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Correlation functions are important probes for the behavior of quantum field theories. Already
at tree-level, the Refined Gribov Zwanziger (RGZ) effective action for Yang-Mills theories provides
a good approximation for the gluon propagator, as compared to that calculated by nonperturbative
methods such as Lattice Field Theory and Dyson-Schwinger Equations. However, the study of
higher correlation functions of the RGZ theory is still at its beginning. In this work we evaluate the
ghost-gluon vertex function in Landau gauge at one-loop level, in d = 4 space-time dimensions for
the gauge groups SU(2) and SU(3). More precisely, we extend the analysis conducted in [1] for the
soft-gluon limit to an arbitrary kinematic configuration. We introduce renormalization group effects
by means of a toy model for the running coupling and investigate the impact of such a model in
the ultraviolet tails of our results. We find that RGZ results match fairly closely those from lattice
simulations, Schwinger-Dyson equations and the Curci-Ferrari model for three different kinematic
configurations. This is compatible with RGZ being a feasible theory for the strong interaction in
the infrared regime.

I. INTRODUCTION

Since the proposal of Quantum Chromodynamics (QCD) as the theory of Strong Interactions, a long path was
constructed to connect the fundamental degrees of freedom – quarks and gluons – to the observed physical states and
processes. At high energies, asymptotic freedom allows for a perturbative approach that, supplemented by essential
nonperturbative information in Particle Distribution Functions and fragmentation phenomena, agrees with a plethora
of experimental output from high-energy particle colliders. The infrared (IR) regime however is much less amenable.
Monte Carlo simulations that solve the Euclidean version of QCD on a discretized space-time lattice have by now and
with great effort established that this non-Abelian theory can quantitatively describe several hadronic observables
[2–5]. Nevertheless, the mechanism of color confinement is still an open question, calling for the development of
continuum approaches and (semi)analytical descriptions of the infrared behavior of Strong Interactions. Among the
well-developed continuum methods that try to tackle this non-perturbative regime, Schwinger-Dyson equations [6–15]
stand out in different hadronic applications, but also the Functional Renormalization Group [16–21] and effective
models [22–26] have been employed with partial success. Other approaches, such as the Curci-Ferrari (CF) model in
Landau gauge [27–37] and the screened massive expansion [38–42] have successfully described some aspects of the IR
of Yang-Mills theory by employing perturbation theory.

Here we adopt another continuum approach to the nonperturbative regime of Yang-Mills theories: the Refined
Gribov-Zwanziger (RGZ) theory [43, 44]. This framework, as the other continuum methods, adopts a gauge-fixed
setup and is formulated from first-principles as a gauge path integral modified in the infrared by the existence of
Gribov gauge copies. This idea follows the seminal work by Gribov himself [45] and the development of local actions
attained by Zwanziger [46] and complemented by the emergence of dimension two condensates [43, 44, 47]. For
comprehensive reviews, the reader is referred to [48–50] and references therein.

The presence of this nonperturbative background stemming from the Gribov horizon and the condensates seems
to carry plenty of information from the interacting theory, so that the remaining interaction corrections might be
supposed to be small, i.e. perturbative. Even at tree-level (but also at 1-loop level, as discussed in [51]), the RGZ
gluon propagator is compatible with the deep IR behavior observed on Landau-gauge Lattice QCD data [43], while
reducing to pure Yang-Mills at large energies [52] in a fully self-consistent formulation that would include solving
the Gribov gap equation and the effective potential for the different condensates. Gauge-parameter independence of
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gauge-invariant quantities in this setup is under control within linear covariant gauges through a nilpotent Becchi-
Rouet-Stora–Tyutin symmetry, and the predictions for the gluon propagator in general covariant gauges are also
compatible with available lattice results [53–56].

In this paper, the aim is to take a step forward in the direction of establishing predictions of the RGZ theory by
including radiative corrections and confronting them with lattice data and other nonperturbative approaches. This is
crucial for further understanding whether this theory can be a consistent model of infrared Yang-Mills and eventually
QCD. One-loop corrections to the RGZ gluon propagator have been recently reported in [51], whilw a corrected
propagator for a scalar field coupled to the RGZ action has been studied in [57]. Previous results on the vertices
of the (R)GZ action in the Landau gauge may be found in Ref. [58]. Here, in particular, we compute the general
kinematics of the ghost-gluon vertex at one loop order within the RGZ framework, extending previous work on the
soft gluon limit of the same correlation function [1]. The present study enables the investigation of the role played by
auxiliary fields in quantitative results in RGZ. In this specific correlation function, we show that the contribution of
auxiliary fields, in the form of new vertices and mixed propagators, represents a smaller effect – less than 10% percent
– as compared to that of the presence of nonzero pole masses for the gluon. Moreover, we include running effects via
an infrared model, with a freezing coupling constant. Even though this is not self-consistently obtained within RGZ,
this may be a reasonable approximation, because of the presence of the massive parameters from the horizon and the
condensates. Overall we show that the RGZ results are fully compatible with available lattice data for SU(2) and
SU(3), as well as other continuum approaches, such as the infrared-safe Curci-Ferrari model in Landau gauge [29, 35]
and the Dyson-Schwinger equations [15].

This paper is organized as follows. In Sec. II, the formalism of the refined Gribov-Zwanziger framework is presented.
In Sec. III, the ghost-gluon vertex is defined and its general structure in the RGZ theory is discussed. Our computation
of generic momentum configurations of the one-loop ghost-gluon vertex is presented in Sec. IV, including the IR
running coupling model adopted. Sec. V collects our results along with the corresponding analysis and comparisons
with alternative approaches. In Sec. VI we discuss the potential influence of the IR running coupling model on the
ultraviolet (UV) tails of our results. We have included perspectives and final remarks in Section VII.

II. THE REFINED GRIBOV-ZWANZIGER ACTION IN LANDAU GAUGE

The Gribov-Zwanziger theory is a framework for making sense of the gauge fixed Yang-Mills theory in the non-
perturbative regime. It grew from Gribov’s observation that gauge fixing in the Landau Gauge fails in the strongly
coupled regime [45, 46] (see also [48–50] for reviews), in the sense that gauge copies still exist after the fixing. These
are called Gribov copies and they appear in fact in any covariant gauge. The solution proposed by Gribov was to
restrict the integration region of the gauge field path integral to the neighborhood containing the perturbative vacuum
and bounded by the field configurations associated with the first Gribov copies, called the Gribov Horizon. In the
Landau gauge ∂µA

a
µ = 0 the Gribov horizon is defined by the set of fields Aa

µ for which the equation Mab(A)αb = 0
has a solution, where

Mab(A)(•) = −δab∂2(•) + gfabc∂µ(A
c
µ•). (1)

stands for the Faddeev-Popov operator in the Landau gauge.
Zwanziger [46] was able to recast Gribov’s construction in the form of an effective theory whose restriction to the

Gribov horizon is implemented at the level of the action. The resulting action is known as the nonlocal Gribov-
Zwanziger action and defined in the Landau gauge in dimension D by

SnlGZ =

∫
dDx

(
1

4
F a
µνF

a
µν + iba∂µA

a
µ − c̄aM(A)abcb

)
+ γDH(A)− γDV D

(
N2 − 1

)
(2)

where γ has dimension of mass, V is the space-time volume (formally infinite) and H(A) is known as the horizon
function and given by

H(A) = g2
∫

dDp

∫
dDq

[
fabdÃd

µ(−p)
(
M−1

)bc
pq

f caeÃe
µ(q)

]
(3)

The mass scale γ is not arbitrary, but fixed by a self consistent equation known as the gap equation, which can be
written as a condition on a vacuum condensate. Defining

Z(λ̃) =

∫
DADbDc̄Dc e−

∫
dDx ( 1

4F
a
µνF

a
µν+iba∂µA

a
µ−c̄aM(A)abcb)+λ̃H(A)−λ̃V D(N2−1) (4)
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The gap equation reads

