials can be
explained by the interaction between these currents, as Figure 2.4 explains. Let
suppose that some external positive current Iapp is applied to a section of the
cellular membrane, at t = 20 ms. After that, the following sequence of events
happens:

1. As the membrane potential gets depolarized (dVdt > 0), sodium and potas-
sium activation variables m and n start to grow, whereas sodium inactivation
h starts to decrease. However, the time constant τm is faster than the other
two (Figure 2.3), producing a net increase of inward sodium current, that
produces further depolarization of the membrane, in a positive feedback
loop.

2. If the membrane potential reaches a certain threshold, voltage scales up
extremely fast, generating a very large depolarization (around 100 mV) in
a short time interval (less than 1 ms) [74].

12
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3. With such a big depolarization, two different mechanisms start to operate
causing repolarization: sodium inactivation variable h decreases to zero and
potassium activation n starts to grow, producing a net outward current that
makes dV

dt < 0.

4. Sodium current goes to zero quickly, leaving only the potassium current
alive, that produces an hyperpolarization for some milliseconds.

5. Finally, potassium channels get desactivated (n goes to zero), making the
neuron to come back to the beginning.

And, depending on the properties of the ionic channels and the applied current,
the neuron can fire again or remain silent.

On the other hand, if the applied current is below threshold there is no action
potential, but a spikelet (see at t = 5 ms in Figure 2.4), whose depolarization is
smaller than the spike and with slower dynamics. In this case, the neuron is said
to be in subthreshold regime, given that there is an atractive equilibrium point
(resting potential) that remains stable.

Hodgkin and Huxley formalism (“HH formalism” from now on) has been ex-
tensively adopted by neurophysiologists to model several neuronal types: sensory
neurons [11,22], pyramidal cells [7,60], deep cerebellar nucleus cells [166], Purkinje
cells [91,127] and a large etc. Although more detailed models of channel dynamics
have been developed based on Markov chains [23, 24, 148], the basic structure of
detailed neuron models still remains the same.
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Figure 2.4: Action potential generation according to the Hodgkin and Huxley model. At t = 20
ms, a brief current pulse is injected into the cell, causing a depolarization (Figure a; note that V
= 0 denotes resting potential) that produce a step increase in sodium activation variable m (b).
As a consequence, the sodium conductance gNa jumps to a maximum (c), producing an net
inward (negative, by convention) ionic current, carried by sodium ions (d). Sodium channels
start to inactivate some time later, due of the decrease of h. Simultaneously, potassium
channels get activated, generating outward current that first cancels and then surpases the
inward sodium current. As a result, the net ionic current becomes positive, causing an after-
hyperpolarization that lasts some milliseconds.
On the other hand, at t = 5 ms a small current pulse is injected into the cell, not generating
a spike, but a subthreshold response.
14
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2.3.2 Simplified models

Conductance-based models are extremely useful, given that they are based on the
real membrane mechanisms. However, for some applications that involve a large
number of neurons, simpler models are needed, in order to compute them. There-
fore, some mathematical models have been developed to model neural activity. In
this section, the most popular models will be presented, in order to complete the
whole panorama of single neuron modelling. For more extensive review of these
models, please consult [88,165].

Integrate-and-fire models

The simplest model has been proposed by Lapicque in 1907 [1], just assuming that
the cellular membrane is a leaky insulator, modeled as a resistor and a capacitor
in parallel. At the time, ionic channels were not yet described, so it was a good
approximation of a neuron if spike generation mechanisms are not relevant. Later,
Knight added to the model a reset mechanism [104] to model spiking in neuron
populations:

C
dV

dt
= −gL (V − EL) + Iext(t), if v ≤ Vthreshold, then V ← Vreset (2.11)

where C, gL and EL denote the membrane capacitance, leak conductance and
reversal potential, respectively. This model is known as leaky integrate-and-fire
(LIF), because the neuron integrates the injected current Iext till some thresh-
old Vthreshold, and then “fires” a instantaneous spike (delta function). Then, the
membrane potential is reset to a subthreshold voltage Vreset, where the integration
starts again. Iext(t) models any external current: synaptic inputs, electrodes, etc.

The great advantage of this model is that it is cheaper computationally and
has less parameters than conductance-based models. It is also possible to solve
it analytically under certain conditions, allowing to make theoretical calculations
of networks dynamics. In particular, it is straightforward to obtain the firing fre-
quency in terms of the injected current and tune the parameters to get the firing
rate of some neuronal type [34, 98]. The model can be also extended easily, just
adding ionic currents [15] or using a time-varying threshold Vthreshold [25].

In general, integrate-and-fire neuron models can be described as:

C
dV

dt
= −gL (V − EL) + Iext(t) + Ψ(V ) (2.12)

where Ψ(V ) is a function of membrane potential that defines different models:

• Leaky integrate-and-fire: Ψ(V ) = 0
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• Quadratic integrate-and-fire (QIF): Ψ(V ) = A (V − V ∗)2+gL (V − EL)−IT ,
where IT is the rheobase current [67]5

• Exponential integrate-and-fire (EIF): Ψ(V ) = gL∆T exp
(

V−V ∗

∆T

)

, where ∆T

is a parameter called “slope factor”, that measures the sharpness of spike
initiation [50]

Unlike LIF, QIF and EIF are authentic spiking models, because membrane
potential can diverge, “generating” a spike. For this reason, all these models need
to be reset after reaching a threshold. The parameters of QIF and EIF can be
obtained from approximating the asymptotic subthreshold dynamics [90]:

C
dV

dt
= I − I∞(V ) (2.13)

where all the information about ionic currents is contained in the steady state
current-voltage function I∞(V ), widely used in neurophysiology as I-V curve. The
choice of the integrate-and-fire model depends on the researcher’s needs. For ex-
ample, QIF has been showed to present a more realistic frequency response than
LIF [17], but it is computationally more expensive [87]. In fast spiking behaviour,
QIF tends to take more time to fire a spike than EIF [50].

Izhikevich model

Integrate-and-fire neuron models are the most computationally efficient for simu-
lations but quite poor to reproduce a large range of biological behaviours. Thus,
Izhikevich developed a model for the cortical neurons that is an excellent trade-off
between computational cost and flexibility in terms of possible neurocomputa-
tional properties. It consists in a modified QIF model, with a membrane recovery
variable u that represents the inactivation of sodium channels and the activation
of the potassium ones [86]:











dv

dt
= 0.04v2 + 5v + 140− u+ Iinj

du

dt
= a(bv − u)

(2.14)

like the “classic” integrate-and-fire models, it requires a reset after each spike:

if v ≥ 30 mV, then
{

v ← c
u← u+ d

The simplicity of the model contrasts with its amazing versatility, given that
it was shown to reproduce twenty different neuronal behaviours just by changing

5The QIF model is equivalent to another popular model, called theta model and de-
veloped by Ermentrout and Kopell [43], where a phase variable is introduced instead of
voltage.
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the parameters a, b, c and d [90]. For this reason, it has been adopted for making
realistic simulations of large cortical networks [89,150,177,192].

Other simplified models

Several other mathematical models have been developed for studying neuronal dy-
namics. They are in between the simplicity of integrate-and-fire models and the
detailed description of conductance-based models. Thus, they are used for study-
ing single neuron dynamics or small networks, because of their computational cost.
Here, we briefly mention only the two most important.

The first one is the FitzHugh-Nagumo [46], that consists in a two dimensional
differential equation inspired on the van der Pol oscillator. One variable repre-
sents the membrane potential, while the other is a recovery variable, similar to
the Izhikevich model. The main difference between them is that FitzHugh model
is cubic rather than quadratic. In 1962, Nagumo implemented the model analogi-
cally, using tunnel diodes [85].

In 1981, Morris and Lecar derived a simplified model that is actually a con-
ductance based model with reduced dimensionality, given that it only accounts for
one calcium and one potassium channel, and the leak [131]. It has been used for
modeling several types of cells, from the original barnacle giant muscle fiber [131]
to lobster stomatogastric ganglion [162] and pyramidal [141] cells. Although it was
presented as a 3-dimensional model, the assumption of instantaneous dynamics of
the calcium channel reduces one dimension, allowing to use phase plane analysis
to analyze the model [109].

2.4 Electrical and chemical synapses modelling

Until now, the mechanisms of single neuron activity have been briefly reviewed.
However, neurons never work alone: they constitute complex networks that are
connected by functional contacts, called synapses. There are two types of synapses:
electrical and chemical.

2.4.1 Electrical synapses

The first ones are the most primitive kind of contact between neurons: they just
allow ions to flow between two neurons through specialized channels located on the
cellular membranes, called gap junctions, made by proteins called connexins [145].
Thus, both cells have to be in physical contact to be connected by gap junctions.
The ions flow through them passively, driven by the voltage difference between the
two neurons. If 1 denotes the “presynaptic” neuron and 2 the “postsynaptic” one,
the current passing from neuron 1 to 2, I12, is:
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I12 = gj12 (V1 − V2) (2.15)

where V1 and V2 are the membrane potentials of the respective cells, and gj12 is the
junctional conductance. In the case of rectifying gap junctions [53], the strength
of the synapse is asymmetrical gj12 6= gj21 [49].

Equation (2.15) can be introduced as a external current in any of the single
neuron models reviewed in the previous section. Note that the transmission of
information has no delay and no threshold, given that the current corresponds to
the instantaneous voltage difference between the neurons. Its functional role will
be discussed later in this thesis (see chapters 5 and 6).

2.4.2 Chemical synapses

Chemical synapses are the most extended functional contact among neurons. Un-
like electrical synapses, they are always asymmetrical and the pre and postsynap-
tic cellular membranes are not in contact, but separated by an empty space called
synaptic cleft. They operate through a complex process of unidirectional signal
transduction, based on some particles called neurotransmitters stored in small
packages (vesicles) in the presynaptic terminal. The process of communication
can be summarized in the following sequence [145]:

1. An action potential arrives to the presynaptic terminal, leading to the enter
of calcium through voltage-gated channels (calcium concentration is 10.000
times higher outside the cell).

2. The increase of intracellular calcium triggers a process called exocytosis, that
ends with the fusion of the synaptic vesicles with the presynaptic membrane.
Neurotransmitters inside these vesicles are released to the synaptic cleft.

3. After that, neurotransmitters diffuse in the empty space between pre and
postsynaptic cellular membranes, until reaching specific receptors in the
postsynaptic neuron.

4. After the binding of the neurotransmitter and the receptor, two things may
happen, with different time-scales:

• if the receptor is ionotropic, it opens and allows current to flow to the
postsynaptic neuron

• if the receptor is metabotropic, it triggers a chain of chemical agents
that ends with the opening of ionic channels in the postsynaptic cell

5. Depending on the type of synapse, the currents can be excitatory (EPSC: ex-
citatory postsynaptic current) or inhibitory (IPSC), because they depolarize
or hyperpolarize the postsynaptic neuron, respectively.
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6. After some milliseconds, if there is no more stimuli in the presynaptic ter-
minal, the neurotransmitter is captured by the presynaptic cell and postsy-
naptic receptors get closed, ending the PSC.

In conclusion, a chemical synapse is triggered by an action potential in the presy-
naptic cell and generates some electrical currents in the postsynaptic one6. This
can be modelled as a postsynaptic current Isyn according to the following equa-
tion [165]:

Isyn = gsyn (V2 − Esyn) (2.16)

where all the terms, except Esyn are time-dependent and valid for t > ts, being ts
the time of the release of neurotransmitter. As usual, V2 indicates the postsynaptic
membrane potential.

From the equation, it can be seen that Esyn determines if the synapse is excita-
tory or not. When Esyn is above (below) the resting potential V2rest, the resulting
current is depolarizing (hyperpolarizing).

gsyn represents the change in postsynaptic conductance, that last just some
milliseconds after ts and can be described according to a single exponential decay:

gsyn(t) = gsynexp

(

−
t− ts
τ

)

(2.17)

or an alpha-function:

gsyn(t) = gsyn
t− ts
τ

exp

(

−
t− ts
τ

)

(2.18)

Given the complexity of the chemical transmission, it can be modulated in
several ways. In particular, the synaptic plasticity is the basis of the memory
formation and learning, throughout the change of the strength of the synapses
(gsyn) [145].

6Actually, it can also generate chemical changes through second messengers. For a
more detailed explanation, please consult classical Neuroscience bibliography [92, 145].
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2.5 Summary

This chapter has reviewed basic concepts of cellular neuroscience. The neuron
membrane was modelled as an electrical circuit, whose components are DC-voltage
sources (due to ionic charge imbalance in equilibrium), a capacitor (the lipid bi-
layer) and (usually nonlinear) conductances.

Then, mathematical models of these components were examined. Conductance-
based models were presented using the Hodgkin and Huxley formulation of the
sodium and potassium channels for the giant-squid axon. Given that this kind of
models is biologically pausible, it will be used extensively in this thesis to model
mesencephalic trigeminal neurons according to experimental data and bibliogra-
phy. The simplified models presented later will be useful to get some theoretical
results that may be discussed. Finally, functional connections between neurons
(electrical and chemical synapses) were presented, because they will be used to
analyze how neurons cooperate.
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Chapter 3

Characterization of sodium and

hyperpolarization-activated currents

3.1 Introduction

This thesis is centered on the modeling and analysis of rat mesencephalic trigem-
inal neurons. Given that it is needed to model single neuron activity with some
level of detail, the best choice is a conductance-based model, such as the Hodgkin
and Huxley model that was reviewed in the Chapter 2.

The basic elements of a conductance-based model are its ionic channels. Some
of them have been thoroughly addressed in bibliography [42,80,101,133,156,170,
185,188] and will be reviewed in the Chapter 4. In this chapter, two relevant cur-
rents will be modelled from experimental data, obtained by procedures described
elsewhere [33]: the hyperpolarization-activated Ih and the sodium INa

1.

Indeed, sodium current modelling was not an objective at the beginning of
this thesis, but became one after failing to produce reasonable simulations. Then,
experimental data was generated to feed the mathematical model. On the other
hand, Ih modelling comes from another research line at the lab, and was taken as
an opportunity to refine the model and not a central goal of the thesis.

All the experimental data presented in this thesis were measured at the Mes
V neuron soma, using the patch clamp method, in the whole-cell configuration.
In this setup, the recording pipette is connected to the interior of the neuron
through a small hole, without any contact with the extracellular medium [145]. In
this configuration, two main options were used: current-clamp and voltage-clamp,
that set either current through the membrane or its voltage.

1The sodium current is usually seen as the sum of three components: see Section 3.3
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3.2 Hyperpolarization-activated current and its modula-

tion by cyclic GMP

3.2.1 Introduction

The hyperpolarization-activated current Ih is a non-selective cation current, per-
meable to both potassium and sodium ions, with a reverse potential Eh be-
tween EK and ENa. As its name suggests, this current gets activated for volt-
ages below resting membrane potential, without presenting inactivation. Given
that Eh is generally above resting potential, Ih acts as an inward current, con-
tributing to repolarize membrane potential. It has been reported in many cell
types [55,81,115,122,128] and linked with two main roles: rhythm generation and
control of dendritic integration and firing [111,181].

In Mes V neurons, Ih was first described by Khakh and Henderson [101], fitting
its activation by a standard HH first order process, finding that V1/2 = -94 mV
and k = -8.4 mV, that was able to explain the conspicuous “inward rectification”
(repolarization at hyperpolarized voltages) present in these neurons. Figure 3.1
shows an example of that: after the injection of a negative current and voltage
hyperpolarization, Ih starts to grow, because of an increase of both driving force
and activation, producing a late repolarization, called “voltage sag”. When the
injected current is turn to zero, Ih channels are still open, depolarizing the mem-
brane above the resting potential and producing one or more “rebound” spikes.

Later, Tanaka et al [170] studied Ih again, in order to explain a low-frequency
resonance at membrane potentials below -65 mV. Interestingly, comparing rats of
2-3 days with those of 10-12, they found that half-maximal activation potential
V1/2 presents a positive shift (from -113 to -105 mV) and that specific maximum
conductance (conductance per unit area) doubles.

Both papers provide an experimental description of Ih current, but with few
information about its activation time constant. In addition to that, the very
hyperpolarized value of V1/2 makes Ih quite unsuitable to affect Mes V neurons
behaviour. However, it has been shown that Ih can be modulated by a shift on
its half maximal activation voltages by cyclic nucleotides (such as cyclic GMP and
cyclic AMP) [66] or neurotransmitters (like serotonin or nitric oxide) [68,69,103],
that interact with Mes V neurons [107, 140]. Thus, another experimental char-
acterization of Ih was taken out by Sebastián Curti at the School of Medicine,
allowing us to create a new model of this current. Ih is computed by substracting
current recordings in presence of cesium Cs2+ (an Ih blocker) 2 mM (millimolar)
to those in control conditions and in presence of 0.5 mM cyclic GMP (cGMP).
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Figure 3.1: Experimental voltage response to a injected negative current. After a rapid hyper-
polarization, Ih starts to operate, generating a voltage “sag” that repolarizes the membrane
potential. At t = 0.3 s the injected current is shutdown, allowing the membrane potential to
return to resting value. However, Ih is still open, acting as an inward current that produces a
“rebound spike”.

3.2.2 Modelling from experimental recordings

According to previous articles, Ih current can be modelled by a first order process:

Ih = gh.s. (V −Eh) (3.1)

where s is governed by a standard HH equation (2.6). The full description of the
model will require finding the parameters of the reverse potential Eh, steady-state
activation s∞ and time constant τh.

