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Resumen

Para sistemas que proveen algún tipo de servicio mientras están operativos y dejan
de proveerlo cuando fallan, es de interés determinar parámetros como, por ejemplo,
la probabilidad de encontrar el sistema en falla en un instante cualquiera, el tiempo
medio transcurrido entre fallas, o cualquier medida capaz de reflejar la capacidad del
sistema para proveer servicio. Las determinaciones de estas medidas de seguridad
de funcionamiento se ven afectadas por diversos factores, entre ellos, el tamaño del
sistema y la rareza de las fallas. En esta tesis se estudian algunos métodos concebidos
para determinar estas medidas sobre sistemas grandes y altamente confiables, es decir
sistemas formados por gran cantidad de componentes, en los que las fallas del sistema
son eventos raros.

Ya sea en forma directa o indirecta, parte de las las expresiones que permiten de-
terminar las medidas de interés corresponden a la probabilidad de que el sistema se
encuentre en algún estado de falla. De un modo u otro, estas expresiones evaluan la
fracción —ponderada por la distribución de probabilidad de las configuraciones del
sistema— entre el número de configuraciones en las que el sistema falla y la totalidad
de las configuraciones posibles. Si el sistema es grande el cálculo exacto de estas
probabilidades, y consecuentemente de las medidas de interés, puede resultar invi-
able. Una solución alternativa es estimar estas probabilidades mediante simulación.
Uno de los mecanismos para hacer estas estimaciones es la simulación de tipo Monte
Carlo, cuya versión más simple es la simulación en crudo o estándar. El problema es
que si las fallas son raras, el número de iteraciones necesario para estimar estas prob-
abilidades mediante simulación estándar con una precisión aceptable, puede resultar
desmesuradamente grande.

En esta tesis se analizan algunos métodos existentes para mejorar la simulación es-
tándar en el contexto de eventos raros, se hacen análisis de varianza y se prueban los
métodos sobre una variedad de modelos. En todos los casos la mejora se consigue
a costa de una reducción de la varianza del estimador con respecto a la varianza del
estimador estándar. Gracias a la reducción de varianza es posible estimar la prob-
abilidad de ocurrencia de eventos raros con una precisión aceptable, a partir de un
número razonable de iteraciones. Como parte central del trabajo se proponen dos
métodos nuevos, uno relacionado con Spliting y otro relacionado con Monte Carlo
Condicional.

Splitting es un método de probada eficiencia en entornos en los que se busca evaluar
desempeño y confiabilidad combinados, escasamente utilizado en la simulación de
sistemas altamente confiables sobre modelos estáticos (sin evolución temporal). En
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su formulación básica Splitting hace un seguimiento de las trayectorias de un proceso
estocástico a través de su espacio de estados y multiplica su número ante cada cruce
de umbral, para un conjunto dado de umbrales distribuidos entre los estados inicial y
final. Una de las propuestas de esta tesis es una adaptación de Splitting a un modelo
estático de confiabilidad de redes. En el método propuesto se construye un proceso
estocástico a partir de un tiempo ficticio en el cual los enlaces van cambiando de
estado y se aplica Splitting sobre ese proceso. El método exhibe elevados niveles de
precisión y robustez.

Monte Carlo Condicional es un método clásico de reducción de varianza cuyo uso no
está muy extendido en el contexto de eventos raros. En su formulación básica Monte
Carlo Condicional evalúa las probabilidades de los eventos de interés, condicionando
las variables indicatrices a eventos no raros y simples de detectar. El problema es que
parte de esa evaluación incluye el cálculo exacto de algunas probabilidades del mod-
elo. Uno de los métodos propuestos en esta tesis es una adaptación de Monte Carlo
Condicional al análisis de modelos Markovianos de sistemas altamente confiables.
La propuesta consiste en estimar las probabilidades cuyo valor exacto se necesita,
mediante una aplicación recursiva de Monte Carlo Condicional. Se estudian algunas
características de este modelo y se verifica su eficiencia en forma experimental.

Palabras clave: Monte Carlo, Simulación, Splitting, Monte Carlo Condicional, Re-
ducción de Varianza



Abstract

For systems that provide some kind of service while they are operational and stop
providing it when they fail, it is of interest to determine parameters such as, for ex-
ample, the probability of finding the system failed at any moment, the mean time
between failures, or any measure that reflects the capacity of the system to provide
service. The determination of these measures —known as dependability measures—
is affected by a variety of factors, including the size of the system and the rarity of
failures. This thesis studies some methods designed to determine these measures on
large and highly reliable systems, i.e. systems formed by a large number of compo-
nents, such that systems’ failures are rare events.

Either directly or indirectly, part of the expressions for determining the measures of
interest correspond to the probability that the system is in some state of failure. Some-
how, this expressions evaluate the ratio —weighted by the probability distribution of
the systems’ configurations— between the number of configurations in which the sys-
tem fails and all possible configurations. If the system is large, the exact calculation of
these probabilities, and consequently of the measures of interest, may be unfeasible.
An alternative solution is to estimate these probabilities by simulation. One mecha-
nism to make such estimation is Monte Carlo simulation, whose simplest version is
crude or standard simulation. The problem is that if failures are rare, the number of it-
erations required to estimate this probabilities by standard simulation, with acceptable
accuracy, may be extremely large.

In this thesis some existing methods to improve the standard simulation in the context
of rare events are analyzed, some variance analyses are made and the methods are
tested empirically over a variety of models. In all cases the improvement is achieved
at the expense of reducing the variance of the estimator with respect to the standard
estimator’s variance. Due to this variance reduction, the probability of the occurrence
of rare events, with acceptable accuracy, can be achieved in a reasonable number of
iterations. As a central part of this work, two new methods are proposed, one of them
related to Splitting and the other one related to Conditional Monte Carlo.

Splitting is a widely used method in performance and performability analysis, but
scarcely applied for simulating highly reliable systems over static models (models
with no temporal evolution). In its basic formulation Splitting keeps track of the tra-
jectories of a stochastic process through its state space and it splits or multiplies the
number of them at each threshold cross, for a given set of thresholds distributed be-
tween the initial and the final state. One of the proposals of this thesis is an adaptation
of Splitting to a static network reliability model. In the proposed method, a fictitious
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time stochastic process in which the network links keep changing their state is built,
and Splitting is applied to this process. The method shows to be highly accurate and
robust.

Conditional Monte Carlo is a classical variance reduction technique, whose use is not
widespread in the field of rare events. In its basic formulation Conditional Monte
Carlo evaluates the probabilities of the events of interest, conditioning the indicator
variables to not rare and easy to detect events. The problem is that part of this assess-
ment includes the exact calculation of some probabilities in the model. One of the
methods proposed in this thesis is an adaptation of Conditional Monte Carlo to the
analysis of highly reliable Markovian systems. The proposal consists in estimating
the probabilities whose exact value is needed, by means of a recursive application of
Conditional Monte Carlo. Some features of this model are discussed and its efficiency
is verified experimentally.

Keywords: Monte Carlo, Simulation, Splitting, Conditional Monte Carlo, Variance
Reduction
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CHAPTER 1

Introduction
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1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Abstract

This chapter describes the basic ideas that support this thesis. The concepts of rare events and
dependability are introduced by means of two very simple models. The publications of the author
directly related with this thesis are commented and, in the last section, the structure of the thesis,
with a brief comment about every chapter, is described.

1.1 Rare Events and Dependability

The concept of rare event simply refers to events whose probability of occurrence is “very low”,
where the meaning of “very low” is absolutely context–dependent. Rare event analysis is a subject
of interest in areas like accident risk assessment, especially on accidents that can lead to the loss
of lives, provision of services of high need such as communications or energy supply systems, and
risk of ruin in insurance or investment companies, to name a few. It is, therefore, hard to say which
probability values give an event the character of rare. Anyway, in areas like the ones mentioned,
it is not far from the truth to say that events whose probability is in the order of 1E−09 can be
considered rare events.

However, rare event analysis is not only restricted to the determination of a probability value.
It also includes the analysis of parameters and measures that somehow reflect systems’ perfor-
mance and dependability when these measures are directly related to the occurrence of rare events.
In the latter case, the determination of performance or dependability measures can be as hard as
the determination of the probability itself.

An illustrating example is a system that provides some kind of service while it is up, and quits
providing it (it goes down) at the occurrence of a failure. Suppose that the probability of a failure
occurrence is extremely low. Accepting that the system is up at time t = 0, a value that may be of
interest is the probability that the system is still up at time t > 0, but it may also by of interest the
mean time elapsed since the system is up at t = 0 and the first time it goes down. The first case is
nothing but a probability determination, the second one consists in finding the expected value of
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a time period. But both of them are affected by a rare event that, in this problem, is the systems’
failure.

Rare event analysis attempts to give support in both, the design of new systems and the analysis
of existing ones.

Events probabilities and dependability measures are usually given by a mathematical expres-
sion. When the size of a system is large, the complexity of these mathematical expressions can be
very high and it may not be possible to compute them in a reasonable time. The size of the sys-
tems is, therefore, the first stumbling block in the determination of a dependability measure. An
alternative solution is to resign the exact calculation, and to make an estimation instead. Standard
simulation is the first method at hand but, if the number of replications does not exceed several
times the inverse of the probability of the rare event, the estimation may not succeed or may not be
possible at all. And, if the probability of the rare event is extremely low, the number of replications
needed may be huge or directly unattainable.

Figures 1.1 and 1.2 show two toy models useful to highlight the drawbacks of standard simu-
lation when the estimation is affected by the rare event problem. Each of the models belong to a
class that will be described in more detail later in this thesis.

Figure 1.1 depicts a network —known as Bridge network— composed by four nodes con-
nected by five links. The links can be failed, what is the same as being removed from the network,
or operational, what is equivalent to connect the nodes at its extremes. The purpose of this net-
work is to guarantee the existence of at least one path formed by operational links between the
two marked nodes s and t. Every link is operational with probability r and failed with probability
1− r. The value of interest is the probability Q, that it does not exist a path formed by operational
links between the nodes s and t. The probability Q is known as the network unreliability, whereas
R = 1 − Q, the probability that it does exist a path formed by operational links between s and
t, is called network reliability. Standard simulation consists in building N independent settings
such that, in each one of them, every link is randomly set to operational or failed according to
the links’ probability distribution (Bernoulli, where the 1 is called operational and the 0 is called
failed). There will be, therefore, N random settings —called samples— in which the nodes s and
t may be connected or not, by a path of operational links. The standard estimation of Q, called
Q̂, is the proportion of these N samples for which the nodes s and t are not connected.

To understand the limitations of standard simulation, consider the following analysis. Call
NQ ≤ N the number of samples for which the nodes s and t are not connected, andNR ≤ N , the
number of samples for which s and t are connected. Clearly, NQ +NR = N , and Q̂ = NQ/N . It
will be shown in Section 2.2 that Q̂ is an unbiased estimator of Q, i.e. E{Q̂} = Q, but before this,
an analysis of the standard method leads to Law of Large Numbers, that in this problem takes the
form:

lim
N→∞

P

{∣∣∣Q̂−Q
∣∣∣ < ε

}
= 1, ∀ε > 0, (1.1)

stating that the probability that Q̂ equals Q gets close to 1 asN increases to infinity. This indicates
that an estimation made out of N1 samples is likely to be better (closer to the real value) than an
estimation made out of N2 < N1 samples. So, the use of large values of N is recommended, and
increasing the value of N is always useful.

It is also of interest to measure how far the estimator Q̂ is from the real value Q. Accepting



1.1. Rare Events and Dependability 3

s t

rr

r

rr

Figure 1.1: Bridge network

that the variance of the estimator is: V{Q̂} = E{(Q̂−Q)2} = E{Q̂2} −Q2 = σ2/N , where σ2

is the variance of the variable whose expected value is to be estimated, the Central Limit Theorem
takes the form:

lim
N→∞

P

{
Q̂−Q

σ

√
N < z

}
=

1√
2π

∫ z

−∞
e−y2/2dy (1.2)

indicating that the asymptotic behaviour of the —properly scaled— error, follows the Standard
Normal distribution. IfN is large enough to consider that the difference Q̂−Q is indeed normally
distributed, expression (1.2) can be transformed into:

P

{
Q̂− zα/2

σ√
N
≤ Q ≤ Q̂+ zα/2

σ√
N

}
= 1− α

where −zα/2 and +zα/2 are two values such that a Standard Normal variable is between them
with probability 1 − α. This expression defines a Confidence Interval, as it states that the exact

value, Q, will lie inside the interval
[
Q̂− zα/2 σ/

√
N, Q̂+ zα/2 σ/

√
N
]
with probability 1− α.

A typical example of this kind of Confidence Interval is:

P

{
Q̂− 1.96

σ√
N
≤ Q ≤ Q̂+ 1.96

σ√
N

}
= 95%

indicating that, with probability of 95%, the difference |Q̂−Q|will be, at most, 1.96 σ/
√
N . Thus,

this is not only a formula to compute how far the estimator could be from the estimated value, but
also an indication that there are two ways to make the estimator be closer to the estimated value:
increasing the number of samples, N , and decreasing the variance, σ2, of the variable whose
expectation is subject to the estimation.

This result must be accepted with some care because of two reasons. One of them is that ordi-
nary simulations do not use “real” random numbers to build up the random settings, but pseudo–
random numbers instead. This may produce loss of independence among samples. And the other
reason is that in real implementations the number of samples, N , is directly related to the compu-
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tational effort of the simulation, therefore, its value may not always be large enough.
After the preceding observations it immediately arises the question about how small the value

of N can be to guarantee that the estimator will still be close to the real value. There is no
categorical answer to this question. Going back to the network problem, it is clear that if Q is low
—and even worse if Q it is extremely low— the number of samples, N , may not be as large as to
make NQ > 0. If NQ = 0, what means that none of the N sampled settings reach a condition in
which there is no path of operational links between the nodes s and t, the standard estimator will
take a deceptive value of 0, and expressions (1.1) and (1.2) will be far from being truth. Based on
the ideas presented so far, the variance of the estimator, that is an indication of how dispersed the
values of Q̂ are, may be considered also an indicator of how likely the estimator is to be close, or
not, to the estimated value. It will be shown in Section 2.2 that, calling Q̂Ni

the estimator obtained
out of Ni samples, then, V{Q̂N1

} ≤ V{Q̂N2
} if N1 > N2. It is also true that, if after changing

one or more parameters of the network, but keeping fixed the value of N , the value Q1 goes to
Q2 < Q1, then V{Q̂2} < V{Q̂1}. So, an isolated value of a variance is not enough to decide how
accurate an estimator is.

To evaluate the accuracy of the estimator, an indicator that is frequently used is the coefficient
of variation, that in Monte Carlo estimation is defined as the ratio of the standard deviation of the
estimator to the exact value estimated: V{Q̂}1/2/Q. This relation will be analyzed in more detail
in Section 2.2. Now it is interesting to see, in Table 1.1, the evolution of the values it takes for
different values of Q.

Table 1.1: Standard Simulation on the Bridge network in Figure 1.1

N r Q Q̂ V{Q̂} V{Q̂}1/2/Q
1E+08 0.9 2.1520E−02 2.1534E−02 2.11E−10 0.07%
1E+08 0.99 2.0195E−04 2.0127E−04 2.02E−12 0.70%
1E+08 0.999 2.0020E−06 2.0600E−06 2.00E−14 7.07%
1E+08 0.9999 2.0002E−08 2.0000E−08 2.00E−16 70.71%
1E+08 0.99999 2.0000E−10 — 2.00E−18 707.10%

The coefficient of variation, seen as a relative error, increases as the unreliability Q decreases.
There is a limit beyond which it is extremely unlikely that, in one of the sampled settings, the nodes
s and t are disconnected. This example illustrates this effect numerically; when Q is smaller than
2.0002E−08, a sample size of 1E+08 is not enough to obtain an estimation.

A similar problem arises in the model shown in Figure 1.2. It is a continuous time Markov
chain that represents a system composed of three components, each of which fails with rate λ. If
one of the components is failed, it is repaired with rate µ If two components are failed, they are
both —simultaneously— repaired with rate µ. If all the components fail, there is no possible repa-
ration. There are four states associated with the number of components already failed: u, where
no component is failed; d, where all components are failed, and the remaining ones, indicating
one or two components failed, as it follows clearly from the associated graph. The system is con-
sidered up when it is in state u and down when it reaches state d. It is of interest the probability γ

that, after starting at state u in time t = 0, the system hits state d in time t = td, conditioned to
the fact that state u has not been visited in the period (0, td].
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Figure 1.2: Continuous time Markov chain

If the components fail with a low (or very low) rate λ and they are repaired with a high (or very
high) rate µ, the event whose probability γ is of interest is clearly a rare event and the associated
problems of the standard Monte Carlo estimation, shown in Table 1.2, are essentially the same as
the ones commented in the problem of the Bridge network.

Table 1.2: Standard Simulation on the Markov chain in Figure 1.2

N λ, µ γ γ̂ V{γ̂} V{γ̂}1/2/γ
1E+09 1,1000 1.9940E−06 2.0220E−06 1.99E−15 2.24%
1E+08 1,1000 1.9940E−06 1.9500E−06 1.99E−14 7.08%
1E+07 1,1000 1.9940E−06 1.6000E−06 1.99E−13 22.39%
1E+06 1,1000 1.9940E−06 1.0000E−06 1.99E−12 70.82%
1E+05 1,1000 1.9940E−06 — 1.99E−11 223.94%

When the number of samples N is many orders of magnitude higher than the inverse of the
estimated value, the ratios V{Q̂}1/2/Q and V{γ̂}1/2/γ —seen as relative errors— indicate that
the estimators are somehow close to the estimated values. But, if the estimated values become
smaller, they do it faster than the corresponding standard deviations, reason why as the event of
interest becomes more rare the relative errors become higher. Another fact, also highlighted in the
experiments, is that there are lower bounds for the value of N , beyond which the estimations are
not possible.

This thesis is focused on some methods aimed at improving the standard simulation in the
context of rare events, by means of variance reduction. As the main contribution of this work, two
new methods are introduced, one of them applies to the estimation of network unreliability Q, on
large and highly reliable networks; the other one is intended to estimate the value of γ on highly
dependable systems modelled by large continuous time Markov chains.

1.2 Publications

The ideas behind this thesis were explored by the author, for the first time, in [Murray 2007a]
and [Murray 2007b], where five Monte Carlo methods were reviewed, analyzed and applied to
the Diameter Constrained Reliability, which is an extension of the previously introduced net-
work reliability model. Four of these methods, namely, Dagger, Permutation Monte Carlo, and
Cross-Entropy over Crude and Permutation, are variance reduction techniques thought of as an
improvement to the crude or standard simulation. Both articles explain the methods in detail and
compare their efficiency in tests made on selected network models.
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After this first approach toMonte Carlomethods, the work continued on the line of the network
reliability problem, with a proposal in which a classical method, called Creation Process, was
improved by the application of Splitting, a variance reduction technique that had not been used
in this context before. The proposal and the results obtained were presented in [Murray 2008a],
[Murray 2008b], [Murray 2008c], [Murray 2010] and recently published in [Murray 2013b].

After the development of Splitting on the Creation Process, another classical technique called
Conditional Monte Carlo, was recalled and applied by the author to the dependability analysis of
Markovian systems. This problem has been the subject of research for many authors and different
solutions have been proposed, most of them derived from Importance Sampling and, to a lesser
extent, from Splitting. The Conditional Monte Carlo method presented in this thesis is an efficient
attempt to reduce the variance of the standard estimation in the Markovian systems simulation.
This proposal was introduced in [Murray 2012] and [Murray 2013a].

The following list corresponds to the publications just cited in this section. There are listed
here with the only purpose of making the section self contained. These references can also be
found in the Bibliography, at the end of this document.

[Murray 2007a] Comparación entre Cinco Métodos de Monte Carlo para Estimar la Confiabilidad

Diámetro Acotada de Redes de Comunicaciones. Technical Report INCO 07-07, Facultad de
Ingeniería, Universidad de la República, Montevideo, Uruguay, 2007. ISSN: 0797-6410.

[Murray 2007b] Comparison of Five Monte Carlo Methods to Estimate the Network Diameter

Constrained Reliability. In Proceedings of the XXXII Latin-American Conference on Informatics
(CLEI), San José, Costa Rica, 2007.

[Murray 2008a] Monte Carlo Splitting Technique for Source-Terminal Network Reliability Esti-

mation. In Proceedings of the XXXIV Latin-American Conference on Informatics (CLEI), Santa
Fé, Argentina, 2008.

[Murray 2008b] Splitting in Source–Terminal Network Reliability Estimation. In Proceedings of
the 7th International Workshop on Rare Event Simulation, pages 57–68, Rennes, France, Septem-
ber 2008.

[Murray 2008c] Splitting in the Simulation of the Network Creation Process. Technical Report
INCO 08-21, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay, 2008.
ISSN:0797-6410.

[Murray 2010] Network Reliability Evaluation by Splitting a Link Creation Process. In Proceed-
ings of the ALIO–INFORMS Joint International Meeting, Buenos Aires, Argentina, June 2010.

[Murray 2012] On Conditional Monte Carlo in Rare Event Probability Estimation. In Proceedings
of the 9th International Workshop on Rare Event Simulation, pages 57–68, Trondheim, Norway,
September 2012.

[Murray 2013a] A conditional Monte Carlo with intermediate estimations for computing MTTF

of Markovian systems. In Proceedings of the Sixth Latin–American Symposium on Dependable
Computing (LADC), Rio de Janeiro, Brazil, 2013.

[Murray 2013b] A Splitting algorithm for network reliability estimation. IIE Transactions, vol. 45,
no. 2, pages 177–189, 2013.
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1.3 Structure of the thesis

In this chapter, the basic ideas behind this thesis were introduced, the concepts of rare events and
dependability were explained and the publications of the author, directly related with this thesis,
were showed. The rest of the work is divided into six more chapters, whose contents are as follows.

Chapter 2 introduces some measures of dependability, discusses the standard simulation and
shows its drawbacks. Then it briefly describes Importance Sampling, Splitting and Conditional

Monte Carlo.
Chapter 3 describes two variants of Splitting known, respectively, as Fixed Splitting and Fixed

Effort. For these two variants it proves their unbiasedness and determines the variance of the
corresponding estimators in a model with some constraints.

Chapter 4 introduces Splitting/CP, an original proposal of this thesis in which Splitting is
applied to improve a well–known method called Creation Process. The proposed method is shown
to be particularly efficient in the reliability estimation of highly reliable networks, i.e. networks
for which failure is a rare event.

Chapter 5 shows the variance reduction capacity of Conditional Monte Carlo by means of
many examples on different settings. This chapter behaves as a background for Chapter 6, in
which another proposal of this thesis, derived from Conditional Monte Carlo, is introduced.

Chapter 6 introduces Conditional Monte Carlo with Intermediate Estimations (CMIE), a sim-
ulation method proposal in which Conditional Monte Carlo is applied recursively. The proposed
method is shown to be particularly efficient in the context of highly reliable Markovian systems.

Chapter 7 presents the concluding remarks, highlights the main contributions and discusses
possible research lines to continue the work of this thesis.





CHAPTER 2

Rare Event Simulation
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Abstract

This chapter describes the setting of this thesis. In the first section some measures of dependability
are introduced. After this, the standard simulation method is presented, discussing also the draw-
backs that make it necessary to develop more efficient methods. Next, Importance Sampling is
briefly described, and finally Splitting and Conditional Monte Carlo are introduced, as these two
methods are the main subject of the issues around which the thesis is developed. Splitting and
Conditional Monte Carlo will be revisited and treated in more detail in the following chapters.

2.1 Measures of Dependability

As all man–made systems are designed to provide some kind of service, it is usually of interest to
measure their ability to provide such service. Dependability measures are intended to reflect this
ability. However, due to some systems’ particular features, the determination of these measures is
not always straightforward.

When the dependability measures are given by a mathematical expression, the first interest
should be to check whether they can be computed on models that represent the systems. In many
cases, the price to pay in order to obtain a good representation of the systems, is to have a large
size model. Then, the complexity of these mathematical expressions can become very high, being
impossible to compute them in a reasonable time. An alternative solution is to simulate the systems
in order to obtain an estimation of the dependability, instead of its exact value. However, the fact
that the systems are highly dependable, meaning that their ability to provide service is extremely
high, is a serious drawback in standard simulation. The higher the dependability, the lower the
accuracy of the standard estimator.

The accuracy of an estimator is measured by its variance. Standard simulation must therefore
be improved by the so–called variance reduction techniques in order to make simulations more
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efficient. Due to variance reduction, accurate estimations can be achieved in a reasonable amount
of time.

The main concern of this thesis is the problem of estimating dependability measures for two
types of system, communication networks and Markovian systems. In both cases, large and highly
dependable systems are considered.

The communication network model used in this thesis, is focused to the static reliability

approach. The model (described in more detail in Chapter 4) is based on an undirected graph
G = (V, E), where V is the set of nodes and E the set of links. Nodes never fail, they are in an
operational state all the time, while links fail independently and can only be found in one of two
states, operational or failed. The network reliability R (unreliability Q) is defined as the probabil-
ity that a set of terminal nodes K ⊆ V is connected (not connected) in the sub–graph containing
all the nodes in V but only the operational links (as for a link being failed is the same as being
removed from G).

Call network instance the setting in which a possible value (operational or failed) is sampled
for every one of the links in E . There will be, therefore, 2|E| different instances. To compute
the exact value of the reliability R, or the unreliability Q, the most straightforward method is to
generate all possible instances and, for each one of them, to check whether the set of terminal
nodes K ⊆ V is connected or not. The proportion of all instances for which the terminal nodes are
connected, weighted by their probability values, is R and the proportion for which terminal nodes
are not connected, weighted by their probability values, is Q. If E is large, or even moderately
large, it is impossible to compute R or Q in a reasonable time.

The other model on which this thesis is focused, is a continuous timeMarkov chain {X(t), t ≥
0}, with discrete state space S. The state space S is partitioned into two subspaces: U , where the
system is up, and D, where the system is down (the subspace D can be collapsed into a single
absorbing state d). The model operates as follows: X(t) starts at some initial state u ∈ U (a
state in which the system is fully operational) in time t = 0, and it stops either when it comes
back to state u in time τu or when it hits state d in time τd. In the mean time the process moves
through states in which the system is partially damaged (not as much as to be in state d) but it
keeps providing service.

For this type of (ergodic) Markovian model, dependability measures can be classified into two
groups: steady–state and transient. The latter are those metrics evaluated at some point in time t,
or over some finite interval, typically of the form [0, t]. The two main transient metrics are the
reliability at time t and the availability at time t. The reliability at time t, denoted R(t), measures
the “continuity” of service: R(t) = P{X(s) ∈ U, 0 ≤ s ≤ t}. That is, R(t) is the probability
that the system operates as specified during the whole interval [0, t]. The availability at time t is
the probability that the system is working at time t, A(t) = P{X(t) ∈ U}.

