
Active Learning of Regular Languages
as an Approach to

Neural Language Models Verification

Franz Mayr

Tesis de Doctorado presentada a la Facultad de Ingenieŕıa de la Univseridad de
la República en cumplimiento parcial de los requisitos para la obtención del

t́ıtulo de Doctor en Informática

Director de Tesis

Dr. Sergio Yovine - PEDECIBA, Universidad ORT Uruguay

Tribunal

Dr. Alvaro Mart́ın, PEDECIBA, UdelaR (presidente)
Dr. Benedikt Bollig - Centre National de la Recherche Scientifique

Dr. Guillaume Rabusseau - Université de Montréal
Dr. Stavros Tripakis - Northeastern University

Dr. Gustavo Esteban Vázquez, PEDECIBA, UCU

Montevideo, Uruguay
Junio de 2024

Resumen

El presente trabajo aborda el problema general de la verificación del compor-
tamiento de redes neuronales que procesan secuencias, en concreto los aceptores
neuronales y los modelos neuronales de lenguaje. La tesis desarrolla un marco
teórico-práctico para la extracción de abstracciones formales y la verificación de
las redes neuronales bajo análisis. Este proceso se basa en dos ideas centrales:
1) tratar la red neuronal como una caja negra, y 2) utilizar un marco proba-
biĺıstico para analizar en qué medida el modelo extráıdo se aproxima al original.
Para ello, se proponen, desarrollan y analizan una serie de algoritmos y técnicas de
aprendizaje activo. Para el caso de los aceptores neuronales se presenta un proced-
imiento de verificación de propiedades de redes neuronales. Este enfoque es capaz
de verificar propiedades sin construir expĺıcitamente representaciones de la red.
Se demuestra que este enfoque ofrece mejores garant́ıas y es más eficiente que la
verificación posterior al aprendizaje, en la que la propiedad se verifica únicamente
sobre el modelo aprendido de la red. Además, no requiere recurrir a un proced-
imiento de decisión externo para la verificación ni fijar un formalismo espećıfico de
especificación de requisitos. Para el caso de los modelos neuronales de lenguaje se
presenta un algoritmo de aprendizaje basado en una congruencia sobre secuencias
que se parametriza mediante una relación de equivalencia sobre distribuciones de
probabilidad. El algoritmo de aprendizaje se implementa utilizando una estruc-
tura de datos en árbol y se muestra que es emṕıricamente más eficiente que las
técnicas de referencia.

Abstract

This work tackles the general problem of verifying the behavior of sequence pro-
cessing neural networks, specifically neural acceptors and neural language models.
The contribution is a framework for extracting formal abstractions of the networks
under analysis and verifying whether they satisfy given requirements. This process
steps on two core ideas: 1) treating the neural network as a black box, and 2) using
a probabilistic framework to analyze how much the extracted model approximates
the original one. For this matter, a series of active learning algorithms and tech-
niques are proposed, developed and analyzed. For the case of neural acceptors a
procedure for checking properties of neural networks is presented. This approach

is able to check properties without explicitly building representations of the net-
work. We show that this approach offers better guarantees and is more efficient
than post-learning verification where the property is checked on a learned model
of the network. Besides, it does not require resorting to an external decision proce-
dure for verification nor fixing a specific requirement specification formalism. For
the case of neural language models, a learning algorithm based on a congruence
over strings which is parameterized by an equivalence relation over probability dis-
tributions is presented. The learning algorithm is implemented using a tree data
structure and shown to be empirically more efficient than reference techniques.

3

Acknowledgements

Dedicado a mi familia y amigos, quienes fueron mi soporte en esta etapa.

Agradezco a mi tutor, Dr. Sergio Yovine, por las largas discusiones que dieron
fruto a este trabajo.

Contents

1 Introduction 7

2 Grammatical inference 11
2.1 Formal languages . 11
2.2 Minimally adequate teachers . 14

2.2.1 L∗ . 16

3 Learning approximations 21
3.1 PAC learning . 21
3.2 PAC-based MAT learning . 22
3.3 Bounded PAC-based MAT learning 24

3.3.1 Analysis of the approximation error 25
3.4 Bounded L∗ . 27

4 Verification through learning 29
4.1 Post-learning verification . 29
4.2 On-the-fly verification via learning . 30

4.2.1 Characterization of the error . 31

5 Application to neural acceptors 33
5.1 Scenario 1 . 34

5.1.1 Context-free language models 34
5.1.2 Checking equivalence between neural acceptors 36

5.2 Scenario 2 . 39
5.2.1 A model of a cruise control software 39
5.2.2 A model of an e-commerce web site 41

5.3 Scenario 3 . 44
5.3.1 Hadoop file system logs . 44
5.3.2 TATA-boxes in DNA promoter sequences 46

6 Language models 49
6.1 PDFA . 50

5

6.2 Congruences . 51
6.3 Quotient PDFA . 52
6.4 Minimality . 54
6.5 Equivalences between distributions . 55
6.6 Equivalences in the case of PDFA . 57

6.6.1 PDFA quotient modulo S . 57

7 Table-based PDFA learning algorithms 61
7.1 Algorithm L∗

p . 61
7.1.1 Correctness and termination . 63
7.1.2 Columnar version L∗

pCol . 68
7.2 Non-equivalence relations: t-tolerance 68

8 A tree-based PDFA learning algorithm 71
8.1 N-ary tree . 71
8.2 sift operation . 73
8.3 build operation . 74
8.4 update operation . 75
8.5 QNT algorithm . 76
8.6 Infinite equivalence classes . 77
8.7 Language model equivalence . 78

9 Application to language models 79
9.1 Synthetically generated PDFA . 79

9.1.1 Experiment 1 . 80
9.1.2 Experiment 2 . 80
9.1.3 Experiment 3 . 81
9.1.4 Experiment 4 . 81
9.1.5 Experiment 5 . 82

9.2 Neural language models . 84
9.2.1 TATA-boxes in DNA promoters 84
9.2.2 Language model of normal HDFS traces 85
9.2.3 Detection of malicious web requests 86

10 Related Work and Conclusions 87
10.1 Related work . 87
10.2 Conclusions . 89

11 Bibliography 93

12 Appendix 103

1 Introduction

Artificial intelligence (AI) is a flourishing field with multiple practical applications
and active research topics [1]. In this context learning-enabled components, more
specifically artificial neural networks (ANN) stand out as one of the most successful
models of AI in various fields of application. This phenomenon is rapidly spreading
to high-risk critical systems whose failures can result in serious consequences, such
as loss of life or damage to people or the environment. Examples include the use of
AI in nuclear fusion process control [2], autonomous vehicle control [3] or medical
diagnostics [4]. Therefore, there is a clear need to ensure the proper functioning
of critical systems that integrate learning-enabled AI components.

This thesis falls within the general area of verified AI [5] whose objective is
to design AI systems that have solid guarantees of correctness with respect to
mathematically specified requirements. Specifically, it focuses on the design and
adaptation of techniques based on automata theory to enable the specification
of system behavior and the rigorous demonstration of properties, in particular
model extraction [6] and model checking [7]. The theoretical results of this work
are the foundation for building tools that contribute to responsible AI [8] in two
aspects, explainability [9] and safety [10]. In fact, model extraction from ANN
is an explainability technique, while formal verification allows early detection of
errors or inappropriate uses and their subsequent correction and prevention. The
tools developed in this thesis are available as open-source code for public use [11].

Indeed, ANN are “obscure” components in the sense that it is difficult for hu-
mans to understand why they make a prediction [12]. A key issue is that ANN
have no explicit or constructive characterization of their decision-making strategy.
This fact motivated a large amount of research work around explainable AI. In
particular, this work follows a so-called black-box and processing explainability ap-
proach. The former is defined in [13] which characterizes the explanation problem
as a means for providing a human-understandable model that mimics the ANN.
The latter is presented in [14] as a method that seeks answering why a given input
leads the ANN to produce a particular outcome.

7

Depending on the modality of the data to be processed different kinds of ANN
are identified in the literature [1]. Concretely, the target learning-enabled compo-
nents studied in this thesis are ANN specifically designed to treat sequences, such
as RNN [15, 16] or Transformers [17]. We consider two main types of problems,
namely classification and generation. The former consists in processing a sequence
and output a discrete value representing the class of a sequence. Examples of that
are, classifying a system log as normal or abnormal [18], identifying DNA promoter
sequences [19] or detecting sentiments in a text [20]. The latter implies emitting a
probability distribution of the possible next symbols, for example suggesting query
auto-completion [21] or predicting the next event in a system log [22].

This work addresses the problem of black-box and processing explainability
on ANN that process sequences via grammatical inference [23]. This approach
consists in constructing a surrogate model through the inference of an underlying
grammar, such as a deterministic finite automaton (DFA) or a probabilistic one
(PDFA). It can be done either by passive learning, that is using a dataset of
examples [24], or by active learning, which consists in querying the black-box
and comparing the produced hypotheses against the target system. The latter is
the central setting of this work. Specifically it relies in the Minimally Adequate
Teacher (MAT) learning framework proposed by Angluin in [25]. It consists in a
learner and a teacher, where the learner is given the ability to draw examples and
to ask queries to the teacher.

Learned surrogate models are used as input to procedures dedicated to assess
the correctness and reliability of the ANN. This is done through the specification
of properties of interest and the definition of a verification or checking process. In
other words, once the model is extracted it can be model-checked against a desired
property using an appropriate model-checker [26–29].

This thesis focuses on the learning of surrogate models for which model-checking
is feasible, such as regular languages. However, it is worth noting that the class of
the ANN that process sequences is Turing complete [30]. Thus, the learned model
would be, in general, an approximation of the ANN. Hence, it is important to give
a proper notion on how precisely the extracted model characterizes the ANN. To
cope with this situation, this work resorts to “Probably Approximately Correct”
inference (PAC) [31], which provides a framework for learning surrogate models
with required approximation error bounded by a confidence parameter.

The starting point of this PhD research is the work presented in [32,33]. Which
consists in extracting DFA from ANN trained to solve sequence classification prob-
lems [34, 35], restricted to the case of binary classification. In such scenario the
problem the ANN is solving is language membership, where the language of the

ANN is the set of sequences classified as positive by the network. The trained ANN
implicitly defines a model of such sequences which it uses to predict whether a given
input sequence belongs to the language. In that work, the Bounded-L∗algorithm
is presented, which relies on complexity bounds to guarantee termination, and the
PAC learning framework is used to compare the surrogate model with the target
ANN.

The application of that general approach in several case studies showed that, in
practice, the model-then-verify approach has several important drawbacks [26,27].
The first one being state explosion. That is, the model learned from the ANN
may be too large to be explicitly constructed. Another important inconvenience
is that, since the surrogate model is an approximation of the ANN, errors found
on the former could not be real errors of the ANN.

With the aim of overcoming these issues, this thesis develops two main lines of
work. The first contribution consists in an on-the-fly property checking technique,
where the property is checked during the learning phase, without using an external
model-checker. This algorithm handles both the ANN and the property as black-
boxes and it does not build, assume, or require them to be expressed in any specific
way. This work resulted in the following publications:

• Franz Mayr, Ramiro Visca, Sergio Yovine. On-the-fly Black-Box Proba-
bly Approximately Correct Checking of Recurrent Neural Networks. CD-
MAKE, Dublin, Ireland, August 25-28, (2020) [26]

• Franz Mayr, Sergio Yovine, Ramiro Visca. Property Checking with In-
terpretable Error Characterization for Recurrent Neural Networks. Mach.
Learn. Knowl. Extr. 3(1): 205-227 (2021) [27].

The second contribution consists in defining equivalence relations over probability
distributions that lead to abstractions related to the properties of interest. By
integrating them into the learning algorithms this approach manages to reduce
the size of the surrogate models by merging equivalent states. This work resulted
in the following publications:

• Franz Mayr, Sergio Yovine, Federico Pan, Nicolas Basset, Thao Dang. To-
wards Efficient Active Learning of PDFA. Learnaut 2022, Paris, France, July
4, (2022) [36]

9

• Franz Mayr, Sergio Yovine, Mat́ıas Carrasco, Federico Pan, Federico Vilen-
sky. A Congruence-based Approach to Active Automata Learning from Neu-
ral Language Models. International Conference on Grammatical Inference,
Rabat, Morocco, July 10-13,(2023) [37]

• Franz Mayr, Sergio Yovine, Mat́ıas Carrasco, Alejo Garat, Mart́ın Iturbide,
Juan da Silva, Federico Vilensky. Results of Neural-Checker Toolbox in
Taysir 2023 Competition. International Conference on Grammatical Infer-
ence, Rabat, Morocco, July 10-13,(2023) [38]

Document outline

The document is organized as follows. Chapter 2 presents a succinct introduction
to the field of grammatical inference, where central concepts of formal language
theory are revisited. Chapter 3 reviews PAC learning and proposes adaptations
of the basic MAT framework to enable the learning of non-regular or possibly un-
bounded unknown languages. Chapter 4 develops on-the-fly verification through
learning and showcases its application to neural binary acceptors. Chapter 6
presents language models, including PDFA, and defines a parameterized notion
of congruence based on equivalence relations between probability distributions.
Chapter 7 and 8, address the problem of MAT learning PDFA by developing
table- and tree-based algorithms, respectively. Chapter 9 presents applications to
domains of interest, in particular to neural language models. Lastly, Chapter 10
presents related work and conclusions. Appendix 12 presents an overview of the
Neural-Checker [11] toolbox.

2 Grammatical inference

Grammatical inference is defined as the problem of learning formal descriptions
of languages such as grammars and automata. It is a field with connections to a
series of disciplines such as bio-informatics, computational linguistics and pattern
recognition [23]. The goal is to develop algorithms able to infer such descriptions
given some information about the languages. This chapter first revisits formal lan-
guages and then presents Angluin’s MAT framework and L∗ algorithm for learning
DFA which are the cornerstones of this work.

2.1 Formal languages

In this section we will briefly visit the central concepts from formal language theory
as they are defined in [39].

An alphabet is defined as a finite, nonempty set of symbols Σ. From now on
we will use the binary alphabet Σ = {0,1} as an example.

A string or word is a finite sequence of symbols chosen from an alphabet, for
example 010101010111. The empty string, that we will denote λ, is the string with
zero occurrences of symbols.

The concept of length in strings is defined as the number of positions for sym-
bols in a string, and its notation is as follows, the length of a word w is denoted
∣w∣. For instance ∣10101∣ = 5 and ∣λ∣ = 0.

Given an alphabet Σ, the set of strings of length k is represented by the ex-
pression Σk. For example, using the binary alphabet:

• Σ1 = {0,1}

• Σ2 = {00,01,10,11}

11

• Σ0 = {λ}, for any Σ

The set of all strings over an alphabet Σ is denoted Σ∗. The set of all strings of
length ≥ 1 over an alphabet Σ is denoted Σ+.

A language L is defined as a set of strings chosen from Σ∗, where Σ is some
particular alphabet. As examples we can think of:

1. The set of strings of even length: λ,00,01,10,11,0000,0001, ...

2. Σ∗ is a language for any alphabet Σ.

3. ∅, the empty language is a language over any alphabet too.

We will refer to languages as their characteristic function Σ∗ → {0,1}, that is
L(x) = 1 ⇐⇒ x ∈ L, 0 otherwise.

Mihill-Nerode equivalence As presented in [23] the Mihill-Nerode equiva-
lence ≡ on Σ∗ is defined as follows:

∀u, v ∈ Σ∗. u ≡ v △⇐⇒ [∀w ∈ Σ∗. L(uw) = L(vw)] (2.1)

This equivalence relation is also a right congruence:

∀u, v ∈ Σ∗. u ≡ v Ô⇒ ∀w ∈ Σ∗. uw ≡ vw (2.2)

Where the congruence class of u ∈ Σ∗ is denoted by [JuK].

Grammar In formal language theory, the grammar of a language is a descrip-
tion of the structure of a language [40], in other words a grammar is a set of rules
with two goals: first, the rules allow for the construction of words belonging to the
language and second, they allow to decide whether a word s in Σ∗ belongs to the
language of the grammar.

Regular languages Regular languages are those where ≡ has a finite number
of equivalence classes1. They can also be defined as the ones that can be described
by deterministic finite automata (DFA) [39]. A DFA A is formally defined as a
tuple (Q, Σ, τ, qin, F) where:

1. Q is a finite set of states.

1The Chomsky hierarchy defines these languages as the languages that are generated by
Type-3 grammars (regular grammars) [40].

2. Σ is a finite set of input symbols.

3. τ is a transition function that takes as arguments a state and an input symbol
and returns a state.

4. qin is a start state, belonging to Q.

5. F is a set of final or accepting states, F being a subset of Q.

We define τ∗(q, s) to be the natural extension of τ to strings, that is, the state
reached by A when going through s starting at state q:

τ∗(q, λ) ≜ q (2.3)

τ∗(q, σs) ≜ τ∗(τ(q, σ), s) (2.4)

We define L(q, s) as checking if the state reached by A when going through s from
state q belongs to F :

L(q, s) ≜ I(τ∗(q, s) ∈ F) (2.5)

Finally, we denote τ∗(s) and L(s) the state q reached when going through s
from the initial state qin and checking if q ∈ F , respectively. Then, A defines the
regular grammar such that:

A(u) ≜ L(u) (2.6)

The congruence relation ≡ 2.1 can also be defined over Q as follows:

∀q, q′ ∈ Q. q ≡ q′ △⇐⇒ [∀w ∈ Σ∗. L(q,w) = L(q′,w)] (2.7)

This equivalence relation is also a right congruence with respect to τ :

∀q, q′ ∈ Q. q ≡ q′ Ô⇒ ∀σ ∈ Σ. τ(q, σ) ≡ τ(q′, σ) (2.8)

Where the congruence class of q ∈ Q is denoted by [JqK].

From the description in [39], the key point is that these models characterize
the languages, meaning they provide a constructive way of describing them, and
recognizing their elements (that is, checking whether a sequence of symbols does
belong to the language), any function that allows for the recognition of sequences
in a set is called an acceptor of a language.

A simple example of a regular language is presented in Figure 2.1. This lan-
guage is described by the regular expresion (ab)∗, with:

13

1. Q = {0,1,2}.

2. Σ = {a, b} and λ being the empty sequence.

3. τ as presented graphically in the figure or tabularly in Table 2.1.

4. qin = 0 (indicated with an incoming arrow).

5. F = {0} (indicated with a double circle).

Figure 2.1: Example of automaton

τ a b
0 1 2
1 2 0
2 2 2

Table 2.1: Table of transition function τ of automaton in Fig. 2.1

2.2 Minimally adequate teachers

The L∗ algorithm, presented in [25] is an instance of a general learning model,
refered to as minimally adequate teacher (MAT) also presented in that work.
Under this learning model, the learner is supposed to learn by being able to interact
with the teacher through two interfaces: A membership query (MQ), that is a
boolean response if a given sequence is accepted by the language known by the
teacher, and an equivalence test (EQ), that is a function that compares the target
language and the inferred one, if they are equivalent the test returns true, if not it
returns a counterexample (a word belonging to one of the languages but not the
other).

Figure 2.2: Learning model interfaces

In figure 2.2 a representation of the abstractions and interactions present in
the learning model is shown.

In 1 the pseudocode of the learning model is presented.

Algorithm 1: Minimally Adequate Teacher Learning Model

Input : A symbolic alphabet Σ
Output: Hypothesis H

1 Initialize internal structures;
2 repeat
3 while unable to build Hypotesis do
4 Ask MQ

5 H ← BuildHypothesis();
6 Answer, Counterexample ← EQ(H);
7 if Answer ≠ Yes then
8 ProcessCounterexampe(Counterexample)

9 until Answer = Yes ;
10 return H;

The interactions between learner and teacher are as follows: Learners man-
tain structures that register interactions with the MAT. These structures are used
to keep track of which words are and are not accepted by the target language.
The construction of such structures varies from algorithm to algorithm but is al-
ways done in an iterative way by asking the teacher membership queries through
the Membership Oracle (MQ) of different words. Once the structure is complete
enough to allow building a hypothesis of the target language the learner proceeds
to construct the conjectured hypothesis and then asks the Equivalence Oracle (EQ)
whether it is equivalent to the target one. If the answer is yes, it terminates and
returns the learned concept H. If the answer is no, then it receives a counterex-
ample that proves the hypothesis is wrong, and it proceeds to adjust the internal
structure with this new counter example.

Under this learning model several works have proposed variants, to name a few
(restricting the target to regular languages) L∗Col [41], NL∗ [42], Bounded-L∗ [32],
Kearns-Vazirani [43], Rivest-Shapire [44], Observation Pack [45], TTT [46].

15

2.2.1 L∗

As mentioned before, a foundational algorithm in the category of active learning
is Angluin’s L∗ [25].

L∗ constructs a DFA by interacting with a Minimum Adequate Teacher (MAT)
that exposes two operations: a membership query (MQ), that is a boolean response
if a given sequence is accepted by the language known by the teacher, and an
equivalence test (EQ), that is a function that compares the target language and
the inferred one, if they are equivalent the test returns true, if not it returns a
counterexample (a word belonging to one of the languages but not the other).

The L∗ pseudocode is presented in algorithm 2. The way the algorithm achieves
the learning is as follows. It builds a table of observations by interacting with the
MAT. This table is used to keep track of which words are and are not accepted by
the target language. The construction of this table is done in an iterative way by
asking the teacher membership queries through the Membership Oracle (MQ) of
different words in order to fill the Observation Table (OT).