The reverse potential Eh can be obtained by the stepping up voltage from a
holding potential where Ih is almost totally activated (-100 mV). The resulting
current, shown in Figure 3.2, displays an artifact at the moment of the step,
because of the inability of the electronic recording equipment to control voltage
when the current change abruptly, generating a rebound spike.

Without taking into account the artifact, the current response is almost step-
like and its value is linear with the command voltage, as shown in the Figure
3.3. If Ih is modeled according to the HH formalism and its kinetics are slow, the
value of the post-step current Ih = gh |V=−100mV · (V − Eh), where gh |V=−100mV

is the channel conductance at V = -100 mV and the slope of Figure 3.3. Hence,
the reverse potential Eh can be obtained as the voltage where Ih is zero: Eh =
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Figure 3.2: Experimental recorded currents used to obtain Eh. The protocol, shown in inset,
consists in a prepulse to a very hyperpolarized voltage, where Ih is almost fully activated and
then stepping up voltage. At the time of the step, there is an artifact that comes from a spike.

-40.2 mV, similar to the value obtained by Tanaka et al [170] in the same cell type.

The steady-state activation curve s∞ = s∞ (V ) can be obtained using the same
idea used to obtain the reversal potential: after a long voltage step (whose value
V1 ranges from -125 to -40 mV), voltage is stepped to a fixed value2 V2 = -70 mV.
Given the slow kinetics of Ih, the conductance of the channels does not change
instantaneously, keeping its previous value s∞1 = sh∞(V = V1), resulting in a
current that can be expressed as:

Ih = gh.s∞1. (V2 −Eh) , V1 = −125,−120, . . . − 40 mV, V2 = −70 mV (3.2)

The main advantage of equation (3.2) is that the only difference between cur-
rent traces is the steady-state activation value s∞1, because the driving force is the
same. According to that, Figure 3.4 shows how the Ih current traces saturates for
values below -110 mV and above -55 mV, as a result of the sigmoid-like activation.

Hence, the steady-state activation curve s∞(V = V1) can be simply calculated
by normalizing the current:

s∞(V = V1) =
Ih

gh (V2 − Eh)
(3.3)

Figure 3.5 displays the mean steady-state activation values and their standard
errors, as well as sigmoid fittings. In presence of cGMP, Ih becomes activated at

2This value of V2 is chosen for keeping a substantial driving force while not hyperpo-
larizing too much the cell, in order to avoid damaging.
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3.2. Hyperpolarization-activated current and its modulation by cyclic GMP

Figure 3.3: Mean current response after applying a voltage step, according to the protocol
shown in Figure 3.2. The relationship is linear, indicating the ohmic response of the Ih current.

Figure 3.4: Tail currents in control conditions. The recording protocol is displayed in the inset.
Note the saturation of the current at both extremes of the voltage range.

25



Chapter 3. Characterization of sodium and hyperpolarization-activated currents

Figure 3.5: Ih steady state activation curves, in control conditions (n=8) and in presence of
cGMP (n=4). Experimental data is shown as the mean value and standard error of several
recordings, for each voltage. Continuous lines are sigmoid fits.

more depolarized values, going from 2.6% in control conditions to 30.5% at -55 mV,
with many consequences in Mes V neuron behaviour, as it will be discussed in the
following chapters.

Finally, the description of Ih is completed by finding its time constant τh =
τh(V ). The experimental protocol consists in applying hyperpolarizing voltage
steps from a holding potential where Ih is supposed to be largely deactivated (-50
mV), recording the resulting current. Figure 3.6 shows that recordings near resting
membrane potential in control conditions are distorted by an artifact, due to the
low activation of Ih. On the other hand, the recordings below -70 mV behave as
expected, with a single-exponential time course and saturation at very low voltage
values.
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3.2. Hyperpolarization-activated current and its modulation by cyclic GMP

Figure 3.6: Experimental recordings (top) and fittings traces (bottom) for hyperpolarized
voltage steps (colour references are the same), in control conditions and cGMP for one cell,
used to get the time constants. The experimental protocol is shown in the inset (bottom-right).

Figure 3.7 shows the time constants means and the corresponding standard er-
rors obtained from fitting several cells. Unlike control time constants, cGMP ones
show small standard error in the whole voltage range, because of its larger acti-
vation (see Figure 3.5). Interestingly, cGMP does not only shift the steady-state
activation curve, but it also makes Ih faster. Both experimental time constants
can be fit by bell-shaped curves: a lorentzian for control conditions and a gaussian
for cGMP:

Control: τh(V ) =
A

1 + V−m
γ

2 + τhmin (3.4)

cGMP: τh(V ) = A.e
−

(

V−m
γ

)2

+ τhmin (3.5)

The resulting parameters can be found in Table 3.1.
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Chapter 3. Characterization of sodium and hyperpolarization-activated currents

Figure 3.7: Hyperpolarization-activated current time constants for both control conditions
(n=8) and cGMP (n=4). The lines denote fittings according to equations (3.4-3.5)

V1/2 k A m γ τhmin

Control -86.2 mV 8.5 mV 560.9 ms -74.4 mV 22.5 mV 27.7 ms
cGMP -67.5 mV 15.1 mV 202.7 ms -67.2 mV 22.4 mV 90.9 ms

Table 3.1: Fitting parameters for Ih current. The first two columns are the half-activation
voltage and slope of steady-state activation s∞ (sigmoid function), whereas the following ones
correspond to the time constants τh (described by equations (3.4-3.5).

3.3 Sodium currents

3.3.1 Introduction

Even though sodium currents are less diverse than potassium ones [27,71], there are
three completely different sodium currents, all of them present in Mes V neurons:

• transient INaT : the sodium current studied by Hodgkin and Huxley [74], it
is responsible of the large inward current that depolarizes the neuron during
the action potential. It presents an almost instantaneous activation and fast
inactivation.

• persistent INaP : a low-threshold current with instantaneous activation and
almost no inactivation.

• resurgent INaR: this unusual current can be measured after repolarizing
the membrane to around -40 mV, if before it was kept very depolarized (at
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3.3. Sodium currents

around +30 mV) during some time (approximately 20 ms) [4, 146].

The persistent sodium current INaP has been extensively studied in Mes V
neurons, because of its role on subthreshold resonance [42] (that will be studied in
the next chapter) and in spike initiation [95]. It has been modelled as an instanta-
neously activated current, whose half-activation voltage V1/2 is close to the resting
potential [41,188]. The INaP current has been shown to display an extremely slow
inactivation (with a time constant of around 2 seconds [186]) that can be neglected
during short-time protocols.

Unluckily, the remaining sodium currents (transient and resurgent) have not
been completely modelled in Mes V neurons. For the transient current, only
Enomoto et al [41] measured the sigmoid-like steady-state curves according to HH
formalism, finding V1/2=-32.9 mV and k=6.1 mV for activation and V1/2=-61.9
mV and k=-9.5 mV for inactivation. However, there are no reports of the time
constants of both processes. On the other hand, they also measured the resurgent
current, finding that it is maximum when repolarizing to -40 mV, but without
making a mathematical model of it.

Given that the transient sodium current is the main responsible of the action
potential, it is fundamental to have a complete model of it. Previous complete
models of Mes V neurons [113, 133, 186] have used INaT equations found in other
cell types [13], but without checking their validity. Therefore, Sebastián Curti
made experimental recordings of the sodium currents, in order to provide data for
a more suitable model, according to procedures described elsewhere [33], with some
technical adjustments made due to the fact that the transient sodium current gets
large values in few hundreds of microseconds. The most important one is that the
extracellular sodium concentration was decreased to 26 mM (normal concentration
is [Na]ext = 150 mM), in order to decrease the driving force ∆V = V − ENa by
obtaining a smaller reverse potential ENa = 32.8 mV (instead of 78 mV).

Currents in control conditions were recorded under voltage clamp configura-
tion and then substracted with recordings in presence of tetrodotoxin (TTX, a
sodium channel blocker [71]) 0.5 µM, in order to get the sodium currents. During
the voltage clamp, membrane potential was stepped up, from holding potentials of
-70, -55 or -50 mV to depolarized values (this is usually called activation protocol).
Sodium currents appear clearly in all the recordings, as an inward current with
rapid activation and inactivation, both voltage-dependent. However, unlike Ih, the
sodium current presents a rapid activation to large values that can destabilize the
voltage clamp. Thus, it is important to be cautious when analyzing experimental
recordings, given that several errors may happen.
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3.3.2 Experimental errors’ analysis

The sodium current recordings present an artifact at the beginning of the voltage
step, due to two factors. The first one is the charge of the pipette capacitance
Cp, whose current iCp is proportional to the voltage derivative3: iCp = Cp

dV
dt .

Thus, the abrupt change in voltage leads to an almost infinite derivative, making
capacitive current extraordinarily large. This current would be zero if the control
and TTX conditions were exactly equal, because they would be substracted, but
that does not happen in reality. The second experimental drawback is that volt-
age clamp is only achieved after some finite time: for example from 200 to 600
µs in the experiment shown in Figure 3.9, where membrane potential was simul-
taneously recorded by another electrode. Therefore, the voltage derivative is not
infinite (but it is still large), but new artifacts arise from the more complex shape
in voltage curve. In some cases, there is even a small overshot after reaching the
command voltage.

In addition to that, Figure 3.9A shows that there could be a small error between
the command voltage and the measured one in steady-state [116], due to the “series
resistance” RS , that represents the extracellular fluid resistance between ground
and the membrane [92]:

Vm = Vclamp − IclampRS (3.6)

where Iclamp denotes the current injected to the neuron to set its membrane poten-
tial Vclamp, according to the schematic representation of the voltage clamp circuit
(see Figure 3.9C). Usually, the series resistance is reduced as much as possible
while recording, by applying a percentage of compensation fcompensation (in these
recordings, around 80%) via software. Hence, the maximum resistance series error
eS is:

eS(max) = Iclamp(max)Rs (1− fcompensation) (3.7)

According to Figure 3.9D, eS(max) overestimates the voltage clamp error,
probably because it is usually reached before 1.0 ms, when the membrane potential
is not stable yet. On the other hand, the steady-state current underestimates the
error, given that the current becomes smaller as the step voltage increases, but the
experimental error remains almost constant. As a conclusion, neither maximum
nor steady-state currents can be used for getting a reliable estimation of the volt-
age clamp error in the cases where there is no recording of the membrane potential.

There are two more criteria to analyze voltage clamp quality when recording
sodium currents [147]:

1. The currents recorded in the region -50 to -20 mV, by steps in 5 mV (or
less) increments, have to be smoothly graded. This range is chosen because
it is approximately the region where sodium current activates and the driv-
ing force is quite large (do not forget that reverse potential for sodium is

3The tip of the pipette was painted with a polymer called Sylgard, to decrease the
value of Cp and reduce the capacitive current iCp [191].
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3.3. Sodium currents

Figure 3.8: Voltage clamp errors from different recordings. Left: TTX-sensitive currents
become outward for voltage commands above -20 mV, being transient above -10 mV. Right:
drastic change in TTX-sensitive current between -35 and -30 mV.

positive). A large and rapid inward current could lead to a longer time to
get the membrane voltage stabilized, distorting the current traces, as Figure
3.8-A displays between -35 and -30 mV voltage steps.

2. TTX-sensitive currents should not have any transient outward current, like
those shown in Figure 3.8-B. As discussed before, the series resistance RS

produces a small error eS in clamped voltage due to the current flow through
it. Given that the voltage drop in the series resistance is proportional to
the amount of current (assuming that RS remains constant), there is more
voltage drop in control recordings than in TTX ones, given that inward
current is larger in the first case. Therefore, effective membrane voltage
is larger for control recordings. The difference in depolarization between
the two conditions could lead to a larger activation of an outward current,
that does not appear in control recordings (because it is hidden by the
inward sodium current) but it is visible when substracting control and TTX
recordings.

Finally, only 1 in 7 neurons fulfills all the voltage clamp quality criteria and
will be used in the next section for developing models. Its current traces are
shown in the Figure 3.10, along with a simulation of the model by del Negro and
Chandler [133]. Actually, this best quality recording was recorded by reducing the
number of sodium channels with 10 nM TTX (concentration not enough to block
all of them). In addition to that, hepes was used as a buffer.

There were several more recordings that were also discarded before being ana-
lyzed, due to several reasons: large baseline drifts, non adequate spatial control of
voltage (spikes were generated in the axon hillock, that was not clamped), drastic
changes in series resistance, death of cells after some time, etc. Even though it is
not possible to demonstrate that these valid recordings are representatitive of the
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Chapter 3. Characterization of sodium and hyperpolarization-activated currents

Figure 3.9: In one experiment, the membrane potential was recorded with a electrode, while
applying voltage clamp experiment with another one that recorded the resulting current. Figure
A shows the actual membrane potential when a voltage command (colour code in legend) was
applied to step it up at 50.0 ms. The resulting current (B) displays a capacitive artifact
discussed at the beginning. According to the simplified circuit of the voltage clamp protocol
shown in C [92], the error between command voltage and membrane potential is proportional
to the applied current. However, figure D demonstrate that the experimental error remains
quite constant in voltage, taking approximately the value of the maximum theoretical one when
there is almost no current.

sodium currents, they are pretty similar to those presented by Enomoto et al [41]
and completely different from those expected from the model by del Negro and
Chandler, as Figure 3.10 shows. Therefore, these valid current traces at least can
be useful to extract some basic data not available from literature, such as the time
constants.

3.3.3 Modelling from experimental recordings

The traditional way of modelling the transient sodium current has been using the
HH formalism, according to expressions similar to equation (2.9) [13,51,100,155].
The theoretical interpretation of this model, made by Hodgkin and Huxley is sim-
ilar to that commented in the previous chapter for the potassium current (see
section 2.3.1): each ionic channel has “gates” controlled by “gating particles”. In
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3.3. Sodium currents

Figure 3.10: Current traces from experimental recordings (left) and previous HH model by Del
Negro and Chandler [133] (right).

the case of the sodium channel, there should be four “gating particles”: three m
particles controlling activation and one h particle for inactivation, each one under-
going first-order transitions between two forms [92]:

“1−m′′
αm−−⇀↽−−
βm

“m′′:
dm

dt
= αm(1−m)− βmm

“1−h′′
αh−−⇀↽−−
βh

“h′′:
dh

dt
= αh(1− h)− βhh

where the kinetic rates αm,h and βm,h depend on the membrane potential V .

Amazingly, the HH model for the sodium current can be also represented by the
kinetic model shown in Figure 3.11, with three closed states C1,2,3, four inactivated
I1,2,3,4 and only one open O [167]. All the inactivated states have zero h gates, but
a different number of m ones. Similarly, the difference between the closed states
and the open one is the same, but all of them have one h gate. Vertical rates
from (to) inactivated states I1,2,3,4 are equal, because they all represent the same
conformational change: a gate h becomes available (unavailable). On the other
hand, horizontal rates are not equal, because they represent interactions between
states with different m gates. For example, the transition from the farthest closed
state C1 to C2 happens if only one in three (kinetically undistiguishable) m gates
becomes available: that is the reason of the 3αm rate. However, going from C3 to
O implies that the remaining unavailable m gate of C3 becomes available, leading
to the αm rate. The same can be said for the reverse transitions: O goes to C3 by
dropping only one of its three m gates [92].

Now, let remember the definition of an voltage-gated ionic channel: a pore
on the membrane that allows specific ions to cross from outside to inside the
cell, depending on the membrane potential. Actually, the “pore” consists of an
integral membrane protein, made of several protein subunits whose movements can
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be controlled by voltage [120]. Recordings from individual channels have shown
that they open and close stochastically, depending on the membrane potential
[71]. Therefore, the kinetic representation of Figure 3.11 can be interpreted as
a memoryless Markov model [65] of a single sodium channel, where each state
represents the probability of a given conformational form [154]. For example, O
indicates the probability of the channel to be in the open state. Consequentely, the
rates represent the transition probability from one state to another. The occupancy
of each state can be found by solving the corresponding master equation, like this
one for the O state:

dO

dt
= αmC3 + αhI4 − (3βm + βh)O (3.8)

Another outcome of the stochastic model is that the sum of the states occu-
pancies must be one. For the model in Figure 3.11, that means: C1 + C2 + C3 +
I1 + I2 + I3 + I4 + O = 1. Therefore, a Markov model with N states may have
only N − 1 indenpendent master equations.

The deterministic HH model can be interpreted as the Markov model in the
limit of a large number of channels (whole cell recordings), where each state be-
comes the fraction of channels occupying it [36]. In this case, a macroscopic current
can be expressed as:

I = γ ·N ·O (V − ENa) (3.9)

where γ is the single channel conductance and N the number of channels.

Conceptually, Markov models are closer than HH models to the real operation
of ionic channels, given that it would be possible to map each state to a confor-
mational form of the proteins, determined by molecular dynamics [161]. For this
reason, Markov models have to satisfy some physical constraints:

• Exponential transition rates: According to thermodynamics, the transition
rate between two states depends exponentially on the free energy barrier

Figure 3.11: Kinetic representation of the HH model for the sodium channel. C1,2,3, I1,2,3,4
and O represent closed, inactivated and open (conductive) states, respectively.
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between them ∆G(V ): k = k0e
−
∆G(V )
RT , where R is the universal gas con-

stant and T the absolute temperature. For a given voltage V the free energy
barrier can be approximated as ∆G(V ) ≃ a+ bV , with a and b constants (b
can be zero). [37]

• Microscopic reversibility (detailed balance [65]): At thermodynamical equi-
librium, without an external source of energy (such as ATP), the transition
rates between two states have to be equal. For systems with loops, the
product of the rates in the clockwise direction around a loop is equal to the
product on the other direction. [153]

On the other hand, Markov models are computationally more expensive than
simpler deterministic HH equations [135,183]. In addition to that, its kinetic con-
stants cannot be easily obtained from experimental data [20,28] and it is difficult to
identify them with the biophysical changes at the molecular level [45]. Therefore,
there is a trade-off between the complexity and intelligibility of Markov models,
that may makes them unsuitable to be used in cases where there is no need of such
high levels of detail.