A more complex transient metric is the interval availability on [0, t], denoted IA(t). It is
defined as the fraction of the interval during which the system is up, that is:

IA(t) =
1

t

t∫

s=0

1{X(s)∈U}ds,

where 1{e} is the indicator of event e. Since IA(t) is a random variable, in practice, other specific
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related metrics are used. For instance, its expectation, called the expected interval availability

on [0, t]:

E{IA(t)} = 1

t

t∫

s=0

A(s)ds,

or its distribution (much harder to compute).

Steady-state measures are defined on the system in equilibrium, that is, on a stationary version
of the stochastic process modelling it. The main one is the asymptotic availability, A(∞) =

limt→∞A(t). See that:
A(∞) = lim

t→∞
IA(t) a.s.

The expected time from the beginning until the first system failure is another important depend-
ability metric, called the mean time to failure, in short MTTF. Using the variable τd, MTTF =

E{τd}. Also R(t) = P{τd > t}, and thus, MTTF =
∞∫

t=0

R(t)dt. Using the fact that X is Marko-

vian:

MTTF =
E{min(τd, τu)}

γ
,

where γ = P{τd < τu}. Both terms, E{min(τd, τu)} and γ, can be estimated using regenerative
properties of X.

The main issues on which this thesis is focused are the development of variance reduction
techniques aimed at the achievement of accurate estimations of the reliability R (unreliability Q)
of large and highly reliable networks and the estimation of γ = P{τd < τu} for large and highly
dependable markovian systems.

2.2 Standard Monte Carlo

In many dependability analysis, the problem reduces to the determination of the expectation of
some random variable X. Sometimes X is an event indicator random variable, in the sense that
it equals 1 if the event occurs, and 0 if the event does not occur. But there are cases in which
X takes values different than 0 and 1, and its expectation is still the value of interest. The most
simple simulation method to estimate the expected value ofX is the one known as naive, crude or
Standard Monte Carlo. This method was briefly and informally introduced in Section 1.1. Here it
will be presented in more detail and the drawbacks due to the rare event problem will be formally
analyzed.

LetX be a continuous random variable with probability density function f(x) and expectation
E:

E = E{X} =
+∞∫

∞

xf(x) dx

IfX is a discrete random variable that takes values xi, i = 0, · · · , n, respectively with probability
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p(xi), its expectation, E, is:

E = E{X} =
n∑

i=0

xi p(xi)

In both cases, the variance of X is: σ2 = V{X} = E{(X − E)2} = E{X2} − E2.

Although the probability distributions are not always available, it is often necessary to know
the value of E. Crude, naive or Standard Monte Carlo is the simplest simulation method, thought
of as to obtain an estimator Ê of E, hoping that Ê and E will be close enough. The estimation
begins with the sampling process, which consists in sampling a set of independent valuesX(i), i =

1, · · · , N . These values are collected using a random number generator and an algorithm designed
to produce values according to the probability distribution ofX (whether it is continuous as if it is
discrete). The samples, sometimes called copies of X, can be considered random variables —in
most cases independent— with the same probability distribution asX. The Standard Monte Carlo

estimator is:

Ê =
1

N

N∑

i=0

X(i)·

It is simple to show that Ê is an unbiased estimator of E:

E{Ê} = E

{
1

N

N∑

i=0

X(i)

}
=

1

N

N∑

i=0

E

{
X(i)

}
=

1

N

N∑

i=0

E = E

while the variance of Ê is:

V{Ê} = V

{
1

N

N∑

i=0

X(i)

}
=

1

N2

N∑

i=0

V

{
X(i)

}
=

1

N2

N∑

i=0

σ2 =
σ2

N
·

Suppose that X is an indicator random variable, that is, X equals 1 if the event of interest
occurs and equals 0 otherwise. In this case X is a Bernoulli random variable with parameter
E = E{Ê} and variance E(1−E). The coefficient of variation, usually accepted as an indication
of the relative error of the estimation Ê, is:

RE(Ê) =
V{Ê}1/2
E{Ê}

=
(E(1− E)/N)1/2

E
=

(
1−E

EN

)1/2

≈ 1

(EN)1/2
· (2.1)

This expression clearly highlights the drawbacks of standard simulation in rare event analysis. If
X is the indicator of a rare event, the value of E will be extremely low, and this can make the
relative error to be extremely large. Moreover, if E tends to zero, N being fixed, the relative error
will tend to infinity. The only way to work around this problem is by increasing the number of
samples, N . On the other hand, even if E is not extremely low, small values of N will produce
the same effect, in the sense of making the relative error grow boundlessly.

In cases in which a variance reduction technique is applied, the variable subject of analysis is
not a Bernoulli random variable and its variance, V{Ê}, is other than E(1 − E). The expression
of V{Ê} is the one that, ultimately, defines the properties of the variance reduction technique
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employed, as it says how much the relative error reduces, compared to 1/(EN)1/2.

The exact value E is, of course, (almost) never available in real cases, it is actually the value
the simulation attempts to find. That is why in expression (2.1) the estimator Ê must be used
instead. Something similar occurs with the variance, therefore, an unbiased estimator like the
following, must be used in its place:

V̂{Ê} = 1

N − 1

[
1

N

(
N∑

i=1

X(i)2

)
− Ê2

]
·

This variance estimation and the estimator Ê, are the ones used to evaluate the relative error
(2.1) in the experimental part of this thesis.

The context in which this thesis is framed is the estimation, by simulation, of probabilities and
parameters directly related to events whose occurrence is extremely rare. If the indicator random
variableX equals 1when the event of interest occurs, and 0 otherwise, the expectation E = E{X}
is, therefore, an indication of how likely the occurrence of the event of interest is. So far it’s been
shown how Standard Monte Carlo performs in this context, attempting to make an estimation Ê

of E. But the problem could be approached similarly on the variable Y = 1 − X. Variable Y

equals 1 when the event of interest does not occur, and 0 otherwise. Thus, F = E{Y } = 1−E is
an indication of how likely the event of interest is not to occur, and an estimation F̂ of F could be
as useful as Ê. However, in the context of rare events, E ≈ 0 and F ≈ 1. It will be shown in the
rest of this section that, in the analysis of highly reliable systems, mostly if the interest is focused
on the comparison of accuracy and precision among different methods, there are some benefits in
using E instead of F .

Suppose that the decision is to estimate E. The most direct and well known definition of the
relative error is δ/E, where δ = |E − Ê| is the absolute error. But E is, of course, unknown, and
the only estimator at hand is the Standard Monte Carlo estimator Ê. Then, using the absolute error
δ is clearly impossible and the standard deviation, SD = V{Ê}1/2, is used instead. See that SD is
the same when estimating F or E (the variances, E(1−E)/N and F (1−F )/N , are clearly equal
because E = 1−F ). Then, observe that the relative error RE(Ê) is greater than the relative error
RE(F̂ ). More precisely, SD ≈ RE(F̂ )≪ RE(Ê). Then, controlling RE(Ê) guarantees that both
errors are controlled. The use of RE(F̂ ) for controlling the estimation may lead to very poor
accuracy on the estimation of E, which is extremely annoying (think of critical systems where E
is the probability of a critical failure). For instance, let the true values be E = 10−10 = 1 − F ,
unknown, and pretend that the simulation produces an estimation Ê = 10−9 = 1−F̂ . The absolute
error is δ = 9 × 10−10, and RE(F̂ ) = 9 × 10−10/(1 − 10−10) ≈ 9 × 10−10, but RE(Ê) = 9.
Then, after an apparently good precision in the estimation of F there is a catastrophic 900% error
on the estimation of E.

There is another risk in using RE(F̂ ) when F ≈ 1. As SD is the same when estimating F or
E, it follows that RE(F̂ ) = RE(Ê)E/F ≈ RE(Ê)E. Thus, even when both estimates, F̂ and
Ê, are at the same “distance” of the corresponding true value, RE(Ê) is about 1/E times larger
that RE(F̂ ). Let again be a true value E = 10−10 —reasonable in rare event simulation— and
let RE(Ê) = 10−3, then RE(F̂ ) = 10−13, that could be negligible and confused with 0, unless
the number of digits involved in the computation is high enough. Then, if the interest is focused
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on “how close, or how far” the estimation is from the true value when E is a very low value, both
relative errors contain the same information, RE(Ê) in a significant and mensurable number, and
RE(F̂ ) in a negligible number.

2.3 Importance Sampling

In standard simulation, as in any Monte Carlo method intended to make estimations of some pa-
rameter, streams of random numbers are necessary to build up the random settings. Random num-
bers are generated according to the probability distributions associated with the different compo-
nents of the simulated system. These probability distributions are the ones that, ultimately, define
the behaviour of the simulation. Such distributions are closely related to the accuracy of the sim-
ulation, formally measured by the variance of the estimator. From a practical point of view, the
probability distributions involved define how rare is that the event of interest occurs in one —or
more— of the random settings built by the simulation.

There is a well known method called Importance Sampling based on the idea of changing the
probability distributions of the model in order to make the event of interest be “frequent” instead
of “rare” [Fishman 1996]. The estimation made after the change is biased and has to be corrected
in order to recover the estimation corresponding to the system before the changes. After this, the
problems due to the rarity are vanished and the variance of the estimator is reduced.

This section briefly introduces the basis of Importance Sampling and highlights its features in
a very simple example.

Let X be a random variable with probability density function f(x), and φ(X) a function of
X. For simplicity the method will be introduced only for the case in which X is continuous, but
the ideas apply as well and are easily extended to the discrete case. The expectation, Ef , of φ(X)

is:

Ef = Ef{φ(X)} =
+∞∫

−∞

φ(x)f(x) dx (2.2)

where the subscript f is a reference to the probability density function of X. The corresponding
Standard Monte Carlo estimator is:

Êf =
1

N

N∑

i=0

φ(X(i)) (2.3)

where the copies φ(X(i)), i = 1, · · · , N are sampled according to the probability density function
f(x). Suppose that the standard estimation is not efficient, either because it is difficult to sample
from f(x) or just because the event of interest almost never occurs. Suppose also that, as a con-
sequence of such inefficiency, the variance of Êf is large. The solution proposed by Importance

Sampling is to sample according to a new probability density function h(x), instead of f(x). Pro-
vided that h(x) is not equal to 0 unless in those points for which f(x)φ(x) equals 0, expression
(2.2) can be transformed as follows:
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Ef{φ(X)} =
∫ +∞

−∞
φ(x) f(x) dx =

∫ +∞

−∞
φ(x)

f(x)

h(x)
h(x) dx = Eh

{
φ(X)f(X)

h(X)

}
,

suggesting that the estimation in (2.3) should be transformed accordingly, that is:

Êh =
1

N

N∑

i=0

φ(X(i))f(X(i))

h(X(i))
=

1

N

N∑

i=0

φ(X(i)) R(X(i))

where the copies φ(X(i)f(X(i))/h(X(i))), i = 1, · · · , N are sampled according to the proba-
bility density function h(x). The expected value of φ(X) under the probability density function
f(x) equals the expected value of φ(X)f(X)/h(X) —seen as a random variable— under the
probability density function h(x). The factor R(x) = f(x)/h(x) is called likelihood ratio. In the
new sampling scheme, the copies X(i) are generated from the distribution h(x) and then, φ(X(i))

and R(X(i)) are computed. The process of changing the distribution from which the copies are
sampled, is known as change of measure.

Accepting that the target is still the estimation of the expected value of φ(X), either Êf or Êh

solve the problem, because the expectation of both is E{φ(X)}. The key to justify the use of one
or the other is the comparison of the variances before and after the change of measure, that is:

Vf{φ(X)} = 1/N

{∫ +∞

−∞
φ(x)2 f(x) dx− E

2
f{φ(X)}

}
and

Vh{φ(X) R(X)} = 1/N

{∫ +∞

−∞
φ(x)2R(x)2 h(x) dx− E

2
h{φ(X) R(X)}

}
·

Indeed a variance reduction takes place if:

Vf{φ(X)} −Vh{φ(X) R(X)} =
∫ +∞

−∞
[1−R(x)] φ(x)2 f(x) dx ≥ 0·

This last expression is only to check whether some selected distribution h(x) produces a variance
reduction or not, but is not a formula to find a distribution h(x) to achieve a desired variance
reduction. The task of finding an appropriate h(x) or, to say it in terms of Importance Sampling,
to produce an adequate change of measure, is not straightforward. Many research lines have
attempted to solve this problem, resulting in several methods [L’Ecuyer 2007b, L’Ecuyer 2011a,
L’Ecuyer 2011b, Ridder 2005, Rubinstein 2004].

Further analysis leads to an interesting conclusion. Suppose that φ(X) ≥ 0 and that the change
of measure is such that the distribution h(x) is the following:

h(x) =
φ(x) f(x)

Ef{φ(X)} · (2.4)
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In this case, the variance of the estimator Êh is given by:

Vh{φ(X) R(X)} = 1/N

{∫ +∞

−∞
φ(x)2R(x)2 h(x) dx− E

2
h{φ(X) R(X)}

}

= 1/N

{∫ +∞

−∞
φ(x)2R(x)2 h(x) dx− E

2
f{φ(X)}

}

= 1/N

{∫ +∞

−∞
φ(x)2R(x) f(x) dx− E

2
f{φ(X)}

}

= 1/N

{∫ +∞

−∞
φ(x)2

Ef{φ(X)}
φ(x)

f(x) dx− E
2
f{φ(X)}

}

= 1/N

{
Ef{φ(X)}

∫ +∞

−∞
φ(x) f(x) dx− E

2
f{φ(X)}

}

= 1/N
{
Ef{φ(X)} Ef{φ(X)} − E

2
f{φ(X)}

}

= 0

This seems to be an amazing result, as it implies that any sample obtained after applying this
change of measure results in the exact value, meaning also that a single sample is enough to
compute the desired measure. However, this result comes from a clearly impossible change of

measure since to be achieved (see (2.4)) it is necessary to have the value Ef{φ(X)}, which is
actually the value that the whole simulation is intended to obtain. Knowing the value of Ef{φ(X)}
makes it absolutely unnecessary to perform the estimation.

Anyway, despite this change of measure —call it the optimal— is clearly impossible, it
is the base around which some variants have been developed. In one of them, called Zero-
Variance [L’Ecuyer 2007b, L’Ecuyer 2011a, L’Ecuyer 2011b], different mechanisms attempt to
find a change of measure that is somehow “close” to the optimal one, leading to an esti-
mation that is also “close” to the exact value. Another variant, known as Cross-Entropy
[Ridder 2005, Rubinstein 2004], uses a metric (the Kullback-Leibler distance) and chooses a
change of measure that transforms the original probability distribution into a new one that is the
closest to the optimal one under this metric.

In the rest of this section, a very simple but illustrating example is presented. The function
whose expectation is of interest is φ(X) = X, and the corresponding probability density function
is:

f(x) =

{
0 x ≤ d, d > 0,

λ e−λ(x−d) x > d.

Figure 2.1(a) shows f(x), that is a shifted exponential distribution. Sampling from f(x) is very
simple, actually X(i) = d − logU/λ, i = 1, · · · , N , where U is a sample from a uniformly
distributed random variable in (0, 1). The expectation ofX is d+1/λ and the variance, Vf{X} =
1/λ2. Suppose that, for some purpose, this variance is high, and it is necessary to reduce it in order
to estimate accurately the expectation of φ(X) = X, from a “few” samples. It is possible to make
this estimation by means of Importance Sampling.

Let the following h(x) be the probability density function used in the application of Impor-
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xx

f(x) h(x)

d
(a) (b)

Figure 2.1: The functions involved in the Importance Sampling example

tance Sampling:

h(x) =

{
0 x ≤ 0

λ2x e−λx x > 0

Figure 2.1(b) shows h(x). Sampling from h(x) is still very simple because it is the distribution of
the sum of two exponentially distributed random variables with parameter λ. Therefore, X(i) =

logU1/λ − logU2/λ, i = 1, · · · , N , where U1 and U2 are samples from a uniformly distributed
random variable in (0, 1).

The likelihood ratio ratio is:

R(x) = f(x)/h(x) =

{
0 x ≤ d,

eλd/λx x > d,

and the variance, after the change of measure, Vh{X R(X)} = 1/λ2(λd+1)[eλd−(λd+1)]. With
an illustrative purpose, the values λ = 0.1 and d = 0.1 yield the following result: Vh{X R(X)} =
Vf{X}/19, 736.03. Then, at the expense of sampling two uniformly distributed values, instead
of one, every time, estimating the expectation of φ(X) is much more accurate after the change of
measure.

2.4 Splitting

The evolution of a Markov random process {X(t), t ≥ 0} corresponds to different trajectories in
its state space. Rare events are associated with regions of the state space that trajectories reach with
very low probability. The guiding principle of Splitting is to partition the state space into many
sub spaces, and to recursively multiply or split trajectories as soon as they get into sub spaces that
are somehow closer to the region of occurrence of the rare event.

The estimation made after splitting or multiplying trajectories is biased and has to be corrected
in order to recover the estimation corresponding to the original system. Proceeding this way, the
most promising trajectories are privileged and the variance of the estimator is reduced.

In the rest of this section Splitting is briefly introduced. In Chapters 3 and 4 some particular
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features and applications are presented.
Let {X(t), t ≥ 0} be a Markov process with discrete state space X , and let XA and XB be two

disjoint regions in X . Assume X(0) 6∈ XB . A quantity that is frequently of interest in different
performance and dependability problems, is the probability γ that, starting at t = 0, process
{X(t)} enters XB without having entered XA before. If τA is the instant when {X(t)} enters
XA the first time (or comes back to XA if X(0) ∈ XA) and τB is the instant when {X(t)} enters
XB the first time, then γ = P{τB < τA}. Regions XA and XB may be defined implicitly via an
importance function h : X → R as: XA = {x ∈ X : h(x) ≤ ℓ0} and XB = {x ∈ X : h(x) ≥ ℓ},
where ℓ0 and ℓ are two values in R (usually ℓ0 = 0 and ℓ > 0). Hence, if h(X(0)) = 0, τA is the
first time {h(X(t))} down–crosses ℓ0, whereas τB is the first time {h(X(t))} up–crosses ℓ.

Splitting [Garvels 2000, Glasserman 1996, L’Ecuyer 2007a, L’Ecuyer 2009,
Villén-Altamirano 1991] is a variance reduction technique aimed at making accurate esti-
mations of γ when {τB < τA} is a rare event. In a Splitting application, the state space of
{h(X(t))} is partitioned by a set of real values ℓ0 = 0 < ℓ1 < ℓ2 < · · · < ℓm = ℓ, as shown in
Figure 2.2(a). Given this partition, for i ≥ 1, τi = inf{t > 0 : h(X(t)) = ℓi > h(X(t−))} and
τ0 = inf{t > 0 : h(X(t)) = ℓ0}.

(a) (b)
τ0 τmτi

t t

{h(X(t))} {h(X(t))}

ℓ0

ℓ1

ℓi

ℓi−1

ℓm

...

...

Figure 2.2: Sample replications over the state space of {h(X(t))}

The event Di = {τi < τ0}, i = 1, 2, · · · ,m, is an indication that {h(X(t))} has up–crossed
threshold ℓi without having entered the region under threshold ℓ0 = 0. It is clear that Dm ⊂
Dm−1 ⊂ · · · ⊂ D2 ⊂ D1, where Dm = {τm < τ0} = {τB < τA} is the event whose probability
γm = γ is the quantity of interest. Hence,

γm = P{Dm} = P{Dm|Dm−1}︸ ︷︷ ︸
pm

P{Dm−1|Dm−2}︸ ︷︷ ︸
pm−1

· · · P{D2|D1}︸ ︷︷ ︸
p2

P{D1}︸ ︷︷ ︸
p1

=

m∏

i=1

pi.

The Splitting estimation of γm is based on this expression. If an estimator p̂i is obtained for
every pi, the estimation of γm is γ̂m =

∏m
i=1 p̂i. Unbiasedness of this estimator has been recently

proved in quite general settings by [Amrein 2011].
The process to obtain the estimators p̂i is as follows. If N0 replications of {h(X(t))}

are launched from t = 0, and R1 of them reach (up–cross) threshold ℓ1, p̂1 = R1/N0 is
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an unbiased (Crude Monte Carlo) estimator of p1. Splitting multiplies (splits) the replications
that up-crosses ℓ1, saving their state at the crossing point, and launching from there a number
N1 > R1 of new replications, towards ℓ2. If R2 of them reach threshold ℓ2, p̂2 = R2/N1

is an estimator of p2. Proceeding iteratively, the estimators p̂i, i = 2, · · · ,m, are Ri/Ni−1.
If threshold ℓm is reached by at least one replication of {h(X(t))}, the final estimation is:
γ̂m =

∏m
i=1 p̂i = R1/N0 R2/N1 R3/N2 · · · Rm/Nm−1. This mechanism is shown in Fig-

ure 2.2(b). By the action of splitting or multiplying, the method privileges the replications for
which the event Dm = {τm < τ0} is still likely to occur. According to the number of new copies
that any replication of {h(X(t))} is multiplied by or split into, Splitting supports two main im-
plementation variants: Fixed Splitting, where the number of new copies started from every hitting
point is a constant, Ni/Ri = αi > 1 ∀i, and Fixed Effort, where the number of trajectories created
at every hitting point is adjusted so as to let the total number of replications started from every
threshold (effort) be a constant, Ni = Fi ∀i. There is no general agreement about the variance
reduction benefits of each option. Fixed Effort avoids the risk of a combinatorial explosion on the
number of trajectories (which is possible in Fixed Splitting) providing, therefore, a closer control
on the execution times. Fixed Effort is the variant selected to support the experimental part of this
thesis (see Section 4.6).

The variance of the Splitting estimator was analysed by [Garvels 1998] who, under the as-
sumption that the p̂i’s are all independent and identically distributed, proved that the value of
V{γ̂m} can be approximated by γ2mm2(1− γ

1/m
m )/(γ

1/m
m S), where S = F1 + F2 + · · ·+ Fm−1.

[L’Ecuyer 2007a] analysed a simplified Fixed Effort setting where F0 = F1 = · · · = Fm−1 = F

and the p̂i’s are independent random variables such that pi = p = γ
1/m
m . In this setting the variance

V{γ̂m} can be approximated bymγ
2−(1/m)
m /F .

2.5 Conditional Monte Carlo

From basic probabilistic analysis it is simple to show that if some random variable can be condi-
tioned to the values of some other random variable, the variance after conditioning is lower than
the variance of the variable before conditioning. The fact of conditioning the variable of interest
to the observed values of some other variable, somehow reduces the state space of the original
variable and yields a variance reduction.

In the rest of this section Conditional Monte Carlo is briefly introduced. In Chapters 5 and 6
a more insightful analysis and some applications are presented.

Let V be a random variable and θ an event on the state space of V . The probability γ = P{θ}
can be determined by means of the indicator random variable I:

I =

{
1 if θ occurs,
0 otherwise,

because E{I} = P{θ}.
Suppose that V = f(X1,X2, · · · ,Xn), or just V = (X1,X2, · · · ,Xn), where {Xi}ni=1 is a

set of random variables. If the value of any of these variables is fixed, e.g. Xk = xk, the expected
value of I conditioned to xk is the fixed value E{I|Xk = xk}. As Xk is a random variable,
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E{I|Xk} is a random variable too, because its value depends on the value of Xk. Moreover:

E{E{I|Xk}} = E{I} = P{θ}

what means that E{I|Xk} and I are two random variables whose expectation is the value of inter-
est, γ. See that the possible values of I are only 0 or 1 whereas —in general— the possible values
of E{I|Xk} are real numbers between 0 and 1 (E{I|Xk} is the expectation of a variable that only
takes the values 0 or 1). If these two variables are available, in the sense that it is possible to gen-
erate samples according to their probability distributions, γ can be estimated making estimations
of either E{I} or E{E{I|Xk}}. It is interesting to see which one of these methods yield a more
efficient estimator.

From a simple variance analysis:

V{I} = E{V{I|Xk}}+ V{E{I|Xk}} (2.5)

thus,
V{I} ≥ V{E{I|Xk}} (2.6)

because there are no negative terms in (2.5). This expression is the key to analyze the accuracy of
the estimators of E{I} and E{E{I|Xk}}.

If I(i) and E{I|X(i)
k }, i = 1, · · · are, respectively, independent samples of I and E{I|Xk},

the following standard estimators:

γ̂1 =
1

N1

N1∑

i=1

I(i) and γ̂2 =
1

N2

N1∑

i=1

E{I|X(i)
k } (2.7)

are, respectively, unbiased estimators of the expected values of I and E{I|Xk} and, consequently,
of γ. The first one is the Crude Monte Carlo estimator. The second one is a variant, from now
on called Conditional Monte Carlo estimator. The variances of both are, respectively, V{γ̂1} =

V{I}/N1 and V{γ̂2} = V{E{I|Xk}}/N2. Therefore, due to expression (2.6), if N1 = N2,
V{γ̂1} ≥ V{γ̂2}, what means that γ̂2 is more accurate than γ̂1. A quantitative measure of the
accuracy increase is the ratio V{γ̂1}/V{γ̂2} or, if N1 = N2, V{I}/V{E{I|Xk}}.

However, in order to decide which one of these estimators is more efficient, the variance
comparison is not enough, it is also necessary to compare the computational efforts required to
obtain the samples I(i) and E{I|X(i)

k }. To get a sample I(i) it is necessary to build a sample of

V (i), what requires the sampling of X(i)
1 , X(i)

2 , · · · , and X
(i)
n , and then, given the values of these

components, to set I(i) to either 1 or 0. The generation of the samples E{I|X(i)
k } may not always

be easy. First, it is necessary to sample a value of Xk, and then to compute the expectation of I
conditioned to it. This computation is the most critical and —sometimes— difficult step in the
Conditional Monte Carlo estimation.

Given some measure of the trade-off between accuracy and computational effort (speedup, for
instance), it is possible to determine which one of the estimators, γ̂1 or γ̂2, is more efficient.
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Abstract

This chapter is devoted to two important characteristics of the Splitting estimator, namely, its bias
and its variance. The determination of these values is not straightforward in the general case.
However, under certain assumptions, unbiasedness can be easily proven and the variance can be
given by a closed expression. In this chapter, Fixed Splitting and Fixed Effort are described in
detail and they are analyzed for the particular case in which the estimators p̂i, i = 1, 2, · · · , i, are
mutually independent. Under this assumption, both, Fixed Splitting and Fixed Effort estimators,
are proved to be unbiased and their exact variances are determined.