Algorithm 2: L∗ learning algorithm

Input : A symbolic alphabet Σ
Output: DFA A

1 Lstar-Initialise;
2 repeat
3 while OT is not closed or not consistent do
4 if OT is not closed then
5 OT ← Lstar-Close(OT);

6 if OT is not consistent then
7 OT ← Lstar-Consistent(OT);

8 A← Lstar-BuildAutomaton(OT);
9 Answer ← EQ(A);

10 if Answer ≠ Yes then
11 OT ← Lstar-UseEQ(OT, Answer);

12 until Answer = Yes ;
13 return A;

The information that is in the observation table has three characteristics. A
nonempty finite prefix-closed set of strings (every prefix of every member is also

a member of the set), a nonempty finite suffix-closed set of strings (every suffix
of every member is also a member of the set), and a finite function that maps a
string to either 1 or 0 if it is a member of our target language or not respectively.

The observation table is composed by two sets of rows: the ‘upper’ rows (or
top part, that we will call RED following De la Higuera’s notation [23]), that
represent the elements of the prefix-closed set of strings mentioned earlier, and
the ‘lower’ rows (or bottom part, that we will call BLUE), which represent the
same elements of this set but concatenated with the set of letters in the language
alphabet. On the other hand, columns represent a suffix-closed set of strings, and
each cell represents the membership relationship, both also mentioned earlier. An
example of the observation table is presented in Table 2.2b.

The observation table is first initialized by building one RED row (Ffor the
empty word λ) and one BLUE row for each symbol in the alphabet Σ (length-one
words). Then the iterative process begins.

In order to be able to make sense out of the table, it needs to comply with two
properties. First of all, it needs to be closed. The table is considered closed if, for
every row in the bottom part of the table, there is an equal row in the top part.
The second property is consistency. A table is considered consistent if for every
pair of rows in the top part of the table (RED) with the same values (same order
of 0s and 1s), then all pairs of extensions with the same letter of the alphabet must
have the same row in the table. Precisely, a table is consistent if for every different
row in RED, for every symbol σ ∈ Σ if OT [u] = OT [w] then OT [uσ] = OT [wσ].

If the table is not closed, the algorithm moves to the RED part a row in the
BLUE part that does not have an equal row in the RED part and adds to the
BLUE set all the rows corresponding to the extensions of its associated word with
every letter of the alphabet.

To make it consistent, the algorithm expands the original set of suffixes with
the letter that makes their corresponding extensions different (a σ ∈ Σ such that
OT [u] = OT [w] but OT [uσ] ≠ OT [wσ]). This is done in order to differentiate
between the two words that had the same row values.

Once the table is closed and consistent, the algorithm proceeds to construct
the conjectured DFA and then asks the oracle whether it is equivalent to the target
one. If the answer is yes, it terminates and returns the learned DFA. If the answer
is no, then it receives a counterexample that proves the DFA is wrong, and it
proceeds to extend the observation table with this new counter example. This

17

extension is done by adding every prefix of the counterexample to RED, and for
each prefix its concatenation with every symbol in Σ to BLUE (given that the
concatenation is not a prefix).

2.2.1.1 An L∗ run

Let us take as an example the regular language presented in Figure 2.1, described
by the regular expression (ab)∗.

First, the algorithm constructs the table as presented in 2.2a. As the table is
not closed (not every row in BLUE has a representation in RED), the algorithm
proceeds to close it. To do that, one of the elements in BLUE that has not a
representative in RED is selected, for example a, and moves it to RED, adding
to BLUE its concatenation to every symbol (aa and ab, then the holes are filled.
The resulting table can be seen in Table 2.2b.

As the observation table is now closed (the previous step solved this problem)
and consistent an automaton can be built.

To build an automaton out of the table, the states are represented by every
unique row in RED, the final states are those corresponding to the rows w where
OT [w][λ] = 1, and rejecting states are those rows u where OT [u][λ] = 0. Finally
the transition function is defined as: τ(qu, σ) = w if OT [uσ] = OT [w]. The
resulting automaton is presented in Figure 2.3.

Figure 2.3: First proposed automaton in an L∗example run.

This automaton is then presented to the teacher via the EQ, which can be
implemented by the table-filling algorithm [39]. This query results negative, as
the regular language that the conjectured automaton represents is not the same as
the target one. Let us suppose that the counterexample returned by the teacher
is ‘bb’.

OT0 λ
λ 1
a 0
b 0

(a)

OT1 λ
λ 1
a 0
b 0
aa 0
ab 1

(b)

OT2 λ
λ 1
a 0
b 0
bb 0
aa 0
ab 1
ba 0
bba 0
bbb 0

(c)

OT3 λ b
λ 1 0
a 0 1
b 0 0
bb 0 0
aa 0 0
ab 1 0
ba 0 0
bba 0 0
bbb 0 0

(d)

Table 2.2: Observation tables during an L∗example run.

Now, the learner proceeds to process the counterexample. This is done by
adding the counterexample and all its prefixes to RED, and at the same time
adding for each prefix u and for all symbols σ, uσ to BLUE, given that uσ is not
a prefix of the counterexample. Then holes are filled, resulting in the Table 2.2c

The table remains closed, however it is not consistent, as two RED rows have
different resulting rows if they are added a symbol. To be concrete, OT [a] = OT [b],
however OT [ab] ≠ OT [bb]). This can be informally interpreted as “they seem to
be the same state in the table, however they are not”, so they have to be separated.
This separation is achieved by adding the symbol that makes them differ to the
columns of the observation table (in this case symbol b). The symbol is added,
holes are filled, the result is Table 2.2d.

The last table is closed and consistent, the conjectured automaton is finally
equivalent to the target one, so EQ outputs true and L∗ finishes and the DFA
present in Figure 2.4, which is equivalent to the target one, is returned.

Figure 2.4: Output automaton in an L∗ example run.

19

3 Learning approximations

Algorithms presented in 2 assume that the teacher has a means of comparing
the target concept and the proposed hypothesis in an exact way, which is not
always the case. In her paper [25] Angluin proposes to resort to Valiant’s Probably
Approximately Correct (PAC) framework [31, 47] in the scenarios where there is
no access to a deterministic model comparison. In the case the target language is
not regular or its size is too big to compute, works like [32, 48] propose to impose
bounds to the execution in order to guarantee termination. This two ideas will be
developed in the following sections.

3.1 PAC learning

Let us first give some preliminary definitions. There is a universe of examples
which is denoted X . A concept C is a function X → O, as an example C could
be a language acceptor, which means X = Σ∗ and O = {0,1}. For the ease of
notation, we will indifferently treat concepts as functions, relations or sets, so
write x ∈ C ⇐⇒ C(x) = 1 and C to denote its complement C(x) = 1 −C(x), and
use set operations such as ∩ and ∪ for intersection and union.

A concept class C is a set of concepts. Given an unknown concept C ∈ C, the
purpose of a learning algorithm is to output a hypothesis H ∈ H that approximates
C, where H, called hypothesis space, is a class of concepts possibly different from C.
The prediction error E of a hypothesis H with respect to the unknown concept C
measured in terms of the probability distribution D is the probability of an example
x ∈ X , drawn from D, to be in differently categorized by C and H. Formally:

ED,C(H) = Px∼D [x ∈ C ⊕H] = Px∼D [C(x) ≠H(x)] (3.1)

where C ⊕H is the symmetric difference between H and C: C ∩H ∪H ∩C.

21

An oracle EXD,C draws identically and independently distributed (i.i.d.) exam-
ples from X following D, and associates them labels according to C(x). Repeated
calls to EXD,C are independent of each other.

A Probably Approximately Correct (PAC) learning algorithm [31,47,49] takes
as input an approximation parameter ε ∈ (0,1), a confidence parameter δ ∈ (0,1),
a target concept C ∈ C, an oracle EXD,C , and a hypothesis space H, and if it
terminates, it outputs an H ∈ H which satisfies Px∼D [C(x) ≠H(x)] ≤ ε with
confidence at least 1 − δ. Formally:

P [ED,C(H) > ε] < δ (3.2)

The output H of a PAC-learning algorithm is said to be an ε-approximation
of C with confidence at least 1 − δ, or equivalently, an (ε, δ)-approximation of C.

A distribution-free algorithm is one that works for every D. Hereinafter, we
will focus on distribution-free algorithms, so we will omit D.

Some useful properties of PAC [26,27] are presented below:

Lemma 3.1. Let C ∈ C and H ∈ H such that H is an (ε, δ)-approximation of C.
For any subset X ⊆ C ⊕H, we have that Px∼D [x ∈X] ≤ ε with confidence 1 − δ.

Proof. For any subset X ⊆ C ⊕H, it holds that Px∼D [x ∈X] ≤ Px∼D [x ∈ C ⊕H].
It follows that Px∼D [x ∈ C ⊕H] ≤ ε implies Px∼D [x ∈X] ≤ ε. Now, for any S ⊆ X
satisfying S ∩ (C ⊕ H) = ∅, we have that S ∩ X = ∅. Hence, any sample S ∼
Dm drawn by EQD,C that ensures Px∼D [x ∈ C ⊕H] ≤ ε with confidence 1 − δ also
guarantees Px∼D [x ∈X] ≤ ε with confidence 1 − δ.

Proposition 3.1. Let C ∈ C and H ∈ H such that H is an (ε, δ)-approximation of
C. For any X ⊆ X :

Px∼D [x ∈ C ∩H ∩X] ≤ ε (3.3)

Px∼D [x ∈ C ∩H ∩X] ≤ ε (3.4)

with confidence at least 1 − δ.

Proof. From Lemma 3.1 because C ∩H ∩X and C ∩H ∩X are subsets of C ⊕H.

3.2 PAC-based MAT learning

In this setting, the MAT learner is the same, however, the teacher resorts to a
statistical test in order to compare the languages. This test is explained below.

We denote C and H the target and output grammar, respectively. The learner
uses EQ and MQ. Each time EQ is called, it must draw a sample of a size large
enough to ensure a total confidence of the algorithm of at least 1 − δ. That is,
whenever the statistical test is passed, it is possible to conclude that the candidate
output is ε-approximately correct with confidence at least 1 − δ.

Say EQ is called at iteration i. In order to guarantee the aforementioned
property, a sample Si of size of size µi defined as follows [25]:

µi = ⌈1

ε
(i ln 2 − ln δ)⌉ (3.5)

It is of interest to us to guarantee that independently of the moment i that
the test is passed, there is a limit δ to the probability of H not being an ε-
approximation of C. Following [50], the probability of a hypotheses Hi passing
the PAC test and not being an ε-approximation of C is at most (1 − ε)µi .

Theorem 3.1. The probability that at any stage algorithm 3 terminates with an
output H that is not an ε-approximation of C is at most δ.

Proof.

P [ED,C(H) > ε] ≤∑
i>0

P [ED,C(Hi) > ε] <∑
i>0

(1 − ε)µi <∑
i>0

2−iδ < δ

The PAC-based MAT learner pseudocode is presented in algorithm 3.

Algorithm 3: PAC MAT learner

Input : ε, δ
Output: Hypothesis H

1 Initialize internal structures;
2 iterationNumber ← 0 ;
3 repeat
4 while unable to build Hypotesis do
5 Ask MQ

6 H ← BuildHypothesis();
7 Answer, Counterexample ← PAC-EQ(H, ε, δ, iterationNumber);
8 if Answer ≠ Yes then
9 ProcessCounterexample(Counterexample)

10 iterationNumber ← iterationNumber + 1;

11 until Answer = Yes ;
12 return H;

23

Corollary 3.1. If the target concept is regular then PAC L∗ terminates.

Proof. The detailed proof is in [25].

3.3 Bounded PAC-based MAT learning

Most of scenarios of interest are those which C is unknown, meaning even the
nature of the concept is out of reach, it could even be the case that the hypothesis
space of the learner does not contain the target concept, mathematically C ∉ H.

In such scenarios, MAT algorithms described before have no termination guar-
antee. In other words, reaching an EQ returning true is not one of their possibil-
ities, instead, other stopping criteria may be selected.

Some works propose the selection of iteration numbers or time in millisec-
onds [51], however that selection is arbitrary. Other way of selecting the stopping
criteria would be associated to internal data structures sizes of the MAT Learner,
or complexity of H [32].

Agnostic to the termination criterion stop, a Bounded PAC-based MAT learner
is shown in 4.

Algorithm 4: Bounded PAC MAT learner

Input : stop, ε, δ, Σ
Output: Hypothesis H

1 Initialise internal structures;
2 iterationNumber ← 0 ;
3 repeat
4 while unable to build Hypotesis do
5 Ask MQ

6 H ← BuildHypothesis();
7 Answer, Counterexample ← PAC-EQ(H, ε, δ, iterationNumber);
8 if Answer ≠ Yes then
9 ProcessCounterexample(Counterexample)

10 BoundReached ← stop();
11 iterationNumber ← iterationNumber + 1;

12 until Answer = Yes or BoundReached ;
13 return H;

3.3.1 Analysis of the approximation error

Upon termination, a Bounded PAC learner may output hypothesis H which fails
to pass EQ. In such cases, H and the target language eventually disagree in k > 0
sequences of the sample S drawn by EQ. Therefore, it is important to analyze in
detail the approximation error incurred by the learner in such case. In order to do
so, let us start by giving the following definition:

φi(k) = (µi − k)−1(µiε + ln(µi
k
)) (3.6)

for all i ∈ N, i ≥ 1. Notice that for all k ∈ [0, µi), φi(k) ≥ ε, and φi(0) = ε.

Theorem 1. For any target concept C, if after n iterations Bounded PAC learner
returns a DFA A with k ∈ N EQ-divergences, such that ε̃(k) ∈ (0,1), then A is an
(ε̃(k), δ)-approximation of C, where

ε̃(k) = max{φi(k) ∣ 1 ≤ i ≤ n} (3.7)

Proof. Let Si ∼ Dµi, we define:

K(Si) = ∑
u∈Si

1A(u)≠C(u)

Using the same arguments as [25], we have that:

P[ED,C(A) > ε̃(k)] ≤
n

∑
i=1

PSi∼Dµi [K(Si) = k ; ED,C(A) > ε̃(k)] (3.8)

Now, for every 1 ≤ i ≤ n:

PSi∼Dµi [K(Si) = k ; ED,C(A) > ε̃(k)] = (µi
k
)(1 − ED,C(A))µi−k ED,C(A)k

< (µi
k
)(1 − ε̃(k))µi−k

Using the inequality 1 − u < e−u, it follows that:

PSi∼Dµi [K(Si) = k ; ED,C(A) > ε̃(k)] < (µi
k
)e−ε̃(k)(µi−k) (3.9)

Therefore, by Equations (3.6) and (3.7):

φi(k) = (µi − k)−1(µiε + ln(µi
k
)) ≤ ε̃(k)

25

By definition of µi (Equation (3.10)), this entails:

−ε̃(k)(µi − k) + ln(µi
k
) ≤ −µiε ≤ −i ln 2 + ln δ

Then,

(µi
k
)e−ε̃(k)(µi−k) ≤ 2−iδ (3.10)

Thus, from Equations (3.8)–(3.10), it follows that:

P[ED,C(A) > ε̃(k)] <
n

∑
i=1

2−iδ < δ (3.11)

Hence, A is an (ε̃(k), δ)-approximation of C.

Corollary 3.2. If the algorithm terminates with k = 0 errors, then A is an (ε, δ)-
approximation of C.

Proof. Immediate from 1.

Remark. It is important to notice that this result (from [27]) improves the kind
of “forensics” analysis developed in [32, 33], which concentrates on studying the
approximation error of the actual DFA returned by Bounded-L∗ on a particular
run, rather than on any outcome of the algorithm, as it is stated by Theorem 1.

3.4 Bounded L∗

Similarly to the description of L∗ presented in [23] and sketched in subsection 2.2.1,
the algorithm Bounded-L∗ [32](Algorithm 5) is an instance of a Bounded MAT al-
gorithm and can be described as follows:

Algorithm 5: Bounded-L∗

Input : MaxQueryLength, MaxStates, ε, δ, Σ
Output: DFA A

1 Lstar-Initialize;
2 repeat
3 while OT is not closed or not consistent do
4 if OT is not closed then
5 OT, QueryLengthExceeded ← Lstar-Close(OT);

6 if OT is not consistent then
7 OT, QueryLengthExceeded ← Lstar-Consistent(OT);

8 if not QueryLengthExceeded then
9 A← Lstar-BuildAutomaton(OT);

10 Answer ← EQ(A);
11 MaxStatesExceeded ← STATES(A)>MaxStates;
12 if Answer ≠ Yes and not MaxStatesExceeded then
13 OT ← Lstar-UseEQ(OT, Answer);

14 BoundReached ← QueryLengthExceeded or MaxStatesExceeded;

15 until Answer = Yes or BoundReached ;
16 return A;

The observation table OT is initialised by Lstar-Initialize in the same manner
that it is for L∗. This step consists in building the structure of the observation
table OT as proposed by Angluin. Then the construction of hypotheses begins.

If OT is not closed an extra row is added by the Lstar-Close procedure. If OT
is inconsistent, an extra column is added by the Lstar-Consistent procedure. Both
procedures call MQ to fill the holes in the observation table. The length of these
queries may exceed the maximum query length, in which case the QueryLength-
Exceeded flag is set to true.

When the table is closed and consistent, and in the case that the maximum
query length was not exceeded, an equivalence query EQ is made and the number

27

of states of the automaton is compared to the maximum number of states bound.
If EQ is unsuccessful and the maximum number of states was not reached, new
rows are added by Lstar-UseEQ, using the counterexample contained in Answer.

Finally, if the hypothesis passes the test or one of the bounds was reached, the
algorithm stops and returns the last proposed automaton.

In Fig. 3.1 a diagram of the teacher-learner setting is presented.

Figure 3.1: Teacher-Bounded Learner setting diagram

It is important to note that lines 3-10 in algorithm 5 correspond to line 4
in algorithm 4, lines 5,8 and 14 in algorithm 5 are responsible of checking if the
stopping criteria were met (line 12 in algoritm 4), line 16 is responsible of processing
the counterexample (line 10 in algoritm 4) and line 12 from 5 corresponds to line
7 in algoritm 4).

Corollary 3.3. For any C ⊆ Σ∗, if Bounded-L∗terminates with a DFA A which
passes a PAC-EQ, then A is an (ε, δ)-approximation of C.

Proof. Straightforward from Theorem 3.1 and 1.

4 Verification through learning

This chapter analyzes the following problem: given an unknown concept C ∈ C,
and a known property ψ ∈ H to be checked on C, we want to answer whether
C ⊆ ψ holds, or equivalently C ∩ ψ = ∅. To achieve this we resort to the learning
techniques presented in previous chapters. These techniques are then applied to
neural acceptors, that is, ANN that recognize languages.

4.1 Post-learning verification

One way of verifying wether C ⊆ ψ holds in a black-box setting consists in resorting
to a model-checking approach. That is, first learn a hypothesis H ∈ H of C with a
PAC-learning algorithm and then check whether H satisfies property ψ. We call
this approach post-learning verification, also referred to as model-then-verify. In
order to be feasible, there must be an effective procedure for checking H ∩ ψ = ∅.

Assume an algorithm for checking emptiness exists. The relevant question now
is what could be said about the outcome of procedure. The following proposition
[26] proves that whichever the outcome of the decision procedure for H ∩ ψ, the
probability of the same result not being true for C is smaller than ε, with confidence
at least 1 − δ.

Proposition 4.1. Let C ∈ C and H ∈ H such that H is an (ε, δ)-approximation of
C. For any ψ ∈ H:

1. if H ∩ ψ = ∅ then Px∼D [x ∈ C ∩ ψ] ≤ ε, and

2. if H ∩ ψ ≠ ∅ then Px∼D [x ∈ C ∩H ∩ ψ] ≤ ε,

with confidence at least 1 − δ.

29

Proof. 1. If H ∩ ψ = ∅ then ψ = H ∩ ψ. Thus, C ∩ ψ = C ∩ H ∩ ψ and from
Proposition 3.1(3.3) it follows that Px∼D [x ∈ C ∩H ∩ ψ] ≤ ε, with confidence at
least 1 − δ.
2. If H ∩ ψ ≠ ∅, from Proposition 3.1(3.4) we have that Px∼D [x ∈ C ∩H ∩ ψ] ≤ ε,
with confidence at least 1 − δ.

When applied in practice, an important inconvenience of this approach is that
whenever ψ is found by the model-checker not to hold on H, even if with small
probability, counterexamples found onH may not be counterexamples in C. There-
fore, whenever that happens, we would need to resort to EX to draw examples
from H ∩ψ and call MQ to figure out whether they belong to C in order to trying
finding a concrete counterexample in C.

From a computational perspective, in particular in the application scenario of
verifying neural acceptors, we should be aware that the learned hypothesis could
be too large and that the running time of the learning algorithm adds up to the
running time of the model-checker, thus making the overall procedure impractical.

Last but not least, this approach could only be applied for checking properties
for which there exists a model-checking procedure in H. In our context, it will
prevent verifying non-regular properties.

4.2 On-the-fly verification via learning

To overcome the aforementioned issues, rather than learning an (ε, δ)-approxima-
tion of C, we proposed to use the PAC-learning algorithm to learn an (ε, δ)-
approximation of C ∩ψ ∈ C. This approach is called on-the-fly verification through
learning [26, 27].

Indeed, this idea can be extended to cope with any verification problem which
can be expressed as checking the emptiness of some concept Ψ(C) ∈ C, which in
the simplest case is C ∩ ψ. In such context, we have the following, more general,
result.

Proposition 4.2. Let C ∈ C, Ψ(C) ∈ C and H ∈ H such that H is an (ε, δ)-
approximation of Ψ(C). Then:

1. if H = ∅ then Px∼D [x ∈ Ψ(C)] ≤ ε, and

2. if H ≠ ∅ then Px∼D [x ∈H/Ψ(C)] ≤ ε,

with confidence at least 1 − δ.

Proof. Straightforward since Px∼D [x ∈ Ψ(C)⊕H] ≤ ε, with confidence at least
1 − δ, by the fact that H is an (ε, δ)-approximation of Ψ(C).