One of the first Markov models of sodium current was developed to better un-
derstand its recovery from inactivation in hippocampal neurons [105]. This model
was later expanded [102, 148], in order to explain the sodium resurgent current,
that appears when membrane potential is repolarized after depolarization. The
idea is simple: in addition to the “standard” closed, inactivated and open states,
there should be an open “blocked” state OB whose only exit is through the open
state (see Figure 3.12). At resting potential, the most occupied states are the
closed and inactivated ones. The open state’s occupancy increases rapidly after a
sudden depolarization, decaying to its neighbouring states: C5, I6 and OB. Unlike
C5 and I6, OB can only be depleted by passing through O, generating a transient
current identified as “resurgent”.

Figure 3.12: Markov model of the sodium current [102]

Furthermore, this Markov model accounts for the persistent sodium current
too [116], that results from the steady-state occupancy of the O state.

Although there are other Markov models of the sodium current [10, 96, 125],
the version shown in Figure 3.12 is the most extensively used in bibliography
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[47, 97, 102, 116, 148]. Then, it was used as a template to the sodium current of
Mes V neurons, whose complete details can be read in appendix C. In fact, there
was a good agreement between the state-space model and data, but the increased
complexity of the model is not compensated by any new astounding feature. Then,
the Markov model of the Mes V sodium channel will not be included in the full
neuron model, but a simpler HH one. In general, a HH model of the sodium
current can be written as:

INa = gNam
qh(V − ENa) (3.10)

with q ∈ N (usually q=1 or 3). The variables m and h are governed by standard
HH differential equations.

The first step is to describe the inactivation variable h. The voltage clamp
protocol to do that consists in applying long prepulses of varying voltages V1 and
then stepping it up to a very depolarized voltage V2 (Figure 3.13(A) and (B)),
where m is assumed to be saturated (m∞2 = 1). Given that the inactivation is
slower than the activation (τm ≫ τh), it can be assumed that h(t) ≃ h∞1 during
some time t≫ τh2, after the step onset. Then, the sodium current is approximately
described by:

INa ≃ gNam(t)qh∞1(V2 − ENa) (3.11)

where the subscripts 1 and 2 denote that the functions h∞(V ) and τh(V ) are
evaluated at V = V1 and V = V2, respectively. Now, it is straightforward to com-
pute the steady-state inactivation curve h∞(V ) from the equation (3.11), as the
normalized quotient between the peak current (wherem ≃ 1) and the driving force:

h∞(V ) =
INa

gNam
q
1(V2 − ENa)

≃
INa

gNa(V2 − ENa)
(3.12)

The resulting h∞(V ) (not normalized in Figure 3.13 (C)) is a sigmoid-like func-
tion, as expected, with a half-maximum voltage V1/2 = -76.6 mV and slope k =
-8.6 mV. Although the slope is close to previously reported values, the value of
V1/2 is very hyperpolarized compared to the values found by Wu et al [186] and
Enomoto et al [41]:
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V1/2 (mV) k (mV)
Experimental recordings -76.6 -8.6
Wu et al [186] -60.1 -7.1
Enomoto et al [41] -61.9 -9.5

Table 3.2: Comparisson between reported values of the sodium steady-state inactivation func-
tion h∞ = h∞(V ).

On the other hand, the inactivation time constant τh(V ) can be found fitting
the experimental data shown in Figure 3.10 (A). In this case, the time constants
from some non selected neurons (because of the quality control on the activation
protocol) are also displayed in Figure 3.13 (F), as a control. Interestingly, these
four neurons presented faster inactivation times, but saturated at the same value
as the selected neuron: τhmin(V ) = 0.3 ms. The time constants can be fit by:

• Selected neuron (“with hepes” in (F)): τh(V ) = 0.3 + 11.1e
−

(

V+55.1
17

)2

• Non selected neurons (“without hepes” in (F)): τh(V ) = 0.3 + 5e−
V+50
10

However, given that the only valid activation protocol current traces comes from
the selected neuron, the full characterization of the sodium current will continue
with the corresponding τh, by dividing the current traces (Figure 3.10 (A)) by the
inactivation variable h(V2, t):

h2(t) = h∞2 + (h∞1 − h∞2) e
−

t
τh2 , (3.13)

here again the pre and post-step voltage is denote by 1 and 2, respectively. From
the activation protocol, the variable m(t) can be obtained for each voltage V2 as:

m2(t) =

(

INa

gNah2(t)(V2 − ENa)

)
1

q

= m∞2 + (m∞1 −m∞2) e
−

t
τm2 (3.14)

The equation (3.14) should saturate at m2 = m∞(V = V2), leading to the
steady-state curves shown in the Figure 3.14 (A1, B1, C1).

Nevertheless, the resulting traces m2(t) do not display the expected exponen-
tial behaviour: they start decaying after some milliseconds as shown in Figure 3.14
(A2, B2, C2), probably because of a slower second inactivation process, related to
the resurgent current. Therefore, only the exponential onsets (after the artifact)
are the useful sections of the traces (shown in dotted boxes in Figure 3.14 (A2,
B2, C2)). Fitting them (A3, B3, C3), the activation time constants τm can be
found for q = 3 and q = 5, wheras q = 1 does not fit most of the traces. Figure
3.14 (B4, C4) show that τm is almost constant in voltage. Table 3.3 summarizes
all this information.
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V1/2 (mV) k (mV) mean τm (ms)
Experimental recordings q = 1 -26.5 4.5 1.164

Experimental recordings q = 3 -32.4 5.6 0.16
Experimental recordings q = 5 -34.1 5.7 1.16
Wu et al [186] -43.4 5.0 not reported
Enomoto et al [41] -32.9 6.1 not reported

Table 3.3: Activation parameters for different exponents q and previous models: half-maximum
voltage V1/2, slope k and mean activation time τm.

Figure 3.13: Measurement of inactivation according to HH formalism. Figure A shows the
current recordings from the voltage clamp protocol displayed as inset: voltage ranging from
-80 to -20 mV is stepped to -20 mV. Figure B (zoom of the dotted rectangle in A) shows that
the time to peak is almost constant (dotted vertical line), meaning that all the curves reach
the same voltage V2 = 20 mV and checking the quality of voltage clamp. The peak currents
are a non normalized version steady-state inactivation curve h∞ (C), fitted with a sigmoid-like
function, with a V1/2 = -76.6 mV and k = -8.6 mV. Finally, figure D shows the inactivation
time constant for the best quality recording (measured in presence of hepes and TTX 10 nM)
and for 4 other recordings, along with their corresponding fits.
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Figure 3.14: Characterization of the activation variable m, for different exponents q=1,3 and 5
arranged horizontally as panels A, B and C, respectively. A1, B1 and C1 show the steady-state
activation curves m∞ and their fittings. A2, B2 and C2 are the activation curves (see equation
(3.14), whereas A3, B3 and C3 denote zooms in the dotted regions, with the experimental
data and the corresponding exponential fits. Finally, A4, B4 and C4 present the activation
time τm.
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In addition to simulations from the three models with different activation expo-
nents q = 1, 3, 5, two more simulations were also made: one using the steady-state
inactivation curve from Enomoto et al [41] and the other with the inactivation
time constants from the recordings “without hepes” (Figure 3.13). The results are
displayed in Figure 3.15. Unless the model with q = 1, all the other present a
general behaviour similar to the experimental recordings. Coherently, the largest
error is found with q = 1. Both models with q = 3 and q = 5 are the best fits
within different voltage ranges. Changing the time constant increases the error
(C), as expected, because it does not correspond to this recording. However, mov-
ing the steady-state inactivation h∞ does not affect too much the error.
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Figure 3.15: Simulated traces for the HH models: A is for q = 1; B, C and D for q = 3 and E
for q = 5. While B uses the inactivation steady-state curve h∞(V ) and time constant τh(V )
shown in Figure 3.13, C uses the time constant denoted as “without hepes”, D the h∞(V )
measured by Enomoto et al [41]. F shows the error curves for all the traces.
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3.4 Summary

In this chapter, two ionic currents were modelled from experimental data. In the
case of the hyperpolarization-activated current Ih, a standard HH model was built,
both from control conditions and in presence of cGMP. It was found that cGMP
modulates Ih, moving its steady-state activation curve to depolarized values and
reducing its time constant, with possible functional implications, that will be ex-
plored in the following chapters.

The sodium current was more difficult to study, due to its complexity. Exper-
imental recordings were analyzed carefully, in order to check their quality. After
that, only one in seven neurons were useful to develop a model of the sodium
current. Markov models were implemented to represent for the first time Mes V
resurgent sodium current. Standard HH models were also built. The resulting
models fit the data better than a previous one and will be used in the following
chapters, although it was not possible to really verify their validity with more data.
In addition to that, some points remain open, such as parameter identifiability and
their relation with the molecular structure of the sodium channel.

42



Chapter 4

Mesencephalic trigeminal neuron model

4.1 Introduction

This thesis is centered on the modeling and analysis of rat mesencephalic trigeminal
neurons. These are sensory neurons, located in the mesencephalic trigeminal nu-
cleus, responsible for carrying information from masticatory muscle spindles and
periodontal ligament receptors [151]. Their morphology is called pseudounipo-
lar [94]: they have an approximately spherical soma without dendrites, connected
to an axon that is composed by two branches: one going to the periphery (the origin
of the sensory stimuli) and the other to more central regions of the brain [157,158].
Unlike other sensory neurons, the soma of these cells is located in the central neu-
ron system. Their projections reach the thalamus, the trigeminal motor nucleus
(closing a reflex arc) and other brainstem nuclei [182]. On the other hand, they
receive several synaptic inputs at the soma, allowing them to act as interneurons
too [107,178].

The simple morphology of Mes V neurons contrasts with the complexity of
the mechanisms that control their behaviour, such as their ionic conductances,
the electrical coupling between them [9, 33] and the synaptic inputs mentioned
before. The aim of this chapter is to review all these components, in order to build
a biologically realistic conductance-based model of the Mes V neurons. While
transient sodium INaT and hyperpolarization-activated Ih currents were charac-
terised in Chapter 3, the other components will be taken from bibliography. Model
parameters will be fitted using evolutionary algorithms, using experimental data
properties.

4.2 Calcium currents

Del Negro and Chandler [133] recorded plateau-like action potentials in Mes V
neurons, sensitive to Cd2+, a calcium channel blocker. These long-lasting depolar-
izations were unconvered by blocking potassium currents with 20 mM tetraethy-
lammonium (TEA). However, they did not characterise this current, using models
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developed for other sensory neurons: low-threshold and high-threshold calcium
currents (ICaL and ICaT respectively).

Several years after, Enomoto et al [42] found that calcium currents are minimal
during the interspike interval. Then, Yang et al [188] studied the role of calcium
currents in Mes V neuron’s behaviour, by blocking them with 100-300 µM Cd2+.
They did not found any effect of these currents, neither in the spike threshold nor
the firing frequency. In conclusion, calcium currents can be neglected in the full
Mes V neuron model.

4.3 Potassium currents

Unlike calcium, potassium currents play an important role on Mes V neurons
behaviour, modulating their excitability. In particular, the repetitive firing [80,133,
185] and the subthreshold frequency properties [33] of these neurons are directly
linked with the strength (maximum conductances) of some potassium currents.
Given that modeling of potassium currents from experimental recordings failed,
due to voltage-clamp errors (not shown), the following description of potassium
currents is based on literature.

4.3.1 Ca2+-activated potassium current

There is a TEA-sensitive calcium-activated potassium current that was measured
by Del Negro and Chandler [133], by blocking Ca2+ with Cd2+ or using low-
calcium solutions. However, it can be argued that this current has little functional
significance, given that it would produce long-lasting afterhyperpolarizations that
are not reported in Mes V neurons [138]. In addition to that, there is almost no
information about its dependence on Ca2+, given that Del Negro and Chandler
made a model only valid for control conditions. Therefore, this current was not
included in the model.

4.3.2 Inward rectifier

The inward rectifier IKIR is a persistent potassium current that get activated
by hyperporization. Tanaka et al measured it by applying step voltage com-
mands from -60 to -140 mV, in control condition and in presence of Ba2+ (IKIR

blocker) [170], finding that it starts to activate at voltages below -100 mV, getting
completely activated at -140 mV. In addition to the extremely hyperpolarized ac-
tivation voltage range, its maximum conductance spans from 0.5 to 2 nS. Thus,
this current can be ignored in the model without any important functional conse-
quence.
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4.3.3 Delayed rectifier

The delayed rectifier does not correspond to only one type of channel, but to sev-
eral ones that share the same functional characteristics, being widely present in
axons and also in the somatic membrane [71]. In the case of Mes V neurons, there
is immunohistochemical1 evidence of the presence of potassium channels from the
subtype Kv2.1 (one of the main responsibles for the delayed rectifier) in both soma
and axons [156]. Perhaps because of its ubiquity [126], it was the potassium cur-
rent described by Hodgkin and Huxley [74] (see the subsection 2.3.1).

It contributes to shorten the action potential duration by producing a “de-
layed” outward current that “rectifies” (repolarizes) the membrane potential. Us-
ing recordings from 4 cells and step depolarizations from a holding potential of
-40 mV, Del Negro and Chandler modelled this current using HH formalism [133]:

IDRK = gDRKn (V − EK) (4.1)

where the activation variable n satisfies a typical differential equation of a current
from a conductance-based model:

dn

dt
=

n∞ − n

τn
(4.2)

The activation curve n∞(V ) is a sigmoid-like function (see equation (2.8)),
whose half activation voltage is V1/2=-4.2 mV and its slope is kn=12.9 mV. Given
that the activation curve is almost zero at resting potential (-55 mV), the delayed
rectifier has little effect on the fine tune of Mes V excitability [188]. Its function
is related to the steady-state stabilization of membrane potential, as it is demon-
strated by the plateau-like depolarizations elicited by its suppression (see section
4.2).

Nevertheless, the time constant τDRK reported by them does not fit the time
constant shown in their article. For comparisson, Figure 4.1 displays a reconstruc-
tion of the data2 and the model presented in their article, as well as the model by
Belluzzi and Sacchi [13] of the delayed rectifier of the rat sympathetic neurons3.
On the other hand, a later modeling article by Liu et al [113] used a constant
τDRK=10 ms. Fortunately, numerical simulations (not shown) proved that this
difference in time constants is not crucial to get Mes V neurons’ behaviour. Then,
the simplest option will be used: a constant τDRK .

1Immunohistochemistry is a technique used to identify specific molecules, through an-
tibodies that bind them selectively and can be seen via a visualization technique.

2Graphically reconstructed from the figure 7B in [133].
3The temperature in both articles was the same: 37oC.
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Figure 4.1: Comparisson between the reconstructed data from the article by del Negro and
Chandler and their model [133]. A previous model by Belluzzi and Sacchi [13] presents a better
fit to the data, even though it comes from another neuron type.

4.3.4 Low-threshold currents

The classic example of low-threshold potassium current is the A-type current,
that was first described by Connor and Stevens [29, 30], being 4-aminopyridine-
sensitive [172] and presenting inactivation. Given its subthreshold activation, it is
active in the interspike interval, helping to modulate repetitive firing [29,71]. Mes
V neurons also have low-threshold potassium currents, that have been shown as
determinant for their excitability [133] and resonance [185, 186]. For this reason,
these currents have been studied in several articles, leading to different results that
will be reviewed in this section and summarized in the Figure 4.2.

Del Negro and Chandler made the first complete study on Mes V outward
currents [133]. Among them, they found two low-threshold potassium currents: a
4-AP-sensitive sustained current I4AP and a slow transient outward current Itoc−s

(also 4-AP-sensitive). Along with their different dynamics (Itoc−s closes after some
time, whereas I4AP not), the half-activation voltage V1/2 of I4AP is almost 10 mV
below that of Itoc−s: -48 mV for the first one and -37 mV for the other.

From the same research group, Hsiao and coworkers [80] made a complete
study of the channels that produce low-threshold potassium currents. They used
a α-dendrotoxin (α-DTX) to block only channels composed by Kv1.1, 1.2 and
1.6 proteins, finding a current that shows no inactivation during 1-s time periods,
with V1/2 = -36 mV. According to literature, this current is also sensitive to very
low concentrations of 4-AP [187]. Then, it should be the Itoc−s reported by Del
Negro and Chandler but with different kinetics probably due to different proteins
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coupled to the Kv1 units [27]. The time constant of this current does almost not
change in the voltage range from -60 to -30 mV: going from 2 to 4 ms. Using
inmunohistochemical methods, Hsiao et al confirmed a previous result from Saito
et al [156]: these three channels are expressed in Mes V somata, but not in the
stem axon.

Finally, Yang et al [188] used the same pharmacological conditions that Del
Negro and Chandler utilized for recording the sustained 4-AP-sensitive current,
finding the same half-activation values and slightly different slopes. They also
studied a population of Mes V neurons with less excitability (also known as class
3, see chapter 6), finding a negative shift of 6 mV in half-maximal activation volt-
age V1/2.

In conclusion, according to the steady-state activation curves (Figure 4.2) there
are two different low-threshold potassium currents, both sensitive to 4-AP but only
one to α-DTX too. However, only one of them (whose V1/2 = -48 mV) is found
when 4-AP is applied. Then, it seems that the current sensitive to α-DTX is
negligible compared to the other. Therefore, as a first approximation, only I4AP

current will be included in the basic Mes V neuron model, whose consequences
can be checked with available experimental recordings in control conditions and in
presence of 4-AP.