3.1 Basic Fixed Splitting Setting

Consider a Fixed Splitting setting with m levels or thresholds, based on the ideas introduced in
Section 2.4. A number of independent trajectories of a random process are started from threshold

0 and they are simulated until they either reach threshold 1 or they come back to down–cross
threshold 0, in which case they are ended. The trajectories actually reaching threshold 1 are —all
of them— split into a fixed number of new trajectories, and all of them are simulated until either
they reach threshold 2 or down–cross threshold 0, in which case they are ended. The process
continues iteratively until one or more of the trajectories started from threshold m − 1 reach
threshold m or down–cross threshold 0, in which case they are ended. The fact of having at least
one trajectory up–crossing threshold m makes the Splitting estimation possible, as indicated in
Section 2.4.
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The following definitions apply to the setting under analysis (as the expression “down–crossing
threshold 0” comes up all the time, in the following description it will be replaced by the term
“ending”):

γi: the probability that a process trajectory up-crosses threshold i without ending.

pi: the probability that a process trajectory up-crosses threshold i without ending, given that this
trajectory has crossed threshold i− 1 without ending.

n1: the number of independent trajectories started from threshold 0 towards threshold 1.

ni: the number of trajectories that every trajectory reaching threshold i− 1 is split into.

Fi: the total number of independent trajectories started from threshold i− 1 towards threshold i.

Ri: the total number of trajectories that up-cross threshold i without ending.

Due to the nesting of the consecutive up-crossing events, the value of γm —usually the mag-
nitude of interest— is the following:

γm = p1p2 · · · pm−1pm· (3.1)

However, as the probabilities pi, i = 1, 2, · · · ,m are unknown (otherwise the Splitting appli-
cation would be unnecessary), they have to be estimated. Such estimations are achieved by means
of a Crude Monte Carlo per level: p̂i = Ri/Fi ∀i = 1, 2, · · ·m.

3.2 Fixed Splitting Estimation

The basic Splitting proposal is to estimate γm as:

γ̂m = p̂1p̂2 · · · p̂m−1p̂m

=
R1

F1

R2

F2
· · · Rm

Fm

=
R1

(n1)

R2

(R1n2)
· · · Rm

(Rm−1nm)

=
1

n1n2 · · ·nm
Rm·

It will be shown that this estimation is unbiased.
Trajectories starting from threshold i− 1 towards threshold i can be modelled by independent

Bernoulli random variables with parameter pi, with the following meaning: a value of 1 indicates
that the trajectory reaches threshold i without ending, a value of 0 indicates that the trajectory
ends before reaching threshold i. Figure 3.1 shows some trajectories of a Splitting replication in
terms of the Bernoulli random variables and also shows the probabilities involved in the following
calculation. The Bernoulli random variables are indexed in order to indicate the threshold they
start from and also the trajectory they belong to. As their pattern is: 1i1i2···im , its meaning follows
clearly from Figure 3.1.
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0

1

2

3

p1

p2

p3

γ1

γ2

γ3

11 12 13 1n1

131 132 133 13n2

1321 1322 1323 132n3
· · ·

· · ·

· · ·

Figure 3.1: A “pictorial” view of the model in terms of the Bernoulli random variables

Given that in the case under analysis the random variables p̂i, i = 1, 2, · · · , i, are mutually in-
dependent, it is clear that the Bernoulli random variables 1i1 , 1i1i2 , · · · 1i1i2···im , are also mutually
independent.

Considering the independent n1 trajectories starting from threshold 0 towards threshold 1,
modelled by the Bernoulli variables 1i1 , i1 = 1, 2, · · · , n1, with parameter p1, the number R1 of
trajectories up-crossing threshold 1without ending will be the number of these Bernoulli variables
assuming a value of 1:

R1 =

n1∑

i1=1

1i1 ·

Each one of the successful R1 trajectories is cloned or split into n2 new trajectories towards
threshold 2. Thus:

R2 =

n1∑

i1=1

1i1

(
n2∑

i2=1

1i1i2

)
=

n1∑

i1=1

n2∑

i2=1

1i11i1i2 ·

Finally:

γ̂m =
1

n1n2 · · ·nm
Rm =

1

n1n2 · · ·nm

n1∑

i1=1

n2∑

i2=1

· · ·
nm∑

im=1

1i11i1i2 · · · 1i1i2···im · (3.2)

Considering that the variables 1i1 , 1i1i2 , · · · 1i1i2···im , are mutually independent and the fact
that E{1i1} = p1, E{1i1i2} = p2, · · · , and E{1i1i2···im} = pm:

E{γ̂m} =
1

n1n2 · · ·nm

n1∑

i1=1

n2∑

i2=1

· · ·
nm∑

im=1

E{1i11i1i2 · · · 1i1i2···im} (3.3)

=
1

n1n2 · · ·nm
n1n2 · · · nm p1p2 · · · pm
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= p1p2 · · · pm = γm,

what proves that γ̂m is an unbiased estimator.

3.3 Variance of the Fixed Splitting Estimator

In this section the variance of the Fixed Splitting estimator is computed. The determination
—adapted here to the model in which this section is based— is due to Glasserman et al. in
[Glasserman 1996].

Let Sm be a sample of all the Bernoulli variables, up to the levelm. Based on Sm, the variance
of anm+ 1 threshold Splitting estimator can be expressed as:

σ2
m+1 = V{γ̂m+1}

= V{E{γ̂m+1|Sm}}+ E{V{γ̂m+1|Sm}}
= V {pm+1γ̂m}+ E{V{γ̂mp̂m+1|Sm}}
= p2m+1σ

2
m + E{γ̂2mV{p̂m+1}}

= p2m+1σ
2
m + E





γ̂2m
pm+1(1− pm+1)(

n1∑

i1=1

1i1

n2∑

i2=1

1i1i2 · · ·
nm∑

im=1

1i1i2···im−1im

)
nm+1





= p2m+1σ
2
m + E

{
γ̂2m

pm+1(1− pm+1)

(γ̂mn1n2 · · ·nm)nm+1

}

= p2m+1σ
2
m + E

{
γ̂m

pm+1(1− pm+1)

n1n2 · · ·nmnm+1

}

= p2m+1σ
2
m + E

{
p̂1p̂2 · · · p̂m

pm+1(1− pm+1)

n1n2 · · · nmnm+1

}

= p2m+1σ
2
m +

pm+1(1− pm+1)

n1n2 · · ·nmnm+1
E {p̂1p̂2 · · · p̂m}

= p2m+1σ
2
m +

p1p2 · · · pmpm+1(1− pm+1)

n1n2 · · ·nmnm+1
·

Solving this recurrence, the variance σ2
m can be written as:

σ2
m =

m∑

j=1




m∏

i=j+1

p2i


 p1p2 · · · pj(1− pj)

n1n2 · · ·nj

σ2
m = (p1p2 · · · pm)2

m∑

j=1

1− pj
(p1n1)(p2n2) · · · (pjnj)

= γ2m

m∑

j=1

1− pj
(p1n1)(p2n2) · · · (pjnj)

·
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3.4 Variance of the Fixed Splitting Estimator (a different approach)

The following determination, starting from a standard variance expression, is a different way of
developing the variance of the Fixed Splitting estimator.

V{γ̂m} = E{γ̂2m} − E{γ̂m}2

= E





(
1

n1n2 · · ·nm

n1∑

i1=1

n2∑

i2=1

· · ·
nm∑

im=1

1i11i1i2 · · · 1i1i2···im

)2


− p21p

2
2 · · · p2m

=
1

n2
1n

2
2 · · · n2

m

E





(
n1∑

i1=1

n2∑

i2=1

· · ·
nm∑

im=1

1i1 · · · 1i1i2···im

)2


− p21p

2
2 · · · p2m· (3.4)

The square of a sum is composed by: the sum of the square of every one of its terms, plus
two times the sum of the product of all the pairs of terms (considering only once pairs of the form
(a, b) and (b, a)).

Using the fact that 1i1 , 1i1i2 , · · · 1i1i2···im , are mutually independent plus the fact that, for a
Bernoulli random variable 1x with parameter px, E{12x} = E{1x} = px, and using also expression
(3.3), the expected value of the first part of the square of the sum reduces to:

E

{
n1∑

i1=1

n2∑

i2=1

· · ·
nm∑

im=1

(1i11i1i2 · · · 1i1i2···im)2
}

= n1n2 · · ·nmp1p2 · · · pm·

The remaining part requires a combinatorial analysis that can be better understood graphically.
The target is to determine the mean of a sum, in which all the terms has the form:

(1i11i1i2 · · · 1i1i2···im︸ ︷︷ ︸
(Ci)

)(1j11j1j2 · · · 1j1j2···jm︸ ︷︷ ︸
(Cj)

)

where

• both chains Ci and Cj are the product of a sequence of Bernoulli variables each one of them
“pointing” to thresholds 0, 1, · · · ,m.

• The elements of chains Ci and Cj must be completely different or:

– may have the same variable in the first position, being different the rest of them,

– may have the same variables in the first and second position, being different the rest of
them,

–
...

– may have the same variables in the first, second, third, · · · position, being different
only the last one.

A simple example with thresholds 1, 2, and 3 is shown in Figure 3.2. In this simple setting
n1 = 6, n2 = 3 and n3 = 2, being the corresponding probabilities p1, p2 and p3. Figure 3.2
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(a) shows that there is a number n1n2n3 of chains modelling n1n2n3 process trajectories that are
likely to reach threshold 3. In fact, when any of the variables belonging to these chains take the
value 0, the modelled trajectory immediately stops (i.e., it does not exist beyond this 0) and the
variables that come after, are never sampled. However from the combinatorial point of view all
the chains must be considered complete. The challenge is to count the number of all possible pairs
of chains, accepting that the expected value of all these pairs are terms in the square of the sum in
(3.4).

(a) (b)

(c) (d)

0

1

2

3

p1

p2

p3

n1

n2

n3

n1 − 1

n1 − 2

n1n2n3 (n1 − 1)n2n3

(n1 − 2)n2n3n2n3

Figure 3.2: Bernoulli Variables in a Simple Three Thresholds Setting

Proceeding in stages:

1. Chains Ci and Cj that are completely different.
Figure 3.2 (b) shows a chain Ci in thick line. There are (n1 − 1)n2n3 possible chains Cj to
complete the pair. Figure 3.2 (c) shows another Ci in thick line, for which it counts the same
number (n1 − 1)n2n3 of possible chains Cj . It is clear that there are n2n3 chains Ci (see
Figure 3.2 (c)) for which the referred (n1 − 1)n2n3 possible Cj complete the pair. Then,
the number of pairs of completely different chains detected so far is:

n2n3(n1 − 1)n2n3 = (n1 − 1)n2
2n

2
3·

The expected value of each one of them is:

E{Ci Cj} = E{1i11i1i21i1i2i3 1j11j1j21j1j2j3} = p21p
2
2p

2
3
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and therefore, the contribution of this set of pairs to the expression (3.4):

(n1 − 1)n2
2n

2
3 p

2
1p

2
2p

2
3·

However, starting the same counting process (as it has been done so far) from the thick line
chain in Figure 3.2 (d), the number of pairs detected will be:

(n1 − 2)n2
2n

2
3·

Finally, the number of pairs of completely different chains is:

(n1 − 1) + (n1 − 2) + · · ·+ (n1 − (n1 − 1)︸ ︷︷ ︸
1

)·

The total contribution of all of them to the expression (3.4) is:

[(n1 − 1) + (n1 − 2) + · · · + (n1 − (n1 − 1))]n2
2n

2
3 p

2
1p

2
2p

2
3·

Considering that [(n1−1)+(n1−2)+· · ·+(n1−(n1−1))] = n1(n1−1)/2, the expression
reduces to:

n1(n1 − 1)n2
2n

2
3

2
p21p

2
2p

2
3·

2. Chains Ci and Cj that have the same variable in the first position, being different the rest of
them.
Based on the result obtained so far, this calculation is quite straightforward, because there
will be as many identical sets as “first variables to share”. In the example of Figure 3.2, there
are n1 = 6 identical sets, all of them composed by two chains having as the first element
one of the n1 = 6 variables in the lowest level. The remaining variables, i.e. the ones that
start at threshold 1, deserve the same analysis that has been done in the previous item.

The expected value of these pairs of chains is:

E{Ci Cj} = E{1i11i1i21i1i2i3 1i11j1j21j1j2j3} = E{12i11i1i21i1i2i3 1j1j21j1j2j3} = p1p
2
2p

2
3,

and the total number of them is:

n1

[
n2(n2 − 1)n2

3

2

]
·

Consequently, the contribution to the expression (3.4) of pairs that have the same variable
in the first position and are different in the rest, is:

n1n2(n2 − 1)n2
3

2
p1p

2
2p

2
3·

3. Chains Ci and Cj that have the same variables in the first, second, · · · position, being
different only the last one.
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Considering that, for the current problem, the last variables are the ones that start from
threshold 2, and proceeding the same way than in the prior item, the expected value of each
one of these pairs of chains is:

E{Ci Cj} = E{1i11i1i21i1i2i3 1i11i1i21j1j2j3} = E{12i112i1i21i1i2i3 1j1j2j3} = p1p2p
2
3·

The total number of them is:

n1n2

[
n3(n3 − 1)

2

]
,

and the total contribution to the expression (3.4) of pairs that have the same variables in the
first positions and are different only in the last one is:

n1n2n3(n3 − 1)

2
p1p2p

2
3·

Based on the analysis of the simple example of Figure 3.2, it is possible to generalize the result
for the case ofm thresholds and for generic numbers n1, n2, · · · , nm:

V{γ̂m} =
1

n2
1n

2
2 · · ·n2

m

E





(
n1∑

i1=1

n2∑

i2=1

· · ·
nm∑

im=1

1i11i1i2 · · · 1i1i2···im

)2


− p21p

2
2 · · · p2m

=
1

n2
1n

2
2 · · ·n2

m

{
n1n2 · · ·nmp1p2 · · · pm + 2

[
n1(n1 − 1)n2

2 · · ·n2
m

2
p21p

2
2 · · · p2m+

n1n2(n2 − 1) · · · n2
m

2
p1p

2
2 · · · p2m + · · ·+ n1n2 · · · nm(nm − 1)

2
p1p2 · · · p2m

]}

−p21p22 · · · p2m

=
p1p2 · · · pm
n1n2 · · ·nm

[1 + (n1 − 1)n2n3 · · · nmp1p2p3 · · · pm + (n2 − 1)n3 · · ·nmp2p3 · · ·

· · · pm + (n3 − 1) · · · nmp3 · · · pm + · · ·+ (nm − 1)pm]− p21p
2
2 · · · p2m

=
p1p2 · · · pm
n1n2 · · ·nm

[(p1p2 · · · pm)(n1n2 · · ·nm) + (1− p1)(p2p3 · · · pm)(n2n3 · · ·nm)+

· · ·+ (1− pm−1)(pm)(nm) + (1− pm)]− p21p
2
2 · · · p2m

=
p21p

2
2 · · · p2m

n1n2 · · ·nm

[
(1− p1)

p1
n2n3 · · ·nm +

(1− p2)

p1p2
n3 · · ·nm + · · ·+ (1− pm−1)

p1p2pm−1
nm

+
(1− pm)

p1p2 · · · pm−1pm

]

= p21p
2
2 · · · p2m

[
(1− p1)

(p1)(n1)
+

(1− p2)

(p1p2)(n1n2)
+ · · ·+ (1− pm−1)

(p1p2 · · · pm−1)(n1n2 · · ·nm−1)

+
(1− pm)

(p1p2 · · · pm)(n1n2 · · · nm)

]
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= p21p
2
2 · · · p2m

m∑

i=1

(1− pi)

(p1n1) · · · (pini)

= γ2m

m∑

i=1

(1− pi)

(p1n1) · · · (pini)
·

That is exactly the same expression obtained in the previous section.

3.5 Basic Fixed Effort Setting

Consider now a Splitting setting with m levels or thresholds, where γi, pi, n1, ni, Fi and Ri, are
the same as defined in Section 3.1.

As in Fixed Splitting, there is a value of ni per level in Fixed Effort. But now the effort per
level, Fi = ni × Ri−1, is a fixed value. Thus, ni is a random variable whose values have to be
adjusted so as to let Fi be fixed.

The magnitude of γm can be calculated just like in (3.1):

γm = p1p2 · · · pm−1pm, (3.5)

where the probabilities pi, i = 1, 2, · · · ,m can be estimated by Crude Monte Carlo per level as:
p̂i = Ri/Fi ∀i = 1, 2, · · ·m.

3.6 Fixed Effort Estimation

The basic Splitting proposal is to estimate γm as:

γ̂m = p̂1p̂2 · · · p̂m−1p̂m

=
R1R2 · · ·Rm

F1F2 · · ·Fm
·

It will be shown that this estimation is unbiased.
Trajectories starting from threshold i−1 towards threshold i can be thought of as independent

Bernoulli random variables with parameter pi, just like in Section 3.1.
Consider F1 independent trajectories starting from threshold 0 towards threshold 1, modelled

by the Bernoulli variables 11i, i = 1, 2, · · · , F1, with parameter p1. Now all the Bernoulli ran-
dom variables starting at threshold 1 are considered as a set, independently of the starting point.
Therefore, the subscript ‘1i’ has two parts: a number —in this case, number 1— to indicate that
the referred variable models a trajectory that goes from threshold 0 to threshold 1, and the index
i, i = 1, 2, · · · , F1. The same nomenclature applies for the following thresholds. The number
R1 of trajectories up-crossing threshold 1 without ending will be the number of these Bernoulli
variables assuming a value of 1:

R1 =

F1∑

i=1

11i·
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Accepting that at least one of these trajectories actually reaches threshold 1 (i.e., accepting
R1 ≥ 1), the successful R1 trajectories will be cloned into n2 trajectories each, starting from
threshold 1 towards threshold 2. The value of n2 is adjusted so as to let F2 = n2 ×R1. Then, the
number of trajectories up-crossing threshold 2 will be:

R2 =

F2∑

i=1

12i,

under the same subscript convention.

Finally:

γ̂m =
R1R2 · · ·Rm

F1F2 · · ·Fm

=
1

F1F2 · · ·Fm

F1∑

i=1

11i

F2∑

i=1

12i · · ·
Fm∑

i=1

1mi

=
1

F1F2 · · ·Fm

F1∑

i=1

F2∑

i=1

· · ·
Fm∑

i=1

11i12i · · · 1mi.

Considering that the variables 11i, 12i, · · · , 1mi, are mutually independent and also the fact
that E{11i} = p1, E{12i} = p2, · · · , and E{1mi} = pm:

E{γ̂m} =
1

F1F2 · · ·Fm

F1∑

i=1

F2∑

i=1

· · ·
Fm∑

i=1

E{11i12i · · · 1mi}

=
1

F1F2 · · ·Fm
F1F2 · · ·Fm p1p2 · · · pm

= p1p2 · · · pm.

3.7 Variance of the Fixed Effort Estimator

The following variance determination for the Fixed Effort estimator has been developed, as
part of this thesis, following similar steps as in the determination of Glasserman et al. in
[Glasserman 1996], but introducing the necessary changes in the model to let it perform as Fixed
Effort instead of Fixed Splitting.

σ2
m+1 = V{γ̂m+1}

= V{E{γ̂m+1|Sm}}+ E{V{γ̂m+1|Sm}}
= V {pm+1γ̂m}+ E{V{γ̂mp̂m+1|Sm}}
= p2m+1σ

2
m + E{γ̂2mV{p̂m+1}}

= p2m+1σ
2
m + E

{
γ̂2m

pm+1(1− pm+1)

Fm+1

}
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= p2m+1σ
2
m +

pm+1(1− pm+1)

Fm+1
E
{
γ̂2m
}

= p2m+1σ
2
m +

pm+1(1− pm+1)

Fm+1
(σ2

m + γ2m)

=

[
p2m+1 +

pm+1(1− pm+1)

Fm+1

]
σ2
m +

pm+1(1− pm+1)

Fm+1
γ2m

=

[
p2m+1 +

pm+1(1− pm+1)

Fm+1

]
σ2
m +

pm+1(1− pm+1)

Fm+1

γ2m+1

p2m+1

=
(
p2m+1 + Vm+1

)
σ2
m + Vm+1

γ2m+1

p2m+1

= p2m+1

(
1 + E2

m+1

)
σ2
m + E2

m+1γ
2
m+1, (3.6)

where Vm+1 = pm+1(1− pm+1)/Fm+1 is the variance of the estimator p̂m+1 and E2
m+1 =

Vm+1/p
2
m+1 is the square of the relative error (coefficient of variation) at levelm+ 1.

Solving the recurrence in expression (3.6), the variance σ2
m can be written as:

σ2
m = γ2m

m∑

j=1

E2
j

m∏

i=j+1

(1 + E2
i ) (3.7)

= γ2m

m∑

j=1

(1− pj)

pjFj

m∏

i=j+1

(
1 +

(1− pi)

piFi

)
· (3.8)

3.8 Variance of the Fixed Effort Estimator (a different approach)

This variance determination for the Fixed Effort Splitting estimator, is a proposal of this thesis.
Given that the number of trajectories started from every threshold is fixed, the variances of the
individual estimators, p̂i, i = 1, 2, · · · ,m, have a compact expression: V{p̂i} = pi(1− pi)/Fi.
There is a formula due to Goodman in [Goodman 1962] that allows to calculate the variance of the
product of independent random variables, in terms of the individual variances of the terms that are
multiplied. This formula is, therefore, useful in this case. The variance of the Splitting estimator,
as the product of its individual components, is the following:

V{γ̂m} = V{p̂1p̂2 · · · p̂m}·

The formula proposed in [Goodman 1962], applied to this product, considering also that pi =

E{p̂i} and E2
i = V{p̂i}/E{p̂i}2 = (1− pi)/(piFi), becomes:

V{γ̂m} =
m∏

i=1

p2i

(
∑

i1

E2
i1 +

∑

i1<i2

E2
i1E

2
i2 +

∑

i1<i2<i3

E2
i1E

2
i2E

2
i2 + · · · + E2

1E
2
2E

2
3 · · ·E2

m

)

= γ2m

[
E2

1

(
1 +

∑

1<i1

E2
i1 +

∑

1<i1<i2

E2
i1E

2
i2 + · · ·+ E2

2E
2
3 · · ·E2

m

)
+ E2

2

(
1 +

∑

2<i1

E2
i1
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∑

2<i1

E2
i1 +

∑

2<i1<i2

E2
i1E

2
i2 + · · · + E2

3E
2
4 · · ·E2

m

)
+ · · ·+ E2

m−1

(
1 +E2

m

)
+ E2

m

]

= γ2m
[
E2

1(1 + E2)(1 + E3) · · · (1 + Em) + E2
2(1 + E3)(1 + E4) · · · (1 + Em)+

E2
m−1(1 + E2

m) +E2
m

]

= γ2m

m∑

j=1

E2
j

m∏

i=j+1

(1 + E2
i )

= γ2m

m∑

j=1

(1− pj)

pjFj

m∏

i=j+1

(
1 +

(1− pi)

piFi

)
·

That is exactly the same expression obtained in the previous section.
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Abstract

This chapter introduces an original proposal of this thesis in which Splitting is applied to improve
a well–known method called Creation Process, used in network reliability estimation. The re-
sulting proposal, called here Splitting/CP, is particularly appropriate in the case of highly reliable
networks, i.e. networks for which failure is a rare event. The chapter introduces the basis of Split-
ting/CP and presents a set of computational experiments based on network topologies taken from
the literature. The results of these experiments show that Splitting/CP is accurate, efficient and
robust, being therefore a valid alternative to the best known methods used in network reliability

estimation.

4.1 Introduction

A network model based on a graph G = (V, E), where V is the set of nodes and E the set of links,
augmented with a stochastic behaviour representing the probabilistic structure of failures in nodes
and links, is suitable for network reliability analysis. In the model used in this chapter nodes never
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fail, they are in an operational state all the time, while links fail independently and can only be
found in one of two states, operational or failed. Based on this model, the network reliability R

(unreliability Q) is defined as the probability that a set of terminal nodes K ⊆ V is connected (not
connected) in the sub–graph containing all the nodes in V but only the operational links (as for a
link being failed is the same as being removed from G).

This model, although very simple, has been employed in a wide number of application settings.
Among other cases, many examples can be found in the evaluation and the topology design of com-
munication networks, mobile ad hoc and tactical radio networks, evaluation of transport and road
networks, etc. [Cook 2007, Günnec 2007, Li 2004, Lin 2006, Marotta 2010, Marseguerra 2005,
Taboada 2008].

The exact computation of either R orQ is an NP–hard problem [Provan 1983], so that for large
networks their values can only be estimated. Monte Carlo simulation methods are then often used
to analyze these models. However, as shown in previous chapters, when Q is extremely small, the
accuracy of Standard Monte Carlo methods collapses.

If Q̂ is an unbiased Monte Carlo estimator of Q, its relative error can be defined as
V{Q̂}1/2/E{Q̂}, expression known as the coefficient of variation, also called square root of the
normalized variance. This relative error—the measure of accuracy in this context— grows, some-
times boundlessly, when the network unreliability Q goes to zero.

Much research has been focused on reducing the variance of Monte Carlo estimators
of Q in order to reduce their relative error [Cancela 1995, Cancela 2003, Cancela 2008,
Easton 1980, Elperin 1991, Fishman 1986, Hui 2003, Hui 2005, Karp 1983, Kumamoto 1977,
Kumamoto 1980, Lomonosov 1994, Ross 1994]. A complete review of these methods can be
seen in [Cancela 2009].

Splitting is a variance reduction technique that successfully increases the accuracy of
Monte Carlo methods in rare event probability estimation [Garvels 2000, Glasserman 1996,
L’Ecuyer 2007a, Villén-Altamirano 1991]. Although Splitting has been much used in per-
formance and performability analysis, it has been scarcely applied for simulating highly re-
liable systems. Some applications in this context are due to [Villén-Altamirano 2007] and
[Villén-Altamirano 2010], where the reliability and availability estimations of repairable systems
are analysed. Other recent results on this subject have been published by [Botev 2010] (which
tackles some static systems) and [Kroese 2013]. In the present work, Splitting is adapted to es-
timate static network reliability measures. This application of Splitting permits to increase the
accuracy of a Monte Carlo method based on the so–called Creation Process [Elperin 1991].

The improvement achieved by the application of Splitting to the Creation Process also affects
the computational efficiency, making it possible to deal with the estimation of extremely small un-
reliabilities in a reasonable time. Actually, the resulting method, called in this thesis Splitting/CP,
performs in the order of the best–known algorithms proposed for the estimation of the unreliabil-
ity of highly reliable networks. Another feature that has been subject to empirical analysis in this
work is the high degree of robustness of Splitting/CP when the network unreliability varies from
high or moderate values down to extremely low values.

The ideas presented in this chapter have resulted in the following publications: [Murray 2008a,
Murray 2008b, Murray 2008c, Murray 2010, Murray 2013b].