∂Z(λ̃)

∂λ̃

∣∣∣
λ̃=γD

= 0 ⇒ ⟨H(A)⟩ = V D
(
N2 − 1

)
. (5)

The theory as it is is highly non-local due to explicit expression of H(A). In order to have a workable quantum
field theory we need to put the action in a local form. This entails the introduction of new, auxiliary fields. We note
that ∫

DφDφ̄DωDω̄ e
−

∫
d4x

(
φ̄ac

µ M(A)abφbc
µ −ω̄ac

µ M(A)abωbc
µ +igγ

D
2 fabcAa

µ(φ
bc
µ +φ̄bc

µ )

)
∼ e−γD H(A) (6)

where the symbol ∼ means “up to a prefactor” and (φ, φ̄) are complex bosonic fields and (ω, ω̄) are fermionic fields.
Therefore we obtain the local formulation as

ZGZ =

∫
DADc̄DcDbDφ̄DφDω̄Dω e−SGZ (7)

where

SGZ =

∫
dDx

(
1

4
F a
µνF

a
µν + iba∂µA

a
µ − c̄aM(A)abcb

)
+

∫
dDx

(
φ̄ac
µ M(A)abφbc

µ − ω̄ac
µ M(A)abωbc

µ

)
+

∫
dDx

(
igγ

D
2 fabcAa

µ(φ
bc
µ + φ̄bc

µ )− γDD
(
N2 − 1

))
(8)

and γ is such that it satisfies the gap equation (5), which now reads

g⟨ fabcAa
µ(φ

bc
µ + φ̄bc

µ )⟩ = γ
D
2 D

(
N2 − 1

)
(9)

where translation invariance of the vacuum was used to factor out the volume
∫
dDx⟨ fabcAa

µ(φ
bc
µ + φ̄bc

µ )⟩ =

V ⟨ fabcAa
µ(φ

bc
µ + φ̄bc

µ )⟩.
The vacuum defined by the gap equation is unstable and favors the formation of new condensates [43] that are

related to mass scales of the gauge fields ⟨A2⟩ ∼ m2 and auxiliary fields ⟨ϕ̄ϕ⟩ ∼ µ2. The incorporation of these
condensates in the effective action formulation leads to a modified theory known as the Refined Gribov-Zwanziger
theory, defined by

SRGZ =

∫
dDx

(
1

4
F a
µνF

a
µν + iba∂µA

a
µ − c̄aM(A)abcb

)
+

∫
dDx

(
φ̄ac
µ M(A)abφbc

µ − ω̄ac
µ M(A)abωbc

µ

)
+

∫
dDx

(
igγ

D
2 fabcAa

µ(φ
bc
µ + φ̄bc

µ )− γDD
(
N2 − 1

))
+

∫
dDx

m2

2
Aa

µA
a
µ +

∫
dDx M2

(
φ̄bc
µ φbc

µ − ω̄bc
µ ωbc

µ

)
. (10)

It is worth pointing out the remarkable fact discovered in [55] that it is possible to recast this theory making it
suitable for any linearly covariant gauge, so that the resulting RGZ theory can be made BRST invariant. This is done
by replacing the gauge field A by a gauge invariant composite field Ah [55, 59]

Ah
µ = h†Aµh+

i

g
h†∂µh , (11)

with

h = eigξ
aTa

≡ eigξ, (12)

where ξa is the Stueckelberg field discussed in [53–56, 59, 60]. One also needs to impose a transversality constraint
on Ah,

∂µA
h,a
µ = 0 , (13)

so that the h field is not really independent, but is an auxiliary field. This leads to a consistent renormalizable and
BRST invariant formulation. This enlarged formulation reduces to the Landau gauge if ξ = 0. In this work we will
only consider the Landau gauge.
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III. THE THREE-POINT GHOST-GLUON CORRELATION FUNCTION

Let us now start discussing the ghost-gluon correlation function and establish some notation. We first make some
general remarks about the connected gluon-antighost-ghost three-point function in the RGZ theory and how the mixed
propagators affect its building blocks. Next, for completeness, we quote the results obtained in [1] for the soft-gluon
limit. Our original results for the gluon-antighost-ghost correlation function for arbitrary momenta are left for the
next section.

A. General structure of the Ac̄c vertex

The relevant Feynman rules for the calculation of the ghost-gluon vertex at one-loop order can be derived from the
action (10) and are listed in Appendix A.

With these rules at hand, one can calculate the connected correlation function〈
Aa

µ(k) c̄
b(p) cc(q)

〉
q=−p−k

=
δ3Zc[JA, Jc̄, Jc]

δ(JĀ)
a
µ(k)δJ

b
c̄ (p)δJ

c
c (q)

∣∣∣∣∣
q=−p−k; Ji=0

(14)

at one-loop order, where Zc is the generator of connected correlation functions and Ji (i = c̄, c, A) are external sources
linearly coupled to the fields i. As usual, the sources are taken to zero at the end of the calculation.

Before proceeding, let us remark that since the RGZ action contains bilinear couplings between fields, the theory
contains mixed propagators, such as ⟨Aφ⟩ and ⟨Aφ̄⟩. Therefore, the relation between connected and 1PI functions has
to take such mixed propagators into account. This is made explicit in the Feynman diagrams of Fig. 1. Such mixed
propagators and vertices involving Zwanziger’s auxiliary fields φ and φ̄ as well as their fermionic counterparts ω and
ω̄, arise as a consequence of the local formulation of the Gribov horizon 1. We give further details for the interested
reader in Appendix B.

Since the tree-level mixed propagator is such that

⟨Aa
µ(p)φ

bc
ν (−p)⟩ =

−igγ2fabc

p4 + p2(m2 +M2) +m2M2 + 2Ng2γ4
P⊥
µν(p), (15)

= + +

(I) (II)

+ + +

(III) (IV .1) (IV.2)

+ higher loops

FIG. 1: Feynman diagram expansion up to one-loop order for the ghost-gluon vertex in the Refined
Gribov-Zwanziger theory. Dashed lines represent ghosts and antighosts, while the curly lines stand for gluons. Full

simple and double lines, that only appear in mixed propagators, correspond to the auxiliary fields φ and φ̄,
respectively. Of course, vertices are evaluated at tree-level order by employing the expressions provided in

appendix A. Note that as for the diagrams (IV.1) and (IV.2) the external leg involving the gluon corresponds to a
mixed propagator of the form ⟨Aφ⟩. The roman numbers identifying the one-loop diagrams will be used as reference
in the results section and in the appendices. The diagrams were generated by means of the Jaxodraw interface [61].

1 Another possible formulation of the theory would include nonlocal, momentum-dependent vertices instead of the auxiliary fields. How-
ever, for the sake of using standard Quantum Field Theory techniques, we employ the local version of the theory.
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the one-loop connected function (14) can then be decomposed as2

〈
Aa

ν(k) c̄
b(p) cc(q)

〉
= G(p)G(q)DAA(k)P

⊥
µν(k)

{
ΓAa

µc̄
bcc(k, p, r)−

2igγ2fade

k2 +M2
Γc̄bccφde

µ
(k, p, r)

}
q=−p−k

, (16)

where

P⊥
µν(p) = δµν − pµpν

p2
(17)

is the transverse projector, and the relevant 1PI functions are

ΓAa
µc̄

bcc(k, p, r) :=
δ3Γ

δAa
µ(−k)δc̄b(−p)δcc(−q)

(18)

and

Γc̄bccφde
µ
(k, p, r) :=

δ3Γ

δc̄b(−p)δcc(−q)δφde
µ (−k)

. (19)

Note the presence of the Γc̄cφ and Γc̄cφ̄ vertex functions in the RGZ theory, which are zero at tree-level order. In
the case of Γc̄cφ its first nontrivial terms are given by diagrams (IV.1) and (IV.2) of fig. 1, where the external leg
involving the gluon field corresponds to a propagator of the type ⟨Aφ⟩ connected to a φ̄φA tree level vertex. In
contrast, the vertex functions Γc̄cω and Γc̄cω̄ do not contribute to the ghost-gluon vertex due to the absence of mixed
propagators of the type ⟨Aω⟩ within the RGZ theory. Notice also that, since Γc̄cφ = Γc̄cφ̄, in fig. 1 we have included
the diagrams associated with the former quantity only. The contribution of Γc̄cφ̄ to

〈
Aa

ν(k) c̄
b(p) cc(q)

〉
is introduced

by multiplying the contribution of Γc̄cφ by a factor of two, as can be observed in eq. (16).
The tensorial structure of the ghost-gluon 1PI vertex function is given by

ΓAa
µc̄

bcc(k, p, r) = −igfabc[pµB1(k, p) + kµB2(k, p)], (20)

where we adopt the same notation as in [15] and consider all momenta as incoming. At tree-level, the scalar structure
functions are B1(k, p) = 1 and B2(k, p) = 0.