Figure 4.2: Summary of the steady-state activation curves of low-threshold potassium currents.
Note that the α-DTX-sensitive current activation curve corresponds approximately to the
activation curve of the slow transient current (dashed). The same can also be said for the
4-aminopyridine-sensitive currents (continuous lines).

4.3.5 Fast high-threshold current

Del Negro and Chandler found another potassium current, with relatively fast ki-
netics, very high threshold (V1/2=5 mV) and not sensitive to 4-AP concentrations
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that block other potassium currents [133]. This current meets the properties of
channels from the Kv3 family [12, 93], that have been already found by immuno-
histochemical methods in Mes V neurons [156]. Due to its high-threshold, it will
be responsible for membrane potential repolarization after a spike. However, as
it will be shown in section 4.4.3, its time constant is too slow to generate Mes V
action potentials and should be fitted.

4.3.6 Summary of the ionic currents

In conclusion, six ionic currents will be included in the Mes V neuron model:
transient and persistent sodium INaT and INaP , hyperpolarization-activated Ih,
delayed rectifier IDRK , 4-aminopyridine-sensitive I4AP and high-threshold potas-
sium IKv3. The next step is to assemble them in a single model, with two com-
partments (soma and axon), implemented in the NEURON simulator [21].

4.4 Model fitting

After defining the ionic currents to be included in the Mes V neuron model, it is
necessary to find how do they get together in a single model that can be validated
with experimental data. Although it is possible to look for all of the model pa-
rameters at the same time, it could be very computationally expensive. A cheaper
computational approach is to follow a sort of divide et impera (divide and conquer)
strategy [72, 152], dividing the parameter space in regions with lower dimension,
simplifying the process to find them. This principle applied to the Mes V neuron
model defines roughly three sets of parameters that can be found in cascade:

1. Passive and geometrical parameters: Axon length L, membrane and
internal specific resistivities (Rm and Ri, respectively).

2. Subthreshold ionic conductances: Maximum conductances of persistent
sodium gNaP , hyperpolarization-activated gh and 4-AP-sensitive potassium
g4AP . Leak conductances from soma and axon will be adjusted too, using
the Rm value found before.

3. Suprathreshold ionic conductances: Maximum conductances of the de-
layed rectifier gDRK , transient sodium gNaT and high-threshold potassium
gKv3. The time constant of the Kv3 current τKv3 need to be fitted too in
this step.

Figure 4.3 summarizes the peeling process, indicating which parameters are found
in each step. In the next sections, the model parameters will be found according
to this scheme.

The passive and geometrical parameters will be estimated by fitting analytical
expressions (from a simplified linear model) to experimental recordings. Unfor-
tunately, the analytical approach cannot be taken for the rest of the parameters,
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Figure 4.3: Schematic representation of the parameters’ cascade. D is the soma diameter,
while d and L are the axon diameter and length.

that should be found using numerical algorithms. Tuning parameters by hand is
the most widely used procedure [132,142,164], but it is a very complex task, due to
the nonlinear behaviour of the model. On the other hand, there are several auto-
matic optimization algorithms that have been employed to fit conductance-based
neuron models to experimental data (for reviews, see [3, 173]): classical gradient
descent [16], parameter space exploration (brute force search) [143, 171], bifur-
cation analysis to map neuron’s dynamics [61], etc. In particular, evolutionary
algorithms have been intensively used in the last years [2, 8, 38, 39, 99, 168], given
that they can be less prone to fall in local minima than gradient descent, and are
not so computationally expensive as brute force search or bifurcation analysis [142].

Hence, most parameters of the Mes V neuron model will be found by evo-
lutionary algorithms [35], utilizing a Python library developed by Bahl et al [8].
Given that this method was not developed in this thesis, it will be fully explained
in the appendix B and just briefly presented here. First of all, this procedure
uses several optimization objectives, that will be defined later in this section. The
method starts by generating a population of random solutions (whose parameters
are random variations close to the initial guesses and vary within bounds). Then,
they are pairwise compared in fitness and selected to fill a selection pool. Parents
are randomly taken from this pool and their parameters are combined (through
a crossover operator), in order to generate two children with new parameters. In
order to increase the diversity of the solutions population, a mutation operator
is applied. Finally, the fitness of each solution is measured for every objective.
From the whole population, the procedure only takes those who are nondominat-
ing (i.e.: they are at least better than the other in one objective, but not worse
in the remaining ones), ranking them and starting again with the selection step.
The algorithm ends after N steps (called generations) or a stop-criterion is reached.

Instead of fitting individual experimental recordings, the objective will be to
get close to the mean experimental values for 14 features obtained in voltage
responses to current steps (the I-V curve), that define Mes V neurons’ properties:
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1. Resting membrane potential (RMP)

2. Input resistance Rin, defined as the slope of the linear fit between hyperpo-
larizing voltage responses’ peaks and the injected currents.

3. Membrane time constant τm for an injected current step of -50 pA.

4. Final amplitude of the voltage response to an 200-ms current step of -400
pA and +100 pA.

5. Overshoot of the voltage response to a +100 pA current step.

6. Voltage after-hyperpolarization: minimum voltage after an action potential.

7. Spike amplitude and its duration at -20 mV.

8. Number of spikes at +300, +400 and +600 pA of 200-ms current steps.

9. Mean spike train frequency at +400 and +600 pA.

Actually, fitting individual traces and their derivatives was also tested, but its
results were very poor, given that error functions are very sensitive to time shifts
between experimental and simulated data. One way to deal with that is using
phase plane analysis, that means fitting the traces in the plane

(

V, dVdt
)

[174].
However, this method is more suited to fit spike trains (and their subthreshold
propagations in dendrites), which is not the typical case of Mes V neurons.

4.4.1 Passive and geometrical parameters

Mes V neurons can be simplified geometrically as a sphere (the soma) and a cylin-
der (the axon4), in the so-called ball-and-stick model, shown in Figure 4.4. As-
suming that the membrane is only passive and its electrical properties are uniform
along the neuron, it is possible to obtain analytical expressions for the voltage
response to a current step in the soma. The soma is modelled as an isopotential
sphere of diameter D, with lumped parameters: resistance Rs and capacitance Cs.
From bibliography and photos, it is possible to estimate the axon diameter d ∼
3 µm approximately.

Unlike soma and axon diameters, it is quite difficult to measure axon length,
ℓ, from photos, because it can vary a lot, given that Mes V neurons are contained
in slices and their axons may be cut depending on their morphology. Then, min-
imum and maximum values for ℓ will be estimated from individual experimental
recordings.

4Notice that this axon, of diameter d, is representing the two axonal branches of Mes
V neurons: peripheral and central. The results from the model presented here can be
applied to create two branches if their diameters dperipheral and dcentral satisfies: d

3
2 =

d
3
2

peripheral + d
3
2

central [92]. This result will be used in the chapter 6.
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Figure 4.4: Neuron’s morphology: experimental picture of a neuron marked with neurobiotin
(A, adapted from [33]) and ball-and-stick model (B) with its geometrical parameters: soma
diameter D, axon diameter d and length ℓ.

On the other hand, the axon is modelled as a finite cable made of passive
components:

• ri: internal (also called axial or cytoplasmatic) resistance (Ω/cm)

• rm: membrane resistance (Ω.cm)

• cm: membrane capacitance (F/cm)

• ro: extracellular resistance (Ω/cm), that is usually taken as zero

By using these parameters, the cable equation can be written as [129]:

λ2 ∂
2Vm

∂x2
= τm

∂Vm

∂t
+ Vm (4.3)

where λ =
√

rm
ri

is called the space constant and τm = rmcm is the membrane

time constant. Space and time variables, x and t, are usually used by normalizing
them with these two parameters: X = x/λ and T = t/τ .

The parameters ri, rm and cm defined for a cable of radius a can be normalized,
defining specific parameters independent of the geometry [92]:

• Ri = πa2ri: specific intracellular resistivity (Ω.cm)

• Cm = cm
2πa : specific membrane capacitance (F/cm2). Unlike other parame-

ters, it is quite standard among neuronal types [58], varying from 0.7 [117]
to 1.5 µF/cm2 [74], with a mean value of 0.9 [26, 58], that it is rounded up
to 1 µF/cm2 as a standard value in the NEURON simulator [21] and will be
used as this in simulations.

• Rm = 2πarm: specific membrane resistivity (Ω.cm2). Note that τm =
rmcm = RmCm.
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The input conductance of a finite cable is:

GN =
π

2

√

d3

RmRi
tanh(L) (4.4)

For this model, the voltage response to a current step is:

Vm(T,X) = V (∞,X) −

∞
∑

n=0

Bncos [αn (L−X)] e−(1+α2)T (4.5)

where Bncos (αnL) =
2B0τn/τ0

1+(αnL)
2/(k2+k)

and τ0 = τm.

Now, let define the axonic to somatic conductance ratio ρ = GAx
GS

, that give the
proportion of current that flow through the axon relative to the somatic one. The
total input conductance GN can be expressed as: GN = GAx +GS = (1 + ρ)GS .

Equation (4.5) can be expressed as:

Vm(T,X) = C0e
−t/τ0 + C1e

−t/τ1 + . . .+ Cne
−t/τn (4.6)

with Cn = Bncos [αn (L−X)] and τn/τ0 = 1/(1 + α2
n).

By definition, τ0 > τ1 > . . . > τn. Then, the two first time constants can
be used as a first approximation Vm ≃ C0e

−t/τ0 + C1e
−t/τ1 . These four parame-

ters can be found by fitting the somatic membrane potential, as Figure 4.5 displays.

The normalized axon length L can be obtained from the following equation [92]:
∣

∣

∣

∣

C1

(2C0τ1/τ0)− C1

∣

∣

∣

∣

= cot(α1L) [cot(α1L)− 1/(α1L)] (4.7)

and then
ρ = −α1cot(α1L)

coth(L) (4.8)

After deriving all the equations, it is time to find the parameters. The proce-
dure starts by fitting the subthreshold voltage response to Equation (4.6), in order
to find C0, C1, τ0 and τ1. The specific membrane resistance Rm is directly found
using τ0 and Cm (remember that is fixed at 1 µF/cm2). On the other hand, the
normalized axon length L is computed from equation (4.7) and then ρ from (4.8).
The specific intracellular resistance Ri, space constant λ and axon length ℓ and
soma diameter d are obtained from L, ρ, the input conductance Gin (computed
as the quotient between the input current and the voltage response) and Equation
(4.4).

4.4.2 Subthreshold ionic conductances

According to the half-activation values of the steady-state curves, the main ionic
currents at subthreshold level are the persistent sodium INaP , 4-AP-sensitive
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Figure 4.5: Geometrical parameters can be obtained from experimental recordings. The two
slowest time constants τ0 and τ1 can be found by fitting of the logarithm of the voltage.

potassium I4AP and hyperpolarization-activated Ih, as well as the leak current
IL. These currents and the previously estimated passive and geometrical parame-
ters define a reduced Mes V neuron model. Unlike the passive ball-and-stick model,
this new model is not completely homogeneous, due to the lack of I4AP at the axon
(see section 4.3.4). In order to compensate this assymmetry, leak conductances
from axon and soma will be considered as independent parameters.

In this step, the maximum conductances of the ionic currents and axon length
will be fitted using the first 6 features from the list presented at section 4.4, re-
lated to the response of the neuron to current steps from -400 pA to +100 pA.
Although all the ionic currents have influence on all the features, some of them
are decisive to generate specific properties. For example, a model without I4AP

cannot generate a depolarizing overshoot. Figure 4.6) displays a simulation of the
model with a set of parameters obtained from the evolutionary algorithm routine.

The optimization technique was applied to the subthreshold Mes V neuron
model 20 times, obtaining parameters’ ranges that will be used as bounds for the
next step.

4.4.3 Suprathreshold behaviour

In order to get the suprathreshold behaviour, the model incorporates the remain-
ing ionics currents: delayed rectifier IDRK , transient sodium current INaT and
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Figure 4.6: Simulation of subthreshold response of a reduced Mes V neuron model, with
the qualitative features that are optimized. An experimental recording is shown in inset, for
comparisson.

high-threshold fast potassium current IKv3. These last two currents are responsi-
ble for the action potential depolarization (INaT ) and repolarization (IKv3). The
transient sodium current INaT has been studied in detail in section 3.3: the best
HH model (exponent q = 3) will be used.

Unlike INaT , Kv3 current is not so well described. In fact, the model reported
by del Negro and Chandler [133] (section 4.3.5) presents two severe drawbacks.
The first is that afterhyperpolarizations get smaller during repetitive firing, due
to IKv3 slow inactivation. Then, IKv3 inactivation variable has to be taken out,
resulting in the following expression for this current:

IKv3 = gKv3m
3 (V − EK) (4.9)

where m is the activation variable that evolves according the typical HH formalism
(Equation (2.6)).

The second problem is that IKv3 generates action potentials three times broader
than the experimental ones. Several options were explored unsuccessfully to over-
come this: changing the activation exponent blocks spike generation, shifting
downwards the half-amplitude voltage V1/2m of the steady-state activation curve
m∞(V ) produces action potentials with smaller amplitudes, whereas increasing its
slope km generates weird spikes or even plateaux. The remaining alternative is to
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deal with its time constant τKv3, that was expressed originally as:

τKv3(V ) = τKv3min + τKv3exp.e
−
(V −VτKv3)

kKv3 (4.10)

where τKv3min =1.5 ms, τKv3exp =15.2 ms, VτKv3
=-57 mV and kKv3=31 mV. From

these parameters, τKv3min and τKv3exp were included in the optimization proce-
dure, leading to better results. Figure 4.7 shows how spike shape improves in the
new IKv3 model, compared to the original [133] and to two models taken from
other neuron types (auditory [184] and Purkinje [5]).

Figure 4.7: Experimental and simulated spikes generated in response to a current step of 350
pA. Given that the original Del Negro and Chandler model [133] (A) generates a very wide
action potential, that is improved after adjusting the time constants τKv3min and τKv3exp.
Alternative Kv3 current models [5, 184] (right) do not work better (B).

Notice the time difference between the experimental spike and the simulated
one using the improved IKv3 model. Indeed, this slight time shift (due to minor
differences in spike threshold and depolarizing slope) may give a very large root
mean square error, in spite of the similarity between the traces. This fact sup-
ports the idea of fitting using quantitative features and not individual experimental
traces.

Table 4.1 compares the final results from the whole Mes V model to those from
experimental data. There is a good agreement between experiments and simula-
tions in almost all the features: only the number of spikes seems to be different.
That is caused by the slightly increased excitability of the model, that generate
repetitive spiking when Mes V neurons just spike 2 or 3 action potentials, probably
due to a decreased outward current. Increasing I4AP may improve this situation
(and also generate more overshoot), but with unwanted side effects: increase of
the time constant τm, reduction of the input resistance RIN and resting membrane
potential. Then, it is better to use the trade-off solution presented in Table 4.1.
The final set of parameters is presented in appendix ??.
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Parameter Experimental Model

Resting membrane potential (mV) -54.7 ± 0.5 -55.2 ± 0.2
Input resistance RIN (MΩ) 118.3 ± 8.1 114.9 ± 1.1
Time constant τm (ms) 7.4 ± 0.8 6.5 ± 0.2
Final voltage response @ Iinj=-400 pA (mV) -17.4 ± 1.1 -19.2 ± 0.2
Final voltage response @ Iinj=+100 pA (mV) 4.3 ± 0.3 4.1 ± 0.2
Overshoot @ Iinj=+100 pA (mV) 2.5 ± 0.3 2.3 ± 0.3
Voltage after-hyperpolarization value (mV) -7.4 ± 0.7 -8.7 ± 1.1
Spike amplitude (mV) 93.3 ± 1.9 97.9 ± 1.8
Spike duration @ -20 mV (ms) 0.67 ± 0.06 0.66 ± 0.03
# spikes @ Iinj=+300 pA 7.1 ± 2.3 17.8 ± 0.6
# spikes @ Iinj=+400 pA 8.9 ± 2.8 22.5 ± 0.6
# spikes @ Iinj=+600 pA 11.6 ± 3.4 31.0 ± 1.0
Spike train frequency @ Iinj=+400 pA (Hz) 119.0 ± 7.9 111.4 ± 3.2
Spike train frequency @ Iinj=+600 pA (Hz) 139.0 ± 9.2 152.4 ± 5.4

Table 4.1: Mes V neuron quantitative features: experimental (n=15) and simulations from
the whole model (n=35).

4.5 Comparisson with previous models

There are three previous complete models of Mes V neurons published. The first
one was a single-compartment model, with 9 ionic currents and 17 differential
equations, developed by del Negro and Chandler in 1997 [133]. It did not present
neither INaP nor I4AP , but two calcium currents and one calcium-dependent potas-
sium current. In addition to that, they also modelled calcium dynamics with four
additional nonlinear differential equations. Although several ionic currents are
studied in detail from experimental recordings (sections 4.2 and 4.3), their tran-
sient sodium model proved to be quite inaccurate in section 3.3. In addition to
that, their capacitance value (C=21 pF) is approximately a half of the reported
value for rats at the same age range: 36 pF (2 days old rats) to 46 pF (7 days),
making their model more excitable and with faster action potentials.

Chandler and his team continued working on Mes V neurons, generating the
next mathematical model in 2005, in collaboration with the legendary Izhike-
vich [186] (who used the experimental data later as examples in his book [88]).
The new model was very simple, accounting only for the main currents: leak,
INaP , I4AP and INaT . Years later, another team picked up this model, adding two
“supporting actors”: Ih and IDRK [113]. In this case, the capacitance value was
within experimental range.