The rest of the chapter is organized as follows. Section 4.2 introduces network models and
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gives an outline of the Creation Process. Section 4.3 presents the application of Splitting to the
Creation Process. Implementation details and experimental results are given in Sections 4.4, 4.5,
4.6 and 4.7. Section 4.8 shows an empirical analysis of the robustness of the resulting method.
Conclusions and some ideas for the future work can be found at the end of this thesis, in Sec-
tion 7.2.

4.2 Network Reliability Modelling

An undirected graph G = (V, E), where V is a set of v absolutely reliable vertices or nodes and
E a set of e independent unreliable edges or links, is a frequently used model in communication
network reliability analysis. The state of the links is modelled by independent binary random
variables Xi, i = 1, 2, · · · , e, such that: Xi = 1 when the ith link is operational and Xi = 0

when the ith link is failed. For a link to be failed means “to be removed from G”, whereas to be
operational means “to perfectly perform the tasks it was committed to”. Hence, ri = P{Xi = 1}
is the single link reliability and qi = 1− ri = P{Xi = 0} is the single link unreliability. The state
of all the links is modelled by the vector X = (X1,X2, · · · ,Xe).

The network is operational (failed) when some structure function φ(X) equals 1 (equals 0).
The network reliability is defined as R = P{φ(X) = 1}, and the unreliability as Q = P{φ(X) =

0}. Typically, the network is considered operational and, as a consequence, φ(X) = 1, when
some subset of nodes K ⊆ V is connected in the sub–graph containing all the nodes in V but
only the operational links. This definition leads to the concept of K–terminal connectivity, that
includes two special cases: s–t connectivity, for the case where K = {s, t}, being s and t two
nodes in V , and all–terminal connectivity, when K = V .

Crude Monte Carlo estimations of network reliability and unreliability can be computed, re-
spectively, by the unbiased estimators:

R̂ =
1

N

N∑

i=1

φ(X(i)) and Q̂ =
1

N

N∑

i=1

(1− φ(X(i))),

whereX(i), i = 1, · · · , N are independent samples ofX.
As a consequence of, say, changes in the single reliabilities ri, due to which the network

becomes more reliable, the relative error V{Q̂}1/2/E{Q̂} grows because E{Q̂} goes to 0 faster
than V{Q̂}1/2 (observe this in a Crude Monte Carlo estimation: V{Q̂}1/2 = (Q(1 − Q)/N)1/2

and E{Q̂} = Q). In the case of highly reliable networks, accurate estimations require a very small
value of V{Q̂} that can only be achieved with a very large sample size, N .

In the Creation Process [Elperin 1991] the link states are supposed to evolve in time, be-
ing all of them failed at time t = 0, and becoming operational at times τi, i = 1, 2, · · · , e,
exponentially distributed with parameters λi. The network then turns into a stochastic dy-
namic graph G(t) = (V,F(t)), F(t) ⊆ E , t ≥ 0, corresponding to the stochastic process
{X(t) = (X1(t),X2(t), · · · ,Xe(t)), t ≥ 0}. In this model Xi(t) = 1 (ith link operational)
if t ≥ τi and Xi(t) = 0 (ith link failed) if t < τi. Times τi are called “repair times”. Since the
probability that the ith link becomes operational at time t or earlier is P{τi ≤ t} = 1− e−λit, the
choice of λi = − ln(qi) makes the probability that the ith link is operational at t = 1 be exactly
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the single link reliability ri. As a consequence, the probability that the network is operational
(resp. failed) at t = 1 is R (resp. Q). In symbols, R = E{φ(X(1))} and Q = E{1− φ(X(1))}.

If the repair times are arranged as a sequence, they can be seen as the trajectory of a stochastic
process. This approach makes the Creation Process subject to the application of Splitting, as it
will be introduced in the following section.

4.3 Splitting/CP

At every single replication of the Creation Process, there is one exponentially distributed re-
pair time per link. Once these times are sampled, they may be arranged as a sequence
T = {τ(1), · · · , τ(j), · · · , τ(e)}, where τ(1) ≤ · · · τ(j) ≤ · · · τ(e) (T is the order statistics of
{τ1, · · · , τe}). However, to make sequences T subject to the application of Splitting, it is better to
sample the times τ(i) according to the well–known sampling method that will be described next.

Let λ(τ(i)) be the parameter of the Exponential random variable from which the time τ(i) has
been sampled (a random variable). Let T i = {τ(1), τ(2), · · · , τ(i)}, 1 ≤ i ≤ e, with T 0 = ∅, be
a partially sampled sequence, and Λi = {λ(τ(1)), λ(τ(2)), · · · , λ(τ(i))} the parameters associated
with the repair times in T i (thus, Λe = {λ1, · · · , λe}). Let Λ̄i be the set of parameters that are
not in Λi, i.e. the parameters of the links whose repair time has not been sampled yet. Calling
Si =

∑
j:j≤i λ(τ(j)) and S̄

i =
∑

j:j>i λ(τ(j)), then, once T i is already sampled:

• τ(i+1) = τ(i) + ∆, where ∆ can be sampled from an Exponential random variable with
parameter S̄i.

• A link with parameter λj , whose repair time has not been sampled yet, has a probability
λj/S̄

i to be the next one in the sequence and can, therefore, be sampled accordingly.

Every sequence T determines a path of the stochastic process {φ(X(t))}. Two replications of
{φ(X(t))} are shown in Figures 4.1(a) and 4.1(b). In both of them there is a particular repair time
τ(c) such that φ(X(t)) = 0 if t < τ(c) and φ(X(t)) = 1 if t ≥ τ(c).

(a) (b)

11

t = 0 t = 0t = 1 t = 1
τ(1) τ(1)τ(2) τ(2)τ(j) τ(j)τ(c) τ(c)

t t

{φ(X(t))} {φ(X(t))}

Figure 4.1: Two replications of the stochastic process {φ(X(t))} as a function of a sequence T

Event E = {φ(X(1)) = 0} occurs if the network becomes operational after t = 1, therefore
Q = P{E}.

In the basic simulation of the Creation Process, the estimator Q̂ is the ratio between the number
of successful events E and the total number of replications or, equivalently, the ratio between the
number of sequences for which τ(c) ≥ 1 and the total number of sampled sequences.
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A proposal of this thesis is to see the sequences T = {τ(1), τ(2), · · · , τ(e)} as the replications
of a random process, and to apply Splitting to the simulation of this process. To do this, the interval
[0, 1] has to be partitioned by a set of thresholds u0 = 0 < u1 < u2 < · · · < um = 1, as shown
in Figure 4.2(a). This partition defines Ei = {φ(X(ui)) = 0}, k = 1, 2, · · · ,m, as the indicator
events that the network is still failed at t = ui. In view of the ideas of Section 2.4, Q = P{Em}
and Q̂ =

∏m
i=1 p̂i. The estimators p̂i can be obtained separately, according to the following mech-

anism: start one or more sequences T from t = 0 and then (i) cancel the ones for which event E1

does not occur and (ii) split the ones for which event E1 occurs. Proceed the same way with all the
new sequences started from u1, i.e. cancel or split at threshold u2. Keep repeating the mechanism
until threshold um = 1 is reached. Finally, p̂i = Ri/Ni−1, k = 1, 2, · · · ,m, whereRi is the num-
ber of sequences crossing threshold ui and Ni−1 the total number of sequences actually launched
from threshold ui−1. The resulting estimator is Q̂ = R1/N0 R2/N1 R3/N2 · · · Rm/Nm−1.

The preceding ideas are the basis of the proposed method, called here Splitting/CP (Splitting
on the Creation Process). Thresholds are intuitively defined in terms of time, while most Splitting
methods in the literature define them in terms of a level function over the random process’s state
space. However, a function like {H(t) = t I{φ(X(t))=0}, t ≥ 0}, where I{e} = 1 if event e
occurs and I{e} = 0 otherwise, can be used to see that there is a formal equivalence between both
approaches.

1

(a) (b)

1

u0 = 0

u0

u1

u1

u2

u2

u3

u3

um = 1

τ(1) τ(1)τ(2) τ(2)τ(j) τ(j)τ(c) τ(c)

t t

{φ(X(t))}

{H(t)}

· · ·

...

Figure 4.2: The Same Replication on the Stochastic Processes {φ(X(t))} and {H(t)}

This function maps the space of sequences T = {τ(1), · · · , τ(j), · · · , τ(e)} into the state space
of the random process {H(t)} (see Figure 4.2(b)). The estimators Q̂ obtained in both cases, either
directly on {φ(X(t))} or by the application of Splitting on {H(t)}, are identical.

4.4 Implementation Guidelines

An important issue in Splitting/CP is how to split trajectories every time a threshold is crossed.
Suppose that T = {τ(1), · · · , τ(x), τ(x+1)} is under construction, with τ(x) < ui < τ(x+1) (recall
that τ(x+1) = τ(x) + ∆, where ∆ is a sample of an Exponential random variable with parameter
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S̄x+1). Suppose also that the network is still failed at time τ(x+1), meaning that event Ei has
actually occurred. Trajectory T must therefore be split at t = ui. New statistically equivalent
values τ(y) (as many as necessary) can be sampled in place of τ(x+1). That is τ(y) = ui + ∆,
sampling a new value of ∆, and a new repaired link, every time. Then, the values of τ(y) define
new trajectories starting from threshold ui.

A problem arising in many Splitting implementations is the considerable computational effort
necessary to simulate the process since any threshold is crossed until the trajectory eventually
“dies”. In the most general case, after any threshold cross, the process may follow an up and down
evolution before the final condition is reached (i.e. before it falls below ℓ0, in terms of Section 2.4).
In Splitting/CP this problem does not arise. The only wasted effort for any “dying” trajectory is
the one devoted to take it closer to the next threshold but, if the next threshold is not reached, the
trajectory is just discarded, with no additional effort. This is shown in Figure 4.2(a). After process
{φ(X(t))} crosses threshold u2, three more links are sampled, the third of which in time τ(c). If
the third link would have been any other one, threshold u3 would have been crossed. Therefore,
with a computational effort of three (possibly a few more) sampled links, threshold u3 could have
been crossed, whereas after a computational effort of exactly three sampled links, the trajectory
immediately stops and no additional effort is needed.

Efficiency and accuracy of Splitting depend on the number of thresholds, m. But the optimal
value ofm is hard to find and, therefore, the choice of this number is not straightforward. Actually,
there is no general procedure to set the value of m, only some recommendations and guidelines
derived from the analysis of some specific models are available. One of these recommendations
comes from [Villén-Altamirano 2002] who proved that, in the RESTART variant, the optimal
value of m is (lnQ)/(ln 0.5) − 1. Other contributions on this issue are due to [Garvels 2000]
and [L’Ecuyer 2007a] who, after the analysis of very simple Fixed Effort settings, concluded that
m = −(lnQ)/2 maximizes the efficiency of the Splitting estimator.

Even when the models used by [Villén-Altamirano 2002], [Garvels 2000] and
[L’Ecuyer 2007a] do not entirely match the Splitting/CP model, the values of m that they
proposed can be used as a starting point in a set of iterations or pilot runs, in order to find the most
appropriate value of m in a Splitting/CP simulation. The lack of a value of Q for the very first
pilot run can be solved using, in place, an upper bound (QU ), a lower bound (QL) or any value Qi

between these bounds (QL < Qi < QU ). Upper and lower bounds on Q can usually be found by
means of several network models analysis. Once the first pilot run is done, an estimation of Q is
available for the next pilot runs.

[Villén-Altamirano 2006] showed that the RESTART variant is very robust against changes
in the values of m. Given this conclusion, the selection of m does not seem to be worth much
effort, because any value out of a wide set should work as well. This fact was experimentally
verified during the development of Section 4.5 where, after a few pilot runs in every experiment,
a suitable value of m was found. It is interesting to remark that, in most of the experiments,
the value of m finally selected was quite close to the expression (lnQ)/(ln 0.5) − 1 proposed in
[Villén-Altamirano 2002].
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4.5 Experimental Setting

A set of benchmark network topologies to be used in the experimental phase of this chapter is
next introduced. These topologies have been widely used in the network reliability literature for
computational studies and benchmarking purposes, and they have been chosen in order to support
direct comparison of the behaviour of Splitting/CP with results from other papers.

The referred network topologies are the following:

Easton–Wong Network, shown in Figure 4.3. This network is composed by three types of links:
Horizontal (qH ), Vertical (qV ) and Diagonal (qD). Two versions of it were used: EW-1
with single link unreliabilities qH = 0.02, qV = 0.01 and qD = 0.001, and EW-2 with
qH = 0.005, qV = 0.01 and qD = 0.0005, both of them performing the all–terminal
connectivity model.

qD

qH

qV

Figure 4.3: Easton–Wong Network

Dodecahedron Network, shown in Figure 4.4. This topology was used in two different versions,
one of them with equi–reliable links and the other one with two types of links. In the latter
case some of the links (dashed lined, depicting the minimum spanning tree ) have a “low”
unreliability qL, and the rest (solid lined, resembling wireless backup links) have a slightly
“higher” unreliability qH . Based on this network, the s–t and the all–terminal connectivity
models were implemented (the dark color nodes are s and t).

6×6–Grid Network, shown in Figure 4.5. In this case the K–terminal connectivity, for the case
of equi–reliable links, was implemented.

Ci Networks, i = 10, 15, 20, 25, 30, 40, 50, also known as complete networks, for which only the
all–terminal connectivity, with equi–reliable links, was implemented.

All the experiments were performed in a cluster Sun Fire X2250 Server, with processor Quad
Core Intek Xeon Processor Model L5420 (2.50GHz, 1333 MHz, 50W), RoHS–5.
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qL

qH

Figure 4.4: Dodecahedron Network Figure 4.5: 6×6–Grid Network

4.6 Numerical Comparisons

In this section Splitting/CP is compared with many well–known methods used in network re-

liability estimation, namely: RVR [Cancela 2003], Sequential Construction and Destruction
[Easton 1980], Creation, Destruction and Merge Process [Elperin 1991], Bound-Based Sampling
[Fishman 1986, Kumamoto 1977], Leap–Evolve and Tree–Merge [Hui 2003], Cross Entropy over
Merge, Permutation and Crude Monte Carlo [Hui 2005], Total Hazard [Jun 1992], Failure Sets
Method [Karp 1983], and Dagger [Kumamoto 1980].

To make the comparisons, different experiments, designed on the basis of previous papers (see
Section 4.5), have been performed. These experiments consist of running simulations over selected
network topologies and obtaining an unreliability estimation together with measures of precision
and efficiency. Actually the most interesting results of the experiments are not the estimations
themselves, but the precision and efficiency of the methods, instead. This way, the results of the
Splitting/CP procedure are compared to those published in the referred papers.

If Q̂ is the network unreliability estimator obtained by the method under analysis in time t

(either Splitting/CP or any of the other ones), with expectation E{Q̂} = Q and variance V{Q̂},
and Q̂c is the corresponding estimator obtained by Crude Monte Carlo in time tc, the following
notation applies for the results shown in this section:

RE = V{Q̂}1/2/E{Q̂}, the Relative Error (RE × 100 in the cases where it is referred to as a
percentage).

VR = V{Q̂c}/V{Q̂}, the Variance Ratio, that shows the precision improvement of the method
under analysis over Crude Monte Carlo for runs that share a common parameter such as the
sample size or the number of replications.

W= (V{Q̂c}× tc)/(V{Q̂}× t), the Speedup, also referred to as the Precision Gain, as it shows
the precision improvement of the method under analysis over Crude Monte Carlo given a
fixed computational time or, alternatively, the time improvement for a given precision.

The determination of either W or VR requires a reliable Crude Monte Carlo estimation of Q.
Such estimation can only be obtained when the sample size N is considerably larger than 1/Q. If
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N ≤ 1/Q, the number of samples for which the network state is failed tends to 0, and so do the
crude estimator Q̂c, its variance V{Q̂c} and the product V{Q̂c} × tc. Nevertheless, the true value
of V{Q̂c} is Q × (1 − Q)/N and, therefore, V{Q̂c} × tc = Q × (1 − Q)/(N/tc). As (N/tc)

is a constant, the product V{Q̂c} × tc is a constant as well. Finally, as the product V{Q̂c} × tc
is independent of the sample size N and, as long as the true value of Q (or, at least, a precise
estimation) is known, it suffices to determine the constant (N/tc) from a not necessarily too long
run, and then to make V{Q̂c} × tc = Q× (1−Q)/(N/tc).

In every one of the following experiments, a set of pilot runs was performed to select the best
value ofm. All the experiments report the value ofm that has been used.

The Splitting/CP method was programmed in CWEB [Knuth 1994], using the gcc compiler.
The variant selected in all cases was Fixed Effort. Simulations proceeded as follows: K trials
were done, being each one of them a single Fixed Effort simulation in which F trajectories were
launched. Every one of theK trials reported an estimate Q̂i. As the exact variance of the estimator
Q̂ is unknown, an unbiased estimation V̂{Q̂} is reported in its place (actually, in all the experi-
ments the values of RE, VR and W were obtained using V̂{Q̂} in place of V{Q}). Based on the
data collected from the experiments, the final Splitting/CP estimate, and the variance estimation,
were calculated as:

Q̂ =
1

K

K∑

i=1

Q̂i V̂{Q̂} = 1

K − 1

[
1

K

(
K∑

i=1

Q̂2
i

)
− Q̂2

]
.

The sample size of the Splitting/CP simulations is accepted to be N = K × F .
In the rest of this section, the results of the experiments are shown. As said before, the most

important ones are those that reflect the behaviour of the different methods in the sense of preci-
sion (RE, VR) and efficiency (t, W). However, in all the experiments, some estimates Q̂ are also
reported, as they give information about the rarity of the failure events.

4.6.1 RE and W on the Easton–Wong Network all–terminal connectivity

Table 4.1 shows RE andW for the Easton–Wong Network. Results for Merge Process, Destruction
Process and Sequential Destruction are taken from the work of [Elperin 1991]. The sample sizeN
was 104 (K = 20 and F = 500) for all methods and the number of thresholds m was 5 for EW-1
and 12 for EW-2.

The relative errors of Splitting/CP are higher than those of the other methods. However, in the
Speedup evaluation Splitting/CP outperforms the other techniques. This indicates that the Split-
ting/CP execution time per replication (related toCrude Monte Carlo) is lower than the other meth-
ods, and that the overall trade–off precision–computational time is also better for Splitting/CP. The
performance improvement of Splitting/CP is more significant when the network is more reliable.

4.6.2 W on the Dodecahedron Network s–t connectivity

Simulations were executed on the Dodecahedron Network with equi–reliable links, spanning five
unreliability values ranging from 0.50 which is very high, up to 0.02 which is a low —but not an
extremely low— value. The results are shown in Table 4.2, where the SpeedupW is presented as a
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Table 4.1: Easton–Wong Network, all–terminal connectivity

Network

Measure Method EW–1 EW–2

Q̂ Merge Process 4.38E−02 5.38E−03
Splitting/CP 4.38E−02 5.47E−03

RE Destruction Process 0.9% 1.6%
Merge Process 0.6% 1.2%
Splitting/CP 1.7% 2.5%

W Destruction Proces <1 1.5
Merge Process 3.4 5.4
Sequential Destruction 2.4 7.6
Splitting/CP 4.1 10.6

function of the network unreliability. The sample size N was 104 (K = 20 and F = 500) and for
Splitting/CP, the number of thresholds m was set to 2, 5, 6, 11 and 16 respectively. Values for all
previously published methods are taken from the work of [Elperin 1991], except for the RVR-SP
measures that come from the article by [Cancela 2003].

Some methods —like Failure Sets Method and, particularly, RVR–SP— exhibit extremely
high values of W in some particular cases. Failure Sets Method stands extremely high for a Single
Link unreliability of 0.05 while RVR–SP is, by far, the best in all cases indicating that, besides
being a very efficient method it fits particularly well to the Dodecahedron Network topology.
Except for these particular cases, Splitting/CP is in the order of the average of all other methods.
As expected, the Speedup of Splitting/CP grows together with the network reliability.

Table 4.2: Dodecahedron Network, s–t connectivity

Single Link unreliability qi, i = 1, 2, · · · , 30
Measure Method 0.50 0.20 0.10 0.05 0.02

Q̂ Merge Process 7.10E−01 3.58E−02 2.82E−03 2.88E−04 1.67E−05
RVR–SP 7.10E−01 – 2.88E−03 2.95E−04 1.70E−05
Splitting/CP 7.18E−01 3.77E−02 2.80E−03 2.96E−04 1.69E−05

W Destruction Process <1 <1 <1 1.30 8.20
Merge Process 0.67 2.00 8.80 55.70 495.00
Dagger 1.56 – 1.81 1.91 –
Sequential Construction 0.68 – 1.40 2.71 –
Bound based sampling 0.56 – 12.30 136.00 –
Failure Sets Method 0.05 – 0.30 3,714.40 –
Total Hazard 0.12 – 6.63 250.10 386.00
RVR–SP 54.60 – 2,040.00 25,100.00 507,000.00
Splitting/CP 0.74 1.85 12.25 27.89 333.41
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4.6.3 RE and t on the Dodecahedron Network all–terminal connectivity

Results are shown in Table 4.3. The RVR–SPmeasures are taken from the work of [Cancela 2008],
and the other results are taken from the article by [Hui 2003], where a set of methods were
compared on the Dodecahedron Network in two versions, with different values for qL and qH .
The sample size N was 106 (K = 2000 and F = 500) for all the experiments and the num-
ber of thresholds for Splitting/CP, 16 for the case of {qL = 10−2, qH = 10−3} and 25 for
{qL = 10−2, qH = 10−6}. The execution time, t, consigned in the third row of the table, is
measured in seconds.

Splitting/CP appears to be one of the fastest methods, only exceeded by RVR. From the accu-
racy point of view (RE) Splitting/CP does not behave as well as the rest, but considering accuracy
together with execution time, Splitting/CP behaves around the average of the rest of the methods.

Table 4.3: Dodecahedron Network, all–terminal connectivity

Single Link Unreliability

qH =1E−03 qH =1E−06
Measure Method qL =1E−02 qL =1E−02

Q̂ Exact Determination 7.90E−07 7.04E−10
Merge Process 7.92E−07 7.03E−10
Leap Evolve (0.15) 7.89E−07 7.05E−10
Leap Evolve (0.25) 7.89E−07 7.05E−10
Tree Merge (1+) 7.85E−07 7.04E−10
Tree Merge (2+) 7.91E−07 7.04E−10
RVR–SP 7.91E−07 7.04E−10
Splitting/CP 7.84E−07 6.96E−10

RE Exact Determination – –
Merge Process 0.15% 0.14%
Leap Evolve (0.15) 0.19% 0.24%
Leap Evolve (0.25) 0.29% 0.68%
Tree Merge (1+) 0.60% 0.13%
Tree Merge (2+) 0.14% 0.000061%
RVR–SP 0.13% 0.07%
Splitting/CP 0.63% 0.71%

t Exact Determination 1488 1488
Merge Process 813 812
Leap Evolve (0.15) 108 47
Leap Evolve (0.25) 43 32
Tree Merge (1+) 53 53
Tree Merge (2+) 82 82
RVR–SP 4 2
Splitting/CP 31 40

4.6.4 RE on the 6×6–Grid Network K–terminal connectivity
Table 4.4 shows the results. The RVR–SP measures are taken from the work of [Cancela 2008];
the other method’s results are taken from the article by [Hui 2005], where a set of techniques,
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improved by Cross Entropy, were compared based on simulations on the 6×6–Grid Network, in
two different equi–reliable conditions. The sample size N was 106 (K = 2000 and F = 500) and
the number of thresholds m, 25 for qi = 10−3 and 49 for qi = 10−6.

In this experiment Splitting/CP yields a better performance than the methods supported by
Cross Entropy, except for the Merge Process and for RVR.

It is worth noting that both variants associated to Crude Monte Carlo simulation (either direct
or supported by Cross Entropy) are not even able to make a reasonable estimation of the unre-
liability, Q̂. Clearly a number of replications N=106 is extremely low for unreliabilities in the
order of 106 and even worse for 1012. Concerning the relative error, Splitting/CP yields a better
performance than most methods supported by Cross Entropy, except for the Merge Process and
for RVR.

Table 4.4: 6×6–Grid Network, K–terminal connectivity
Single Link unreliability

qi, i = 1, 2, · · · , 6
Measure Method 1E−03 1E−06

Q̂ CE–Merge Process 4.00E−06 4.00E−12
Merge Process 4.01E−06 4.00E−12
CE–Permutation Monte Carlo 4.02E−06 4.00E−12
Permutation Monte Carlo 3.95E−06 4.01E−12
CE–Crude Monte Carlo 1.30E−06 8.60E−14
Crude Monte Carlo 6.00E−06 –
RVR–SP 4.02E−06 4.01E−12
Splitting/CP 4.02E−06 4.00E−12

RE CE–Merge Process 0.15% 0.15%
Merge Process 0.17% 0.18%
CE–Permutation Monte Carlo 1.18% 1.28%
Permutation Monte Carlo 2.03% 2.10%
CE–Crude Monte Carlo 48.91% 90.87%
Crude Monte Carlo 40.82% –
RVR–SP 0.24% 0.22%
Splitting/CP 0.48% 0.66%

CE-. . . indicates “Cross Entropy over . . .”

4.6.5 RE, VR and W on the Complete Networks all–terminal connectivity

Table 4.5 shows the results of the experiments obtained with Splitting/CP and also results taken
from the work of [Elperin 1991] and [Cancela 2008]. Simulations were carried out on the suite of
complete networks Ci, i = 10, 15, 20, 25, 30, 40, 50 for the all–terminal connectivity, with equi–
reliable links, qi = 0.55. The sample size N was 104 (K = 20 and F = 500) and the number of
thresholds m, respectively, 5, 13, 14, 21, 24, 28 and 27.