On the other hand, the contraction of the Γφc̄c function with the antisymmetric color structure constant tensor can
be decomposed as

fadeΓc̄bccφde
µ
(k, p, r) = gfabc (pµC1(k, p) + kµC2(k, p)) + gdabc (pµC

′
1(k, p) + kµC

′
2(k, p)) (21)

Since this combination must be antisymmetric in the color indices b and c (due to the fact that the ghost fields are
grassmannian), the coefficient of the totally symmetric tensor dabc must vanish identically, i.e., C ′

1 = C ′
2 = 0. As a

result, we may write the one-loop connected three-point function as

〈
Aa

µ(k) c̄
b(p) cc(q)

〉
= −igpν f

abcG(p)G(p+ k)DAA(k)P
⊥
µν(k)

{
B1(k, p) +

2gγ2

k2 +M2
C1(k, p)

}
, (22)

where the longitudinal scalar functions B2 and C2 are no longer present (in the Landau gauge) due to the transversality
of the gluon propagator.

In order to make contact with results from Monte Carlo lattice simulations, let us consider the scalar quantity [62]

GCCA(p, k) ≡
Γabc
(Ac̄c,tree) µ(k, p,−k − p)

〈
Aa

µ(k) c̄
b(p) cc(−k − p)

〉
Γabc
(Ac̄c,tree) µ(k, p,−p− k)Γabc

(Ac̄c,tree) ν(k, p,−p− k)Pµν(k)G(p)G(p+ k)DAA(k)

= B1(k, p) +
2gγ2

k2 +M2
C1(k, p), (23)

which from now on we denote as the ghost-gluon vertex dressing function.

2 This expression has already been derived in [1]. However, the result showed here differs from it by a factor of (-2i) in the coefficient
of Γc̄bccφde

µ
as a consequence of a different choice for the Feynman rules. Of course, this is just a matter of convention and does not

impact on the evaluation of the vertex function.
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There are clearly some differences between perturbative YM and RGZ calculations of the vertex function. The first
of them is the modification of the gluon propagator brought about by the restriction to the Gribov horizon, which can
be understood as the appearance of a pair of generally complex conjugate poles. A second difference is the presence
of the tree-level Aφ̄φ vertex, which couples the gluon to the auxiliary Zwanziger fields. This allows not only diagrams
with auxiliary fields running in the internal loops, but also in the external legs, as long as the external propagator is a
mixed one like, for example, ⟨Aφ⟩. This possibility is realized in (16), giving rise to the contributions Γφc̄c and Γφ̄c̄c,
not present in perturbative YM theory. Furthermore, note that these mixed contributions only appear from one-loop
order onwards, as such vertices are absent from the classical action (10). Being finite, they do not spoil the stability of
the action, in agreement with the Quantum Action Principle [63]. Finally, we note that the presence of such vertices
involving the auxiliary Zwanziger fields can be thought as effective momentum-dependent gluonic interaction terms.
This claim can be explicitly shown to be true, starting from the tree level action, by considering the nonlocal version
of the RGZ theory (whose action can be obtained from (10) by integrating out the Zwanziger auxiliary fields) and
expanding the inverse of the Faddeev-Popov operator in powers of the coupling. In this regard, we note that it is
reasonable to consider the RGZ effective action not simply as an effective model with propagators given by a ratio
of polynomials, but rather a renormalizable effective theory with nontrivial gluonic propagators and self-interactions,
which are related to each other.

As a final remark, let us note that all diagrams contributing to the ghost-gluon vertex are finite in the RGZ theory,
just as in the perturbative Yang-Mills theory. In fact, the mixed propagators present in diagrams (III) and (IV) make
the diagrams even more ultraviolet convergent than the usual YM diagrams (I) and (II). This can be easily seen from
the form of the ⟨Aφ⟩ propagator (15).

B. The soft gluon limit

The calculation of the ghost-gluon vertex for any momentum requires the calculation of the diagrams shown in
fig. 1. Since this calculation is rather long to be performed manually, in a previous work some of us considered the
soft-gluon limit of ΓAc̄c, i.e., the limit in which the gluon momentum k → 0 [1].

In the soft gluon limit, each diagram takes a simplified form. Moreover, diagrams (IV.1) and (IV.2) vanish. In
reality, as for the soft gluon limit, these contributions vanish at all orders of perturbation theory. In the case of
Γc̄bccφde

µ
, this is due to the derivative nature of the φφ̄A vertex and the transversality of the gluon propagator, as

well as all propagators involving the φ field (see appendix A). This property could also be inferred by looking at the
function Γc̄bccφ̄de

µ
which is identical to Γc̄bccφde

µ
. As Γc̄bccφ̄de

µ
is always proportional to the momentum of the external

gluon, it vanishes as this momentum goes to zero3.
In this limit, the one-loop correction for the vertex, which has been explicitly calculated in [1], reads

[Γ
(1)
Ac̄c(0, p,−p)]abcµ = ig3

Nfabc

2

{
R+Jµ(a+; p) +R−Jµ(a−; p) + 2R2

+Kµ(a+, a+; p) + 2R2
−Kµ(a−, a−; p) +

+4R+R−Kµ(a+, a−; p) +
N

2

(
gγ2

a2+ − a2−

)2

[Kµ(a+, a+; p) +Kµ(a−, a−; p)−

−2Kµ(a+, a−; p)
]}

, (24)

where

a2+ ≡
m2 +M2 +

√
(m2 −M2)2 − 4λ4

2
,

a2− ≡
m2 +M2 −

√
(m2 −M2)2 − 4λ4

2
,

with λ4 ≡ 2Ng2γ4, and the integral

Jµ(m1; p) ≡
∫

ddq

(2π)d
1

q2
1

q2 +m2
1

p2q2 − (p · q)2

[(q − p)2]2
(q − p)µ, (25)

3 In both cases of Γc̄bccφde
µ

and Γc̄bccφ̄de
µ

we are considering loop corrections to be regular as k → 0. This is indeed the case of the RGZ

framework, owing to the fact that the parameters m, M and γ act as natural IR regulators of the theory.
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is related to diagram (I) while

Kµ(m1,m2; p) ≡
∫

ddq

(2π)d
1

(q + p)2
1

q2 +m2
1

1

q2 +m2
2

[
q2p2 − (p · q)2

q2

]
qµ (26)

appears in diagrams (II) and (III)4. The incoming antighost momentum is given by p. Therefore, the ghost momentum
is −p, since k = 0 in the soft-gluon limit. The massive parameters −a2± are the, generally complex, poles of the RGZ
gluon propagator (A1) and R± are their corresponding residues. It is worth pointing out that the last terms in eq.
(24) come from diagram (III) in fig. 1 which is absent in standard YM theories, being proportional to the Gribov
parameter.

