
COMPACT CURVE SHORTENING FLOW SOLUTIONS
OUT OF NON COMPACT CURVES

THEODORA BOURNI AND MARTIN REIRIS

Abstract. We construct a slingshot, that is a compact, embed-

ded solution to curve shortening flow that comes out of a non

compact curve and exists for a finite time.

1. Introduction

A smooth one-parameter family {Γt}t∈I of immersed planar curves

Γt ⊂ R2 evolves by curve shortening flow if

(1)
∂γ

∂t
(u, t) = ~κ(u, t) , ∀(u, t) ∈ Γ× I ,

for some smooth family γ : Γ× I → R2 of immersions γ(·, t) : Γ→ R2

of Γt, and where ~κ(u, t) is the curvature vector of Γt at the point γ(u, t).

When Γ0 is a smooth embedded compact curve, then by a famous

theorem of Grayson [6], the solution of the curve shortening flow start-

ing from Γ0 exists on a maximal time interval [0, T ) and as t→ T the

solution converges to a round point. In the case when Γ0 is addition-

ally convex, this theorem was previously proved by Gage and Hamilton

[5]. Contrary to the compact case, when Γ0 is not compact solutions

to curve shortening flow starting from Γ0 are not that well understood

in general. The particular case of graphical solutions has been exten-

sively studied in the work of Ecker and Huisken [3, 4], who, among

other things, showed that the flow of entire graphs exists for all times.

In [2], K-S Chou and X-P Zhu, showed that that if the initial curve

divides the plane into two regions of infinite area, then a solution exists

for all time. For the case that one of the regions of the plane defined

by the curve has finite area, they showed that, if additionally the curve

has finite total absolute curvature, then a solution exists for a finite
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2 THEODORA BOURNI AND MARTIN REIRIS

time equal to that area divided by π. Moreover, they showed unique-

ness of solutions when the initial curve has ends that are representable

as graphs over two semi-infinite lines.

In the present paper we want to construct compact solutions ema-

nating from a non compact initial curve. More precisely, given Γ0 a

smooth embedded curve in R2, we want to construct a smooth family

of compact embeddings

γ : S1 × (0, T )→ R2

that satisfy the curve shortening flow equation (1), and such that the

curves Γt = γ(S1, t) converge to Γ0 as t → 0, in the sense that for

any ε > 0, there exists tε such that Γt is in an ε-neighborhood of

Γ0 for all t ∈ (0, tε). Note that such a solution is different from the

one constructed in [2], as in [2] the family of solutions satisfying curve

shortening flow is non-compact, that is the parameter space Γ in (1) is

homeomorphic to R.

We will consider a curve Γ0 that satisfies the following:

(i) Γ0 is a smooth embedded 1-manifold diffeomorphic to (0, 1) and

it separates R2 into two regions, one of which has finite area,

which we denote by A0 ∈ (0,∞).

(ii) a + 1 < b and c > 0 are real numbers such that Γ0 ⊂ (a,∞)×
(−c, c) and Γ0 ∩ ([b,∞) × (−c, c)) is the union of two smooth

graphs, u± ∈ [b,∞) → R with u+ positive and decreasing

to zero at infinity and u− negative and increasing to zero at

infinity, and with the derivatives of u± converging to zero at

infinity, as in Figure 1.

Moreover, we will denote by B(Γ0, ε) the ε neighborhood of Γ0, that is

B(Γ0, ε) := {p ∈ R2 : dist(p,Γ0) < ε} .

Our main theorem is the following

Theorem 1. Let Γ0 be a curve satisfying the above hypotheses (i)-(ii).

There exists a smooth solution γ : S1 × (0, A0

2π
) → R2 to the curve

shortening flow (1) such that for any ε > 0 there exists tε > 0 such

that Γt ⊂ B(Γ0, ε) for 0 < t < tε.
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Figure 1. Schematic figure of the evolution.

The construction of the solution described in Theorem 1 is roughly

as follows. We start with a sequence of compact curves Γi0 that approx-

imate Γ0. Then, we define a sequence of curve shortening flows, using

the curves Γi0 as initial conditions, which we refer to as slingshots. The

idea, then, is to show that one can extract a limit of these slingshots.

