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RESUMEN

Las Redes Oportunistas son redes capaces de operar en algunos de los en-

tornos más hostiles imaginables para una red de datos, cuando casi nada se

sabe con certeza de la infraestructura. Los nodos pueden estarse moviendo

saliendo de alcance continuamente, apagarse imprevistamente, o sufrir de in-

terferencias; los usuarios de la red pueden querer acceder a datos sin saber

dónde están alojados, o querer transmitirle a un nodo que está inaccesible por

un tiempo indeterminado.

Esto causa que las Redes Oportunistas estén condicionadas por procesos

estocásticos complejos. Son sistemas ciber-f́ısicos, cuyo comportamiento re-

sulta de la interacción entre sistemas de software y la realidad f́ısica. Por lo

tanto, uno de los retos principales para los algoritmos de enrutamiento para

Redes Oportunistas es gestionar esta aleatoriedad e imprevisibilidad.

Lo anterior resulta en que las Redes Oportunistas son dif́ıciles de modelar

y caracterizar. En esto radica uno de los mayores retos a la hora de diseñar y

desplegar algoritmos de enrutamiento efectivos.

En este trabajo proponemos métodos de modelado de Redes Oportunistas

y aplicamos esos modelos para construir algoritmos de enrutamiento eficientes

y flexibles.

Desarrollamos dos clases de modelos. El primero es un modelo anaĺıtico-

deductivo, que permite extraer conclusiones generales para redes ideales. El

segundo modelo está basado en datos, y captura la dinámica y comportamien-

tos de una red real, representándolos en una estructura de datos novedosa.

Este modelo se aplica para desarrollar algoritmos basados en Aprendizaje Au-

tomático, siendo el resultado eficiente y generalizable.

Palabras clave:

Redes Oportunistas, Redes Tolerantes a Retrasos - DTN, Modelos

Estocásticos.
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ABSTRACT

Opportunistic Networking is a technology for sustaining a data network

when the supporting infrastructure is as challenging as it can be. An Oppor-

tunistic Network can operate when almost nothing is known about the nodes

and the environment: network nodes might be moving in unpredictable ways,

be shut down or off range for long periods, or have severely limited comput-

ing resources; user applications might want to access data whose placement is

unknown, or be producing data while there are no other nodes close to who

transmit it to; and nodes might be subjected to unpredictable radio interfer-

ence.

Because of this, Opportunistic Networks are subject to strongly stochas-

tic behaviors. They also are cyber-physical systems whose behavior emerges

from the interaction of software and the real world. The main challenge for

Opportunistic Network routing algorithms is handling this randomness and

unpredictability.

As a result of the above points, Opportunistic Networks are complex to

describe and characterize. This difficulty in modeling the network is one of the

main challenges when designing and deploying practical routing algorithms.

In this document, we compile a set of incremental works that study the

underlying structures of Opportunistic Networks and propose modeling meth-

ods for analyzing their behavior. They also show how these models can be

capitalized to build efficient and flexible algorithms.

We develop two classes of models. The first is an analytical one, built

by deduction from axioms. It allows us to extract general conclusions on the

behavior of an idealized network. The second is a data-driven model that builds

a representation of a real network, capturing real-life behavior in a novel data

structure. We show how this model can support Machine Learning algorithms

to solve the routing problem efficiently and in a generalizable way.

Keywords:

Opportunistic Networks, Delay Tolerant Networks - DTN, Stochastic Models.
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Chapter 1

Introducction

Computer Networks are an essential part of modern life. At the same

time, Computer Networks came to be synonymous with the Internet, and

we became accustomed to expecting certain behavior: almost complete and

redundant coverage in inhabited areas; spotty or no coverage in remote areas;

huge bandwidths and 24×7 availability through infrastructure maintained and

deployed by competent and resource-rich operators.

However, there are other computer networks. Networks that depend on

cheap devices that move around, their number or position unknown, and are

out of range for long periods; where datalinks are slower than a modem dial-up

from 25 years ago, and every transmission is counted because it depletes the

batteries. These networks are known as Opportunistic Networks (OppNets).

1.1. Motivation

The basic concept behind opportunism in Networking is the ability to use

resources for which there is no deterministic knowledge about their properties

or availability. This ability could be useful in networks where the exact place-

ment of a file is not known beforehand, as in some Content Delivery Networks

(CDNs); short-lived networks formed by mobile devices when meeting, like

Vehicular Ad-Hoc Networks (VANETs); or networks that must deliver data

using sporadic low-quality encounters between routers, like in Delay Tolerant

Networks (DTNs).

This work concentrates on the scenario where the primary source of stochas-

ticity is the movement of the nodes. In these networks, it can be necessary for
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nodes to carry data in local storage as they move, waiting for an encounter

to happen. Once an encounter happens, nodes must determine what data to

transfer to the new carrier candidate.

As usual in networks, the behavior of a device can be described by two

tasks. The first is Routing, the process by which nodes acquire information

on the behavior of the network, information that will be used to make bet-

ter decisions for the second task, forwarding. Forwarding determines what

information should be copied and stored locally during an encounter.

Because of the uncertainty regarding the network topology and status, spe-

cific routing algorithms are developed. These algorithms vary significantly in

complexity and behavior: from very simple, like flooding copies of informa-

tion in the network [32], to highly sophisticated, like using Machine Learning

techniques to predict future encounters.

This variety of techniques and algorithms makes deploying OppNets a

daunting task. These networks can support a broad spectrum of applica-

tions with very different requirements. Selecting a good algorithm depends on

the precise characterization of the network and a deep understanding of the

properties of the different algorithms. At the same time, these algorithms tend

to depend on the correct configuration of multiple parameters to adapt to a

particular network and application.

The guiding observation for this thesis is that an OppNet is a Cyber-

physical system [19], and its behavior emerges from the interaction between

node dynamics and opportunistic algorithms. This emerging behavior makes

these systems complex to model, partly because the tools available to model the

different aspects of the system are very different. For example, the movement

dynamics of the network nodes can be described with tools such as differential

equations and stochastic processes. At the same time, the algorithmic behavior

is usually analyzed with tools like computational complexity theory or finite

state transducers.

1.2. Objectives

The common purpose of the works compiled in this thesis is to provide

methods for analyzing and designing OppNets as a whole, combining network

dynamics modeling and opportunistic algorithms in a single framework. The

final objective is to design better performing OppNet algorithms, which are

2



supported by well-understood modeling techniques.

That main purpose is further decomposed into two specific objectives.

These are outlined as follows:

Develop modeling tools: The different modeling approaches are discussed,

both analytical and data-driven. In particular, models that integrate

mobility and algorithmic behavior are proposed.

Design protocols that capitalize the new models: The proposed mod-

els offer a better representation of the OppNets as a system and thus

are a good substrate for routing algorithms. A more informative repre-

sentation of the networks allows more effective decision-making by the

network agents.

1.3. Contribution

The contribution of this thesis can be described in two stages. The first

consist of a set of models that can be applied to characterize an OppNet; the

second consists of a set of opportunist routing algorithms that capitalize on

said models. These contributions can be outlined as follows:

An analytical model based on the deduction of the network’s behavior

from its fundamental properties.

A data-based or empirical representation that allows capturing both the

dynamics of the network and the effect of the algorithmic decision-making

in a single data structure.

A Machine Learning approach to opportunistic routing that uses the

data-driven model to provide improved performance. Two alternatives

are presented, offline and online. The former is based on processing

recorded network traces; the latter learns through the network’s lifetime.

1.4. Structure of document

Besides the articles compiled in this thesis, this document lays out an

introductory text to frame the work presented in them. Chapter 2 presents the

concept of Opportunistic Networking and its main research challenges. Then,
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in Chapter 3, each article composing this thesis is summarized and placed in

context. Finally, Chapter 4 provides some global concluding remarks.
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Chapter 2

Opportunistic Networks

This Chapter presents a brief introduction to Opportunistic Networking as

a research area, including the idea that, as a concept, it has a deep history

and has been studied under multiple names and in different scenarios.

2.1. History

One of the concepts that separated Computer Networking from phone net-

works was connectionless packet switching, which appeared in the sixties. The

basic idea is that data is split into discrete data units or packets, and each

packet traverses the network independently. It was expected that a best-effort

packet-switching network could quickly react to topological changes and min-

imize data losses. This concept led to the IP protocol and, thus, the modern

Internet [13].

In the seventies, another scenario was explored with military applications.

Packet Radio [11] was a technology to route data over radio links between mo-

bile terminals without depending on some underlying infrastructure. Concep-

tually it was very similar to what is known today as a wireless mesh networks.

These examples can be described as following a fail-recovery approach based

on restoring end-to-end connectivity as quickly as possible. The reason is that

the typical network nodes (routers) have very little storage, and if a packet

can not be dispatched fast enough, in the order of fractions of a second, it will

have to be dropped, producing a loss. As a result, packet-switching networks

are best adapted to networks where multiple possible paths exist.

However, in the pre-Internet era, other types of networks existed. When
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long-distance links were established via dial-up over phone lines, local net-

works were isolated most of the time. Local networks would periodically es-

tablish short-lived links with an upstream network, usually at night when

phone charges were lower. Then, these networks used application-layer pro-

tocols such as FidoNet or UUCP to upload and download pending data. A

surviving example of an algorithm with a similar design is SMTP, the basis

for the e-mail service. This functionality already can be seen as an OppNet in

the modern sense, though the term was not used back then (they were called

Store-and-forward networks).

OppNets were launched as a specific research topic in 2003 under the name

Delay Tolerant Network (DTN) [10]. The proposal introduced the concept of

challenged network as well as a specific architecture for interoperating networks

over them.

A challenged network is a computer network that suffers from one or more

of the following problems:

High Latency and Low Data Rate In structured IP networks, Gb/s

speeds are usual, as are Mb/s in wireless links. However, there are ap-

plications where Kb/s or lower rates are usual, as are highly asymmetric

or unidirectional links.

Disconnection There are networks where disconnection is not an abnormal

state caused by a failure but the natural state where most of the time

is spent. That might be because of mobility and range considerations or

low-duty cycle operation (discussed later).

Long Queuing Times In most conventional networks queuing times are the

main factor in the total network latency, but even then, they are mea-

sured in milliseconds. Networks exist where the total latency and queuing

times are measured in hours or days.

Low Duty Cycle Operation. In many battery-powered applications, wire-

less transmissions are a significant part of power consumption. Nodes

might try to keep their wireless interfaces powered down as long as pos-

sible.

Limited Resources Many applications depend on low-cost devices, which

leads to low computational resources such as computing power, onboard

storage, or wireless bandwidth.
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The DTN architecture proposed to handle these networks will be described

in Section 2.2.3.

In recent years computing platforms experienced a significant cost reduc-

tion, with a new class of battery-powered, wirelessly interfaced, microprocessor

or microcontroller-based systems, which led to an interest in deploying them

very widely. New use cases and deployment scenarios, such as Sensor Net-

works, the Internet of Things, and Smart Cities, were defined. Many of these

deployments extended outside the umbrella of conventional networks, which

led to an explosion in research on new supporting network technologies.

2.2. Applications

This Chapter presents some of the prominent use cases for OppNets. They

cover a broad spectrum of requirements and functionality.

2.2.1. Sensor Networks

A Sensor Network is composed of widely distributed low-cost nodes that

collect some kind of data. The nodes can be fixed or mobile and are frequently

battery-powered. The network’s task is to collect data from these sensors and

transmit it to a collection point to be stored and processed [2].

When the nodes are fixed, opportunistic behavior can emerge from a low-

duty cycle operation. Other times, the data collection is managed by a separate

class of mobile devices moving through the deployment area and encountering

the sensor nodes. An example of this use case is DEMOS [4], a network for

collecting environmental data from sensors using school children’s OLPC-XO

laptops as data carriers.

In other networks, the sensor nodes themselves are mobile. In this case,

the nodes may carry data packets and handle them over to other nodes until

they reach the destination through several hops. These networks are frequently

called carry and forward networks because nodes are expected to keep data

in local storage for extended periods while moving around and waiting for

a forwarding opportunity. This use case is the basis for some of the works

collected in this thesis (see Appendices 4 and 5).
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2.2.2. LTE Device2Device offloading

Opportunism can be advantageous even when a conventional network is

available. Device2Device, or D2D, is a capability proposed for LTE cellular

networks that would allow data exchange between close-by devices, bypassing

the cellular base infrastructure [3, 12]. This communication can be either in-

band, using the same radio transmitter used for cellular communication, or

out-of-band, using a secondary interface such as WLAN or Bluetooth. This

capability promises to reduce power consumption and network load for data-

heavy applications such as OS updates or video streaming. This scenario is

discussed for this thesis in Appendix 2.

2.2.3. Delay Tolerant Networks

A Delay Tolerant Network (DTN), sometimes called Disruption Tolerant

Network, is a message-based overlay network that uses challenged networks to

communicate traditional networks. The network’s message is called a bundle

and has been described through several RFCs [5] as the network itself [24].

The design is extensive, specifying features such as addressing schemes, mes-

sage fragmentation, time synchronization, and security management. Routing

and Forwarding are not specified and are left to be developed following the

requirements of a particular use case. This omission is justified because the

DTN framework is intended to be used in different environments, from un-

derwater to interplanetary communications [22]. Nevertheless, many design

choices are made with the understanding that the main task is to interoperate

IP networks.

Sometimes the terms DTN and OppNet are used interchangeably, though

this is incorrect. DTN is a specific architecture that has a place reserved for

routing and forwarding behavior in its design. Research in routing for OppNets

can be done in the context of the DTN framework, but this is not mandatory.

Some of the DTNs design decisions, like how nodes are identified or what

is the exact structure of a network message, impose artificial restrictions for

some applications. Thus, basic research in routing algorithmics is better done

outside the DTN general design.
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2.2.4. Content Delivery Networks

The problem of routing data to a receiver can be seen from the other side: a

receiver might want to access some data, while the number of copies of the data

and where they are placed might be unknown to it. This scenario is typical

of Content Delivery Networks (CDNs). Multiple technologies are involved in

sustaining CDNs, such as P2P Networking and Content-Based Routing (CBR).

Some CDNs also have a mobility component. This scenario is the base for one

of this thesis’ works; see Appendix 2.

2.2.5. Fleet coordination

Many vehicle fleets, crewed or uncrewed, can capitalize on the timely ex-

change of information between the participants. A group of robots might ex-

change their local views while building a global map of an area to be explored.

Robots operating warehouse logistics might coordinate exchanging commands

and assigning tasks. Cars moving down a highway might communicate between

them to warn of dangerous situations.

The ability to communicate moving robots flexibly and robustly is critical

for many robotic deployments, like drone swarms, agricultural service robots,

or Search-and-Rescue robots for disaster mitigation.

Many of these applications impose extreme stress on the communication

systems due to hostile radio environments, limited power supply, the coex-

istence of traffic of very different QoS requirements, and fast mobility. The

works presented in Appendices 4 and 5 are of interest to this application.

2.3. Challenges

Opportunistic Networks are Cyber-physical systems [19]. That is, systems

where there is a software component and a real-world component, and both

components interact to produce the system’s behavior. The interaction be-

tween the computational and physical components may be intentional, like

in a control system where a software controller impacts the physical world

through actuators and senses physical properties through sensors. The in-

teraction can also be accidental: the physical world can create interference in

communications systems or degrades the performance of actuators and sensors

as they wear out.
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2.3.1. Modeling

Different laws guide the computational and physical components: the phys-

ical world is driven by physics, mechanics, and thermodynamics. The soft-

ware’s behavior is described by concepts such as logic, algorithmic complexity,

and computability. Following [20], we outline the main differences between the

computational and physical worlds as follows:

Static vs. dynamic: Unlike in a computer program, things in the real world

change by themselves, outside the control of the system’s owner.

Real Time: physical processes run in an external, independent, thermody-

namic time that can not be halted or slowed down.

Observability: not all real-world’s information can be accessed to build an

internal world representation. There is useful information that can not

be acquired.

Discrete vs. Continuous Digital computing systems have a discrete repre-

sentation of state and time. Physical systems tend to be continuous.

Deterministic vs. Stochastic: Computing systems are fully deterministic:

given an internal state and an input, the resulting state is always the

same. There are many stochastic processes in the physical world.

The stochastic behavior is of particular interest when working with Opp-

Nets. It is the main challenge, and the major design decisions are about how

to handle this randomness. There are two primary sources of stochasticity in

OppNets.

The first is link availability, which is typically due to node movement and

radio interference. Though there are some OppNets composed of vehicles with

precisely known trajectories, such as spaceships and satellites [22], most ve-

hicles move with a degree of randomness. Nevertheless, most mobile nodes

are not entirely random and follow some laws. People move following spe-

cific patterns through a city, and their encounters and popularity follow laws

studied by sociologists and urbanists [18, 23]; Public transport buses move in

circuits with approximate schedules; Reindeer move in herds following seasonal

environmental changes [9], and so on.
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The user’s data production is the second source of stochasticity. In most

computer networks, predicting users’ data flows is very difficult. That is espe-

cially true when the network is seen as a service for applications, so the inner

logic of the network’s users is unknown.

These OppNets properties result in a set of hurdles when modeling their

structure and behavior:

1. The system has a strong stochastic component, which limits the modeling

tools available.

2. The behavior of the system depends on the behavior of both a computer

and physical systems, which are usually modeled with different tools.

3. The system has many components and processes, which results in a high

number of parameters.

The resulting models tend to be complex and hard to use [6].

2.3.2. Evaluating OppNets

Another effect is that it is challenging to compare different algorithms.

There are two main difficulties.

In the first place, it is usual that solutions can not be tested on real de-

ployments and must be verified through simulations. The simulations tend to

be computationally expensive because the systems are very complex: There

are multiple nodes, each running a complex networking stack; wireless prop-

agation and interference depend on very complex equations; the system must

be simulated for long runs, and because of stochasticity, the experiment must

be repeated multiple times. As a result, most research is done on small to

moderate-size networks [14].

The second difficulty is that system’s performance is very sensitive to the

deployment scenario, namely to the movement pattern of the nodes. As a

result, different works, usually interested in different deployments, are hard to

compare. At the same time, traces for real networks usable as good reference

scenarios are scarce, though there is some work in this direction, like trace

repositories [1].
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2.3.3. Performance metrics

The final issue is measuring the performance of an OppNet. Its primary

performance metric is the delivery rate or the proportion of emitted messages

that reach a destination. Sadly, this metric is conditioned by network prop-

erties other than the routing algorithms. Namely, it depends on the mobility

scenario where the algorithm was executed and frequently on the data flows

present in the network. That makes it difficult to compare different network

instances. Another issue with the delivery rate metric is that it does not con-

sider the fairness or how the delivery rate varies across different emitters in

the network. Fair sharing of the network’s resources is a complex issue, rarely

attacked in OppNet research [31].