This experiment shows that the efficiency of Splitting/CP declines as the network graph be-
comes more “dense” (in terms of proportion of edges in relation to nodes). The Graph Density,
defined as 2|E|/(|V|(|V|−1)), equals 1.00 for the complete networks, 0.16 for the Dodecahedron,
0.10 for the 6×6–Grid Network and 0.02 for the Easton–Wong network.
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Table 4.5: Complete Networks, all–terminal connectivity, with qi = 0.55

Network

Mea-

sure

Method C10 C15 C20 C25 C30 C40 C50

Q̂ Merge
Process

4.56E−02 3.46E−03 2.32E−04 1.47E−05 8.89E−06 – –

RVR–SP 4.59E−02 3.47E−03 2.33E−04 1.47E−05 8.86E−06 2.99E−09 9.49E−12
Splitting/CP 4.76E−02 3.38E−03 2.44E−04 1.47E−05 8.48E−07 3.27E−09 9.51E−12

RE Merge
Process

0.54% 0.57% 0.53% 0.50% 0.47% – –

RVR–SP 0.11% 0.11% 0.05% 0.03% 0.05% 0.02% 0.07%
Splitting/CP 2.20% 2.21% 2.72% 3.76% 3.74% 4.10% 5.47%

VR Merge
Process

7.00E+01 8.87E+02 1.52E+04 2.70E+05 5.08E+07 – –

RVR–SP 2.72E+02 5.54E+03 1.10E+05 2.11E+06 4.27E+07 1.69E+09 6.47E+12
Splitting/CP 3.99E+00 6.32E+01 5.28E+02 4.83E+03 8.86E+04 1.66E+07 3.51E+09

W Merge
Process

2.10E+01 1.69E+02 3.28E+03 4.72E+04 7.30E+06 – –

RVR–SP 8.16E+02 2.16E+03 1.03E+04 7.44E+04 7.67E+05 1.54E+07 3.43E+10
Splitting/CP 0.95E+00 7.26E+00 5.04E+01 3.10E+02 4.51E+03 5.80E+05 8.86E+07

4.7 Splitting/CP Efficiency

In this section Splitting/CP is subject to simulation analysis on the Dodecahedron Network, for
the s–t connectivity model, in order to observe the accuracy of the estimations as a function of the
network unreliability. The results reported are the relative error and the execution time, t, of the
simulations (measured in seconds). The experiments were repeated for four different values of the
sample size N (with the values of K , 80, 125, 200 and 2000, and the values of F , respectively,
1250, 8000, 50000 and 50000). For the single link unreliabilities of 10−1, 10−2, 10−3, 10−4,
10−5, 10−6 and 10−7, the number of thresholds m was set, respectively, to 10, 17, 18, 26, 30, 36
and 39. Results are shown in Table 4.6.

As expected, the relative error decreases in an inverse proportion to the square root of the
sample size (the variance is inversely proportionally to the sample size), while the execution time
grows linearly with the sample size. It is interesting to see that the evolutions of the relative error
and the execution time, as a function of the sample size, are similar for all network reliability

values.
On the other hand, the increment of the execution times together with the network reliability

is due to the increasing number of thresholds, what leads to a growth in the number of operations
involved in the whole simulation. Also, the relative error grows as the network becomes more re-
liable. It is important to notice that both quantities grow very slowly; while the link unreliabilities
change over 6 orders of magnitude, and the network unreliability over 18 orders of magnitude,
execution times and relative errors increase less than one order of magnitude (actually they are
multiplied by a factor of about 3 or 4). Moreover, this increment becomes smaller as the network
reliability grows higher, showing a high robustness of the method with regard to the rarity of the
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events of interest. This feature will be further explored in the following section.

Table 4.6: Dodecahedron Network, s–t connectivity

Single Link unreliability qi, i = 1, 2, · · · , 30
Mea-

sure

Sample Size,

N

1E−01 1E−02 1E−03 1E−04 1E−05 1E−06 1E−07

Q̂ 1E+08 2.88E−03 2.06E−06 2.00E−09 2.00E−12 1.99E−15 2.00E−18 2.00E−21
RE 1E+05 1.28% 1.92% 2.75% 2.88% 3.14% 3.42% 3.39%

1E+06 0.46% 0.71% 0.86% 0.88% 0.99% 1.00% 1.12%
1E+07 0.14% 0.21% 0.27% 0.28% 0.33% 0.34% 0.36%
1E+08 0.04% 0.07% 0.09% 0.09% 0.10% 0.11% 0.11%

t 1E+05 1.96 2.99 3.58 4.26 5.13 6.20 7.20
1E+06 19.64 29.99 35.80 40.34 51.28 61.87 69.66
1E+07 195.83 299.10 358.26 406.02 512.28 620.11 734.97
1E+08 1,961.33 2,994.20 3,560.01 4,078.22 5,099.93 6,196.06 6,903.56

4.8 Empirical Analysis of Robustness

A fundamental issue concerning the robustness of Splitting/CP estimations is now considered. As
the unreliability is the failure probability of the whole network, when networks are highly reliable
such a failure is a rare event. One usual way to model this problem is to consider the unreliabilities
of the links as polynomials of some parameter ε, where such parameter is a measure of rarity. In
the particular case of equi–reliable links, the single link unreliability, q, is an appropriate measure
of rarity: ε = q. In this section, robustness of the Splitting/CP estimations will be analyzed for
networks with equi–reliable links (although it is also easy to do it in the general polynomial case).

Let Q̂ be the estimate obtained from a single Splitting/CP run. Using the Central Limit Theo-
rem approximation, the corresponding Confidence Interval, at confidence level η = 1− α, is:

CI (η) =
[
Q̂− zηV{Q̂}1/2, Q̂+ zηV{Q̂}1/2

]
,

where zη = Φ−1(1− α/2) = Φ−1((1 + η)/2), and Φ is the standard normal cumulative distribu-
tion. If Q = E{Q̂} is the true network reliability value, the expectation of the following indicator
function:

Iη =

{
1 if Q ∈ CI (η),
0 otherwise,

should not be less than η for a robust estimation, no matter the value of ε. However, in real
simulations Iη is usually not independent of ε. Actually, the size of CI (η) is closely related to the
value of ε.

A network unreliability estimation method is said to be robust if, when ε→ 0, the mean of the
indicator function Iη is still higher or equal than η or, from the simulation point of view, the average
of a significant number of samples of Iη does not fall under η. To make an empirical evaluation
of the Splitting/CP robustness for a given value of η, R runs of Splitting/CP were performed for
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different values of ε. If 1(i)η is the sample obtained in the i–th run, the Coverage Factor is defined
as:

CF (ε, η) =
1

R

R∑

i=1

1(i)η .

This factor denotes the proportion of times that, for a given measure of rarity ε, the real value Q
lies inside a Confidence Interval of confidence level η.

In the next experiment, an empirical Coverage Factor CF (ε, η) is determined. The networks
selected for the experiment were C10 (all–terminal connectivity) and the Dodecahedron (s–t con-
nectivity). In the case ofC10, the true value of the unreliability is known by means of the following
recursive formula [Colbourn 1987]:

Qn =

n−1∑

j=1

(
j − 1

n− 1

)
qj(n−j)(1−Qj),

where Qn is the unreliability of an equi–reliable network Cn, with Q1 = 0 and Q2 = q (the
single link unreliability). This formula was implemented on theMaple program. In the case of the
Dodecahedron, the true value of unreliability was determined by means of an exact algorithm.

The confidence levels selected were 90%, 95% and 99%, and the measures of rarity ε = 0.5,
0.1, 0.05, 0.01 and 0.005 for the C10 Network and 10−1, 10−2, 10−3, 10−4, 10−5 and 10−6 for
the Dodecahedron. In the order just described, the number of thresholds m for the C10 network
were 2, 9, 12, 20 and 23, and for the Dodecahedron, 3, 7, 10, 13, 17 and 20. The number of runs
was R = 2000 for every confidence level. The results are shown in Table 4.7 and Table 4.8.

Table 4.7: Coverage Factor of a network unreliability Splitting/CP estimation for the C10 Network
(all–terminal connectivity) with equi–reliable links, q = ε

Single Link unreliability q = Measure of Rarity ε

Measure 0.5 0.1 0.05 0.01 0.005

Q 1.955082E−02 1.000000E−08 1.953125E−11 1.000000E−17 1.953125E−20
CF 90% 89.75% 89.90% 91.00% 90.25% 90.50%
CF 95% 94.95% 95.00% 95.05% 94.60% 95.25%
CF 99% 98.45% 99.15% 98.60% 98.80% 98.85%

It is clear that for both networks the empirical Coverage Factor agrees with the confidence
level, no matter how reliable the networks are. This can be seen as an empirical verification of the
unbiased character of the Splitting/CP estimator. But the most important conclusion derived from
this experiment is the high degree of robustness of the Splitting/CP estimator.

The rest of this section shows the results obtained by performing a test proposed by
[Schruben 1980] to explore the coverage of confidence intervals in more detail. This test applies
to the current problem in the following way. As stated, for every estimate Q̂ there is a confidence
interval CI (η) of width zηV{Q̂}1/2 and confidence level η. So, the true value Q is supposed to lie
inside this interval with probability η. For the same collected data used in this estimation, CI (η∗)
is a new confidence interval of width zη∗V{Q̂}1/2 and confidence level η∗, wide enough to let the
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Table 4.8: Coverage Factor of a network unreliability Splitting/CP estimation for the Dodecahe-
dron Network (s–t connectivity) with equi–reliable links, q = ε

Single Link unreliability q = Measure of Rarity ε

Mea-

sure

1E−01 1E−02 1E−03 1E−04 1E−05 1E−06

Q 2.879601E−03 2.061890E−06 2.006006E−09 2.000600E−12 2.000060E−15 2.000006E−18
CF 90% 90.30% 90.55% 89.35% 89.85% 89.75% 90.40%
CF 95% 95.10% 95.40% 94.85% 94.80% 94.85% 95.25%
CF 99% 99.15% 99.10% 98.75% 99.05% 99.00% 99.15%

true value Q lie inside of it. Then:

zη∗V{Q̂}1/2 = |Q̂−Q|

zη∗ =
|Q̂−Q|
V{Q̂}1/2

(1 + η∗)/2 = Φ

(
|Q̂−Q|
V{Q̂}1/2

)

η∗ = 2 Φ

(
|Q̂−Q|
V{Q̂}1/2

)
− 1.

It is clear that η∗ is a random variable uniformly distributed in [0, 1], because its cumulative
distribution function is:

Fη∗(η) = P{η∗ ≤ η} = P{Q ∈ CI (η)} = η.

The test proposed by [Schruben 1980] consists of producing a large number of samples of η∗ and to
see if these samples follow an uniform distribution. One way to do this is graphically, by tracing
an estimation of the cumulative distribution function, F̄η∗(η), with the following interpretation:
the shape of Fη∗(η) is, of course, the straight line (with 45◦ inclination) Fη∗(η) = η. If at some
value η it happens that F̄η∗(η) < η then the coverage is lower than expected and likely to lead to
erroneous conclusions; on the other hand, F̄η∗(η) > η means that the confidence interval is too
conservative and that the estimator Q̂ is not efficient in the sense that the desired coverage can be
achieved with a smaller sample size.

The networks selected for this test are two versions of the Dodecahedron, with the extreme
values of rarity 10−1 and 10−6. The number of thresholds were 3 and 20, respectively, and the
number of runs R = 2000 in both cases. The results are shown in Figures 4.6 and 4.7.
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Figure 4.6: Schruben Test for the Dodecahedron
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For both tests F̄η∗(η) is tightly close to the cumulative distribution function of a uniform
distribution. These results are further indication that the type of confidence interval selected for
the Splitting/CP estimator is appropriate and robust.
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Abstract

The variance reduction capacity of Conditional Monte Carlo is shown by means of many exam-
ples on different settings. The examples illustrate the potential of Conditional Monte Carlo as
a variance reduction technique and behave as a background for Chapter 6 in which an original
proposal of this thesis, consisting in an application of Conditional Monte Carlo to a Markov chain
model, is introduced.

5.1 The determination of π

Let V = (X,Y ) be a random vector, where X and Y are two independent random variables such
that X ∼ Unif [0, 1] and Y ∼ Unif [0, 1]. Let θ = {X2 + Y 2 ≤ 1} be an event on the state space
of V . As the state space of V is a square of size 1, event θ is the set of points of that square that
belong to a circle of radius 1, centered in one of the corners of the square.
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Figure 5.1: Event θ = {X2 + Y 2 ≤ 1}

The probability of θ can be determined as:

P{θ} =

∫ 1

0

∫ √
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0
f(x, y) dy dx
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Let I be a random variable defined as:

I =

{
1 if X2 + Y 2 ≤ 1,
0 otherwise.

Therefore, E{I} = P{θ} = π/4.

Now the variance V{I} is determined. As I is a Bernoulli random variable,

V{I} = E{I} (1− E{I}) = π

4
(1− π

4
) = 0.1685.

Figure 5.1 shows that, given a value of x, say x0, the probability that the associated point
(x0, y0) lies inside the circle is

√
1− x20. Formally speaking, P{θ|X = x0} =

√
1− x20 or, in

terms of I , E{I|X = x0} =
√

1− x20. Thus, E{I|X} =
√
1−X2 and, clearly, E{E{I|X}} =

E{I}.
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The variance of E{I|X} is now determined:

V{E{I|X}} = E{E{I|X}2} − E{E{I|X}}2

= E{(1−X2)} −
(π
4

)2

=

∫ 1

0
(1− x2) dx−

(π
4

)2

=
2

3
−
(π
4

)2

= 0.0498.

A measure of accuracy increase for this problem is:

V{I}
V{E{I|X}} =

0.1685

0.0498
= 3.38

Suppose now that the interest is to obtain the value of P{θ} = E{I} by simulation. One of the
alternatives is the standard simulation, that can be achieved from a set of N independent samples
or copies of variable I , i.e. I(i), i = 1, · · · , N . Calling this Standard estimator Îs, it follows that:

Îs =
1

N

N∑

i=1

I(i) and V{Îs} =
V{I}
N

The other alternative is to simulate given a set of N independent samples or copies of variable
X, and to build the samples E{I|X(i)}, i = 1, · · · , N . Calling this Conditional Monte Carlo

estimator Îc, it follows that:

Îs =
1

N

N∑

i=1

E{I|X(i)} and V{Îs} =
V{E{I|X}}

N

Then, the ratio V{Îs}/V{Îs} will still be 3.38.

5.2 Sum of two independent random variables

Let V = (X,Y ) be a random vector, where X and Y are two independent random variables such
that X ∼ exp(λ1) and Y ∼ exp(λ2). Let θ = {X + Y ≤ L} be an event on the state space
of V . As the state space of V is the positive numbers sector of the R2 plane, event θ defines the
right–angled triangle of sides L shown in Figure 5.2.

If λ1 6= λ2, the probability of θ is:

P{θ} =

∫ L

0

∫ L−x0

0
f(x, y) dy dx =

∫ L

0

∫ L−x0

0
f(x)f(y) dy dx

=

∫ L

0
f(x)

{∫ L−x0

0
f(y) dy

}
dx
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Figure 5.2: Event θ = {X + Y ≤ L}

=

∫ L

0
λ1e

−λ1x

{∫ L−x0

0
λ2e

−λ2y dy

}
dx

=
λ2 − λ1 − λ2e

−λ1L + λ1e
−λ2L

λ2 − λ1
,

whereas, if λ1 = λ2 = λ, the probability of θ is:

P{θ} = 1− e−λL − λL e−λL.

Let I be a random variable defined as:

I =

{
1 if X + Y ≤ L,
0 otherwise.

It is clear that E{I} = P{θ}. As I is a Bernoulli random variable, its variance is:

V{I} = E{I} (1 − E{I}).

Table 5.1 shows γ = E{I} and V{I} for a set of values of λ1, λ2 and L.

Table 5.1: Analysis of I for the sum of two independent random variables

λ1 λ2 L γ = E{I} V{I}
1.00 1.00 1.00 0.26424112 0.19441775
0.50 1.00 1.00 0.15481812 0.13084947
0.10 1.00 1.00 0.03550058 0.03424029
0.10 1.00 0.50 0.01047071 0.01036108
0.10 1.00 0.10 0.00048212 0.00048189
0.01 1.00 0.01 0.00000050 0.00000050

Figure 5.2 shows that, given a value of x ≤ L, say x0, the probability that the associated
point (x0, y0) lies inside the triangle is

∫ L−x0

0 f(y) dy = 1 − e−λ2(L−x0). Formally speaking,
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P{θ|X = x0} = 1 − e−λ2(L−x0) or, in terms of I , E{I|X = x0} = 1 − e−λ2(L−x0). Thus,
E{I|X} = 1− e−λ2(L−X) and, clearly, E{E{I|X}} = E{I}.

If λ1 6= λ2, the variance of E{I|X} can be determined as follows:

V{E{I|X}} = E{E{I|X}2} − E{E{I|X}}2

= E

{(
1− e−λ2(L−X)

)2}
−
(
λ2 − λ1 − λ2e

−λ1L + λ1e
−λ2L

λ2 − λ1

)2

=
(
1− e−λ1L

)
− 2λ1

(
e−λ1L − e−λ2L

)

λ2 − λ1
+ λ1

(
e−λ1L − e−2λ2L

)

2λ2 − λ1
−

(
λ2 − λ1 − λ2e

−λ1L + λ1e
−λ2L

λ2 − λ1

)2

,

whereas, if λ1 = λ2 = λ, the variance of E{I|X} is:

V{E{I|X}} = 1− 2λL e−λL − e−2λL.

Table 5.2 shows γ = E{E{I|X}} and V{E{I|X}} and Table 5.3 shows a measure of accuracy
increase, V{I}/V{E{I|X}}. Both tables refer to the set of values of λ1, λ2 and L used in previous
tables.

Table 5.2: Analysis of E{I|X} for the sum of two independent random variables

λ1 λ2 L γ = E{E{I|X}} V{E{I|X}}
1.00 1.00 1.00 0.26424112 0,12890583
0.50 1.00 1.00 0.15481812 0.04926338
0.10 1.00 1.00 0.03550058 0.01507841
0.10 1.00 0.50 0.01047071 0.00276384
0.10 1.00 0.10 0.00048212 0.00003064
0.01 1.00 0.01 0.00000050 3.31× 10−9

Table 5.3: Accuracy increase for the sum of two independent random variables

λ1 λ2 L γ V{I}/V{E{I|X}}
1.00 1.0 1.00 0.26424112 1.51
0.50 1.0 1.00 0.15481812 2.66
0.10 1.0 1.00 0.03550058 2.27
0.10 1.0 0.50 0.01047071 3.75
0.10 1.0 0.10 0.00048212 15.73
0.01 1.0 0.01 0.00000050 150.64
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5.3 Analysis of a simple network (case 1)

Let V = (X1,X2,X3,X4,X5) be a random vector, where {Xi}5i=1 is a set of independent
Bernoulli random variables with parameters r1, r2, r3, r4, r5 (Xi = 1 with probability ri, and
Xi = 0 with probability qi = 1 − ri). These variables model the states of links 1, 2, 3, 4 and
5 of the Bridge Network shown in Figure 5.3 in the following way: Xi = 1 means that link i is
operational and, therefore, the nodes at its extremes are connected, whereas Xi = 0 means that
link i is failed, what is the same as removing it from the network. Any pair of nodes is considered
connected if there is a path of operational links between them.

s t

1

2

3

4

5

Figure 5.3: Bridge Network

Let θ be an event on the state space of V defined as follows: θ = {the set of values of
(X1,X2,X3,X4,X5) such that nodes s and t are not connected}. From basic network analysis
(inclusion–exclusion principle to the mincuts), the probability of θ is:

P{θ} = q1q2 + q4q5 + q1q3q5 + q2q3q4 − q1q2q4q5 − q1q2q3q5 −
q1q2q3q4 − q1q3q4q5 − q2q3q4q5 + 2 q1q2q3q4q5. (5.1)

Let I be a random variable defined as:

I =

{
1 if θ occurs,
0 otherwise.

It is clear that E{I} = P{θ}. In network analysis I is usually known as the structure function. As
I is a Bernoulli variable, its variance is:

V{I} = E{I} (1 − E{I}).

Table 5.4 shows γ = E{I} and V{I} for a set of values of q, in the particular case where
qi = q ∀i.

Suppose now that the value of one of the components of V , say X1, is fixed. There are
two possible values for X1, 0 or 1 so, conditioned to X1, E{I} will assume one of two values:
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Table 5.4: Analysis of I for the simple network (case 1)

q γ = E{I} V{I}
1 1.00000E+00 0.00000E+00

0.1 2.15200E−02 2.10569E−02
0.01 2.01950E−04 2.01909E−04
0.001 2.00200E−06 2.00199E−06
0.0001 2.00020E−08 2.00020E−08
0.00001 2.00002E−10 2.00002E−10
0.000001 2.00000E−12 2.00000E−12

E{I|X1 = 0} with probability q1 and E{I|X1 = 1} with probability r1. Then:

E{E{I|X1}} = E{I|X1 = 0} × q1 + E{I|X1 = 1} × r1

= E{I|X1 = 0} × q1 + E{I|X1 = 1} × (1− q1). (5.2)

The determinations of E{I|X1 = 0} and E{I|X1 = 1} are made by means of basic net-
work analysis (inclusion–exclusion principle to the mincuts), on the Bridge Network transformed
accordingly to the possible values of X1 (see Figure 5.4).

E{I|X1 = 0} = q2 + q4q5 + q3q5 − q2q4q5 − q2q3q5 − q3q4q5 + q2q3q4q5,

E{I|X1 = 1} = q2q3q4 + q4q5 − q2q3q4q5.
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Figure 5.4: Bridge Network transformed according withX1 = 0 and X1 = 1

Replacing E{I|X1 = 0} and E{I|X1 = 1} in expression (5.2), the resulting value of
E{E{I|X1}} is —as expected— the same as the one obtained in (5.1) for P{θ}.

As the variable E{I|X1} is a discrete random variable, with two values whose probabilities
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are known, the variance analysis is quite simple:

V{E{I|X1}} = E{E{I|X1}2} − E{E{I|X1}}2,

where:

E{E{I|X1}2} = E{I|X1 = 0}2 × q1 + E{I|X1 = 1}2 × (1− q1)

= (q2 + q4q5 + q3q5 − q2q4q5 − q2q3q5 − q3q4q5 + q2q3q4q5)
2 × q1 +

(q2q3q4 + q4q5 − q2q3q4q5)
2 × (1− q1)

and:

E{E{I|X1}}2 = (q1q2 + q4q5 + q1q3q5 + q2q3q4 − q1q2q4q5 − q1q2q3q5 −
q1q2q3q4 − q1q3q4q5 − q2q3q4q5 + 2 q1q2q3q4q5)

2.

Table 5.5 shows γ = E{E{I|X1}} and V{E{I|X1}} for a set of values of q, in the particular
case where qi = q ∀i.

Table 5.5: Analysis of E{I|X1} for the simple network (case 1)
q γ = E{E{I|X1}} V{E{I|X1}}

1 1.00000E+00 0.00000E+00
0.1 2.15200E−02 1.01506E−03
0.01 2.01950E−04 1.00910E−06
0.001 2.00200E−06 1.00099E−09
0.0001 2.00020E−08 1.00010E−12
0.00001 2.00002E−10 1.00001E−15
0.000001 2.00000E−12 1.00000E−18

A measure of accuracy increase for this problem is shown in Table 5.6, for the set of values of
q used in previous tables.

Table 5.6: Accuracy increase in the simple network (case 1)

q γ V{I}/V{E{I|X1}}
1 1.00000E+00 —–

0.1 2.15200E−02 20.74
0.01 2.01950E−04 200.09
0.001 2.00200E−06 2,000.01
0.0001 2.00020E−08 20,000.00
0.00001 2.00002E−10 200,000.00
0.000001 2.00000E−12 2,000,000.00
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5.4 Analysis of a simple network (case 2)

The same network is now analyzed fixing the value of two variables instead of one, say X1 and
X5. The possible combination of values of X1 and X5 with the corresponding probabilities are:

P{X1 = 0,X5 = 0} = q1 × q5,

P{X1 = 0,X5 = 1} = q1 × r5,

P{X1 = 1,X5 = 0} = r1 × q5,

P{X1 = 1,X5 = 1} = r1 × r5.

For each combination the Bridge Network takes a different form, as shown in Figure 5.5.
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Figure 5.5: Bridge Network transformed according with the values of X1 and X5

E{I} conditioned to the four possible values of the pair X1,X5 results in the following ex-
pression:

E{E{I|X1,X5}} = E{E{I|X1 = 0,X5 = 0}} × q1 × q5 +

E{E{I|X1 = 0,X5 = 1}} × q1 × r5 +
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E{E{I|X1 = 1,X5 = 0}} × r1 × q5 +

E{E{I|X1 = 1,X5 = 1}} × r1 × r5

= E{E{I|X1 = 0,X5 = 0}} × q1 × q5 +

E{E{I|X1 = 0,X5 = 1}} × q1 × (1− q5) +

E{E{I|X1 = 1,X5 = 0}} × (1− q1)× q5 +

E{E{I|X1 = 1,X5 = 1}} × (1− q1)× (1− q5),

where, after a basic network analysis (inclusion–exclusion principle to the mincuts) on each of the
networks of Figure 5.5.

E{E{I|X1,X5}} = (q2 + q3 + q4 − q2q3 − q3q4 − q2q4 − q2q3q4)× q1 × q5 +

(q2)× q1 × (1− q5) +

(q4)× (1− q1)× q5 +

(q2q3q4)× (1− q1)× (1− q5).

This last expression agrees with the value of P{θ} in (5.1) and it is the basis to determine the
variance of E{I|X1,X5} in the following way:

V{E{I|X1,X5}} = E{E{I|X1,X5}2} − E{E{I|X1,X5}}2,

where:

E{E{I|X1,X5}2} = (q2 + q3 + q4 − q2q3 − q3q4 − q2q4 − q2q3q4)
2 × q1 × q5 +

(q2)
2 × q1 × (1− q5) +

(q4)
2 × (1− q1)× q5 +

(q2q3q4)
2 × (1− q1)× (1− q5)

and

E{E{I|X1,X5}}2 = (q1q2 + q4q5 + q1q3q5 + q2q3q4 − q1q2q4q5 − q1q2q3q5 −
q1q2q3q4 − q1q3q4q5 − q2q3q4q5 + 2 q1q2q3q4q5)

2.

Table 5.7 shows γ = E{E{I|X1}} and V{E{I|X1}} for a set of values of q, in the particular
case where qi = q ∀i.

A measure of accuracy increase for this problem is shown in Table 5.8, for the set of values of
q used in previous tables.

5.5 Remarks on Conditional Monte Carlo

As seen in all preceding examples, the exact calculation of γ usually involves a whole set of
variables {Xi}ni=1. Depending on the type and the size of the problem, this exact calculation
may be either impossible or too hard. However, if the exact calculation of γ becomes easier after
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Table 5.7: Analysis of E{I|X1,X5} for the simple network (case 2)
q γ = E{E{I|X1, X5}} V{E{I|X1, X5}}

1 1.00000E+00 0.00000E+00
0.1 2.15200E−02 2.06131E−03
0.01 2.01950E−04 2.02742E−06
0.001 2.00200E−06 2.00297E−09
0.0001 2.00020E−08 2.00030E−12
0.00001 2.00002E−10 2.00003E−15
0.000001 2.00000E−12 2.00000E−18

Table 5.8: Accuracy increase in the simple network (case 2)

q γ V{I}/V{E{I|X1, X5}}
1 1.00000E+00 —–

0.1 2.15200E−02 10.22
0.01 2.01950E−04 99.59
0.001 2.00200E−06 999.51
0.0001 2.00020E−08 9,999.50
0.00001 2.00002E−10 99,999.50
0.000001 2.00000E−12 999,999.50

fixing the value of one or more of the variables {Xi}ni=1, Conditional Monte Carlo can be a useful
simulation option to produce accurate estimations of γ.