As a last remark, let us note an important feature of the ΓAc̄c vertex function in the RGZ theory: it explicitly
respects the so-called Taylor kinematics, i.e.,

(ΓA c̄ c)
abc
µ (p, 0,−p) = 0 , (27)

and the so-called non-renormalization theorem of the ghost-gluon vertex

(ΓA c̄ c)
abc
µ (−p, p, 0) = −igfabcpµ, (28)

which are the same in the RGZ framework as in perturbative YM theory [64]. These are direct consequences of the
Ward identities of the action (10).

IV. THE ONE-LOOP RGZ GHOST-GLUON VERTEX FOR GENERIC MOMENTUM
CONFIGURATIONS

A. Feynman diagrams

It is clear from eq. (23) that the ghost-gluon vertex dressing function relates to two 1PI structures. Diagrams
(I)-(III) from fig. 1 contribute to ΓAc̄c, while the forth diagram contributes to Γφc̄c.

Their expressions in terms of the Feynman rules from appendix A, following the numbering from fig. 1, are:

D(I) = −ig3
N

2
fabcpν(p+ k)ρ

∫
ddq

(2π)d
qµP

⊥
νρ(q + p)DAA(q + p)Dc̄c(q − k)Dc̄c(q) ,

D(II) = −ig3
N

2
fabcpη(p+ k)ω

∫
ddq

(2π)d
(−2kρδµν + 2kνδµρ + (2q − k)µδνρ)P

⊥
νη(q)P

⊥
ρω(q − k)DAA(q)DAA(q − k)Dc̄c(q + p) ,

D(III) = ig3
N2

4
fabc(gγ2)2pν(p+ k)ρ

∫
ddq

(2π)d
(2q − k)µP

⊥
ρη(q − k)P⊥

νη(q)DAφ(q − k)DAφ(q)Dc̄c(q + p) ,

fadeD(IV.1) = ig3
N2

4
fabc(gγ2)pηkω(p+ k)σ

∫
ddq

(2π)d
P⊥
σµ(q − k)P⊥

ηω(q)DAφ(q − k)DAA(q)Dc̄c(q + p) ,

fadeD(IV.2) = −ig3
N2

4
fabc(gγ2)pσkω(p+ k)η

∫
ddq

(2π)d
P⊥
σµ(q)P

⊥
ηω(q − k)DAφ(q)DAA(q − k)Dc̄c(q + p) , (29)

where DXY (q) designates the propagator of momentum q between the fields X and Y .
The above Feynman integrals depend on two external momenta, p and k, and feature only one Lorentz index which is

not contracted, µ. As a result, all of them can be expressed as F (p2, k2, p·k,M2,m2, λ)pµ+H(p2, k2, p·k,M2,m2, λ)kµ,
where F and H are scalar integrals. In the first stage of our computation we found the corresponding scalar integrals
for each diagram5 and evaluated the color factors by means of the ColorMath package [65].
In a second stage, we reduced the scalar integrals to one-loop master integrals [66] of the type

4 Analytic expressions of Jµ(m; p) and Kµ(m1,m2; p) are provided in appendix C.
5 The contributions for the dressing function GCCA come from the pµ component entirely.
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Ax ≡
∫
q

Gx(q
2), (30)

Bxy(p
2) ≡

∫
q

Gx(q
2)Gy((p− q)2), (31)

Cxyz(p
2, k2, p · k) ≡

∫
q

Gx(q
2)Gy((p− q)2)Gz((k − q)2), (32)

where ∫
q

≡
∫

16π2µ2ϵ ddq

(2π)d
, (33)

with ϵ = 4−d
2 ≥ 0 and

Gx(q
2) ≡ 1

q2 + x
, (34)

where x is a “mass” squared (which may be complex, in our case). In the case of the RGZ theory x ∈ {0,M2, a2+, a
2
−}.

The mass dimension of the gauge coupling, defined as µϵ, is absorbed into the definition of the master integrals. More
specifically, as the dressing function GCCA is proportional to g2, we include the respective mass dimension, µ2ϵ, in
the definition given by eq. (33).

We implemented the reduction to master integrals using an algorithm in Mathematica based on the Fire package
[67]. The reduction for each diagram is presented in a supplementary material. The analysis is performed for an
arbitrary number of colors N with the purpose of comparing with alternative approaches, both for the SU(2) and
SU(3) gauge groups.

Once the reduction is finished we need to compute the one-loop master integrals. For both A and B there are
well-known analytic results (see, for instance, ref. [68]). In the case of the master integral C, when needed, we
evaluated it numerically.

We note here that since all one-loop diagrams are finite no renormalization factors are needed.

B. Kinematic configurations

Concerning the particular kinematic configurations we will address in this article, it is convenient to recall that
three-point correlation functions depend on two external momenta. Because of translational and rotational invariance
such dependence can be described by means of three independent kinematic variables. We choose the magnitudes of
the antighost and gluon momentum, p and k, along with the scalar product p · k.

In this paper we aim at extending the analysis of the ghost-gluon vertex within the RGZ framework, initially
explored in [1], beyond the soft gluon limit, to include arbitrary kinematic configurations. We focus on the specific
kinematic setups for which we have access to lattice simulations, namely the symmetric and orthogonal configurations.

The symmetric configuration is characterized by equal momentum magnitudes for the external antighost and gluon
legs, p = k, forming an angle of θ = π/3. On the other hand, the orthogonal configuration refers to external momenta
perpendicular to each other, θ = π/2. Within this work, our reference to the orthogonal configuration includes the
additional condition p = k.

C. Numerical values of the RGZ parameters

Within the RGZ framework, there are four parameters: M and m, that are mass parameters associated with
dimension two condensates, the Gribov parameter γ and the gauge coupling g. For the sake of convenience, we
introduce the parameter λ4 = 2Ng2γ4, which we will employ in place of γ.
In principle, the three massive parameters could be determined self-consistently using the Gribov gap equation and

minimizing the effective potential of the theory with respect to two condensates. Here, however, we shall fix these
parameters using lattice input. The parameters M,m and λ at tree-level were determined for SU(2) in [69] and for
SU(3) in [70], by fitting the lattice data of the gluon propagator from YM theory with an analytic expression of the
form:
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D(p2) =
p2 + a

p4 + bp2 + c
, (35)

where a, b and c are constants. This analytic form coincides with the tree-level gluon propagator of the RGZ
framework,

D(p2) =
p2 +M2

p4 + (M2 +m2)p2 +M2m2 + λ4
, (36)

allowing for the extraction of m, M and λ from eq. (35). The obtained values are displayed in table I.

Gauge group M2 (GeV2) m2 (GeV2) λ (GeV)

SU(2) - Ref.[69] 2.51 -1.92 1.52
SU(3) - Ref.[70] 4.47 -3.77 2.04

TABLE I: RGZ parameters fitted from lattice results for SU(2) [69] and SU(3) [70].

D. Toy model of the running coupling

The gauge coupling g is to be determined by fitting the RGZ ghost-gluon vertex to available lattice simulations.
To that end, it is useful to introduce the relative error between the RGZ output and the lattice data,

χ2 ≡ 1

N2
latt

Nlatt∑
i

(
GRGZ(pi)−Glatt(pi)

Glatt(pi)

)2

, (37)

where Nlatt is the number of lattice data points, GRGZ and Glatt refer to the RGZ and the numerical results, respec-
tively.

Firstly, we simply investigate at a qualitative level the variation of the dressing function GCCA as we change fixed
values of g. As we will see, this is enough to reproduce either the IR or the UV but not both regimes at the same time.
Most likely this is due to the presence of large logarithms in the UV domain, which spoils the validity of perturbation
theory. This problem can be overcome by introducing the running of the various parameters of the RGZ framework
and choosing a renormalization scale of the same order of the external momentum: µ ∼ p. To achieve this we would
need to evaluate the two-point functions of the theory by introducing an infrared-safe scheme, of the type introduced
in [29] for instance.