To do this, we establish uniform curvature bounds for the slingshots

away from the initial time 0. This argument, which is the most novel

part of this construction, is a direct argument, based on repeated ap-

plications of the avoidance principle, and in particular the fact that the

number of intersections between two solutions of curve shortening flow

(at least one of which is compact) cannot increase in time[1], together

with the curvature estimates of Ecker and Huisken [4].
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2. Construction

We first show that if a curve is locally, in some rectangle, a graph,

then under curve shortening flow and in a smaller rectangle it remains

a graph. Moreover, we obtain estimates on the gradient. We remark
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that such estimates are known in more general contexts but as the

proof of the version we need here is relatively simple we do include it

for the convenience of the reader.

Proposition 2. Let γ0 : S1 → R2 be a smooth embedding and suppose

that for D > 0, R > 0 and r < D
2

, the following holds:

(1) for any |x1| ≤ R and |x2| ≤ R, the segment joining (x1, 0)

to (x2, D) intersects Γ0 = γ0(S1) transversely and at just one

point.

(2) for any |x| ≤ R, the balls Br((x, 0)) and Br((x,D)) are disjoint

from Γ0.

Then, the curve shortening flow solution γ : S1 × [0, T ) starting at

γ(·, 0) = γ0(·) satisfies T ≥ r2

2
, and for all t ∈ [0, r

2

2
] the timeslices Γt

satisfy the following: Γt ∩ ([−R,R] × [0, D]) can be represented as the

graph of a smooth function gt : [−R,R]→ R, with

sup
x∈[−R

2
,R
2

]

|g′t(x)| ≤ 2D

R
, and

√
r2 − 2t < gt(x) < D −

√
r2 − 2t , ∀x ∈ [−R,R] .

Proof. Note first that by hypothesis (2) of the proposition and the

avoidance principle we obtain that

(2) ([−R,R]× {0, D}) ∩ Γt = ∅ , ∀t ∈ [0, r
2

2
] ,

and note that a simple linking argument shows that the curve short-

ening flow solution starting at Γ0 does indeed have a lifespan of time

at least r2

2
. Recall that the number of intersections between two com-

pact solutions of curve shortening flow cannot increase [1]. There-

fore, hypothesis (1) of the proposition applied to segments with end-

points (x, 0) and (x,D), x ∈ [−R,R], along with (2), imply that

Γt ∩ ([−R
2
, R

2
] × [0, D]) can be represented as a graph of a smooth

function gt : [−R,R] → R. To prove the gradient bound, consider

a point on the graph p = (x, gt(x)) with x ∈ [−R
2
, R

2
] and suppose

that gt(x) ≥ D
2

. Consider the two line segments joining (x ± R
2
, 0) to

p and extending them pass p we note that they intersect the segment

[−R,R]× {D}. Thus, by hypothesis (1), these segments lie below the

graph of gt and we obtain that |g′t(x)| ≤ gt(x)
R/2
≤ 2D

R
. If the point p
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satisfies gt(x) ≤ D
2

, we obtain the same estimate by considering the

segments joining (x ± R
2
, D) to p and extending them pass p. Finally,

the height bounds are a cosequence of the avoidance principle and hy-

pothesis (2). �

Proposition 2 and the curvature estimates of Ecker-Huisken [4] yield

the following

Corollary 3. Under the hypothesis of Proposition 2, for every integer

m ≥ 1, there is a constant cm = c(m,R,D,Γ0) such that

(3) sup
p∈Γt∩([−R

4
,R
4

]×[0,D])

|∂ms κ(p, t)| ≤ cm , ∀t ∈ [0, r
2

2
] ,

where κ(p, t) denotes the curvature of Γt at the point p.

Proof. The proof is evident from the estimates in [4] by removing the

time dependence from the bounds. Nonetheless, we include a sketch

here for the convenience of the reader.

We first prove the case m = 0. Consider a point p0 = (x, y), with

|x| < R
4

and y ∈ (0, D), and let v = v(p, t) = 〈ν, e2〉−2, where ν = ν(p, t)

is a choice of the unit normal to Γt at p. Consider now Gt to be

the connected component of Γt ∩ BR
4
(p0) that is the graph of gt as in

Proposition 2. Then, by Proposition 2, we have that

v(p, t) ≤ 1 +
4D2

R2
, ∀p ∈ Gt , ∀t ∈ [0, r

2

2
] .

