

Creating connections between biotec/mology and industrial sustainability

August 25 to 28, 2024 Costão do Santinho Resort, Florianópolis, SC, Brazil

INDUSTRIAL ENZYMOLOGY

VALORIZATION OF LIGNOCELLULOSIC INDUSTRIAL RESIDUES FOR XYLANASE PRODUCTION BY AN ANTARCTIC YEAST

Florencia Risso¹, Nicolás Airola², Santiago Moure², María N. Cabrera², Paula Rodríguez³ & Mairan Guigou^{1*}

¹ Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República (UdelaR), Montevideo, Uruguay

² Grupo de Ing. de Procesos Forestales, F. de Ingeniería, UdelaR, Montevideo, Uruguay.

³ Laboratorio de Biocatálisis y Biotransformaciones, Depto. Biociencias-Depto. Química Orgánica, F. Química, UdelaR, Montevideo, Uruguay

* Corresponding author's email address: mguigou@fing.edu.uy

ABSTRACT

Eucalyptus pinchips, a residual product from pulp industries, presents an opportunity as a raw material for the production of highvalue bioproducts such as enzymes. Among these enzymes, xylanases hold significant potential for applications in the food, agrofiber and paper and pulp industries. A prevalent need within these industries aims to reduce process temperatures, prompting an ongoing search for novel microorganisms capable of secreting cold-active xylanases. In this study, we investigated the ability of an Antarctic isolated yeast, *Trichosporon pullulans*, to grow and produce xylanases from xylose and xylo-oligomers rich hemicellulosic hydrolysates. Autohydrolysis, an eco-friendly pretreatment, was applied to pinchips to obtain the hemicellulose hydrolysate, subsequently used as a cost-effective carbon source for xylanase production. Two detoxification resin methods (XAD-4 and WA-30) were assessed to remove potential inhibitors for microorganisms (organic acid, soluble lignin, phenolic compounds, furfural and HMF). Additionally, two nitrogen sources: corn steep liquor (CSL) and yeast extract (YE), were studied for media supplementation. *T. pullulans* is an interesting candidate for xylanase production for applications that require high enzyme activity (7.6 ± 0.4 IU/mL) at low temperatures when cultivated in non-detoxified hemicellulosic hydrolysates supplemented with YE.