The model developed in this thesis adds one more compartment (axon), instead
of only the soma. The question now is whether the multi-compartment model
developed in this thesis is worth this increased complexity or not. Does this model
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contribute to the state-of-the-art on neuron modelling or not? The answer is
summarized in Figure 4.8, where previous Mes V neuron models are compared
to experimental data and the new model. There was a minor adjustment of the
maximum hyperpolarization-activated conductance gh in the new model, in order
to achieve a better fit to the recordings from one individual neuron.
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Figure 4.8: Comparisson between experimental data and simulations, for several Mes V neuron
models. The left column displays the Mes V neuron response under a current clamp protocol
(color reference is the same for all): experimental (A1), model developed in this thesis (B1),
del Negro and Chandler [133] (C1) and Liu et al [113] (D1). The right column shows the
spikes corresponding to each row.
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4.6 Synaptic inputs

Mes V neurons collect sensory information from masticatory muscle spindles and
periodontal ligament receptors that are innervated by their peripheral axons [151].
They also receive chemical synaptic inputs at the soma, from several regions of
the central nervous system, such as amygdala [159], raphe nuclei [112], hypotha-
lamus [108], substantia nigra [130] and other trigeminal neurons [178]. Although
some of the neurotransmitters used have been characterised (nitric oxide [140],
histamine [108], serotonin [112] and GABA [189]), Mes V neurons seem to be
quite chemically heterogeneous [107]. Then, the role of these synaptic inputs is
not clear: they may make Mes V neurons act as interneurons, but when and why?5

Therefore, somatic inputs will not be studied in this thesis, but only some effects of
Ih modulation by cyclic GMP (that may be a product of nitric oxide or histamine
presence [160]). The focus will be to understand how Mes V neuron process periph-
eral inputs, which will be modelled as axonal excitatory synapses (equation (2.18)).

On the other hand, Mes V neurons can be connected between themselves
through electrical synapses [9]. These electrical synapses are membrane pores,
composed by a protein called connexin36 (Cx36), that allow bidirectional ion flow
between coupled neurons. Neurons are usually connected in pairs, though some
cases of triplets and quadruplets were also found [33]. On the other hand, the only
presence of Cx36 does not always imply the coupling between two neurons, given
that the pores may be closed (Figure 4.9).

Electrical coupling generates some astounding behaviours that have been ex-
perimentally tested by recording pairs of connected Mes V neurons simultaneously.
For example, subthreshold signals with specific frequency content are less attenu-
ated than DC when they pass from one neuron to another. Furthermore, Mes V
neuron are more efficient recruiting electrically coupled neurons than other neuron
types. However, these properties are not only caused by the coupling: the electrical
properties of the membrane are also involved [33]. In the next two chapters, this
interaction between electrical coupling and membrane properties will be studied,
in order to explain these behaviours.

5There is recent evidence that Mes V neurons decrease the synaptic strength of GABA
inputs during repetitive firing [190]. Therefore, at least in this case, the neuron favours
its sensory input and does not “listen” central nervous system orders.
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Figure 4.9: Mes V neurons are coupled by gap junctions, made by connexin36 (Cx36). However,
Cx36 presence (green) does not guarantee electrical coupling as it is shown by neurobiotin (an
intracellular label) injection in (A,B,C,D). In the case of (E,F), connexins are open, allowing
neurobiotin to spread between them. Image adapted from [33].

4.7 Summary

A complete Mes V neuron model has been defined in this chapter. This model
takes into account the sodium and hyperpolarization-activated currents charac-
terised in chapter 3, as well as other ionic currents from bibliography, reviewed
in the first part of this chapter. Its geometrical and passive parameters were es-
timated using cable theory, while evolutionary algorithms were employed to get
the others: maximum ionic conductances and Kv3 current’s time constant. This
model reproduces most of the features generated by experimental neurons and
presents far better current clamp responses than previously reported.

The synaptic inputs of Mes V neurons have been briefly reviewed. The aim of
the next two chapters will be to study how the electrical coupling between pairs
of Mes V neurons interact with their membrane properties and peripheral inputs.
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Chapter 5

The cellular membrane as a filter

5.1 Introduction

Experimental models have shown that individual Mes V neurons present high-
frequency (from 49 to 90 Hz [185]) voltage oscillations at the subthreshold level
[138,186]. These small-amplitude oscillations are not due to oscillatory input, but
the consequence of the Mes V neuron selective response to inputs within a fre-
quency range.

Assuming linear behaviour near resting membrane potential, the impedance of
these neurons have been measured by injecting signals with rich frequency content
and computing the Fourier transform of the response. This impedance is similar
to a band-pass filter, whose properties depend on ionic currents and membrane
potential. In this chapter, an analytical expression of this impedance function will
be derived from a reduced version of the Mes V neuron model.

On the other hand, there is recent evidence that there could be frequency
preference in the subthreshold communication between neurons coupled by elec-
trical synapses [33], instead of mere low-pass filter properties (some recent arti-
cles: [14, 31, 59, 106, 175, 179]. This property can be characterised using a transfer
function, whose frequency preference will be studied from the mathematical point
of view, following the same procedure used to compute the impedance function.

5.2 Small-signal model of Mes V neuron

In order to study analytically Mes V neuron’s behaviour at subthreshold level
and understand the role of each voltage-gated current, it is necessary to simplify
the whole model of Mes V neuron. Experimental recordings have shown that sub-
threshold properties of Mes V neurons are shaped by the persistent sodium current
INaP [41, 185, 186] and 4-AP-sensitive potassium I4AP [80, 185]. Therefore, these
two currents have to be included in the reduced model.
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On the other hand, the model has not to take into account currents whose
steady activation curves are roughly zero at resting potential. Hence, transient
sodium INaT , high-threshold potassium current IKv3, potassium delayed rectifier
IDRK and hyperpolarization-activated current Ih are not taken under considera-
tion. The resulting reduced model of an individual Mes V neuron can be expressed
as:











C
dV

dt
= Iinj − IL − INaP − I4AP = a (V, n4AP , Iinj)

dn4AP

dt
=

n4AP∞(V )− n4AP

τ4AP
= b (V, n4AP )

(5.1)

where V stands for the membrane potential, C the neuron’s capacitance (remem-
ber that this is a single-compartment model), Iinj the injected current and IL the
leak current.

The objective is to analyze how is the neuron’s response to pulse current stimuli
that do not elicit action potentials, but just small-amplitude voltage oscillations.
In order to do that, the equations (5.1) will be linearized around the equilibrium.

Let V0 and n4AP0 be the stationary values of the state variables: a (V0, n4AP0, I0) =
b (V0, n4AP0, I0) = 0, and define small-signal variables:







iinj = Iinj − Iinj0
v = V − V0

η4AP = n4AP − n4AP0

Assuming small-amplitude voltage fluctuations and that the resting potential
is a stable equilibrium point of the system, the differential equations (5.1) can be
linearized, taking the partial derivatives of functions a and b:































C
dv

dt
= −

[

gL + g4APn4AP∞ + gNaPnNaP∞ + gNaP

dnNaP∞

dV
(V −ENa)

]

v−

−g4AP (V − EK) η4AP + iinj

dη4AP

dt
=

1

τ4AP

dn4AP∞

dV
v −

1

τ4AP
η4AP

(5.2)

Now, it is possible to study how the neuron responds to sinusoidal stimuli, by
applying the Fourier transform to the linearized system (5.2). This response is
characterised by the neuron impedance Z(jω), defined as the ratio between the
Fourier transforms of voltage v and the injected current iinj , for each angular
frequency ω. After some calculations, the Mes V neuron impedance is expressed
as:
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Z(jω) =

[

jωC + gL + g4APn4AP∞ + gNaPnNaP∞ + gNaP (V0 − ENa)
dnNaP∞

dV
+

+g4AP

(V0 − EK)

1 + jωτ4AP

dn4AP∞

dV

]

−1

(5.3)

Although the expression 5.3 is quite complicated, it is possible to see that it
has one zero and two poles. The zero only depends on the I4AP time constant,
while the poles are dependent on all the properties, including the characteristics of
the sigmoid-like steady-state activation curves nNaP∞, n4AP∞ and its derivatives.
Some of this features will be shared by the next challenge: the transfer function
between Mes V neurons.

5.3 Transfer function between coupled neurons

In the case of two coupled neurons, it is interesting in how information pass be-
tween them at subthreshold level. To model that, one neuron (neuron 1) will be
stimulated by an external current signal Iinj, that corresponds to a step in the
case of the experimental recordings, but can be any other signal. The postsynap-
tic neuron will be neuron 2. Using the reduced model presented in the section
5.2 and adding the electrical coupling between the neurons (see Figure 5.1), the
differential equations describing the system can be expressed as:











































































dV1

dt
=

1

C1
[Iinj − gL1(V1 − EL)− gNaP1.nNaP1∞(V1 − ENa)−

g4AP1.n4AP1(V1 −EK)− gj(V1 − V2)]

dn4AP1

dt
=

1

τ4AP
[n4AP1∞ − n4AP1]

dV2

dt
=

1

C2
[−gL2(V2 − EL)− gNaP2.nNaP2∞(V2 − ENa)−

g4AP2.n4AP (V2 − EK)− gj(V2 − V1)]

dn4AP2

dt
=

1

τ4AP
[n4AP2∞ − n4AP2]

(5.4)

Now, the transfer function H(jω) = V2(jω)
V1(jω)

can be obtained by applying the

same procedure used before to calculate the impedance of a neuron, Z(jω). After
linearizing and applying the Fourier transform to the four differential equations in
(5.4), the resulting system has four equations and five variables: V1(jω), V2(jω),
η4AP1(jω), η4AP2(jω) and iinj(jω). However, only the last two equations are
needed to compute the transfer function:

H(jω) =
gj (1 + jωτ4AP )

(jω)2 τ4−APC2 + (C2 + Γ∞τ4AP ) jω + Γ0

(5.5)
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Figure 5.1: Reduced model of two coupled neurons, according to equations 5.4.

where:

Γ0 = gL2+gj+g4AP2

[

n4AP2∞ +
dn4AP2∞

dV2
(V2 − EK)

]

+gNaP2

[

nNaP2∞ +
dnNaP2∞

dV2
(V2 − ENa)

]

(5.6)
and

Γ∞ = gL2 + gj + g4AP2n4AP2∞ + gNaP2

[

dnNaP2∞

dV2
(V2 − ENa) + nNaP2∞

]

(5.7)

Again, the expression (5.5) is pretty complicated to fully understand it at a
glance. However, there are a couple of key features to highlight. First, the transfer
function H(jω) depends only on the properties of the postsynaptic neuron and the
coupling strength. Not a single parameter from the presynaptic neuron appears on
its analytical expression. The second feature is related with the first one: Equation
(5.5) is almost the same as the expression for the neuron impedance Z(jω) (5.3).
Actually, the two differential equations (5.1) are almost the same as the last two
from (5.4), with iinj = gj(V1−EL) and gL2 = gL+ gj . Then, the transfer function
between two neurons can be interpreted as the impedance function of a neuron,
with an injected current proportional to the presynaptic membrane potential and
a leak conductance composed by its own leak and the gap junction conductance.

Apart from these two important results, it is difficult to get more insight from
(5.5). In the next section, the transfer function will be studied by low and high
frequency approximations, that are more intuitive to understand.

5.4 Frequency preference of coupled neurons

The impedance Z(jω) of a neuron accounts for its behaviour when the injected
current produce subthreshold voltage changes. It can be interpreted as a function
that determines the excitability of neurons depending on the frequency content of
the stimulus. If the neuron impedance has a peak in a given frequency, the cell
is more suitable to reach its threshold and fire. A similar thing can be said of
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the transfer function between two neurons H(jω), that also are shown to present
resonance [33]. H(jω) measures how the postsynaptic neuron responds to voltage
changes in the presynaptic one. If the presynaptic is oscillating at some frequency
ω = ω0, the postsynaptic will be oscillating at the same frequency too, but with a
relative amplitude and phase given by the value of H(jω0).

Instead of working with the full expression (5.5), it is possible to dissect it
analyzing its asymptotic behaviours: for low and high frequencies. The transfer
function resonance will be explained as the result of the overlaping between a low-
pass filter (cutoff frequency fLP ) and a high-pass filter (cutoff frequency fHP ),
when fHP < fLP [84].

Let’s come back to the last two equations of the Mes V coupled neurons reduced
model (5.4). For the sake of simplicity, the subscripts 1 and 2 will still be utilized
only for distinguishing between pre and postsynaptic voltages, given that all the
parameters and the state variable n4AP corresponds to the postsynaptic neuron 2:



























dV2

dt
= −

1

C
[gL(V2 − EL) + gNaP .nNaP∞(V2 − ENa)

+g4AP .n4AP (V2 − EK)− gj(V2 − V1)]

dn4AP

dt
=

1

τ4AP
(n4AP∞ − n4AP )

(5.8)

Now, note that the differential equations (5.8) have two different time scales:
τm for the voltage variable V2 and τ4AP for n4AP . Actually, τm < τ4AP as sub-
threshold depolarizing current steps show: after a +50 pA current step there is
always an overshoot due to the slower n4AP kinetics (see section 4.4.2). This
time constant mismatch will be utilized in the next sections to study asymptotic
behaviours.

5.4.1 Low-pass behaviour

For fast frequency stimuli, n4AP cannot “see” voltage changes. Therefore, for all
purposes, it could be considered in steady state: n4AP = n4AP∞(V2initial) and
dn4AP

dt = 0. Applying that on the differential equations 5.8, linearizing and making
Fourier analysis as in the previous section, the transfer function for high frequencies
HLP(jω) is:

HLP(jω) =
V2(jω)

V1(jω)
=

gj
Γ0

1

1 +
jω

ωm

(5.9)

The transfer function HLP(jω) is a low pass filter, whose bandwidth ωm = Γ0

C
is directly proportional to Γ0, that was defined in equation (5.6).

Notice that the bandwidth of the transfer function is not only determined by
the passive properties (such as its capacitance, leak and gap conductance): its
ionic currents contribute to it too.
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5.4.2 High-pass behaviour

On the other hand, for low-frequency signals, below low-pass cutoff frequency, the
capacitor has enough time to become fully charged and iC = C dV2

dt = 0. The
low-pass filter is not filtering too much in this frequency range. However, n4AP

can follow low frequency signals (dn4AP
dt 6= 0) and filter them. According to that,

the transfer function for low frequencies HHP(jω) can be approximated as:

HHP(jω) =
V2(jω)

V1(jω)
=

gj (1 + jωτ4AP )

Γ0 + jωτ4APΓ∞

=
gj
Γ∞

jω +
1

τ4AP

jω +
1

τ4AP

Γ0

Γ∞

(5.10)

where Γ∞ was defined in Equation (5.7).

5.4.3 Conditions to get resonance

In conclusion, the transfer function H(jω) can be approximated for a low-pass
filter for high frequencies and a sort of high-pass filter for low frequencies. The
Figure 5.2 displays the absolute value of the magnitude of both filters and the
resulting transfer function. Basically, there is resonance in the region where the
low-pass and the high-pass filters overlap. Hence, a necessary condition to get a
resonance peak is ωm = Γ0

C > ω1 =
1

τ4AP
.

Figure 5.2: Schematic representation of how transfer function’s resonance arises from the
match between a low-pass (green dots) and a high-pass filter (dash and dots in red). A) The
cutoff frequency of the low-pass filter is above the zero of the high-pass filter, producing a
hump. B) No resonance can be seen when the low-pass filter begins to filter before the zero
of the high-pass filter.

Given that ω1 is fixed (depends on the intrisic characteristics of the 4-AP-
sensitive current), the resonance can be set by increasing ωm, by enlarging Γ0,
decreasing C or both at the same time. However, increasing Γ0 may augment Γ∞

too, because both share several parameters, leading to a net drop of the relative
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distance between both parameters and reducing the range of HHP (jω). Actually,
the high-pass filter only exists when there is a difference between there is the
zero and the pole of the high-pass filter. Therefore, resonance will be abolished if
Γ0 − Γ∞ = g4AP

dn4AP∞

dV2
(V2 − EK) = 0. That may happen in two cases:

1. g4AP = 0: there is no 4-AP-sensitive potassium on the postsynaptic cell. One
way to check this experimentally may be by blocking 4-AP-sensitive current
with 4-AP or producing knockout rats not expressing 4-AP-sensitive current
channels.

2. dn4AP∞

dV2
= 0: resting potential is not in the linear region of the 4AP-sensitive

current activation variable. This is extremely interesting, because it means
that the resonance only operates in a voltage-range around the half acti-
vation voltage of 4-AP-sensitive current V4AP1/2. Roughly, the resting po-
tential V2 ∈

[

V4AP1/2 − k4AP , V4AP1/2 + k4AP

]

. That is consistent with the
following two observations:

• Below V2min = V4AP1/2 − k4AP The 4-AP-sensitive current does not
operate, as in the first case

• Above V2max = V4AP1/2+k4AP The 4-AP-sensitive current is saturated
(all the channels are open), acting as a leak.