Besides how many messages arrive, another important question is how

much it takes for them to arrive. As mentioned above, OppNets are char-

acterized by very long delivery times, and the distribution of latencies tends to

be complex as messages following different opportunistic paths spend different

amounts of time in the network. Another difficulty is that the latency inter-

acts with the delivery rate: a simple method to reduce the latency is to drop

messages that spend too much time in the network at the cost of reducing the

delivery rate, as messages may be dropped before reaching the destination.

Finally, an important property is the network overhead. This overhead

can come from messages following suboptimal trajectories or algorithms that

produce multiple copies of messages to increase the delivery rate. Also, some

algorithms exchange routing data or add metadata to messages to support

routing decisions. The network overhead is important because, as the medium

is usually wireless and shared, excessive transmissions degrade the performance

of all the nodes in range, reducing the available bandwidth and increasing the

power consumption.
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Chapter 3

Articles Supporting this Ph.D.

Thesis

The work presented in this Thesis is a continuation of the work done in

a Master Thesis [26], in the context of a research project for developing a

Sensor Network with low-cost environmental sensors [4]. One of the author’s

contributions was RON, a Publish-Subscribe OppNet routing algorithm used to

route messages between sensors, collection points, and mobile carrier devices.

The experience gained in this work motivated the continued exploration of

routing techniques for OppNets.

This Chapter presents the publications of this Ph.D. thesis resulting from

that exploration.

3.1. Articles Compiled in this Ph.D. Thesis

During the development of RON, several pathological mobility cases were

identified [25]. Under some conditions, these cases affected an important class

of algorithms called gossiping-based [8]. It was found that under some fre-

quently used buffer management policies, some data flows can starve others.

The basic phenomenon is that nodes prefer to carry “easy” messages to the

detriment of “difficult” ones, even if the node is of critical importance for their

delivery. The result was considerable disparities in the service provided to

different clients, with some data flows collapsing completely.
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[31] Jorge Visca et al. ((Path sampling, a robust alternative to gossiping for op-

portunistic network routing)). In: 2016 IEEE 12th International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob).

2016, pp. 1–8. doi: 10.1109/WiMOB.2016.7763244

This analysis led to the creation of an alternative routing mechanism, called

Path Sampling (this article is included in Apendix 1). The algorithm is of a

class called Publish-Subscribe, where receiver nodes announce an interest in re-

ceiving some class of data (through Subscription messages), and then emitters

serve these requests. This addressing scheme is a generalization of the usual

Destination-Routing, where emitters specify the target node of messages. The

main idea of the algorithm is to explore the possible message propagation paths

while distributing the subscriptions and then use the best paths found when

serving these subscriptions. Finally, nodes distribute buffer space among the

participating data flows, independently of their position within a data flow. By

doing this, they obviate the pathological buffer assignation as seen in Epidemic

algorithms.

Besides Sensor Networks, other use cases for OppNets were explored. As

mentioned in Section 2.2.2, direct delivery between mobile devices is a promis-

ing capability for next-generation LTE cellular networks. To understand its

power, imagine the following scenario. Suppose a popular event, such as a

sporting event or a political broadcast, is streamed to many users. All the

people within a building, stadium, or train will get the same content over the

air from a particular cellular base. In high-density areas, this can impose a

massive load on the cell operator’s infrastructure and available cellular band-

width. Now, imagine that phones could download data from close-by neighbors

that have already downloaded it. Doing this would have multiple advantages,

like a power consumption reduction for the participating mobile devices, lesser

load on the cell, and improved coverage [16].

[30] Jorge Visca et al. ((Opportunistic media sharing for mobile networks)). In:

NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Sympo-

sium. 2016, pp. 799–803. doi: 10.1109/NOMS.2016.7502902

In this work (included in Appendix 2), an OppNet protocol is proposed for sup-

porting opportunistic media sharing between mobile devices in a D2D scenario.
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This protocol, called FLOP, is based on Path Sampling and takes advantage

of two of its capabilities.

First, it uses the Publish-Subscribe infrastructure to request chunks of video

content from other devices in the OppNet. This very flexible mechanism al-

lows operating a network without a centralized registry of participants. Then,

opportunistic routing allows it to operate in the evolving network topology

formed by people moving around. It can also serve users while they are dis-

connected from the cellular network, as sometimes happens in dense urban

areas when moving between cells or the cellular network is overloaded.

The works presented up to this moment follow a traditional approach in

OppNet research [14, 21]. It consists of proposing an algorithm, defining a

network scenario in a simulator, and comparing its performance against other

well-known algorithms. This approach has drawbacks. Due to complex net-

work dynamics, OppNet algorithms tend to depend on many configuration pa-

rameters that profoundly impact the algorithm’s behavior. These parameters

must be calibrated for the specific scenario, usually through extensive simula-

tion. This step should be (but rarely is) performed for all the algorithms used

for comparison. The scenarios themselves are highly configurable.

A difficulty is that scenario and algorithm parameters are usually uncou-

pled: it is hard to predict the optimal parameters for given network dynamics.

The result is that the algorithms are hard to deploy on unknown networks ef-

fectively, and the simulated evaluations are of limited generalizing value. That

is especially true for big networks, which are difficult to simulate [14].

The root of the inability to generalize is the lack of a model of the algorithm-

network interaction. Having a model implies the ability to make predictions,

something lacking in OppNet research.

Following [17], there are two main approaches for building models, the De-

ductive method of theoretical or axiomatic modeling, and the Empirical method

of experimental modeling. The Deductive method builds from the bottom up,

defining some fundamental axioms the system must respect and then apply-

ing mathematical manipulations to generate laws that predict the behavior

of the real system. The power of this approach is that mathematical models

are rigorous in tracking their applicability, so as long as the hypotheses and

analytical tool’s preconditions are respected, the conclusions are known to be

valid and applicable. In this sense, the model is general.
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[29] Jorge Visca, Mat́ıas Richart, and Javier Baliosian. ((Stochastic Models

for Opportunistic Networks)). In: 2019 IEEE Wireless Communications and

Networking Conference Workshop (WCNCW). 2019, pp. 1–6. doi: 10.1109/

WCNCW.2019.8902544

This article (included in Apendix 3) proposes an analytical model for Opp-

Nets. It is based on classic epidemiological models, making an analogy be-

tween contagious diseases and data: forwarding data between agents is like

transmitting a disease. In this work, epidemiological models are extended to

handle the main difference with OppNets: in a computer network, multiple

messages compete for limited buffer space on the nodes, something that has

no equivalent in biological diseases.

The model finds the expected lifetime and reach of a message in the net-

work. The importance of an analytical model is that it gives a general insight

into the system’s response to the different network parameters, such as mobil-

ity attributes, node density, or traffic intensity.

A problem with analytical models is their limited expressive power to cap-

ture complex real-life processes. For example, two mathematical tool sets are

applied in the previous work. First, a differential-equations-driven model is ex-

plored. In it, the magnitudes are treated as continuous and differentiable, so

it is only applicable to very big networks to approximate their discrete nature.

The differential model also ignores all stochastic phenomena, being completely

deterministic. The second model uses Markov Processes, which capture the

stochastic behavior but depends on the Markov property. This restriction lim-

its the model’s applicability, as most real networks are not memoryless: node

movement is frequently correlated, as is data transmission.

The result is that many complex behaviors of the real world must be ig-

nored. The problem is that some of these behaviors -such as the correlations

in the node movements- may be critical for the network’s behavior.

The limitations described in the previous work led to the use of Empirical

or experimental models. These are models derived top-down from reality, try-

ing to infer laws that can adjust the observed behavior.
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[27] Jorge Visca and Javier Baliosian. ((A Model for Route Learning in Op-

portunistic Networks)). In: NOMS 2022-2022 IEEE/IFIP Network Operations

and Management Symposium. May 2022, pp. 1–4. doi: 10.1109/NOMS54207.

2022.9789826

The presented article, included in Appendix 4, proposes a novel model for

OppNets called Opportunistic Network Models (ONMs). It is based on Spatio-

temporal Graphs [7] and captures the most relevant data for describing an

OppNet. It expresses the temporal evolution of the encounters in the network

and can naturally represent the concepts of data routing and forwarding.

The model allows us to describe an OppNet precisely, but its main power

is that it allows exploring the solution space of data routing in the network.

The model has straightforward semantics and uses an abstraction with many

tools available: the model is a simple directed graph, though not a connectivity

graph as usual in conventional networks. This simplicity compares favorably

with other OppNet models [6], which depend on cumbersome and limiting

abstractions.

As a result, the ONM is a practical support for applying ML techniques

to derive good routing decisions. In effect, it supports a proposed routing

algorithm called BOW. In this work, the ONM is built from recorded traces

of a real network. This model’s optimal routing behavior is computed by

applying exact methods. Then, several ML techniques are used to train a

predictor function that would make good decisions in other network instances.

Notice that this approach differs from the one used with Path Sampling

and FLOP. There, the algorithm was defined independently from a network

scenario. In this case, the network model and routing algorithm are linked.

First, a network model is provided, and then the algorithm learns its opti-

mal routing decisions. Because the model is generated and the learning is

performed offline from recorded traces, this method can use sophisticated and

computationally expensive ML methods such as Neural Networks (NNs). Also,

the resulting policy does not depend on nodes exchanging routing data as con-

ventional algorithms do, reducing the load on the network. As a disadvantage,

the algorithm’s learning is “frozen” at the point the model was captured and

can not adapt to changes in the network dynamics.

17

https://doi.org/10.1109/NOMS54207.2022.9789826
https://doi.org/10.1109/NOMS54207.2022.9789826


[28] Jorge Visca and Javier Baliosian. ((rl4dtn: Q-Learning for Opportunis-

tic Networks)). In: Future Internet 14.12 (2022). issn: 1999-5903. doi:

10.3390/fi14120348. url: https://www.mdpi.com/1999-5903/14/12/348

This article is included in Apendix 5 and proposes a different approach. In-

stead of building the ONM from recorded traces, it is built and maintained

online during the network’s lifetime. This management is performed in a dis-

tributed fashion by the network nodes themselves, where nodes build a local

view of the whole model. At the same time, Reinforcement Learnings (RLs)

techniques are used to learn the optimum routing decisions. The main dif-

ference of this work with other RL algorithms for OppNets (for an overview,

see [15]) is that it learns over the ONM, which captures temporal information.

Thus, the learning system is fed information on the timing of node encounters,

allowing the system to make more informed decisions.

3.2. Statement of Authorship

The author of this thesis is the main author of the works presented in this

chapter. A detailed description of the author’s contribution to each piece can

be found in the corresponding appendices.

None of the works in this compendium were included in other compendium-

thesis documents, nor will they be included in such type of thesis in the future.
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Chapter 4

Conclusions

The main goal of this Thesis was twofold. First, to produce new models ca-

pable of capturing the complex behavior of Opportunistic Networks. Secondly,

use those models to design better routing algorithms.

4.1. Concluding remarks

In this Thesis, two models of very different natures and serving distinct pur-

poses are proposed. They are not competing but complementary and showcase

the advantages and limitations of both approaches.

The first model is analytical, derived from first principles, and describes

the fundamental properties of an ideal network. It provides clear relationships

between the parameters and preconditions. As a result, it gives a general

insight into the network’s behavior.

As a downside, this model is highly restrictive on the network properties

under which the characterization is exact. Most real networks do not satisfy

those preconditions nor behave as the model predicts.

However, the qualitative phenomena described in that analytical model

helped us to understand the real behavior of an OppNet better, even when the

predictions are not exact; understanding where the real networks diverge from

the models is an important result in itself because it can lead to identifying

critical properties of networks.

The data-driven model is proposed to handle the problem of describing

a specific network. It captures its dynamics, representing all the processes

(movement and transmissions) that affect its functioning as a data network.
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The result is a single data structure abstracting the complete network’s behav-

ior through its lifetime. An advantage of this model, compared with previous

work, is the simplicity of its representation, being just a labeled directed graph.

Combined with straightforward semantics, this allows the application of pow-

erful and well-known tools.

Another advantage of this data-driven model is that it is well-suited to

support exploring the network’s behavior algorithmically. This allowed the

application of Machine Learning methods more effectively than in previous

works. Learning temporal behavior is a particularly complex task to imple-

ment. Firstly, because it is critical for the algorithm’s effectiveness, and sec-

ondly, because this information, by definition, is not immediately available

and must be stored and represented somehow. The proposed model includes

a method for codifying temporal data in a representation readily available for

the learning mechanisms.

An interesting consequence of the proposed Machine Learning approach is

that it is built over a network model derived from the real network. Thus,

it does not depend on pre-deployment tuning, as usual in conventional algo-

rithms. In a way, the tuning step is contained within the algorithm’s train-

ing when the decision-making code is exposed to the details of the particular

network it will run on. That dramatically simplifies the deployment of the

network, as the usually labor-intensive and artisanal parameter tuning gets

automated. The parameters controlling the learning process remain, but those

are usually more robust and better understood.

4.2. Open Research Lines and Future Work

Three main research lines were identified as potential future work.

The first research line is aimed at improving the analytical model. Prelimi-

nary work has already been done to extract more information from the model,

such as a deduction of the effective delivery rate of the described network.

It will be helpful to analyze further the conditions under which the model is

applicable and try to soften the dependency on the Markov property of the

underlying network as much as possible.

The second area is to understand better the properties of the data-driven

ONM model and how it adapts to Machine Learning processing. In particular,

Graph Neural Networks are a promising technology that could adapt well to
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the underlying model.

Finally, a variation of the data model is being developed. It is similar to

the data-driven ONM model, but instead of representing a single instance of

the network, where edges capture the observed behavior, in this representa-

tion, edges are probabilities. For this, it splits the time in time windows, as

the rl4dtn algorithm does. As edges have associated probabilities, the label’s

product along a graph walk is the probability that a message would reach the

destination following said path. The total probability of reaching a destination

from a starting node through all possible paths is a well-known concept, the

reliability network. Modeling a OppNet as a reliability network is a promising

approach.
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Appendix 1

Path sampling, a robust

alternative to gossiping for

opportunistic network routing

Jorge Visca et al. ((Path sampling, a robust alternative to gossiping for oppor-

tunistic network routing)). In: 2016 IEEE 12th International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob).

2016, pp. 1–8. doi: 10.1109/WiMOB.2016.7763244

Author’s contribution The author provided the design and implementation

of the Path Sampling protocol. He also implemented the tests and provided

the analysis of the results.
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Abstract—Opportunistic Networks have been designed for
transmitting data in difficult environments, characterized by high
mobility, sporadic connectivity, and constrained resources. To
sustain these networks, the literature describes methods such as
Epidemic and Spray&Wait, which do not learn from the network
behaviour, and Gossiping-based algorithms that collect historical
network data to improve efficiency. In this paper, we show that
Gossiping-based solutions suffer from pathological behaviour in
some simple network scenarios. Under certain conditions almost
all the data transmitted by some nodes may get lost in the
network, not reaching its destination. To address this problem
we have proposed an algorithm that responds in a more robust
manner while staying relatively simple. In this work, we show that
our algorithm achieves delivery rates comparable to gossiping-
based algorithms, while being more robust and providing better
fairness. To illustrate this result, we test native implementations of
our solution, Path Sampling, and related algorithms on a network
simulator.

I. INTRODUCTION

The proliferation of low-cost wireless devices has enabled
the creation of novel applications, such as sensor networks.
These are self-supported network deployments composed of
low-cost devices with the purpose of collecting data for envi-
ronmental monitoring, fleet tracking, etc. They are expected to
operate without support from additional infrastructure, to be
deployed in remote areas or provide services during natural
disasters. To maintain these operations, various technologies
have been developed.

One of such technologies is Opportunistic Networks (ON),
that intends providing networking in harsh conditions and
critical situations. In an ON some of the assumptions made
when designing protocols for common computer networks are
not satisfied: there may not exist an end-to-end path at any
given moment; connectivity between two nodes may be highly
asymmetrical or even unidirectional; nodes may spend most
of the time in a low-power consumption state, enabling radio
interfaces for short periods of time, etc. Additionally, it is usual
for nodes to meet others peers sporadically, for short-lived
sessions. Depending on the application this kind of networks
is also named “Delay Tolerant Networks” and “Disruption
Tolerant Networks” (DTN).

Because of those challenges, the techniques and algorithms
developed for conventional networks do not apply in ON and
different routing algorithms are needed. ON protocols are of
the “Carry and Forward” type because nodes store data packets
and move carrying them until a transmission opportunity ap-
pears. A packet may have to be carried by several nodes before

it reaches destination. Opportunistic protocols determine when
and for how long a node store a particular data packet. There
are multiple ON protocols of varying complexity and based
on different assumptions, designed for different use cases and
performance requirements.

In a previous work we presented FLOP [1], a system for
the efficient distribution of content in wireless heterogeneous
networks, in particular networks with high mobility and radio
interference. To support FLOP operations in such difficult con-
ditions we sketched a ON methodology for data dissemination.
In this work, we formalize this methodology under the name
of Path Sampling protocol. Path Sampling belongs to the class
of the simple opportunistic protocols, adapted for working
on very low-cost and low-power equipment, usually mobile
and battery-powered. In particular, this new algorithm takes
advantage of the periodic probes used to detect nodes in the
vicinity to collect data about the network connectivity patterns.

This paper is organized as follows. Popular ON routing
protocols are discussed in Section II. The proposed new
protocol, Path Sampling, is described in Section III, and a
comparison with the existing protocols is made in Section IV.
Finally, conclusions and future work are outlined in Section V.

II. RELATED WORK

Following a classification proposed in [2] the work pre-
sented in this paper concerns infrastructure-less networks.
These are networks where all the nodes are equals and have
the same role in the data routing. This class of protocols is
classified as either Dissemination- or Context-based.

Dissemination-based protocols typically do not use knowl-
edge on the network, and are variations of controlled flooding
of messages over the network. The best known protocols of
this class are Spray & Wait and Epidemic. On contrast, context
aware algorithms differ in the amount of the states they collect
and the complexity of the process they apply. It has been
shown that, while being a NP-Hard problem, algorithms that
collect data on the network behaviour perform better than
general algorithms, and there is a balance between the amount
of data collected and the associated performance gains [3].

The Epidemic routing protocol is based on a controlled
flood [4], [5] over the network. A node delivers all the
messages in its buffer to all the nodes it meets. In this way,
a message will “infect” nodes until it reaches the destination.
The flooding of the messages is controlled by two parameters:
the buffer space and the maximum hop count. The first
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parameter limits the number of messages that can be carried,
with a FIFO buffer management strategy used to replace older
messages with newer ones. The second parameter controls the
maximum number of hops that a message will move away
from the emitter. When the maximum hop count is set to 1, the
protocol is equivalent to direct delivery, where a message will
reach destination only if the emitter node comes in the range
of the receiver. Conversely, a maximum hop count value bigger
than the total number of nodes will imply a full flooding of the
network. Between these extremes there is a balance between
latency (how fast a message reaches destination) and resource
utilization.

The Spray & Wait routing protocol attempts to reduce the
resource utilization compared to Epidemic. It is based on
two phases: i) Spray where a message is flooded to the first
n different nodes it meets, and ii) Wait where the nodes
with a copy hold the message until some of them finds the
destination.