In the first step of Conditional Monte Carlo, the variables to be fixed are sampled and then,
given their sampled values, γ is calculated. The original problem of only calculation is trans-
formed into estimation + exact calculation. The difficulty level of these two problems, and the
size of each one of them are extremely related to the precision and the efficiency increase of Con-
ditional Monte Carlo over Crude Monte Carlo.

The Bridge Network case is an illustrating example. The exact computation of γ, given by
expression (5.1), does not need to use the random values (0 or 1) of the variables Xi, but only their
probabilities. On the other hand, the Crude Monte Carlo estimation of γ, where all the variables
are considered by means of their random values is another another possible determination in which
there is no exact calculation at all. Conditional Monte Carlo estimation is an intermediate option
between these two, as it is not pure simulation, but not exact calculation either. In Conditional

Monte Carlo the expectation of I can be conditioned to the value of k of the n variables, with
k = 0, · · · , n. In Example 3, k = 1, whereas in Example 4, k = 2. The case of k = 0 is the pure
exact calculation (expression (5.1)). If k = 1 the value of γ is estimated sampling the value of one
variable and then, making an exact calculation on a network formed by four links. If k = 2, two
variables are sampled and and then, an exact calculation is made on a network formed by three
links. As k grows, exact calculation becomes smaller and estimation becomes larger, explaining
why the variance of the corresponding estimate grows together with k.

The reason why Conditional Monte Carlo yields a variance reduction comes from expression
(2.5). However, this fact can also be shown intuitively. See, for example, the case of the Bridge
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Network with k = 1. Once the selected random variable is sampled, say Xj , the unreliability

of a network formed by four links is calculated exactly. Such exact calculation is equivalent to
a weighted average made over the 24 possible configurations, i.e., over “all” the possible states
of the four links network. But in a Crude Monte Carlo approach, not “all” these 24 possible
configurations are considered every time Xj is sampled. In other words, the exact calculation of
Conditional Monte Carlo covers “all” the possibilities in situations in which Crude Monte Carlo

only covers “some” possibilities.

5.6 Conditional Monte Carlo on an M/M/1 Queueing System

In this section —and in the following ones, until the end of the chapter— an application of Con-
ditional Monte Carlo on an M/M/1 queueing system is studied. It is a simple and straightforward
application of the basic ideas of Conditional Monte Carlo [Kroese 2013, Ross 2006] over a well–
known queueing system model. It is included just to illustrate the ideas behind Conditional Monte

Carlo and also because it is a model of general interest.

Figure 5.6 shows the evolution of the number of customers, Q, in a trial of an M/M/1 queueing
system (Q is the number of waiting customers plus the customer eventually being served, i.e., the
total number of customers in the system). Arrivals and departures occur according with the arrival
and service rates, respectively, λ and µ.

Q

t

exp(λ+ µ) exp(λ+ µ)

exp(λ) exp(λ)

E = arrival E = departure

1

2

3

t1 t2 t3 t4 t14 t15

Figure 5.6: A trial of an M/M/1 Queueing System

In order to simulate the M/M/1 queueing system, some variables will be defined.

E: a discrete random variable that takes values on the events of the M/M/1 queueing system
(arrivals and departures), with the following probability distribution:

P{E = arrival} =





1 if Q = 0
λ

λ+ µ
otherwise
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P{E = departure} =





0 if Q = 0
µ

λ+ µ
otherwise

δ: a random variable that takes values on the times between events of the M/M/1 queueing system,
according to the value of Q:

δ ∼
{

exp(λ) if Q = 0,
exp(λ+ µ) otherwise.

The M/M/1 queueing system can be simulated with the following code (the operation v ← V

means: “a sample of the random variable V is saved into the variable v”):

01 Q = 0 ; t = 0
02 if Q = 0
03 t = t+ exp(λ)
04 Q = Q+ 1
05 else

06 t = t+ exp(λ+ µ)
07 e← E
08 if e = arrival
09 Q = Q+ 1
10 else

11 Q = Q− 1
12 if stopping conditions are satisfied
13 exit

14 else

15 go to line 02

The execution of this code produces —among others— two sequences of values. One of them
composed by the list of events (arrivals and departures) occurring throughout the simulation. In
the replication shown in Figure 5.6 this sequence is:

x = {arrival, arrival, departure, · · · }

The other one is composed by the times between events, actually, the exponentially distributed
times sampled in every iteration. In the replication shown in Figure 5.6 this sequence is:

y = {t1, t2 − t1, t3 − t2, · · · }

The elements of both sequences are related, one–to–one, in the following way: the first element
in y is the occurrence time of the first event in x, the second element in y is the elapsed time
between the fisrt and the second events in x, and so on.

Each of these sequences can be seen as the replication of a random process. The first one is a
replication of process X, a random walk restricted to non negative values:

X = {Xn, n ≥ 0},
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where

Xn =





arrival if Q = 0
arrival with probability λ/(λ+ µ)
departure with probability µ/(λ+ µ)

}
otherwise,

n = 1, 2, · · · .

The second one is a replication of process Y , a sequence of two —interleaved— exponentially
distributed random variables:

Y = {Yn, n ≥ 0},
where

Yn ∼
{

exp(λ) if Q = 0,
exp(λ+ µ) otherwise,

n = 1, 2, · · · .

Some parameters of the M/M/1 queueing system, like the number of customers at time t, or
the average time that a customer spends in the system, etc., can be seen as a function of these two
random processes. In particular, events θ defined on the state spaces of these parameters, and their
corresponding indicator random variables I , can also be seen as functions of processes X and Y .

5.6.1 Busy Period

A time interval in which the server is permanently busy, is called a Busy Period (BP). In the
replication shown in Figure 5.6, [t1, t14] is a BP. Within a BP, Q > 0, reason why X and Y

D

Qm

Q

t

1

2

3

t1 t2 t3 t4 tn tZ· · ·· · ·

Figure 5.7: M/M/1 Busy Period

become:

X = {Xn, 1 < n ≤ Z} Xn =

{
arrival with probability λ/(λ+ µ),
departure with probability µ/(λ+ µ),

Y = {Yn, 1 < n ≤ Z} Yn = exp(λ+ µ).
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Variables R,D and Qm (see Figure 5.7) can be defined for a BP:

R = # events within the BP = Z − 1,

D = duration of the BP,

Qm = maximum number of customers in the BP.

An M/M/1 simulation in whichN BP’s occur, produces N replications of all the variables just
defined: X(i), Y (i), R(i),D(i), Q

(i)
m , i = 1, · · · , N . In the following examples the estimation of

the probability of events defined on the state space of two of theses variables —respectively, D
and Qm—will be analyzed in the context of Crude and Conditional Monte Carlo.

5.6.2 Duration of a Busy Period

Let θ be the event D ≥ T , where T is some fixed real value, and let I be the indicator random
variable of event θ. Crude or standard simulation to estimate γ = P{θ} can be done as follows:

1. Simulate the M/M/1 queueing system up to some —long enough— time tmax.

2. Identify the replications X(i), i = 1, · · · , N to conclude that N BP’s occurred.

3. For every BP detected, check the corresponding replication Y (i) to see whether the duration
of the BP exceeds T or not.

4. Estimate γ = P{θ} as the proportion of BP’s for which their duration exceeds T .

This estimation, that is actually an estimation of E{I}, is based on the randomness of both
sequences, in other words, it is a function of random processes X and Y . In the next section this
estimation will be conditioned to a fixed replication of process X. Hence, γ will be estimated by
E{E{I|X}}.

5.6.3 Duration of a Busy Period - Conditioning to process X

Figure 5.8 illustrates this problem. Pretend that Figure 5.8 (a) is a BP detected in the M/M/1
system simulation. It is necessary to know the probability that this BP lasts longer than T , subject
to the sequence of arrivals and departures shown. The duration of this BP is D1, that is clearly
larger than T . However this measure is not relevant, as the replications shown in Figures 5.8 (b)
and (c) also share the same sequence of arrivals and departures, but their durations are different,
being one of them larger, and the other one shorter than T . The probability that any BP that share
this sequence of arrivals and departures lasts longer than T , covers any of the replications shown
in Figures 5.8 (a), (b) and (c). Actually, this probability covers “all” possible replications that
share this sequence of arrivals and departures. Compared to the Crude Monte Carlo estimation,
this probability is like averaging all the possible BP’s with this sequence of arrivals and departures
(infinite, in this case). In other words, one sample of Conditional Monte Carlo is equivalent to
infinite Crude Monte Carlo samples.
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Figure 5.8: Three BP’s with the same sequence X(i), but different sequence Y (i)

In summary, the estimation of γ = P{θ}, as a Conditional Monte Carlo estimation obtained
by means of E{I|X}, can be done as follows:



5.6. Conditional Monte Carlo on an M/M/1 Queueing System 67

1. Simulate the M/M/1 queueing system up to some —long enough— time tmax.

2. Identify the replications X(i), i = 1, · · · , N to conclude that N BP’s occurred.

3. For every BP detected, calculate the probability that the sum of the R times between events
within the BP is larger than T .

4. Estimate γ = P{θ} as the average of the probabilities calculated in item 3.

The most difficult part of this estimation is the probability calculation of item 3. The duration
of the BP’s detected troughout the simulation is the sum of R exponentially distributed times with
rate (λ + µ). Then, due to expression (5.4) in Section 5.6.6, the duration of a BP with R times
between events, is distributed according to the Erlang distribution with parameters (R,λ+ µ).

Table 5.9 shows the evolution of the speedup, (V× t)Cr/(V× t)Cond, for a set of values of T .

Table 5.9: Speedup of the estimation of the probability of BP > T , given the sequence X(i)

λ µ T γ̂ (V× t)Cr/(V× t)Cond

0.01 1.00 2.00 1.38E−01 26.61
0.01 1.00 4.00 1.98E−02 24.85
0.01 1.00 6.00 2.94E−03 40.27
0.01 1.00 8.00 4.52E−04 78.74
0.01 1.00 10.00 7.13E−05 161.79
0.01 1.00 12.00 1.15E−05 325.11
0.01 1.00 14.00 1.91E−06 773.67
0.01 1.00 16.00 3.20E−07 1,365.76

5.6.4 Maximum in a Busy Period

Let θ be the event Qm ≥ M , where M is some fixed integer value, and let I be the indicator
random variable of event θ. Crude or standard simulation to estimate γ = P{θ} can be done as
follows:

1. Simulate the M/M/1 queueing system up to some —long enough— time tmax.

2. Identify the replications X(i), i = 1, · · · , N to conclude that N BP’s occurred.

3. For every BP detected, check the corresponding piece of sequence in X(i) to see whether
the value of Q within the BP exceeds M or not.

4. Estimate γ = P{θ} as the proportion of BP’s for which the maximum value of Q exceeds
M .

This estimation, that is actually an estimation of E{I}, is based on the randomness of both
sequences, in other words, it is a function of random processes X and Y . In the next section this
estimation will be conditioned to a fixed replication of process Y . Hence, γ will be estimated by
E{E{I|Y }}.
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5.6.5 Maximum in a Busy Period - Conditioning to process Y

Figure 5.9 illustrates this problem. Pretend that Figure 5.9 (a) is a BP detected in the M/M/1
system simulation. It is necessary to know the probability that the number of customers Q within
this BP is larger or equal than M , subject to the sequence of times between events shown. In the
replication shown in 5.9 (a), Q is clearly larger than M . However this measure is not relevant,
as the replications shown in Figures 5.9 (b) and (c) also share the same sequence of arrivals and
departures, but in the case (b) Q is not larger than M while in case (c), it is. The probability
that for any BP that share this sequence of times between events, Q is larger than M , covers any
of the replications shown in Figures 5.8 (a), (b) and (c). Actually, this probability covers “all”
possible replications that share this sequence of times between events. Compared to the Crude

Monte Carlo estimation, this probability is like averaging all the possible BP’s with this sequence
of. In other words, one sample of Conditional Monte Carlo is equivalent to “many” Crude Monte

Carlo samples.
In summary, the estimation of γ = P{θ}, as a Conditional Monte Carlo estimation obtained

by means of E{I|Y }, can be done as follows:
1. Simulate the M/M/1 queueing system up to some —long enough— time tmax.

2. Identify the replications X(i), i = 1, · · · , N to conclude that N BP’s occurred.

3. For every BP detected, calculate the probability that the combination of arrivals and depar-
tures is such that value of Q within the BP exceeds M .

4. Estimate γ = P{θ} as the average of the probabilities calculated in the item 3.

The most difficult part of this estimation is the probability calculation of item 3. For a given
replication Y (i), i.e. given the times between events (arrivals and departures) the evolution of Q
within a BP follow trajectories of the type of the Dyck Paths (see Section 5.6.7).

Table 5.10 shows the evolution of the speedup, (V × t)Cr/(V × t)Cond, for a set of values of
M .

Table 5.10: Speedup of the estimation of the probability of Q > M , given the sequence Y (i)

λ µ M γ̂ (V× t)Cr/(V× t)Cond

0.05 1.00 2.00 4.76E−02 0,90
0.05 1.00 3.00 2.38E−03 1,75
0.05 1.00 4.00 1.19E−04 3,45
0.05 1.00 5.00 5.97E−06 8,15
0.05 1.00 6.00 3.01E−07 16,16
0.05 1.00 7.00 1.53E−08 33,10
0.05 1.00 8.00 9.11E−10 98,90

5.6.6 Sum of Exponentials

When the simulation is conditioned to processes X, the combination of arrivals and departures is
dispensable. The only values to care about, in every BP, are the times between events, specifically
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Figure 5.9: Three BP’s with the same sequence Y (i), but different sequence X(i)

the sum of all these times within the BP. In Figures 5.8 (a), (b) and (c), this sum is, respectively,
D1, D2 and D3. The aim is to determine the probability that a BP with the same combination of
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arrivals and departures, but with any other set of times between events, lasts longer than T . In
general, the aim is to determine the proportion of paths for which some detected BP lasts longer
than some fixed value, given the same combination of arrivals and departures but a different set
of times between events.

Numerically, the problem is to find the probability that, for any BP, the sum of the times
between events (all of them exponentially distributed with rate λ+ µ, as shown in (5.4)) is larger
than some fixed value, T . As R is the number of exponentially distributed times, their sum is
distributed according to the Erlang distribution, for which the cdf is:

1−
R−1∑

n=0

e−(λ+µ) t ((λ+ µ) t)n

n!
(5.3)

Thus, the probability that such sum is larger than T is:

R−1∑

n=0

e−(λ+µ) T ((λ+ µ)T )n

n!
(5.4)

5.6.7 Dyck Paths

For every sequence of instants at which arrivals and departures occur in a BP, there are —in
general— many different sequences of arrivals and departures. Each one of them can define a BP
of the same duration but with a different combination of arrivals and departures. The number of
possible sequences of arrivals and departures, for any given sequence of instants, can be deter-
mined by means of a combinatorial analysis based on the concept of Dyck Path, a subject named
after the German mathematician Walther Franz Anton von Dyck (1856–1934), who introduced it
around 1880. In this section, this concept and some related problems, taken from [Flajolet 2009],
are applied to the analysis of sequences of arrivals and departures.

Let S = {Sn : n = 0, 1, · · · } be a random process, on the non–negative integers, that starts at
S0 = 0 such that, at the beginning it goes from S0 = 0 to S1 = 1 with probability 1 and then, at
every step, it increases 1 with probability p or decreases 1 with probability q = 1−p. The process
ends any time it returns to 0.

A cycle of duration Z is a replication that starts at S0 = 0 and returns to 0 in exactly Z steps.
CZ is the set of all the cycles of duration Z:

CZ = {S : S0 = 0 ∧ SZ = 0 ∧ Sn > 0∀n : 1 < n < Z}.

A cycle S ∈ CZ is said to be less thanM > 0, and it is written S < M , if Sn < M ∀n, 0 ≤ n ≤
Z . PZ is the probability that a replication in CZ is less thanM > 0:

PZ = P(S < M |S ∈ CZ).

Some remarks:

• For every cycle in CZ , Z is even, and there will be h = Z/2 upward steps and h downward
steps. Therefore, the probability of all possible trajectories in CZ is ph−1qh (the probability
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of the initial step, from S0 = 0 to S1 = 1, is 1).

• As the probability of all the trajectories in CZ is the same, the values of p and q are not
necessary in the determination of PZ . This value can be obtained as the ratio between the
number, NZ,M , of trajectories in CZ that are less than M and the number, NZ , of all the
trajectories in CZ .

• The determination of PZ is only of interest if 1 ≤ M ≤ h, because if M = 0, PZ = 0,
while ifM > h, PZ = 1.

If the problem is modified, and the replications are allowed to “touch” 0 before reaching Z ,
the corresponding set of cycles of duration Z becomes:

C0
Z = {S : S0 = 0 ∧ SZ = 0 ∧ Sn ≥ 0∀n : 1 < n < Z}.

In this case the number of possible trajectories, i.e. the cardinality of C0
Z , is the Catalan

Number in h = Z/2, that is:

N0
Z =

(
2h

h

)
1

h+ 1
, h = Z/2.

A cycle S ∈ C0
Z is said to be less than M > 0, and it is written S < M , if Sn < M ∀n, 0 ≤

n ≤ Z . The number of trajectories in C0
Z that are less than M > 0, with 1 ≤M ≤ h, is:

N0
Z,M =

M∑

s=1

(
2

M + 1

)
sin2

(
sπ

M + 1

)(
2 cos

(
sπ

M + 1

))2h

=
22h+1

M + 1

M∑

s=1

sin2
(

sπ

M + 1

)
cos2h

(
sπ

M + 1

)
.

With the aid of the following figure it is possible analyze the first problem (Sn > 0, 0 < n <

Z) in terms of the last one (Sn ≥ 0, 0 < n < Z):
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NZ (the cardinality of CZ) can be expressed in terms of N0
Z (the cardinality of C0

Z ), just
replacing the value of h (because Z has to be changed by Z − 2), then:

NZ =

(
2h

h

)
1

h+ 1
, h = (Z − 2)/2.

Proceeding in the same way,NZ,M can be obtained in terms ofN0
Z,M , replacingM byM −1:

NZ,M =
22h+1

M

M−1∑

s=1

sin2
(

sπ

M + 1

)
cos2h

(
sπ

M + 1

)
, h = (Z − 2)/2.

The case ofM = 0 must be avoided. However, this case is not of interest. Finally:

PZ = P(S < M |S ∈ CZ) =
NZ,M

NZ
,

P̄Z = P(S ≥M |S ∈ CZ) = 1− NZ,M

NZ
.
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Abstract

Conditional Monte Carlo with Intermediate Estimations (CMIE) is a simulation method pro-
posal of this thesis to estimate the reliability of highly reliable Markovian systems accurately.
In this chapter the basis of CMIE is introduced, the unbiasedness of the corresponding estima-
tor is proven, and its variance is shown to be lower than the variance of the standard estimator.
Some guidelines on the choice of the intermediate states are given and a modification to the basic
scheme, in order to be applied to large multicomponent systems, is proposed. To illustrate the
performance of the method, some experimental results are shown.

6.1 Introduction

The dynamics of many systems can be modelled by a continuous time homogeneous Markov
chain X, irreducible, on a finite state space S (see [Cancela 2002, Goyal 1992, Juneja 2001] or
Chapter 6 in [Rubino 2009]). Typical examples are systems in which the states can be classified
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into two subspaces: one of them,D, in which the system is completely failed (down), and another
one, U , in which the system is operational (up), assuming that at some states in U the system is
fully operational whereas at some other the system is partially damaged but still operating, i.e.
delivering service. In this thesis they are of interest highly reliable systems whose behaviour, in
terms of these subspaces, is such that they strongly tend to remain at a state in U where the system
is fully operational, they rarely leave this state moving within some other states in U due to the
occurrence of failures, and they reach the subspace D with an extremely low probability.

The estimation of dependability measures on these type of system has been addressed ex-
tensively with the aid of Importance Sampling [Botev 2013, Cancela 2002, Glynn 1989] and its
variants, Zero-Variance [L’Ecuyer 2007b, L’Ecuyer 2011a, L’Ecuyer 2011b] and Cross-Entropy
[Ridder 2005, Rubinstein 2004].

In the rest of this chapter this problem is approached by means of a novel application of
Conditional Monte Carlo, a classic variance reduction technique, already introduced in Chapter 5,
that has not given rise to many lines of research in the field of rare event estimation. The method
proposed is aimed at the estimation of the probability γ = P{τD < τu}, where the times τu and
τD are defined as follows. The state space of the Markov chain is partitioned as S = U ∪D such
that in U the system is up and in D the system is down. The process X starts at some initial state
u ∈ U . Define τu as the return time to u, that is, τu = inf{t > 0: X(t) = u and X(t−) 6= u},
and τD as the hitting time of D, that is, τD = inf{t > 0: X(t) ∈ D}.

The simplest and most basic dependability metric is the Mean Time To Failure, MTTF, defined
as the expected life–time of the system, i.e. the mean time until the system enters the subset D:

MTTF = E{τD}.

Goyal et al. have proved in [Goyal 1992] that the MTTF can be written as:

MTTF = E{min(τD, τu)}/γ.

Since this work is focused on the estimation of γ, allD can be collapsed into a single state dmade
absorbing. As before, event {τd < τu} means that X gets absorbed at d before coming back to u.

For systems with a large (or infinite) number of states, the exact computation of γ is not
feasible. An alternative solution is to employ Monte Carlo simulation, in which case the main
concern is to attain a good estimation precision, what means to obtain a low variance estimator.
In the standard Monte Carlo simulation, N replications are started from u and they are stopped
either when they get absorbed at state d or when they arrive back at u. The standard estimation
of γ is the number of those trajectories that are absorbed at d, divided by N . This estimation can
be achieved by working with the discrete time Markov chain Y , canonically embedded in X at
X’s jump times.

However, the fact that γ ≪ 1 is a serious drawback for standard simulation, because acceptable
values of the estimator’s variance can only be achieved at the expense of a very high number
of replications, N . Monte Carlo methods must, therefore, be improved and adapted to address
efficiently the rare event case.

A solution proposal to this problem, to be introduced next, consists in an application of Con-
ditional Monte Carlo in which the rare event of interest, namely the visit of state d, is conditioned
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on the values of some random variable in the model.

The rest of the chapter is organized as follows. Section 6.2 shows a basic application of Condi-
tional Monte Carlo on Markovian systems. Section 6.3 —the core of this proposal—, introduces
modifications to the basic Conditional Monte Carlo algorithm, in order to make it usable and ef-
ficient. Sections 6.4, 6.5 and 6.6 discuss some properties and features of the proposed method.
Section 6.7 shows how to apply it to the particular case of Markovian multicomponent systems.
Some experimental results are included in Sections 6.6 and 6.7, and a comparison with Splitting is
shown in Section 6.8.

6.2 Conditional Monte Carlo algorithm

There are different simulation methods to estimate value of γ. In the crude or standard simulation,
N1 replications start at state u and they are simulated until they either come back to u, in time τu,
or hit state d, in time τd. Let I be the indicator random variable of the event {τd < τu}:

I =

{
1 w.p. γ,
0 w.p. 1− γ.

(6.1)

Then γ = E{I}, and the standard estimator of γ is:

γ̂s =
1

N1

N1∑

j=1

I(j), (6.2)

where I(j), j = 1, 2, . . . , N1 are N1 independent values sampled from distribution (6.1).

Let C = {d, k,u}, where k is any state in the Markov chain, other than d or u, and letXC be
a random variable defined as the first state in C , hit by a replication started at u. The probability
distribution of XC is, therefore:

XC =





d w.p. pd,
k w.p. pk,
u w.p. pu.

See that pd ≤ γ, because γ is the probability that any replication that starts at u reaches d before
coming back to u, whereas pd is the probability that any replication that starts at u reaches d

“through a path not containing k”, before coming back to u. Similarly, pu ≤ 1− γ.

The expectation of I , conditioned on the values of XC , is given by the following expressions:
E{I | XC = d} = 1, E{I | XC = k} = γk and E{I | XC = u} = 0 (γk is the probability that
a replication that starts at state k, hits state d before it hits state u). Thus, E{I | XC} is a random
variable with the following probability distribution:

E{I | XC} =





1 w.p. pd,
γk w.p. pk,
0 w.p. pu,

(6.3)
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and the following expectation:

E{E{I | XC}} = E{I} = 1× pd + γk × pk + 0× pu = γ.

The expected value of both random variables, I and E{I | XC}, is γ. As a consequence, another
estimator of γ —namely, a Conditional Monte Carlo estimator— is:

γ̂c =
1

N1

N1∑

j=1

E{I | X(j)
C } (6.4)

where E{I | X(j)
C }, j = 1, 2, . . . are N1 independent random variables sharing distribution (6.3).

The samples E{I | X(j)
C } are obtained in two steps: first, X(j)

C is sampled and then, the corre-

sponding value E{I | X(j)
C } is computed. In this introductory example the only three possible

values to be sampled are {u, k,d}, whereas the exact values associated with them are, respec-
tively, {1, γk, 0}.

If the set C includes more intermediate states besides k, the method applies as well. If, for
example, C = {d, 1, 2, . . . , n,u}, the distribution of E{I | XC} becomes:

E{I | XC} =





1 w.p. pd,
γ1 w.p. p1,
γ2 w.p. p2,
...
γn w.p. pn,
0 w.p. pu,

(6.5)

where γi is the probability that a replication that starts at state i hits state d before it hits state u.
Now:

E{E{I | XC}} = E{I} = 1× pd +

n∑

i=1

γi pi + 0× pu

= γ0 × p0 +

n∑

i=1

γi pi

=
n∑

i=0

γi pi = γ,

where the notation γ0 = 1 and p0 = pd is included for simplicity. The estimator given in Expres-
sion (6.4) remains valid, with the only difference of sampling from the distribution (6.5) instead
of (6.3).

Figure 6.1 depicts the set of probabilities so far defined and shows the nomenclature used to
refer to them in the rest of this chapter (as γu = 0, the term pu × γu equals 0, reason why it is
shown in Figure 6.1 but does not belong to any further expression).

For any given set C = {d, 1, 2, . . . , n,u}, call C̃ = C \ {d,u}, i.e. the subset formed only
by the intermediate states, that is, C̃ = {1, 2, . . . , n}.
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Figure 6.1: The set of probabilities used in all calculations.

The variance of the Conditional Monte Carlo estimator is now computed:

V{E{I | XC}} = E{E{I | XC}2} − E{E{I | XC}}2 =

n∑

i=0

piγ
2
i − γ2.