Figure 5.3 summarizes all the conditions to get a resonant peak. Notice that
the resonant behaviour only operates above the resting potential (V2 ≃-56 mV),
for depolarizing presynaptic inputs. On the other hand, it decreases quickly above
the firing threshold (V2 ≃-45 mV), when the linear model and its transfer function
are no longer valid. In the next section, this model for the transfer function will
be checked against experimental data.
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Figure 5.3: The shaded region indicates the voltage region where there is a resonant peak:
the cutoff frequency of the low-pass filter, Γ0/C may be larger than the lower frequency of
the high-pass, 1/τ4AP (A); the high-pass filter gain may be larger at high frequencies (B); the
linear model has to be valid (below threshold, dashed vertical line)

5.5 Tuning the resonance

Experimental recordings were performed at the School of Medicine, by applying
current stimuli to the presynaptic neuron and recording the voltage of both pre
and postsynaptic neurons, according to procedures described elsewhere [33]. There
were two types of current stimuli:

1. Sinusoids of a given frequency: from 1 to 600 Hz

2. Impedance profile amplitude (ZAP) stimuli [144]: I(t) = A.sin(at3), where
a = 8×10−7 s−3 and A is the amplitude, adjusted for each neuron for getting
small-amplitude voltage deflections. The parameter a was chosen in order
to have a frequency content between 1 to 600 Hz.

In fact, ZAP currents are the most widely signal used to measure frequency
reponse in neurons [19,62,64,82–84], given that resonance can be detected online
by the researcher eye, just looking at the voltage response envelope. Each couple
of traces also allows to obtain the complete transfer function estimate, as the ratio
between the fast Fourier transform (FFT) of post and presynaptic voltage traces.
Sinusoids may be simpler to analyze, but require a large amount of frequencies
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(and time) to get a good transfer function.

Linearization only works well when the fluctuations of the system around the
equilibrium are very small. However, electrophysiological noise defines a minimum
postsynaptic voltage excursion of around 5 mV, given that below that signal-to-
noise ratio worsens. Due to transfer function attenuation, the presynaptic excusion
may be 5 times larger than the presynaptic one. Then, the presynaptic neuron
is always out of the linear range and it is not possible to get its impedance, for
example. Finally, the researcher is not directly controlling pre or postsynaptic
membrane potentials, but the injected current. For this reason, the “ideal” of 5
mV at the postsynaptic neuron is very difficult to get in the lab, with the con-
sequent increased mismatch between linear and experimental models. Given that
constant amplitude sinusoidal and ZAP currents were injected, their responses are
very poor at frequencies above 100 Hz, also due to frequency-dependent attenua-
tion.

To unmask the impact of ionic currents in the transfer function, they were
selectively blocked by drugs. First, coupled neurons’ response was recorded in
control conditions, without any drug. Then, INaP was blocked by TTX and the
frequency response was measured again. Finally, I4AP was blocked by 4-AP, in
order to record the transfer function without these two currents.

An inverted version of the recording procedure simplifies transfer function mod-
elling, according to the expression (5.5). Indeed, the experimental response in
presence of both 4-AP and TTX means g4AP = gNaP =0, that means a transfer
function HTTX + 4AP(jω):

HTTX + 4AP(jω) =
gj

gj + gL + jωC
(5.11)

Equation (5.11) is a low-pass filter, with only three parameters to estimate: ca-
pacitance C, leak and gap conductances gL and gj , whose values are also calculated
by the recording software1. An example of the response of pre and postsynaptic
neurons during a ZAP protocol is shown in Figure 5.4, in presence of 4-AP and
TTX. According to the linearized model, each neuron has to show a low-pass re-
sponse. However, the high amplitude of the presynaptic response (more than 50
mV peak to peak) activates other ionic currents both TTX and 4-AP-resistant.
The resulting voltage waveform is asymmetric, probably due to the activation of
the delayed potassium rectifier IDRK at depolarized levels. Postsynaptic neuron
has a high amplitude too and its waveform is pretty similar to the presynaptic one.

After finding C, gL and gj , the same fitting procedure is used to get g4AP

from recordings in presence of TTX (without INaP ). Finally, gNaP is obtained

1In fact, recording software makes online estimates of several parameters while record-
ing. However, this values are not always accurate, given that they correspond to simplified
models, and usually fluctuate in time, because of changes in the experimental conditions.

69



Chapter 5. The cellular membrane as a filter

Figure 5.4: Left: pre and postsynaptic voltage traces during a ZAP protocol, in presence of
TTX and 4-AP. Right: transfer function estimate obtained as the ratio between the FFT of
the post and presynaptic traces, as well as the response to sinusoidal inputs in diamonds and
the linearized model fit.

from the control recordings. Figure 5.5 presents the results from the same cell
pair shown in 5.4. The presynaptic response is smaller than in the previous case,
but is still asymmetrical, due to the larger resonance for voltages above -56 mV,
approximately. The amplitude of the postsynaptic response at the resonance peak
is within the ideal range, but it decreases rapidly at higher frequencies and al-
most merges with noise. Nevertheless, the transfer function can be fitted using
the linearized model. The resonance peak at 42 Hz can be characterised by the
Q-value, defined as the ratio between its magnitude and the DC gain [82]; in this
case: Q=1.32. The width at half amplitude of the hump is around 38 Hz, which
means a relatively wide frequency preference, while the cutoff frequency is 95 Hz.

Figure 5.5: Response for a ZAP in control conditions. Pre and postsynaptic voltage traces (A
and B). Right: transfer function (C).
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Figure 5.6: Transfer function comparisson between Mes V and fast-spiking neuron models [60].
Fast-spiking transfer function does not only have a smaller cutoff frequency (around 50 Hz),
but it is a classic low-pass filter, as it was reported experimentally too [59].

Actually, the transfer function between Mes V neurons is unique among those
reported previously in bibliography. Figure 5.6 compares it with the transfer func-
tion between fast-spiking (FS) neurons (which are also connected by gap junc-
tions [59]), simulated from a model developed by Golomb et al [60]. Indeed,
coupled FS neurons act as low-pass filters, like Mes V neurons without INaP and
I4AP (Equation 5.11). In addition to that, the FS cutoff frequency is almost the
half of the Mes V one, meaning that they are not well suited to pass fast signals.
This is coherent with the fact that FS are less efficient to transfer spikes than Mes
V neurons [33], as it will be studied in the next chapter.

Even though it is not possible to vary smoothly the amount of INaP and I4AP

in the experimental model, the mathematical model can be simulated for different
values of gNaP and g4AP . Figure 5.7A shows that persistent sodium is not essential
for resonance, but amplifies it, as well as the overall gain. Coming back to the full
expression of the transfer function (5.5), it can be seen that INaP -related terms
appear only in the denominator, multiplying the following term:

N(V ) = nNaP2∞ +
dnNaP2∞

dV2
(V2 − ENa) (5.12)

The product between the steady-state derivative dnNaP2∞

dV2
> 0 and the driv-

ing force (V2 − ENa) < 0 makes N(V ) < 0 for V2 < −34 mV. Therefore, larger
persistent sodium conductances gNaP lead to smaller Γ∞ and Γ0 that decrease
the denominator, producing a net increase in the transfer function magnitude.
The Q-value grows for the same reason, basically because of a net decrease on
the damping term in the denominator: (C2 + Γ∞τ4AP ). Larger non realistic gNaP

values make the neuron unstable, given that the real part of the poles becomes
positive.
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On the other hand, the transfer function between neurons goes from a low-pass
filter to a band-pass filter as g4AP increases, as Figure 5.7B proves. The resonance
peak is very sensitive to g4AP as well as the Q-value and the hump’s width. Unlike
persistent sodium, 4-AP-sensitive current reduces the DC value too, given that its
increase leads to a net decrease in the transfer function denominator, given that
(V2 − EK) and dn4AP2∞

dV2
are always positive. For this reason, I4AP is both necessary

and sufficient to produce a transfer function with one zero and two poles, such as
(5.5).

Figure 5.7: Transfer function dependence on gNaP (A) and g4AP (B). Arrows indicate in-
creasing conductance values, from zero to a biologically pausible value. Persistent sodium
conductance gNaP increases the excitability of the postsynaptic cell, due to the larger value
of the overall transfer function. It also amplifies resonant hump, with minor changes on the
peak frequency. However, persistent sodium is not essential to get resonance, given that all
the traces present a resonant peak. On the other hand, 4-AP sensitive conductance is key
to generate band-pass behaviour, though with a reduced DC value, due to the smaller input
resistance RIN .

5.6 Modulation of the transfer function by cGMP

The conclusion from the previous section is that I4AP produces resonance whereas
INaP amplifies it. The next question is what happens if another current is added
to the model? Well, in fact, it may produce resonance or amplify it, depending on
the same thing: the sign of the product between their corresponding driving forces
and the steady-state curve derivatives. Izhikevich used this sign to classify ionic
current variables in two categories: resonating and integrating [88], which are the
basis of class 2 and class 1 excitabilities, respectively.

Thus, the hyperpolarization-activated current Ih may produce resonance too,
given that it satisfies the sign condition, as Figure 5.8. Indeed, it can induce a
resonance in the neuron impedance [170], but only when the resting membrane
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potential is at very hyperpolarized values, because of the steady-state activation
curve s∞ of Ih. However, in section 3.2 it was shown that cyclic GMP (cGMP)
modulates it, moving its half-value V1/2 to more depolarized values and increasing
its slope k. The overall effect of cGMP is that Ih becomes involved in the neuron
dynamics around resting potential, with a consequent effect on the transfer func-
tion.

Figure 5.8: Integrating versus resonating currents, according to their steady-state activation
curves and their equilibrium potentials. For resonating currents, such as I4AP and Ih, the
equilibrium potential lies at the base of the sigmoid. The opposite is valid for INaP . The
intuitive interpretation is that resonance is produced when the growth of the activation variable
increases the driving force, that acts as a negative feedback.

Although there are no experimental recordings of this phenomenon yet, numer-
ical simulations (Figure 5.9) confirm the effect of cGMP in the transfer function.
First of all, the DC value decreases a lot, again due to the change on the input re-
sistance RIN (not shown). There is an important change on the curve’s shape: the
band-pass region becomes wider, reducing the specificity of the frequency prefer-
ence of the coupled neurons, and the bandwith increases too. Then, it is expected
that this neurons are more able to transmit information in a larger frequency range
in presence of cGMP.
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Figure 5.9: Theoretical normalized transfer function modulation including Ih, in control con-
ditions and in presence of cGMP.

5.7 Summary

Along this chapter, the subthreshold transfer function between two neurons was
studied using analytical and numerical tools. The results were successfully com-
pared with experimental data. Two major results were demonstrated, challenging
previous conceptions [59,84]:

• Electrically coupled neurons may not act as low-pass filters, but display
frequency preference.

• Transfer function properties depend on the coupling strength and also on
the postsynaptic ionic currents.
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Chapter 6

Synchronization of two coupled neurons

6.1 Introduction

This chapter deals with the synchronization of pairs of coupled Mes V neurons,
using the multicompartment neuron model presented in chapter 4. The influ-
ence of INaP , I4AP and Ih on synchronization will be studied. The main aim
is to demonstrate that synchronization properties are not only dependent on the
coupling strength, but also on the intrinsic properties of neurons: its ionic conduc-
tances. First, identical neurons will be considered, using phase models to study
their phase responses and phase locking. Then, numerical simulations of the model
will be used to analyze synchronization lag and recruiting probability. The chapter
ends with a more “functional” experiment, to understand how electrical coupling
influences sensorial information processing.

6.2 Phase response curve

The phase response curve is a tool that characterizes the behaviour of a period-
ically spiking neuron under brief perturbations [63]. If the oscillation period of
the “standalone” (isolated, unperturbed) neuron is T , the phase variable φ can be
defined as φ = 2πt/T for each cycle, where t = 0 is usually taken at the peak of
the action potential.

Now, suppose that the oscillator is stimulated by a sudden pulse at t = ts, as
Figure 6.1 shows. The phase of the system may be altered, changing the timing
of the next peak. The phase response curve (PRC) Z(φ) is defined from the new
period of the perturbed system Tnew [18]:

Z(φ) = ∆φ = 2π
T − Tnew

T
(6.1)

A negative (positive) Z(φ) means a phase delay (advance), given that the
perturbed system period is larger (shorter) than the original one. Analytical ex-
pressions of Z(φ) can only be obtained for simplified models, such as leaky and
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quadratic integrate-and-fire neurons [139]. However, even numerically obtained
PRC are very useful to understand neuron’s behaviour. In fact, phase shifts of
class 1 neurons are always positive, given that they integrate the input, advancing
the next spike. On the other hand, class 2 neurons present biphasic PRC: the next
spike can be either delayed or advanced depending on the phase of the incoming
stimulus [88,163].

Figure 6.1: Perturbation of an oscillating Mes V neuron model. After an action potential
peak, an external pulse is delivered to the neuron (vertical arrow), changing its trajectory from
the unperturbed dashed line to the continuous one. Depending on the time (phase) of the
stimulus, the next spike can be delayed (A) or advanced (B). In the first case, the PRC is
negative, whereas in the other is positive.

Figure 6.2 shows the PRC for Mes V neuron model, varying the maximum
conductances of INaP , I4AP and Ih or modulating Ih by cGMP. Increasing gNaP

makes dissapear the negative region of the PRC, whereas the contrary happens
when g4AP . This is coherent with the subthreshold properties studied in the chap-
ter 5: INaP is an integrating current that generates class 1 PRC, whereas I4AP

is resonant and produces class 2 behaviour. On the other hand, both parameters
have almost no effect after three quarters of the period.

Ih does not change the overall PRC shape, only increasing a bit its phase shift
at the middle of the period. Its modulation by cGMP increases slightly the class 2
behaviour, by expanding the negative phase shift region. Again, this is connected
with the cGMP-induced resonance, briefly presented at the end of the previous
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chapter.

Figure 6.2: PRC for Mes V neuron model. The standard model is always shown in blue,
whereas red (green) lines denote a decrease (increase) of gNaP (A), g4AP (B) and gh (C).
Figure D shows the effect of cGMP modulation, without changing maximum conductances.

6.3 From PRC to phase locking

In the previous section, it was stated that phase response curves represent neuron’s
behaviour. According to weakly coupled oscillators theory, the PRC can be used
to describe a forced periodic oscillator like:

dX

dt
= f(X) + ǫp(t) (6.2)

where X is the state vector (composed by voltages, activation and inactivation
variables, etc), f a nonlinear function of the state and ǫp(t) an external input that
stimulates the system (for example, a synaptic input). The parameter ǫ represents
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the stimulus strength and it is assumed to be small. Then, Equation (6.2) can be
transformed into a phase model [88]:

dφ

dt
= ω + ǫZ(φ)p(t) (6.3)

where ω = 2π/T and T the period of the free-running oscillator (6.2) (ǫ = 0).

Now, suppose that there are two identical coupled oscillators, whose phase
models are [52]:











dφ1

dt
= ω1 + Γ12(φ1 − φ2)

dφ2

dt
= ω2 + Γ21(φ2 − φ1)

(6.4)

where ω1 = ω2 = ω and Γ12 = Γ21 = Γ is the phase coupling function. Assuming
that p(t) = Isyn(φ1, φ2) = −g (V (φ1)− V (φ2)), Γ can be obtained as [139]:

Γ(φ1 − φ2) =
1

T

∫ T

0
Z(u+ φ1)Isyn(u+ φ1, u+ φ2)du (6.5)

Phase locking can be found by substracting the equations (6.4) and defining
∆φ = φ1 − φ2:

d∆φ

dt
= Γ(∆φ)− Γ(−∆φ) = Γodd(∆φ) (6.6)

Phase locking means constant ∆φ and can be found as the zeros of Γodd(∆φ).

The fixed points of (6.6) have to satisfy
dΓodd

dφ
< 0. Note that ∆φ = 0 is a trivial

solution, given that Γ(0) = 0. In fact, it is also stable for these neurons1.

According to Figure 6.3, the antiphase locking ∆φ = π is an unstable solution,

due to
dΓodd

dφ
(∆φ = π) > 0. This derivative decreases with gNaP , making it less

unstable (the contrary happens with g4AP ). That means that, for larger persistent
sodium values, the antiphase locking could be a stable solution, as Pfeuty et al
have shown for quadratic integrate-and-fire neurons [139].

Finally, now suppose that the coupled neurons are slightly different, due to
their maximum conductances, input resistance, time constant or a combination
of all. In that case, their free-running frequencies become different too ω1 6= ω2,
provoking a frequency mismatch ∆ω = ω1 − ω2. Nevertheless, phase locking is
still possible at the zeros of Γ̂odd(∆φ) = Γ21(−∆φ)− Γ12(∆φ) = −∆ω [89]. Then,
the mininum and maximum values of Γ̂odd determine the maximum and mininum
frequency mismatch tolerance for the coupled system.

Hence, g4AP and gNaP have opposite effects on frequency mismatch tolerance,
that is increased by the first current and diminishes with the second (Figure 6.3).

1Note that there is a small phase shift artifact in the figures, at φ = 0 and 2π.
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Figure 6.3: Phase locking for coupled Mes V neurons. Antiphase ∆φ = π is a unstable solution
in both cases, though gNaP and g4AP have opposite effects on it.

6.4 Non identical neurons

Mes V neurons are quite diverse, due to their different size (i.e.: capacitance),
input resistance, ionic current densities, etc. However, they all receive sensorial
information coming from masticatory muscle spindles and periodontal ligament re-
ceptors, process it in and send the output to motorneurons and other cells. Then,
electrical coupling may be a tool to help them to generate coordinated outputs,
even if coupled neurons are different. How tolerant is synchronization to differ-
ences in the coupled cells?

The base experiment in this chapter consists in two coupled Mes V neuron
models, that receive a current step at their somata, whose amplitude allows each
neuron to fire only one spike. Both neurons will be identical but in only one param-
eter: g4AP or gNaP . This parameter will be fixed in one of the neurons (neuron 1)
and varied in the other (neuron 2). Two main important synchronization features
will be studied: the time lag between synchronized neurons and the probability
that one neuron may recruit its coupled partner.