Define the function g(p, t) = κ(p, t)2 v2

1−k2v2 ((R
4

)2−|p−p0|2)2, where k =
1
2

+ 2D2

R2 . Note that g(p, 0) ≤ CR2, where C = supG0
κ2, a constant that

depends only on γ0. If g has a maximum at a point (p, t) ∈ Gt× (0, r
2

2
],

then, by computing the heat operator of g (see [4, proof of Theorem

3.1]), we obtain

g(p, t) ≤ c(n, k)R2 .

We therefore conclude the estimate for m = 0. The higher derivative

bounds can be computed similarly by considering ψ = 1 in [4, proof of

Theorem 3.4]. �

Definition 4. A basic rectangle F(R,D, r) for an embedded curve Γ

consists of a number r > 0 and a rectangle isometric to [−R,R]× [0, D]

by an isometry T , such that:
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(1) for any |x1| ≤ R and |x2| ≤ R, the segment joining T ((x1, 0))

to T ((x2, D)) intersects Γ transversely and at just one point.

(2) for any |x| ≤ R the balls Br(T (x, 0)) and Br(T (x,D)) are dis-

joint from Γ.

T as above, will be referred to the isometry associated to F(R,D, r).

If F(R,D, r) is a basic rectangle for Γ and T is its associated isome-

try, then T ([−R
4
, R

4
]×[0, D]) together with r, form also a basic rectangle

for Γ, which will be denoted by F∗(R,D, r).

It is clear that the estimates in the statement of Corollary 3 work

exactly the same when we replace the basic rectangle [−R,R]× [0, D]

by basic rectangles F(R,D, r) for the curve Γ0. More precisely, Propo-

sition 2 and Corollary 3 yield the following:

Proposition 5. Assume that F(R,D, r) is a basic rectangle for an

embedded smooth curve Γ0. Then the curve shortening flow solution

starting from Γ0 exists for time at least r2

2
and the timeslices Γt satisfy

the following curvature estimate. For every integer m ≥ 1, there is a

constant cm = c(m,R,D,Γ0), such that

sup
p∈Γt∩F∗(R,D,r)

|∂ms κ(p, t)| ≤ cm , ∀t ∈ [0, r
2

2
] ,

where κ(p, t) denotes the curvature of Γt at the point p.

Definition 6. For every integer i ≥ b+ 3, consider the connected part

of Γ0 between (i, u+(i)) and (i, u−(i)) and cup it up with an embedded

piece joining these two end points and lying inside the rectangle [i, i+

1] × [u−(i), u+(i)], so that we obtain a smooth embedded and compact

curve which we denote by Γi0. Let γi0 : S1 → R2 be a parametrization

of Γi0. The solutions to the curve shortening flow starting from Γi0 are

denoted by Γit and are called slingshots. Moreover, for each i, we will

use γi(·, t) to denote any parametrization of the flow, which, as such,

satisfies (1).

The following lemma says essentially that the slings enter compact

regions in arbitrarily small times uniformly in i.
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Lemma 7. For any decreasing sequence of times tj ↓ 0, there exists

a sequence of numbers xj, such that the slingshots, after passing to a

subsequence Γjt , satisfy

Γkt ⊂ [a, xj]× [−c, c] , ∀k ≥ j, and t ≥ tj .

Proof. Consider a sequence tj ↓ 0. Then, by the assumptions on the

initial curve Γ0 and by construction of the approximating sequence Γi0,

the slingshots, after passing to a subsequence Γjt , satisfy the following.

For any j, we can pick xj such that the following hold.

(i) Let F(R, 2c,
√

2tj) := [−R+xj, R+xj]× [−c, c], with R = 16c
π

.

Then, for all k ≥ j, Γk0 ∩ F(R, 2c,
√

2tj) has two connected

components, and for each of them F(R, 2c,
√

2tj) is a basic

rectangle in the sense that on both components (i) and (ii) of

Definition 4 are satisfied.

(ii) For all k ≥ j, the area of the compact region bounded by Γk0 in

the halfplane {x ≥ xj −R} is at most
πtj
2

.

To prove the lemma, we will show that for all j and t ≥ tj we have

Γkt ⊂ [a,R + xj] × [−c, c], for all k ≥ j, for which it suffices to prove

that Γktj ⊂ [a,R + xj] × [−c, c], for all k ≥ j. Assume on the contrary

that for some j and k ≥ j we have Γktj ∩ ((R + xj,∞) × [−c, c]) 6= ∅.
First note that, by considering a small ball inside Γ0 and by (i), the

avoidance principle implies that

Γkt ∩ F(R, 2c,
√

2tj) has two connected components, ∀t ∈ [0, tj] .