Then, the variance of the estimator in (6.4) is:

V{γ̂c} =
1

N1

(
n∑

i=0

piγ
2
i − γ2

)
. (6.6)

On the other hand, the variance of the standard estimator given in (6.2) is known to be:

V{γ̂s} =
1

N1

(
γ − γ2

)

=
1

N1

(
n∑

i=0

piγi − γ2

)
. (6.7)

Comparing expressions (6.6) and (6.7) and considering that γi ≤ 1, i = 0, . . . , n, because all
these values are probabilities, it is clear that:

n∑

i=0

piγ
2
i ≤

n∑

i=0

piγi,

what means that the variance of the Conditional Monte Carlo estimator given in (6.6), is never
larger than the Standard Monte Carlo estimator variance given in (6.7). This is of course, a general
fact on Conditional Monte Carlo methods, but it is worth making it explicit in our context.

Figure 6.1 shows a path that goes from u to d without hitting any state in C̃ . However,
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depending on which states are selected to form the set C̃, there may not exist such a path. The
efficiency of the simulation in both cases is quite different.

In the latter case, when there is no path from u to d without hitting a state in C̃ , the terms to
accumulate in expression (6.4) are γ1, γ2, . . ., γn, with probabilities p1, p2, . . ., pn, respectively.
As the probabilities p1, p2, . . ., pn, are all higher than γ, the values to accumulate in (6.4) can be
found with less computational effort than the effort needed to find a 1 for expression (6.2) in the
standard simulation.

On the other hand, if there is a path that goes from u to d without hitting any state in C̃ , one
of the terms to accumulate in expression (6.4) is γ0 = 1 with probability p0, where 0 < p0 < γ.
Therefore, the computational effort to find a 1 for expression (6.4) will be higher than the necessary
effort to find a 1 in the standard simulation.

Finally, if there is no path from u to d without hitting a state in C̃ , Conditional Monte Carlo

simulation can achieve the same accuracy level as crude or standard simulation, with a smaller
number of replications.

6.3 Conditional Monte Carlo with Intermediate Estimations

The main problem in the use of Conditional Monte Carlo, as it was introduced so far, is the fact
that the values γ1, γ2, . . ., γn are unknown, and may be as hard to evaluate as the calculation of γ
itself. To work around this problem, these values will be now replaced by estimators.

In this section it will be shown that after replacing γ1, γ2, . . ., γn by estimators, the method is
still unbiased. This replacement is the core of the proposal introduced in this chapter and the basis
of the so–called Conditional Monte Carlo with Intermediate Estimations (CMIE) method. At the
end of this section, the variance of the CMIE estimator will be determined.

To address the following calculation, it is better to express γ̂ in terms of the random vector
Ī = (I0, I1, . . . , In+1), whose components are dependent binary random variables such that one
and only one has value 1, distributed as follows:

Ī =





(1, 0, 0, . . . , 0, 0) w.p. pd,
(0, 1, 0, . . . , 0, 0) w.p. p1,
(0, 0, 1, . . . , 0, 0) w.p. p2,

...
(0, 0, 0, . . . , 1, 0) w.p. pn,
(0, 0, 0, . . . , 0, 1) w.p. pu.

(6.8)

Then, the standard estimator is:

γ̂s =
1

N1

N1∑

j=1

I
(j)
0 × γ0 + I

(j)
1 × γ1 + I

(j)
2 × γ2 + . . . + I(j)n × γn + I

(j)
n+1 × 0

=
1

N1

N1∑

j=1

n∑

k=0

I
(j)
k × γk (6.9)
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where γ0 = 1.
In (6.9), the samples I(j)0 , I(j)1 , . . . , I(j)n are obtained by the simulation, whereas the values

γ1, γ2, . . . , γn must be calculated. However, if such calculation is too hard, or simply impossible,
these values can be replaced by standard estimators. In order to do this, every time the simulation
reaches a state i ∈ C̃, N2 independent replications must be started at i and simulated until they
either reach d (and then 1 is accumulated) or u (and then 0 is accumulated). Once these N2

replications started at i are completed, a standard estimator γ̂i can be evaluated and used in place
of γi. To compute these estimations, define the set of Bernoulli random variables {Ji}ni=1, with
the following probability distribution:

Ji =

{
1 w.p. γi,
0 w.p. 1− γi,

i = 1, 2, . . . , n. (6.10)

The samples of Ji are obtained from the actual simulation of the Markov chain, which is the same
as sampling them from distribution (6.10) (J0 = 1 w.p. 1). Then, if γk is replaced by the estimator
γ̂k in (6.9), the standard estimator is transformed into the CMIE estimator γ̂cie:

γ̂cie =
1

N1

N1∑

j=1

(
n∑

k=0

I
(j)
k × 1

N2

N2∑

i=1

J
(j,i)
k

)

=
1

N1

N1∑

j=1

(
1

N2

n∑

k=0

I
(j)
k

N2∑

i=1

J
(j,i)
k

)

=
1

N1N2

N1∑

j=1

n∑

k=0

N2∑

i=1

I
(j)
k J

(j,i)
k .

It is simple to show that γ̂cie is unbiased:

E {γ̂cie} =
1

N1N2
E





N1∑

j=1

n∑

k=0

N2∑

i=1

I
(j)
k J

(j,i)
k





=
1

N1N2

N1∑

j=1

n∑

k=0

N2∑

i=1

E

{
I
(j)
k J

(j,i)
k

}

=
1

N1N2

N1∑

j=1

n∑

k=0

N2∑

i=1

E

{
I
(j)
k

}
E

{
J
(j,i)
k

}

=
1

N1N2

N1∑

j=1

n∑

k=0

N2∑

i=1

pkγk

=

n∑

k=0

pkγk = γ.

In order to determine the variance of γ̂cie, let Ī(x) be any possible replication of Ī , what means
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that I(x)0 , I(x)1 , . . . , I(x)n , are the components of this replication. Using the variance decomposition
formula, the variance of the estimator can be written as:

V{γ̂cie} = V{E{γ̂cie | Ī(x)}}︸ ︷︷ ︸
A

+E{V{γ̂cie | Ī(x)}}︸ ︷︷ ︸
B

.

Terms A and B are now analysed separately.

A = V



E





1

N1N2

n∑

k=0

N1∑

j=1

N2∑

i=1

I
(x)
k J

(j,i)
k









= V





1

N1N2

n∑

k=0

N1∑

j=1

N2∑

i=1

I
(x)
k E{J (j,i)

k }





= V





1

N1N2

n∑

k=0

N1∑

j=1

N2∑

i=1

I
(x)
k γk





= V





1

N1

N1∑

j=1

n∑

k=0

I
(x)
k γk



 .

For any given x only one of the values I(x)0 , I(x)1 , . . ., I(x)n equals 1 and the rest equal 0. As

I
(x)
i = 1 w.p. pi (see (6.8)), the term

∑n
k=0 I

(x)
k γk equals γi w.p. pi. To evaluate the variance,

note that the randomness in the expression between braces is only due to I(x)k . Thus,
∑n

k=0 I
(x)
k γk

is a random variable on the state space {γ0, γ1, . . . , γn}, with probabilities {p0, p1, . . . , pn}. Then:

A =
1

N1




n∑

k=0

pkγ
2
k −

(
n∑

k=0

pkγk

)2



=
1

N1

(
n∑

k=0

pkγ
2
k − γ2

)
.

For the remaining term,

B = E



V





1

N1N2

n∑

k=0

N1∑

j=1

N2∑

i=1

I
(x)
k J

(j,i)
k









= E





1

N2
1N

2
2

n∑

k=0

N1∑

j=1

N2∑

i=1

(
I
(x)
k

)2
V

{
J
(j,i)
k

}




= E

{
1

N2
1N

2
2

n∑

k=0

N2∑

i=1

N1 × I
(x)
k γk(1− γk)

}
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= E

{
1

N1N2
2

n∑

k=0

I
(x)
k

N2∑

i=1

γk(1− γk)

}
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1

N1N2
2

n∑
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I
(x)
k N2 × γk(1− γk)

}

=
1

N1N2

n∑

k=0

E

{
I
(x)
k

}
γk(1− γk)

=
1

N1N2

n∑

k=0

pk γk(1− γk)

=
1

N1N2

(
n∑

k=0

pkγk −
n∑

k=0

pkγ
2
k

)

=
1

N1N2

(
γ −

n∑

k=0

pkγ
2
k

)
.

Then:

V{γ̂cie} = A+B =
1

N1

(
n∑

k=0

pkγ
2
k − γ2

)
+

1

N1N2

(
γ −

n∑

k=0

pkγ
2
k

)
. (6.11)

The term A is the value of the variance of the Conditional Monte Carlo estimator when the values
γ1, γ2, . . ., γn are known exactly (see (6.6)). The term B is the increment of variance due to the
fact that the values γ1, γ2, . . ., γn are replaced by estimators.

6.4 Multiple Sets of Intermediate States

The key to the application of Conditional Monte Carlo to Markov chains (as described in Section
6.2) —call it pure Conditional Monte Carlo— is the knowledge of the probabilities γ1, γ2, . . ., γn.
The lack of these values makes it necessary to use estimators instead (as described in Section 6.3).
This technique is the heart of the CMIE method proposed in this thesis. As shown, the estimators
γ̂1, γ̂2, . . ., γ̂n can be obtained by standard simulation started every time one of the intermediate
states 1, 2, . . ., n is reached. But these values can be estimated more accurately, applying the same
Conditional Monte Carlo method recursively, in the following way.

Suppose that two sets of intermediate states, C̃1 and C̃2, are defined, instead of one, as shown
in Figure 6.2. Assume that C̃1 ∩ C̃1 = ∅ and u,d 6∈ C̃1, C̃2. Suppose that the process starts just
as in the case in which C̃1 is the only set of intermediate states. Then, once a state i ∈ C̃1 is
reached, N2 replications are started at state i, and they are simulated until they either hit a state
in C̃2, go back to u, or gets absorbed at d. This can be considered the second recursive level of
the simulation. It is intended to obtain the values γ′1, γ

′
2, . . ., γ

′
n1
, which indicate the probability

that each of these N2 replications get absorbed at d. Proceeding this way, these probabilities can
be estimated by this recursive level of Conditional Monte Carlo simulation that makes use of C̃2

as the set of intermediate states. These estimations are, in fact, more accurately than the ones
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obtained by means of standard simulation in the case of only one set of intermediate states. It is
simple to extend this mechanism to more recursive levels (with more sets of intermediate states).

In Appendix A the variance analysis is extended to the case of two sets of intermediate states,
C̃1 and C̃2, as decribed in the previous paragraphs. The probabilities involved are shown in Fig-
ure 6.2. The result obtained is the following:

V{γ̂cie} =
1

N1

(
n1∑

l=0

pl γ
′
l
2 − γ2

)
+

1

N1

n1∑

l=0

pl

(
1/N2

(
n2∑

k=0

plkγ
2
k − γ′l

2

)
+

1

N2N

(
γ′l −

n2∑

k=0

plk γ
2
k

))
.

Given this expression, it is possible to prove that the variance obtained in a model with two
sets of intermediate states, C̃1 and C̃2, is lower than or equal to the variance obtained in a model
with the single intermediate set of states C̃1. This statement is proven in Appendix B.
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Figure 6.2: The case of two sets of Intermediate States, C̃1 and C̃2

6.5 Comparative Analysis of Variances

The variance of the CMIE estimator, for the case of only one set of intermediate states, was derived
in Section 6.3. In this section, this variance is compared to the variance of other estimators.

The variance of the Standard Monte Carlo estimator, as shown in (6.7), is:

V{γ̂s} =
1

N1

(
γ − γ2

)
.
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The variance of the pure Conditional Monte Carlo estimator derived in (6.6), in which the exact
values of the probabilities γi, i = 0, . . . , n, are used, is:

V{γ̂c} =
1

N1

(
n∑

i=0

piγ
2
i − γ2

)
,

and the variance of the proposed estimator just derived in (6.11), in which the probabilities γi, i =
0, . . . , n, are estimated by standard simulation, is:

V{γ̂cie} =
1

N1

(
n∑

k=0

pkγ
2
k − γ2

)
+

1

N1N2

(
γ −

n∑

k=0

pkγ
2
k

)
.

As N2 → ∞, then V{γ̂cie} → V{γ̂c}. Clearly, if the number of replications used in the
estimation of the probabilities γi, i = 0, . . . , n is infinite, the estimators converge to the corre-
sponding exact values, and the method becomes the pure Conditional Monte Carlo.

At the end of Section 6.2 it has been shown that V{γ̂c} ≤ V{γ̂s}, meaning that the accuracy of
pure Conditional Monte Carlo is never less than the accuracy of Standard Monte Carlo. It is clear
that V{γ̂c} ≤ V{γ̂cie}. It is pending to prove that V{γ̂cie} ≤ V{γ̂s}, meaning that the proposed
estimator is never less accurate than Standard Monte Carlo estimator.

V{γ̂cie} =

n∑
k=0

pkγ
2
k − γ2

N1
+

γ −
n∑

k=0

pkγ
2
k

N1N2

≤

n∑
k=0

pkγ
2
k − γ2

N1
+

γ −
n∑

k=0

pkγ
2
k

N1

≤ γ − γ2

N1

≤ V{γ̂s}.

The inequality holds, no matter the values of N1 and N2. This means that the proposed esti-
mator, γ̂cie, is never less accurate than Standard Monte Carlo estimator, γ̂s, even for a low number
of replications N1 and N2.

Finally, the three variances involved are related as follows:

V{γ̂c} ≤ V{γ̂cie} ≤ V{γ̂s},

which means that CMIE is always more accurate than crude or Standard Monte Carlo, but never
as accurate as pure Conditional Monte Carlo, in which the exact values γi, i = 0, . . . , n, are used.

6.6 Intermediate States Analysis

The variance reduction capacity of CMIE depends on the choice of the set of intermediate states.
In this section two properties of the sets of intermediate states are analyzed. The first one concerns
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the number of states of such sets. It will be shown that after adding a new state to an existing set,
the variance of the estimator never increases and, therefore, a variance reduction may be expected.
The second property is related to the comparison between two particular sets of intermediate states,
namely cuts, each of them considered individually, i.e. one at a time. It will be shown that the one
that yields the highest variance reduction is the one composed of states that are somehow closer
to the initial state, u. These two properties are consistent and behave as a guideline to make the
choice of the sets of intermediate sates. For simplicity these properties will be analysed in the case
of pure Conditional Monte Carlo.

Let γ̂cn be the pure Conditional Monte Carlo estimator obtained when the set of intermediate
states is composed of n states, and let γ̂cn+1

be the same estimator when the set of intermediate
states is composed of n+ 1 sates, obtained by the addition of one state to the first considered set.
To address the first property, define Vn = N1 × V{γ̂cn} and Vn+1 = N1 × V{γ̂cn+1

}. It will be
proven that Vn − Vn+1 ≥ 0.

Let pk, k = 0, . . . , n, be the probability that a replication started at state u reaches state k,
before any other state in C , in the model with n intermediate states and let p′k, k = 0, . . . , n, n+1,
be the same probabilities in the model with n+ 1 intermediate states. Then:

Vn =

n∑

k=0

pkγ
2
k − γ2

and Vn+1 =

n+1∑

k=0

p′kγ
2
k − γ2.

Clearly p′k ≤ pk, k = 0, . . . , n, because as pk is the probability that starting at u the process
reaches k before any other state in C , after C grows by the addition of one more state, some of
the paths from u to k before the addition may now include the new state and, therefore, such paths
will not go from u to k, before reaching states in C , anymore.

The target, γ, can thus be written in the two following ways:

n∑

k=0

pkγk =

n+1∑

k=0

p′kγk = γ,

and thus,

n∑

k=0

(pk − p′k)γk = p′n+1γn+1. (6.12)

Considering that any replication that starts at u, either ends at some state in C , comes back to
u or gets absorbed at d (see Figure 6.1), it is clear that:

pu +
n∑

k=0

pk = p′u +
n+1∑

k=0

p′k = 1,
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leading to:

(pu − p′u) +
n∑

k=0

(pk − p′k) = p′n+1. (6.13)

Calling rk = (pk − p′k) ≥ 0, k = u, 0, 1, . . . , n, Equation (6.12) can be written as follows:

n∑

k=0

rkγk = p′n+1γn+1 (6.14)

and Equation (6.13) as:

ru +
n∑

k=0

rk = p′n+1. (6.15)

Recall that we have to prove that Vn − Vn+1 ≥ 0. This difference takes the following form:

Vn − Vn+1 =
n∑

k=0

pkγ
2
k −

n+1∑

k=0

p′kγ
2
k

=
n∑

k=0

rkγ
2
k − p′n+1γ

2
n+1.

The only case of interest is when p′n+1 is strictly positive, because if p′n+1 = 0 both sets of
intermediate states are the same and Vn = Vn+1. Assuming that p′n+1 > 0,

Vn − Vn+1

p′n+1

=
n∑

k=0

rk
p′n+1

γ2k − γ2n+1. (6.16)

Think of a random variable W with the following probability distribution:

W =





0 w.p. ru/p
′
n+1,

1 w.p. r0/p
′
n+1,

γ1 w.p. r1/p
′
n+1,

...
γn w.p. rn/p

′
n+1.

This is in fact a probability distribution because the terms ru, r0, . . ., rn and p′n+1 are all positive
and ru/p

′
n+1 +

∑n
k=0 rk/p

′
n+1 = 1, due to (6.15). The expectation of this random variable (see

(6.14)) is:

E{W} = ru
p′n+1

× 0 +
n∑

k=0

rk
p′n+1

γk

= γn+1,
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and, therefore, (6.16) gives its variance. This completes the proof, because a variance is always
non negative:

Vn − Vn+1

p′n+1

=

n∑

k=0

rk
p′n+1

γ2k − γ2n+1 ≥ 0,

and thus,
Vn − Vn+1 ≥ 0.

Next it will be considered the case in which the intermediate states compose a cut in the
Markov chain. Then, the variances of two estimators obtained using two different cuts —
performing separately— are compared.

For any two states i and j in the state space S of a Markov chain, C̃ is called a cut between i

and j if there are three disjoint subsets Si, C̃ and Sj such that: (i) S = Si ∪ C̃ ∪ Sj , (ii) i ∈ Si

and j ∈ Sj and (iii) every path from a state in Si to a state in Sj contains one state in C̃ . A cut C̃
without any mention to the states i and j is an implicit reference to the case in which these states
are u and d.

It is possible to define a cut between one state i and another cut C̃j and also a cut between two
cuts, C̃i and C̃j . In the first case the definition must apply for all the pairs formed by i and the
states in C̃j . In the second case the definition must apply for all the pairs formed by one state in
C̃i and one in C̃j .

Now, the variances of two estimators, γ̂c1 and γ̂c2 , are compared. γ̂c1 is the pure Conditional
Monte Carlo estimator obtained by a simulation for which the only cut selected is C̃1, while γ̂c2
is the same, when the only cut selected is C̃2. C̃1 is a cut between u and C̃2, whereas C̃2 is a cut
between C̃1 and d.

Let V1 = N1 ×V{γ̂c1} and V2 = N1 ×V{γ̂c2}. In order to compare the variances, V1 and V2

must be written in terms of the same set of probabilities. The comparison will show that V2 can
never be less than V1. The probabilities involved are shown in Figure 6.3.

Writing V1 as follows,

V1 = p1γ
′
1
2
+ · · ·+ pn1

γ′n1

2 − γ2

= p1 (p11γ1 + p12γ2 + · · ·+ p1n2
γn2

)2︸ ︷︷ ︸
x1

+ · · · + pn1
(pn11γ1 + pn12γ2 + · · ·+ pn1n2

γn2
)2︸ ︷︷ ︸

xn1

−γ2,

and V2 as,

V2 = p′1γ
2
1 + · · ·+ p′n2

γ2n2
− γ2

= (p1p11 + p2p21 + · · ·+ pn1
pn11)γ

2
1 + · · · + (p1p1n2

+ p2p2n2
+ · · ·+ pn1

pn1n2
)γ2n2

− γ2

= p1 (p11γ
2
1 + p12γ

2
2 + · · · + p1n2

γ2n2
)︸ ︷︷ ︸

y1

+ · · ·+ pn1
(pn11γ

2
1 + pn12γ

2
2 + · · · + pn1n2

γ2n2
)︸ ︷︷ ︸

yn1

−γ2,

it results:

V2 − V1 = p1(y1 − x1) + · · ·+ pn1
(yn1

− xn1
). (6.17)
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Figure 6.3: Probabilities for variance comparison using one of two different sets, C̃1 or C̃2

It will be shown that V2 − V1 ≥ 0.

Let Γ1 (defined only with auxiliary purpose) be the following random variable:

Γ1 =





γ1 w.p. p11,
γ2 w.p. p12,
...

γn2
w.p. p1n2

.

(6.18)

The expected value of Γ1 is:

E{Γ1} = p11γ1 + p12γ2 + · · ·+ p1n2
γn2

= γ′1,
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and its variance:

V{Γ1} = (p11γ
2
1 + p12γ

2
2 + · · ·+ p1n2

γ2n2
)− (p11γ1 + p12γ2 + · · ·+ p1n2

γn2
)2.

This variance —that, as any variance, is not negative— is numerically equal to the term y1−x1.
Similarly y2 − x2, · · · , yn1

− xn1
are, respectively, the variances of the variables Γ2, · · · , Γn1

,
whose definitions are similar to (6.18).

Going back to (6.17), it follows that V2 can never be less than V1, because:

V2 − V1 = p1 (y1 − x1)︸ ︷︷ ︸
≥0

+ · · ·+ pn1
(yn1

− xn1
)︸ ︷︷ ︸

≥0

≥ 0, (6.19)

or what is the same, that the variance of the estimator γ̂c2 can never be less than the variance of
the estimator γ̂c1 , no matter the number of states in each of the cuts. If it is possible to find a cut
C̃0 between u and C̃1, the variance of γ̂c0 will be lower than or equal to the variance of γ̂c1 . The
cut C̃a formed by the states adjacent to u leaves no room for another cut (between C̃a and u) and,
therefore, there is no cut that produces an estimator with lower variance than γ̂ca .

A similar conclusion can be derived from the fact proven in the first part of this section. Ac-
tually, if the addition of one state to an existing set of intermediate states yields a variance that
is lower than, or at worst equal to, the variance before the addition, the set that yields the least
variance is the one composed of all the states: C = S. However, from the implementation point
of view, the set C = S is equivalent to the set formed by the adjacent states to u, C̃a (because,
if C = S, for any replication started at the initial state u, the only reachable states will be the
adjacent ones).

In the case of two or more sets of intermediate states, the choice of the second, and the consec-
utive ones, must be somehow similar to the choice of the first one with respect to the initial state
u. Whenever possible, the second cut (between the existing one and state d) must be formed by
the adjacent states to the existing cut. However, this is not straightforward and must be analyzed
for every particular model.

Figure 6.4 shows a continuous time Markov chain used by Juneja and Shahabuddin in
[Juneja 2001]. The system has 2 components of class A and 4 components of class B. The
components can only be operational or failed. The state is the pair (NA,NB), where Ni indicates
the number of failed components in class i. Failure rates of classes A and B are, respectively, ε/2
and ε. The system fails if all components of all classes fail. Group repair (all failed components
of a class are repaired simultaneously) begins if two components of the same class fail. Group
repair rates for both classes are equal to 1. There is one repair-person in the system, and class A
gets preemptive priority over class B.

In the rest of this section CMIE is tested on the model just introduced, and in the next section
it is compared, by means of different models, with many other methods used in the estimation
of γ, namely: FB, SFB and SFBP, used in [Cancela 2002] and BFB, SBLR, ZVA(v0), ZVA(v1),
ZVA(v2), and ZVA(v3), used in [L’Ecuyer 2011b] (all of them derived from Importance Sam-

pling). To make the comparisons, different experiments, are performed. These experiments con-
sist of running simulations over selected models and obtaining an estimation of γ together with
measures of precision and efficiency. Actually the most interesting results of the experiments are
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Figure 6.4: Continuous time Markov chain used in the experimental variance analysis

not the estimations themselves, but the precision and efficiency of the methods, instead. This way,
the results of the CMIE procedure are compared to those published in the referred papers.

If γ̂ is the estimator obtained by the method under analysis in time t (either CMIE or any
other one), with expectation E{γ̂} = γ and variance V{γ̂}, and γ̂c is the corresponding estimator
obtained by Crude Monte Carlo in time tc, the following parameter is used in the results shown
hereafter:

V{γ̂c}/V{γ̂}: the Variance Ratio, that shows the precision improvement of the method under
analysis over Crude Monte Carlo for runs that share a common parameter such as the sample
size or the number of replications.

The CMIE method was programmed in the C language, using the gcc compiler. Simulations
proceeded as follows: N1 replications were started at state u, and they were multiplied as they
reached an intermediate state of the first set. The created replications kept on being multiplied
recursively as they reached the consecutive sets of intermediate states, until all the trajectories
finally end, either at state d or at state u. Every one of the N1 replications reported an estimate
γ(j), j = 1, . . . , N1. Given these values, the estimator γ̂cie and an unbiased estimator of its
variance were calculated as follows:

γ̂cie =
1

N1

N1∑

j=1

γ(j), V̂{γ̂cie} =
1

N1 − 1


 1

N1




N1∑

j=1

γ(j)
2


− γ̂2cie


 . (6.20)

In the case of the crude or standard estimation, N1 replications were started at state u and
they were simulated until they finally end, either at state d or at state u. Every one of the N1
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replications reported an estimate γ(j) ∈ {0, 1}, j = 1, . . . , N1. The estimator γ̂s and the estimator
of its variance were also calculated by means of (6.20).

At this point in the introduction and development of CMIE it might be perceived that, some-
how, it resembles Splitting. Actually, there is a formal equivalence between both methods that
will be approached in Section 6.8. For now suffice it to say that, if the sets of intermediate states
are cuts in the graph of the Markov chain, both methods are in fact equivalent. However the way
CMIE is defined is such that Splitting is a particular case, mostly because of two reasons, (i) in
CMIE it is possible to go straight from state u to state d avoiding the intermediate states (see
Figure 6.1) and (ii) because, as it will be seen in Section 6.7, in CMIE it is possible to condition
to different events, other than hitting intermediate states, what can make very difficult, o even im-
possible, to find an importance function to translate these events into thresholds in the state space
of the Markov chain.

Tables 6.1, 6.2 and 6.3 show the estimator γ̂cie, and an estimator of its variance, V̂{γ̂cie},
obtained by CMIE simulations over the model of Figure 6.4, for different sets of intermediate
states. Table 6.3 also shows the ratio V{γ̂c}/V{γ̂} when CMIE and standard simulation run the
same execution time. The sets, namely C̃1, C̃2 or C̃3, are all cuts and they are referred to, making
use of the numbers placed above each state in Figure 6.4.

Table 6.1: Results of the experiments for the model in Figure 6.4, ε = 0.01

C̃1 γ̂cie V̂{γ̂cie}
1–5 6.18E−06 6.28E−14

2–6–10 6.23E−06 6.88E−14
3–7–11 6.36E−06 6.90E−14
4–8–12 6.34E−06 1.53E−13
9–13 6.93E−06 6.56E−12

The results in Table 6.1 show that the cut that attains the lowest variance is the one formed
by the adjacent states to u. The variances of the estimators whose associated cut is close to state
u are also low and quite similar. But, when the cuts are “far” from state u, the variance greatly
increases. In these experiments the number of replications started at state u was 10,000 and the
number of replications launched from the intermediate states was also 10,000.