Figures 6.4A-B show how different coupled neurons can get 1:1 synchroniza-
tion, in a parameter space region that recalls Arnold’s tongues [119]2. In fact, the
vertical axis is the coupling strength, gj , whereas the horizontal one represents
the frequency mismatch between neuron 1 and 2, due to their different g4AP or
gNaP . As a result, synchronization tolerance to conductances mismatch improves

2Arnold’s tongues are stereotyped parameter space (coupling strength and frequency
mismatch) regions where there is 1:1 synchronization. The Mes V neuron model shows
standard Arnold’s tongues when both neurons present repetitive firing without any cou-
pling. Although this is interesting from the computational point of view, this has no sense
in the biological area, given that it is unrealistic to have two uncoupled neurons in “1:1
synchronized state”.
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with the gap junction conductance. Colorbars indicate the time lag between 1:1
synchronized spike trains in milliseconds. The blue area only indicates not 1:1
synchronization, though it could be other synchronization modes (1:2, 1:3, 2:7,
etc).

A zoom of Figures 6.4A and B, at gj = 3 nS (approximately the mean experi-
mental value [33]), is shown in Figures 6.4C and D, respectively. Again, both ionic
currents have opposite effects: increasing of gNaP (g4AP ) in the neuron 2 leads to
a larger (smaller) time delay.

Figure 6.4: Time lag between synchronized spike trains. Increase of postsynaptic gNaP pro-
duces larger time lags (A), whereas the opposite is valid for g4AP (B). A detailed zoom of
both figures, at gj = 3 nS, is shown in (C) and (D).

The next objective is to study which conditions improve recruitment of a cou-
pled cell by another repetitively spiking. A small amount of gaussian noise was
added to the current steps injected in both neurons, in order to generate some
randomness in their behaviours. Recruitment is measured as the ratio between
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the post and presynaptic spikes: 100 % means that no presynaptic spike is lost to
the post.

Both simulated curves 6.5A1-B1 present the same trend: increasing conduc-
tance improves recruitment. Whereas the curve for gNaP is sigmoid-like, the cor-
responding to g4AP is almost a step. Two insets in (A1) display a portion of
the voltage traces (total simulated time was 10 s) at both extremes of the curve
(marked by red points). The remaining two figures present the spikes per sec-
ond average for each simulation. Notice that neurons get synchronized when their
mean frequencies reach the voltage range below 80 Hz, within the subthreshold
bandpass frequency band, in agreement with the results presented in section ??.

Figure 6.5: Recruitment and frequency content. More I4AP and INaP promotes recruitment
of a neuron by a periodically spiking coupled one (A1,B1). Insets in (A1) display voltage traces
at the base and top of the recruitment curves. Actually, recruitment is related with a match
between firing frequency and subthreshold properties (A2,B2).

Finally, Mes V neurons are said to be very efficient to transmit action potentials
[33], according to coupling measurements. DC coupling is defined as the ratio
between post and presynaptic voltage amplitude responses to an hyperpolarizing
current step. On the other hand, action potential (AP) coupling is measured as the
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quotient between spikelet and spike amplitudes. Figure 6.6 shows how increased
postsynaptic I4AP (A) and Ih (C) improves AP coupling efficiency, whereas INaP

(B) has almost no effects on it. The results from the Mes V neuron model in
control conditions are compared in (D) with the experimental results (shaded
region, adapted from [33]), as well as the fast spiking neuron model [60] used
in chapter 5 and experimental results from this neuron. There is a quite good
agreement between model and experiments.

Figure 6.6: Action potential coupling against DC’s, for different values of g4AP (A), gh (B)
and gNaP (C) Figure (D) compares Mes V model results to experimental ones (shaded area)
and from fast spiking neurons [60].
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6.5 Sensorial information processing

When the presynaptic neuron fires, the postsynaptic can be recruited or not, as
it was shown in the previous section. In some cases, the postsynaptic response is
a spikelet: a subthreshold response at the soma that may not propagate, because
it lacks the regenerative behaviour of the sodium-mediated action potentials. On
the other hand, the system can be wired in a way that both neurons receive a
stimulus at the same time. Figure 6.7 shows that neurons may present repetitive
firing when they receive simultaneous current injection at the soma, marking a
more “important” message to motorneurons and/or central regions of the brain.
Therefore, when there is a coincidence on the stimuli, neurons display a behaviour
that they do not show when only one is stimulated.

Figure 6.7: Coincidence detection in Mes V neurons. Only one neuron is stimulated in the
first two horizontal figures, generating only one spike in the injected neuron and a spikelet in
the other. However, if the stimulus is injected in both neurons, they present repetitive firing.
The overall result is a larger response in the case of coincident stimuli.

While the protocol used in Figure 6.7 can be make at the lab, it is more difficult
to implement a more functional test: to stimulate the peripheral axons, to see how
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neurons cope with practical issues, such as time delays between sensorial inputs.
In fact, it at least two complex several experimental issues. First, peripheral axon
branches, from coupled neurons, have to be located at the tissue slice. Then, each
one has to be stimulated independently, an almost impossible feat, given that it is
very difficult to patch so tiny membrane portions.

On the other hand, it is quite easy to implement the experiment using simula-
tions. The setup is shown in Figure 6.8A. Two identical coupled Mes V neurons
are stimulated at their peripheries by synaptic inputs, with the same shape but
different time delays. These inputs generate action potentials that travel through
the cell, reaching the central axon, that operates as output port. If coupled neu-
rons are coincidence detectors, they should reduce the delay at the output.

Simulations for different values of coupling strength gj are presented in Figure
6.8 for control conditions (B) and increased g4AP (C) or gNaP . The straight line
corresponds to the case of no coupling (gj = 0), where input and output delays
are the same. Increased coupling means smaller output time delay for small input
delays. However, after a time delay of ≃ 7 ms, the oppposite happens: output
delay gets larger than the input. There is even a region without spikes, in control
and increased g4AP .
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Figure 6.8: Coupling may generate coincidence detection or increased contrast in sensorial
information. Two identical coupled neurons were stimulated by excitatory synaptic inputs
at their peripheral axons (A). Each axon receives the same synaptic input, according to the
synaptic conductances waveforms shown at the left, but with a variable temporal delay. These
synaptic inputs generate action potentials that travel until the central axon, where their delay is
measured again. Central axon delay is plotted against synaptic input delay in control conditions
(B), increased g4AP (C) and increased gNaP . Gap junction conductance gj is varied from 0
to 7-8 nS, as indicated by black arrows.

Figure 6.9 shows what happens when gj = 3 nS and g4AP is increased. The
left figure show the output delay - input delay curve in this case, marking some
key points: small delay (a), large delay but with action potentials in both neurons
(b), no action potential in the delayed cell (c) and (d), still larger delay (e) and (f).
Voltage traces of all the cases are displayed at right. With a small delay(a), the
two neurons cooperate, generating action potentials whose output delay is smaller.
However, the neuron receiving the delayed input fails to fire in (c), due to an
inhibition produced by the afterhyperpolarization potential (AHP) of its coupled
cell. This phenomenon diminishes at (e) (both neurons fire again), but the onset
of the second spike is still delayed by the AHP. Then, the system generates a larger
output delay, separating both sensory signals in the temporal domain. Finally, a
still larger input delay means that the two neurons fire almost independently.
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Figure 6.9: Coupled Mes V neurons may reduce or enlargen sensorial input delays with constant
coupling strength. Red points in the left figure mark specific situations, whose voltage traces
are shown at the right panel.

6.6 Summary

Synchronization of pairs of Mes V coupled neurons was studied in this chapter.
Identical model cells were analyzed by phase reduction. Their phase response
curves allowed to calculate phase locking of them, showing that in-phase synchro-
nization is always stable, whereas antiphase ∆φ = π not. Persistent sodium and
4-AP-sensitive current presented opposite results in most situations: excitability
clases, frequency mismatch tolerance, stability trend of the antiphase solution,
spike train delay AP efficiency, etc. Then, Mes V behaviour is shaped by a precise
counterbalancing between these two currents.
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Conclusions and future work

Along this thesis, a biological system was studied using tools from engineering.
Two ionic currents were modelled after experimental data, using nonlinear differ-
ential equations and Markov chains. For the first time, the Mes V sodium current
is modelled taking into account the resurgent component (see appendix C). On the
other hand, hyperpolarization-activated current modulation by cGMP is studied
for the first time too.

A whole cell model of the Mes V neuron is obtained by using the cable theory
and evolutionary algorithms. A reduced version of the model is used to study ana-
lytically and numerically the subthreshold transfer function resonance, challenging
the general conception that electrical coupled neurons act as low-pass filters. It
was also shown that modulated Ih may have an impact on the transfer function,
though it will be necessary to check in the experimental model.

The synchronization between coupled neurons was also studied, using phase
response curves and simulations. It was found that synchronization does not only
depend on coupling strength, but also on the membrane properties. The efficiency
of action potential coupling was also analyzed, as well as sensorial information
processing.

The numerical simulations taken out during this thesis have generated answers
to experimental questions, but they have also created new questions. One of them
is sodium current time constants, that were successfully measured and then mod-
elled, though more experimental recordings are needed to fully validate the model.

Another question is about the dynamics of high-threshold fast potassium cur-
rent, that were adjusted by the optimization algorithm. Unfortunately, only one
experiment was made using 4-aminopyridine, without any positive result. After
reading some biophysical bibliography, we propose to measure the current using 1
mM TEA and TTX. On the other hand, given that any of the models completely
fulfill the expected subthreshold behaviour, a more detailed inmunohistochemical
characterization of ionic channels is needed, in order to check if there are Kv3 and
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4-AP-sensitive channels in the axon (or at least in the initial segment).

Finally, more ambitious experiments will be needed to run an hybrid model,
mixing real neurons and differential equations. Such experiments will allow to
check the validity of the models and to explore the whole range of parameters in
living neurons. A recording technique called dynamic clamp was studied to make
that, but no proper equipment was available during this thesis. Opportunely, in
December 2013 this equipment was purchased at the School of Medicine, making
hybrid models possible.
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Appendix A

Model parameters’ values

The parameters used by the multicompartmental Mes V neuron model are:

Parameter Value

Potassium reverse potential EK (mV) -93

Sodium reverse potential ENa (mV) 78

Ih reverse potential Eh (mV) -40.2

Specific intracellular resistance Ri (Ω.cm) 152.9 ± 30.8

Soma diameter D (µm) 43.7 ± 3.7

Axon length L (µm) 198.6 ± 7.2

Axon diameter d (µm) 3

Leak reverse potential EL (mV) -55.5 ± 0.4

Soma’s leak conductance (µΩ/cm2) 40.2 ± 0.6

Axon’s leak conductance (µΩ/cm2) 54.8 ± 0.6

Persistent sodium conductance gNaP (µΩ/cm2) 20.9 ± 1.2

4-AP-sensitive potassium conductance g4AP (µΩ/cm2) 229.2 ± 5.0

Hyperpolarization-activated conductance gh (µΩ/cm2) 953.0 ± 30.5

Delayed rectifier conductance gDRK (µΩ/cm2) 381.0 ± 82.3

Transient sodium conductance gNaT (mΩ/cm2) 83.4 ± 6.1

Potassium Kv3 conductance gKv3 (mΩ/cm2) 150.9 ± 6.7

τKv3min (ms) 0.44 ± 0.03

τKv3exp (ms) 0.63 ± 0.07
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Appendix B

Evolutionary algorithms

Evolutionary algorithms are iterative optimization algorithms inspired in biologi-
cal evolution [38]. The basic idea is to start with a “population” of subjects (for
example, parameters’ sets) whose fitness to a target function is measured. Only
the best ones pass to the next generation, were they suffer mutation and combi-
nation, creating a new population. The process is repeated until the optimization
goal is achieved.

In this thesis, the Evolutionary Multi-Objective Optimization (EMOO) tool1

was employed to find model parameters. It was developed by Armin Bahl at the
Max Planck Institute of Neurobiology (Germany) to fit a multicompartment model
of pyramidal neurons [8], and it is possible to use it as a Python library. Then,
it can interact with the Mes V neuron model, implemented using NEURON in
Python.

The basic steps of this algorithm are [44]:

1. Creation of individuals: A population of N random solutions (whose
parameters are random variations close to the initial guesses and vary within
bounds) is generated intially.

2. Selection: Individuals from the population are pairwise compared in fitness
and selected to fill a selection pool, that will have N individuals again. Then,
the selection step has to be done twice.

3. Crossover: Parents are randomly taken from the selection pool and their
parameters are combined, in order to generate two children with new param-
eters. The operator used by this tool is the simulated binary crossover [35],
which starts by taking a random number ui ∈ [0, 1] from a uniform distri-

1Freely available at http://projects.g-node.org/emoo.

http://projects.g-node.org/emoo
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bution, that is used to obtain a new value βqi:

βqi =











(2ui)
1

ηc+1 if ui ≤ 0.5

1

2(1− ui)

1

ηc+1

otherwise
(B.1)

Where ηc is a positive number chosen by the researcher (ηc=20 or 40 in this
thesis). If x1i and x2i are the chosen parents, their offspring parameters y1i
and y2i can be computed using βqi:

y1i = 0.5
[

(1 + βqi) x
1
i + (1− βqi)x

2
i

]

y2i = 0.5
[

(1− βqi) x
1
i + (1 + βqi)x

2
i

] (B.2)

Parameters outside the predefined range are moved to the closest bound.
Crossover continues until there are C > N individuals in the whole popula-
tion.

4. Mutation: Parameters diversity is increased by applying a polynomial mu-
tation to each parameter from each individual. Again, a random number ri
is obtained from a uniform distribution, being used to compute δi:

δi =

{

(2ri)
1

ηm+1 − 1 if ri ≤ 0.5

1− [2(1 − ui)]
1

ηm+1 otherwise
(B.3)

Again, ηm is a number tunned by the researcher (ηm = ηc here). δi is added
to the parameter, in order to generate a new one: xi → xi + δi.

5. Evaluation: Each individual is evaluated using error functions. In the
multiobjective case, each individual will get M error values.

6. Set fitness: Each individual receives a fitness value, in order to establish
a population ranking. Given that there could be M independent objectives,
individuals are classified according to their nondomination rank. A solution
is said to dominates the others if it is better in at least one objective, but
not worse in the others. After finding the first set of nondominating solu-
tions (called Pareto front), the rest of the population is evaluated again to
get a second nondominating set. The individuals within each Pareto front
are ranked using a “crowding distance” measure, that promotes the most
isolated solutions in the parameter space.

7. New generation: N individuals are chosen to get a new population and
start with the process again.
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State-space sodium current model

The basic template for the Markov model of the sodium channel was presented in
chapter 3 and it is presented in Figure C.1 again.

Figure C.1: Markov model of the sodium current [102]

Two different approaches were used to obtain the models’ parameters from
macroscopic current recordings:

• Deterministic approach: The Markov model is considered as a determin-
istic state-space model, described by a system of coupled differential equa-
tions. The optimization procedure can be divided in the following steps:

1. The Prediction Error Method was used to find the parameters evalu-
ated at each voltage, when the differential equations system is linear.
This method -implemented as a part of the System Identification tool-
box of Matlab [121]- finds the parameters of a linear model by mini-
mizing the error between the data and the output of a linear filter that
acts as a predictor [114,169]. Parameters that do not vary too much in
voltage will be taken as constant, whereas the other will be modelled
as exponential rates Kj = kje

qjV .

2. The parameters of the Markov model in the whole voltage range are
found using by multiobjective optimization using evolutionary algo-
rithms [35], using a Python library developed by Bahl [8] and described
in the appendix B.
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3. Finally, these complex models could need some little hand tuning [45,
176], using the parameters that determine the features of the open state
waveforms, according to its sensitivity S(t) = ∂O

∂p . For example, the
transition rate from inactivation to the open state, Oon is relevant to
set the steady state of the O state, i.e. the persistent sodium current.

• Stochastic approach: In this case, parameters are found using the maxi-
mum likelihood estimation algorithm from QUB software [124]. Briefly, the
master equation is solved to find the states occupancy for a given set of
parameters θ. Then, the program computes the conditional probability of
the macroscopic recorded current I given the parameters: L = p(I|θ), where
L is called the likelihood function. The parameter space is explored by sim-
plex and quasi-Newton methods [134], in order to maximize the likelihood
function. Given that the master equation gives the state occupancy of a
single channel, QUB also estimates the total number of channels.

The basic model is shown in Figure C.1, with the rates presented there, and
will be called “Khaliq fit”, given that it is basically the model reported by him
and his coworkers [102], but with different parameters. A less strict version of
it, called “standard mode” has the same structure, but its kinetic rates are in-
dependent between them, being only contraint by microscopic reversibility. Two
reduced variations of the standard model were also simulated. The first one has no
OB state: it will be called standard model without resurgent current. The other
variation is the standard without two states (C1 and I1), i.e. without a “gate” in
HH terms.

