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ABSTRACT

In the Western music tradition, chords are the main con-
stituent components of harmony, a fundamental dimension
of music. Despite its relevance for several Music Informa-
tion Retrieval (MIR) tasks, chord-annotated audio datasets
are limited and need more diversity. One way to improve
those resources is to leverage the large number of chord an-
notations available online, but this requires aligning them
with music audio. However, existing audio-to-score align-
ment techniques, which typically rely on Dynamic Time
Warping (DTW), fail to address this challenge, as they re-
quire weakly aligned data for precise synchronisation. In
this paper, we introduce ChordSync, a novel conformer-
based model designed to seamlessly align chord annota-
tions with audio, eliminating the need for weak alignment.
We also provide a pre-trained model and a user-friendly
library, enabling users to synchronise chord annotations
with audio tracks effortlessly. In this way, ChordSync cre-
ates opportunities for harnessing crowd-sourced chord data
for MIR, especially in audio chord estimation, thereby fa-
cilitating the generation of novel datasets. Additionally,
our system extends its utility to music education, enhanc-
ing music learning experiences by providing accurately
aligned annotations, thus enabling learners to engage in
synchronised musical practices.

1. INTRODUCTION

Harmony is central to Western music traditions’ theoretical
and practical foundations. It entails the combination of in-
dividual pitches to create chords and their concatenation
into sequences to create chord progressions. Therefore,
chords, i.e., the simultaneous sounding of two or more
pitches, are the primary constituents of harmony, while
chord progressions play a vital role in shaping and defining
the overall structure of a musical piece.

Not surprisingly, automatic chord recognition (ACR)
from audio, the task of generating a sequence of time-
synchronised chord labels given raw audio as input, has
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Figure 1. Basic schema of ChordSync: The model pro-
cesses a list of chords alongside the audio signal, produc-
ing time-aligned chords as output.

been an active research topic in Music Information Re-
trieval (MIR) for more than two decades [1], with appli-
cations including music similarity assessment [2, 3], clas-
sification [4], and segmentation [5].

The development of ACR systems requires large datasets
of audio-aligned chord annotations for training and eval-
uation. However, the diversity of existing chord anno-
tated datasets is limited. They predominantly feature pop
music and exclude a wide array of genres and styles [1].
The lack of diversity is critical since the chord vocabulary
differs according to musical style and context, making it
difficult to generalise from a limited music sample. Be-
sides, the subjectivity inherent in chord annotations further
complicates the ACR task. Musical chords can be anno-
tated at varying levels of granularity and complexity, ac-
counting for global harmony or specific instrument con-
tributions. Additionally, the distinction between harmony
and melodic lines is frequently challenging, while inter-
pretations of elements such as arpeggios often lead to di-
vergent annotations. In [6], authors demonstrate that inter-
annotator agreement on the root note in a dataset annotated
by four different annotators stands at only 76%. Datasets
annotated from other perspectives are even rarer, currently
comprising only a few dozen tracks.

In recent years, meta-corpora of chord annotations have
emerged, such as Chord Corpus (ChoCo) [7] and When
in Rome (WiR) [8], which aim to aggregate and standard-
ise different datasets originally available in various formats
and annotation styles. In this way, they facilitate the util-
isation of large-scale data, which improves diversity and
is crucial for training deep-learning models. However, the
availability of audio-aligned annotations within these cor-
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pora remains limited. Notably, less than12%of the20; 000
annotated tracks in ChoCo are audio-aligned.

On the other hand, the internet hosts vast repositories
of crowd-sourced chord annotations on platforms such as
Ultimate Guitar1 , e-chords2 , and Chordie3 , collectively
housing millions of annotated songs. This multitude of-
fers a great variety in terms of genre distribution, includ-
ing genres not present in any MIR datasets, such as elec-
tronic, metal, hip hop, reggae, and country. Moreover,
these repositories of harmonic annotations often contain
multiple versions of the same song. This abundance of ver-
sions may offer new avenues for analysis, accommodating
the subjectivity and complexity inherent in the annotations,
as proposed in [6,9]. Unfortunately, these annotations lack
any timing and duration information, providing solely lists
of chords and occasionally lyrics, hindering their reuse for
MIR-related tasks.