Proposition 4.2 proves that checking properties during the learning phase yields
the same theoretical probabilistic assurance as doing it afterwards on the learned
model of the target concept C. Nevertheless, from a practical point of view, on-
the-fly property checking through learning has several interesting advantages over
post-learning verification. First, no model of C is ever explicitly built which may
result in a lower computational effort, both in terms of running time and memory.
Therefore, this approach could be used in cases where it is computationally too
expensive to construct a hypothesis for C. Second, there is no need to resort to
external model-checkers. The approach may even be applied in contexts where
such algorithms do not exist. Indeed, in contrast to post-learning verification,
an interesting fact in on-the-fly checking is that in the case the PAC-learning
algorithm outputs a nonempty hypothesis, it may actually happen that the oracle
EX draws an example belonging to Ψ(C) at some point during the execution,
which constitutes a concrete, real evidence of Ψ(C) not being empty with certainty.

4.2.1 Characterization of the error

Let us recall that the black-box checking problem consists in verifying whether
Ψ(C) = ∅. Solving this task with on-the-fly checking through learning using
Bounded-L∗ as the learning algorithm yields a DFA which is a PAC-approximation
of Ψ(C). Indeed, the output DFA serves to characterize the eventual wrong clas-
sifications made by the neural acceptor C in an operational and visual formalism.
As a matter of fact, Bounded-L∗ ensures that whenever the returned regular lan-
guage is nonempty, the language in the black-box is also nonempty. This result is
proven below.

Proposition 4.3. For any C ⊆ Σ∗ and i > 1, if Bounded-L∗(n, ε, δ) builds an
automaton Ai ≠ ∅ at iteration i, then C ≠ ∅.

Proof. Suppose Ai ≠ ∅. Then, Ai has at least one accepting state. By construc-
tion, ∃ u ∈ Σ∗ such that OTi[u][λ] = 1. For this to be true, it must have occurred a
positive membership query for u at some iteration j ∈ [1, i], that is, MQj(u) = 1.
Hence, u ∈ C. This proves that C ≠ ∅.

31

This result is important because it entails that whenever the output for the
target language C ∩ ψ is nonempty, C does not satisfy ψ. Moreover, for every
entry of the observation table such that OT [u][v] = 1, the sequence uv ∈ Σ∗ is a
counterexample.

Corollary 4.1. For any C,Ψ(C) ⊆ Σ∗, if Bounded-L∗(n, ε, δ) returns a DFA
A ≠ ∅, then Ψ(C) ≠ ∅. Besides, ∀ u, v ∈ Σ∗ if OT [u][v] = 1 then uv ∈ Ψ(C).

Proof. Straightforward from Proposition 4.3.

Indeed, from Proposition 4.3, it could be argued that Bounded-L∗ for Ψ(C)
could finish as soon as OT has a positive entry, yielding a witness of Ψ(C) being
nonempty. However, stopping Bounded-L∗ at this stage would prevent providing
a more detailed, explanatory, even if approximate, characterization of the set of
misbehaviors.

Theorem 1 and Corally 4.1 can be combined to show the theoretical guaran-
tees yielded by Bounded-L∗ when used for black-box property checking through
learning.

Theorem 4.1. For any C,Ψ(C), if Bounded-L∗(`, n, ε, δ) returns a DFA A with
k ∈ N EQ-divergences and ε̃(k) ∈ (0,1), then:

1. A is an (ε̃(k), δ)-approximation of Ψ(C).

2. If A ≠ ∅ or k > 0, then Ψ(C) ≠ ∅.

Proof. 1. Straightforward from Theorem 1.
2. By Corollary 4.1, it follows that A ≠ ∅ implies Ψ(C) ≠ ∅. Let A = ∅ and k > 0.
By the fact that k > 0, we have that A ⊕ Ψ(C) ≠ ∅. Since A = ∅, it results that
∅⊕Ψ(C) = Ψ(C). Hence, Ψ(C) ≠ ∅.

5 Application to neural acceptors

The motivation of this chapter is to apply on-the-fly verification of neural acceptors
on a number of case studies and compare it to the post-learning approach.

The general setting of this chapter is as follows. The teacher is given Ψ(C).
For instance, in order to verify language inclusion, that is, to check whether the
language of the RNN C is included in some given language ψ (the property), Ψ(C)
is C∩ψ. The complement of ψ is actually never computed, since the algorithm only
requires evaluating membership. That is, to answer MQ(u) on C ∩ ψ for a word
u ∈ Σ∗, the teacher evaluates ψ(u), complements its output, and evaluates the
conjunction with the output of C(u). It is straightforward to generalize this idea
to any Boolean combination of C with other concepts ψ1, . . . , ψr. Every concept
ψj may be any kind of property, even a nonregular language, such as a context-free
grammar, or an RNN.

We carried out controlled experiments where RNN were trained with sample
datasets from diverse sources such as: known automata, context free grammars,
and domain specific data as a way of validating the approach. However, it is
important to remark that context-free grammars or DFAs are artifacts only used
with the purpose of controlling the experiments. In real application scenarios,
they are not assumed to exist at all. Unless otherwise stated, RNN consisted of
a two-layer network starting with a single-cell three-dimensional LSTM layer [52]
followed by a two-dimensional dense classification layer with a softmax activation
function. The loss function was categorical cross-entropy. They were trained with
Adam optimizer, with a default learning rate of 0.5, using two-phase early stopping,
with an 80%-20% random split for train-validation of the corresponding datasets.
The performance of trained RNN was measured on test datasets. Symbols of
the alphabet were represented using one-hot encoding. We stress the fact that
knowledge of the internal structure, training process, or training data (except
for the alphabet) is by no means required by our approach. This information is
provided only to describe the performed controlled experiments.

33

We applied our approach in three kinds of scenarios which are presented in the
following sections.

5.1 Scenario 1

First, we studied RNN trained with sequences generated by context-free grammars
(CFG) and checked regular and nonregular properties. In addition, we compared
two different RNN trained with sequences from the same language specification,
in order to check whether they are actually equivalent. Here, Ψ is a Boolean
combination of the RNN under analysis.

5.1.1 Context-free language models

Parenthesis prediction is a typical problem used to study the capacity of RNN for
context-free language modelling [53].

First, we randomly generated 550,000 sequences upto length 20 labelled as
positive or negative according to whether they belong or not to the following 3-
symbol Dyck-1 CFG with alphabet {(,), c}:

S Ð→ S T ∣ T S ∣ T T Ð→ (T) ∣ () T Ð→ c (5.1)

The RNN was trained using a subset of 500,000 samples until achieving 100%
accuracy on the remaining validation set of 50,000 sequences. The following prop-
erties were checked:

1. The set of sequences recognized by the RNN C are included in the Dyck 1
grammar in equation 5.1. That is, Ψ1(C) = C ∩ ψ1, where ψ1 = S. Recall
that ψ1 is not computed, since only membership queries are posed.

2. The set of sequences recognized by the RNN C are included in the regular
property ψ2 = (c)∗. In this case, Ψ2(C) = C ∩ ψ.

3. The set of sequences recognized by the RNN C are included in the context-
free language ψ3 = (m)n with m < n. Here, Ψ3(C) = C ∩ ψ3.

Experimental results are shown in Tables 5.1 and 5.2. For each (ε, δ), 5 runs
were executed. All runs finished with 0-divergence EQ. Execution times are in

Parameters
Running time (in secs)

Mean
sample
size

ε δ
min max mean

0.005 0.005 1.984 7.205 3.072 1,899
0.0005 0.005 3.713 10.445 5.997 20,093
0.00005 0.005 7.982 30.470 9.997 203,007
0.00005 0.0005 8.128 36.621 9.919 249,059
0.00005 0.00005 9.625 41.884 12.185 295,111

Table 5.1: Dyck 1: PAC DFA extraction from RNN.

Ψ
Parameters

Running time (in secs)
First
positive
MQ

Mean
sample
size

ε δ
min max mean

Ψ1

0.005 0.005 0.004 0.012 0.006 - 1,476
0.0005 0.005 0.051 0.125 0.067 - 14,756
0.00005 0.005 0.682 0.833 0.747 - 147,556
0.00005 0.0005 1.164 1.595 1.340 - 193,607
0.00005 0.00005 1.272 1.809 1.386 - 239,659

Ψ2

0.005 0.005 0.031 34.525 5.762 0.099 1,948
0.0005 0.005 0.397 37.846 10.245 0.084 20,370
0.00005 0.005 4.713 30.714 6.547 0.825 206,473

Ψ3

0.005 0.005 0.025 0.966 0.302 0.006 1,899
0.0005 0.005 0.267 1.985 0.787 0.070 20,093
0.00005 0.005 4.376 6.479 4.775 0.764 203,007

Table 5.2: Dyck 1: On-the-fly verification of RNN.

35

secs. The mean sample size refers to the average EQ test size at the last iteration
of each run. Figures show that on average, the running times exhibited by of on-
the-fly property checking were typically smaller than those achieved just to extract
an automaton from the RNN. It is important to remark that cases 1) and 3) fall in
an undecidable playground since checking whether a regular language is contained
in a context-free language is undecidable [39]. For case 1), our technique could not
find a counterexample, thus giving probabilistic guarantees of emptiness, that is,
of the RNN to correctly modelling the 3-symbol parenthesis language. For cases 2)
and 3), PAC DFA of the intersection language are found in all runs, showing the
properties are indeed not satisfied. Besides, counterexamples are generated orders
of magnitude faster (in average) than extracting a DFA from the RNN alone.

Second, we randomly generated 550,000 sequences upto length 20 labelled as
positive or negative according to whether they belong or not to the following 5-
symbol Dyck-2 CFG with alphabet {(,), [,], c}:

S Ð→ S T ∣ T S ∣ T T Ð→ (T) ∣ () T Ð→ [T] ∣ [] T Ð→ c (5.2)

The RNN was trained on 500,000 samples until achieving 99.646% accuracy on
the remaining validation set of 50,000 sequences. This RNN was checked against
its specification. For each (ε, δ), 5 runs were executed, with a timeout of 300s.
Experimental results are shown in Tables 5.3 and 5.4. For each configuration, at
least three runs of on-the-fly checking finished before the timeout and one was
able to find, as expected, the property was not verified by the RNN, exhibiting a
counterexample showing it did not model the CFG and yielding a PAC DFA of
the wrong classifications.

Parameters
Running time (in secs)

Mean
sample
size

Mean
ε̃ε δ

min max mean
0.005 0.005 2.753 149.214 19.958 1,795 0.00559
0.0005 0.005 23.343 300.000 105.367 18,222 0.04432
0.00005 0.005 42.518 139.763 77.652 186,372 0.16248

Table 5.3: Dyck 2: PAC DFA extraction from RNN.

5.1.2 Checking equivalence between neural ac-
ceptors

Following Theorem 4.1, we present a case where it is of interest to check two RNNs
against each other. An RNN N1 is trained with data from a given language L, and

Parameters
Running time (in secs)

First
positive
MQ

Mean
sample
size

Mean
ε̃ε δ

min max mean
0.005 0.005 0.004 122.388 24.483 90.285 1,504 0.00618
0.0005 0.005 55.084 300.000 215.508 42.462 16,604 0.00895
0.00005 0.005 0.695 324.144 158.195 4.545 166,040 0.00005

Table 5.4: Dyck 2: On-the-fly verification of RNN.

a second RNN N2 is trained with sequences from a language L′ contained L. If
both networks, when checked against L are found compliant with it, the following
question arises: Are the networks equivalent? And, if the answer is negative, can
the divergences be modelled? In order to answer those questions, the property to
be checked is expressed as a boolean composition Ψ(N1,N2) = N1 ≡ N2.

To illustrate this use case, an RNN N1 was trained with data from Tomita’s
5th grammar [54] (Fig. 5.1) until it reached a 100% accuracy both in all data.
Similarly, a second network N2, with the same characteristics, was trained until
complete overfitting with sequences from a sublanguage (Fig. 5.2).

Figure 5.1: DFA recognizing Tomita’s 5th grammar

Figure 5.2: DFA recognizing a sublanguage of Tomita’s 5th grammar

The architecture of the networks is depicted in Fig. 5.31. For each layer, its
type, name (for clarity), and input/output shapes are shown. In all cases, the first
component of the shape vector is the batch size and the last component is the
number of features. For 3-dimensional shapes, the middle element is the length

1Network sketches have been generated using Keras utilities https://keras.io/api/utils/
model_plotting_utils/.

37

https://keras.io/api/utils/model_plotting_utils/
https://keras.io/api/utils/model_plotting_utils/

of the sequence. ’?’ means that the parameter is not statically fixed but dynami-
cally instantiated at the training phase. The initial layer is a 2-dimensional dense
embedding of the input. This layer is followed by a sequence-to-sequence sub-
network composed of a 64-dimensional LSTM chained to a 30-dimensional dense
layer with a ReLU activation function. The network ends with a classification
subnetwork composed of a 62-dimensional LSTM connected to a 2-dimensional
dense layer with a softmax activation function. This architecture has a total of
42,296 coefficients.

embedding_input: InputLayer

input: output:

[(?, ?)] [(?, ?)]

embedding: Embedding

input: output:

(?, ?) (?, ?, 2)

recurrent1: LSTM

input: output:

(?, ?, 2) (?, ?, 64)

dense: Dense

input: output:

(?, ?, 64) (?, ?, 30)

recurrent2: LSTM

input: output:

(?, ?, 30) (?, 62)

classification: Dense

input: output:

(?, 62) (?, 2)

Figure 5.3: Sketch of the architecture used for Tomita’s 5th grammar and its
variant.

Each network has been trained in a single phase with specific parameters sum-
marized in Table 5.5. This is the reason why batch size and sequence length have
not been fixed in Fig. 5.3 and therefore appear as ’?’. The training process of
both networks used sets of randomly generated sequences labelled as belonging or
not to the corresponding target language. These sets have been split in two parts:
80% for the development set and 20% for the test set. The development set has
been further partitioned into 67% for train and 33% for validation.

Network Dataset size Batch size Sequence length Learning rate
N1 5K 30 15 0.01
N2 1M 100 10 0.001

Table 5.5: Training parameters used for Tomita’s 5th grammar and its variant.

When checking both networks for inclusion in Tomita’s 5th grammar both of
them were found to verify the inclusion, passing PAC tests with ε = 0.001 and
δ = 0.0001. However, when the verification goal was to check N1 ≡ N2, the output
was different. In such scenario, on-the-fly verification returned a nonempty DFA,
showing that the networks are indeed not equivalent. Fig. 5.4 depicts the DFA
approximating the language of their disagreement, that is, the symmetric difference
N1 ⊕N2. After further inspection, we found out that N2 does not recognize the
empty word λ.

Figure 5.4: DFA approximating N1 ⊕N2

5.2 Scenario 2

In this scenario, we checked regular properties over RNN trained with sequences
of models of two different software systems, namely a cruise controller and an e-
commerce application. The former deals with the situation where post-learning
model-checking finds the DFA extracted from the RNN to not satisfy the property,
but it is not possible to replay the produced counterexample on the RNN. In the
latter, we injected canary bad sequences in the training set in order to pinpoint
they end up being discovered by on-the-fly black-box checking.

5.2.1 A model of a cruise control software

Here, we analyze an RNN trained with sequences from the model of a cruise con-
troller software [55] depicted in Fig. 5.5. In the figure, only the actions and states
modelling the normal operation of the controller are shown. All illegal actions
are assumed to go to a non-accepting sink state. The training dataset contained
200,000 randomly generated sequences and labelled as normal and abnormal ac-
cording to whether they correspond or not to executions of the controller (i.e.,
they are recognized or not by the DFA in Fig. 5.5). All executions have a length
of at most 16 actions. The accuracy of the RNN on a test dataset with 16,000
randomly generated sequences was 99,91%.

The requirement ψ to be checked on the RNN is the following: a break action
can occur only if action gas∣acc has already happened and no other break action
has occurred in between. ψ is modelled by the DFA illustrated in Fig. 5.6.

Figure 5.6: Cruise controller: Property ψ

39

Figure 5.5: Cruise controller: DFA model

In this experiment, we compare both approaches, namely our on-the-fly tech-
nique vs post-learning verification.

Every run of on-the-fly verification through learning terminates with perfect
EQ tests conjecturing that C ∩ ψ is empty. Table 5.6 shows the metrics obtained
in these experiments (running times, EQ sample sizes, and ε̃) for different values
of the parameters ε and δ.

Parameters
Running times (in secs)

First
positive
MQ

Mean
sample
size

ε δ
min max mean

0.01 0.01 0.003 0.006 0.004 - 669
0.001 0.01 0.061 0.096 0.075 - 6,685
0.0001 0.01 0.341 0.626 0.497 - 66,847

Table 5.6: Cruise controller: On-the-fly black-box checking.

Table 5.7 shows the metrics for extracting DFA from the RNN. The timeout
was set at 200 secs. For the first configuration, four out of five runs terminated
before the timeout producing automata that exceeded the maximum number of
states. Moreover, three of those were shown to violate the requirement. For the
second one, there were three out of five successful extractions with all automata
exceeding the maximum number of states, while for two the property did not
hold. For the third configuration, all runs hit the timeout. Actually, the RNN

under analysis classified all the counterexamples returned by the model-checker as
negative, that is, they do not belong to its language. In other words, there were
false positives. In order to look for true violating sequences, we generated 2 million
sequences with EX for each of the automata H for which the property did not
hold. Indeed, none of those sequences was accepted simultaneously by both the
RNN under analysis and H ∩ ψ. Therefore, it is not possible to disprove that the
RNN is correct with respect to ψ as conjectured bye on-the-fly black-box checking.
It goes without saying that post-learning verification required considerable more
computational effort as a consequence of its misleading verdicts.

Parameters
Running times (in secs)

Mean
sample
size

Mean
ε̃ε δ

min max mean
0.01 0.01 11.633 200.000 67.662 808 0.07329
0.001 0.01 52.362 200.000 135.446 8,071 0.22684
0.0001 0.01 - - - - -

Table 5.7: Cruise controller: Automaton extraction.

The cruise controller case study illustrates an important benefit of our ap-
proach vs post-learning verification: every counterexample produced by on-the-fly
property checking is a true witness of Ψ(C) being nonempty, while this is certainly
false for the latter.

5.2.2 A model of an e-commerce web site

In this case study, the target concept is an RNN trained with the purpose of
modelling the behavior of a web application for e-commerce. We used a training
dataset of 100,000 randomly generated sequences of length smaller than or equal
to 16, using a variant of the model in [32, 56] to tag the sequences as positive or
negative. Purposely, we have modified the model so as to add canary sequences not
satisfying the properties to be checked. The RNN achieved 100% accuracy on a test
dataset of 16,000 randomly generated sequences. We overfitted to ensure faulty
sequences were classified as positive by the RNN. The goal of this experiment was
to verify whether on-the-fly black-box checking could successfully unveil whether
the RNN learned these misbehaviors.

We analyzed the regular properties shown in Fig. 5.7, where labels aPSC,
eSC, and bPSC model the actions (associated with their corresponding buttons)
of adding products to the shopping cart, removing all products from the shopping
cart, and buying products in the shopping cart, respectively. Requirement ψ1,

41

(a) E-commerce system: ψ1 (b) E-commerce system: ψ1

Figure 5.7: E-commerce system: Automata of the analyzed requirements

depicted in Fig. 5.7a, states that the e-commerce site must not allow a user to buy
products in the shopping cart if the shopping cart does not contain any product.
Property ψ2, depicted in Fig. 5.7b, requires the system to prevent the user to
perform consecutive clicks on the buy products button.

Table 5.8 shows the metrics obtained for extracting automata. All runs termi-
nated with an EQ with no divergences. Therefore, the extracted automata were
(ε, δ)-approximations of the RNN. Although we did not perform post-learning ver-
ification, these metrics are helpful to compare the computational performance of
both approaches.

Parameters
Running times (in secs)

Mean
sample
size

ε δ
min max mean

0.01 0.01 16.863 62.125 36.071 863
0.001 0.01 6.764 9.307 7.864 8,487
0.0001 0.01 18.586 41.137 30.556 83,482

Table 5.8: E-commerce: PAC DFA extraction from RNN.

For each property ψj, j ∈ {1,2}, the concept inside the black-box is Ψj(C)
is C ∩ ψj. As shown in Table 5.9, the on-the-fly method correctly asserted that
none of the properties were satisfied. It is worth noticing that all experiments
terminated with perfect EQ, i.e., k = 0. Therefore, the extracted DFA were (ε, δ)-
approximations of Ψj(C). The average running time to output an automaton of
the language of faulty behaviors is bigger than the running time for extracting
an automaton of the RNN alone. Nevertheless, the first witness of Ψj(C) (i.e.,
the first witness of non-emptiness) was always found by on-the-fly checking in
comparable time.

Fig. 5.8 shows an automaton of Ψ1(C) built by the on-the-fly algorithm.
For instance, it reveals that the RNN classifies as correct a sequence where the
user opens a session (label event os), consults the list of available products (la-

Ψ
Parameters

Running times (in secs)
First
positive
MQ

Mean
sample
size

ε δ
min max mean

Ψ1

0.01 0.01 87.196 312.080 174.612 3.878 891
0.001 0.01 0.774 203.103 102.742 0.744 9,181
0.0001 0.01 105.705 273.278 190.948 2.627 94,573

Ψ2

0.01 0.01 0.002 487.709 148.027 80.738 752
0.001 0.01 62.457 600.000 428.400 36.606 8,765
0.0001 0.01 71.542 451.934 250.195 41.798 87,641

Table 5.9: E-commerce: On-the-fly verification of RNN.

bel gAP), and then buys products (bPSC), but the shopping cart is empty:
q1; os; q4; gAP ; q3; bPSC. Indeed, it provides valuable information about possi-
ble causes of the error which are helpful to understand it and correcting it, since
it makes apparent that every time gAP occurred in an open session, the property
was violated.

