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The dispersal–body mass association has been highlighted as a main determi-
nant of biodiversity patterns in metacommunities. However, less attention has
been devoted to other well-recognized determinants of metacommunity
diversity: the scaling in density and regional richness with body size.
Among active dispersers, the increase in movement with body size may
enhance local richness and decrease β-diversity. Nevertheless, the reduction
of population size and regional richness with body mass may determine a
negative diversity–body size association. Consequently, metacommunity
assembly probably emerges from a balance between the effect of these scal-
ings. We formalize this hypothesis by relating the exponents of size-scaling
rules with simulated trends in α-, β- and γ-diversity with body size. Our
results highlight that the diversity–body size relationship in metacommunities
may be driven by the combined effect of different scaling rules. Given their
ubiquity in most terrestrial and aquatic biotas, these scaling rules may rep-
resent the basic determinants—backbone—of biodiversity, over which other
mechanisms operate determining metacommunity assembly. Further studies
are needed, aimed at explaining biodiversity patterns from functional relation-
ships between biological rates and body size, as well as their association with
environmental conditions and species interactions.
Introduction
Body size is a key attribute that shapes community assembly at several scales
[1–4]. In a metacommunity context, body size is related to three well-recognized
determinants of metacommunity diversity: dispersal ability, local density and
regional species richness (figure 1a) [5]. Despite their recognized potential for
shaping diversity, metacommunity theory has devoted more attention to the
scaling in dispersal ability than to other scaling relations [5–7]. For taxa exhibit-
ing active dispersal strategies, dispersal ability increases with body mass [6,8].
Besides, dispersal has the potential to increase local diversity and to reduce
β-diversity, provided that it is not large enough to homogenize the system
[9–11]. Consequently, if the positive dispersal ability–mass scaling is considered
in isolation, larger sized taxa should present higher local richness and lower
β-diversity, as compared to smaller sized taxa.

In addition to the positive relation between body size and dispersal, the well-
reported negative scaling in population density and regional richness with taxon
body mass may contribute to explain the among-taxa differences in metacommu-
nity diversity. Local density scales negatively with the mass of individuals
[2,12,13]. Consequently, larger sized taxa present lower potential numbers of
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Figure 1. (a) Schematic representation showing empirical body size-scaling rules on local density (sr1), dispersal ability (sr2) and regional pool richness (sr3). As taxa
body size becomes larger, there is an increase in dispersal ability, while the richness of the regional pool and local and regional density scales negatively with taxa body
size. Any of these scaling rules or their combined effects have the potential to determine metacommunity assembly and diversity patterns. (b) Theoretical chains of
effects between body size and α-, β- and γ-diversity. Blue/orange arcs ending in arrows/circles represent positive/negative effects. While body size is expected to
negatively affect β- and γ-diversity, there are countervailing indirect effects on α-diversity. Empirical body size-scaling rules sr1, sr2 and sr3 are indicated.
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occurring species in a community because local populations
tend to be smaller and more prone to extinction, which leads
to a reduction in α-diversity [2,3,14]. In addition, extinctions
will disproportionately affect rare species, increasing the rep-
resentation of common species across different communities,
thus reducing β- and γ-diversity. Similarly, regional richness,
which enhances local richness [15,16], usually decreases with
body mass [17]. That is, large sized taxa are poorly represented
in regional pools as compared to small sized ones, and the
same species tend to be observed across local communities.
Consequently, if the negative density- and regional richness-
mass scaling are considered in isolation, α-, β- and γ-diversity
of larger sized taxa should be lower than those of smaller sized
taxa. In summary, it could be hypothesized the existence of
countervailing effects of body size on diversity patterns,
which are dependent on the expected influence that the local
density scaling, dispersal scaling and regional pool richness
scaling have on diversity when they are combined. This frame-
work predicts a negative relationship between body size and
β- and γ-diversity due to the reduced number of species that
could potentially reach each community from the regional
pool, the homogenizing effect of dispersal and the higher
local extinction rate of rare species. However, body size
could reduce α-diversity because of the higher extinction risk
and the lower colonization rate of novel species from the
regional pool, but could enhance it because of the higher colo-
nization rates of larger species. Figure 1b shows a visual
representation of our hypothesis.