Let now Ak+(t) be the area of the compact region bounded by Γkt in

the halfplane {x ≥ xj}. Since Γkt ∩ F(R, 2c,
√

2tj) has two connected

components, for all t ∈ [0, tj], Proposition 2 implies that

− d

dt
Ak+(t) ≥ π − 8c

R

and integration yields

Ak+(tj) ≤ Ak+(0)− tj
(
π − 8c

R

)
≤ −πtj

2
+

8c

R
tj < 0

which contradicts the hypothesis that Ak+(tj) is positive, which is im-

plied since we assumed that Γktj ∩ ((xj +R,∞)× [−c, c]) 6= ∅. �
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The following lemma, which is the central lemma for our construc-

tions, says that there is a decreasing sequence tj ↓ 0 such that the

slingshots, after passing to a subsequence Γjt , for all j and tj ≤ t ≤ t0
(where t0 is some fixed positive time), are covered by a fixed and fi-

nite set of basic rectangles and are therefore globally subject to the

estimates of Corollary 3.

Lemma 8. There exists a decreasing sequence of times tj ↓ 0, j ≥ 0,

such that the slingshots, after passing to a subsequence Γjt satisfy the

following. For every j ≥ 0 there is a finite set of rectangles,

(4) F(Rj,1, Dj,1, rj,1), . . . ,F(Rj,nj
, Dj,nj

, rj,nj
),

with rj,k ≥
√

2t0, k = 1, . . . , nj, that are basic for Γjt for any t ∈ [0, t0],

and moreover,

(5) Γjt ⊂
k=nj⋃
k=1

F∗(Rj,k, Dj,k, rj,k) ,∀t ∈ [tj, t0].

Proof. We first construct basic rectangles that will cover the slingshots

in a compact set, where all the initial curves Γi0 coincide.

Let r0 > 0 be such that [b, b + 2] × [0, c] and [b, b + 2] × [−c, 0]

together with r0 form basic rectangles for Γ0, and we denote these by

F±, respectively. Then, let

(6) F1 = F(R1, D1, r1), . . . ,F l = F(Rl, Dl, rl),

be a collection of basic rectangles for Γ0 with associated isometries Tm
and such that:

(i) Fm ⊂ {x < b+ 2}, for m = 1, . . . , l,

(ii) F1 ⊂ Int(F+
∗ ) and F l ⊂ Int(F−∗ ),

(iii) Tm({Rm

4
} × [0, Dm]) ⊂ Int(Fm−1

∗ ), for m = 2, . . . , l.

Note that the rectangles F± and Fm, for m = 1, . . . , l, are also basic

rectangles for Γi0, for all i ∈ N. This is because they are contained in

the half plane {x ≤ b+ 3}, where Γi0 and Γ0 coincide. Define,

(7) t̄ := 1
2
min{r2

0, r
2
1, . . . , r

2
l }

and also

F (0) := {F+,F−,F1, . . . ,F l} .
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We claim that for any i and 0 ≤ t ≤ t̄ we have,

(8) Γit ∩ {x ≤ b+ 5/4} ⊂
⋃

F∈F (0)

F∗ .

To see this, let F ∈ F (0). Then, by Proposition 2, we have that, for

any i and any 0 ≤ t ≤ t̄, Γit ∩ F∗ is a connected 1-manifold with two

boundary points lying in two opposite sides of the corresponding rec-

tangle: Tm({±Rm

4
}× [0, Dm]) if F = Fm, m = 1, . . . , l, and accordingly

if F = F±. By conditions (ii) and (iii) above the claim follows.

Figure 2. Schematic figure of the rectangles F±, the

Fm and the F+,s. The rectangle R+
k is also shown.

The next step is to construct basic rectangles that cover the entirety

of the slingshots for times t > tj. An essential tool to do that is

Lemma 7, which allows us to deduce that after time tj all slingshots

have entered a compact set.

For any integer k > b+1, we let yk := min{u+(2k),−u−(2k)} and set

qk := (b,−yk). We then define s1
k and s2

k be the two rays starting from

qk and passing through (2k, 0) and (b+1, c) respectively. Note that both

rays intersect Γ0 transversely and only once at a point with positive

y-coordinate. Define also the rectangle R+
k := [b+ 1, k]× [−kyk

2k−b , c] and

note that it lies in the region between the two rays and has one vertex

on each of them. Hence, any infinite ray from qk and passing through
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any point in R+
k intersects Γ0 transversely and only once. We will use

this fact to cover the slingshots by basic rectangles in R+
k .