There are several variations of the Spray & Wait protocol.
For example in Randomized Spray & Wait, during the flooding
phase the replication is controlled by a configurable replication
probability. In Binary Spray & Wait in the flooding phase there
is a virtual number of copies of a message, and upon delivery
each node handles over to the receiver half of the copies in
its own inventory.

The Spray & Wait and Epidemic are considered stateless
protocols because they do not learn anything about the status
of the network for improving the delivery rates. Some of
the simplest stateful protocols are based on gossiping [6],
where nodes exchange vectors describing the local perceived
quality associated to different nodes as potential destinations.
Examples of such protocols are PROPHET [7], CEPMF [8]
and RON [9].

RON is a content-based1 opportunistic protocol that uses
a variation of gossiping. As a routing protocol RON has two
functionalities: routing, where data needed to make forwarding
decisions is computed and distributed, and forwarding, the act
of taking a decision once there is a data packet to process.

For supporting routing, nodes contain a View, a list of
{destination, quality} pairs where a delivery probability is
associated to each known destination. The quality property
represents how effective the node considers itself to deliver
data to the corresponding destination. Notice that in RON, a
destination is a content-based subscription and not just a node,
but this does not affect the routing mechanism. Views are
exchanged with other nodes as they meet, and this exchange
is used to update the information in the local View. The
qualities in the View are updated following two equations; in
the first place, quality regularly decreases as the corresponding
destination is not encountered as seen in equation 1 (ageing).
This effect is driven by a configuration parameter 0 < γ < 1.
Then, the destinations that appear mentioned in a incoming

1Content-based means that it uses a generalized addressing where, unlike
in the usual destination-based routing, the receivers specify a filter requesting
that matching messages must be delivered to them. Thus, destinations are not
nodes but subscriptions.

View have its quality reinforced following equation 2, using a
configuration parameter 0 < P < 1. Typical values for γ and
P are 0.9 and 0.01 respectively, but the exact values depend
on the dynamics of networks.

qnew = qold × γ−(t−t0) (1)

qnew = qold + (1− qold)× qincoming × P (2)

The delivery probability attribute is then used to decide
how to assign buffer space to different messages. Messages
to destinations with higher delivery probability have better
chance to be successfully delivered, so the node considers
itself a better carrier for such messages.

When there is a tie on the computed quality, several possible
buffer policies are possible. For a study on the impact of the
different policies under various mobility patterns, see [10]. In
this work, we use simple FIFO rule, where the oldest message
is evicted first.

III. THE PATH SAMPLING PROTOCOL

In this section, we present the new protocol, Path Sampling,
which is based on a new method for prioritizing messages
to be stored by different nodes. This priority is based in a
estimation of the end-to-end delivery probability of a message.
Unlike traditional gossiping that learns a delivery quality from
the encounter probability with neighbours, in Path Sampling
the quality is learned by observing special probes sent from
subscribers. These probes are included in the beacon sent by
the nodes to detect neighbouring nodes, and thus add little
overhead.

As subscription are broadcasted by the subscriber, stored,
and then re-broadcasted by other nodes, they are flooded
through the network. This process is used to collect data on
the network topology to better route content from the data
source to the subscribers.

For this purpose subscriptions have a sequence number
and a visited attribute, which is a list of nodes it is known
they have traversed. The same subscription can reach a node
following different paths. The sequence number allows a node
to detect the first time a subscription of a given original
emission is received. Whenever a node receives such a “first
to arrive” subscription message, it adds itself to the visited
attribute. Thus, the visited attribute of the subscription will
contain the nodes participating of the fastest propagation path
of the subscription instance, which can be interpreted as a
opportunistic shortest path.

An example of the route sampling process can be seen in
Figure 1. In the example, the node A subscribes to a content
available in node F. In a) node A broadcasts its subscription
with sequence number 1 and the visited field only containing
A itself. As this is a new subscription for B and C they store
it, registering its sequence number and updating the visited
field adding themselves to it. In b) the node C broadcasts the
subscription. Node A receives it, but as the sequence number
is not higher than the one already registered the message is
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Fig. 1: Route sampling process.

ignored. The node D, in turn proceeds to store it as a new
subscription.

Similarly, when B broadcasts the subscription it will be
ignored by A and stored in E and F. Node F is provider of
data matching the subscription, so it takes a note of the path
A-B-F. In c), F receives the subscription through a longer path
(via E), but does not take any action as the sequence number
is no bigger than the one already registered.

Starting in d), a new broadcast is generated in the node
A, with a sequence number 2. Let us suppose the link B-F
disappears, for example due to movement of the node F. In this
configuration the shortest propagation of the subscription to F
is A-B-E-F. When the new subscription reaches F following
this path, F will register it as a new sample for the path
towards A as it has a higher sequence number (2) than the
one registered (1).

The visited attribute samples obtained can be used to detect
the best nodes to handle traffic to a subscriber. For example,
if a certain node repeatedly appears in the shortest path for
a subscriber, this means it is a good candidate for serving
data to it. Conversely, a node never or rarely mentioned is
probably badly placed for this. The quality associated to nodes
can be managed by a reinforcement/ageing mechanism, where
a node’s quality is increased when it appears in a visited list,
and decays if it is not.

Notice that this method assumes that paths are symmetrical:
a good node to deliver data from the subscriber is expected to
be a good node to deliver data to the subscriber.

The quality parameter allows to determine the favoured
nodes for handling the data for a given subscription. In
particular, data providers can tag messages with this list of
nodes (the path attribute). To limit the data transmitted, path

attribute is limited to a configurable number of top ranking
nodes. This attribute is used by intermediate nodes to decide
whether to hold a copy of the message or not: if a node find
itself in the node list, the message will be selected for storing.

The pseudocode for Path Sampling can be seen in Listing
1. Line 1 is the View data structure, which is a set of
Subscriptions with associated sequence number and visited
set. Line 5 is the data structure for holding the learned node
quality for each subscription. The data structure at line 6 is
the message buffer.

The loop at the line 7 periodically broadcasts the subscrip-
tions, increasing the sequence number for the subscriptions it
owns.

These broadcasts are received and processed by the loop on
line 13. Only subscriptions with a higher sequence number
than the last seen are accepted (line 17). The processing
consists on the reinforcement of the quality associated to nodes
participating in the subscription’s propagation (lines 19 and
23), with configuration parameters γ and P , and the selection
of matching messages for including in a response broadcast
(line 25). These messages will be tagged with the best ranked
nodes to participate in the propagation towards the subscriber
(path attribute at line 27).

The messages received are processed in the loop at the line
31. Messages that specify the node in the path attribute are
merged in the buffer M . The merging may imply dropping
some other messages to make space in the buffer. Also, if the
message matches some of the node’s own subscriptions it will
be handled by the application.
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Listing 1 Path sampling protocol

1: V : TABLE[Filter]→{
2: seq: Number
3: visited : SET OF Node
4: }
5: Q : TABLE[Filter]→(Table[Node]→Number)
6: M : SET OF Message
7: loop
8: wait τ seconds
9: for all f , view IN V do

10: if is own(f ) then
11: view.seq ← view.seq + 1
12: broadcast view({f, view.seq, view.visited} )
13: loop
14: {f, seq, visited} ← wait for View broadcast
15: response : SET OF Message
16: add(visited, this node)
17: if NOT f IN V .keys OR seq > V [f ].seq then
18: V [f ]← {seq, visited})
19: for all q IN Q[filter], m IN q.keys do
20: q[m]← q[m]× γ∆t

21: if m IN visited then
22: q[m]← q[m] + (1− q[m])× P
23: for all m IN visited | NOT m IN Q[f ].keys do
24: Q[f][m]← initial q value
25: for all m IN matching(M,f) do
26: if is own(m) then
27: m.path ← merge best nodes(Q[f ])
28: remove(d.path, this node)
29: response.add(d)
30: broadcast messages(response)
31: loop
32: m← wait for Message broadcast
33: if NOT m IN M AND this node IN m.path then
34: merge(M , m)

IV. EXPERIMENTAL EVALUATION

To compare the behaviour of Epidemic, Spray & Wait, RON,
and Path sampling protocols we implemented them as part of
the Rong package [11]. RON is used as an example of Gossip-
ing protocol. The Rong package provides the implementations
in the Lua language. The tested implementations use TCP (for
Epidemic and Spray & Wait) and UDP (for RON and Path
sampling).

Spray & Wait was configured with to a initial value of 32
copies, and Epidemic protocol had the maximum number of
copies control disabled. The Path sampling was setup with a
maximum path count of 8. For all protocols, the nodes where
configured with a buffer size of 15 messages, and using FIFO
buffer policy.

A. Simulation platform

We deployed Rong in the NS-3 simulator using the Direct
Code Execution (DCE) module [12], which allows to run
native code inside the simulated environment.

Fig. 2: The simulation scenario consists of two adjacent
geographic areas. Nodes move randomly inside each area.
Three data flow scenarios are tested.

NS-3 allows using a realistic network software stack and
modelling the radio medium utilization, and takes into account
physical layer phenomena, such as signal decay and radio
interference. This is not possible when using a specialized
opportunistic protocol simulator such as ONE [13], as it
is done frequently in research works in the area. Another
advantage of using NS-3 with DCE is that it enables us to
run exactly the same codebase that is deployed on the real
hardware, so it is possible to verify other characteristics such
as resources utilization.

The radio interfaces are 802.11a, with a range of about
100m to 130m, depending on interference from other nodes.

B. Scenarios

The analysis of human mobility traces has shown that
they adhere to the small-world network pattern [14][15]. This
implies that the average shortest path is only a few hops long,
and that relations tend to be symmetrical. Furthermore, strong
modularity is detected, which means that nodes tend to form
communities, where links within the community are stronger
that with nodes outside. This behaviour is typical of social
networks [15].

Accordingly to those findings, we explore the behavior
of three possible dataflow arrangements shown in Figure 2
because they are representative of use cases that are expected
to occur in many deployments. We focus on one of the
simplest clustered topologies, with only two groups side-by-
side. Dataflows in this topology can be intra- or inter-cluster.
Inter-cluster traffic may have to compete with other inter-
cluster or intra-cluster traffic.

In all three scenarios there are two zones of 400m×400m
each (compressed vertically in the figure), separated by a
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(a) Separated flows scenario (b) Counterflow scenario (c) Overlay scenario

Fig. 3: Delivery performance, averaged each 10 consecutive messages.

100m gap, and named X and Y . Within each zone, there are
five nodes moving in a Random Waypoint mobility pattern,
with a speed uniformly distributed between 1 m/s and 2 m/s.
There are also three fixed nodes, one at each extreme and one
between the two sectors. These nodes play the roles of emitters
and receivers in the different scenarios. A message travelling
between the extreme nodes has to be handled over between
mobile nodes placed in different sectors because the node’s
radio-range is smaller than 500m.

1) Separated flows scenario: A single data source B has
two separate data flows, one towards A (trough zone X) and
the other towards C (trough zone Y ). Notice that stateful
algorithms must learn that nodes inside X are adequate to
transport data towards A but not towards C and, conversely,
nodes in Y are adequate to serve data towards C but not
towards A.

2) Counterflow scenario: The nodes A and C exchange
data. Both data flows must traverse the whole network in
opposed directions. Besides that, both flows are equal, thus
if the network usage is fair both flows should attain equal
performance.

3) Flow overlaying scenario: In this scenario there are two
flows from a single source node (A), with both flows sharing
part of the path (trough sector X). This scenario is interesting
because it forces two different flows to compete for the same
resources. One of the flows has an easier task, as it is shorter
and remains inside one cluster. The other must cross between
two clusters. Of special interest is to study how the protocol
assigns resources to both flows.

For the experiments, simulations were run for 5000s. During
the first 500s no data is transmitted to allow protocol stabi-
lization. Then, source nodes transmit 60 messages each, with

60s intervals between messages. There is time left to give
opportunity for messages to reach destination. In the figures,
t = 0 is set at the moment of the first message transmission.
The simulations are run 30 times for statistical reasons.

C. Results

The ON routing protocols are probabilistic protocols, and
their main performance metric is delivery rate, i.e. the propor-
tion of emitted messages that reach destination.

The delivery performance is presented in Figure 3. For
each scenario, the delivery rate for both flows is shown. The
horizontal axis represents the first 50 messages sent. The last
10 messages are excluded because they have different behavior
due to lack of pressure for replacement in buffers from
subsequent messages. Values are the average and interquartile
range of the delivery rate.

The main observation for the separated flows scenario (Fig-
ure 3a) is that stateful protocols achieve better performance
than the stateless. The difference in their behaviour can be
seen in Figure 4: stateful protocols learn the characteristics
of the network and adapt the buffer utilization to the actual
needs of the flows. This can be seen in the fact that as time
passes buffer utilization in the sector X is skewed towards
the messages that have A as destination. In the stateless
protocols, conversely, all flows are equally represented in the
buffers. This means that all messages compete for buffer space
regardless of placement and destination, degrading network’s
performance. In this scenario the stateless protocols behave as
if they had half of the available buffer space.

Figure 3b shows bad behavior from the Gossiping protocol
in the counterflow scenario. Of the two flows, one achieves
lower delivery rate than the other, despite being equivalent.
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(a) Sector X (b) Sector Y

Fig. 4: Buffer distribution, separated flows scenario.

(a) Sector X (b) Sector Y

Fig. 5: Buffer distribution, counterflow scenario.

(a) Sector X (b) Sector Y

Fig. 6: Buffer distribution, overlay scenario.

The reason lays in a weakness of the gossiping algorithm [16],
and is illustrated in Figure 5: nodes in sector X compute a
better quality for delivering to A than to C. This means that
between the two flows in the networks these nodes will prefer
the messages targeted to A over the ones targeted to C. Traffic
from A gets starved: messages get evicted from buffers as
nodes prefer handle messages close to destination over the
ones close to the source. The result is high variation in buffer
assignment seen in Figure 5 for the Gossiping protocol. The
actual distribution of the delivery performance is shown in
Figure 7. It can be seen that Gossiping does not converge as
Path sampling does, resulting in a bimodal distribution: about
half of the messages are delivered with rates clustered around
0.8, the other half with a rate of less than 0.2.

This starvation behaviour highlights a fundamental weak-
ness of gossiping-based routing: it does not take into account
the end-to-end delivery of messages. Path Sampling achieves
robust performance because nodes have equal probability to
participate in both flows, so they treat both flows equally.

The counterflow scenario also shows bad behavior from the
stateless Epidemic and Spray & Wait protocols (Figure 5):
buffer occupation is skewed towards younger messages, this
is messages emitted in the closest node. The reason is that
in FIFO policy, the probability of a message dropping from
a buffer is independent from node’s placement or message’s
content, and grows as time passes: the longer a message
is in a buffer, the higher the chances of being replaced by
another message. This results in a higher probability of losing
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Fig. 7: Histogram of the attained delivery rates for the coun-
terflow scenario.

a message in a longer path, as the message has to spend more
time in buffers.

This same behavior results in equal buffer assignment to all
messages in the overlay scenario (Figure 6). In this scenario
all messages share the same emitter, the node A. This leads
to higher delivery rate for flow A→ B than A→ C, as there
is a higher probability for losing a messages from the flow
A→ C because they spend more time traversing the network.
Also, buffer space is wasted on sector Y on messages that
already passed their destination (B).

As in the counterflow scenario, Gossiping also behaves
pathologically in the flow overlaying scenario: there is a
complete transmission failure for the longer link (Figure 3c).
The reason is similar: bad buffer assignment. In the sector X
the flow towards A → B starves the flow towards A → C,
because nodes prefer messages to the closer destination (Fig-
ure 6). The final result is that the Y sector is left without
messages to C.

The Path Sampling protocol provides equal opportunities for
both flows, even if they are of different length (Figure 6). The
reason is that nodes in the X sector have the same probability
to be on the path from A to B than from A to C, so both
destinations are treated almost equally.

Although Path Sampling achieves higher delivery rate on
the shorter flow (Figure 3c), it performs consistently better
than Epidemic and Spray & Wait, and does not display the
failure mode of Gossiping.

Even tough Path Sampling shows overall better perfor-
mance, there are peculiarities in its behaviour. Figure 6 shows
that the closest destination is somewhat favoured, converging
to a value of about 60% of buffer share use. The reasons
for this behaviour needs more study. One possible reason
is the fact that FIFO is still used among the messages that
are selected according to the path attribute. Also, there is a
probability than a node from “wrong” sector participates in a
shortest path sample.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have provided empirical evidence that
gossiping-based protocols, while potentially performing better

than stateless protocols, suffer from pathological behaviour in
some simple scenarios. In gossiping protocols, nodes assign
resources (buffer space) to messages deemed with the highest
chance of reaching destination. We found that this property
may cause starvation when a node is shared by several
competing dataflows.

To overcome this, we have presented a protocol that collects
information regarding data paths using token propagation.
This protocol achieves similar delivery rate that a gossiping
protocol without the performance degradation found in the
counterflow and flow overlaying scenarios described in Sec-
tion IV-B. The fairness of the protocol is found to be similar to
a stateless protocol. This allows the Path Sampling algorithm
to consistently outperform Epidemic and Spray & Wait, unlike
Gossiping which displays some failure modes.

Path Sampling has three parameters: two dedicated to
managing the reinforcement and aging of node quality for
serving subscriptions, and the size of the path vector. The
last one is the most important. On one hand, it is the one that
adds network overhead because it has to be attached to the
messages. On the other hand, a bigger path vector enables
to include more node diversity. The optimal value for the
number of nodes to include in a path depends on the number
of nodes participating in the different possibles propagation
paths, and the expected path diversity level. Nevertheless, the
typical small-world structure of networks implies that paths
tend to be short, so it is expected that the list is not required
to be too big.

Some of the data needed to optimize the path parameter
can be collected with the tokens as they propagate trough the
network. For example, the path length and node’s network cen-
trality can be estimated from observing the visited attribute.
Additional data could be computed and transmitted with the
visited attribute, like the latency end-to-end and for each hop,
or the pressure on the different buffers. Additional hints can
be computed and distributed back with the path attribute to
help nodes when making a forwarding decision.

This suggest the possibility of creating methods for self
management and automatic parameter adjustment. The impact
of such techniques on performance on one hand, and network
overhead on the other, should be studied.
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Abstract—Nowadays there is a proliferation of smart de-
vices used for media consumption. Usually, media contents are
streamed from a Content Distribution Network (CDN), through a
cellular network, which can get overloaded when there is a large
number of active users per cell. At the same time the devices,
i.e. smartphones, typically possess a set of wireless interfaces
such as WiFi and Bluetooth that can be used to communicate
with other devices in its proximity. In this work we propose a
publish/subscribe, opportunistic network protocol aimed at off-
load infrastructure network nodes. It contributes to optimize the
cellular network usage among mobile devices and to reduce the
costs and energy consumption induced by the reproduction of
media that are temporally popular.