These challenges underscore the need for systems capa-
ble of aligning chord annotations with audio recordings.
Yet, to the best of our knowledge, no model has been ex-
plicitly developed for this purpose. Existing audio-to-score
alignment techniques often rely on Dynamic Time Warp-
ing (DTW) algorithms [10], typically requiring prelimi-
nary weak alignment. Such alignment methods are not al-
ways feasible for aligning chord annotations to audio, par-
ticularly in cases of crowd-sourced data where temporal
information is completely lacking.

1.1 Our Contribution

In this paper, we address this gap by introducing
ChordSync, a novel approach that seamlessly aligns chord
annotations to audio without requiring any preliminary
weak alignment (see Figure 1). Leveraging the power of
conformer architecture [11], our method paves the way for
creating diverse and comprehensive audio-aligned chord
annotated datasets based on existing resources. We also
provide a pre-trained model and a user-friendly library, en-
abling users to synchronise chord annotations with audio
tracks effortlessly. Finally, we showcase the effectiveness
of our approach by aligning a sample of tracks taken from
Ultimate Guitar. This can, in turn, bene�t other MIR ap-
plications, such as music structure analysis, and foster en-
riched music learning experiences.

The rest of the paper is structured into four main sections:
Section 2 reviews the current state-of-the-art, Section 3 de-
scribes the methodology ofChordSync, Section 4 presents
experimental results, and Section 5 offers conclusions and
suggests future research directions.

2. RELATED WORK

2.1 Audio-to-Score Alignment

The task of aligning audio to symbolic music, commonly
known asaudio-to-score alignment(A2SA), has been pri-
marily addressed byDynamic Time Warping (DTW)al-
gorithms [12], as they are particularly effective for se-

1 Ultimate Guitar:https://www.ultimate-guitar.com/
2 e-chords:https://www.e-chords.com/
3 Chordie:https://www.chordie.com/

quence alignment tasks. Thus, various DTW-based align-
ment methods have been proposed to align audio with dif-
ferent symbolic music formats, such as MIDI [13], often
integrating additional techniques and diverse signal repre-
sentations to improve alignment accuracy [14,15].

A differentiable variant of DTW,SoftDTW, has been re-
cently used as the loss function within neural network ar-
chitectures, mainly for multi-pitch estimation tasks [16,
17]. However, a general limitation of the DTW-based ap-
proaches is their reliance on weak-aligned data to perform
the alignment. This requirement renders them unsuitable
for contexts without prior alignment information.

Other deep-learning methods have been investigated for
audio-to-score alignment, including leveraging automatic
transcription techniques [18] and training audio features
tailored explicitly for alignment tasks [19].

The only previously proposed approach for aligning au-
dio with chord annotations uses Hidden Markov Models
(HMM) and is part of an ACR work�ow [20]. Also related
to our work is theHarmonic Change Detector (HCD), in-
troduced in [21] and subsequently revisited and improved
in [22, 23], for detecting harmonic changes within the au-
dio signal, including chord changes. However, the number
of harmonic changes within the audio signal often exceeds
the number of chord changes, posing challenges for using
these algorithms directly for audio-to-chord alignment.

2.2 Lyrics-to-Audio Alignment

Another form of alignment pertinent to our work is the
audio-to-lyrics alignment task, which seeks to determine
the corresponding locations in a song recording of its lyrics
at various levels such as line, word, or phoneme [24]. Ex-
isting methods for this task are commonly adapted from
automatic speech recognition (ASR) [25, 26], despite the
inherent complexity of singing voices compared to speech
[27], and typically make use of acoustic models trained to
recognise the phonetic content of the audio signal at vari-
ous levels of granularity. Some recent works have adopted
the Connectionist Temporal Classi�cation (CTC) loss [28],
training the acoustic model in an end-to-end fashion [26].

2.3 Conformer-based Approaches

The conformer architecture [11] has recently emerged in
ASR as a novel architecture to effectively model global and
local audio dependencies by leveraging a combination of
Convolutional Neural Networks (CNNs) and Transformer
architectures. It has showcased remarkable success across
various tasks not only in speech [29] but also in music [30],
including melodic transcription [31], representation learn-
ing [32], and music audio enhancement [33].