Let r̂ ∈ (0, 1) be such that B r̂((b, 0)) is contained in the open region

of finite area enclosed by Γ0. Since, yk ↓ 0 as k → ∞, we can choose

k̂ such that yk ≤ r̂
4
, for all k ≥ k̂, and from now on we consider such

a k ≥ k̂. Consider s to be a ray starting from qk and passing through

a point in R+
k . Since every such ray has positive slope and intersects

Γ0 transversely and only once, for each such s, we can find a rectan-

gle Ts([−Rs, Rs] × [0, Ds]), for some isometry Ts, with the following

properties:

(1) Ts({0} × [0, Ds]) ⊂ s and Ts((0, 0)) = qk,

(2) Rs ≤ r̂
4

and Ds is large enough so that 〈T ((0, Ds)), e2〉 ≥ c+ r̂,

(3) Γ0 ∩ Ts([−Rs, Rs]× [0, Ds]) is a graph over T ([−Rs, Rs]×{0}).
Since Ts([−Rs, Rs] × {0}) ⊂ B r̂

2
((b, 0)) and by properties (2) and (3)

above we conclude that Ts([−Rs, Rs] × [0, Ds]) together with r = r̂
4

is

a basic rectangle for Γ0, which we denote as F+,s. By compactness, we

can find a collection of rays sk,1, . . . , sk,lk such that F+,sk,1
∗ , . . . ,F+,sk,lk

∗

coverR+
k . From now on and to simplify notation we write F+,k,j instead

of F+,sk,j . An identical reasoning shows that we can find a collection

of basic rectangles,

(9) F−,k,1, . . . ,F−,k,hk ,

for Γ0, all with r = r̂
4

and such that F−,k,1∗ , . . . ,F−,k,hk∗ are covering

the rectangle R−k := [b+ 1, k]× [−c, kyk
2k−b ]. We will denote by F (k) all

these rectangles

(10) F (k) = {F+,k,1, . . . ,F+,k,lk ,F−,k,1, . . . ,F−,k,hk} .

Note that R+
k ∪R

−
k = [b+ 1, k]× [−c, c] and therefore

(11) [b+ 1, k]× [−c, c] ⊂
⋃

F∈F (k)

F∗ .

Given k ≥ k̂ let îk > 0 be large enough so that none of the basic

rectangles F ∈ F (k) intersects the region [̂ik,∞] × [−c, c]. Note that

this is possible, since all these rectangles have non zero slope and width

bounded by r̂
4
. Recalling the definition of Γi0, we deduce that these basic

rectangles for Γ0 are also basic rectangles for Γi0 when i ≥ îk. Let tj ↓ 0

and xj be the sequences of Lemma 7, for which, after dropping some
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initial terms if necessary, we will assume that t1 < t0 := min{t̄, r̂2
32
}.

Let k1 be any integer such that k1 ≥ max{k̂, x1}. By Lemma 7, we

have that the slingshots, after passing to a subsequence Γjt , satisfy, for

any j and t ≥ t1,

Γjt ⊂ [a, x1]× [−c, c] ⊂ ([a, b+ 1]× [−c, c]) ∪R+
k1
∪R−k1

⊂
⋃

F∈F (0)∪F (k1)

F∗ ,(12)

with the second inclusion following by (8) and (11), and where F (k)

is as constructed in (10). Finally note that for any t ≤ t0 and for

i ≥ îk, F is a basic rectangle for Γit for all F ∈ F (0) ∪ F (k1) and

t ∈ [0, t0]. Hence, the slingshots, after passing to a further subsequence,

still denoted by Γjt , satisfy, for any j,

Γjt ⊂
⋃

F∈F (0)∪F (k1)

F∗ , ∀t ∈ [t1, t0],

where F (0) ∪F (k1) is a finite family of rectangles that are basic for

Γjt , for all j and t ≤ t0 and moreover these rectangles are of the form

F(R,D, r) with r ≥
√

2t0. We can now finish the proof of the propo-

sition, by constructing the rest of the sequence as follows. For each tj
as above (from Lemma 7), with j ≥ 2, we choose kj ≥ max{kj−1, xj} .