Figure C.2 presents the simulations’ result (parameter values can be found in
appendix A). Without any fitting, the Khaliq model (A) resembles more the data
than the model by del Negro and Chandler [133] (see Figure 3.10). Fitting the
parameters, the model increases the difference between peak currents (B). These
differences improve also in the standard model, when all the parameters are set
free and only contraint by biophysical conditions (C). In addition to that, its times
to peak increase too, being more similar to the experimental ones. The standard
model without 2 states (D) displays a similar behaviour, with a longer inactivation.
Finally, the standard model without resurgent current displays slower activation
and inactivation times, simultaneously. The error ek between simulations sk(t)
and recordings dk(t) for each voltage was computed as:

ek =
‖dk(t)− sk(t)‖2
‖dk(t)‖2

, k = 1, . . . , 16 (C.1)

The errors plotted in (F) prove what it was explained above. The best fit in
the whole range is achieved by the standard model, followed closely by its vari-
ations. The resurgent component appears to be important in the lowest 5-mV
range, coherent with the range where it is maximum [41,146]. The overall picture
shows that, in general, the biggest errors are in the lowest range, where baseline
offsets may be relevant.
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Figure C.2: Simulations of Markov models. From left to right and from top to bottom,
simulations from: original model from Khaliq et al [102] (A), the same structure but with
fitted values (B), the standard model (C), and it without two states (D) or without the OB
state (E). Below each group of traces, there is a little scheme of the Markov model used. The
white box denotes the open state O, whereas the grey ones are nonconductive states: inactived
(bottom of the chain), closed (top, at the left of O) and blocked state (at the right of O).
Red arrows are voltage dependent (in an exponential manner) and black ones are constant.
The error curves between simulations and experimental traces (F) show that the best model
is the standard.
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[50] Nicolas Fourcaud-Trocmé, David Hansel, Carl van Vreeswijk, and Nicolas
Brunel. How spike generation mechanisms determine the neuronal response
to fluctuating inputs. The Journal of Neuroscience : the official journal of
the Society for Neuroscience, 23:11628–11640, 2003.

[51] Pedro Freire Costa. The kinetic parameters of sodium currents in matur-
ing acutely isolated rat hippocampal CA1 neurones. Developmental Brain
Research, 91:29–40, 1996.

[52] Tomohiro Fujita, Tomoki Fukai, and Katsunori Kitano. Influences of mem-
brane properties on phase response curve and synchronization stability in
a model globus pallidus neuron. Journal of computational neuroscience,
32(3):539–53, June 2012.

[53] E. J. Furshpan and D. D. Potter. Transmission at the giant motor synapses
of the crayfish. The Journal of Physiology, 145(2):289–325, 1959.

[54] Juan Gao and Philip Holmes. On the dynamics of electrically-coupled
neurons with inhibitory synapses. Journal of computational neuroscience,
22(1):39–61, February 2007.

[55] L. L. Gao, S. McMullan, L. Djouhri, C. Acosta, A. A. Harper, and S. N.
Lawson. Expression and properties of hyperpolarization-activated current in
rat dorsal root ganglion neurons with known sensory function. The Journal
of Physiology, 590(19):4691–4705, 2012.

[56] Angelo Di Garbo. The electrical coupling confers to a network of interneurons
the ability of transmitting excitatory inputs with high temporal precision.
Brain Research, 1225(0):47 – 56, 2008. Brain and Vision.

[57] Juan Mauricio Garré and Michael V.L. Bennett. Gap junctions as electrical
synapses. In Hisashi Umemori and Michael Hortsch, editors, The Sticky
Synapse, pages 423–439. Springer New York, 2009.

[58] Luc J. Gentet, Greg J. Stuart, and John D. Clements. Direct measurement of
specific membrane capacitance in neurons. Biophysical Journal, 79(1):314–
320, 2000.

101



Bibliography

[59] Jay R Gibson, Michael Beierlein, and Barry W Connors. Functional prop-
erties of electrical synapses between inhibitory interneurons of neocortical
layer 4. Journal of Neurophysiology, 93(1):467–80, January 2005.

[60] David Golomb, Cuiyong Yue, and Yoel Yaari. Contribution of persistent na+
current and m-type k+ current to somatic bursting in ca1 pyramidal cells:
Combined experimental and modeling study. Journal of Neurophysiology,
96(4):1912–1926, 2006.

[61] John Guckenheimer, Shay Gueron, and Ronald M. Harris-Warrick. Mapping
the dynamics of a bursting neuron. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, 341(1298):345–359, 1993.

[62] Yoram Gutfreund, Yosef Yarom, and Idan Segev. Subthreshold oscillations
and resonant frequency in guinea-pig cortical neurons: physiology and mod-
elling. Journal of Physiology, 483:621–640, 1995.

[63] Boris S Gutkin, G Bard Ermentrout, and Alex D Reyes. Phase-response
curves give the responses of neurons to transient inputs. Journal of Neuro-
physiology, 94(2):1623–35, August 2005.

[64] Julie S. Haas and John A. White. Frequency selectivity of layer II stellate
cells in the medial entorhinal cortex. Journal of Neurophysiology, 88(5):2422–
9, November 2002.

[65] Hermann Haken. Synergetics: An Introduction. Springer-Verlag, 1977.

[66] Verena Hammelmann, Xiangang Zong, Franz Hofmann, Stylianos Micha-
lakis, and Martin Biel. The cgmp-dependent protein kinase ii is an inhibitory
modulator of the hyperpolarization-activated hcn2 channel. PLoS ONE,
6(2):e17078, 02 2011.

[67] David Hansel and Germán Mato. Asynchronous states and the emergence of
synchrony in large networks of interacting excitatory and inhibitory neurons.
Neural Computation, 15:1–56, 2003.

[68] Neil Hardingham, James Dachtler, and Kevin Fox. The role of nitric oxide in
pre-synaptic plasticity and homeostasis. Frontiers in Cellular Neuroscience,
7(190), 2013.

[69] Neil Herring, Lauren Rigg, Derek A Terrar, and David J Paterson. No-cgmp
pathway increases the hyperpolarisation-activated current, if, and heart
rate during adrenergic stimulation. Cardiovascular Research, 52(3):446–453,
2001.

[70] Andreas V. M. Herz, Tim Gollisch, Christian K. Machens, and Dieter Jaeger.
Modeling single-neuron dynamics and computations: A balance of detail and
abstraction. Science, 314(5796):80–85, 2006.

102



Bibliography

[71] Bertil Hille. Ion Channels of Excitable Membranes. Sinauer Associates, 3rd
edition edition, 2001.

[72] Shinn-Ying Ho, Li-Sun Shu, and Jian-Hung Chen. Intelligent evolutionary
algorithms for large parameter optimization problems. Evolutionary Com-
putation, IEEE Transactions on, 8(6):522–541, 2004.

[73] AL Hodgkin. The Ionic Basis of Nervous Conduction. Science, 145:1148–
1154, 1964.

[74] AL Hodgkin and AF Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of
Physiology, 117(4):500–544, 1952.

[75] AL Hodgkin and AF Huxley. Currents carried by sodium and potassium
ions through the membrane of the giant axon of Loligo. The Journal of
Physiology, 116:449–472, 1952.

[76] AL Hodgkin and AF Huxley. The dual effect of membrane potential on
sodium conductance in the giant axon of loligo. The Journal of Physiology,
116:497–506, 1952.

[77] AL Hodgkin and AF Huxley. Measurement of current-voltage relations in
the membrane of the giant axon of Loligo. The Journal of physiology, pages
424–448, 1952.

[78] AL Hodgkin and AF Huxley. The components of membrane conductance in
the giant axon of Loligo. The Journal of physiology, 116:473–496, 1952.

[79] Sheriar G. Hormuzdi, Mikhail A. Filippov, Georgia Mitropoulou, Hannah
Monyer, and Roberto Bruzzone. Electrical synapses: a dynamic signaling
system that shapes the activity of neuronal networks. Biochimica et Biophys-
ica Acta (BBA) - Biomembranes, 1662(1–2):113 – 137, 2004. The Connexins.

[80] Chie-Fang Hsiao, Gurvinder Kaur, Angela Vong, Harpreet Bawa, and
Scott H Chandler. Participation of Kv1 channels in control of membrane
excitability and burst generation in mesencephalic V neurons. Journal of
Neurophysiology, 101(3):1407–18, March 2009.

[81] JR Huguenard and D.A. McCormick. Simulation of the currents involved in
rhythmic oscillations in thalamic relay neurons. Journal of Neurophysiology,
68(4):1373–1383, 1992.

[82] B Hutcheon, R M Miura, and E Puil. Models of subthreshold membrane
resonance in neocortical neurons. Journal of Neurophysiology, 76(2):698–
714, August 1996.

[83] B Hutcheon, R M Miura, Y Yarom, and E Puil. Low-threshold calcium
current and resonance in thalamic neurons: a model of frequency preference.
Journal of Neurophysiology, 71(2):583–94, February 1994.

103



Bibliography

[84] Bruce Hutcheon and Yosef Yarom. Resonance, oscillation and the intrinsic
frequency preferences of neurons. Trends in neurosciences, 23(5):216–22,
May 2000.

[85] E. M. Izhikevich and R. FitzHugh. Fitzhugh-nagumo model. 1(9):1349,
2006.

[86] Eugene Izhikevich. Simple model of spiking neurons. Neural Networks, IEEE
Transactions on, 14(6):1569–1572, 2003.

[87] Eugene Izhikevich. Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks, 15:1063–1070, 2004.

[88] Eugene Izhikevich. Dynamical Systems in Neuroscience: The Geometry of
Excitability and Bursting, volume 38. The MIT Press, 2007.

[89] Eugene Izhikevich and Bard Ermentrout. Phase model. Scholarpedia,
3(10):1487, 2008.

[90] Eugene M Izhikevich. Resonate-and-fire neurons. Neural Networks, 14:883–
894, 2001.

[91] Dieter Jaeger, Erik De Schutter, and James M. Bower. The role of synaptic
and voltage-gated currents in the control of purkinje cell spiking: A modeling
study. The Journal of Neuroscience, 17(1):91–106, 1997.

[92] Daniel Johnston and Samuel Miao-Sin Wu. Foundations of Cellular Neuro-
physiology. MIT Press, 1997.

[93] Jamie Johnston, Ian D Forsythe, and Conny Kopp-Scheinpflug. Going na-
tive: voltage-gated potassium channels controlling neuronal excitability. The
Journal of physiology, 588(Pt 17):3187–200, September 2010.

[94] Eric R. Kandel, J. H. Schwartz, and Thomas M. Jessell. Principles of Neural
Science. McGraw-Hill Medical, July 2000.

[95] Youngnam Kang, Mitsuru Saito, Hajime Sato, Hiroki Toyoda, Yoshinobu
Maeda, Toshihiro Hirai, and Yong-Chul Bae. Involvement of persistent
Na+ current in spike initiation in primary sensory neurons of the rat mes-
encephalic trigeminal nucleus. Journal of Neurophysiology, 97(3):2385–93,
March 2007.

[96] Alan R. Kay, Mutsuyuki Sugimori, and Rodolfo Llinás. Kinetic and stochas-
tic properties of a persistent sodium current in mature guinea pig cerebellar
purkinje cells. Journal of Neurophysiology, 80(3):1167–1179, 1998.

[97] Temel Kayikcioglu and Vedat Ozkaner. A new description for sodium channel
gating model based on macroscopic ionic currents in dissociated cerebellar
purkinje neurons. Physica A, 343:487–498, 2004.

104



Bibliography

[98] Justin Keat, Pamela Reinagel, R. Clay Reid, and Markus Meister. Predicting
every spike: A model for the responses of visual neurons. Neuron, 30:803–17,
2001.

[99] Naomi Keren, Dan Bar-Yehuda, and Alon Korngreen. Experimentally guided
modelling of dendritic excitability in rat neocortical pyramidal neurones. The
Journal of Physiology, 587(7):1413–1437, 2009.

[100] S O M Ketelaars, J A Gorter, E A Van Vliet, and W JWadman. Sodium cur-
rents in isolated rat ca1 pyramidal and dentate granule neurones in the post-
status epilepticus model of epilepsy. Neuroscience, 105(1):109–120, 2001.

[101] Baljit S. Khakh and Graeme Henderson. Hyperpolarization-activated
cationic currents (ih) in neurones of the trigeminal mesencephalic nucleus
of the rat. Journal of Physiology, 510.3:695–704, 1998.

[102] Zayd M Khaliq, Nathan W Gouwens, and Indira M Raman. The contribution
of resurgent sodium current to high-frequency firing in Purkinje neurons: an
experimental and modeling study. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 23(12):4899–912, June 2003.

[103] O. Kiehn and R. M. Harris-Warrick. 5-ht modulation of hyperpolarization-
activated inward current and calcium-dependent outward current in a crus-
tacean motor neuron. Journal of Neurophysiology, 68(2):496–508, 1992.

[104] Bruce W. Knight. Dynamics of encoding in a population of neurons. The
Journal of General Physiology, 59:734–766, 1972.

[105] Chung-Chin Kuo and Bruce P Bean. Na+ Channels Must Deactivate to
Recover from Inactivation. Neuron, 12:819–829, 1994.

[106] Carole E. Landisman, Michael A. Long, Michael Beierlein, Michael R. Deans,
David L. Paul, and Barry W. Connors. Electrical synapses in the thalamic
reticular nucleus. The Journal of Neuroscience, 22(3):1002–1009, 2002.

[107] Nikolai E Lazarov. The Neurochemical Anatomy of Trigeminal Primary
Afferent Neurons. 2009.

[108] Nikolai E. Lazarov and Manfred Gratzl. Selective expression of histamine
receptors in rat mesencephalic trigeminal neurons. Neuroscience Letters,
404(1–2):67 – 71, 2006.

[109] Harold Lecar. Morris-lecar model. Scholarpedia, 2(10):1333, 2007.

[110] Sabina Leonelli. What is in a model? using theoretical and material models
to develop intelligible theories. In Manfred Dietrich Laubichler and Gerd B.
Müller, editors, Modeling Biology: Structures, Behavior, Evolution. MIT
Press, 2006.

105



Bibliography

[111] Alan S. Lewis and Dane M. Chetkovich. {HCN} channels in behavior and
neurological disease: Too hyper or not active enough? Molecular and Cel-
lular Neuroscience, 46(2):357 – 367, 2011.

[112] Jin-Lian Li, Kang-Hui Xiong, Yun-Qing Li, Takeshi Kaneko, and Noboru
Mizuno. Serotonergic innervation of mesencephalic trigeminal nucleus neu-
rons: a light and electron microscopic study in the rat. Neuroscience Re-
search, 37(2):127 – 140, 2000.

[113] Yihui Liu, Jing Yang, and Sanjue Hu. Transition between two excitabilities in
mesencephalic V neurons. Journal of computational neuroscience, 24(1):95–
104, February 2008.

[114] Lennart Ljung. System identification: Theory for the User. 1987.

[115] G Maccaferri and C J McBain. The hyperpolarization-activated current (ih)
and its contribution to pacemaker activity in rat ca1 hippocampal stratum
oriens-alveus interneurones. The Journal of Physiology, 497(Pt 1):119–130,
1996.

[116] Jacopo Magistretti, Loretta Castelli, Lia Forti, and Egidio D’Angelo. Kinetic
and functional analysis of transient, persistent and resurgent sodium currents
in rat cerebellar granule cells in situ: an electrophysiological and modelling
study. The Journal of physiology, 573(Pt 1):83–106, May 2006.

[117] G Major, AU Larkman, P Jonas, B Sakmann, and JJ Jack. Detailed passive
cable models of whole-cell recorded ca3 pyramidal neurons in rat hippocam-
pal slices. The Journal of Neuroscience, 14(8):4613–4638, 1994.

[118] Jaime G. Mancilla, Timothy J. Lewis, David J. Pinto, John Rinzel, and
Barry W. Connors. Synchronization of electrically coupled pairs of inhibitory
interneurons in neocortex. The Journal of Neuroscience, 27(8):2058–2073,
2007.

[119] Susanna Manrubia, Alexander Mikailov, and Damian Zanette. Emergence of
Dynamical Order: Synchronization Phenomena in Complex Systems. World
Scientific, 2004.

[120] Eduardo Marban, Toshio Yamagishi, and Gordon F. Tomaselli. Struc-
ture and function of voltage-gated sodium channels. Journal of Physiology,
508(3):647–657, 1998.

[121] MATLAB. version 7.12.0 (R2011a). The MathWorks Inc., Natick, Mas-
sachusetts, 2011.

[122] D A McCormick and H C Pape. Properties of a hyperpolarization-activated
cation current and its role in rhythmic oscillation in thalamic relay neurones.
The Journal of Physiology, 431(1):291–318, 1990.

106



Bibliography

[123] Carola Meier and Rolf Dermietzel. Electrical synapses – gap junctions in the
brain. In EckartD. Gundelfinger, ConstanzeI. Seidenbecher, and Burkhart
Schraven, editors, Cell Communication in Nervous and Immune System,
volume 43 of Results and Problems in Cell Differentiation, pages 99–128.
Springer Berlin Heidelberg, 2006.

[124] Lorin S. Milescu, Gustav Akk, and Sachs Frederick. Maximum likelihood
estimation of ion channel kinetics from macroscopic currents. Biophysical
Journal, 88:2494–2515, 2005.

[125] Lorin S. Milescu, Tadashi Yamanishi, Krzysztof Ptak, and Jeffrey C. Smith.
Kinetic properties and functional dynamics of sodium channels during
repetitive spiking in a slow pacemaker neuron. Journal of Neuroscience,
30(36):12113–12127, 2010.

[126] Hiroaki Misonou, Durga P Mohapatra, and James S Trimmer. Kv2.1: a
voltage-gated k+ channel critical to dynamic control of neuronal excitability.
Neurotoxicology, 26(5):743–52, October 2005.

[127] Tsugumichi Miyasho, Hiroshi Takagi, Hideo Suzuki, Shigeo Watanabe,
Masashi Inoue, Yoshihisa Kudo, and Hiroyoshi Miyakawa. Low-threshold
potassium channels and a low-threshold calcium channel regulate ca2+ spike
firing in the dendrites of cerebellar purkinje neurons: a modeling study. Brain
Research, 891(1–2):106 – 115, 2001.
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