Figure 5.8: E-commerce system: Automaton for Ψ1(C).

Fig. 5.9 depicts an automaton for Ψ2(C). A sequence showing that ψ2 is not
satified is: q1; os; q5; gAP ; q4; bPSC; q3; bPSC. Notice that this automaton
shows that ψ1 is violated as well, since state q3 is reachable without any occurrence
of aPSC.

Figure 5.9: E-commerce system: Automaton for Ψ2(C).

43

5.3 Scenario 3

Finally, we studied domain-specific datasets, from system security and bioinfor-
matics, where the actual data-generator systems were unknown, and no models
of them were available. In one of these case studies the purpose is to analyze the
behavior of an RNN trained to identify security anomalies in Hadoop file system
(HDFS) logsfrom. The experiment revealed the fact that the RNN could mis-
takenly classify a log as normal when it is actually abnormal, even if the RNN
incurred in no false positives on the test dataset during the training phase. The
DFA returned by Bounded-L∗ served to gain insight on the error. In the last case
study, we studied an RNN that classifies promoter DNA sequences as having or
not a TATA-box subsequence. Here, post-learning verification was unfeasible be-
cause Bounded-L∗ did not terminate in reasonable time when asked to extract a
DFA from the RNN. Nevertheless, it successfully checked the desired requirement
using on-the-fly black-box checking through learning.

5.3.1 Hadoop file system logs

This experiment concerns the analysis of an RNN trained to find anomalies in logs
of an application software based on Hadoop Distributed File System (HDFS). Data
used in this case study come from [18]. Logs are sequences of natural numbers
ranging from 0 to 28 which correspond to different kinds of logged messages. That
is, the set of symbols is Σ = {0, . . . ,29}. The training dataset consists of 4856
normal logs of different lengths. We built an auto-regressive network that predicts
the probability distribution of symbols at each position in the sequence. Symbols
are one-hot encoded. The LSTM layer outputs a 128-dimensional vector which is
passed to a 29-dimensional dense layer that outputs the probability distribution
of the next symbol. That is, for every position t ∈ [0, T − 1], where T is the length
of the sequence, the network outputs a vector vt ∈ [0,1]29, whose i-th position
holds the predicted probability vt(i) = P[σt = i ∣ σ0 . . . σt−1] of number i to be the
t-th symbol in the sequence [57]. Fig. 5.10 shows a sketch of the architecture.
This network has 84,637 parameters. The activation function of the last layer is a
softmax and the loss function is the corresponding categorical cross-entropy. For
the sake of readability, we fixed the sequence length in Fig. 5.10. However, in the
actual architecture this parameter is not statically defined.

input: InputLayer

input: output:

[(?, 10, 29)] [(?, 10, 29)]

recurrent: LSTM

input: output:

(?, 10, 29) (?, 10, 128)

prob_dist(symbol): TimeDistributed(Dense)

input: output:

(?, 10, 128) (?, 10, 29)

Figure 5.10: Sketch of the architecture of the language model of HDFS logs.

For each log in the training set we obtained all complete subsequences of length
T = 10 by sliding a window of size 10 from start to end. Overall, there were a total
of 56,283 of such subsequences which were split in 80% (36020 samples) for training
and 20% (9006 samples) for validation. A single training phase of 5 epochs was
performed using a learning rate of 10−3 and a batch size of 30.

In order to build a classifier, the RNN is used to predict the probability of a
log. Then, a log is considered to be normal if its predicted probability is beyond
a threshold of 2 × 10−7. Otherwise, it is tagged as anomalous. The performance
of the classifier was tested on a perfectly balanced subset of 33,600 samples taken
from the test dataset of [18]. No false positives were produced by the classifier
which incurred in an overall error of 2.65%.

During an exploratory analysis of the training dataset, we made the follow-
ing observations. First, there were a subset of numbers, concretely {6,7,9,11 −
14,18,19,23,26 − 28}, that were not present in the normal logs used for training.
Let us call this set A for anomalous message types. Second, many logs have a
subsequence containing numbers 4 and 21, such that their accumulated count was
at most 5, that is, #4 + #21 ≤ 5. We analyzed the classifier with the purpose of
investigating whether the RNN actually learned these patterns as characteristic of
normal logs.

Based on those observations, we defined the following properties. The first
statement, ψ1, claims that the classifier always labels as anomalous any log contain-
ing a number in A. The second one, ψ2, says that every log satisfying #4+#21 ≤ 5
is classified as normal. As in the case study of the e-commerce, for each property
ψj, j ∈ {1,2}, the concept inside the black-box is Ψj(C) is C ∩ ψj, where C is the
classifier. It is worth mentioning that C is indeed the composition of an RNN with
the decision function that labels logs according to the probability output by the
RNN.

Table 5.10 shows the results obtained with on-the-fly checking through learn-
ing. As in previous experiments, 5 runs of the algorithm were executed for each
configuration. All runs terminated with perfect EQ tests. Hence, all output hy-
pothesis were (ε, δ)-approximations of Ψj(C).

45

Prop
Parameters

Running times (in secs)
First
positive
MQ

Mean
sample
size

ε δ
min max mean

Ψ1

0.01 0.01 209.409 1,121.360 555.454 5.623 932
0.001 0.001 221.397 812.764 455.660 1.321 12,037

Ψ2

0.01 0.01 35.131 39.762 37.226 - 600
0.001 0.001 252.202 257.312 254.479 - 8,295

Table 5.10: Hadoop file system logs: On-the-fly verification.

q0 q4

q2A

q5

Σ \ (A ∪ {21})

q6

0, 4, 8, 17, 20, 21, 24, 25

q3

Σ \{0, 4, 8, 17, 20, 21, 24, 25}

21

4, 8, 10, 25

10

q1 Σ \ {2, 3, 8, 10, 21}

2, 3, 8, 10, 21

A

0, 1, 3, 5, 15, 16, 17, 19, 20, 22, 24, 27

A

2, 4, 8, 10, 21, 25

Figure 5.11: Hadoop file system logs: Automaton for Ψ1(C) obtained with ε = 0.01
and δ = 0.01.

On one hand, property ψ2 is satisfied by C with PAC guarantees. On the
contrary, all runs of the algorithm for Ψ2(C) returned a non-empty automaton and
a set of the logs that violate ψ2. Therefore, we conclude that C actually classifies
as normal some logs containing numbers in A. Fig. 5.11 depicts the automaton
obtained for Ψ1(C). It helps to understand the errors of C. For example, it reveals
that C labels as normal a log that contains an occurrence of a number in A in
its prefix of length 2. This behavior is captured by paths q0 q1 q2, q0 q1 q6, and
q0 q4 q2. Indeed, this outcome highlights the importance of verification, since it
revealed a clear mismatch with the results observed on the test dataset where C
all logs containing numbers in A were labelled as anomalous because C reported
no false positives whatsoever.

5.3.2 TATA-boxes in DNA promoter sequences

DNA promoter sequences are in charge of controlling gene activation or repression.
A TATA-box is a promoter subsequence with the special role of indicating other
molecules the starting place of the transcription. A TATA-box is a subsequence
having a length of 6 base pairs (bp). It is located upstream close to the gene

transcription start site (TSS) from positions –30bp to –25bp2. It is characterized
by the fact that the accumulated number of occurrences of A’s and T’s is larger
than that of C’s and G’s.

Recently, RNN-based techniques for recognizing TATA-box promoter regions
in DNA sequences have been proposed [19]. Therefore, it is of interest to check
whether an RNN classifies as positive sequences having a TATA-box and as neg-
ative those not having it. In terms of a formal language, the property can be
characterized as the set of sequences u ∈ {A,T,C,G}∗ with a subsequence v of
length 6 from –30bp to –25bp such that #A + #T > #C + #G, where #σ is the
number of occurrences of σ ∈ {A,T,C,G} in v.

input: InputLayer

input: output:

[(?, 50, 4)] [(?, 50, 4)]

recurrent: LSTM

input: output:

(?, 50, 4) (?, 128)

classification: Dense

input: output:

(?, 128) (?, 1)

Figure 5.12: Sketch of the architecture of the TATA-Box classification network

For that purpose, we trained an RNN until achieving 100% accuracy on the
training data consisting of 16455 aligned TATA and non-TATA promoter sequences
of human DNA extracted from the online database EPDnew3. All sequences have
a total length of 50 and end at the TSS. Overall, there were 2067 sequences with
TATA boxes and 14388 sequences without. The LSTM layer had a 128-dimensional
output. In this case, training was performed on a single phase with a learning rate
of 10−3 and a batch size of 64. No validation nor test sets were used. Fig. 5.12
shows a graphical sketch of the model. The input dimension is given by the batch
size, the length of the sequence, and the number of symbols.

Parameters
Running times (in secs)

Mean
sample
size

ε δ
min max mean

0.01 0.01 5.098 5.259 5.168 600
0.001 0.001 65.366 66.479 65.812 8,295
0.0001 0.0001 865.014 870.663 867.830 105,967

Table 5.11: TATA-box: On-the-fly verification of RNN.

Table 5.11 shows the results obtained only with the on-the-fly approach. In-
deed, every attempt to learn a DFA of the RNN C caused Bounded-L∗ to terminate

2TSS is located at +1bp
3https://epd.epfl.ch//index.php

47

https://epd.epfl.ch//index.php

with a timeout. Therefore, this case study illustrates the case where post-learning
verification is not feasible while on-the-fly checking is. It turns out that all ex-
ecutions concluded that the empty language was an (ε, δ)-approximation of the
black-box Ψ(C). Thus, C verifies the requirement with PAC guarantees. It is
worth noticing that in the last reported experiment, with ε and δ equal to 0.0001,
the sample used for checking equivalence was about an order of magnitude bigger
than the dataset used for training.

6 Language models

Until this point, every presented concept is an acceptor, in other words C is re-
stricted to functions where X = Σ∗ and O = {0,1}, in this chapter we will work on
language models, that is, O represents distributions over a given alphabet.

To formalize it, let Σ be a finite alphabet and Σ$ ≜ Σ∪{$}, where $ is a special
terminal symbol not in Σ. Also let ∆(Σ$) ≜ {η ∶ Σ$ → R+ ∣ ∑σ∈Σ$

η(σ) = 1} be the
probability simplex over Σ$. A language model is a total functionM ∶ Σ∗ →∆(Σ$)
where M(u) is interpreted as the next-symbol probability distribution, that is,

PM(σ∣u) ≜M(u)(σ) (6.1)

M induces a probability distribution fM over Σ∗, formally, given a string u =
u1 . . . un ∈ Σ∗:

fM(u) ≜
n

∏
i=0

M(u[i])(ui+1) (6.2)

Where u[i] ≜ u1 . . . ui with u[0] = λ, and un+1 ≜ $.

Given a language model M, we can define an equivalence relation ≡ ⊆ Σ∗ ×Σ∗

defined as:

u ≡ u′ △⇐⇒ ∀w ∈ Σ∗.M(uw) =M(u′w) (6.3)

We write [JΣ∗K] for the set of equivalence classes defined by ≡ and [JuK] for the
class of u ∈ Σ∗. Indeed, ≡ is a right congruence with respect to concatenation of a
symbol:

Proposition 6.1. ∀u,u′ ∈ Σ∗. u ≡ u′ Ô⇒ ∀σ ∈ Σ. uσ ≡ u′σ.

Proof. Let u ≡ u′ and σ ∈ Σ. Then for any w ∈ Σ∗ we have M((uσ)w) =
M(u(σw)) ≡M(u′(σw)) =M((u′σ)w).

We define two language modelsM1 andM2 to be equivalent ifM1(u) =M2(u)
for all u ∈ Σ∗. That is,M1 andM2 induce the same equivalence relation over Σ∗,
formally M1 ≡M2. We define M to be regular if [JΣ∗K] is finite.

49

6.1 PDFA

A probabilistic deterministic finite automaton (PDFA) [48, 58] is a concrete re-
alization of a language model. Let Σ be a finite alphabet and Σ$ to be the set
Σ ∪ {$}, where $ is a special terminal symbol not in Σ. A PDFA A over Σ
is a tuple (Q, qin, π, τ), where Q is a finite set of states, qin ∈ Q is an initial
state, π ∶ Q → ∆(Σ$) maps each state to a probability distribution over Σ$, and
τ ∶ Q × Σ → Q is the transition function. Both π and τ are total functions. Fig-
ure 6.1(a-b) depicts an example.

q0

0
q1

0.5

a/1

a/0.5 π τ
Q $ a a
q0 0 1 q1

q1 0.5 0.5 q1

Figure 6.1: PDFA over Σ = {a} with qin = q0.

The probability of u ∈ Σ∗ from state q ∈ Q, denoted P (u∣q), is defined as:

P (λ∣q) ≜ π(q)($) λ is the empty string, (6.4)

P (σu∣q) ≜ π(q)(σ) ⋅ P (u∣τ(q, σ)) σ ∈ Σ, u ∈ Σ∗ (6.5)

Analogously to 6.2, a PDFA A computes a function fA from Σ∗ to [0,1]. For
any string u ∈ Σ∗:

fA(u) ≜ P (u∣qin) (6.6)

For instance, the PDFA in Figure 6.1 maps the empty string λ to 0 and every
string an, n ≥ 1, to 0.5n.

As for DFA, we define τ∗(q, u) to be the natural extension of τ to strings, that
is, the state reached by A when going through u starting at state q:

τ∗(q, λ) ≜ q (6.7)

τ∗(q, σu) ≜ τ∗(τ(q, σ), u) (6.8)

Similarly, we define π∗(q, u) to be the probability distribution of the state reached
by A when going through u from state q:

π∗(q, u) ≜ π(τ∗(q, u)) (6.9)

We denote τ∗(u) and π∗(u) the state reached when going through u from the
initial state qin and its associated probability distribution, respectively. Then, A
defines the language model such that:

A(u) ≜ π∗(u) (6.10)

6.2 Congruences

Similarly to DFA 2.7, the congruence ≡ can be extended to PDFA as follows:

∀q, q′ ∈ Q. q ≡ q′ △⇐⇒ ∀w ∈ Σ∗. π∗(q,w) = π∗(q′,w) (6.11)

Clearly, ≡ is an equivalence relation. Indeed, the following proposition holds:

Proposition 6.2. ∀u,u′ ∈ Σ∗. u ≡ u′ ⇐⇒ τ∗(u) ≡ τ∗(u′).

Proof. Let u,u′ ∈ Σ∗:

u ≡ u′ ⇐⇒ ∀w ∈ Σ∗. A(uw) = A(u′w) Def. 6.3

⇐⇒ ∀w ∈ Σ∗. π∗(uw) = π∗(u′w) A(⋅) ≜ π∗(⋅) Def. 6.10

⇐⇒ ∀w ∈ Σ∗. π(τ∗(uw)) = π(τ∗(u′w)) Def. of π∗

⇐⇒ ∀w ∈ Σ∗. π(τ∗(τ∗(u),w)) = π(τ∗(τ∗(u′),w)) Def. of τ∗

⇐⇒ ∀w ∈ Σ∗. π∗(τ∗(u),w) = π∗(τ∗(u′),w) Def. of π∗

⇐⇒ τ∗(u) ≡ τ∗(u′) Def. 6.11

Equivalent states have the same distribution:

Proposition 6.3. ∀q, q′ ∈ Q. q ≡ q′ Ô⇒ π(q) = π(q′).

Proof.

π(q) = π∗(q, λ) by Def. 6.9 and Def. 6.7

= π∗(q′, λ) by hypothesis q ≡ q′ and Def. 6.11

= π(q′) by Def. 6.9 and Def. 6.7

Moreover, the following result shows ≡ is a right congruence with respect to the
transition function:

Proposition 6.4. ∀q, q′ ∈ Q,σ ∈ Σ. q ≡ q′ Ô⇒ τ(q, σ) ≡ τ(q′, σ).

51

Proof. Let q ≡ q′, σ ∈ Σ, u ∈ Σ∗.

π∗(τ(q, σ),w) = π(τ∗(τ(q, σ),w)) by Def. 6.9

= π(τ∗(q, σw)) by Def. 6.8

= π∗(q, σw) by Def. 6.9

= π∗(q′, σw) by hypothesis q ≡ q′ and Def. 6.11

= π∗(τ(q′, σ),w) by Def. 6.9 and Def. 6.8

Hence, τ(q, σ) ≡ τ(q′, σ).

6.3 Quotient PDFA

Given a PDFA A, a state q is reachable if q = τ∗(u) for some string u ∈ Σ∗. Any
such u is called an access string of q. We denote reach(Q) the set of reachable
states.

Let Q̇ ≜ [Jreach(Q)K] be the set of reachable equivalence classes defined by ≡
and q̇ ≜ [JqK] ∈ Q̇ be the class of q ∈ reach(Q). It follows from 6.3 and 6.4 that ≡
induces a quotient PDFA Ȧ:

Ȧ ≜ (Q̇, q̇in, π̇, τ̇) (6.12)

Where for every q̇ ∈ Q̇:

• the probability distribution is π̇(q̇) ≜ π(q), and

• the transition function is τ̇(q̇, σ) ≜ [Jτ(q, σ)K] for any σ ∈ Σ.

Corollary 6.1. ∣[JΣ∗K]∣ = ∣Q̇∣.

Proof. Let φ ∶ [JΣ∗K]Ð→ Q̇ be φ([JuK]) ≜ [Jτ∗(u)K]. From Prop. 6.2, φ is bijective.

Proposition 6.5. For every PDFA A, Ȧ computes the same function as A.

Proof. We prove by induction on the length of u ∈ Σ∗ that for all q, q′ ∈ Q, if q ≡ q′
then P (u∣q) = P (u∣q′) for every u ∈ Σ∗.

Base case u = λ.

P (λ∣q) = π(q)($) by Def. 6.4

= π(q′)($) by Prop. 6.3

= P (λ∣q′) by Def. 6.4

Inductive step u = σu′.

P (σu′∣q) = π(q)(σ) ⋅ P (u∣τ(q, σ)) by Def. 6.5

= π(q′)(σ) ⋅ P (u∣τ(q, σ)) by Prop. 6.3

= π(q′)(σ) ⋅ P (u∣τ(q′, σ)) by Prop. 6.4 and ind. hyp.

= P (σu′∣q′) by Def. 6.5

Hence, P (u∣q̇in) = P (u∣qin).

Therefore, ≡ can be extended to PDFA, where for every PDFA A and B:

A ≡ B ⇐⇒ qAin ≡ qBin (6.13)

Corollary 6.2. A ≡ B implies fA = fB.

Proof. Let u ∈ Σ∗.

fA(u) = P (u∣qAin) by Def. 6.6

= P (u∣qBin) by Prop. 6.5 and qAin ≡ qBin
= fB(u) by Def. 6.6

The converse of Cor. 6.2 does not hold in general. Consider for instance PDFA
A and B in Figure 6.2. We have that fB((ab)n+1) = (0.1 ⋅ 0.2)(0.2 ⋅ 0.1)n ⋅ 0.3 =
(0.1 ⋅ 0.2)n+1 ⋅ 0.3 = fA((ab)n+1), for n ≥ 0. For any other string u ≠ (ab)n+1,
fA(u) = fB(u) = 0. Hence, A and B compute the same function, that is, fA = fB.
However, A /≡ B.

53

q0

0

q1

0
q2

0.3

q3

0

a/0.1

b/0.9
b/0.2

a/0.8

a/0.1

b/0.6

a, b/0.5

q′0
0

q′1
0

q′2
0.3

q′3
0

q′4
0

a/0.1

b/0.9
b/0.2

a/0.8

a/0.2

b/0.5

a, b/0.5

b/0.1

a/0.9

Figure 6.2: PDFA A (left) and B (right).

6.4 Minimality

A PDFA is minimal if any other PDFA that computes the same function has no
less states. The simple PDFA in Figure 6.1 is minimal since clearly the function
cannot be computed by a PDFA with a single state.

Based on ≡ we define a notion of minimality as follows. A PDFA A is said to
be ≡-minimal if for every q, q′ ∈ Q, q /≡ q′. By definition, for every PDFA A, Ȧ is
≡-minimal. In other words, a PDFA is ≡-minimal if it is equal to its quotient up
to isomorphism.

Proposition 6.6. Every minimal PDFA A is also ≡-minimal.

Proof. Suppose that A is not ≡-minimal. Then, there are states in A which are
equivalent. Thus, Ȧ, which computes the same function as A, has strictly less
states than A, which contradicts the hypothesis.

The converse does not hold in general. A and B in Figure 6.2 are both ≡-
minimal because all states have different probability distributions. But B is cer-
tainly not minimal because it has more states than A.

6.5 Equivalences between distributions

Let S ⊆ ∆(Σ$) × ∆(Σ$) be an equivalence relation. We write η =S η′ instead of
S(η, η′), and J∆(Σ$)KS , respectively JηKS , to denote the quotient of ∆(Σ$) induced
by S, and the class of η. GivenM, S induces the equivalence relation ≡S⊆ Σ∗×Σ∗

defined as:

u ≡S u′
△⇐⇒ ∀w ∈ Σ∗.M(uw) =SM(u′w) (6.14)

We write [JΣ∗K]S for the set of equivalence classes defined by ≡S and [JuK]S for the
class of u ∈ Σ∗. Indeed, ≡S is a right congruence with respect to concatenation of
a symbol:

Proposition 6.7. ∀u,u′ ∈ Σ∗. u ≡S u′ Ô⇒ ∀σ ∈ Σ. uσ ≡S u′σ.

Proof. Let u ≡S u′ and σ ∈ Σ. Then for any w ∈ Σ∗ we have M((uσ)w) =
M(u(σw)) ≡SM(u′(σw)) =M((u′σ)w).