However, this sort of approach exceeds the scope of the present article. Instead, we keep the constant values
provided in table I and make use of a toy model for the renormalization group (RG) flow of the gauge coupling,
motivated by the standard Yang-Mills one loop β-function in the Modified Minimal Subtraction Scheme,

g2(µ) =
g20

1 + 11
3 N

g2
0

16π2 log(
µ2+Λ2

Λ2 )
, (38)

and choose µ = p. The parameter Λ is introduced to regularize the IR6 by freezing the running of the gauge coupling
for momentum scales much smaller than Λ, where we expect the effects of the renormalization flow to be less relevant.
The fits of GCCA from the RGZ framework to lattice data are carried out by selecting the parameters g0 and Λ that
minimize χ.

V. RESULTS

In this section we show the results for the ghost-gluon vertex dressing function, GCCA, for both the gauge groups
SU(2) and SU(3) in four spacetime dimensions. We compare our results with lattice simulations and outcomes from
the CF model and DSE. Additionally, we show the contributions of each Feynman diagram to the final results.

6 The Λ parameter is crucial so that the toy model is Landau pole free.
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A. SU(2)

We begin by analyzing the ghost-gluon vertex dressing function GCCA for the SU(2) gauge group in the symmetric
and orthogonal kinematic configurations, as well as in the case of the soft gluon limit. The latter case was previously
investigated in [1]. However, for completeness and because the analysis we perform in this article differs slightly from
the one developed in [1], we include those results here as well.

1. Fitting the ghost-gluon vertex dressing function

In fig. 2 we see the dressing function GCCA for various fixed values of the gauge coupling g at one-loop order from
the RGZ framework. As for the symmetric and orthogonal kinematic configurations it is clear that, although we find
values of the coupling that show a very good agreement with lattice data either at the IR (pink curve) or the UV
(purple curve), we are unable to reconcile both regions simultaneously. This is reasonable, as we are not taking into
account the RG effects.

Interestingly, in the case of the soft gluon limit it seems that it is possible to describe the lattice data for the whole
range of momenta with a constant value of gauge coupling (red curve). The quality of the fit, though, must be taken
carefully due to the relatively large dispersion of the lattice data, specially at low momenta.
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FIG. 2: The SU(2) scalar function GCCA as a function of the antighost external momentum in three distinct
configurations: the symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom) for various values
of a fixed gauge coupling. Blue and black points refer to lattice data extracted from refs. [71] and [72], respectively.

To investigate to which extent the RG flow is capable of reducing the discrepancy between the lattice data and
the RGZ fit, we incorporate the toy model of the running coupling shown in eq. (38). The level curves illustrating
the dependence of the relative error defined in eq. (37) on the parameters g0 and Λ are depicted in fig. 3. We notice
that the regions minimizing χ are very similar for the symmetric and orthogonal configurations. These regions are
also compatible with the level curves of χ observed in the soft gluon limit, though the area of minimum error appears
more extensive. This discrepancy could stem from a greater uncertainty and dispersion of the lattice data in the soft
gluon limit compared to the data from the symmetric and orthogonal setups.

The parameters that minimize χ in each kinematic configuration are displayed in table II. Additionally, we incor-
porate the values of g0 and Λ that minimize the deviation between the lattice data and the RGZ output across all
kinematic configurations simultaneously. These values are computed by minimizing the collective error, χjoint, which
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FIG. 3: Level curves of the relative error χ, defined in eq. (37), as a function of the parameters Λ and g0, for the
symmetric (left) and orthogonal (center) configurations as well as the soft gluon limit (right) for the SU(2) case.

we define as

χ2
joint ≡

χ2
sym. + χ2

orth. + χ2
soft

3
, (39)

where χsym., χorth. and χsoft refer to the relative error of the symmetric, orthogonal and the soft gluon configurations,
respectively.

SU(2) fits for different configurations

Kinematic configuration g0 Λ (GeV) χ

Symmetric 3.90 2.40 0.0029
Orthogonal 3.85 2.90 0.0028
Soft gluon 3.95 3.90 0.0044

Sym. + Orth. + Soft 3.90 2.75 0.0036

TABLE II: Values of the parameters g0 and Λ that minimize the discrepancy between the RGZ outcome of the
function GCCA and the corresponding lattice data for various kinematic configurations in the SU(2) case. The last

row refers to the values that minimize the joint error χjoint, defined in eq. (39).

The parameters that minimize χjoint are g0 = 3.90 and Λ = 2.75 GeV. Using these parameter values, we collect in
table III the χ values for each kinematic configuration, which indicate that the deterioration of the individual fits for
each configuration is minimal when performing the collective fit. The corresponding plots are shown in fig. 4.

SU(2) joint fit

Kinematic configuration χ

Symmetric 0.0031
Orthogonal 0.0028
Soft gluon 0.0046

TABLE III: Values of the parameters χ of each kinematic configuration corresponding to the parameters that
minimize the joint error χjoint, g0 = 3.90 and Λ = 2.75GeV, in the SU(2) case.

We observe that the fit of fig. 4 exhibits a strong agreement with lattice simulations across all kinematic config-
uration. However, the UV tails of the RGZ curves consistently fall above the lattice data points. This discrepancy
could arise from the larger number of lattice points in the IR region compared to the UV domain, emphasizing the
agreement between the RGZ result and lattice data in the low momentum zone at the expense of deteriorating the
fit in the UV.
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In fig. 4 we include also the results of the Curci-Ferrari (CF) model in Landau gauge at one- and two-loop accuracy.
The outcomes from both frameworks, CF and RGZ, are consistent. Nonetheless, within this analysis, comparing
both approaches must be done with care due to two reasons. Firstly, concerning the symmetric and orthogonal
configurations, the CF curves of GCCA are pure predictions of the model, while the RGZ curves represent a global fit
of the lattice data. This renders the comparison fairer in the case of the soft-gluon limit, where the results from the
CF approach come from a global fit of the two-point functions and GCCA. Secondly, due to the complexity of the
RGZ approach, we employ a simplified model for the RG flow of the gauge coupling, disregarding the RG effects of
other parameters of the theory, which could potentially alter the final result.
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FIG. 4: The scalar function GCCA for the SU(2) case as a function of the antighost external momentum in three
distinct configurations: the symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom). The red
curve represents the RGZ fit of the lattice data by using the toy model of eq. (38) for the gauge coupling. The
values of the parameters, Λ = 2.75 GeV and g0 = 3.9, are chosen to minimize the joint relative error χjoint.

Regarding the symmetric and orthogonal configurations, the blue curve is the prediction from the CF model at
one-loop order [29]. In the soft gluon limit, the CF results are global fits of the gluon and ghost propagators along

with the dressing function GCCA at one- and two-loop order [35]. Blue and black points refer to lattice data
extracted from refs. [71] and [72], respectively.

2. Contribution of each diagram to the GCCA fit

We now examine the contribution of each diagram to the full result of GCCA in the symmetric and orthogonal
configurations, as well as in the soft-gluon limit. The result is presented in fig. 5, where we follow the numbering from

fig. 1. As for the quantity we denote as diagram (IV), it corresponds to the full contribution 2gγ2fade

k2+M2 Γc̄bccφde
µ
(k, p, r),

see eq. (16).
We note that genuinely RGZ diagrams, (III) and (IV), represent a small contribution at one-loop order as compared

to the largest contribution of diagram (II) and, to a lesser degree, diagram (I). This is in agreement with the results
obtained by CF model [27–37] where only QCD-like diagrams with massive gluons are taken into account. Interestingly,
as for the symmetric and orthogonal configurations, the effect of diagrams (III) and (IV) is a reduction of the peak
of GCCA, at around p = 1.5 GeV. In the case of the soft gluon limit, we observe that the contributions coming from
diagrams (I) and (II) are of similar order whereas the contribution of diagram (IV) vanishes, as already pointed out
in section III B.
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FIG. 5: Contribution of each diagram to GCCA for the SU(2) case in three distinct configurations: the symmetric
(top left), orthogonal (top right) and the soft gluon limit (bottom), using the gauge coupling described by eq. (38).
The values of the parameters, Λ = 2.75 GeV and g0 = 3.90, are chosen to minimize the joint relative error χjoint.