I. INTRODUCTION

The widespread use of LTE enabled smartphones, with
high quality displays and high computing power, has resulted
in a high use of streaming services for media consumption,
typically video and music. This, when combined with a
scenario with a high density of users such as a train station or
wagon, concerts, campus, etc., can impose a very high load on
the network. It is a known fact that this new user behaviour
is pushing the cellular networks’ capabilities to the limits
of their current and foreseen possibilities [1]. Additionally,
besides causing an increase in the costs for the provider and
the users, this intensive data use is impacting on the lifetime
of the mobile device’s battery. It is also known that the social
structure and interaction of the users of mobile devices is
motivating the proposal of content distribution protocols that
are based on Device-to-Device (D2D) communications [2][3].
The case of on-demand video, based on the transmission
of independent chunks that can be stored and forwarded is
particularly adequate for this type of data transmission.

In particular, the work presented in this paper is based in the
Outband D2D scenario [2], where the direct communication
between nodes is done over a secondary interface, such as
WiFi or Bluetooth. Nevertheless, it is also applicable to
the Inband D2D, where LTE is extended to provide direct
communications.

The secondary network used for sharing content between
devices is highly dynamic. This fact suggest the use of
a Opportunistic Network (ON), or Delay Tolerant Network
(DTN) as infrastructure. The main property of such networks
is that is capable of operating even in the face of frequent
network partitioning. This partitioning can be the result of
a momentary disconnect of one or more nodes in a mesh
network; or the normal state in a network where due the
node mobility, the random encounter opportunities are used

to deliver data, possibly in several hops. In either case, the
fact that at a given moment no end-to-end path might exist
means that the data must be kept at the nodes for potentially
long lapses of time. This is referred as store-and-forward, a
characteristic behavior of ONs, and can also be interpreted as
a caching component of the network.

We propose a protocol for enabling the efficient distribution
of content in wireless networks, in particular when there is
a mix of cellular and ad-hoc networks such as smartphones
with WiFi support. The idea is to improve the network per-
formance through efficient support of one-to-many dataflows
and efficient cache placement. Of special interest are the net-
works where the user nodes have non-deterministic but highly
organized behavior, such as spatial clustering and emerging
data usage patterns (e.g. passengers on a train wagon). Also,
the connectivity is provided by several network technologies
of very different characteristics (structured vs. ad-hoc, licensed
vs. unlicensed, short range/high throughput vs. long range/low
throughput, etc.).

The paper is organized as follows. Section II presents some
of the most relevant related work and positions our work
in the body of prior art. Section III presents the proposed
protocol itself and Section IV presents a simulation-based
initial validation of the main idea. Finally, we conclude and
depict future work in Section V.

II. RELATED WORK

ONs typically have a high probability of intermittent con-
nections, making the traditionally routing mechanisms not
optimal [4]. In consequence ON routing protocols are based on
the knowledge of the nodes about the network, (e.g PROPHET,
Epidemic, Spray and Wait, MaxProp), or on adding additional
static nodes (e.g. MULE, throwboxes) to collect packets and
help to pass them to other nodes. Epidemic floods the network
in a controlled way. The nodes store messages that are directed
to other nodes, and “infect” other nodes by passing a copy of
its messages without priority or limit [4], [5]. MaxProp is
similar to Epidemic, however, messages are explicitly deleted
when an acknowledge message sent by the destination node is
received by a relay node. PROPHET controls the flooding
using predictions based on the delivery probability for a
specific destination. Finally, Spray and Wait is based on the
phases that give name to the protocol, the former with the
purpose of spraying n copies over the network and then wait
until getting in contact with the destination.

The MULES are mobile nodes which can have a random
path or predicted and can pass the messages of nodes between978-1-5090-0223-8/16/$31.00 c© 2016 IEEE
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subscriber_id=node_17
seq=157
visited={node_3,node_40}
filter={

file_hash=0x102030
start_ts>120
bitrate>=512
codec=H.264

}

(a) A Subscription.

file_hash=0x102030
file_name=ldca.avi
chunk=9
start_ts=212
bitrate=512
codec=H.264
path={node_2,node_40}

(b) A Descriptor.

Fig. 1: The messages used for Network Maintenance.

different areas, typically they moved to a central relay point.
The Throwboxes are fixed nodes with better attributes than
other nodes (power supply, storage capacity, computing power,
etc.) working as relays for creating more contacts in the
network.

In [6] the authors present a hybrid approach called Hybrid
Routing System (HRS), which integrates infrastructure nodes
into more classical DTNs. Their simulations show that ex-
ploiting infrastructure can boost the performance of the DTN
protocols, no matter that they are centralized or decentralized.
Yet, the work with HRS does not consider streaming traffic.

Of special interest is the work in [7] which focus on
transmitting part of the load from the cellular companies
between their licensed spectrum (e.g. 3g or 4g) and unlicensed
specters for reducing the traffic in cellular networks, benefiting
to the operators.

The two protocols that introduce the main concepts used
by FLOP are RON and GrAnt. RON is a publish-subscribe
opportunistic protocol in which a node that is interested in
some type of messages issues a subscription that specifies that
interest using a logic filter. Clients use the network through
two type of messages, Subscriptions and Notifications.

The notifications are emitted by emitting nodes whenever
there is data. These notifications will be delivered by the
network to all the nodes with subscriptions whose filters that
match the content. The emitter does not know who are the
interested nodes, and the subscriber does not need to know
the identity of the emitter nodes to be able to receive data
of interest. This greatly simplifies the network’s management
as unlike in traditional destination-routed networks there is no
need to maintain an inventory nor share well-known addresses.

FLOP uses the concept of publish-subscribe ON for high
density networks with DTN characteristics.

The Greedy Ant protocol (GrANT) is a routing protocol able
to adapt to the large variations suffered by a DTN topology,
reducing latency in the message delivery.

GrAnt is based on Ant Colony Optimization (ACO), and
is composed of two types of ants: the Forwards Ants (FA)
and the Backward Ants (BA). The former are focused in
discovering paths using greedy choices based on the social
metrics from the nodes meanwhile the latest handles the
placing and evaporation of pheromones in the paths traveled
by the FAs.

FLOP adopts the idea of an ACO mechanism for routing.
The mechanism itself is different, as GrAnt is destination-
routed.

III. THE FLOP PROTOCOL

FLOP aims to satisfy the following technical requirements:

• Distribution of files sized in several megabytes (e.g. a
video)

• Files are divided in chunks, sized in the tens of kilobytes.
• Each chunk is characterized by a Descriptor, which

contains the file ID, the place of the chunk in the file,
and other attributes describing the content.

• Clients subscribe to content specifying a filter over the
Descriptors of interest.

The protocol is conceptually aligned to MPEG-Dash [8]
in how it handles files (chunking of media files, metadata for
chunk description, chunk retrieval using HTTP), with a funda-
mental difference: in MPEG-Dash all content is obtained from
a single server, while in FLOP the content may be distributed
among several peer nodes, in addition to, or replacement of,
a upstream server. The protocol has two functional areas. The
first is the Network Maintenance, responsible of efficiently
distributing information to nodes on what neighboring nodes
contains chunks of interest. The second area is Content Han-
dling, which consist on nodes selecting a neighboring node to
request a chunk and transferring the file.

A. Network Maintenance

Network Maintenance implements a distributed publish-
subscribe ON. It allows nodes to collect information on
availability of chunks, as well as support the efficient routing
of content in a highly dynamic and heterogeneous network.
As some portions of the network are expected to be very
dense, special care is taken to minimize the amount of traffic
generated. Also, as the network is subject to very fast changes,
the protocol is optimized for a high speed of convergence. It
also provides information to facilitate the efficient routing and
caching of content, and the identification of well suited nodes
for the gateway role.

The protocol uses two kinds of messages, Subscriptions
and Descriptors. A Descriptor is the metadata needed to
describe a chunk, presented as a list key/value pairs (Fig.
1(a)). A Subscription is used to express the interest of a node
in receiving certain data, expressed as a list of predicates
over the values of attributes of a Descriptor (Fig. 1(b)). The
attributes seq, visited and path are used for routing and will
be described in more detail in later sections.
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1) Routing: Nodes periodically broadcast a beacon con-
taining the subscriptions for which the node has an interest.
These subscriptions can be from the node itself (i.e. files being
played on the device) or coming from other nodes and received
and accepted by the node for serving. The subscription has a
unique subscription ID, the ID of the subscribing node and
might be updated between broadcasts (for example, a starting
timestamp be advanced, or a new bitrate be desired).

As subscription are broadcast by the subscriber, stored, and
then rebroadcasted by other nodes, subscriptions are flooded
through the network. This process is used to collect data on
the network topology to better route content from the data
source to the subscribers.

For this purpose subscriptions have a sequence number and
a visited attribute, which is a list of nodes. As the subscrip-
tions are flooded through the network, the same subscription
can reach a node through several distinct intermediate holders.
The sequence number allows a node to detect the first time a
subscription of a given original emission reaches it. Whenever
a node receives such a subscription message, it will add
itself to the visited attribute. Thus, the visited attribute of
the subscription will contain the nodes participating of the
fastest propagation of the subscription instance, which can be
interpreted as a opportunistic shortest path.

2) Forwarding: Whenever a node receives a subscription,
it will answer with the matching descriptors for the chunks
it has in its chunk buffer. This announces the node’s ability
to serve said chunks if requested. These descriptors are also
broadcasted, and thus can be received and potentially stored
by any node in range. Received descriptors are stored in a
descriptor buffer.

The node that introduces the content to the network (the
server) tags the notification with a path attribute, which
is a list of nodes considered as best suited to handle the
subscription. This list is built by selecting the best ranked
nodes according to qualities derived from the visited attribute
of the subscription that match said content.

Whenever a node listens a descriptor (a reply to a own
beacon broadcast or perhaps overheard from other nodes
answer) it can use the path attribute to help decide if it is
advantageous to keep it: if it finds itself in the path, this
means the node is a good potential carrier for the content.
When a node decides to hold a copy of the descriptor, it will
remove itself from the path attribute. This is done to reduce
the chance of admitting a descriptor twice, if encountered
again after handling to further nodes. Furthermore, as the
same Descriptor can be received several times from different
nodes, each transmitter is registered as a potential source for
the described chunk.

B. Content Handling

Once a node received a Descriptor for a chunk, it can decide
to download it. This can be because the node itself is interested
in said chunk (he is the subscriber), or because the node
considers itself a good carrier for the chunk (is listed in the
’path’ attribute as described above). If a decision to download

Fig. 2: Simulation Scenario.

a chunk is made, one of the owning nodes is selected and an
session is initiated If the download is cut short for some reason,
the download will be restarted from some other owning node.
When the download is complete the chunk is stored and, if the
subscription is local, handled to the requesting application.
Additionally, the node will start to answer with Descriptor
broadcasts to Subscriptions matching the chunk as to offer it,
until the chunk is dropped from the cache. The lifetime of the
downloaded chunks in the buffer is handled by using caching
policies, using criteria such as age and popularity.

IV. VALIDATION

In this section we depict some initial experiments to show
how FLOP reduces the cost of downloading media, saves
mobile devices’ energy and reduces the traffic forwarded by
cellular radio bases in a hybrid WiFi-LTE scenario. For this
validation we use the implementation of FLOP available at [9]
deployed on a ns-3 simulator using the Direct Code Execution
(DCE) module [10], which allows to run native code inside
the simulated environment.

The validation scenario (see Fig. 2) contains, first, a fixed
network node playing the role of the Content Distribution
Network (CDN). This node is the source of a large video to be
transferred. Connected to this node by fixed links, two cellular
radio bases, X and Y, both covering disjoint geographic regions
through LTE. A total of eight mobile nodes, equipped with
LTE and 802.11a interfaces with 150m range. Of these nodes,
seven are at fixed positions in close proximity in two groups,
and one is moving in a random waypoint pattern in the area.
All these nodes (fixed, mobile, and the radio bases) run the
FLOP protocol. The mobile node (M) is outside the cellular
coverage, but intermittently gets in range of the fixed nodes
as it moves. The simulation is run for 1000 seconds.

Nodes play two video file stored initially in the CDN node.
Files consists of 20 chunks of 250 KB each, each containing
10s of playtime. Nodes start playing the videos with 50s
interval. Node A starts playing the first file at the 50s mark,
D at the 200s mark. Then the mobile node M starts playing at
the 250s mark, followed by nodes E through G. The second
file is played in reverse order: the first node to play is G, and
the last is A.
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The nodes are configured with a inventory size of 60
messages, a time between beacons of 20s and a space for
3 nodes in path attribute. The results (averaged over 10
executions) are summarized in Table I. The Protocol column
shows the number of bytes broadcast as part of the protocol’s
routing mechanism. The Rate column is the delivery rate, i.e.
the fraction of the chunks that were actually delivered to the
subscriber.

Studies show that LTE is considerably more energy consum-
ing than WiFi [11] [12]. In particular [11] finds that even under
ideal conditions LTE consumes no less power for receiving
than WiFi for transmitting, with realistic traces on devices
showing 23 times higher power consumption for LTE than for
WiFi. It also shows that the power efficiency of LTE worsens
as the data rate decreases, so more loaded cells result in higher
power consumption for the terminal devices. This implies that
our scenario, with high node density and heavy network traffic,
puts a energy penalty on LTE traffic. This effect is offset
partly by the fact that most of traffic is downlink (so the
LTE interface is used mostly for receiving and not the much
costlier transmitting) and bulk in nature (which allows TCP to
improve the channel occupation given that the chunks are of
considerable size).

For this work, we used power values of 0.8 μJ/bit for trans-
mitting and receiving over WiFi and 3 μJ/bit for receiving
over LTE. The column P/Pref shows the ratio of the used
power and a reference power consumption of a plain LTE
download. The Op row is the impact on the cellular operator,
this is, the ratio of the actual radio use and the one expected
had all the nodes obtained the content from the radio bases.
This also can be read as the reduction in the load on the
licensed wireless medium.

The improvement for the cellular operator is clear. The
reduction in the utilization of the LTE medium impacts not
only the power consumption by the radio bases themselves,
but also reduces the load on network and the provider’s
servers. Also, this means the wireless interfaces can achieve
higher bandwidth and/or have more resources for other traffic,
improving the user experience even for nodes not participating
in the FLOP network.

The direct impact on the mobile nodes is twofold. In fist
place, as node M shows a node can get content successfully
even without cell coverage, only getting from their peers. It
even helps other nodes, as seen in the WiFi upload value.
In second place, most nodes get an effective power saving,
spending less energy on the wireless communications. This
means a longer battery life, or, alternately, playing bigger files
at higher bitrates. It must be noted the energy consumption
per node decreases as the number of nodes increases, as the
content obtained through WiFi is spread over more nodes.

V. CONCLUSIONS AND FUTURE WORK

In this work we propose FLOP, a publish/subscribe, oppor-
tunistic network protocol aimed at off-loading infrastructure
network nodes and reduce the cellular network usage among
mobile devices in order to reduce the costs and energy

TABLE I: Performance simulation, traffic in Mb

DwnLTE DwnWifi UpWiFi Protocol Rate P/Pref

A 4.96 5.04 5.45 0.12 1.00 0.78
B 3.84 6.16 8.26 0.12 1.00 0.77
C 2.98 7.02 5.13 0.12 1.00 0.63
D 2.25 7.75 9.13 0.12 1.00 0.68
E 4.60 5.40 1.02 0.12 1.00 0.64
F 6.31 3.66 4.28 0.12 1.00 0.85
G 5.05 4.95 6.64 0.12 1.00 0.82
M 0.00 10.00 10.06 0.12 1.00 0.54

Op 0.38

consumption induced by the reproduction of media that is
temporally popular.

We show how FLOP can work also as a caching mechanism
well suited for the common scenario in which some popular
media is reproduced on mobile neighboring nodes, during a
relatively short period of time.

The validation presented in this paper is just demonstrative
of the protocol’s potential. In a simplified but representative
scenario, it shows how if there is more than a single file
being played there is a net power saving for every node in
the network and a dramatic traffic reduction at radio bases
and fixed network.

So far we have worked on the “routing” part of the protocol,
important research issues such as the caching strategies at each
kind of node were not tested. However, we have very relevant
insights from previous work [13] that point to caching policies
that are highly related with the dominant mobility patterns.

FLOP must be validated against different network and
mobility scenarios to study its behavior. In particular, the
content handling component must be explored in depth. In
the current implementation a node downloads a chunk if it
finds itself on the shortest path to service some subscription,
to satisfy the content distribution task. This information should
interact meaningfully with the chunk popularity and download
history to manage said chunk’s lifetime in the buffer to offer
a caching service for the network.

It is important to share the burden of downloading the
content between the different nodes in the network. This
presents a management problem, where tasks must be assigned
to the different participant nodes to achieve an expected
performance, optimize the resource utilization, etc. We plan
on addressing this problem using autonomic management
concepts, through a rule based distributed platform [14].
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Abstract—Opportunistic Networks are networks in which data
delivery is achieved taking advantage of fleeting and random
encounters between mobile nodes. To study such networks, their
models must take into account the stochastic nature of the
processes involved. In this work we show how results from
epidemiology can be used to study the behavior of opportunistic
algorithms. In particular, we apply a Markov model for a logistic
birth/death process to an epidemic networking deployment. The
method is based on analyzing the expected lifetime of messages
in the network, and allows to model networks were nodes have
a limited buffer capacity.

I. INTRODUCTION

There is a class of mobile networks known as Opportunistic
Networks (OppNets), where most of the time there is no end-
to-end path between a data source and its destination. Actually,
nodes move and encounter each other only sporadically, and
they must carry data for prolonged spans of time until a
data exchange opportunity arises. For this reason, algorithms
supporting this class of networks are called carry and forward
algorithms. Routing algorithms must make the best possible
use of the storage and bandwidth available as to maximize
the delivery rate, or the proportion of successfully delivered
messages. For a brief history of the concept and a description
of the various approaches used see our previous work [1].

OppNets show very complex interactions between mobility,
data patterns and routing algorithms. Designing and tuning
them is a complex process, highly dependant on the network’s
behavior. To tackle this complexity, this work develops a
theoretical model of an OppNet protocol. In particular, the
model allows to predict the life-cycle of messages in the nodes’
buffers and through the network. This allows to predict basic
network metrics, such as delivery rates and latencies.

The proposed model is developed using results and methods
of epidemiology, this is, the study of the propagation of
diseases through susceptible populations. This is an approach
widely used to study the behavior of OppNets, making an anal-
ogy between a disease and a message that propagates through
a network. However, a common limitation of this approach
is that the interaction between multiple biological diseases
is weak and rarely studied. On the contrary, an OppNet
must usually serve multiple messages simultaneously. These
messages compete for a shared set of resources: airtime, buffer
space, computing power, etc. In this work, we improve existent
epidemiological models in order to represent more accurately
OppNets behavior, where buffer space is a scarce resource and
several independent message-flows must be routed.

The paper is structured as follows. In Section II previous
work related to OppNet modelling is presented. The network
to be studied is described in Section III, and Section IV studies

the modelling of mobility related attributes. Section V presents
the epidemic model and applies it to extract some network
metrics. Finally, conclusions and future work are presented in
Section VI.