Naturally, we can say that two language models M1 and M2 are equivalent
modulo S:

M1 ≡SM2
△⇐⇒ ∀u ∈ Σ∗.M1(u) =SM2(u) (6.15)

This implies that M1 and M2 induce the same equivalence relation over Σ∗.
We say that:

M is S−regular
△⇐⇒ [JΣ∗K]S is finite (6.16)

Several equivalence relations S are of interest. One such equivalence is equal-
ity modulo quantization [36], denoted =κ, where κ ∈ N, κ ≥ 1, is the quantization
parameter. This equivalence is motivated by the need to cope with small discrep-
ancies between distributions. For n ∈ N, 0 ≤ n < κ − 1, we define the quantization
interval Inκ to be the left-closed right-open interval [nκ−1, (n + 1)κ−1), and for
n = κ − 1, to be the closed interval [nκ−1,1]. For x ∈ R, JxKκ is the interval Inκ
such that x ∈ Inκ . For x, y ∈ R, x =κ y if JxKκ = JyKκ. For η, η′ ∈ ∆(Σ$), η =κ η′ if
Jη(σ)Kκ = Jη′(σ)Kκ for all σ ∈ Σ$.

Other equivalences are related to the purpose a language model is used for. For
instance, for anomaly detection, the classification approach proposed by [18] relies
on comparing each symbol in the sequence with the top-r most likely symbols
predicted by the model. Let rank (η) ∶ Σ$ → N be the ranking of symbols σ ∈

55

Σ$ induced by their probability η(σ): the symbol with the greatest probability
has rank 1, the second best has rank 2, and so on, where symbols with equal
probability have the same rank. We denote rank r the restriction to the first r
ranked symbols. The top-r ranked symbols are given by the function: topr(η) ≜
{σ ∈ Σ$ ∣ rank (η)(σ) ≤ r}. These functions induce the following equivalences
between distributions: η =rankr η′ if rank r(η) = rank r(η′), and η =topr η′ if topr(η) =
topr(η′). A string u = u1 . . . un ∈ Σ∗ is classified as anomalous byM if there exists
i ∈ [1 . . . n] such that ui /∈ topr(M(u[i − 1])), where for i ≥ 1, u[i] ≜ u1 . . . ui and
u[0] ≜ λ, otherwise it is classified as normal. Therefore, two language models
which are ≡topr -equivalent will classify sequences the same way. Moreover, ≡rank -
equivalence implies ≡topr -equivalence for every cutoff threshold r.

η0 η1 η2 η3 η4

0 7/16 6/16 6/16 4/16 2/16
1 6/16 7/16 3/16 2/16 4/16
$ 3/16 3/16 7/16 10/16 10/16

Table 6.1: Probability distributions

To illustrate the above equivalences, let us consider the distributions in Tab. 6.1.
Quantization with κ = 2 results in two classes corresponding to η0 =κ η1 =κ η2 and
η3 =κ η4. For rank there are four classes since η0, η1, η2 and η4 have all different
rankings, and η2 =rank η3. In the case of top1 we obtain three classes: for η0 and
η1, the top ranked symbol is 0 and 1, resp., while for η2, η3 and η4 it is $.

0
●

1●

$
●

η0
●
η1●

η2
●

η3
●
η4●

0
●

1●

$
●

η0
●
η1●

η2
●

η3
●
η4●

0
●

1●

$
●

η0
●
η1●

η2
●

η3
●
η4●

Figure 6.3: From left to right: =κ, rank and top1 equivalence classes, respectively.

In Fig. 6.3 the triangle represents the simplex of distributions ∆(Σ$) and the
partitions the respective equivalence classes in the example of Tab. 6.1. For a
distribution (a point in the triangle) the probability of each symbol is given by the
distance to the side opposite to the vertex representing that symbol.

6.6 Equivalences in the case of PDFA

Given a PDFA A, it is possible to get a congruence over the set of states for any
equivalence relation on distributions. Let S be an equivalence relation.

Analogous to 6.11, we define the relation ≡S as:

∀q, q′ ∈ Q. q ≡S q′ ⇐⇒ ∀u ∈ Σ∗. π∗(q, u) =S π∗(q′, u) (6.17)

This implies the following relationship between states and strings:

Proposition 6.8. ∀u,u′ ∈ Σ∗. u ≡S u′ ⇐⇒ τ∗(u) ≡S τ∗(u′).

Proof. Analogous to Prop. 6.2

Equivalent states have equivalent distributions.

Proposition 6.9. ∀q, q′ ∈ Q. q ≡S q′ Ô⇒ π(q) =S π(q′)

Proof. Analogous to Prop. 6.3.

Moreover, ≡S is a right congruence over states with respect to the transition
function.

Proposition 6.10. ∀q, q′ ∈ Q. q ≡S q′ Ô⇒ ∀σ ∈ Σ. τ(q, σ) ≡S τ(q′, σ).

Proof. Analogous to Prop. 6.4.

Proposition 6.11. Let A1 and A2 be PDFA, A1 ≡S A2 ⇐⇒ q1
in ≡S q2

in

Proof. Since A1 and A2 are language models, by Def. 6.15, A1 ≡S A2 ⇐⇒
π∗1(u) =S π∗2(u) for all u ∈ Σ∗. By Def. 6.17, it means their initial states are
equivalent: q1

in ≡S q2
in.

6.6.1 PDFA quotient modulo S
We define Q̇ ≜ [Jreach(Q)K]S to be the set of equivalence classes of reachable states
defined by ≡S . Differently from 6.12, S does not define a unique quotient PDFA.
It follows that ≡S induces a set of quotient PDFA A/

≡
S
:

A/
≡
S
≜ {A′ ∣ A ≡S A′ ∧ ∣Q̇∣ = ∣Q′∣} (6.18)

57

A/
≡
S

is a set due to the fact that for some q̇ ∈ Q̇, π̇(q̇) may not be uniquely defined.

From Prop. 6.2, it follows that each q̇ ∈ Q̇ can be represented by an access
string u of any state in the class, i.e., q̇ = [Jτ∗(u)K]. We denote α(q̇) the designated
access string of q̇. W.l.o.g., α(q̇in) ≜ λ.

This allows us to define the quotient PDFA Ȧα ∈ A/
≡
S

:

Ȧα ≜ (Q̇, q̇in, π̇, τ̇) (6.19)

Where for all q̇ ∈ Q̇,

• π̇(q̇) ≜ π∗(α(q̇)), and

• τ̇(q̇, σ) ≜ [Jτ∗(α(q̇)σ)K] for all σ ∈ Σ.

It is worth noticing that all choices of α lead to isomorphic ≡S-equivalent PDFA.
Therefore, we omit α and simply write Ȧ.

Proposition 6.12. For all PDFA A, Ȧ is the smallest PDFA which is ≡S-equivalent
to A.

Proof. Let B = (QB, qBin, πB, τB) be another PDFA ≡S-equivalent to A. The com-
position of α ∶ Q̇ → Σ∗ and τ∗B ∶ Σ∗ → QB defines a map from Q̇ to QB. We show

it is one-to-one: if q̇, q̇′ ∈ Q̇ with τ∗B(α(q̇)) = τ∗B(α(q̇′)), then for any w ∈ Σ∗, we
have π∗(α(q̇)w) =S π∗B(α(q̇)w) = π∗B(α(q̇′)w) =S π∗(α(q̇′)w) and therefore q̇ ≡S q̇′.
Hence ∣Q̇∣ ≤ ∣QB ∣.

We say that a PDFA is ≡S-minimal if every pair of distinct states are not
≡S-equivalent.

We illustrate the construction of the quotient with the following example. Con-
sider the PDFA in Fig. 6.4(a), with Σ = {0,1}. For each state qi, i = 0, . . . ,4,
π(qi) = ηi defined in Tab. 6.1. Let us describe the quotient state set Q̇ in each case.
For =κ, with κ = 2, the quotient Q̇ has five elements. In fact, for j = 3,4, qj cannot
be in the same class as qi, for i = 0,1,2, since π∗(qi, λ) = π(qi) ≠κ π(qj) = π∗(qj, λ)
(Fig. 6.3). The following table shows that q0 /≡κ qi, for i = 1,2, q1 /≡κ q2, and q3 /≡κ q4:

π∗(q0,11) = η2 ≠κ η4 = π∗(q1,11) π∗(q0,1) = η1 ≠κ η4 = π∗(q2,1)
π∗(q1,1) = η2 ≠κ η4 = π∗(q2,1) π∗(q3,0) = η2 ≠κ η4 = π∗(q4,0)

In this case the quotient PDFA coincides with the original automaton.

q0

3/16

q1

3/16

q2

7/16

q3

10/16
q4

10/16

1/ 6
16

0/ 7
16

0/ 6
16

1/ 7
16

0/ 6
16 1/ 3

16

1/ 2
16

0/ 4
16

0/ 2
16 ,1/ 4

16

(a)

q̇0

3/16

q̇1

3/16

q̇2

7/16

q̇4

10/16

1/ 6
16

0/ 7
16

0/ 6
16

1/ 7
16

0/ 6
16

1/ 3
16

0/ 2
16 ,1/ 4

16

(b)

q̇0

3/16

q̇1

3/16

q̇2

7/16

1/ 6
16

0/ 7
16

0/ 6
16

1/ 7
16

0/ 6
16 ,1/ 3

16

(c)

Figure 6.4: (a) Original PDFA (b) rank -Quotient PDFA (c) top1-Quotient PDFA.

For rank the quotient Q̇ has four elements. Considering the empty word we see
that q0, q1 and q4 are the unique elements of their own classes. Let us show that q2

and q3 are equivalent. By definition we must show that π∗(q2,w) =rank π∗(q3,w) for
any string w. The proof is by induction. It holds for w = λ since π(q2) =rank π(q3).
Let w = 0u:

π∗(q2,0u) ≜ π∗(τ(q2,0), u) = π∗(q3, u) π∗(q3,0u) ≜ π∗(τ(q3,0), u) = π∗(q2, u)

By induction hypothesis π∗(q2, u) =rank π∗(q3, u), so π∗(q2,0u) =rank π∗(q3,0u). If
w = 1u, transitions by 1 from both q2 and q3 go to q4, so in this case the equality
is trivial. The quotient PDFA is shown in Fig. 6.4(b), for α(q̇0) = λ, α(q̇1) = 1,
α(q̇2) = 11, α(q̇4) = 111. For top1 a similar argument shows that the quotient Q̇ is
the one shown in Fig. 6.4(c).

59

7 Table-based PDFA learning
algorithms

In this chapter, we discuss a table-based learning algorithm (and some variants)
which consists of a learner that iteratively constructs a PDFA by interacting with
a MAT. This chapter introduces the use of an equivalence relation S for learning
quotient PDFA with respect to ≡S , and it will serve as a reference for comparison
in further chapters. Section 7.1 formally presents the algorithm and proves its
correctness and termination. Section 7.2 shows that other techniques like WL* [48]
may fail to ensure minimality and termination.

7.1 Algorithm L∗p

We present L∗
p, an abstract learning algorithm based on a data structure called

observation table. L∗
p is an adaptation of L∗ for PDFA.

The learner uses an observation table OT ⊆ Pre × Suf for storing outcomes
of MQ where Pre ⊂ Σ∗ is a prefix-closed set of prefixes (stored in row indices)
and Suf ⊂ Σ∗ is a suffixed-closed set of suffixes (stored in column indices). Pre is
divided in two parts, namely RED which are the rows used to construct states, and
BLUE which are the rows representing continuations of RED by a symbol [23].

L∗
p code structure is analogue to L∗ (Alg. 2). It expands OT through the use

of MQ until it becomes closed and consistent. Then it constructs a hypothesis
automaton. Finally it calls EQ with the proposed hypothesis. These steps are
repeated as long as EQ yields a counterexample, otherwise it stops and returns
the last hypothesis. The main differences arise in the definitions of closedness and
consistency needed for the expansion ofOT , and the PDFA construction algorithm.
These processes are explained below.

61

Observation table expansion

In order to define OT , we need to specify MQ. In this context the oracle MQ is:

MQ(s) ≜ π∗(s) (7.1)

The results of MQ, called observations, are stored in a table. Besides, the following
definitions will be helpful. For any set of strings W ⊆ Σ∗, we define:

∀q, q′ ∈ Q. q =WS q′ ⇐⇒ ∀w ∈W. π∗(q,w) =S π∗(q′,w) (7.2)

∀u,u′ ∈ Σ∗. u =WS u′ ⇐⇒ ∀w ∈W. π∗(uw) =S π∗(u′w) (7.3)

Clearly, Def. 7.3 is equivalent to:

∀u,u′ ∈ Σ∗. u =WS u′ ⇐⇒ τ∗(u) =WS τ∗(u′) (7.4)

It is straightforward to show that =WS is an equivalence relation. Notice that =Σ∗

S is
≡S . Hereinafter, J⋅KWS denotes the classes defined by equivalence =WS . For the sake
of readability, S and W are omitted when they are clear from the context.

Now, OT is filled as follows:

∀p ∈ Pre, s ∈ Suf . OT [p][s] ≜ MQ(ps) (7.5)

OT is expanded until closedness and consistency are reached:

Closedness ∀p ∈ BLUE, ∃p′ ∈ RED such that p =SufS p′.

Consistency ∀p, p′ ∈ RED, if p =SufS p′ then ∀σ ∈ Σ, pσ =SufS p′σ.

Quotient PDFA construction

Unlike L∗ where a unique row represents a state, in L∗
p a state is the class of

=SufS -related rows. Now it is possible to construct a hypothesis PDFA Â where:

• the set of states Q̂ is the quotient of Pre induced by =SufS , and

• the initial state q̂in ≜ JλK.

For each state q̂ we choose a unique representative in RED, denoted α(q̂). We
define α(q̂) to be any p ∈ RED such that JpK = q̂. W.l.o.g. we assume α(q̂in) ≜ λ.
Now, for state q̂, the transition function τ̂ and the probability distribution π̂ are
defined as follows:

• τ̂(q̂, σ) ≜ Jα(q̂)σK, and

• π̂(q̂) is any η ∈ ∆(Σ$) such that η =S OT [α(q̂)][λ].

Checking Equivalence

In this chapter, EQ is any algorithm that checks Proposition 6.11. This can be
done by adapting any algorithm for verifying ≡-equivalence of DFA, such as [59] or
the one used in Section 2.2.1.1, to checking ≡S on PDFA. Notice that this ensures
exact ≡S-equivalence. Nevertheless, this comparison can also be approximate, by
adapting PAC error to this context:

ESD,C(H) = Px∼D [C(x) /≡S H(x)] (7.6)

7.1.1 Correctness and termination

It is straightforward to prove that L∗
p is correct.

Proposition 7.1. For any PDFA A, if L∗
p with an exact EQ terminates, it com-

putes a PDFA Â ≡S A.

Proof. If L∗
p terminates with a hypothesis Â, it means EQ returns no counterex-

ample. Hence, Â ≡S A.

In the case of a PAC EQ, we have:

Proposition 7.2. The probability that at any stage algorithm L∗
p terminates with

an output Â that is not an ε-approximation of A is at most δ.

Proof. Analogous to Theorem 3.1.

To prove termination we need to show some auxiliary results. For this matter we
follow Angluin’s approach [25].

Lemma 7.1. If OT is closed and consistent then ∀p ∈ Pre, τ̂∗(p) = JpK.

63

Proof. By induction over p ∈ Pre.

Base case p = λ.

τ̂∗(λ) = q̂in by Def. 6.7

= JλK by construction

Inductive step p = p′σ.

τ̂∗(p′σ) = τ̂(τ̂∗(p′), σ) by Def. 6.8

= τ̂(Jp′K, σ) by inductive hypothesis

= Jα(Jp′K)σK by construction

= Jp′σK by consistency

Lemma 7.2. If OT is closed and consistent then ∀p ∈ Pre, s ∈ Suf . π̂∗(ps) =S
π∗(ps).

Proof. By induction in the length of s ∈ Suf .

Base case Let ∣s∣ = 0, i.e., s = λ.

π̂∗(pλ) = π̂∗(p) by definition

= π̂(τ̂∗(p)) by Def. 6.9

= π̂(JpK) by proposition 7.1

=S OT [p][λ] by construction

=S MQ(p) by Def. 7.5

=S π∗(p) by Def. 7.1

=S π∗(pλ) by definition

Inductive step Assume it holds for all s′ ∈ Suf , with ∣s′∣ = n. Let s = σs′, with

∣s′∣ = n.

π̂∗(pσs′) = π̂(τ̂∗(pσs′)) by Def. 6.9

= π̂(τ̂∗(τ̂∗(p), σs′)) by Def. 6.8

= π̂(τ̂∗(JpK, σs′)) by Lemma 7.1

= π̂(τ̂∗(τ̂(JpK, σ), s′)) by Def. 6.8

= π̂(τ̂∗(τ̂(Jp′K, σ), s′)) α(JpK) ≜ p′ ∈ RED

= π̂(τ̂∗(Jp′σK, s′)) by construction

= π̂(τ̂∗(τ̂∗(p′σ), s′)) by Lemma 7.1

= π̂(τ̂∗(p′σs′)) by Def. 6.8

= π̂∗(p′σs′) by Def. 6.9

=S π∗(p′σs′) by i.h: p′σ ∈ Pre ∧ ∣s′∣ = n
=S MQ(p′σs′) by Def. 7.1

=S OT [p′][σs′] by Def. 7.5

=S OT [p][σs′] by JpK = Jp′K
=S MQ(pσs′) by Def. 7.5

=S π∗(pσs′) by Def. 7.1

A PDFA A is said to be consistent with OT iff

∀p ∈ Pre, s ∈ Suf . π∗(ps) =S OT [p][s] (7.7)

Corollary 7.1. Let OT be closed and consistent, Â be the PDFA built from OT ,
and A be a PDFA consistent with OT : ∀p ∈ Pre, s ∈ Suf . π∗(ps) =S π̂∗(ps).

Proof.

π∗(ps) =S OT [p][s] by Def. 7.7

=S π∗(ps) by Def. 7.5 and Def. 7.1

=S π̂∗(ps) by Lemma 7.2

Lemma 7.3. Let OT be closed and consistent and A be a PDFA consistent with
OT : ∀p, p′ ∈ Pre. JpK = Jp′K Ô⇒ τ∗(p) =SufS τ∗(p′).

Proof.

JpK = Jp′K Ô⇒ ∀s ∈ Suf . π∗(ps) =S π∗(p′s) by Def. 7.3

Ô⇒ ∀s ∈ Suf . OT [p][s] =S OT [p′][s] by Def. 7.5 and Def. 7.1

Ô⇒ ∀s ∈ Suf . π∗(ps) =S π∗(p′s) by Def. 7.7

Ô⇒ τ∗(p) =SufS τ∗(p′) by Def. 7.3

65

Lemma 7.4. Let OT be closed and consistent and Â be the PDFA built from OT .
Every PDFA A consistent with OT has at least the same number of states.

Proof. Let φ ∶ Q̂→ Q be such that φ(JpK) ≜ τ∗(p). We prove that φ is a one-to-one
morphism.

φ is one-to-one Suppose it is not. Then, there exists p, p′ ∈ RED such that
JpK ≠ Jp′K, and φ(JpK) = φ(Jp′K), that is, τ∗(p) = τ∗(p′). Therefore, for all
s ∈ Suf , τ∗(ps) = τ∗(p′s). Then, π∗(ps) = π∗(p′s). Thus, by Coro. 7.1,
π̂∗(ps) =S π̂∗(p′s), and so p =SufS p′, that is, JpK = Jp′K, which is a contradic-
tion.

φ is a morphism

φ(τ̂(q̂, σ)) = φ(τ̂(JpK, σ)) where p = α(q̂)
= φ(JpσK) by construction of Â

= τ∗(α(JpσK)) by definition of φ

=SufS τ∗(pσ) by Lemma 7.3

=SufS τ(τ∗(p), σ) by Def. 6.8

=SufS τ(φ(JpK), σ) by definition of φ

=SufS τ(φ(q̂), σ) p = α(q̂)

Corollary 7.2. Let OT be closed and consistent and Â be the PDFA built from
OT : ∣Q̂∣ ≤ ∣Q̇∣.

Proof. Let A ∈ A/
≡
S
.

A ∈ A/
≡
S
Ô⇒ A ≡S A By Def. 6.18

Ô⇒ qin ≡S qin By Prop. 6.11

Ô⇒ ∀s ∈ Σ∗. π∗(s) =S π∗(s) By Def. 6.17

Ô⇒ ∀p ∈ Pre, s ∈ Suf . π∗(ps) =S OT [p][s] By Def. 7.1 and Def. 7.5

Ô⇒ A is consistent with OT By Def. 7.7

Hence, by Lemma 7.4, ∣Q̂∣ ≤ ∣Q∣ = ∣Q̇∣.

Lemma 7.5. Let OTi be closed and consistent, γ ∈ Σ∗ a counterexample, and
OTi+1 the new table obtained by the algorithm. Then ∣Q̂i∣ < ∣Q̂i+1∣.

Proof. We have that γ is such that π̂∗(γ) ≠S π∗(γ). When adding γ and all its
prefixes and continuations, either:

1. A prefix p is added to Pre i+1 such that for all p′ ∈ REDi, Jp′K ≠ JpK. In this
case, either

• p is in REDi+1 because it is γ or a prefix of γ, or

• p is first added to BLUEi+1 and then it is moved to REDi+1 when
closing the table.

2. Otherwise, for all Pre i+1, there exists p′ ∈ REDi, Jp′K = JpK. That is, the
table remains closed. Suppose it is consistent. Then π̂∗(γ) =S π∗(γ) by
Lemma 7.2, because γ ∈ Pre i+1 and λ ∈ Suf i+1, which is a contradiction
because γ is a counterexample. Hence, it is not consistent. Exists p, p′ ∈
REDi+1 such that JpK = Jp′K but JpσK = Jp′σK for some σ ∈ Σ. Making the
table consistent consists in finding an s ∈ Suf i+1 such that OTi+1[pσ][s] ≠S
OTi+1[p′σ][s], and adding σs to Suf i+1. This will make p ≠Suf i+1S p′, or equiv-
alently JpK ≠ Jp′K.