Here we theoretically formalize this hypothesis, exploring
the expected interaction between scaling of dispersal, density
and regional pool richness as determinants of the diversity–
body size relationship. We used a lottery-based metacommu-
nity model that incorporates these three scaling relationships
for analysing the expected trends in α-, β- and γ-diversity
with taxon body size.
Material and methods
The metacommunity was assembled with a lottery model in
two stages (electronic supplementary material, appendix S1
and figure S1). First, communities were filled with coalescent
dynamics starting with the random sampling of one individual
from the regional species pool for colonizing each community,
and then, filling communities with J individuals each, progress-
ively chosen either from the regional pool, from adjacent
communities—neighbouring dispersal—or from the updated
community—local recruitment (following [18–20]). After local
communities were filled, the lottery dynamics started. At each
time step and in each local community, a single individual was
randomly removed and replaced with a new one which could
also be chosen either from the regional pool, from adjacent com-
munities or from the updated community. Under the lottery
dynamics, local extinctions and recolonizations may occur. Disper-
sal among adjacent (i.e. neighbour) communities was assumed as
inversely proportional to the distance between them. This is a
spatially explicit model involving neutrality only among species
of the same taxon (see [21–24] for similar approximations).

The metacommunity dynamic was simulated for 10 hypothe-
tical taxa representing high-ranking taxonomic groups (e.g.
orders), to which a different body size value was assigned.
These 10 body size values were uniformly drawn from the inter-
val [1,200]. The model was run considering the potential effect of
body size on the parameters representing regional pool richness
ðSpooli Þ, local density ðJiÞ and dispersal ability ðDispiÞ, as

Spooli ¼ aMb:pool
i ;

Ji ¼ cMb:local
i ;

Dispijp,q ¼ Mb:disp
i �1=dist pq,

where a and c are scaling constants, Mi represents the mean body
size of the taxon i, dist pq is the geographical distance between
communities p and q, and b:pool, b:local and b:disp are scaling
exponents that relate the richness of the regional pool, local
density and dispersal ability of taxon i to its mean body size.

The lottery model was run along gradients of values for
b.pool, b.local and b.disp that surpassed the range of empirically
reported scaling. We run five replicates for each combination of
b.pool, b.local and b.disp. At the beginning of each simulation, a
random metacommunity network of 20 local communities was
generated. Communities were randomly placed within a land-
scape in which the geographical distance between each pair of
communities could range from 1 to 2000 m. The lottery dynamics
were run until both the mean α- and γ-diversity stabilized, elim-
inating transient dynamics (electronic supplementary material,
appendix S1 and figure S2).
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For each simulation, we obtained the expected relationship
between taxa mean α-, β- and γ-diversity and their body size.
It should be noted that γ-diversity refers to the total richness at
the metacommunity level, which may differ from the richness in
the regional pool. β-diversity was estimated by the difference
between the expected value of mean α- and γ-diversity ([25] and
electronic supplementary material, appendix S1). We did not
include interactions among size–classes in these simulations
because our attempt was to visualize the pure effect of the size–
scaling on biodiversity. That is, how body size promoted a par-
ticular structure of the metacommunity diversity, over which
other mechanisms may operate (see [18] for a modelling with
size–classes interaction).