II. RELATED WORK

Given the wide variety of protocols and network topologies
there is a considerable body of work studying the dynamics of
OppNets. Some of the most representative and closely related
works are described bellow.

The authors of [2] perform a model-driven analysis of a
Gossiping-based protocol used for disseminating information
in a mesh network. In a gossiping protocol nodes select ran-
domly a destination node with which exchange a random sub-
set of packets. The work builds a differential equation model
for the dissemination process. Though neither the protocol
nor the network model is the same as in this work, several
analytical tools are shared.

In [3] a framework for modelling OppNets is proposed. The
model is based on the construction of systems of ordinary
differential equations (ODEs). The network model assumes
that the contacts and Inter-packet times follow an exponential
distribution of known rate, and there is a fixed set of data
flows, with each node being the source and destination of a
single flow.

The authors of [4] use a different tool for analyzing the
performance of an OppNet, a Markov chain where each state
represents the number of nodes a message is available on.
The protocols studied are two-hop multicopy and unrestricted
multicopy used to propagate a single message. No interaction
with other messages in the network and associated competition
for buffer space is considered. In fact, the number of nodes
with a copy of a message is modelled as strictly growing until
the message reaches destination. Despite this limitation, the
approach used is of interest.

Another work that studies the stochastic behavior of a
OppNets is [5]. It uses a similar Markov model, and has an
insightful description of the similarities between an opportunis-
tic protocol and an epidemic. It has similar limitations to the
previous work, as it does not take into account the possible
interaction with other data flows.

Most works make use of two main techniques: a determinis-
tic model based on differential equations, and stochastic anal-
ysis based on a Markov chain representation. Both are used in
this work, though our stochastic model is more realistic in that
it models a practical OppNet protocol (Epidemic Network),
and considers the fact that the buffer space is limited.
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III. AN EPIDEMIC PROTOCOL MODEL

To build a complete model for the network it is necessary to
model two behaviors, the encounters between pairs of nodes,
and the forwarding decisions made by the routing algorithm.

Our network model is composed of N mobile nodes, moving
in a square region of h meters wide. The nodes move using a
random direction mobility pattern (RD model), with an average
speed of v̄ meters per second, and a expected epoch length (the
distance traveled in a straight segment) of L̄ meters. New data
is produced on all nodes equally, with a constant total rate of
rarrival new messages per second. Nodes are considered to be
in range if they are closer than R meters and, for simplicity,
we assume that encounters are long enough to exchange all
the requested messages.

The nodes implement epidemic routing protocol, with
buffers with M message slots, and random replacement (RR)
buffer policy, where random slots are selected for eviction. We
use it instead of the more usual FIFO because it is stateless,
which simplifies modeling. It has to be noted that the expected
lifetime of a message under RR and FIFO are equal, namely,
M new message arrivals. The probability distributions for
lifetimes are different, though.

The model parameters are summarized in Table I.
TABLE I: Model parameters

N Number of mobile nodes
h× h Size of the area where nodes move
v̄ Average speed of nodes
L̄ Expected distance travelled before changing direction
M Buffer size in messages
rarrival Rate of new message arrival in the network
R Wireless range of nodes

IV. FORWARDING PROBABILITY

As we assumed that encounters are long enough to exchange
all the messages requested, the main characteristic of interest
is the probability of two nodes meeting inside a time window.

It has been shown that the relative speed between two mobile
nodes under RD mobility is v′ = v̂rdv, with v̂rd = 1.27
[6]. The exact value is 4

π , tough we have not included the
computation in this work for brevity. This means that the
meeting time (the time between encounters for two mobile
nodes) is equivalent to the hit time (the time to encounter a
fixed node) where nodes move faster by a factor of 1.27. This
is useful because the hit time is easier to compute than the
meeting time.

In the RD mobility model, nodes homogeneously cover all
the area over time [7]. As a node with radio range R moves
with velocity v̄′, it covers an additional area of 2Rv̄′ per unit
of time. The probability that a given point is contained in that
said area is:

λ =
2Rv̄′

h2
(1)

Thus, we model the process of two mobile nodes meeting as
a Poisson process with rate λ (for a similar approach, see [4]).
Notice that after changing the direction of movement, a node
can cover some area twice due to overlap in the swept areas.
This effect is minor if L̄ >> R.

The expression in Equation (1) corresponds to the rate of
encounters between a pair of nodes. When there are N nodes,

we must sum the rates of encounter carefully as not to count
encounters twice from each of participating nodes. Thus, as
long as NR2 << h2, the rate of encounters among N nodes
is:

λN =
N−1∑

i=1

i× λ = λ
N(N − 1)

2
(2)

V. ANALYTIC MODEL FOR A SIMPLE OPPNET PROTOCOL

In this section we develop a method for obtaining metrics of
interest for a Epidemic Protocol when the rate of encounters
is known. In particular, we are interested in characterizing two
behaviors: how messages are copied between nodes; and how
messages are evicted from buffers.

To study epidemic routing in more detail, it is useful to
resort to methods developed in epidemiology [8], on which
the OppNet algorithm itself is inspired. The analogy is that a
message that is copied from one node to another is akin to a
contagion of a disease occurring between two individuals. A
healing, in turn, corresponds to a message being evicted from
a node. Notice that unlike real healing, evictions happen only
during encounters, when new messages may have to be stored
in the buffer.

First, we apply the standard approach used in epidemiology
of finding the equilibrium point between the replication and
healing [9] to approximate the fraction of infected population.
Let A and B be two nodes participating in an encounter, where
data is copied from A to B. Let the messages be homoge-
neously distributed, with ax the probability the message x is
found on a given node (the availability of x). This implies∑
x∈S ax = M , where S is the collection of all messages

available in the network at the moment of the encounter, and
M is the buffer size.

Let define the expected availability metric Q as

Q = E(ax) =
M

|S| (3)

Notice that Q depends on M which is a parameter of the
network, and |S|, which is a unknown value dependant on
the dynamics of the network. Assuming that all buffers are
full, the maximum possible amount of distinct messages |S| is
MN (each message appears only once through the network),
and the minimum is M (when all nodes’ buffers have identical
content.) This results in the bounds 1

N ≤ Q ≤ 1.
We compute the copy and eviction rates rcopy and revict.

For this purpose we will compute the probabilities of copy
and evict events, and then obtain the expected number of said
events per node encounter.

The epidemic algorithm copy a message from A only if it is
not found on B, so the probability a message x ∈ S is copied
from A to B is

pcopy(x,A,B) = px∈Apx/∈B = ax(1− ax) (4)

We consider x ∈ A and x /∈ B as independent events.
This assumes that the content of the buffers are not correlated.
This assumption depends on two properties. First, the network
must be big enough that the impact of conditioning a node
to have a message has negligible impact on said message’s
availability; second, the mobility model must mix nodes fast
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enough as to not introduce time dependence. Because in RD
mobility nodes move in straight segments, it is improbable that
a node can be encountered twice in a short period of time. This
might not be true on other mobility models, like for example
in a Random Walk. Accepting independence allows us to take
expected values:

E(pcopy(x,A,B)) = E(px∈A)E(px/∈B) = Q (1−Q) (5)

The number of copied messages during an encounter #C
and its expected value are:

#C(A,B) =
∑

x∈S
pcopy(x,A,B) (6)

E(#C(A,B)) =
∑

x∈S
E(pcopy(x,A,B)) (7)

=
∑

x∈S
Q(1−Q) = M (1−Q) (8)

To study the behavior of replacements in a buffer, we will
first observe that the stable state for a node is to have its buffer
full. In fact, there is no advantage for a node in dropping data
before finding a more valuable piece of information to fill its
slot. Also, because we consider buffer space a limited resource,
the transient state while buffers are filling is short compared
to the lifetime of the system.

When using random replacement, a message x is discarded
when its slot is randomly selected for placing an incoming
message y (x is evicted). The probability a message x is evicted
from B during an encounter is:

pevict(x,A,B) = px∈B
1

M
#C(A,B) (9)

≈ ax(1−Q) (10)

The approximation above is based on the observation that
#C(A,B) is independent from x, so we can replace #C with
its expectancy.

Using again the independence of events argument, the ex-
pected number of evictions per encounter #E can be computed
as:

#E(A,B) =
∑

x∈S
pevict(x,A,B) (11)

=
1

M

∑

x∈S
#C(A,B)ax (12)

E(#E(A,B)) =
1

M
|S|E(#C(A,B))E(ax) (13)

= M (1−Q) (14)

Each copy event triggers a replacement so the expected
number of both must be equal, as seen in the fact that
E(#C) = E(#E) = M (1−Q).

A single meeting can trigger multiple copies and evictions,
so while node encounters are a Poisson process, copies and
evictions are not (in Poisson processes no simultaneous events
are allowed). Nevertheless, we will approximate the copy and
eviction processes using an exponential distribution with rates:

rcopy = reviction = λNM (1−Q) (15)

The quality of this approximation improves as the number
of copied messages per encounter decreases. This is related

to the mixing ability of the network’s movement pattern, as
mentioned when discussing the possible correlation between
the content of the nodes’ buffers.

After the initial warmup, newly generated messages must
be placed in already full buffers. A natural solution is to place
them using the same mechanism than used during the node
encounters. This way, each new message triggers an eviction,
so the effective eviction rate is r∗eviction = reviction+ rarrival.

The model was verified against a simulation, available
at [10]. We simulated nodes moving using Random Direction
pattern on a square region 1000m wide, with an epoch length
of 500m and with a velocity of 1m/s.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.05  0.1  0.15  0.2

r e
v
ic

ti
o
n

rarrival

Simulation

Model

N=20

N=40

N=60

Fig. 1: Eviction rate modelling.

Figure 1 compares the eviction rates measured on the simu-
lation, corrected for the arrival rate, with the reviction approx-
imation. The simulation is configured with 40 mobile nodes,
and varies the buffer sizes. As outlined for Equation (15) the
behavior of the copy rate rcopy is similar.

Preliminary analysis suggests that the discrepancies between
the model and the simulation are rooted in the Poisson assump-
tion for the copy event. As mentioned before, messages are
copied not independently, but in batches when nodes meet.
This explains why the model degrades as the buffer size
increases.

A. Deterministic model

During the encounter of two nodes, a message x stored in
one of them can be copied to the other node, or be evicted
by another message with probabilities pcopy(x) and pevict(x)
respectively. If we assimilate the message x to a disease, and
copy and eviction events as contagions and healings, we can
describe the process as a SIS (susceptible-infective-susceptible)
epidemic [9] in the sense that nodes do not develop immunity
after an infection, or, in other words, a node can acquire a
message again after evicting it.

The copy and eviction probabilities from Equations 4 and
10, considered as contagions and healings, correspond to a
stochastic logistic epidemic process [11]. This model is used to
represent the growth of a population in a limited environment.
It is found in the literature with several different notations and
parametrizations, so we proceed to define the parameters used
here.

Let I be the number of nodes infected, out of a population
of N individuals. The infection and healing rates α(n) and
β(n) depend on the number of infected nodes n. Both can be
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Fig. 2: Markov chain for the logistic process.

obtained from Equations 4 and 10, respectively. The resulting
rates are: {

α(n) = α n
N (1− n

N )

β(n) = β n
N

(16)

The process is controlled by the parameters α and β. In our
model these constants have values:{

α = λN

β = λN (1−Q)
(17)

Notice that we do not deal with a single epidemy, but
with multiple messages competing for limited buffer space,
something not represented in the standard SIS model. This
effect is represented indirectly by the Q parameter, which sums
up the impact that the buffer composition has on the epidemic
behavior. It is clear that this parameter does not affect the
contagions, but only healings. Also notice that the value of Q
changes as the network evolves, so β is not strictly constant. As
it is discussed later, Q converges to a constant value, depending
on the constant value of the arrival rate rarrival.

The main parameter of an epidemic system is the basic
reproductive ratio R0, or the expected number of infections
that can be caused by an infective through its lifetime, when
the rest of the population is susceptible. Because in our case

R0 =
α

β
=

1

1−Q > 1, (18)

it means the disease becomes endemic. In other words, after
starting with a few cases it establish itself on a stable portion
of the population. We show this result next.

The first approach to study the evolution of ax = I/N is to
approximate the system as a continuous deterministic model
with infinite population, driven by the following nonlinear
differential equation:

dax
dt

= λNpcopy − λNpevict = λNax(Q− ax) (19)

This equation can be solved explicitly, giving rise to a
logistic curve. For our purpose this is not necessary, and it
is enough for us to study its fixed points, which are its roots:

dax
dt

= 0⇒ ax =

{
0, repulsive
1− 1

R0
= Q, attractive

(20)

This means that all messages tend to have a common
availability Q, the expected value for the availability. This
is also the solution to the combinatorial problem for the
fraction of nodes with a given message when all messages
are equiprobable, which is

(
S−1
B−1

)
/
(
S
B

)
.

The pevict rate from Equation (10) is strictly positive until
M = |S|. This means that a network where there are no new
messages introduced will converge to a configuration where

there are M distinct messages in the network and all nodes’
buffers are identical. Under more general conditions, when
there are new messages arriving, |S| is greater than M , and Q
is strictly smaller than 1. Notice that when a message is just
published it has a small availability of 1/N , but it tends to
increase (Equation (19)).

We are interested on the value of pevict, which depends on
the unknown expected availability Q. Our conjecture is that
the value of Q depends on the dynamics of the network, this
is, on the new-message arrival rate rarrival. The structure of
Q suggests that when rarrival is small, Q is close to 1, and
as rarrival grows Q approaches 1/N .

Intuitively, under a stable state the amount of active mes-
sages in the network must remain constant. In other words,
the rate at which new messages are generated must match the
rate at which messages are being dropped from the network.
Dropping a message from the network implies its availability
reached 0. The deterministic model, as described, does not
provide an explanation on how this may happen, as the model
predicts that the infection just increases until it settles to a fixed
proportion of the population. This model ignores the stochastic
behavior of the network, where the population varies due to
randomness in buffers’ content, encounter dynamics, etc. This
stochastic behavior is studied in Section V-B.

B. Stochastic model

Notice that during an A ⇒ B encounter a message x is
copied only if x ∈ A and x /∈ B, while it can be evicted
only if x /∈ A and x ∈ B. This means that pcopy and pevict
events are disjoint. Also, during a copy event the number of
nodes possessing the message increases by one, and during an
eviction decreases by one. This suggests using a Markov chain
model, where states represent the number of nodes with a copy
of a message. This is similar to the Markov chain used in [4],
extended to support evictions, or links to “previous” states.

We define a continuous time Markov chain with N + 1
states s : {0, ..., N}. The availability a corresponds to the state
sa = dNae. Thus, the state associated to the fixed point of the
deterministic model is sQ = dNQe. The state 0 is absorbing,
this is, once a message is lost from all nodes, it can not appear
again. The state 1 is the entry state, because all processes start
with a single copy of a message being published by a node.

The transition rates are obtained from copy and eviction
rates at the availability corresponding to each state, and are
shown in Equation (21) and Figure 2. Notice that i/N is the
discrete equivalent for ax when message x is found on i nodes
from a finite population of N . The eviction rates of a message
increase with its availability. This is intuitive as the more
copies of a message are available in the network, the higher
the chances of being selected for an eviction. Copy rates have
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a symmetrical distribution; if the availability of a message is
small it is unlikely it will be selected to be copied. Conversely,
if the availability of a message is high, it is unlikely a node
without the message will be found. The highest copy rates are
found when the message is on approximately half the nodes.

qi,j =

{
λN

i
N (1− i

N ), for 0 < i < N, j = i+ 1

λN
i
N (1−Q), for 0 < i ≤ N, j = i− 1

(21)

This is a finite birth-death Markov process with an absorbing
barrier at state 0. Because the process has an absorbing state,
and the Markov chain resulting from excluding said absorbing
state is irreducible, it is sure that the process is eventually
absorbed. Notice that this property does not appear in the
deterministic epidemic model.

We are interested in the behavior of the chain between
the moment it starts (at state 1) and the first time it visits
the absorbing state 0, this is, the behavior of the network
conditioned to the existence of at least one message. This is
called the quasi stationary distribution (QSD) [12]. It can be
shown that this matrix posses a QSD, which implies that the
hit times for the absorbing state, or times to absorption, follow
an exponential law, so, asymptotically there is a constant rate
of absorption [13].

As the absorption follows an exponential law, there is a
constant absorption rate which can be computed as the inverse
of the expected time to absorption. On the other hand, under
stable behavior the rate at which new messages are introduced
in the network (rarrival) must be equal to the rate at which
they are being dropped from the network (rdrop). Thus, if the
time to absorption depends on Q (a parameter of our Markov
process), we expect to be able to determine the value of Q
that is needed to provide a drop rate equal to rarrival.

Let us suppose that we know the expected time to absorption
τ1(Q), this is the average life time of a message in the network
as function of Q. Using this definition and equaling arrival and
dropping rates, we can affirm that

|S| = B

Q
= rarrival × τ1(Q) (22)

The Equation (22) can be interpreted as stating that multiply-
ing the message lifetime by the new messages’ rate of arrival
is equal to the number of messages being alive simultaneously.

Our approach to estimate the eviction rate as λN × pevict
can be summed up as follows:

1) Find the relationship between Q and τ1, the expected
lifetime of a message.

2) Find the stable Q that satisfies Equation (22)
3) Use the found Q to obtain pevict from Equation (10)

1) Life-cycle of messages: The time to absorption τi, de-
fined as the expected time needed to reach the absorbing state
starting from state i can be found applying standard Markov
theory. This allows to numerically compute the absorption
times given the transition probabilities. Nevertheless, this result
is not directly applicable because our transition probabilities
and lingering times depend on the unknown parameter Q,
which we are trying to calculate.

For a logistic process, an explicit expression for τi is found
by [14] as

τi =
N

β

i∑

j=1

N∑

k=j

1

k

(N − j)!
(N − k)!

(
R0

N

)k−j
(23)

As we are interested in absorption time starting from a single
infection, and using α and β from Equation (17), we obtain the
following expression for the expected lifetime of a message in
the network:

τ1 =
N

λN

N∑

k=1

1

k

N !

(N − k)!

1

Nk

1

(1−Q)k
(24)

This gives an exact solution from which the value of Q
needed to provide a certain lifetime can be computed.

2) Markov model validation: To validate the solution from
Equation (24), we implemented a Markov chain simulator [10]
as outlined in [14]. The model is configured with N = 100
and λN = 0.1, and the results are shown in Figure 3.
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Fig. 3: Time to absorption model.