The convention of colors and line-styles in the orthogonal and soft configurations is the same as the symmetric case.
The red curve is the sum of all diagrams. The numbering of the diagrams is provided in fig. 1. Diagram (IV) refers

to the full contribution 2gγ2fade

k2+M2 Γc̄bccφde
µ
(k, p, r).

B. SU(3)

In this section we replicate the analysis performed for the SU(2) gauge group but for the case of the SU(3) gauge
group. Yet, the conclusions derived from this analysis will be more restricted compared to the SU(2) case due to the
lack of lattice data available in kinematic configurations other than the soft gluon scenario.

In what follows we present results for the same configurations analyzed in the previous section, i.e. the symmetric
and orthogonal configurations as well as in the soft gluon limit. Although the only configuration with available lattice
data is the latter, the other configurations are valuable for comparison with alternative approaches in the continuum.

1. Fitting the ghost-gluon vertex dressing function

In fig. 6 we see GCCA as a function of the antighost momentum for the symmetric and orthogonal configurations
as well as in the soft gluon limit. Similarly to what we observed in the case of the SU(2) gauge group, as for the soft
gluon limit it seems that we are capable of reproducing the lattice data by using a fixed value of the gauge coupling
g, as was already pointed out in [1].

It is worth examining how the deviation between the RGZ outcome and lattice data is modified as we change the
parameters Λ and g0 when using the simplified model (eq. (38)). The level curves illustrating this dependence are
depicted in fig. 7, displaying an error χ independent of the scale Λ as long as the values of g0 remain moderate. This
reinforces our previous observation that, within the soft gluon limit, the RGZ framework effectively reproduces lattice
data with a fixed value of g. Nevertheless, as we aim to analyze the symmetric and orthogonal configurations as well,
which are likely sensitive to RG effects, in what follows we continue employing the scale-dependent gauge coupling
defined by eq. (38).

In analogy to our analysis for the SU(2) case, in order to find the best fit to lattice data, we find the parameters Λ
and g0 that minimize the relative error χ. In the soft gluon setup, the minimum of χ corresponds to Λ = 0.70 GeV
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FIG. 6: The scalar function GCCA for the SU(3) case as a function of the antighost external momentum in three
distinct configurations: the symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom) for various
values of a fixed gauge coupling. The lattice data were extracted from the plots in [73] using WebPlotDigitizer [74].

We estimated the error of the extraction procedure to be at most 0.8%.
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FIG. 7: Level curves of the relative error χ, defined in eq. (37), as a function of the parameters Λ and g0, as for the
soft gluon limit in the SU(3) case.

.

and g0 = 2.15, with a relative error of χ = 0.0040. The resulting plots are depicted in fig. 8.

We note that our results for GCCA are consistent with the outcomes of the CF model [29, 35] and DSE [15].
Furthermore, the RGZ fit shows a strong agreement with simulations, resembling the results obtained with a fixed
value of the gauge coupling. Interestingly, while the UV tails of the DSE and CF curves overlap in the UV, the UV
tails from the RGZ curves fall more rapidly in comparison.
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FIG. 8: The scalar function GCCA for the SU(3) case as a function of the antighost external momentum in three
distinct configurations: the symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom). The red
curve corresponds to the RGZ fit of the lattice data, by utilizing the toy model of eq. (38) for the gauge coupling.

Parameters Λ = 0.70 GeV and g0 = 2.15 were chosen to minimize the joint relative error with the lattice data in the
case of the soft gluon limit. Lattice data are extracted from [73]. We compare the results with other approaches in

the continuum. Specifically with GCCA obtained from DSE, considering the bare (DSE - I) and the dressed
three-gluon vertex (DSE - II) [15] and GCCA from the CF model at one- and two-loop order [29, 35].

2. Contribution of each diagram to the GCCA fit

To conclude this section, we investigate the contribution of each diagram to ghost-gluon vertex dressing function,
which is illustrated in fig. 9. Proceeding similarly to the SU(2) case, the quantity we call diagram (IV) corresponds

to the full contribution 2gγ2fade

k2+M2 Γc̄bccφde
µ
(k, p, r), see eq. (16).

We observe that in the case of the symmetric and orthogonal configurations the behaviour of GCCA is dominated
by diagram (II), while the contribution of diagram (I) is counterbalanced by the contributions of the genuine RGZ
diagrams (III) and (IV). In the case of the soft gluon limit, diagrams (I) and (II) both significantly contribute to the
function GCCA, whereas diagram (IV) vanishes, as explained in section III B. Overall, the relative weights of these
contributions do not significantly differ from the SU(2) case.

VI. INFLUENCE OF THE TOY MODEL ON THE UV BEHAVIOR OF THE FUNCTION GCCA

As mentioned earlier, when comparing the UV tails of the dressing functionGCCA obtained from the RGZ framework
with other approaches, cf. figs. 4 and 8, we observe differences. Particularly striking is the observation in the case of
SU(3), where a simultaneous comparison between the RGZ, the CF model and DSE results reveals a convergence in
the tails from the latter approaches, starting from p = 4 GeV onwards. In contrast, the UV tails of the curves from
the RGZ framework decrease more rapidly. It is legitimate then to ask for the potential causes of this discrepancy in
the UV. In this section we explore the extent to which this difference may derive from the toy model of the RG flow,
as presented in eq. (38), and its associated parameters Λ and g0.

With that purpose we compare in fig. 10 the running of the gauge coupling employed for the CF prediction of GCCA
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FIG. 9: Contribution of each diagram to GCCA for the SU(3) case in three distinct configurations: the symmetric
(top left), orthogonal (top right) and the soft gluon limit (bottom), using the gauge coupling described by eq. (38).
Parameters, Λ = 0.70 GeV and g0 = 2.15, are chosen to minimize the relative error χ in the soft gluon limit. The

convention of colors and line-styles in the orthogonal and soft configurations is the same as the symmetric case. The
solid, red curve is the sum of all diagrams. The numbering of the diagrams is provided in fig. 1. Diagram (IV) refers

to the full contribution 2gγ2fade

k2+M2 Γc̄bccφde
µ
(k, p, r).

at one-loop order in figs. 4 and 8 7, denoted as gCF(µ), with the running of the gauge coupling from eq. (38), gtoy(µ),
with parameters Λ and g0, obtained from the fits for the gauge groups SU(2) and SU(3). We observe that gCF(µ) and
gtoy(µ) differ at all scales and, although the difference tends to diminish at high momenta, it is not negligible in the
UV region.
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FIG. 10: The running coupling gtoy and gCF for the SU(2) (left) and SU(3) (right) gauge groups. As for the toy
model, the values of the parameters are Λ = 2.4, GeV, g0 = 3.9 and Λ = 0.70 GeV, g0 = 2.15, for SU(2) and SU(3),

respectively.