3. METHOD

This section describesChordSync, our proposed
conformer-based model for audio-to-chord alignment.
It implements an acoustic model for estimating the
frame-wise probabilities of chord labels, which are then
fed to a forced-alignment decoder, along with the list of
chord labels to align. Figure 2 illustrates the three primary
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Figure 2. Architecture ofChordSync: (i) The audio signal undergoes preprocessing to Constant-Q Transform (yellow box);
(ii) The preprocessed audio serves as input for training the conformer-based acoustic model (blue box); and (iii) The model
output probabilities, along with the list of chord labels for alignment, is fed into a CTC forced alignment module (green
box), which outputs the aligned chord labels.

steps implemented by the model: pre-processing and
data augmentation (Section 3.2), the acoustic model used
during training (Section 3.3), and the forced alignment
decoder (Section 3.4). The software implementation and a
pre-trained model are available on a GitHub repository.4

3.1 Problem Statement

Let X = f x1; :::; xN g be a frame-level sequence of acous-
tic features extracted from the input audio, wherexn 2 RD

represents a D-dimensional feature vector, andN indi-
cates the total number of frames within the sequence. Let
C = f c1; :::; cM g be the input list of chord labels encoded
into integer values, wherecm 2 ZK , K denotes the size
of the chord vocabulary, andM is the length of the chord
sequence. The list of chord labels is upsampled to match
the length of the audio sequenceN . This upsampling is
performed uniformly, assuming each chord has a duration
approximately equal toN=M . Speci�cally, each chord la-
bel cm is repeated for approximatelyN=M frames to pro-
duce the sequenceZ = f z1; :::; zN g, wherezm 2 ZK .
Thus, we train an acoustic model to optimise the following
equation:

Z � = argmax
z

p(Z jX ); (1)

whereZ � represents the optimal sequence of chord labels
that maximises the posterior probabilityp(Z jX ), given the
input sequenceX . Note thatX andZ are aligned at the
frame level, andp(X jZ ) is evaluated by estimating the
frame-wise posterior probabilityp(xn jzn ).

The output probabilitiesp(X jZ ) from the acoustic model
are then fed to a CTC forced alignment decoder, which es-
timates the best alignment between the sequence of acous-
tic featuresX and the list of chord labelsC:

A � = argmax
a

p(AjX; C ); (2)

4 https://github.com/andreamust/ChordSync

whereA � represents the optimal alignment betweenX and
C that maximises the posterior probabilityp(AjX; C ).

In this way, the decoder generates the aligned chord la-
bels with respect to the audio signal.

3.2 Preprocessing

For the input audio data, a standard pre-processing pipeline
is implemented. The audio is �rst resampled to a sampling
rate of22050Hz, and a hop size of2048is applied. Then,
the Constant-Q Transform (CQT) features are calculated
on 6 octaves starting fromC1, with 24 bins per octave,
resulting in a total of144bins.

The audio data used for training undergoes data aug-
mentation by applying (i) time masking and (ii) frequency
masking directly to the audio features, as proposed in
SpecAugmentfor end-to-end ASR [34].

During training, each audio excerpt in the training set un-
dergoes augmentation, where either one of the transforma-
tions (frequency masking or time masking) or both are ap-
plied, and the choice of augmentation technique is deter-
mined randomly with equal probability.

Chord labels are numerically encoded into integer values
and upsampled to match the length of the audio sequence
N . The upsampling is performed using thepumpp
library 5 . Figure 3 shows how chord labels are converted
and sampled. The size of the chord vocabularyK results
from the linear combination of the 12 pitches, representing
the chromatic scale, with chord qualities such asf maj,
min, 7, dim, dim7, hdim7, aug, min7,
maj7, maj6, min6, minmaj7, sus2, sus4 g,
plus an additional chord symbol N representing silence or
no chord.

3.3 Conformer-based Acoustic Model

The acoustic model we adopt is an adaptation of the orig-
inal Conformer architecture [11], where the audio encoder

5 https://github.com/bmcfee/pumpp .
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