In Figure 4 the average time spent at different infection
levels is displayed. The endemic states are computed as dNQe,
and it can be seen that in the more dynamic networks, with
smaller Q, the process does not have enough time to settle on
a stable state. As Q increases the infective times become long
enough for the endemic behavior to become manifest.
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3) Expected availability estimation: From Equation (22)
and for a given rarrival, Q can be computed as the unique
solution of

τ1(Q) =
B

rarrivalQ
(25)

Notice that when using the expression for τ1 from Equa-
tion (24) both terms are monotonous and the equation has
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a single solution that can be simply found numerically by
bipartition in the domain 1

N < Q < 1.
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In Figure 5 the predicted lifetime of a message is compared

with the results of the mobility simulation from Section V
(setup with N = 40). Asymptotic behavior is correct, and
a good match is achieved for bigger values of rarrival. As
mentioned before, with very small arrival rates the model
predicts very high times to absorption, which are hard to
confirm through simulation. An observation can be made that
the lifetimes of messages are very sensible to the arrival rate
of new messages.

4) Message survival rates: The rate at which messages are
evicted from buffers is λNM(1−Q) (Equation (15)), where Q
can be computed following Equation (25). Remembering that
the evictions are caused by both messages that arrive from
other nodes and messages produced locally, this is r∗eviction =
reviction + rarrival, the eviction rate that suffers each buffer
slot is:

re =
1

N

(
λN (1−Q) +

rarrival
M

)
(26)

Then, the probability a message survives in a buffer during
a time window T is pstore(T ) = e−reT .

Once we compute Q, the Markov chain model from Equa-
tion (21) is completely determined, and we can use it to obtain
metrics of interest on the behavior of the network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we show that it is possible to develop a
theoretical model for the behavior of an OppNet that takes
into account the effect of multiple dataflows. This allows us
to analytically study the metrics that impact on the network’s
performance.

We apply epidemic analysis to a fundamental opportunistic
algorithm, epidemic routing, to model its behavior. Unlike
previous works, we study a fully functional implementation
that takes into account limited buffer capacities. We present a
stochastic model, based on a Markov Chain, and a method to
obtain the needed properties from the Time to Absorption, or
expected duration of a process.

The model can be adapted to different mobility patterns or
OppNet algorithms. In particular, variations of the epidemic
routing protocol are of interest. Such extensions as disallowing
message re-admittance, limited forwarding (were messages are
copied a limited number of times), and different buffer policies
(most notably FIFO) are of note.

In this work we analytically characterize the behavior of a
synthetic model. A complementary and promising approach
is to obtain the characterizing parameters empirically, for
example from recorded traces from real networks, while using
the same modelling strategy. This would allow to capture the
behavior of complex real network deployments, which are
hard to mimic with analytical models. Nevertheless, synthetic
models remain useful as a tool to test the protocol’s behavior
under various conditions. This is important to validate the
robustness of the protocols, and avoid overfitting the analysis
to the available empirical data.
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Abstract—Opportunistic Networks (ONs) are complex systems
where nodes move and meet stochastically. For data to be trans-
mitted, it must be copied between nodes and then carried around
through multiple hops. Because the network is continuously
evolving and can be highly fragmented, the usual connectivity
graph representation, typically used to compute routes or doing
offline traffic engineering, is not suitable.

This article proposes a model specially designed for route
management on ONs, and we show its usefulness by implementing
an ML-based route management algorithm for those networks.
This algorithm is trained offline over the model built from
historical traces of a particular network setup and then deployed
to make fast, real-time forwarding decisions.

I. INTRODUCTION

An Opportunistic Network (ON) is a mobile network where
there might be no continuous end-to-end path available, and
data delivery must rely on nodes opportunistically exchanging
packets as they move around and meet. Thus, nodes must
store received data in local buffers for prolonged periods,
and a message might have to be stored and handled over by
several nodes on its path to a destination. Depending on the
network this period might be hours, days, or even more. Thus,
the algorithms that support this kind of network are called
carry-and-forward protocols, and the networks themselves
are sometimes called Delay- or Disruption-Tolerant Networks
(DTNs).

In this work, we present two complementary proposals.
First, we present a method for modeling ONs. This model is
based on well-known abstractions and allows the use of pow-
erful existing tools. Namely, the model consists of a graph that
captures both the networking aspect (which nodes meet) and
the temporal behavior (how the network connectivity evolves
in time). We then use this model to build route management
mechanism based on routing information extracted through
machine learning techniques.

II. ON NETWORK MODEL

The usual model for data networks is a graph where the
nodes are the network devices, and the edges are data links
that interconnect them. A message can be routed through the
network if a path connects the source with the destination
on the corresponding modeling graph. This abstraction is not
readily applicable to ONs because the nodes are mobile, and
the network topology can be very disconnected and contin-
uously changing. Several proposals were made to overcome

that problem, such as temporal networks [1], where a time-
process is associated to each graph component, or representing
the network as a set of graphs, each graph representing the
network in a given moment in time. All these methods are
difficult to manipulate and have limited and hard to use
analytical tools available.

We propose applying spatio-temporal graphs, where nodes
have an associated place in space and time, that can be
used to capture the evolution of physical processes [2]. Using
this representation, we propose building a single static graph
to represent the whole network’s behavior. This graph has
straightforward semantics and easily applies many of the tools
available to study and manipulate graphs. In our model, a
graph node does not represent network devices as in usual
networks; thus, to avoid confusion, we will refer to the mobile
devices as agents.

The graph used in our model is composed of two classes
of edges. The first class is a delivery edge, representing an
encounter between two agents at a given time. This class of
edges has an associated time of occurrence and can have more
data attached, such as duration, bandwidth, etc. The two end-
nodes represent the agents participating in the encounter and
their corresponding state. Thus, an agent can have multiple
nodes associated, one for each encounter in which it partici-
pated. A message traverses a delivery edge when it is copied
between two agents during an encounter.

All the nodes modeling a single agent through time are
chained together in order by the second class of edges,
called survival edges. These edges connect the state of a
given agent during an encounter with the same agent in the
subsequent encounter. The naming comes from the idea that
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when traversing a survival edge, a data unit is “surviving” in an
agent’s buffer in the time that passes between two encounters.

We outline the construction of this graph with an example
in Fig 1. The ON consists of four agents A, B, C, and D. The
agents move in closed trajectories (the dotted lines), meeting
as they move in the points indicated with arrows.

A path in this graph represents a possible propagation
history for a message. This path consists of a sequence of
transmission and survival edges. To be considered as arriving
at an agent, a message must have reached any of the agent’s
nodes, with the associated time being the arrival time.

A. Application

As an application example, we use the model to capture the
behavior from the RioBuses dataset [3]. The dataset consists
of mobility traces for the buses in Rio de Janeiro city in
Brazil. It contains traces for over 12,000 buses moving on
725 bus lines, taken through October 2014, containing GPS
data (time, position, velocity), the Bus unique identifier, and
the Line being served at the moment.

We assume we want to collect data from the buses using
an ON. The idea is that buses periodically produce data (e.g.,
ticket sales, occupancy level measures) and possess a short-
range radio interface (e.g., WLAN) that allows exchanging
data between buses when meeting on the road. The collected
data is to be delivered to one or several Internet-connected
fixed collection points using an ON.

The resulting graph for a single day has in the order
of 20.000.000 nodes and 40.000.000 edges, split roughly
equally between survival and transmission edges. Most of the
transmission edges are paired in bidirectional links, except
those that lead to a collection agent.

B. Routing protocols

Some ON algorithms do not keep any knowledge and are
variations of controlled flooding (also known as dissemination
algorithms). Other algorithms collect data on the network’s
behavior and attempt to make good decisions intelligently
(Context based algorithms). This is because many real-life
networks exhibit data and mobility patterns that can be taken
advantage of, as in our application.

Binary Spray and Wait (BSW) is a dissemination-type
protocol based on Epidemic Routing. In Epidemic protocols,
data propagates through the network akin to an infectious
disease: when two agents meet, the data “infects” the yet
non-exposed agent. BSW implements a propagation control
mechanism in which a data packet is assigned a number of
virtual copies at emission time, which will be the maximum
number of instances of the packet through the network. In each
encounter, an infecting node handles half of its copies to the
infectee.

Another well-known ON protocol is Prophet, a Context-
based protocol that tries to learn a delivery predictability
parameter for each agent. For this purpose, agents maintain
a quality metric assigned to every other agent in the network
that measures how good an agent considers itself for delivering

data to that agent as a destination. The basic idea is that the
delivery probability increases as agents meet and decreases
as time passes without contact. Then, data is handled only to
nodes with a delivery probability greater than their own when
forwarding.

C. Simulating protocols

ON protocol simulation on the proposed model is made
differently than on a standard ON simulator such as ONE.
In ONE, agents are simulated as they move through their
trajectories, encounter other agents, and the protocol reacts to
network events. Routing messaging and data transmission are
run together as part of the same simulation. This approach has
historically limited the size of the studied networks to the order
of a thousand nodes [4]. To improve the scalability, we observe
that independent processes produce messages associated with
routing and data transmissions. In our model, the encounters
are precomputed, and it is possible to simulate the propa-
gation of routing messages and their impact on the agent’s
configuration separately from actual data transmissions. This
allows to precompute the internal routing state of agents in
every moment of interest (i.e., graph node) and subsequently
evaluate the behavior of many data generation scenarios.

III. USING THE ON NETWORK MODEL: THE BOW
PROTOCOL

Our proposal’s base is an ML algorithm that will manage
routes and set forwarding decisions, trained from an oracle
that provides optimal decisions. We will train this system on
the traffic patterns of a single day and then verify how well it
generalizes to other days.

A. The oracle

The oracle is tasked with computing the optimal decisions
used as a reference when training the predictor. The optimal
decisions are the edges that are part of the shortest paths from
source to destination. The length of the path depends on the
cost function used. We propose two simple possibilities:

• Oracle-Short. The cost of a path is the number of trans-
missions it uses. The cost of a transmission edge is 1.
This cost function leads to simpler trajectories with fewer
hops, with the intent of reducing the power consumption
and radio interference.

• Oracle-Fast: The cost of a path is its latency; this is
the time passed between the message emission and its
arrival. The cost of a survival edge is the difference in
the timestamps of the end nodes.

The graph is of considerable size and has a regular structure
formed of sparsely interconnected chains. The path computing
is done using Uniform-cost Search (UCS), a variation of
Dijkstra where candidate nodes are added incrementally as
the search horizon advances. The traversal stop condition is
when a node corresponding to a collection agent is visited.

A complete run of the oracle over a day’s graph takes under
10 minutes on an i3 class desktop PC, and the output is the
subset of the transmission edges that participate in a shortest
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delivery path. With Oracle-Fast, a typical selected set consists
of around 3.000.000 edges when having a single collection
point and 4.500.000 with four collection points. Under Oracle-
Short, the numbers are 450.000 and 510.000, respectively.

Figure 2 shows a 1/500 sample of the locations of bus
encounters through 2014/10/01. The encounters in red are the
ones selected for transmission by the Oracle-Fast, while the
ones selected by Oracle-Short are in blue. The oracle finds
a very high delivery rate of around 0.95 from all possible
starting nodes. In the remainder of this work we will present
results using Oracle-Short.

B. Transmission prediction

The oracle data is used to train a binary predictor, which
the forwarding algorithm will use to classify new transmission
opportunities as they occur. At the meeting moment, an agent
has the following attributes from both meeting buses that can
be used to classify the encounter:

• Timestamp, the current time in seconds from midnight.
• Longitude, latitude, and speed, obtained from the GPS

unit.
• Average speeds over the last 10min, in the Latitude and

Longitude directions (accumulated from the GPS unit).
• Bus unique identifier and assigned bus line.
The data from the meeting bus is obtained over the newly

formed wireless link. Time, position, and speed features are
captured from a GPS unit and thus do not depend on a per-bus
configuration. These features are numerical. The bus id and
bus line data are categorical (a value from a set of possible
values).

In our application, the classifier is executed in real time
by devices with limited computing resources, so the classi-
fication cost is of great importance. This suggests the use of
Multi-Layer Perceptron, Logistic Regression, or Decision Tree
classifiers.

C. BOW Protocol

The learned forwarding policy is executed on the agents to
decide if a newly met agent is a good candidate for receiving
the message. A redundancy mechanism is added to increase the
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robustness of the protocol, based on the BSW mechanism with
an initial copies count that is diffused through the network.
However, instead of doing it blindly on the first encounters
as BSW does, messages are handled only over encounters
deemed suitable by the classifier.

The classification is performed based on the participating
nodes’ features. In the following sections, two feature sets are
studied:

Numerical features: Only position and speed features are
used. These are numerical features obtained from a GPS unit.
These features do not depend on per-agent configuration.

Full features: Besides the previous, Bus Id and Bus line
features are used. Those are categorical features without an
implicit order. When using these features, One-Hot encoding
is applied.

The ML methods used are:
1) BOW-DT: The classifier is a Decision Tree of depth 15.
2) BOW-LR: The classifier is a Logistic Regression Clas-

sifier. Numerical features are normalized over the training set.
3) BOW-MLPC: The classifier is a Multi-Layer Percep-

tron using Relu as nonlinearity. When using only numerical
features, two hidden layers are created, sized (40,20). With
the full features, three hidden layers sized (3,2,2) are used.
Numerical features are normalized over the training set.

All predictors were trained over a subsample of 100.000
edges taken from one day, evenly distributed between true and
false examples. This dataset was split between training and
development sets in an 80/20 ratio. The development set was
used to select the best predictor parameters. Trained predictors
were evaluated over the full trace of a different day.

In our scenario, every bus in the network emits a single
message at 12:00.

Figure 3 show the simulation of the different protocols.
BSW and BOW performance is shown with different numbers
of initial copies of a message, while Prophet does single
message forwarding.The BOW-Oracle curve corresponds to
the BOW algorithm taking the optimal forwarding decisions
from the Short offline solver applied to the tested day.

The worst performance is obtained with BSW. Logistic
Regression provides slight improvement when using only
numerical features (BOW-LR). In turn, Decision Trees and
Multilayer Perceptrons do improve in this case (BOW-DT
and BOW-MLPC). Finally, the best performance is obtained
with Logistic Regression and Multilayer Perceptron using the
full features set, i.e., including bus identity and bus line data
(BOW-LR-FULL and BOW-MLPC-FULL). BOW with full
features set reaches and surpasses Prophet performance using
between 16 and 32 copies.

Figure 4 shows the proportion of delivered messages as
time from the initial transmission passes. BOW and BSW are
configured with 32 replicas. Prophet behaves better than BSW,
but it shows a slow delivery, which indicates the propagation
through a sub-optimal trajectory. When combined with an
effective predictor, BOW displays better latency characteristics
than Prophet and is a more robust protocol than BSW.
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D. Traffic overhead comparison

Radio transmissions are energetically costly, and because
the medium is shared, nodes communicating degrade the
transmission conditions for other nodes in the vicinity.

The overall traffic produced when the messages emitted are
of size SM is:

Ttot = E × SR + F × SF + T × SM (1)

The number of encounters E is obtained by counting
the transmission edges from the model graph. The values
for the number of forwarding evaluations F and message
transmissions T are obtained from the simulations described
in Section II-C. Only Prophet produces routing data SR,
exchanging a predictability value as a floating-point number
for every bus in the network. With SF , to decide whether to
forward Prophet transmits the delivery predictability; BOW
transmits five numerical features as floating-point numbers
(from the GPS unit), and the bus and line identifiers as 10
bytes long strings.

Figure 5 shows the delivery rate and total traffic produced
in the network when generating messages of 100.000 bytes,
uniformly distributed in time, in all the buses in the network.

It can be seen that Prophet has a high fixed cost due to
routing messaging, independent from the data transmitted. The
protocol does not scale well to very big networks. BSW has
a high overhead due to retransmissions, which are not used
effectively as the delivery rate remains low. Finally, BOW

 0

 0.2

 0.4

 0.6

 0.8

 1

D
e

liv
e

ry
 r

a
te

BOW-LR-FULL
Prophet

BSW

 0

 1x10
12

 2x10
12

 3x10
12

 5  10  15  20

T
o

ta
l 
tr

a
n

s
m

is
s
io

n
 (

b
y
te

s
)

Number of messages per agent

Fig. 5: Behavior under increasing message load.

displays good transmission characteristics with low network
overhead.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we presented a model for ON networks that
is simple to build and manipulate. To show its usefulness,
we worked with it and developed BOW, an ML-based route
management mechanism based on offline training, and shown
it to be flexible and competitive with established protocols.

The BOW protocol shows good performance while using
only offline training. As the training is made against a general
oracle, the system can be trained to handle multiple use cases
and different objectives. At the same time, we have shown the
ability of the algorithm to capitalize on features beyond the
ones generally used in routing algorithms. Having an offline
oracle allows to easily include application-specific data, such
as bus lines in our case, which are of great importance for
efficient data routing. An application-agnostic protocol would
have difficulties incorporating such information.

Finally, we believe that the presented graph model can be
used as an efficient simulating platform.
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Abstract: Opportunistic networks are highly stochastic networks supported by sporadic encounters
between mobile devices. To route data efficiently, opportunistic-routing algorithms must capitalize
on devices’ movement and data transmission patterns. This work proposes a routing method based
on reinforcement learning, specifically Q-learning. As usual in routing algorithms, the objective is to
select the best candidate devices to put forward once an encounter occurs. However, there is also
the possibility of not forwarding if we know that a better candidate might be encountered in the
future. This decision is not usually considered in learning schemes because there is no obvious way
to represent the temporal evolution of the network. We propose a novel, distributed, and online
method that allows learning both the network’s connectivity and its temporal evolution with the help
of a temporal graph. This algorithm allows learning to skip forwarding opportunities to capitalize on
future encounters. We show that explicitly representing the action for deferring forwarding increases
the algorithm’s performance. The algorithm’s scalability is discussed and shown to perform well in a
network of considerable size.

Keywords: opportunistic networks; DTN; Q-learning; reinforcement learning; routing

1. Introduction

Opportunistic networks (ONs) are networks supported by mobile devices that meet
sporadically. As data can only be transmitted during encounters, nodes must carry it with
them for potentially prolonged periods until an opportunity to pass on the data arises.
Unlike a traditional data network, ONs are formed by multiple network partitions that
change continuously, and data delivery depends on multiple hops that do not necessarily
form an end-to-end path at any given moment.

1.1. Applications for Opportunistic Networks

These kinds of networks (sometimes called delay- or disruption-tolerant networks—
DTNs) have multiple applications. For example, sensor networks are composed of widely
distributed low-cost devices that collect environmental data. This application is an impor-
tant component of smart cities and Internet of Things (IoT) research [1]. The networking
component is tasked with collecting all the produced data to be processed. An ON can
transmit data without depending on external infrastructure, sometimes under very adverse
conditions [2].

Opportunism can be used in conventional networks to reduce the load on the in-
frastructure and better use network devices’ computational, storage and communication
resources. Device2Device (D2D) functionality allows LTE network terminals, or smart-
phones, to download directly from neighboring terminals instead of doing it through
the cellular network [3]. That can significantly reduce latency, power consumption, and
infrastructure costs [4].

There are many applications wherein vehicles want to exchange information within
a vehicle fleet: Cars could warn other vehicles of a dangerous event using a vehicular ad
hoc network (VANET); A team of fire-fighting robots might coordinate tasks and provide
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communication infrastructure while searching for survivors in a building on fire; a swarm
of UAVs could communicate to keep formation; etc.