7 In this section, when discussing the running coupling of the CF model for SU(2), we refer to the running coupling employed for the
symmetric and orthogonal configurations, which differs from the one utilized in the soft gluon limit.
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An interesting analysis involves assessing how the differences among the UV tails of GCCA vary when we minimize
the discrepancy between gCF(µ) and gtoy(µ) in the UV domain. For this purpose, it is convenient to introduce the
quantity χg,UV , as a way to estimate that discrepancy:

χ2
g,UV ≡

pi=10 GeV∑
pi=6 GeV

(
gtoy(pi)− gCF(pi)

gCF(pi)

)2

. (40)

To carry out the summation we used uniform steps of length ∆p = pn+1 − pn = 0.5 GeV. The parameters that
minimize χg,UV are Λ = 1.05 GeV, g0 = 6.75 for the SU(2) gauge group and Λ = 0.90 GeV, g0 = 4.85 for SU(3).
These parameters lead to an excellent agreement between gtoy(µ) and gCF(µ) in the UV, as is illustrated in fig. 11
(black curve). Unfortunately, these values do not feature good compatibility with the lattice data of GCCA.
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FIG. 11: The running coupling gtoy and gCF for the SU(2) (left) and SU(3) (right) gauge groups. The black curve
corresponds to the parameters that minimize χ2

g,UV . These are Λ = 1.05 GeV, g0 = 6.75 and Λ = 0.90 GeV,

g0 = 4.85, for SU(2) and SU(3) respectively. The red curve corresponds to the parameters that minimize χg,GCCA .
These are Λ = 1.65 GeV, g0 = 4.15 and Λ = 5.05 GeV, g0 = 1.85, for SU(2) and SU(3) respectively.

To assess the potential for enhancing agreement between the results from the CF model and DSE with the RGZ
framework without significantly compromising the IR description of lattice data, we introduce the following collective
error

χ2
g,GCCA =

1

2

(
χ2
g,UV + χ2

GCCA

)
, (41)

where χGCCA is defined according to eq. (39) and eq. (37) for the SU(2) and SU(3) gauge groups, respectively. The
quantity χg,GCCA takes into account both the discrepancy between gCF(µ) and gtoy(µ) in the UV as well as the

discrepancy between the dressing function GCCA from the RGZ theory and the corresponding lattice data.
The parameters Λ and g0, derived from minimizing χg,GCCA , would in principle generate a gauge coupling gtoy(µ)

that balances both the UV alignment with gCF(µ) and the consistency with lattice data across all momentum scales.
Such running coupling is also depicted in fig. 11 (red curve). In the case of the SU(2) gauge group, we notice an
enhancement in the agreement in the UV region between RGZ and CF/DSE. Notably, this improvement does not
imply a significant deterioration in the IR description. This is evident when comparing fig. 12 with fig. 4.

In the case of SU(3), the minimization of χGCCA leads to a running of the gauge coupling which is essentially
constant. This is consistent with the plots of figs. 4 and 8, where a fixed value of g was capable of describing
the lattice data for the entirety range of momentum. However, the aforementioned running does not reduce the
disagreement between the results from the CF model and DSE with the RGZ framework outcomes in the UV, being
the quality of the fits similar to the ones presented in figs. 4 and 8. This is reasonable, since we are essentially
neglecting the dependence of g with the scale. Still, the results for SU(3) should be taken with care due to the
dispersion of lattice data in the soft gluon limit and the lack of data in alternative kinematic setups.

We can conclude that the specific toy model we employed has an impact on the differences between the RGZ
framework and other approaches in the UV region. However, these discrepancies probably have other sources as
well such as the neglect of the RG flow of the remaining parameters of the theory and the specific choice of the
renormalization scheme.
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FIG. 12: The scalar function GCCA as a function of the antighost external momentum in three distinct
configurations: the symmetric (top left), orthogonal (top right) and the soft gluon limit (bottom) in the case of the
SU(2) theory. The gauge coupling is described by the toy model of eq. (38) with parameters that minimize χg,GCCA ,

Λ = 1.65 GeV and g0 = 4.15.

VII. SUMMARY AND FINAL REMARKS

In this work we evaluated the one-loop ghost-gluon correlation function within the RGZ framework for an arbitrary
kinematic configuration and investigated the role of the running coupling. We performed the calculation for the pure
gauge theory in a four dimensional Euclidean spacetime. With the purpose of comparing with other approaches, we
specifically focused on three distinct kinematic configurations: the symmetric and orthogonal configurations and the
soft gluon limit.

This calculation is important since it serves as a benchmark to assess how well the RGZ framework describes
the behavior of YM theory in the low momentum regime. In this sense this paper comes to complement previous
investigations on the two-point functions at tree-level order [43, 44] and the analysis of the ghost-gluon vertex in the
case of the soft-gluon limit at one-loop order [1].

The only parameter of the theory we used to fit our results to the available lattice data for the ghost-gluon vertex
was the gauge coupling. All the other parameters were extracted from refs. [69] and [70], where they were determined
by fitting lattice results for the gluon propagator using the RGZ tree level expression. This choice reduces the number
of free parameters to the minimum, making the present analysis a more strict test of the RGZ framework.

As already pointed out in [1], as for the soft gluon limit the results are compatible with lattice simulations for
both SU(2) [71, 72] and SU(3) [73] by simply considering a constant value of the gauge coupling, i.e. independent
of the momentum scale. However, this is not the case of the symmetric and orthogonal configurations, where the
renormalization group effects seem to be significant. Indeed, when introducing a toy model for the running of the
gauge coupling, our outcomes are quantitatively compatible with available lattice data.

Our results also display qualitative agreement with other continuum approaches, specifically the dynamical DSE
solutions in two different truncation schemes [15] and the RG-improved CF model [29, 35]. Additionally, we show
that quantitative differences between the RGZ results and alternative continuum approaches in the UV region can be
accounted for by the particularities of the model for the RG flow of the gauge coupling.

Overall, these results support the RGZ theory as a valid description of the infrared YM dynamics. There are several
ways, nevertheless, in which the present analysis can be improved. A fully dynamical calculation of the two-point
functions of the RGZ framework, most likely in an infrared safe scheme, would allow us to determine the running
parameters of the theory by fitting the two-point functions to lattice data. Another potential study concerning this
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correlation function could investigate its dependence on the gauge parameter within the context of linear covariant
gauges, utilizing the BRST invariant version of the RGZ action [55].
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Appendix A: Relevant Feynman rules (Landau gauge)

Given its many fields and interactions, the RGZ theory has a large number of propagators and vertices. However,
for the calculation of the ghost-gluon vertex at one-loop level (and in the Landau gauge), only a few of them are
required. The Feynman rules corresponding to these propagators and vertices are shown below.

1. Tree-level propagators

In order to calculate the ghost-gluon vertex function in the Refined Gribov-Zwanziger theory, only a subset of the
propagators of the theory are needed. These are

⟨Aa
µ(p)A

b
ν(−p)⟩ = δab

[
p2 +M2

p4 + (m2 +M2)p2 +m2M2 + 2Ng2γ4
P⊥
µν(p)

]
≡ δabP⊥

µν(p)DAA(p) (A1)

⟨Aa
µ(p)φ

bc
ν (−p)⟩ =

−igγ2fabc

p4 + p2(m2 +M2) +m2M2 + 2Ng2γ4
P⊥
µν(p) = −igγ2fabcP⊥

µν(p)
DAA(p)

p2 +M2
(A2)

⟨Aa
µ(p)φ̄

bc
ν (−p)⟩ =

−igγ2fabc

p4 + p2(m2 +M2) +m2M2 + 2Ng2γ4
P⊥
µν(p) = ⟨Aa

µ(p)φ
bc
ν (−p)⟩ (A3)

⟨c̄a(p)cb(−p)⟩ =
1

p2
δab ≡ δabDc̄c(p) (A4)

where

P⊥
µν(p) = δµν − pµpν

p2
(A5)

is the transverse projector, such that pµP
⊥
µν(p) = pνP

⊥
µν(p) = 0.