This implies ∣Q̂i∣ < ∣Q̂i+1∣.

Proposition 7.3. For any PDFA A, L∗
p terminates.

Proof. Whenever a counterexample γ is returned by EQ at iteration i, Lemma 7.5,
implies the number of states of the next hypothesis Âi+1 strictly increases. More-
over, by Lemma 7.4, Âi+1 is the smallest PDFA which is consistent with OTi+1.
Therefore, by Coro. 7.2, ∣Q̂i+1∣ ≤ ∣Q̇∣, and if ∣Q̂i+1∣ = ∣Q̇∣ then L∗

p terminates because,

by Lemma 7.4 and Lemma 7.5, Âi+1 is in Ȧ, which implies Âi+1 ≡S A. Therefore,
L∗

p terminates in at most ∣Q̇∣ iterations.

Theorem 7.1. For any PDFA A, L∗
p with exact EQ terminates and computes a

PDFA Â ≡S A.

Proof. By Prop. 7.1 and Prop. 7.3.

Theorem 7.2. For any PDFA A, L∗
p with PAC EQ terminates and computes a

PDFA Â such that the probability of Â not being an ε-approximation of A is at
most δ.

Proof. By Prop. 7.2 and Prop. 7.3.

67

7.1.2 Columnar version L∗pCol

Following the ideas presented in [41], it is possible to avoid checking for consistency.
Each time a counterexample is found, rather than adding its prefixes to RED, its
suffixes are added to Suf . By doing so, the table remains consistent. Therefore,
elements from BLUE are added to RED only to ensure closedness. This happens
when for some p ∈ BLUE there is no p′ ∈ RED such that JpK = Jp′K. With this in
mind we developed a column expansion version of L∗

p that we called L∗
pCol.

7.2 Non-equivalence relations: t-tolerance

Previous work, such as WL* [48], addressed the issue of noise or variations in
the probability distribution of a state by introducing a tolerance parameter t ∈
[0,1]. Two distributions η, η′ ∈ ∆(Σ$), are defined to be t-similar, denoted η ≈t η
whenever L∞(η, η′) ≤ t where for any v, v′ ∈ Rn, L∞(v, v′) = maxi ∣v(i) − v′(i)∣.
Notice that ≈t is not an equivalence relation, as it is not transitive. Based on ≈t,
the following relation between states, called t-equality, is defined in [48]:

∀q, q′ ∈ Q. q ≈t q′ ⇐⇒ ∀s ∈ Σ∗. π∗(q, s) ≈t π∗(q′, s). (7.8)

Two PDFA A and B are t-equal, denoted A ≈t B, if qAin ≈t qBin. However, though
misleadingly called t-equality, ≈t is not an equivalence relation between states
because it is not transitive.

It is worth noticing that κ-equivalence entails t-equality for t = κ−1.

Proposition 7.4. For every q, q′ ∈ Q, if q ≡κ q′ then q ≈κ−1 q′.

Proof. q ≡κ q′ implies π∗(q, s) =κ π∗(q′, s) for all s ∈ Σ∗. Thus, ∣π∗(q, s) −
π∗(q′, s)∣ ≤ κ−1 for all s ∈ Σ∗. Hence, q ≈κ−1 q′.

Corollary 7.3. For every PDFA A and B, if A ≡κ B then A ≈κ−1 B.

Loosing equivalence by relaxing transitivity comes at a price. Notice that
several proofs of the auxiliary results to show termination of L∗

p rely on transitivity.
The following two examples pinpoint several places where the previous proofs fail
if we use ≈t instead of =S . Example 7.1 shows that Lemma 7.4 does not hold for
≈t, while Example 7.2 shows that Lemma 7.5 does not hold for ≈t.

Example 7.1. Consider the OT shown in Figure 7.1(Left) and let t be 0.15. OT
is closed and consistent. Any PDFA Â built from OT will have at least two states
because OT [λ][λ] /≈t OT [a][λ]. However, the PDFA depicted in Figure 7.1(Right)
is consistent with OT because π∗(λλ) ≈t OT [λ][λ], π∗(aλ) ≈t OT [a][λ], and
π∗(aaλ) ≈t OT [a][λ], but it has only one state.

λ

RED
λ [0.4, 0.6]
a [0.6, 0.4]

BLUE aa [0.4, 0.6]
q0

0.5

a/0.5

Figure 7.1: (Left) OT . (Right) A.

q0

0.1
q1

0.1
q2

0.1

a/0.4

b/0.5

a/0.5

b/0.4

a/0.48

b/0.42

Figure 7.2: Target PDFA A.

Example 7.2. Let us consider the target PDFA A shown in Figure 7.2 and let t be
0.09. The initial observation table, OT0 would be the one shown in Figure 7.3(left).
OT0 is not closed as there is no p ∈ RED such that OT0[p] ≈t OT0[a]. Once
the table is closed, we get OT ′

0, shown in Figure 7.3(right), which is closed and
consistent. At this point depending on the clustering technique, rows may be
grouped in two ways: 1) {λ, aa, b, ab} and {a}, or 2) {λ, aa} and {a, b, ab}, which
result in hypotheses PDFA Â1

0 and Â2
0, respectively (Figure 7.4).

λ
RED λ [0.1, 0.4, 0.5]

BLUE
a [0.1, 0.5, 0.4]
b [0.1, 0.48, 0.42]

λ

RED
λ [0.1, 0.4, 0.5]
a [0.1, 0.5, 0.4]

BLUE
b [0.1, 0.48, 0.42]
aa [0.1, 0.4, 0.5]
ab [0.1, 0.48, 0.42]

Figure 7.3: Observation tables OT0 (left) and OT ′
0 (right).

69

qλ
0.1

qa
0.1

a/0.4

b/0.5

a/0.5

b/0.4

qλ
0.1

qa
0.1

a/0.4

b/0.5

a/0.5

b/0.4

Figure 7.4: Hiptotheses PDFA Â1
0 (left) and Â2

0 (right).

In first case, the algorithm terminates with a PDFA Â1
0 ≈t A. However, in the

second one, Â2
0 /≈t A, with the the string ba being a counterexample γ. Processing

γ gives the observation table OT1, shown in Figure 7.5(left), which is closed but
not consistent. Making it consistent gives OT ′

1 (see Figure 7.5(right)).

λ

RED

λ [0.1, 0.4, 0.5]
a [0.1, 0.5, 0.4]
b [0.1, 0.48, 0.42]
ba [0.1, 0.5, 0.4]

BLUE

bb [0.1, 0.48, 0.42]
aa [0.1, 0.4, 0.5]
ab [0.1, 0.48, 0.42]
baa [0.1, 0.4, 0.5]
bab [0.1, 0.48, 0.42]

λ a

RED

λ [0.1, 0.4, 0.5] [0.1, 0.5, 0.4]
a [0.1, 0.5, 0.4] [0.1, 0.4, 0.5]
b [0.1, 0.48, 0.42] [0.1, 0.5, 0.4]
ba [0.1, 0.5, 0.4] [0.1, 0.4, 0.5]

BLUE

bb [0.1, 0.48, 0.42] [0.1, 0.5, 0.4]
aa [0.1, 0.4, 0.5] [0.1, 0.5, 0.4]
ab [0.1, 0.48, 0.42] [0.1, 0.5, 0.4]
baa [0.1, 0.4, 0.5] [0.1, 0.5, 0.4]
bab [0.1, 0.48, 0.42] [0.1, 0.5, 0.4]

Figure 7.5: Observation tables OT1 (left) and OT ′
1 (right).

Now, rows can only be grouped in the following way: {λ, b, bb, aa, ab, baa, bab}
and {a, ba}. This results in the hypothesis PDFA Â1

0 shown in Figure 7.4(left),
which has exactly the same number of states than the one obtained in the previous
iteration. Hence, Lemma 7.5 does not hold for ≈t, which hampers the proof of
termination.

8 A tree-based PDFA learning
algorithm

In this chapter we present a tree-based algorithm for learning PDFA that we will
call QNT (Quantization N-ary Tree Learner). In contrast to KV [60] (Kearns
and Vazirani) and TTT [46] (named after the three data structures it handles:
spanning Tree, discrimination Tree and discriminator Trie) which build a binary
tree, our algorithm handles general trees with arbitrary degree, similar to [61] for
Mealy machines. This structure is shown to be more compact than observation
tables, allowing for more efficient representations and updates, which entail more
performant learning algorithms.

8.1 N-ary tree

A tree T maintains a set Acc ⊂ Σ∗ of access strings and a set Dis ⊂ Σ∗ of distin-
guishing strings with the following properties:

Property 8.1. Each u ∈ Acc is bound to a unique leaf in T labeled with MQ(u).

Property 8.2. Every inner node is labeled with a string w ∈ Dis.

Property 8.3. The empty word λ belongs to both Acc and Dis. The root of T is
labeled with λ. Also, there is a leaf for λ.

Property 8.4. Arcs in T are labeled with classes in J∆(Σ$)K. Every outgoing arc
from an inner node is labeled with a different class.

Property 8.5. Strings in Acc and Dis are connected as follows: for every pair of
distinct strings u,u′ ∈ Acc, the string w ∈ Dis which is the lowest common ancestor
of u and u′ in T , denoted lca(u,u′), is such that M(uw) ≠S M(u′w). Therefore,
u /≡S u′.

71

λ

0

110
η3

(0,0,0)

111
η4

(0,0,1)

(0,0,1)

1

11

λ
η0

(0,0,0)

1
η1

(0,0,1)

(0,0,0)

11
η2

(0,0,1)

(0,0,0)

λ

λ
η0

(0,1,$)

1
η1

(1,0,$)

11
η2

($,0,1)

111
η4

($,1,0)

λ

λ
η0

0

1
η1

1

11
η2

$

Figure 8.1: From left to right: trees for Fig. 6.4(a-c), respectively.

Let φT be φT ∶ Acc → [JΣ∗K], with φT (u) = [JuK].

Proposition 8.1. φT is one-to-one.

Proof. Immediate from Property 8.5.

If S induces an infinite partition of ∆(Σ$), the degree of a node may be un-
bounded. Indeed, it may be infinite if [JΣ∗K] is infinite. Notice that this does not
occur for non-binary trees used for Mealy machines [61]. We will come back to
this issue later in Sec. 8.6 after we discuss the learning algorithm.

Fig. 8.1 shows the trees corresponding to the examples in Fig. 6.4. For =κ, with
κ = 2, the leafs of the tree in Fig. 8.1(a) correspond to the states of the PDFA of
Fig. 6.4(a), identified with their associated access strings: Acc = {λ,1,11,110,111}.
Every leaf is labeled with the probability distribution of the state. Tree arcs are
labeled with quantization classes, represented with their partition indexes. For
instance, (1,0,0) corresponds to the quantization class (I1

2 , I
0
2 , I

0
2), where the first

coordinate corresponds to the symbol 0, the second to 1, and the third to $. The
root λ of the tree has an arc for each one of the classes in which quantization parti-
tions the set of probability distributions of the states of the PDFA. In the example,
there are two, namely (0,0,0) and (0,0,1). The tree explains that the five states
are not ≡κ-equivalent. Indeed, even if there are states with =κ-equivalent distri-
butions, like for example q0 and q1, the tree shows how the set Dis = {λ,0,1,11}
distinguishes them: π∗(q0,11) ∈ (0,0,0) and π∗(q1,11) ∈ (0,0,1). Fig. 8.1(b) cor-
responds to the PDFA of Fig. 6.4(b) obtained with rank . In this case we label
the classes by their ranking, for example η0 ranks first the symbol 0, second the
symbol 1 and third the symbol $, so it belongs to the class labeled (0,1,$). Here,

Acc = {λ,1,11,111} and Dis = {λ}, respectively. Fig. 8.1(c) corresponds to the
PDFA of Fig. 6.4(c) obtained with top1. In this case we label the classes by their
top symbol, for example η2 ranks first the symbol $, so it belongs to the class
labeled $. Also, Acc = {λ,1,11} and Dis = {λ}.

T defines an equivalence =T⊆ Σ∗ ×Σ∗. Let ζu ⊆ Dis be the set of distinguishing
strings in the path from the root to u ∈ Acc:

u1 =T u2
△⇐⇒ ∃u ∈ Acc. ∀w ∈ ζu.M(u1w) =SM(uw) =SM(u2w) (8.1)

If v ∈ Σ∗ is =T -equivalent to some u ∈ Acc then v /≡S u′ for any other access string
u′ ≠ u. As a corollary, v can be =T -equivalent to at most one access string in T .

Proposition 8.2. Let u ∈ Acc, v ∈ Σ∗, u =T v. ∀u′ ∈ Acc. u′ ≠ u Ô⇒ [JvK] ≠ [Ju′K].

Proof.

u ≠ u′ Ô⇒ ∃w ∈ Dis . w = lca(u′, u) By Property 8.5

Ô⇒ M(u′w) ≠SM(uw) By Property 8.5

Ô⇒ M(u′w) ≠SM(vw) By u =T v and Def. 8.1

Hence, [JvK] ≠ [Ju′K].

8.2 sift operation

To find the =T -equivalent leaf (if exists) of v, we define the function sift(v) as
follows. sift starts at the root of T and proceeds recursively. If the current node is a
leaf u ∈ Acc, it returns u. Otherwise, let w ∈ Dis be the distinguishing string at the
current inner node. If there is an arc labeled JMQ(vw)K, sift recursively descends
through the arc to the subtree. Otherwise, it means MQ(vw) ≠S MQ(uw) for all
descendant leafs u of w. In such case, sift updates the tree as follows: it adds v to
Acc labeled with MQ(v) and a new arc from w to v labeled with JMQ(vw)K, and
it returns vsift updates are necessary since arcs are discovered on-the-fly because
J∆(Σ$)K may be unbounded. It is important to remark that, in case sift modifies
T , only its degree can grow but never its depth.

Proposition 8.3. For all v ∈ Σ∗, sift(v) returns a leaf u such that v =T u and
[JvK] ≠ [Ju′K] for all leafs u′ ≠ u. Also, sift maintains the properties of the (possibly
updated) tree.

Proof. Suppose sift(v) returns an existing leaf u. It means it recursively traversed
the path ζu from the root to u. Then, by Def. 8.1, v =T u, and by Prop. 8.2,

73

∀u′ ∈ Acc. u′ ≠ u Ô⇒ [JvK] ≠ [Ju′K]. Suppose sift(v) returns v after updating
the tree. Obviously, v =T v. Now, this case occurs because sift arrives at an
inner node with label w ∈ Dis for which there is no outgoing arc =S-equivalent to
M(vw). Then, [JvK] ≠ [Ju′K] for any descendant leaf u′ of the current inner node
because M(vw) ≠S M(u′w), and sift ensures w = lca(u′, v). Also, [JvK] ≠ [Ju′K] for
any other leaf u′ in the tree because M(vw′) ≠S M(u′w′) for w′ = lca(u′,w), and
sift guarantees w′ = lca(u′, v). Therefore, [JvK] ≠ [Ju′K] for all already existing leafs
u′. Moreover, the newly updated tree is such that every pair of distinct leafs is
distinguished by its lowest common ancestor and so φT is one-to-one.

8.3 build operation

Given T , build constructs a PDFA A ≜ (Q, qin, π, τ) where: Q ≜ {qu ∣ u ∈ Acc} with
α(qu) ≜ u; qin ≜ qλ; and for all qu ∈ Q, π(qu) ≜M(u), and for all σ ∈ Σ, τ(qu, σ) ≜ qu′
with u′ = sift(uσ). Whenever sift adds a new leaf, it is restarted with the updated
tree.

Proposition 8.4. 1) If build terminates, the output A is irreducible. 2) If [JΣ∗K]
is finite, ∣Q∣ is bounded by the size of [JΣ∗K]. 3) If one of J∆(Σ$)K or [JΣ∗K] is finite,
build terminates.

Proof. Since φT is one-to-one, q ≠ q′ Ô⇒ q /≡S q′. This implies that, if build
terminates, A is irreducible, and if [JΣ∗K] is finite, ∣Q∣ is at most the size of [JΣ∗K]
and also, by Prop. 8.3, build terminates. If J∆(Σ$)K is finite, the degree of T is
bounded by the size of J∆(Σ$)K. Since sift can only make T to grow in width, it
follows build terminates.

If either J∆(Σ$)K or [JΣ∗K] is infinite, T could grow without bound. We address
this issue in 8.6. Assume A is constructed. If T and A agree for some v ∈ Σ∗ but
differ in vσ for some σ ∈ Σ$ then [JvK] is not a leaf. Moreover, v and sift(v) are not
≡S-equivalent. Formally:

Proposition 8.5. Let v ∈ Σ∗, σ ∈ Σ. If sift(v) = α(τ∗(v)) and sift(vσ) ≠ α(τ∗(vσ))
then (1) v /∈ Acc, and (2) sift(v) /≡S v.

Proof. Let u1 = sift(v), u2 = sift(vσ), u′2 = α(τ∗(vσ)), and w = lca(u2, u′2).
(1) Suppose v ∈ Acc. By Prop. 8.3, u1 = v, and by construction, τ(qv, σ) = qu2. Be-
sides, τ∗(vσ) = τ(τ∗(v), σ) = τ(qv, σ). Then, τ∗(vσ) = qu2. So, u′2 = α(τ∗(vσ)) =
α(qu2) = u2 which contradicts the hypothesis u2 ≠ u′2. Hence, v /∈ Acc.
(2) (i) By Prop. 8.3, u2 = sift(vσ) implies vσ =T u2. So, M(vσw) =S M(u2w)

since w ∈ ζu2.
(ii) From u1 = α(τ∗(v)) and u′2 = α(τ∗(vσ)), it follows by construction of A that
u′2 = sift(u1σ). Then, by Prop. 8.3, u1σ =T u′2. So, M(u1σw) =S M(u′2w) since
w ∈ ζu′2.
Therefore, from M(u2w) ≠S M(u′2w), (i) and (ii) it follows that M(vσw) ≠S
M(u1σw). So, u1 /≡S v. Hence, sift(v) /≡S v.

8.4 update operation

The procedure update modifies T when EQ(A) returns a counterexample γ as
follows.

Let ui = sift(γ[i]) and u′i = α(τ∗(γ[i])). Since M(γ) ≠S π∗(γ), there is some
i such that ui ≠ u′i. Let j be the first such index. Therefore, Prop. 8.5 implies
γ[j − 1] /∈ Acc and uj−1 /≡S γ[j − 1]. Moreover, γjw distinguishes uj−1 and γ[j − 1]
with w = lca(uj, u′j).

With this new evidence, update adds γ[j−1] to Acc, and the leaf uj−1 is replaced
by an inner node γjw and two children, namely uj−1 and γ[j − 1].

Proposition 8.6. update maintains the properties of the tree.

Proof. Direct from update definition.

75

8.5 QNT algorithm

Algorithm 6: Tree-based learning algorithm.

Parameter: Equivalence relation S
Output : PDFA A

1 A← CreateInitialHypothesis(S);
2 γ ← EQ(A,S);
3 if γ=� then
4 return A;

5 T ← InitializeTree(γ,S);
6 while γ ≠ � do
7 A← build(T); ;
8 γ ← EQ(A,S);
9 if γ ≠ � then

10 T ← update(T, γ,S);

11 return A;

Algorithm 6 sketches the code. It starts creating an initial A, with a single state
qλ with a loop for each symbol and probability distribution MQ(λ). Then, it calls
EQ(A), which either returns � and terminates or a counterexample γ triggering
the initialization of T . The first instance of T has a root λ and two children, one
labeled λ and the other γ. In the main loop, Algorithm 6 uses T to build a PDFA
A, then calls EQ(A). If a counterexample is returned, T is updated and the loop
restarts. Otherwise, it terminates. Algorithm 6 learns an S-equivalent PDFA.

Proposition 8.7 (Correctness). If Algorithm 6 terminates, it outputs an irre-
ducible PDFA which is ≡S-equivalent to M.

Proof. Let A be the output of Algorithm 6. Then, A ≡SM since EQ(A) does not
return a counterexample. By Prop. 8.4(1), A is irreducible.

Proposition 8.8 (Strict progress). Let Ai be the PDFA built by Algorithm 6 at
iteration i. If EQ(Ai) ≠ � then Ai+1, if built, has strictly more states than Ai.

Proof. If EQ(Ai) ≠ �, update adds a new leaf to T . Hence, ∣Qi+1∣ > ∣Qi∣.

Corollary 8.1. Algorithm 6 always terminates if [JΣ∗K] is finite.

Proof. From Prop. 8.8, Prop. 8.4, Prop. 6.12, and Prop. 6.2.

Theorem 8.1. For any S-regular language modelM, QNT terminates and returns
a PDFA A, such that A ≡SM.

Proof. By Def. 6.16 and Cor. 8.1 QNT terminates. By Prop. 8.7, the output A,
fulfills A ≡SM.

8.6 Infinite equivalence classes

If either J∆(Σ$)K of [JΣ∗K] is infinite, Algorithm 6 is not guaranteed to terminate.
Indeed, even in the case that termination is theoretically certain, it may take too
long to finish. The learning algorithm could be forced to stop by imposing some
kind of bound to its execution.

[32] proposes finishing whenever the hypothesis automaton exceeds a maxi-
mum number of states or the string passed to a membership query is longer than
a certain length. If the length bound is reached, it may occur that some tran-
sitions are not properly defined because the corresponding destination state has
not yet been discovered. In such case, the last completely constructed automa-
ton is returned. The size condition is checked after the hypothesis automaton is
constructed, therefore it can only happen if the length one did not occur before.