1.2. Network Properties

In general, ONs are intended to support communications over Challenged Networks [5],
which are described by the following properties:

Disconnection: Nodes can be outside other nodes’ range for long periods. This can
happen for single nodes or groups.

Low duty cycle: Nodes can shut down network interfaces to save battery, only briefly
coming online.

Limited resources: Nodes can have limited battery power supply and low computa-
tional resources, such as CPU and storage.

Low bandwith: Usually over wireless links, subject to high losses and latencies.
The characteristics mentioned above lead to the need for long queuing times, where

messages must be held in buffers for minutes, hours, or days at a time, unlike the millisec-
onds usual in structured networks. Because of this, routing algorithms supporting ONs are
called “carry-and-forward” algorithms.

ONs are usually highly stochastic systems. There are three main sources of random-
ness. In the first place, mobility. While there are ONs with deterministic behavior (e.g.,
orbiting spaceships [6]), most mobile devices do not exactly have repeating trajectories.
Examples include service robots in a warehouse, cars in a city, or people in a building.

The second source of randomness is the generation of data to be transmitted. Data
generation at the nodes is usually an external process outside the control of the network.

Finally, wireless communications are subject to interference from external devices and
other environmental conditions.

1.3. Performance Metrics

As a result, ONs operate under conditions hostile to data delivery, and there exists
the possibility that a message will be lost. Thus, the main performance metrics of an
ON are delivery rate and latency distribution. The delivery rate is the fraction of emitted
messages that reach the destination. The latency is the travel time of the delivered messages.
Notice that latency is only computed over messages that reach the destination. Higher
delivery rates frequently depend on higher latencies, as harder-to-deliver messages must
be held in the network waiting to be delivered. Because links are supported by shared and
limited mediums, typically wireless, the communication overhead is also important. Excessive
communications utilization can lead to the degradation of the network and thus impact the
performance. The number of transmissions also impacts directly power consumption, a
scarce resource in many mobile applications.

1.4. Opportunistic Algorithms

Due to the wide variety of use cases, many algorithms are developed [7]. A defining
property of an ON algorithm is whether it generates extra message copies. Forwarding
protocols route a single copy of the message; Flooding protocols produce multiple replicas
to increase the delivery rate at the cost of increased network overhead.

Two big classes of algorithms are stateless and stateful. The former is based on efficiently
disseminating the copies of a message, so it is also known as “dissemination-based”. The
later algorithms collect data on the ON behavior and attempt to use this knowledge to
make more effective routing decisions. Many different techniques are used. Distance-vector
style algorithms are popular, but more complex methods are also proposed.

We propose using machine learning (ML) techniques, specifically reinforcement learn-
ing (RL) and Q-learning, to solve the routing problem. As we will see below, multiple
works use this approach. However, our proposal uses a particular way of modeling the
network that captures more information from the network’s behavior. In our previous
work [8], this model was applied for ML routing in ON; however, in that work, the training
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was performed offline using recorded traces. In this work, the ML process is performed
online, and the model is built and maintained during the network’s lifetime. We show that
the application of this network model improves the network’s performance compared to
the conventional Q-learning application. It is also competitive with conventional protocols,
especially regarding network overhead, as it does not depend on additional traffic for
routing information.

2. Related Work

One of the simplest ON algorithms is Epidemic Routing [9], a stateless and flooding-
based epidemic protocol wherein messages behave as contagious diseases, infecting new
devices when they are met. This method achieves the highest possible delivery rate and the
lowest latency possible at the cost of a massive load on the network, as every forwarding
opportunity is taken, and every node ends up with a copy of every packet.

Various algorithms improve upon Epidemic Routing to reduce the network load.
For example, BSW [10] is a version of Spray and Wait [11] which proposes the following
method for controlling the propagation: first, messages have attached a “number of copies”
attribute, a configuration parameter set at transmission time, which controls the total
number of copies of the message in the network. Then, when an “infected” node meets a
non-exposed one, half of the copies are handed over and half kept by the emitter. Once
a copy count reaches 1, no more forwardings are performed until the message’s final
destination is encountered.

Unlike BSW, which does not collect information on the network, PRoPHET [12] at-
tempts to learn the best forwarders for different destinations. PRoPHET is based on the
exchange of distance tables between nodes in a process conceptually similar to Distance
Vector protocols. The main difference is that the distance is represented by a “predictability”
or delivery probability. These predictability vectors are exchanged between nodes upon
meeting. The predictability of a node as a target is reinforced when meeting it and is subject
to exponential decay as time passes. Furthermore, it can be transitively reinforced: when
node A meets node B, then A’s predictability values for nodes in B’s table are reinforced.
This transitive reinforcement is affected by the B’s own predictability. The basic idea is
that nodes encountered more frequently have higher predictability, as are nodes reachable
through high-predictability nodes.

This process of learning better opportunistic routes can be attacked with other meth-
ods (for an overview of current algorithms, see [7]). We consider that machine learning
techniques are a promising alternative for the following reasons:

• ML is very efficient at detecting and capitalizing on patterns, which are the basis of
efficient ON routing.

• ML effectiveness frequently depends on the availability of training data, which an ON
can provide, as every packet can be considered an instance of the routing problem.

• ONs are complex systems with different components –such as mobility, data gener-
ation, and wireless interference– that are difficult to model and characterize. One
of the ML strengths is that it can be applied without a deep understanding of the
system’s dynamics.

In this work, we will discuss the application of reinforcement learning to ON routing.

3. Reinforcement and Q-Learning in Routing

Reinforcement learning (RL) is a machine learning (ML) technique based on the explo-
ration of the solution space by learning agents. These agents interact with the environment
or state through actions that produce a reward. These rewards serve as feedback to inform
the agent about the appropriateness of the action in the given scenario, allowing it to learn
a policy to produce optimal behavior.

Designing an RL system consists of defining the 4-tuple < S, A, P, R >, where S
and A are the sets of states and actions; P : S× A → S is a transition matrix, potentially
stochastic. S, A, and P define a Markov decision process (MDP) described as si+1 ← δ(si, ai),
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which can be either deterministic or not. R : S× A× S → R is the reward function that
assigns a state transition value. Rewards themselves can also be either deterministic or not.

Because the rewards are obtained from a single state transition, but the agent is
expected to produce an effective sequence of actions, a mechanism to calculate a global
reward V is also needed. Thus, the RL problem can be described as finding the optimum
policy π : S → A to select the best action in a given state, as to maximize a cumulative
reward Vπ : S→ R where the S indicates the starting state for applying the policy π. The
sequence of states evaluated by Vπ must be produced by iteratively evaluating δ with the
available actions in each moment. The reward itself is usually computed as the discounted
cumulative reward from the produced sequence of states, starting from a state s0, as:

Vπ(s0)→
∞

∑
i=0

γiri (1)

where 0 ≤ γ < 1 is a parameter that controls an exponential reduction in the weight given
to instant rewards ri further from the starting state.

This problem is challenging because to evaluate Vπ , the state sequence produced by δ
and the resulting rewards must be known, which is not always possible. In particular, the
state transitions caused by actions or the resulting rewards might be non-deterministic.

To overcome the difficulty of optimizing a policy for an unknown sequence of states,
actions, and rewards, Q-learning [13] proposes using a particular evaluation function:

Q(s, a)← r(s, a) + γ max
a′

Q(δ(s, a), a′) (2)

This function says that the evaluation of an action is the sum of the immediate reward
and the best achievable evaluation from the action’s target state. Notice that this is a
recursive definition and that both r(s, a) and δ(s, a) can be observed as they are only
evaluated once in the present state s (they are sampled).

This equation iteratively approximates the Q function and obtains the associated
policy in the process. For this, a learning agent stores the learned Q(s, a) values in a table.
Then, it repeatedly evaluates policies in epochs. After selecting an action a in state s, it
updates the Q as follows:

Q(s, a)← (1− α)Q(s, a)

+ α(r(s, a) + γ max
a′

Q(δ(s, a), a′) (3)

where α is a learning parameter controlling the convergence speed. As all actions for all
states are sampled repeatedly, the Q estimation converges to the value of Equation (2) [13].
During the system’s training, the optimal known policy is to select the highest valued
action in any state. As usual in ML, a balance must be found between exploitation (using
the highest valued actions) and exploration (evaluating alternate actions).

The fact that Q-learning correctly takes into account the future effect of actions, and
provides a policy that does not depend on previous knowledge or domain model, made it
very useful for attacking the problem of routing in dynamic networks [14,15].

The first and most influential application of Q-learning to routing is Q-routing [16]. As
in most RL routing protocols, the learning agent is a network node, and the Q-learning
is applied in a distributed manner where each node x maintains a Qx table. Q-routing
introduced several design decisions that were later applied by many other algorithms.
First, Q-routing reduces a distance metric instead of maximizing a reward; Qx(d, y) is
defined as the node x’s estimation of the latency from node y to destination d. Furthermore,
instead of exploring the solution space by sending data packets through sub-optimal paths,
Q-learning introduced a separate channel for exchanging neighboring nodes’ best Q values.
When a node needs to recompute its own Q table, it will request Ty = minz∈Ny Qy(d, z)
from all neighbors. That makes the algorithm somewhat similar to classical Bellman–Ford.
Finally, node x updates its table as:
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Qx(d, y)← (1− α)Qx(d, y) + α(q + s + Ty) (4)

where q and s are the local queue and transmission times. Notice that because the Q value
represents a latency that is not subject to discounting for further away nodes, γ = 1 is used.

Q-learning-based routing has been adapted to various networks [17]. We will briefly
mention some of the algorithms applied to ONs.

One of the most influential Q-learning ON routing is Delay Tolerant Reinforcement-
Based (DTRB) [18]. DTRB is a flooding-based algorithm wherein messages are replicated,
maximizing a reward computed by a dedicated distance-table gossiping algorithm.

In DTRB, nodes maintain two tables, a table with the distances to every known node
in the network and a table of rewards for every known message destination node.

The distance stored in the first table is an estimation of the time needed to propagate a
message to the target node. These temporal distance tables are maintained by exchanging
time-stamped control messages. These messages flood information about the last time a
given node was met in the network. Then, nodes use the time elapsed as a distance measure.

This learned distance value is then used to compute a reward used in a conventional
Q-learning scheme (see Equation (5)). A node computes the one-hop reward R for a given
neighbor as e−k, where k is the time-distance measure stored in the distance table or 0 if
the entry is older than a configuration parameter. Then, a Q practicability of delivery value
is computed as an estimation of the future rewards after taking a particular action. The
discount factor γx is dynamic, getting smaller the faster that the neighborhood of x changes.
This means that the algorithm favors nodes with low mobility.

Qc(d, x)← (1− α)Qc(d, x) + α(R + γx ×max
y∈Nx

Qx(d, y)) (5)

The computed rewards are distributed in the same control messages mentioned and
are subject to further exponential aging. Finally, messages are replicated to nodes with
higher computed Q-values than their own.

The basic idea of the algorithm is to distribute a routing metric through control
messages and then use it as the immediate reward in a Q-learning scheme. The resulting
Q-values are used as an estimation of the global cost of an opportunistic delivery path.

An alternative is to integrate the routing metric within the Q-tables. For example,
CARL-DTN [19] is a flooding protocol that uses Q-learning to learn a Q-value associated
with every destination. Q-values are updated when nodes meet or go out of range. The Q-
value combines the hop count with other node characteristics such as TTL, node popularity,
or remaining power. This combination is achieved using a fuzzy logic controller (FLC).

The update function for node c when meeting node x, for destination d is:

Qc(d, x)← (1− α)Qc(d, x)

+ α(R(d, x) + γ · FuzzTO ·max
y∈Nx

Qx(d, y)) (6)

where the immediate return R(d, x) is an indicator function which returns 1 if the des-
tination d is directly reachable through x, and otherwise 0. FuzzTO is a fuzzy transfer
opportunity metric that combines the social characteristics of a node and its estimated ability
to complete message forwarding. When a node becomes disconnected, the associated
Q-value begins to decay exponentially.

In these protocols, the Q-learning process is decoupled from the data delivery, respect-
ing the classical separation between routing and forwarding. These depend on exchanging
routing data, and in this regard, they inherit the Q-routing property of being a combination
of Q-learning and a conventional routing algorithm. As a side effect, routes with associated
messaging are maintained for all nodes in the network, whether there is actual traffic
through them or not. Furthermore, they are only usable with destination-based routing.



Future Internet 2022, 14, 348 6 of 17

Other algorithms take a more direct approach to Q-learning. In FQLRP [20], each
message is considered an agent, and the set of possible states is the set of network nodes.
Therefore, the set of actions available to an agent is the set of neighboring nodes at a
given moment. Then, the reward is computed as a function of the current node and its
neighboring nodes’ attributes, such as available buffer space and remaining energy. The
idea is that the rewards express the likelihood of a successful forwarding. A modification
of the basic Q-learning scheme is that the candidate nodes are first filtered through a Fuzzy
Logic-Based Instant Decision Evaluation.

All these protocols share in common that Q-learning is used to select a candidate node
to replicate data to, but there is no explicit action to not copy. Q-values are computed for
actions, and in the usual representation, the only actions considered are forwardings.

Furthermore, no explicit notion of time or sequencing is defined, using the simple
exponential decay of Q-values to express the passing of time. This precludes the system
from learning that it is better to avoid copying because there is probably a better opportunity
in the future. It is important because many ONs have marked temporal patterns, such
as the schedules of public transport systems, the workday and weekly mobility cycles of
city inhabitants, or the migration patterns of wild animals. Integrating the notion of time
and sequence in the learning system would allow capitalizing on those patterns. We will
evaluate the gains of this representation in Section 6.

Finally, we want to mention a related but different concept to ON, the Opportunistic
Routing. This term usually refers to the ability to take advantage of overheard messages
in a broadcast medium. The Opportunistic Routing application is not restricted to ONs in
the sense of networks whose devices encounter sporadically. In fact, most Opportunistic
Routing research concentrates on ad hoc and mesh networks, which are connected networks,
though with a potentially dynamic topology.

4. ON Model

We propose to apply Q-learning to a particular representation of the ON that we
presented in [8]. In this model, a special Opportunistic Network Model (ONM) graph is
built, which represents both the encounters between network devices and the temporal
evolution of the network. Each network device is represented in this model by a set of
graph nodes. Each node of this set captures the network device’s state at the moment of
an encounter with another device. In the resulting graph, there are two classes of edges:
“copy” edges that link nodes belonging to different devices and represent an opportunity to
copy a message from one device to another during an encounter; and “time” edges link all
the nodes that model a device through time.

Figure 1a shows an example mobility scenario for four mobile devices, from A to D.
The devices follow closed trajectories and meet at the points marked with arrows at the
indicated times. In this example, devices B and C meet twice, at times 15 and 45.

The ONM graph that captures this scenario is shown in Figure 1b. Solid arrows
represent encounters; dotted arrows represent time passing between encounters. The
colored edges show two opportunistic paths between devices A and C.

Although this graph can be built from a complete trace of the mobility scenario, as
described in [8] (useful for analyzing recorded scenarios or synthetic traces produced by
simulators), in this work, the graph is built online, by the devices themselves, during
the real-life scenario execution. In this case, each device builds a local view of the whole
graph in a distributed manner, with only the edges it participates in. Figure 1c shows
this process for devices A and B. Each device registers a local view of the graph as time
passes and meetings occur. For example, in Figure 1c, the new nodes created at t = 30 have
corresponding identical pairs created in both participating devices. These duplicates will
be merged if all the local views are consolidated in a single representation.
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Figure 1. Opportunistic network model construction. (a) Mobile devices’ trajectories. The devices
move in closed loops, meeting at the indicated times; (b) full opportunistic network model built
offline using recorded traces (from [8]); (c) Online model construction. Learned nodes and edges up
to t = 35 for devices A (blue) and B (red) are shown.

The online-build model captures the history of what happened and does not contain
information on the future evolution of the network. To predict the future, in this work, we
capitalize on the temporal patterns of many opportunistic networks, as seen in Section 6.

The pseudocode for the online graph construction is shown in Algorithm 1.

Algorithm 1: Distributed online ONM graph construction.
Data: Own device identity d
Output: Local view of the Model Graph
/* Types for graph definition */

1 Type Node: (Device, Time)
2 Type Edge: (Node, Node)
/* Graph initialization */

3 N ← new Set of Node
4 Ec ← new Set of copy Edges
5 Es ← new Set of time Edges
/* Create initial node */

6 lastnode← new Node(d, 0)
7 N.add(lastnode)
/* called when meeting other devices */

8 Function Encounter(neighbor):
9 newnode← new Node(d, time())

10 N.add(newnode)
11 remote← new Node(neighbor, time())
12 N.add(remote)
13 Es.add( new Edge(lastnode, newnode) )
14 Ec.add( new Edge(newnode, remote) )
15 lastnode← newnode // update trailing node

An important detail is that all the nodes associated with a single device have a single
time edge, except for the last one, which has none. Furthermore, notice that time edges are
added from the receiving node; this is once the edge has been “traversed”.

A path over the ONM graph represents a possible propagation trace of a message. A
trajectory starting at a given node represents a new message emitted by the corresponding
device at the indicated time. A message traversing a copy edge represents that the message
is copied between two devices. To traverse a time edge, a message must be stored in the
device’s buffer, surviving up to the destination node’s time.



Future Internet 2022, 14, 348 8 of 17

In an ON, the order of encounters is critical for delivering a message. In Figure 1, the
path A–D–C depends on nodes A and D encountering before D and C. This dependency is
naturally represented in the ONM.

In this model, routing messages in an ON is equivalent to routing them in a static
graph. Edges can have different costs associated, allowing great flexibility in the definition
of optimality, as discussed in Section 5.

The model allows representing multiple simultaneous transfers if the underlying
network supports them, in the form of multiple copy edges leaving or arriving at a single
node. For example, a broadcast transmission would be represented by multiple copy edges
leaving a single node, each reaching a different device in range. Furthermore, additional
information can be stored in the graph to support learning algorithms and performance
modeling. For example, nodes may have associated the location and remaining battery
storage, and copy edges can be assigned radio propagation characteristics.

As mentioned before, many ON networks are not entirely random but exhibit patterns.
These patterns manifest themselves in the ONM. For example, the closeness between
devices reflects in more frequent copy edges, while periodic trajectories manifest as a
recurrence of copy edges at specific times. This allows using the ONM as a base to apply
ML techniques.

5. Algorithm

As seen in Section 2, ON Q-learning-based algorithms usually do not maintain an
explicit, graph-based model of the network. More specifically, the passage of time is usually
captured by a simple parameter-decay mechanism, which depends on ad hoc configuration
parameters that must be selected and tuned separately, usually through simulation.

Our strategy uses an ONM as the representation of the network. The ONM is a graph,
though not a connectivity one. Nevertheless, a path connecting nodes in ONM still repre-
sents a data trajectory connecting a source with a destination. A shortest-path algorithm
with adequately chosen edge weights can be used to find an optimal delivery trajectory.