It is often convenient to write the DAA form factor as a sum of massive propagators, i.e.,

DAA(p
2) =

p2 +M2

(p2 +m2)(p2 +M2) + λ4
≡ R+

p2 + a2+
+

R−

p2 + a2−
, (A6)

with

a2+ =
m2 +M2 +

√
(m2 −M2)2 − 4λ4

2
,

a2− =
m2 +M2 −

√
(m2 −M2)2 − 4λ4

2
,

R+ =
m2 −M2 +

√
(m2 −M2)2 − 4λ4

2
√
(m2 −M2)2 − 4λ4

,

R− =
−m2 +M2 −

√
(m2 −M2)2 − 4λ4

2
√
(m2 −M2)2 − 4λ4

= 1−R+, (A7)
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with λ4 = 2Ng2γ4.
Note that either the poles a+ and a− are complex, or the residues R+ and R− have opposite signs (so that one of

them is negative). This property can be directly related to positivity violation of the gluon propagator in the RGZ
theory.

2. Tree-level vertices

The only vertices needed for the computation of the ghost-gluon at one-loop in the RGZ theory are

tree[ΓAAA(k, p, q)]
abc
µνρ = − δ3Stree

δAa
µ(k)δA

b
ν(p)δA

c
ρ(q)

∣∣∣∣
Φ=0

= igfabc [(kν − qν)δρµ + (pρ − kρ)δµν + (qµ − pµ)δνρ] ,

tree[ΓAc̄c(k, p, q)]
abc
µ = − δ3Stree

δAa
µ(k)δc̄

b(p)δcc(q)

∣∣∣∣
Φ=0

= −igfabcpµ ,

tree[ΓAφ̄φ(k, p, q)]
abcde
µνρ = − δ3Stree

δAa
ρ(k)δφ̄

bc
µ (p)δφde

ν (q)

∣∣∣∣
Φ=0

= −igfabdδceδνρpµ .

(A8)

Note that, for higher orders in the perturbative expansion, or for a general linear covariant gauge, or for other
correlation functions, extra correlators and vertices will be needed.

Appendix B: On the relation between connected and 1PI correlation functions in the presence of mixed
propagators

Let us denote the generating functional of connected correlation functions as W [J⃗ ], where Ji are external sources

associated with the different elementary fields, and let Γ[ϕ⃗] be the quantum action, that is, the generating functional
of 1PI correlation functions. Using this notation, we start from the well-known relation

δ2Γ[ϕ⃗]

δϕjδϕℓ

∣∣∣∣∣
ϕ⃗=Φ⃗[J⃗]

δ2W [J⃗ ]

δJℓδJk
= −δjk (B1)

Taking a further derivative with respect to the source Ji, one finds

δ3W [J⃗ ]

δJiδJpδJk
= −δ2W [J⃗ ]

δJpδJj

 δ3Γ[ϕ⃗]

δϕjδϕℓδϕm

∣∣∣∣∣
ϕ⃗=Φ⃗[J⃗]

 δ2W [J⃗ ]

δJiδJm

δ2W [J⃗ ]

δJℓδJk
. (B2)

For the present calculation of the ghost-gluon vertex, we are specifically interested in the choice

i = Ae
µ(k)

p = c̄a(p)

k = cb(q). (B3)

Since there are no mixed propagators involving the Faddeev-Popov ghosts c and c̄, the only nonvanishing contribu-
tions are such that j = c and ℓ = c̄. Therefore, running the remaining sum for m = A,φ, φ̄, we have

δ3W [J⃗ ]

δJAδJc̄δJc
= −δ2W [J⃗ ]

δJcδJc̄


 δ3Γ[ϕ⃗]

δc δc̄ δA

∣∣∣∣∣
φ⃗=Φ⃗[J⃗]

 δ2W [J⃗ ]

δJAδJA
+

+

 δ3Γ[ϕ⃗]

δc δ c̄ δφ

∣∣∣∣∣
φ⃗=Φ⃗[J⃗]

 δ2W [J⃗ ]

δJAδJφ
+

 δ3Γ[ϕ⃗]

δc δ c̄ δφ̄

∣∣∣∣∣
φ⃗=Φ⃗[J⃗]

 δ2W [J⃗ ]

δJAδJφ̄

 δ2W [J⃗ ]

δJc̄δJc
, (B4)

which, at the one-loop level, can be written as〈
Aa

ν(k) c̄
b(p) cc(q)

〉
= Dc̄c(p)Dc̄c(q)DAA(k)P

⊥
µν(k)

{
δ3Γ

δAa
µ(−k)δc̄b(−p)δcc(−q)

− 2igγ2fade

k2 +M2

δ3Γ

δcb(−p)δc̄c(−q)δφde
µ (−k)

}
,

(B5)
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where we used the fact that the correlation functions obey ⟨Aφ⟩ = ⟨Aφ̄⟩, and also δ3Γ/δcδc̄δφ = δ3Γ/δcδc̄δφ̄.
In a shorthand notation, one can conveniently write

⟨A c̄ c⟩c
(⟨c̄ c⟩c)2 ⟨AA⟩c

= ΓA c̄ c +
⟨Aφ⟩c
⟨AA⟩c

Γc̄ c φ +
⟨A φ̄⟩c
⟨AA⟩c

Γc̄ c φ̄. (B6)

Therefore, besides the contribution ΓAc̄c, that would be present at pure Yang-Mills, there are also contributions from
1PI functions involving the auxiliary fields φ and φ̄, as well as the respective mixed propagators. Such contributions
can be thought as momentum-dependent contributions to the ghost-gluon vertex, which are present starting from the
tree level of the RGZ action.

Appendix C: Analytic expression for the ghost-gluon vertex in the soft-gluon limit

In the soft-gluon limit (i.e., when the gluon momentum k → 0), the expression (20) for the ghost-gluon vertex is
relatively simpler than in a general kinematic regime. Given the absence of IR-divergences, the soft-gluon limit for
the ghost-gluon vertex reads

ΓAa
µc̄

bcc(0, p,−p) = −igfabcpµB1(0, p). (C1)

The scalar function B1(0, p) has been calculated (with a slightly different notation) to one-loop order in [1]. The
result can be written as8

B1(0, p) = 1 +
Ng2

2
[R+J(a+; p) +R−J(a−; p)]−Ng2

[
R2

+K(a+, a+; p) +R2
−K(a−, a−; p) + 2R+R−K(a+, a−; p)

]
+
Ng2

2

Ng2γ4

(a2+ − a2−)
2
[K(a+, a+; p) +K(a−, a−; p)− 2K(a+, a−; p)] , (C2)

where the poles a± and residues R± of the tree-level gluon propagator are given by eq. (A7), and the scalar functions
J and K above are given by

J(m1; p) =
1

64π2
×

2m2
1p

2(p2 +m2
1) + p6 log

(
1 +

m2
1

p2

)
− (3p2 + 2m2

1)m
4
1 log

(
1 + p2

m2
1

)
m2

1p
4

, (C3)

K(m1,m2; p) =
1

256π2

1

m2
1m

2
2p

4(m2
1 −m2

2)

{
2m2

1m
6
2p

2 − 2m6
1m

2
2p

2 + 3m2
1m

4
2p

4 − 3m4
1m

2
2p

4 +

+ 2m8
1m

2
2 log

(
1 +

p2

m2
1

)
− 2m2

1m
8
2 log

(
1 +

p2

m2
2

)
+ 4m6

1m
2
2p

2 log

(
1 +

p2

m2
1

)
−

−4m2
1m

6
2p

2 log

(
1 +

p2

m2
2

)
+ 4m2

1m
2
2p

6 log

(
p2 +m2

2

p2 +m2
1

)
+

+2m2
1p

8 log

(
1 +

m2
2

p2

)
− 2m2

2p
8 log

(
1 +

m2
1

p2

)}
, (C4)

as for m1 ̸= m2, and

K(m,m; p) =
−6p2m6 − 5p4m4 − 2p6m2 +

(
8p2m6 + 6m8

)
log
(
1 + p2

m2

)
+ 2p8 log

(
1 + m2

p2

)
256π2p4m4

. (C5)

8 There is a typo in the corresponding result from [1], which is corrected in this expression.
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