[48] resorts to stopping conditions that depend on the algorithm’s data struc-
ture, together with an execution time bound. As for length cutoff, when time is
exhausted, some transitions may have a missing destination. In this case, their
algorithm uses the state whose probability distribution is the closest one, with
respect to an appropriate distance.

Here, we adopt the above three stopping criteria. When any of them occurs,
an exception is launched and the algorithm proceeds to constructing a hypothesis
PDFA. Possibly, a missing destination of a transition labeled σ from a state q
could be found during the execution of sift(α(q)σ) if there is no outgoing arc
JMQ(α(q)σw)K for some inner node w. In normal mode, this situation results in
T to be updated with a new leaf and the construction to be restarted. In exception
mode, however, state q is connected by σ to a dummy unknown state which acts as
a sink. A hypothesis with a reachable unknown state is called a partial PDFA to
stress the fact that the learner would have produced a larger (possibly complete)
PDFA provided more resources were given. Actually, by Prop. 8.4(3), if J∆(Σ$)K
is finite, as it is the case for quantization, rank and topr, for instance, it could
be possible to let build run until termination, and so produce a PDFA with no
unknown state. However, this may be too costly.

77

8.7 Language model equivalence

Indeed, the idea of partial PDFA can be used for other purposes. Consider the
partial function f defined as follows: f(w) ≜M1(w) if M1(w) =S M2(w), oth-
erwise f(w) ≜ � (undefined). Clearly, f is total and equal to M1 if and only if
M1 ≡SM2. As before, Algorithm 6 can be adapted to produce PDFA with a state
for �. Therefore, learning a PDFA from f will either give the quotient ofM1 and
prove the equivalence, or return a partial PDFA having a � state and so proving
they are not equivalent, or return a partial PDFA with no �-state which results in
an inconclusive verdict.

9 Application to language models

The motivation of this chapter is twofold. First, we asses the performance gain
of QNT with respect to observation table based techniques such as L∗

p. Second,
we study the impact of different equivalence relations on various metrics when
learning PDFA from neural language models.

9.1 Synthetically generated PDFA

In order to assess QNT performance, we carry out a series of experiments using
L∗

p as a reference. We compared the learning algorithms on randomly generated
PDFA. The generation technique works in two steps. First, it constructs random
DFA over Σ. Second, DFA are transformed into PDFA by assigning a probability
distribution over Σ$ to every state. The first step uses the method described
in [62] based on results from [63]. Let n be the desired number of reachable states
of a DFA, called its nominal size. The method consists in randomly generating
DFA of a total of n ⋅m ⋅ ρ−1

m possibly unreachable states, for m = ∣Σ∣, where ρm =
m−W0⋅m⋅e−m andW0 is the Lambert-W function, and then computing its accessible
part by a depth-first traversal. It is important to remark that this method does
not guarantee the actual size of the accessible part to be exactly n, but to be
normally distributed around n. To obtain exactly n accessible states, the method
could be repeated using a rejection algorithm. However, in practice, this proved
to be very inefficient, being almost impossible to generate DFA of accessible size
bigger than 100 in reasonable time. All experiments threw perfect scores for all
computed metrics (word error rate, normalized discounted cumulative gain, log
probability error [48]) for all algorithms on the same test set of strings. Therefore,
the analyses of the experimental results are mainly focused on execution time and
structure size. For ease of comparison, figures show trend lines. The experiments
confirm notable execution time gains achieved by QNT.

79

9.1.1 Experiment 1

In this experiment we compared QNT and L∗
p. For this, 10 random PDFA over

a binary alphabet (m = 2) of nominal sizes n = 100,200,300 were generated, and
each algorithm was run 10 times for each PDFA. For QNT κ = 1000, and for L∗

p,
t = κ−1 (Prop 7.4). Fig. 9.1a shows learning time medians for every actual size.
Notably, L∗

p execution time grows much faster than QNT’s. Indeed, QNT achieves
a speedup of approximately 0.2n, reaching around 60x for the biggest PDFA (see
Fig. 9.3a). This experiment also showed that the size of L∗

p’s observation table
grows bigger than QNT’s tree which partly explains the gains in execution time
(Fig. 9.1b).

(a) Execution time. (b) Structure size.

Figure 9.1: Experiment 1

9.1.2 Experiment 2

In this experiment 10 random PDFA of nominal size n = 100 were generated for
alphabet size m = 2,4,8,16,32. We compared QNT and L∗

p with κ = 1000 and
t = κ−1. Each algorithm was run 10 times for each PDFA. Fig. 9.2a shows the
learning time medians for every alphabet size. As it can be seen L∗

p seems to be
more sensitive to the growth in the alphabet size.

(a) Experiment 2. (b) Experiment 3.

Figure 9.2: Experiments 2 and 3.

9.1.3 Experiment 3

In this experiment, we compare the algorithms for different values of tolerance and
quantization parameter: κ = 10,100,500,1000,2000,3000, with t = κ−1. For every
parameter configuration 10 random PDFA of nominal size n = 300 and alphabet
size m = 2 were generated, and each algorithm was run 10 times for each PDFA.
Fig. 9.2b shows the median learning times. As it can be seen both algorithms
appear to stabilize its execution time after some parameters sizes (κ = 500, t =
1/1000).

9.1.4 Experiment 4

Here, QNT was evaluated on bigger nominal sizes n = 1000,2000,5000, fixing
κ = 1000 and m = 2. For every parameter configuration, 10 random PDFA were
generated and each algorithm was run 10 times for each PDFA. Fig. 9.3b shows
median learning times. Clearly, QNT still manages to learn PDFA from systems
that are intractable for L∗

p. Assuming a linear speedup of 0.2n from Experiment
9.1.1, the learning time of a PDFA of size 5000 would be almost a month for L∗

p.

81

(a) Experiment 1 (Speedup).

(b) Experiment 4.

Figure 9.3: Experiments 1 (Speedup) and 4.

9.1.5 Experiment 5

In previous experiments it is noted that nearly all states in the randomly gen-
erated PDFA have distinct next symbol distributions, that is, most states are
distinguished by λ, thus producing shallow tree structures (depth 1 or 2). In order
to analyze cases where several states have the same next symbol distribution, the
PDFA random generation algorithm is parameterized by the number of different
distributions to use, denoted d. Then, the algorithm first randomly generates a
set of d different distributions and then labels each state by uniformly picking one
distribution in this set.

For this experiment, 10 random PDFA over a binary alphabet (m = 2) of
nominal size n = 300 were generated for different values of d (ranging from 2 to
16). Each algorithm was run 10 times for each PDFA. For QNT, κ = 1000, and
for L∗

p, t = κ−1 (Prop 7.4). Fig. 9.4a shows learning time medians for every d
value. Notably, L∗

p execution time still grows faster than QNT’s. The only case
where QNT achieves worse learning time than L∗

p is for d = 2. Otherwise, QNT
significantly benefits from the increase in d.

(a) Execution time. (b) Structure size.

Figure 9.4: Experiment 5.

Regarding structure sizes, L∗
p’s observation table grows bigger than previous

experiments, being negatively affected by smaller values of d. However QNT main-
tains similar sizes to those observed in experiment 1 (Fig. 9.4b).

83

9.2 Neural language models

We analyze case studies from genetics and cybersecurity application domains, using
several equivalences in order to evalute the impact on various metrics, such as
execution time, model size, and error, when learning PDFA from neural language
models. Those models were trained from publicly available data. Similar to [64],
that training data is also used to generate random samples for evaluating EQ.
Specifically, in order to do this, the oracle uses bootstrap sampling [65] from the
given data.

9.2.1 TATA-boxes in DNA promoters

DNA promoter sequences control the activation or repression of genes. It is a
sequence of length 6 characterized by totalling more A’s and T’s than C’s and
G’s. Several works have applied deep learning for classification tasks involving

S ∣Q∣ (d,n) ∣J∆(Σ$)K∣ EQ Sec.
=10 811 (6, 17) 5 × 104 102 328.0

rank 299 (6, 19) 120 86 130.3
top1 79 (10, 23) 5 55 65.6

TATA 54 (13, 32) 2 54 71.1

Table 9.1: TATA-Box results

TATA-boxes, e.g., [19]. Here, we use an LSTM-based language model trained on
1400 TATA-boxes of human DNA from EPDnew1. Table 9.1 shows the results for
top1, rank , =10 and a TATA-specific equivalence induced by PM[T ∣w]+PM[A∣w] ≥
PM[G∣w]+PM[C ∣w]. PAC parameters are ε = δ = 0.05. All experiments terminated
with a successful EQ. Thus, A ≡SM in the PAC sense. Column (d,n) shows the
depth d and the number of internal nodes n of T . Column ∣J∆(Σ$)K∣ gives an
approximation of the number of classes defined by S. Note that coarser S tend to
generate smaller Q.

1https://epd.epfl.ch//index.php

https://epd.epfl.ch//index.php

Figure 9.5: HDFS results by time bound

9.2.2 Language model of normal HDFS traces

We trained an LSTM-based language model on a dataset of 4800 normal Hadoop
File System (HDFS) logs from [18], which are sequences from a set of 30 symbols
including $.

S ∣Q∣ (d,n) ∣J∆(Σ$)K∣ EQ Unk. Err.
top3 1616 (9, 56) 4.1 × 103 153 0.00 0.23

rank 3 2008 (6, 43) 2.4 × 104 105 0.02 0.39
top6 2087 (8, 40) 5.9 × 105 87 0.00 0.66

rank 6 8837 (2, 1) 4.3 × 108 1 0.91 1.00
=3 660 (14, 148) 1.0 × 1014 326 0.00 0.03
=5 3014 (6, 20) 4.7 × 1020 78 0.01 0.80
=10 7289 (2, 1) 5.0 × 1029 1 0.01 0.62

Table 9.2: HDFS results

There, the language model is used to classify logs: if there is a prefix for which
its next symbol is not one of the topr symbols, the log is consider abnormal.
Otherwise, it is classified as normal.

85

Table 9.2 shows the results for rank , top and =κ for several values of r and
κ, with parameters ε = δ = 0.05. All experiments exhausted a time bound of
10K seconds and generated partial PDFA. To assess the error of the outputs, we
sampled a test set of size 1K from available data. “Unk” shows the part of the
error corresponding to the fraction of logs in the test set for which A reaches the
unknown state. This error is included in the total test error shown in column “Err”.
We observe that coarser equivalences generated automata with fewer states and,
generally, smaller total errors. It is of interest to analyze how ∣Q∣, EQ, “Unk”
and “Err” evolve as the execution time augments. The algorithm was run for
equivalence =3 with increasing time bounds ranging from 120 to 12K seconds and
measure them. In these experiments, “Unk” was always 0. The other obtained
results are depicted in Fig. 9.5. The curves show that ∣Q∣ (as stated in Prop. 8.8)
monotonically increases while “Err” decreases, even if there are some spikes.

9.2.3 Detection of malicious web requests

Here, we study the equivalence between two character-level Transformer language
models presented in [66], pre-trained with malicious web requests from [67]. Σ
consists of 256 ASCII characters. M1 has 27K parameters and M2 has 6.5M
but both have an accuracy greater than 0.97 for predicting the next character
given the last 10 observed ones. We ran the algorithm for 60 seconds with the goal
of learning whether they were equivalent for top1.

λ
BOTTOM

[(1, 37), (39, 120),
(122, 255)]

51,55,33,38
[51]

38

UNKNOWN121

[(1, 37), (39, 40),
(42, 53), (55, 71),
(74, 85), (87, 87),

(89, 122), (124, 255)]

[(38, 38), (54, 54),
(123, 123)]

[(41, 41), (72, 73),
(86, 86), (88, 88)]

[(1, 255)]

Figure 9.6: Automaton showing both Transformers are not top1-equivalent

Fig. 9.6 depicts a simplified visualization of the returned PDFA where proba-
bility distributions are omitted and multiple transitions with same end points are
collapsed into a single one labeled with a set of intervals of symbols. It shows that
both Transformers are not top1-equivalent since M1(λ) ≠top1

M2(λ). However,
they agree in the class of access string 51,55,33,38 corresponding to 51 as the
most probable symbol. It is worth noting that attempting to learn M1 and M2

resulted in high Unk and Err even after a 12K secs.

10 Related Work and Conclusions

10.1 Related work

This thesis presents a general framework for learning regular models from black-
box systems with applications to the analysis and verification of neural language
acceptors and neural language models.

Verifying properties over sequence processing neural networks has previously
been addressed in the literature. For binary predictors, several works have tackled
this issue through a model, then verify approach by learning some kind of automata
that approximates the formal language defined by the network and is amenable for
automated verification. Literature for the general problem of learning DFA and
other models from RNNs is thoroughly analyzed in the related work section of my
Master’s Thesis [33], and a recent survey has been pulished by Bollig et al. [68].
A post-learning approach for adversarial accuracy verification is presented in [69]
based a white-box rule-extraction technique to extract DFA from RNN. Experi-
mental evaluation is carried out on Tomita grammars [54], which are all regular
languages over the {0,1}-alphabet. That approach does not offer any guarantee
on how well the DFA approximates the RNN. In [70] white-box RNN verification
is done by generating a series of abstractions. Specifically, the method strongly
relies on the internal structure and weights of the RNN to generate a feed-forward
network (FFNN), which is proven to compute the same output. Then, reachabil-
ity analysis is performed resorting to Linear Programming (LP) and Satisfiability
Modulo Theories (SMT) techniques.

If we look into the black-box approaches, the work in [28, 29] presents a post-
learning technique that relies on active automata learning. This technique is
called property-directed-verification, as the model extraction is intertwined with
the checking process. Differently to this thesis, the approach to resolve EQ is based
on Hoeffding’s inequality bound [71] instead of PAC, and the set of properties H
is restricted to DFA. It is important to remark that, at the time of carrying out

87

the experiments presented in Chapter 5, which appeared in [26,27], there were no
other available tools specifically devoted to verifying neural acceptors in a black-
box setting, because property-directed-verification [28] was published afterwards.

A closely related but different area is statistical model checking (SMC), where
the system under analysis and/or the property is stochastic [72,73]. The objective
of SMC is to check whether a stochastic system, such as a Markov decision process,
satisfies a property with a probability greater or equal to a certain threshold θ. The
problem we address in this thesis is different as neither the system nor the property
is stochastic. Our approach provides statistical guarantees that the language of
an RNN C is included in another language (the property ψ) or provides a PAC
model of the language C ∩ψ, along with actual counterexamples showing it is not.

For general neural language models, the literature on MAT learning automata
is more scarce. The algorithms proposed in [74,75] rely on MQ that compute the
probability of a string and on an observation table to store the results. In [76],
MQ return state distributions, that is, the probability that the target probabilistic
automaton enters a state after reading an input string. This requires knowing the
number of states of the target in advance. These works focused on theoretical
results without implementations of them being publicly available. In [77], learning
PDFA is a building block of an assume-guarantee framework for verification of
probabilistic systems. MQ asks for the probability of accepting a string and
results are stored in an observation table. However, the overall goal is not to learn
a PDFA equivalent to a hidden target but only an appropriate assumption for
doing a compositional proof of correctness. To achieve this, the algorithm uses an
EQ that relies on language inclusion of PDFA and probabilistic model-checking.
All these works rely on exact equality of MQ outcomes.

To deal with noise in distributions, WL∗ [48] proposes a non-equivalence sim-
ilarity relation between probability distributions and develops an algorithm to
learn similar hypotheses according to it. Note that WL∗ uses clustering to group
responses to MQ stored in the table. WL∗ extends L∗ to learn a probabilistic
deterministic finite automaton (PDFA) [58] through a non-transitive similarity re-
lation between next-symbol probability distributions. It is important to remark
that it was too costly to evaluate WL∗ outside the experiments presented in [48]
with the publicly available code, since it would have required rewriting much of the
code base without documentation. As a matter of fact, this motivated the imple-
mentation of L∗

p inside the Neural-Checker [11] tool. Besides, [48] does not provide
a proof of minimality nor termination of WL∗, and as it is shown in Section 7.2
whether such properties hold is not at all clear.

Other recent related work is the one briefly presented in [78], which adapted

L∗ and KV [60] algorithms to directly learn the probability of a string. That is,
rather than considering a language model as function from Σ∗ to ∆(Σ$), they view
it as a function from Σ∗ to [0,1]. Indeed, this makes a significant difference with
the approach developed in this thesis.

It is worth mentioning related work in the context of passive learning, in par-
ticular the so-called spectral learning techniques applied to weighted automata, a
class of models that includes PDFA. Recently, [79,80] proved the relationship one-
to-one between second-order recurrent neural networks and weighted automata,
this result has deep implications in the expressivity and training of such models.
Besides, [81] apply spectral learning to recurrent neural networks in a black-box
setting.

10.2 Conclusions

The framework of this thesis extends initial work from [32] where an active PAC-
learning approach for learning regular models that are approximately correct with
respect to neural networks is presented. Our algorithms are extensions of Angluin’s
L∗ and other active learning algorithms where a bound on the complexity of the
proposed models or computing budget is set to guarantee termination in applica-
tion domains where the language to be learned may not be a regular one. We also
studied the error and confidence of the hypotheses obtained when the algorithm
stops by reaching a complexity bound. Chapters 4 and 5 explored the problem
of checking properties of neural acceptors devoted to sequence classification over
symbolic alphabets in a black-box setting. The approach is not restricted to any
particular class of neural network or property. Besides it is on-the-fly because it
does not construct a model of the RNN on which the property is verified. The key
idea is to express the verification problem on an RNN C as a formula Ψ(C) such
that its language is empty if and only if C does not satisfy the requirement and
apply a PAC-learning algorithm for learning Ψ(C). On one hand, if the resulting
DFA is empty, the algorithm provides PAC-guarantees about the language Ψ(C)
being itself empty. On the other, if the output DFA is not empty, it provides an
actual sequence of C that belongs to Ψ(C). Besides, the DFA itself serves as an
approximate characterization of the set of all sequences in Ψ(C). For instance, our
method can be used to verify whether an RNN C satisfies a linear-time temporal
property P by checking C ∩P . Since the approach does not require computing the
complement, it can also be applied to verify nonregular properties expressed, for
instance, as context-free grammars, and to check equivalence between RNN.

On-the-fly checking through learning has several advantages with respect to

89

post-learning verification. When the learnt language that approximates Ψ(C) is
nonempty, the algorithm provides true evidence of the failure by means of concrete
counterexamples. In addition, the algorithm outputs an interpretable character-
ization of an approximation of the set of incorrect behaviors. Besides, it allows
checking properties, with PAC guarantees, for which no decision procedure exists.
Moreover, the experimental results on a number of case studies from different ap-
plication domains provide empirical evidence that the on-the-fly approach typically
outperforms post-learning verification if the requirement is probably approximately
satisfied. Last but not least, this work also improved theoretical results regarding
the probabilistic guarantees of Bounded-L∗ [32], namely, Theorem 1 provides an
upper bound of the error incurred by any DFA returned by the algorithm.

On the other hand, Chapters 6, 7, 8 and 9, address the problem of learning
quotient language models modulo arbitrary equivalence relations on distributions.
Similar to Myhill-Nerode congruence for regular languages, for any equivalence
on distributions S a language model induces a congruence over strings, and leads
to correspondences between language models and automata, parameterized by S.
This leads to quotient models that abstract away details which are unnecessary for
the purpose of the analysis. The size of such models is likely to be smaller than a
full fledged one. Besides, we developed a learning algorithm which uses a tree of
finite but unbounded width to learn an irreducible PDFA which is PAC-equivalent
to the target language model. The algorithm is guaranteed to terminate whenever
the congruence induced by the language model for the given equivalence on distri-
butions is finite. We evaluated the techniques on several case studies from cyberse-
curity and genetics, including pre-trained neural networks, synthetically generated
regular models and other non regular models. The experimental results showcased
that, despite the complexity of some of the target neural models, learning regular
approximations is feasible in the setting of binary acceptors and language mod-
els, however when the target system is not regular, the number of states to be
learned can be unbounded. At the same time, parameterizing the learning process
would help in some cases to overcome the so-called state explosion problem when
building state-based models, by choosing appropriate equivalence relations that
lead to property-preserving abstractions. Moreover, if the state-space still remains
too large, learning can be used to directly verify properties such as the equivalence
between language models or the fulfillment of safety properties in binary acceptors.

All of the techniques presented in this work were implemented and evaluated
using Neural-Checker [11], a state of the art tool that is part of the results of this
thesis. An in detail depiction of the tool is presented in Appendix 12.

Future Research Directions

Given the recent arise of Large Language Models (LLMs) a pertinent research
direction is the analysis of such systems under the approaches presented in this
thesis. That is, the application of active learning techniques to models containing
a large number of parameters and alphabet size. Another interesting direction for
future work is to extend our approach to learning more complex hypothesis, such
as push-down automata, and their probabilistic extensions. This is pertinent as
the complexity and expressivity of certain neural language models has been shown
to surpass regular languages [30,82]. An example of use case for such power is the
analysis of code-generation language models.

We expect to continue this research in the context of the recently started project
“Tools for the verification of industry-level applications of large language models”
(FMV 1 2023 1 175864), in collaboration with two software companies. Its goal
is to develop tools that contribute to the responsible implementation and use of
industry-level applications of generative artificial intelligence systems that inte-
grate LLM, based on formal languages. The purpose of such tools is to help
controlling the LLM in order to make it behave as specified, such as to avoid
biases (of any kind) and inappropriate or out-of-context words.

Acknowledgments

This work has been partially funded by Universidad ORT Uruguay and ANII
Agencia Nacional de Investigación e Innovación grants FSDA_1_2018_1_154419,
FMV_1_2019_1_155913, IA_1_2022_1_173516, FMV_1_2023_1_175864.

91

11 Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
[Online]. Available: http://www.deeplearningbook.org.

[2] J. Degrave, F. Felici, and et al., “Magnetic control of tokamak plasmas
through deep reinforcement learning,” Nature, vol. 602, pp. 414–419, 02 2022.