Then we construct the family of basic rectangles F (kj) as in (10). We

then note that there exists îkj large enough, so that none of the basic

rectangles F ∈ F (kj) intersects the region [̂ikj ,∞] × [−c, c], there-

fore for all i ≥ îkj and t ∈ [0, t0], F is a basic rectangle for Γit for all

F ∈ F (0) ∪F (kj). Hence, the slingshots, after passing to a further

subsequence, still denoted by Γjt , satisfy, for any j,

Γjt ⊂
⋃

F∈F (0)∪F (kj)

F∗ , ∀t ∈ [tj, t0],

where F (0) ∪F (kj) is a finite family of rectangles that are basic for

Γjt , for j ≥ 1 and t ≤ t0 and moreover these rectangles are of the form

F(R,D, r) with r ≥
√

2t0.

�

Proof of Theorem 1. Consider t0 > 0 as in Lemma 8. Lemma 8 and

Proposition 5 imply that we can apply a compactness argument (which

amounts to the Arzela–Ascoli theorem) to the sequence of embeddings
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γjt0 : S1 → R2. This yields that there exists a smooth embedding

γ∞t0 : S1 → R2 and a sequence of diffeomorphisms of S1, φj, such that

after passing to a subsequence, γjt0 ◦ φj converges smoothly to γ∞t0 . Let

tj ↓ 0 be as in Lemma 8 and define the diffeomorphisms

ψj : S1 × [tj, t0]→ S1 × [tj, t0]

(x, t) 7→ ψj(x, t) = (φj(x), t) .

Note that Lemma 8 and Proposition 5, along with the evolution equa-

tion of the curvature and its derivatives (which yield time derivative

bounds on the curvature and its derivatives), imply uniform bounds

on the curvature and its derivatives for the sequence γj ◦ ψj (locally

in S1 × (0, t0]). Therefore, the Arzela–Ascoli theorem and a diagonal

argument yield that there exists a smooth map γ∞ : S1× (0, t0]→ R2,

with γ∞(·, t) : S1 → R2 a smooth embedding for each t ∈ (0, t0] and

γ∞(·, t0) = γ∞t0 (·), and such that, after passing to a further subsequence,

γj ◦ ψj converges to γ∞ smoothly on compact sets of S1 × (0, t0]. The

smooth convergence does imply that γ∞ satisfies curve shortening flow

(1). Also, since γ∞(·, t) : S1 → R2 a smooth embedding for each

t ∈ (0, t0], by Grayson’s theorem [6], we can extend the flow until it

disappears to a round point. We have created thus a smooth flow

γ∞ : S1 × (0, T ) → R2, which agrees with the above defined γ∞ in

(0, t0) and such that it converges to a round point as t→ T .

Finally, to finish the proof we need to show that

(i) T = A0

2π
and

(ii) ∀ε > 0, ∃ tε > 0: Γt := γ∞(S1, t) ⊂ B(Γ0, ε), ∀ 0 < t < tε.

To see (i), let A∞(t) denote the (finite) area enclosed by Γt and Aj(t)

that of the approximating curves Γjt = γj(S1, t). By the convergence

for t ∈ (0, t0], we have

A∞(t0) = lim
j
Aj(t0) = lim

j
Aj(0)− 2πt0 = A0 − 2πt0 .

Since 0 = limt→T A
∞(t) = A∞(t0)− 2π(T − t0), we obtain (i).

In order to see (ii), we let ε > 0. It suffices to show that there exists

tε such that for all j large enough Γjt ⊂ B(Γ0, ε), for all t ∈ (0, tε).

Assume that this is not the case, but instead, there exists a sequence

of times tk ↓ 0 and a sequence of points of the slingshots xk ∈ Γjktk , with
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jk →∞, such that dist(xk,Γ0) > ε. Note first, that by the assumption

on Γ0 and the approximating sequence Γi0, a simple argument using

grim reapers, parallel to the x-axis, as barriers implies that eventually

the points xk must be in a compact set, that is, there exists k0 and a

compact set K, such that for all k ≥ k0, xk ∈ K.

Finally, the proof of Lemma 8, yields a uniform curvature bound for

the slingshots in compact sets, which amounts to a uniform bound in

the velocity. This implies that the distance traveled goes uniformly to

zero, that is dist(Γjktk ∩ K,Γ0) → 0, as k → ∞, and thus we obtain a

contradiction.

�
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