We used linear models to evaluate the expected associations
between metacommunity α-, β- and γ-diversity and mean body
size of taxa. All analyses were performed using R software
(v. 4.0.4) [26].
t.19:20220618
Results
The scaling in dispersal, regional richness and local density
with body size affected diversity, both when considered iso-
lated or through their combined effects (figure 2; electronic
supplementary material, table S1 and figure S3). When scaling
relationships were individually considered, the increase in dis-
persal with body size enhanced local richness but had negative
effects on β- and γ-diversity (figure 2a–c). Conversely, the nega-
tive scaling in both local density and regional pool size
determined a negative effect of body size on all diversity
metrics (figure 2a–c). These results fully matched our expec-
tations (figure 1b). When the scaling relationships were
combined, both β- and γ-diversity consistently showed a nega-
tive relationship with body mass (figure 2e,f). However, the
negative effect of scaling of local density + regional pool rich-
ness on local diversity could be reverted when the positive
scaling in dispersal ability was considered (figure 2d). Finally,
when no scaling relationship was included, body size was not
associated with diversity (figure 2f–h). These trends were con-
sistent over a wide range of the parameter space (figure 2j–l;
electronic supplementary material, figure S3).
Discussion
In a metacommunity context, the role of body size on shaping
diversity has been mainly associated with its effect on taxon-
independent dispersal ability [5–7,27]. However, our analyses
showed that the interaction among the size-scaling in local
density, dispersal ability and regional pool richness may
represent a main determinant of the variation in metacommu-
nity diversity among organisms with different body size. That
is, our results support that thenegative effect of scaling indensity
and regional pool richness on biodiversity can be counterba-
lanced by the positive effect of dispersal scaling with body
size. While the local richness–body size relationship was
qualitatively sensitive to the scaling rule considered, trends in
β-, and consequently γ-diversities were not. In agreement with
several empirical studies which reported a negative association
between dispersal and β-diversity [11], we found a negative
effect of the scaling in dispersal on the β-diversity–body size
relation. However, a strong effect of the scaling in density and
regional richness on the β-diversity–body size association was
also captured, a relationship that is poorly considered in the
metacommunity literature.
The strength of our modelling approach relies upon its
simplicity. Basal neutrality among species of the same taxon,
and population dynamics guided by basic ecological processes
(i.e. local recruitment, death, dispersal and colonization),
allowed us to test our working hypotheses with the minimum
of underlying assumptions, which commonly obscure
model outcomes. However, some limitations regarding some
assumptions of our model should be considered. Simulations
were run for hypothetical taxa differing only in body size,
although the interaction with other traits could also be impor-
tant to consider [6,13,28]. A simplified association between
dispersal ability andbody sizewas assumed.Nevertheless, vari-
ation in dispersal modes suggests that a general scaling may
represent a gross approximation to the dispersal ability of each
taxon [6]. Additionally, dispersal ability may be nonlinearly
related to metacommunity connectivity [29,30] or with changes
between life stages [31], determining negative correlations
between dispersal distance, frequency and body size. Complex
population dynamics and a narrow range of body sizes in
local communities may determine weak density–mass scaling
at local communities [13,32], but see [33]. The scaling in regional
richness with body size may vary among taxa, even presenting
unimodal trends [34]. We simulated metacommunity networks
with random spatial structures and homogeneous patches.
However, more realistic metacommunity configurations can
direct dispersal, diminishing the differences in recruitment
among taxa [35,36]. Also, local filters could affect the probability
of local extinctions [37,38]. These factors may alter the relative
effect of each scaling rule in the assembly process. Despite
this, the general scaling relationships point to an expected
trend in metacommunity diversity with body mass that is con-
gruent with patterns reported elsewhere [39,40]. Our findings
suggest that the combination of the three scaling relationships
could represent a backbone in metacommunity assembly,
upon which the action of idiosyncratic assembly mechanisms
and deviations from general scaling rules may operate.

Our focuswas on the putative role of sound scaling relation-
ships with body size on metacommunity diversity. In this
context, some perspectives deserve attention. First, scaling par-
ameters in ecological rates with body size may differ among
systems, explaining differences in diversity among metacom-
munities, higher taxonomic groups or trophic levels (e.g.
[13,41–43]). Second, other biological rates that also scale with
massmaybe crucial for the regulationofmetacommunitydiver-
sity [2,44]. Individual turnover rate [45], assimilation efficiency
[46], growth rate [47], trophic interactions [48], size and number
of dormant structures [49], niche breadth [50] and landscape
perception [3,4,29,51] were all related tometacommunity diver-
sity and showed systematic size-dependences. Third, we
assumed independence among taxa through our simulations,
even though interactions among them could enhance or attenu-
ate expected patterns (see [18]). Fourth, the temperature-
dependence of biological rates [52] provides a mechanistic
avenue for understanding how climate modulates diversity in
a metacommunity framework [2]. Finally, and beyond body
size differences, although the model was based on a neutral
approach, we also highlight the importance of non-neutral
and particularly size-dependent processes in general [4,30].
Consequently, there are several mechanisms by which the inte-
gration of metacommunity, niche and metabolic theories may
enhance our understanding of biodiversity [22]. Considering
biological scaling relationships represents an exceptional oppor-
tunity for progress in the mechanistic understanding of the
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interrelationships between body size and diversity inmetacom-
munities, and more generally, for unravelling the mechanisms
shaping biodiversity patterns and processes.
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