[3] J. Kocić, N. Jovičić, and V. Drndarević, “An end-to-end deep neural net-
work for autonomous driving designed for embedded automotive platforms,”
Sensors, vol. 19, no. 9, p. 2064, 2019.

[4] M. Rahman, Y. Cao, and et al., “Deep pre-trained networks as a feature
extractor with XGBoost to detect tuberculosis from chest X-ray,” Comp.
Elec. Eng., vol. 93, p. 107252, 2021.

[5] S. A. Seshia, D. Sadigh, and S. Sastry, “Toward verified artificial intelligence,”
Communications of the ACM, vol. 65, no. 7, pp. 46–55, july 2022.

[6] H. Jacobsson, “Rule extraction from recurrent neural networks: A taxonomy
and review,” Neural Computation, vol. 17, pp. 1223–1263, 06 2005.

[7] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, MA, USA: MIT Press, 1999.

[8] V. Dignum, “Responsible artificial intelligence — from principles to practice:
A keynote at thewebconf 2022,” ACM SIGIR Forum, vol. 56, pp. 1–6, 01
2023.

[9] D. Gunning, “Darpa’s explainable artificial intelligence (xai) program,”
in Proceedings of the 24th International Conference on Intelligent User
Interfaces, ser. IUI ’19. New York, NY, USA: ACM, 2019, pp. ii–ii. [Online].
Available: http://doi.acm.org/10.1145/3301275.3308446

[10] J. M. Wing, “Trustworthy ai,” Commun. ACM, vol. 64, no. 10, p. 64–71, sep
2021. [Online]. Available: https://doi.org/10.1145/3448248

93

http://www.deeplearningbook.org
http://doi.acm.org/10.1145/3301275.3308446
https://doi.org/10.1145/3448248

[11] F. Mayr, S. Yovine, F. Pan, and F. Vilensky, “Neural checker,” https://github.
com/orgs/neuralchecker/, 2021.

[12] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,” in
Empirical Methods in Natural Language Processing (EMNLP), 2016.

[13] R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, and F. Giannotti, “A sur-
vey of methods for explaining black box models,” CoRR, vol. abs/1802.01933,
2018.

[14] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Ex-
plaining explanations: An approach to evaluating interpretability of machine
learning,” CoRR, vol. abs/1806.00069, 2018.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” in Neurocomputing: Foundations
of Research, J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA,
USA: MIT Press, 1988, pp. 696–699. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=65669.104451

[16] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–211,
03 1990.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the
31st International Conference on Neural Information Processing Systems, ser.
NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p. 6000–6010.

[18] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” in SIGSAC CCS. ACM,
2017, p. 1285–1298.

[19] M. Oubounyt, Z. Louadi, H. Tayara, and K.-T. Chong, “Deepromoter: Robust
promoter predictor using deep learning,” Frontiers in genetics, vol. 10, 2019.

[20] L. Arras, G. Montavon, K. Müller, and W. Samek, “Explaining recurrent
neural network predictions in sentiment analysis,” in Proceedings of the
8th Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis, WASSA@EMNLP 2017, Copenhagen, Denmark,
September 8, 2017, A. Balahur, S. M. Mohammad, and E. van der Goot, Eds.
Association for Computational Linguistics, 2017, pp. 159–168. [Online].
Available: https://doi.org/10.18653/v1/w17-5221

https://github.com/orgs/neuralchecker/
https://github.com/orgs/neuralchecker/
http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451
https://doi.org/10.18653/v1/w17-5221

[21] D. H. Park and R. Chiba, “A neural language model for query auto-
completion,” in Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser. SIGIR ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 1189–1192.
[Online]. Available: https://doi.org/10.1145/3077136.3080758

[22] T. van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova, A. Con-
tinella, M. van Steen, A. Peter, C. Kruegel, and G. Vigna, “DeepCASE:
Semi-Supervised Contextual Analysis of Security Events,” in Proceedings of
the IEEE Symposium on Security and Privacy (S&P). IEEE, 2022.

[23] C. de la Higuera, Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, 2010.

[24] K. Murphy, “Passively learning finite automata,” Santa Fe Institute, Tech.
Rep. 96-04-017, 1996.

[25] D. Angluin, “Learning regular sets from queries and counterexamples,” Inf.
Comput., vol. 75, no. 2, pp. 87–106, Nov. 1987.

[26] F. Mayr, R. Visca, and S. Yovine, “On-the-fly black-box probably
approximately correct checking of recurrent neural networks,” in Machine
Learning and Knowledge Extraction - 4th IFIP TC 5, TC 12, WG 8.4, WG
8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020,
Dublin, Ireland, August 25-28, 2020, Proceedings, ser. Lecture Notes in
Computer Science, A. Holzinger, P. Kieseberg, A. M. Tjoa, and E. R.
Weippl, Eds., vol. 12279. Springer, 2020, pp. 343–363. [Online]. Available:
https://doi.org/10.1007/978-3-030-57321-8 19

[27] F. Mayr, S. Yovine, and R. Visca, “Property checking with interpretable
error characterization for recurrent neural networks,” Machine Learning and
Knowledge Extraction, vol. 3, no. 1, pp. 205–227, 2021. [Online]. Available:
https://www.mdpi.com/2504-4990/3/1/10

[28] I. Khmelnitsky, D. Neider, R. Roy, X. Xie, B. Barbot, B. Bollig, A. Finkel,
S. Haddad, M. Leucker, and L. Ye, “Property-directed verification and ro-
bustness certification of recurrent neural networks,” in Automated Technology
for Verification and Analysis, Z. Hou and V. Ganesh, Eds. Cham: Springer
International Publishing, 2021, pp. 364–380.

[29] ——, “Analysis of recurrent neural networks via property-directed
verification of surrogate models,” Int. J. Softw. Tools Technol. Transf.,
vol. 25, no. 3, pp. 341–354, 2023. [Online]. Available: https://doi.org/10.
1007/s10009-022-00684-w

95

https://doi.org/10.1145/3077136.3080758
https://doi.org/10.1007/978-3-030-57321-8_19
https://www.mdpi.com/2504-4990/3/1/10
https://doi.org/10.1007/s10009-022-00684-w
https://doi.org/10.1007/s10009-022-00684-w

[30] J. Pérez, P. Barceló, and J. Marinkovic, “Attention is turing-complete,”
Journal of Machine Learning Research, vol. 22, no. 75, pp. 1–35, 2021.
[Online]. Available: http://jmlr.org/papers/v22/20-302.html

[31] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, no. 11,
pp. 1134–1142, Nov. 1984.

[32] F. Mayr and S. Yovine, “Regular inference on artificial neuralnetworks,” in
Machine Learning and Knowledge Extraction, A. Holzinger et al., Eds. Cham:
Springer International Publishing, 2018, pp. 350–369.

[33] F. Mayr, “Regular inference over recurrent neural networks as a method for
black box explainability,” Master’s thesis, Montevideo Uruguay, 2019.

[34] C. Zhou, B. Cule, and B. Goethals, “Pattern based sequence classification,”
IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 5, pp.
1285–1298, May 2016.

[35] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,”
SIGKDD Explor. Newsl., vol. 12, no. 1, pp. 40–48, Nov. 2010.

[36] F. Mayr, S. Yovine, F. Pan, N. Basset, and T. Dang, “Towards efficient active
learning of PDFA,” in LearnAut 2022, 2022.

[37] F. Mayr, S. Yovine, M. Carrasco, F. Pan, and F. Vilensky, “A
congruence-based approach to active automata learning from neural
language models,” in Proceedings of 16th edition of the International
Conference on Grammatical Inference, ser. Proceedings of Machine
Learning Research, F. Coste, F. Ouardi, and G. Rabusseau, Eds.,
vol. 217. PMLR, 10–13 Jul 2023, pp. 250–264. [Online]. Available:
https://proceedings.mlr.press/v217/mayr23a.html

[38] F. Mayr, S. Yovine, M. Carrasco, A. Garat, M. Iturbide, J. da Silva, and
F. Vilensky, “Results of neural-checker toolbox in taysir 2023 competition,”
in Proceedings of 16th edition of the International Conference on Grammatical
Inference, ser. Proceedings of Machine Learning Research, F. Coste,
F. Ouardi, and G. Rabusseau, Eds., vol. 217. PMLR, 10–13 Jul 2023, pp. 295–
298. [Online]. Available: https://proceedings.mlr.press/v217/mayr23b.html

[39] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 3rd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

http://jmlr.org/papers/v22/20-302.html
https://proceedings.mlr.press/v217/mayr23a.html
https://proceedings.mlr.press/v217/mayr23b.html

[40] N. Chomsky, “Three models for the description of language,” IRE Transac-
tions on Information Theory, vol. 2, no. 3, pp. 113–124, Sep. 1956.

[41] O. Maler and A. Pnueli, “On the learnability of infinitary regular sets,”
Inf. Comput., vol. 118, no. 2, p. 316–326, May 1995. [Online]. Available:
https://doi.org/10.1006/inco.1995.1070

[42] B. Bollig, P. Habermehl, C. Kern, and M. Leucker, “Angluin-style learning
of nfa,” in Proceedings of the 21st International Jont Conference on
Artifical Intelligence, ser. IJCAI’09. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2009, pp. 1004–1009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1661445.1661605

[43] M. Kearns and U. Vazirani, “An introduction to computational learning the-
ory,” 1994.

[44] R. Rivest and R. Schapire, “Inference of finite automata using homing
sequences,” Information and Computation, vol. 103, no. 2, pp. 299–347,
1993. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0890540183710217

[45] F. Howar, “Active learning of interface programs,” Ph.D. dissertation, 06
2012.

[46] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A redundancy-
free approach to active automata learning,” in RV’14. LNCS 8734, 2014, pp.
307–322.

[47] D. Angluin, “Computational learning theory: Survey and selected bibliogra-
phy,” in Proceedings of the Twenty-fourth Annual ACM Symposium on Theory
of Computing, ser. STOC ’92. New York, NY, USA: ACM, 1992, pp. 351–369.

[48] G. Weiss, Y. Goldberg, and E. Yahav, “Learning deterministic weighted au-
tomata with queries and counterexamples,” in Adv. in Neural Information
Proc. Sys., vol. 32, 2019.

[49] S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014.

[50] D. Angluin, “Queries and concept learning,” Mach. Learn., vol. 2, no. 4,
p. 319–342, apr 1988. [Online]. Available: https://doi.org/10.1023/A:
1022821128753

97

https://doi.org/10.1006/inco.1995.1070
http://dl.acm.org/citation.cfm?id=1661445.1661605
https://www.sciencedirect.com/science/article/pii/S0890540183710217
https://www.sciencedirect.com/science/article/pii/S0890540183710217
https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1023/A:1022821128753

[51] G. Weiss, Y. Goldberg, and E. Yahav, “Learning deterministic weighted
automata with queries and counterexamples,” in Advances in Neural
Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf

[52] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
put., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[53] Y. Hao, W. Merrill, D. Angluin, R. Frank, N. Amsel, A. Benz, and
S. Mendelsohn, “Context-free transductions with neural stacks,” preprint
arXiv:1809.02836, 2018.

[54] M. Tomita, “Dynamic construction of finite automata from examples using
hill-climbing,” in Proceedings of the Fourth Annual Conference of the Cogni-
tive Science Society, Ann Arbor, Michigan, 1982, pp. 105–108.

[55] K. Meinke and M. A. Sindhu, “LBTest: A learning-based testing tool for
reactive systems,” in STVV. IEEE, March 2013, pp. 447–454.

[56] M. Merten, “Active automata learning for real life applications,” Ph.D. dis-
sertation, Technischen Universität Dortmund, 2013.

[57] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic
language model,” J. Mach. Learn. Res., vol. 3, no. null, p. 1137–1155, Mar.
2003.

[58] A. Clark and F. Thollard, “PAC-learnability of probabilistic deterministic
finite state automata,” J. Machine Learning Research, vol. 5, pp. 473–497,
2004.

[59] J. E. Hopcroft and R. M. Karp, “A linear algorithm for testing equivalence
of finite automata.” 1971.

[60] M. Kearns and U. Vazirani, An Introduction to Computational Learning The-
ory. Cambridge, MA, USA: MIT Press, 1994.

[61] M. Isberner, “Found. active automata learning: An algorithmic persp.” Ph.D.
dissertation, 2015.

[62] C. Nicaud, “Random deterministic automata,” in MFCS’14. LNCS 8634,
2014, pp. 5–23.

https://proceedings.neurips.cc/paper/2019/file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf

[63] A. Carayol and C. Nicaud, “Distribution of the number of accessible states in
a random deterministic automaton,” Leibniz Int. Proc. in Informatics, vol. 14,
pp. 194–205, 2012.

[64] M. Craven and J. Shavlik, “Extracting tree-structured representations of
trained networks,” in NIPS’95. Cambridge, MA, USA: MIT Press, 1995,
p. 24–30.

[65] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, ser. Monographs
on Statistics and Applied Probability. Chapman & Hall/CRC, 1993, no. 57.

[66] N. Mart́ınez, “Comparison of lstm and transformer neural network on mul-
tiple approaches for weblogs attack detection,” Master’s thesis, Montevideo
Uruguay, 2022.

[67] J. Li, H. Zhang, and Z. Wei, “The weighted word2vec paragraph vectors for
anomaly detection over http traffic,” IEEE Access, vol. 8, pp. 141 787–141 798,
2020.

[68] B. Bollig, M. Leucker, and D. Neider, “A survey of model learning techniques
for recurrent neural networks,” A Journey from Process Algebra via Timed
Automata to Model Learning: Essays Dedicated to Frits Vaandrager on the
Occasion of His 60th Birthday, pp. 81–97, 2022.

[69] Q. Wang, K. Zhang, X. Liu, and C. L. Giles, “Verification of recurrent neural
networks through rule extraction,” in AAAI Spring Symposium on Verifica-
tion of Neural Networks (VNN19), 2019.

[70] A. Kevorchian, “Verification of recurrent neural networks,” Master’s thesis,
Imperial College London, 2018.

[71] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no. 301,
pp. 13–30, 1963. [Online]. Available: http://www.jstor.org/stable/2282952

[72] A. Legay, A. Lukina, L. M. Traonouez, J. Yang, S. A. Smolka, and R. Grosu,
Statistical Model Checking. Cham: Springer, 2019, pp. 478–504.

[73] G. Agha and K. Palmskog, “A survey of statistical model checking,” ACM
Trans. Model. Comput. Simul., vol. 28, no. 1, Jan. 2018.

[74] A. Kaznatcheev and P. Panangaden, “Weighted automata are compact and
actively learnable,” Inf. Process. Lett., vol. 171, pp. 106–133, 2021.

99

http://www.jstor.org/stable/2282952

[75] A. Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, and S. Varricchio,
“Learning functions represented as multiplicity automata,” Journal of the
ACM, vol. 47, no. 3, p. 506–530, 2000.

[76] W. Tzeng, “Learning probabilistic automata and markov chains via queries,”
Machine Learning, vol. 8, pp. 151–166, 1992.

[77] L. Feng, T. Han, M. Kwiatkowska, and D. Parker, “Learning-based composi-
tional verification for synchronous probabilistic systems,” in ATVA’11. LNCS
6996, 2011, pp. 511–521.

[78] E. Muškardin, M. Tappler, and B. K. Aichernig, “Testing-based black-box
extraction of simple models from rnns and transformers,” in Proceedings
of 16th edition of the International Conference on Grammatical Inference,
ser. Proceedings of Machine Learning Research, F. Coste, F. Ouardi, and
G. Rabusseau, Eds., vol. 217. PMLR, 10–13 Jul 2023, pp. 291–294. [Online].
Available: https://proceedings.mlr.press/v217/muskardin23a.html

[79] G. Rabusseau, T. Li, and D. Precup, “Connecting weighted automata
and recurrent neural networks through spectral learning,” in Proceedings of
Machine Learning Research, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and M. Sugiyama, Eds., vol. 89. PMLR, 16–18 Apr
2019, pp. 1630–1639. [Online]. Available: http://proceedings.mlr.press/v89/
rabusseau19a.html

[80] T. Li, D. Precup, and G. Rabusseau, “Connecting weighted automata, tensor
networks and recurrent neural networks through spectral learning,” CoRR,
vol. abs/2010.10029, 2020. [Online]. Available: https://arxiv.org/abs/2010.
10029

[81] S. Ayache, R. Eyraud, and N. Goudian, “Explaining black boxes on
sequential data using weighted automata,” in Proceedings of the 14th
International Conference on Grammatical Inference, ICGI 2018, Wroc law,
Poland, September 5-7, 2018, ser. Proceedings of Machine Learning Research,
O. Unold, W. Dyrka, and W. Wieczorek, Eds., vol. 93. PMLR, 2018, pp. 81–
103. [Online]. Available: http://proceedings.mlr.press/v93/ayache19a.html

[82] G. Weiss, Y. Goldberg, and E. Yahav, “On the practical computational
power of finite precision RNNs for language recognition,” in Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), I. Gurevych and Y. Miyao, Eds. Melbourne,
Australia: Association for Computational Linguistics, Jul. 2018, pp. 740–745.
[Online]. Available: https://aclanthology.org/P18-2117

https://proceedings.mlr.press/v217/muskardin23a.html
http://proceedings.mlr.press/v89/rabusseau19a.html
http://proceedings.mlr.press/v89/rabusseau19a.html
https://arxiv.org/abs/2010.10029
https://arxiv.org/abs/2010.10029
http://proceedings.mlr.press/v93/ayache19a.html
https://aclanthology.org/P18-2117

[83] R. Eyraud, D. Lambert, B. Tahri Joutei, A. Gaffarov, M. Cabanne, J. Heinz,
and C. Shibata, “Taysir competition: Transformer+rnn: Algorithms to
yield simple and interpretable representations,” in Proceedings of 16th edition
of the International Conference on Grammatical Inference, ser. Proceedings
of Machine Learning Research, F. Coste, F. Ouardi, and G. Rabusseau,
Eds., vol. 217. PMLR, 10–13 Jul 2023, pp. 275–290. [Online]. Available:
https://proceedings.mlr.press/v217/eyraud23a.html

101

https://proceedings.mlr.press/v217/eyraud23a.html

12 Appendix

Neural Checker Tool

All techniques presented in this work were implemented in the Neural-Checker [11]
toolbox, which was used to carry out experiments and case studies.

Neural-Checker is a repository that provides two libraries, namely Pythautomata
and PyModelExtractor. Pythautomata’s main goal is to provide implementations
for the structures needed for working in the Model Extraction Framework (Py-
ModelExtractor). PyModelExtractor’s main goal is to enable the explainability and
checking of complex systems in a black box context through the use of active
learning techniques.

This toolbox was used in the TAYSIR Competition 2023 [83] and its results
are presented in [38], achieving the second place in the competition. TAYSIR is an
on-line competition about model inference form Neural Networks (NN). The 2023
challenge was divided in two tracks. The goal of track 1 was to learn language
acceptors, while track 2 was focusing on language models. The underlying neural
architectures were RNN and Transformers.

Tool Structure

The tool is structured in two libraries as it can be seen in Fig. 12.1.

Figure 12.1: Component diagram

103

Pythautomata

Pythautomata presents a number of packages split by responsibilities as we can see
in Fig. 12.2, which only presents the core packages for simplicity.

Figure 12.2: Pythautomata’s package diagram

base types implements the basic language theory concepts. These includes the
concept of alphabet, sequence, symbol, and variants.

abstract package presents the FiniteAutomaton abstract class, wich provides a
common interface to be used by every type of finite automaton.

automata package implements concrete automata types (i.e. DFA or PDFA).
These automata contain an initial state and a set of states.

automata definitions package presents some classic examples of automata. For
example Tomita’s automata [54] are defined inside this package.

model comparators This package contains comparison strategies, like adaptions
of Hopkroft-Karp [59] algorithm and probabilistic approaches like PAC equiv-
alence [31].

pyModelExtractor

This project presents a simpler package structure as we can see in Fig. 12.3.

Figure 12.3: pyModelExtractor package diagram

teachers package contains the definition for the MAT interface to be fulfilled by
the different teachers. The teachers must implement both MQ and EQ.
Core classes present in this package are PAC teachers, and exact ones that
rely on model comparators from pythautomata.

learners package contains the abstract class Learner which defines the interface
all learners must comply with. Besides this, there are two other packages
observation table learners and observation tree learners, each hav-
ing a family of learning methods. Bounded-L∗and QNT are implemented
inside the learners package.

105

	Introduction
	Grammatical inference
	Formal languages
	Minimally adequate teachers
	L

	Learning approximations
	PAC learning
	PAC-based MAT learning
	Bounded PAC-based MAT learning
	Analysis of the approximation error

	Bounded L

	Verification through learning
	Post-learning verification
	On-the-fly verification via learning
	Characterization of the error

	Application to neural acceptors
	Scenario 1
	Context-free language models
	Checking equivalence between neural acceptors

	Scenario 2
	A model of a cruise control software
	A model of an e-commerce web site

	Scenario 3
	Hadoop file system logs
	TATA-boxes in DNA promoter sequences

	Language models
	PDFA
	Congruences
	Quotient PDFA
	Minimality
	Equivalences between distributions
	Equivalences in the case of PDFA
	PDFA quotient modulo S

	Table-based PDFA learning algorithms
	Algorithm Lp
	Correctness and termination
	Columnar version LpCol

	Non-equivalence relations: t-tolerance

	A tree-based PDFA learning algorithm
	N-ary tree
	sift operation
	build operation
	update operation
	QNT algorithm
	Infinite equivalence classes
	Language model equivalence

	Application to language models
	Synthetically generated PDFA
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Neural language models
	TATA-boxes in DNA promoters
	Language model of normal HDFS traces
	Detection of malicious web requests

	Related Work and Conclusions
	Related work
	Conclusions

	Bibliography
	Appendix