There are two main classes of problems wherein RL is used to find the shortest path in
a graph. The first class of problems is, naturally, network routing (see Figure 2b), where
the graph is the connectivity graph of the network [21]. In this representation, edges
are network links, and nodes are network routers. Each graph node is an agent that
makes forwarding decisions that collectively solve the routing of messages from sources to
destinations. As each node is an agent, each node trains only for the available actions; this
is forwarding to neighboring nodes.

The second class of problems is the robot navigation problem (see Figure 2a). In this
case, the graph represents a map; for example, nodes are rooms, and edges are doors
connecting rooms. The learning agent is a robot that must navigate through the map to
reach a destination [15]. The agent has a policy to be trained, which dictates the next action
(edge) to follow as it moves through the graph, like in a maze. Each graph node is a state in
this representation, with a single Q-table attached to the single agent. The Q-table is trained
by repeatedly moving through the map.

Neither of these two representations is well suited as a base for applying RL for
opportunistic routing using ONM. The main problem is that the RL states coincide with the
nodes from the underlying graph in both representations. As a result, though they differ in
whom they consider an agent and thus how many Q-tables there are and where they are
stored, the content of the Q-table is similar in both cases: it assigns a Q-value to a target
graph node.

In the ONM graph representation, nodes and edges are not fixed beforehand. They
are defined during the network’s lifetime and describe a single instance of the mobility
scenario. Furthermore, each node is visited only once during this instance.
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Figure 2. Models for routing over a graph using Q-learning. The learning agents are marked in red.
Navigation problem. (a) The agent is the message, actions and states are graph nodes; (b) Routing
Problem. Each node is an agent, the actions are next-hop nodes.

Thus, because the graph nodes are associated with a particular real-world instance of
the network, and they are poor candidates for Q-learning actions and states, which must be
usable through multiple learning episodes.

We propose rl4dtn an opportunistic routing algorithm based on applying Q-learning
over an online-generated ONM graph (see Figure 3). The main characteristics are summed
up in Table 1.

A
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D

T1 T2 T3 T4

(a)

(A,1) (A,2)

(B,2)

(C,2)

(D,1) (D,3)

(C,3)

(B,4)

(C,4)

(b)

Device B Q-table

(B,2)     (A,2): q4

(B,2)     (C,2): q5

(B,2)     (B,4): q6

(B,4)     (C,4): q7

Device A Q-table

(A,1)     (A,2): q1

(A,1)     (D,1): q2

(A,2)     (B,2): q3

Device D Q-table

(D,1)     (A,1): q13

(D,1)     (D,3): q14

(D,3)     (C,3): q15

Device C Q-table

(C,2)     (B,2): q8

(C,2)     (C,3): q9

(C,3)     (D,3): q10

(C,3)     (C,4): q11

(C,4)     (B,4): q12

(c)

Figure 3. rl4dtn learning model. (a) The ONM model with the time slots and the learning agents
marked in red; (b) Q-learning states ad actions. Each state is associated to a device and time slot;
(c) The Q-tables for all devices.

Table 1. Reinforcement learning structure for rl4dtn algorithm.

Agent Mobile device.

State A (device, timeslot) pair, where the time is divided into set
time slots.

Action Connect two states, either on the same device (store data)
or another (forward data).

Evaluation time Encounter between devices (i.e., ONM node).

Q-Metric and task Minimization of a distance metric.

Determinism States and actions are non-deterministic.

5.1. States and Actions

In our approach, each network device is an agent and maintains the Q-table for all the
associated system states and possible actions from its point of view.

Because the optimum action to choose depends on the time at which the agent is,
we divide the scenario’s duration into time slots (see Figure 3a) and then use each slot
from every device as a potential state for the RL process. Thus, a state is defined by a
pair (networkdevice, timeslot), and actions are the possible state transitions (see Figure 3b).
Notice that actions are not the edges from the ONM; ONM edges connect ONM nodes,
which are defined by a device and an encounter time stamp. RL actions connect states
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defined by a device and a discretized time slot. The resulting Q-tables are shown in
Figure 3c.

Paralleling the ONM edges, there are two possible classes of actions. In one, the
destination of the state transition is a state associated with the same origin device but at
a later time slot; this represents storing data between different time slots. In the other
scenario, the destination is a state with a different device but in the same time slot; this
represents a data-forwarding action.

Notice that the state space can be seen as the time discretization of the ONM graph;
multiple graph nodes from a device that occur in the same time slot map to a single
state. For example, in Figure 3a, there are two encounters by node B in time slot T2. Both
encounters are represented by the same state (B, 2) in Figure 3b.

Furthermore, an action can capture the effect of multiple ONM edges. For example,
all encounters between a pair of devices that happened in the same time slot, each modeled
by a separate ONM copy edge, are represented as the same action: forwarding between the
involved devices in the given time slot.

Actions that connect subsequent states within the same device are called survival
actions, the idea being that when the link exists, data have survived between time slots.
Notice that a survival action is available on all states except for the last state associated with
a device.

The Q-learning is performed each time a forwarding decision is made, this is on each
ONM graph node. If there are multiple forwarding decision evaluations within a time slot,
they all contribute to the computation of the time slot’s Q-value.

The time slot size is a configuration parameter for rl4dtn. In one extreme, when there
is a single time slot that spans the whole mobility scenario, the rl4dtn model behaves as a
single, static connectivity graph. In this case, there is a single forwarding action computed
for connecting each pair of nodes, and there are no survival actions. The Q-value for the
actions is computed from all the forwardings made through the scenario, and no temporal
distribution of encounters is captured. As the number of slots increases, the number of
nodes per state is reduced since the time slots become shorter, and thus fewer nodes share
a slot. This means there are fewer Q-learning evaluations to update the state’s Q-value,
while at the same time, the number of states increases. The result is a degradation of the
system’s learning convergence. Because we want to capture changing mobility patterns
through time, a balance must be reached for the optimum time slot size. We discuss this
effect in more detail in Section 6.

An agent can perform multiple actions simultaneously, representing the generation of
replicas of the routed message, with each copy later being routed independently. Thus, if
we configure the protocol to choose a single action, rl4dtn behaves as forwarding algorithm.
If multiple actions are allowed, the algorithm becomes flooding-based.

5.2. Q-Value and Rewards

As is usual in routing, the RL problem is posed as distance minimization instead of
reward maximization. Furthermore, as usual in these cases, we fix the discount factor
γ = 1. The resulting Q-update function is shown in Equation (7).

Qc(d, x)← (1− α)Qc(d, x) + α(R + min
y∈Nx

Qx(d, y)) (7)

The definition of the immediate cost R itself is flexible. For example, Table 2 presents
the immediate cost of edges under several distance metrics. The hop count metric minimizes
the number of transmissions, while the latency attempts to deliver the data as fast as
possible. The power consumption cost can be seen as a generalization of hop count, where
the transmission cost is a function Pwr of the distance between the nodes, the radio
environment, message size, etc.
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Notice that the immediate cost R used to update a Q-value is computed on every
encounter or ONM graph edge. As a result, the instances of evaluation of a state–action
pair and the values of R are non-deterministic.

Table 2. Immediate edge costs R for rl4dtn for various distance definitions

Time Edge Copy Edge

Latency Tdest − Tsource 0

Hop count 0 1

Power consumption 0 Pwr(source, dest)

In RL algorithms, the definition of when a message is considered delivered is under
the control of the reward function, which is an arbitrary function. It can accommodate
concepts such as multicast (deliver to a set of nodes), anycast (deliver to any of a set of
nodes), or generalizations such as subscription-based delivery (deliver to nodes that request
messages with specific properties).

5.3. Opportunistic Route Exploration

An essential part of the behavior of ML systems is exploration; rl4dtn explores the space
of solutions by two mechanisms. The first is the standard ε− greedy policy, where, at the
action-selection time, there is a probability ε of selecting a random action instead of the
known best (the one with minimum associated Q-value).

The second exploration mechanism is to generate multiple message copies, where
each one is routed independently. This replication is managed using Binary Spray and Focus
(BSF) [22]. This is similar to the Binary Spray and Wait technique mentioned in Section 2,
differing only in its behavior when the copies count reaches one. In BSW, this single copy
is held locally and delivered only to the destination device if it is met directly. In BSF, this
copy can be handed over to another device and then remain hopping from device to device
until meeting the destination. Notice that if the emitting device sets the number of copies
parameter to one, the algorithm behaves as a pure forwarding algorithm.

As usual in Q-learning, the exploration parameters can be reduced during the system’s
lifetime, favoring exploration in the early stages and exploitation in later stages to improve
performance and convergence.

The pseudocode for rl4dtn is shown in Algorithm 2. The entry point is on line 16,
which is called on every encounter after updating the ONM model when a forwarding
decision must be made (we assume we are handling a single message msg). For this purpose,
a list of candidate destination states is built on lines 17-24. One of the candidates is the
survival action (line 18). As mentioned before, this can be directly obtained from the rl4dtn
model if already available from previous evaluations. If not, it can be a placeholder, as this
action is known to exist. Besides the survival action, all copy actions are added to the list
of candidates (line 19). If one of the neighboring agents is the target for the message, the
message is delivered, and no further processing is made.

Once a list of candidates is built, line 25 selects a copy or survival target using the
ε− greedy selection function (lines 3–7). After this, line 26 updates the Q value. That is
done on lines 8–18, applying Equation (7). In our case, line 12 computes immediate hop
count costs from Table 2.

If the selected action was a forwarding, Binary spray and focus is used on lines 27–33 to
either forward half message copies if there are more than one (line 28) or migrate the single
available copy to the new device (line 31).

As a baseline, we implemented a straightforward Q-learn algorithm not based on
ONM. Unlike rl4dtn, only actions associated with forwarding are maintained (no survival
actions), and forwarding is performed if the best candidate has a better Q-evaluation than
its own. In Algorithm 2, this implies the removal of line 18, the condition on line 27, and
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the substitution of the action selection function on line 7. The message-copies handling is
identical to rl4dtn. This allows us to evaluate the impact of using ONM to learn explicit
actions for keeping messages. Any improvement from Q-learn to rl4dtn can be assigned
to the use of the ONM model. Please, notice that the computational complexity of both
algorithms is roughly equal. Both are evaluated in the same situations (at forwarding
decisions), the only difference being that rl4dtn has one more transition to consider: the
explicit storing action.

Algorithm 2: rl4dtn pseudocode.

1 Type State: (BusID, Timeslot) // Type for Q-Learning State
2 Qtbl ← new MapOf(State, MapOf(BusID, Qvalue)) // Q-table datastructure
/* Auxiliary functions */

3 Function PickAction(candidates):
4 if random() < epsilon then
5 return PickRandom( candidates )
6 else
7 return PickMinQ( candidates )

8 Function UpdateQ(target):
9 State currentS← (myBusId, ts)

10 State targetS← (target.id, target.ts)
11 minQtarget←minValue( Qtbl[targetS] )
12 r ← EdgeCost ( target )
13 Q← Qtbl[currentS][target]
14 Q← Q + alpha(r + gamma ∗minQtarget−Q)
15 Qtbl[currentS][target]← Q

/* main function, called after updating ONM */
16 Function Encounter(N, msg):
17 candidates← new Set Of Node
18 candidates.add( f ollowup(N) )
19 for each n in neighbors(N) {
20 if isTarget( n, msg ) then
21 Qtbl[(myBusID, ts)][(n.id, ts)]← 1.0
22 deliver( n.id, msg )
23 return

24 candidates.add( n )

25 target← PickAction( candidates )
26 updateQ( target )
27 if target 6= f ollowup(N) then
28 if msg.copies > 1 then
29 forward( target, msg, msg.copies/2 )
30 msg.copies← msg.copies−msg.copies/2
31 else
32 forward( target, msg, 1 )
33 drop( msg )

6. Simulation

We test the algorithms using the RioBuses dataset [23], which collects the GPS trajecto-
ries of buses in Rio de Janeiro, Brazil. It contains over 12,000 units, moving over 700 bus
lines through November 2014. In this work, we down-sample the dataset to 1000 buses,
which is still a large use-case for an ON [24]. We generate ten distinct down-sampled sets
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to produce statistics. Nevertheless, the ONM representation allows simulating the entire
dataset, even using desktop-grade hardware [8].

We run the algorithm in a scenario where all units emit two messages, one at 00:00
and another at 12:00, directed to a single fixed collection point located in one of the city
bus terminals. Successful delivery is achieved when a message arrives within the same
day. Messages underway are removed every night at midnight, but the learned protocol
parameters are kept.

To calibrate the algorithm parameters, we simulate the first seven days of the trace. The
results are shown in Figure 4. The delivery rate is computed at the end of the corresponding
day. The reduction in delivery rate on days 4 and 5 corresponds to the weekend, with
reduced bus services (1 October 2014 was a Wednesday).
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Figure 4. Learning model parameters’ impact on delivery rate. (a) Learning-rate parameter α;
(b) Number of time slots; and (c) Number of message copies.

Figure 4a shows the impact of the α parameter on the learning process (see Equation (7)).
The algorithm was configured with eight copies per message. The best learning is achieved
with a very aggressive α = 1.0.

As described in Section 5, the Q-parameters are learned per time slot to allow for
learning different patterns throughout the day. On the other hand, more slots mean
fewer encounters per slot, which slows down learning. The impact of the number of time
slots is shown in Figure 4b. It can be seen as the single-slot scenario learns fastest, as
it considerably outperforms the alternatives at the end of the first day. Nevertheless,
6 or 12 slots finally catch up and outperform after day 3. Having 24 slots degrades
performance, possibly because the number of encounters per slot is too small to sustain
effective reinforcement learning.

In rl4dtn, reinforcement learning is performed by observing the propagation of data
messages through the network. Thus, having multiple replicas of a message improves the
learning process. Additionally, it improves the delivery rate, as it is enough for a single
message copy to arrive for a successful delivery. This effect can be seen in Figure 4c. On the
other hand, producing multiple copies of messages increases the data transmitted in the
network. This effect will be discussed in Section 6.

Figure 5 compares rl4dtn delivery performance with BSW, PRoPHET and the reference
Q-learning protocol. The average over ten simulations with different buses samples is
shown, with the corresponding interquartile range. The number of time slots used for
rl4dtn and Q-learning is 6, the number of message copies is 8, and the ε parameter driving
the Q-learning exploration is set at 1.0 at the beginning and then reduces linearly to 0.5 on
the last day.

BSW underperforms considerably. PRoPHET suffers the most from the reduction in
mobility through the weekend.

It can be seen that rl4dtn offers a better delivery rate. Furthermore, the performance
difference between Q-learn and ld4dtn shows the impact of using the ONM as a base for
the learning process.
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Figure 5. Delivery rate comparison.

Figure 6 displays a 1:50 sample of the Q-values as they evolve through the system’s
learning. This shows the convergence behavior of the Q-learning process. Notice that the
Q-values estimate the cost of an opportunistic path; in our scenario, this cost is the hop
count. It can be seen that the system starts with Q values up to 6, and from day three, it
settles on many paths of one bus hop, considerably less but roughly similar paths of length
2 and 3, and very few of length 4. The gap with almost no deliveries in the early morning
can be seen.
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Figure 6. Q-values evolution through learning.

Figure 7 shows the latency histogram, which is the time between message generation
and message arrival, for the messages emitted at 12:00 and successfully delivered. rl4dtn
has a marked peak at around 2 h latency, while the other algorithms have a more indistinct
behavior. Notice that two hours is a reasonable average trip duration, using bus lines,
from anywhere in the Rio de Janeiro region to a given collection point. This suggests that
rl4dtn finds more direct paths than the alternatives, which depend more on longer, more
random journeys.
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Traffic Efficiency

The traffic produced by an ON algorithm is an important metric, as it directly impacts
power consumption. This traffic is produced by agents exchanging routing data and when
forwarding messages.

Thus, the total traffic in the network is:

Ttot = E× SR + T × SM (8)

where the parameters are shown in Table 3, assuming 1 KB messages and 1000 buses.

Table 3. Data exchange parameters.

BSW PRoPHET Q-Learn,rl4dtn

E Number of encounters From ONM graph (copy edges)

T Number of message forwardings From simulation

SM Size of message 1 KB + 4 B 1 KB 1 KB + 8 B + 4 B

SR Routing exchange size 0 1.000*8B 0

BSW does not attempt to learn from the network, and no routing information is
exchanged. The only addition to the messages is the integer number of the number
of copies.

PRoPHET exchanges a predictability vector during each encounter. This vector con-
tains a floating-point predictability value for each device in the network. rl4dtn does not
exchange routing data; in its place, a Q-value used to update a Q-table is retrieved from the
destination when forwarding. Additionally, the messages have a copies-count integer.

The total traffic produced in the network is shown in Figure 8. BSW has a very high
transmission cost, despite not producing routing data. This is related to the fact that every
transmission opportunity is taken, and the maximum allowable number of replications
is produced. Nevertheless, the delivery rate is poor because the replication is made very
aggressively following the message generation, not achieving adequate dissemination
through the network. It can be seen that PRoPHET has a high traffic consumption, the vast
majority of it being routing information and not data transmissions. This signaling grows
with the number of encounters (vector exchanges) and devices in the network (vector size).
Furthermore, it must be noted that a considerable part of the routing information exchange
might not be of interest to the actual data flows in the network. Finally, rl4dtn achieves
better delivery performance with a lower data overhead.
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Figure 8. Total data transmitted in the network.

7. Conclusions and Future Work

We presented rl4dtn, an opportunistic networks routing algorithm based on Q-learning,
that takes advantage of a particular opportunistic network model. This model captures the
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evolution of the network through time using a temporal graph. The network devices build
and use this model in a distributed fashion during the network’s lifetime.

This work shows that this model allows our Q-learning-based method to outperform
classic Q-learning approaches. By comparing rl4dtn with a conventional Q-learning algo-
rithm, we show that the rl4dtn’s advantage comes from the fact that the learning mechanism
feeds from temporal data. These temporal data allow learning from the temporal patterns
in the distribution of encounters arising from the devices’ movement patterns. Tempo-
ral patterns are a defining characteristic of ONs, differentiating them from conventional
networks.

At the same time, the resulting algorithm obtains a higher delivery rate with a consid-
erably lower network overhead than representative ON routing algorithms; this is very
important for networks with large numbers of devices where the routing data transmissions
can represent a significant load.

Amongst the issues that need more attention, we point out that although the dataset
used in this work is typical, more tests are needed as ONs cover a broad spectrum of
mobility scenarios.

Another area of improvement is the management of time slots. In this work, the
time-slot size is fixed and experimentally determined. A scheme can be devised where the
system adjusts the slots dynamically and automatically without an explicit configuration.
For example, the system could adjust the time-slot size to maintain a certain number
of encounters per slot, enough to sustain effective Q-learning. As a result, for example,
nighttime slots could be longer and peak-hour slots shorter.

In summary, the proposed routing algorithm builds on top of a previously presented
network model, which allows it to outperform classic Q-learning approaches. It achieves
higher delivery rates with lower network overhead than representative ON routing algo-
rithms. There are several lines for improvement that must be explored.
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