Table 6.2: Results of the experiments for the model in Figure 6.4, ε = 0.01

C̃1 C̃2 C̃3 γ̂cie V̂{γ̂cie}
1–5 — — 4.00E−06 4.00E−12
1–5 2–6–10 — 6.19E−06 6.31E−14
1–5 2–6–10 3–7–11 6.13E−06 2.27E−15

The experiment whose results are in Table 6.2 show that as the number of cuts increases, the
variance of the estimator γ̂cie decreases. In these experiments the number of replications started
at state u where 10,000 and the number of replications launched from the intermediate states was
100 for all cases.
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Table 6.3: Results of the experiments for the model in Figure 6.4, ε = 0.001

C̃1 C̃2 C̃3 γ̂cie V̂{γ̂cie} V̂{γ̂s}/V̂{γ̂cie}
4–8–12 — — 6.53E−09 4.60E−20 87
3–7–11 9–13 — 6.38E−09 7.75E−21 516
3–7–11 4–8–12 9–13 6.44E−09 1.28E−21 3125

The experiments in Table 6.3 are included to briefly show the variance reduction capacity of
the CMIE method. These experiments were done in the following way. Four simulations were ex-
ecuted, one using the crude or standard method, and three more using CMIE with respectively one,
two and three cuts as shown in Table 6.3 (chosen after some pilot runs to select sets performing
efficiently). The number of replications launched from intermediate states was 1,000 for all cases;
the number of replications starting at state u was adjusted so that the total execution time of each
of the four simulations was t = 500 sec. This time was fixed in advance and equal for all methods
in order to have a fair comparison of the accuracy that was obtained by the different experiments.
The fourth column shows estimations of γ that are quite similar, which is reasonable since they are
all unbiased estimators. The fifth column shows how the variance decreases at the addition of cuts
(while the simulation time is fixed), and the sixth column shows the ratios between the standard
estimator (which is the same for the three experiments) and the variances of the corresponding
CMIE estimators, illustrating the precision gain of CMIE over the crude or standard method.

6.7 Application to Large Multicomponent Systems

Sometimes the state space S of the Markov chain is extremely large and, therefore, the choice of
intermediate states is hard to be done explicitly. Typical examples of these models are those of
multicomponent systems. Think, for instance, of a system formed by components of five classes,
with five components per class, each of which can be either operational or failed. Regardless of
the rules and criteria that define the up and down states of the whole system, the model is a Markov
chain with a potential state space of 225 states. The idea of CMIE fits better to these models if it is
adapted in the following way.

As seen so far, the replications start at some initial state u and they stop as soon as they hit
one of the so–called intermediate states (or the one of the states u or d). When the replications
stop at some state, other than u or d, the probability of reaching state d before state u is computed
(or estimated) and accumulated in order to make the Monte Carlo estimation. Formally speaking,
the computed values are samples of the probability of interest, γ, conditioned to the fact of hitting
that intermediate state. It is possible, however, to generalize the type of event on which the target
event can be conditioned to, and to gather the samples conditioned on those different facts, other
than hitting intermediate states.

In (6.4), Section 6.2, the indicator random variable I is conditioned on X
(j)
C , which is the

value of the random variable XC in the jth replication. XC takes values in a space formed by the
intermediate states. The values of XC can be seen as a function of the path πu followed by the
trajectory started at state u. These values are the states at which these paths end, and they make a
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partition in the domain of the variable E{I | XC}, because there will be one value of E{I | XC},
called γi (see Figure 6.1), for every path that ends at state i.

But this partition, and consequently the values of γi, can be obtained by the application of
different functions that take the path πu as their argument. In the following subsections three
possible alternatives for these functions are introduced and, then, they are tested in Section 6.7.4.

6.7.1 Forward Steps

In the models used so far, there is only one (initial) state u, in which the system is up, and one
(target) state d, in which the system is down. Suppose that the system is such that it is possible
to define consecutive cuts in the graph, distributed between u and d, with a separation of a single
step jump between them. After the first one step jump from state u, the simulation reaches one
of the states in the first set. Once the simulation is at one of the states in the first set, it can either
move to the second set (wherever it is) or come back to state u. If it moves forward to the second
set, it should reach one of its states after a one step jump. If it goes back to state u, the replication
terminates.

After the simulation reaches one state in the second set, it can either move unto the third one
(wherever it is) or backwards to state u. If it moves unto the third set, it should reach one of its
states after a one step jump. If it moves backwards to state u, the simulation must be kept on until
it goes definitely back to u or finally reaches one state in the third set. And the same holds for the
subsequent sets of intermediate states.

The implementation of this variant of CMIE makes it necessary to detect whether the simu-
lation moves forwards (to the target state) or backwards (to the initial state). As the system is
composed by a number of components, each of which can only be operational or failed, and ac-
cepting that as the components fail the simulation gets closer to the target state, whereas when
the components are repaired the simulation gets closer the initial state, the number of operational
components is a reasonable measure of the distance to the target state. Thus, the increase or
decrease of this distance is an indicator of whether the simulation moves forward or backward.

It has been shown that increasing the number of sets of intermediate states, a variance reduction
of the CMIE estimator may be expected (see Appendix B). It is clear, however, that as the number
of sets of intermediate states increases the computational effort —and, therefore, the simulation
time—. If the state space S of the Markov chain is extremely large, to place the consecutive sets
of intermediate states one step apart may cause to have a very high number of intermediate states
and, consequently, a huge number of recursive calls. A solution to this problem is to consider
the sets of intermediate states more apart from each other, so as to make the recursive calls only
after moving D ≥ 1 steps closer to the target state, every time. Proceeding this way, wherever the
simulation starts, it must keep moving forwards and backwards until it either comes back to u, or
moves D steps towards d. If u is reached, the replication terminates; if the simulation moves D
steps closer to d, a new replication (recursive call) is launched.

6.7.2 Consecutive Failures

In the Forward Steps implementation the simulation stops, and a number of new replications start,
whenever it gets D steps closer to the target state d. It does not matter whether, before getting
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D steps closer to d, the simulation moves in zigzag, forward and backward. A replication will
stop, and a number of new replications will start, whenever any state visited by the simulation is
D steps closer to the state d, compared to the state from which the replication starts.

For a replication that starts at some state i, there are many ways (paths) to get D steps closer
to the target state d. One of them corresponds to the case in which D consecutive failures occur.
If the system is composed of more than D components, there will be many different ways in
which D consecutive failures may occur, all of them rarer than the case in which the D steps are
completed after a zigzag of forward and backward steps. Thus, the indicator random variable I

can be conditioned on such a sequence of D consecutive failures (D consecutive forward steps).

6.7.3 Measure of Rarity

Let πi,j be a path that starts at state i and ends at state j, without hitting state u. If this path is
composed of the sequence of states i, k, . . ., l, j, the probability that the simulation goes through
it, is:

P{πi,j} = pik × . . . × plj (6.21)

where pxy is the probability of going from state x to the neighbour state y, no matter if this jump
corresponds to a fail or a repair.

In order to apply CMIE, the indicator variable I can be conditioned on the event P{πi,j} ≤ B,
whereB is a fixed value. At every single step jump, a new individual value pxy has to be multiplied
by the previous transition probabilities, making expression (6.21) grow by one term every time.
The simulation must stop, and a number of new replications start, as soon as the value of the
product falls below the value of the bound B.

In highly reliable systems, most of the probabilities pxy are likely to be low. Then, the product
of the sequence pik × . . . × plj could be extremely low. To avoid numerical precision problems,
logarithms can be applied in the following way:

− log(P{πi,j}) = − log(pik)− . . .− log(plj)

translating the condition P{πi,j} ≤ B into − log(P{πi,j}) ≥ W (where W = − log(B)). It is
clear that, for all x, y, − log(pxy) ≥ 1 and, consequently, − log(P{πi,j}) ≥ 1. In the models of
interest, failures are usually rare whereas repairs are not. Then, for a transition from x to y, the
value − log(pxy) will be high if the transition is a failure and it will be low if it is a repair. Finally,
− log(P{πi,j}) will be high if the product contains one or more failures or, in other words, if the
probability of going through path P{πi,j} is low. The value − log(P{πi,j}) performs as a measure
of rarity of the path that the simulations goes through, and the inequality − log(P{πi,j}) ≥ W

indicates that the path is promising in the sense of getting close to the final target state d.

6.7.4 Experimental Comparison

The three implementations proposed to apply CMIE to large systems are now subject to an ex-
perimental comparison. The results in all the experiments are the estimation γ̂cie and the product
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V̂{γ̂cie}×t, for different models taken from published papers. All the values reported in the tables
were obtained with the formulas indicated in (6.20).

The model used in the first set of experiments was used by Cancela et. al. in [Cancela 2002]
and it represents a computer that is composed of a multiprocessor, a dual disk controller, two RAID
disk drives, two fans, two power supplies, and one dual interprocessor bus. When a component in
a dual fails, the subsystem is reconfigured into a simplex. This tandem computer system requires
all subsystems, one fan, and one power supply for it to be operational. The failure rates are 5ε,
2ε, 4ε, 0.1ε and 3ε for the processors, the disk controller, the disks, the fans, the power supplies
and the bus respectively, with ε = 10−5 failures/hour. There is only one repairman and the repair
rates are 30 repairs/hour for all the components, except for the bus, which has repair rate equal
to 15 repairs/hour. In the experiments shown in Table 6.4, the multiprocessor and the disks have
two units each, and only one is needed for the system to be working. FB, SFB and SFBP are all
Importance Sampling methods used in [Cancela 2002].

Table 6.4: Example of a tandem computer, first version, in [Cancela 2002]

Method γ̂cie V̂{γ̂cie} × t

FB 1.33E−06 3.37E−14
SFB 1.27E−06 2.06E−15
SFBP 1.27E−06 2.20E−15
Forward Steps 1.21E−06 4.20E−13
Consecutive Failures 1.19E−06 3.93E−13
Measure of Rarity 1.20E−06 5.38E−13

Table 6.5 shows the results obtained for the same system, but with with a four-unit multipro-
cessor (only one of the four processors is required to have an operational system), and with each
RAID being composed of 5 drives, only 3 of which are required for the system to be operational.

Table 6.5: Example of a tandem computer, second version, in [Cancela 2002]

Method γ̂cie V̂{γ̂cie} × t

FB 1.24E−07 1.88E−15
SFB — 1.57E−16
SFBP 1.25E−07 9.05E−17
Forward Steps 1.19E−07 5.55E−14
Consecutive Failures 1.30E−07 6.17E−14
Measure of Rarity 1.24E−07 1.11E−14

The third system used, also taken from [Cancela 2002], consists of a replicated database in
which there are four sites, and each site has a whole copy of the database, on a RAID disk cluster.
All clusters are identical, with the same redundancies (7-out-of-9), and with failure rate (for each
disk) equal to ε = 10−2. There is one repairman per class, and the repair rate is 1. The system is
considered up if there is at least one copy of the database working. Results are shown in Table 6.6.

Measure of Rarity is efficient only if failure and repair rates are considerably different. When
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this is not the case, the measure of rarity increases significantly at both, failures and repairs and, as
a consequence, an increase of such measure is not an indication that the systems is moving towards
the target event. In the case of the replicated database, failure and repair rates are, respectively,
10−2 and 1. Compared to the rates of the other systems analyzed, these rates are considerably
close. This is the reason whyMeasure of Rarity is not computed in Table 6.6.

Table 6.6: Example of a replicated database in [Cancela 2002]

Method γ̂cie V̂{γ̂cie} × t

FB 8.54E−13 8.65E−25
SFB 1.16E−12 3.93E−23
SFBP 8.87E−13 2.37E−25
Forward Steps 8.04E−13 4.41E−26
Consecutive Failures 8.10E−13 4.18E−23
Measure of Rarity — —

In the second set of experiments the models are the ones used by L’Ecuyer et. al. in
[L’Ecuyer 2011b]. In the first case (Example 5 in [L’Ecuyer 2011b]), the system is composed
of two sets of processors with two processors per set, two sets of disk controllers with two con-
trollers per set, and six clusters of disks with four disks per cluster. The failure rates for processors,
controllers, and disks are 5× 10−5, 2× 10−5 and 2 × 10−5, respectively. The repair rate is 1 for
each type of component. In each disk cluster, data is replicated, which means that the failure of
a single disk does not provoke a system’s failure. The system is operational if all data is acces-
sible from both processor types, meaning that at least one processor of each type, one controller
of each set, and three disks of each cluster are operational. Results are shown in Table 6.7. BFB,
SBLR, ZVA(v0), ZVA(v1), ZVA(v2), and ZVA(v3) are all Importance Sampling methods used in
[L’Ecuyer 2011b].

Table 6.7: Example 5 in [L’Ecuyer 2011b] (Exact Value 5.60E−05)
Method γ̂cie V̂{γ̂cie} × t

BFB — 4.93E−07
SBLR — 1.17E−03
ZVA(v0) — 6.21E−11
ZVA(v1) — 3.90E−11
ZVA(v2) — 4.80E−11
Forward Steps 5.59E−05 3.08E−11
Consecutive Failures 5.51E−05 2.83E−11
Measure of Rarity 5.28E−05 9.88E−11

The last example is the one referred to as Example 6 in [L’Ecuyer 2011b]. The system is
composed of 20 types of components numbered from 0 to 19, with 4 components of each type.
All repair rates are assumed to be 1, but component’s failure rates differ: type–i components have
failure rate λi = (1 + i/10)ε for 0 ≤ i ≤ 9 and λi = iε2/10 for 10 ≤ i ≤ 19, where ε = 10−3.
The system is failed whenever a total of 7 components are failed. Results are shown in Table 6.8.
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Table 6.8: Example 6 in [L’Ecuyer 2011b]

Method γ̂cie V̂{γ̂cie} × t

BFB 3.10E−11 9.35E−17
SBLR — —
ZVA(v3) 3.00E−11 1.26E−22
Forward Steps 3.03E−11 1.74E−23
Consecutive Failures 2.93E−11 4.28E−22
Measure of Rarity 2.38E−11 8.70E−21

All the CMIE estimations can be considered in the same order of precision and efficiency of
the other methods to which the comparisons has been made.

6.8 CMIE vs. Splitting

If the sets of intermediate states are cuts, there is a formal equivalence between CMIE and Splitting
[Garvels 2000, Glasserman 1996, L’Ecuyer 2007a, L’Ecuyer 2009, Villén-Altamirano 1991]. In
both methods trajectories are managed similarly, but the interpretation of them and, consequently,
the way the calculation is made, differs. The results of both estimates coincide, but for certain
Splitting models for which the determination of the function of importance is particularly difficult,
the application of CMIE is extremely simple.
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Figure 6.5: Some trajectories in a CMIE vs. Splitting comparison
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A different analysis on the samemodel shows that, any path starting at state u has a probability,
say P1, to reach —any state of— the set C̃ before coming back to u. In the same way, a path
starting from any state in the set C̃ has a probability, say P2, to reach state d before coming
back to u. The set C̃ can be seen as a bound or threshold in the paths going from u to d and,
therefore, Splitting can be applied in the estimation of γ. This Splitting estimation takes the form:
γ̂ = P̂1 × P̂2, where P̂1 and P̂2 are, respectively, standard estimators of P1 and P2, as in any
ordinary Splitting application. Figure 6.5 shows part of a set of replications, some of which start
at u and goes forward to C̃, and some others that start at C̃ and goes forward to d. According to
this approach, the estimators of P1 and P2 are:
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and the Splitting estimator is:

γ̂spl = P̂1 × P̂2 =
1
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This leads to the conclusion that, if the set C̃ = {1, 2, . . . , n} is a cut in the graph of the
Markov chain, CMIE and Splitting (based on a single level set) produce the same estimation. In
other words, Splitting with a single level set C̃ is the particular case of CMIE in which the set C̃
is a cut in the graph of the Markov chain.

In a basic Splitting model there are bounds or thresholds between the initial and the final state,
just like the set C̃ in Figure 6.5. The consecutive probabilities P1, P2, . . . need to be estimated
somehow. One of them is the probability of reaching the final state from the threshold that is
immediately before. In systems like the ones introduced in Section 6.7, there are usually more
than one final state scattered through all the Markov chain, some of which may be located between
thresholds. This feature requires a particular effort to design a Splitting function of importance,
while the application of CMIE is straightforward.

Another feature that may cause complications in a basic Splitting model is failure propagation.
Sometimes a particular failure may cause the simultaneous occurrence of a set of other failures,
with a given probability. In a basic Splitting model this translates into crossing more than one
threshold simultaneously, what makes necessary to modify the basic approach according to system
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under analysis. CMIE is not affected by failure propagation.

6.9 Computational Cost

Let πu,k be a path that starts at u and reach k ∈ C before coming back to u. Let L(πu,k) be the
length of πu,k, measured by the number of transitions. Considering that —in general— there is
more than one path that starts at u and reaches k ∈ C before coming back to u, each one of them
with some given probability, L(πu,k) is a discrete random variable. Call lu,k = E{L(πu,k)}.

Similarly, lk,d = E{L(πk,d)} is the mean number of transitions of a path that starts at state
k ∈ C and hits state d before coming back to u.

Calling T , the number of transitions of the whole simulation:
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Abstract

This chapter presents the concluding remarks of this thesis. First, the main contributions are briefly
highlighted. Then, two sections are dedicated to the conclusions regarding the two main method
families proposed and studied in this thesis, Splitting/CP and CMIE. The last section is devoted to
discuss possible research lines to continue this work.

7.1 Main Contributions

This thesis has explored some Monte Carlo methods designed to reduce the variance of the esti-
mator in a context of rare events. As a result, two methods have been proposed.

The first one, Splitting on the Creation Process (Splitting/CP), applies to the reliability esti-
mation on a static model of a communication network for which the links are extremely reliable.
The other one, Conditional Monte Carlo with Intermediate Estimations (CMIE), is intended to es-
timate dependability parameters on Markovian systems for which failure is associated with states
that are visited with extremely low probability.

Both methods were studied empirically by doing several numerical experiments over many
well known benchmark models. The results of these experiments show that the performances of
the two methods are in the order of those of the best known methods. In the case of CMIE some
of its properties were demonstrated and, besides, its variance was given a closed form.

Before addressing each of the two proposed methods, Splitting and Conditional Monte Carlo

were studied on a number of basic models. In the particular case of Splitting, the variance was
determined for two different settings, in one of them (Fixed Splitting) the result matches the one
that was already published, in the other setting (Fixed Effort) the variance determination is a con-
tribution since, as far as we know, it is not in the literature.

Ultimately, the main contribution of this thesis is to give new evaluation methods and useful
ideas for simulating systems subject to rare events.
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7.2 Splitting on Network Reliability Estimation

The first of the proposed methods —named in this thesis, Splitting/CP— applies to estimate the
reliability of highly reliable communications networks. Splitting/CP is as an improvement of the
Creation Process, a type of simulation in which the model evolves through a fictitious time t.
At the beginning, all the links are failed and they become repaired after random times that are
proportional to their single reliability. If the structure function, φ(X), equals 1 earlier than t = 1,
the replication ends and the network is considered operational. Otherwise the replication ends and
the network is considered failed. The proposal of this thesis is to partition the period 0 ≤ t ≤ 1 by
means of thresholds and to split or multiply every one of the network’s temporal evolutions, just
like “ordinary” applications of Splitting do to the trajectories on the state space.

All the work and, consequently, most of the conclusions around this proposal has been sup-
ported empirically. In the first set of experiments, the accuracy and the computational efficiency
of Splitting/CP were compared to the results of different methods taken from the literature. This
comparison shows that, except from RVR [Cancela 2003], Splitting/CP performs in the order of
most of the well–known methods to which it was compared, namely Creation, Destruction and
Merge Process, Sequential Construction and Destruction, Dagger, Bound–based sampling, Fail-
ure Sets Method, Total Hazard, Leap–Evolve and Tree–Merge and Cross Entropy over Merge,
Permutation and Crude Monte Carlo. Experiments also lead to the conclusion that Splitting/CP
behaves more efficiently on sparse graph networks (like the Easton–Wong or the 6×6–Grid) than
on dense graph networks (like the Dodecahedron or the complete networks).

In the second set of experiments, simulations were conducted on the Dodecahedron network,
with increasing reliability. The relative error V{Q̂}1/2/E{Q̂} of the Splitting/CP estimator Q̂ is
very small and stays quite stable for widely varying values of failure rarity. There is actually a
very small growth when reliability approaches 1, but a change in sixteen orders of magnitude of
unreliability translates into less than one order of magnitude increase of relative error (and the
growing step becomes smaller when the network reliability grows). This suggests that the method
can attain very small relative error values, no matter how reliable the network is.

In the last set of experiments the robustness of Splitting/CP was empirically analyzed. The
Coverage Factor, defined as the proportion of times that the exact value lies inside a confidence in-
terval, was determined for three different confidence levels: 90%, 95% and 99%. Such a Coverage
Factor was calculated for different (increasing) values of the system reliability, varying the single
link unreliability as the measure of rarity ε. The tests were performed on C10 (the ten nodes com-
plete network), and the Dodecahedron, varying the measure of rarity so as to let the whole network
unreliability span from 2× 10−3 down to 2× 10−21. All the Coverage Factors were significantly
tight to the confidence level (all of them within ±1% of the confidence level). In addition, a test
proposed by Schruben was also applied; this test considers the full coverage function (not just
its value at some of its levels), and allows for a more strict evaluation of the appropriateness of
the confidence interval. The results obtained showed an excellent behaviour of the Splitting/CP
method, where the computed confidence intervals with respect the normality assumptions for an
extremely wide range of reliability values. These results show that the Splitting/CP estimator is
extremely robust.
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7.3 Conditional Monte Carlo on Markovian Systems

The second method proposed in this thesis, referred to as Conditional Monte Carlo with Interme-

diate Estimations (CMIE), is a variance reduction technique developed to enhance simulations in
the context of rare events on markovian systems. CMIE is based on Conditional Monte Carlo,
a classical variance reduction technique, whose use is not widespread in the field of rare events.
CMIE was conceived to estimate the probability of visiting the failure state before coming back
to the initial state (accepted as the state in which the system is up). The application of ordinary
Conditional Monte Carlo requires the knowledge of some exact probabilities in the model. To
overcome the fact that this probabilities are likely to be unknown, the proposal of CMIE is to esti-
mate them, for which it is necessary to launch the method, recursively, from some selected states
called intermediate states.

From this point of view, Splitting can be considered the particular case of CMIE in which the
events are implicitly defined by thresholds in the state space of the Markov chain. However, the
way in which the target probability is recursively computed in CMIE is simpler than the Splitting
algorithm, which needs to determine the probabilities of crossing each threshold conditioned to
the previous cross, and has to keep track of the number of times each threshold is crossed.

Another advantage of CMIE over Splitting, comes up in systems in which there are more than
one target state and/or fault propagation. The presence of more than one target state is a drawback
in the determination of thresholds (cuts in the graph). Due to the presence of fault propagation,
multiple thresholds crosses may occur. A particular effort then is required to adapt Splitting to
these particular settings, whereas the CMIE implementations are straightforward and do not differ
with respect to ones in which there is only one target state and there is no fault propagation.

Based on the variance determination made for CMIE, some properties of the intermediate sets
were derived. One of them, referred to the number of states in a single set, says that the addition
of states to an existing set never increases the variance and, therefore, a variance reduction may be
expected. The other one is similar in the sense that the addition of sets of states never increases
the variance and, therefore, a variance reduction may be expected. It is to remark that the last of
these two properties was proven for the particular case in which the sets of intermediate states are
cuts with no intersection states between them.

CMIE was adapted to the case of large multicomponent systems. In these settings the number
of states is usually extremely high and explicit selection of intermediate states may not be easy,
except for selections that can be made regarding the number of —failed or operational— compo-
nents. But it is also possible, and in this case useful, to condition to different events, other that just
visiting the intermediate states. Three variants were proposed on this regard: Forward Steps, in
which the event occurs if the systems moves a number of D steps closer to the target state, Con-
secutive Failures, where the event occurs if a sequence of D failures (with no repairs in between)
occur and, Measure of Rarity, in which the event occurs if, after setting a measure of rarity for
the paths that the systems takes through the graph, a path is such that the measure exceeds some
bound B.

Both methods, CMIE with explicit intermediate states selection and CMIE adapted to large
multicomponent systems, were empirically tested over the models used in different papers.

First, a 14 states continuous time Markov chain used by Juneja and Shahabuddin in
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[Juneja 2001] was used to make an experimental verification of the properties derived for the sets
of intermediate states. The sets of intermediate states were determined explicitly. As expected,
Table 6.1 shows that the set with the lowest variance associated is the closest cut to the initial state
and Table 6.2 shows that, as the number of sets of intermediates states increases, the variance of
the estimator decreases. Table 6.3 shows the variance reduction capacity of CMIE compared to
the variance of a standard estimation in three scenarios selected with, respectively, one, two and
three sets of intermediate states. As expected, the largest variance reduction (measured as a ratio
to the standard estimator variance) is achieved in the case of three sets of intermediate states.

In the second set of experiments the variant of CMIE adapted to large multicomponent sys-
tems, was tested on a series of experiments taken from some other papers. These tests were used
to compare the product variance × execution time of CMIE against the other methods’, all of
which are derived from Importance Sampling. The product variance× execution time of CMIE

was above the product of some of the other methods and below the product of some others. How-
ever, the differences are narrow enough to consider that the methods perform in the same order of
efficiency.

CMIE can be easily extended to other type of rare event problem like, for instance, network
reliability estimation.

7.4 Open Research Lines

Concerning Splitting/CP, one possible line of future work is to make a more insightful analysis of
the asymptotic behaviour of accuracy and robustness. The experimental results suggest that the
method might be close to conditions like Bounded Relative Error and Bounded Normal Approxi-
mation. However, this topic merits a more detailed study, attempting to prove this more formally.

Further analysis may include the number of thresholds in Splitting/CP. Certainly, there must
be an optimal number of thresholds for every graph topology and every reliability value. Some
observations were pointed out in this concern. However, this determination is critical, as it has a
direct impact on the efficiency of the method. A few guidelines were given in this thesis in order to
make an initial attempt. These guidelines are supported by recommendations made for a general
case, making use of upper and lower bounds. But a more formal analysis on this respect would be
worthwhile.

Another Splitting/CP issue that should be developed in more detail is the trade–off between
accuracy and execution time. An estimation is globally efficient if a desired accuracy level can be
obtained in a reasonable time. The work in this thesis has been focused, mostly, on increasing the
accuracy. But this increasing is, obviously, achieved at the expense of the execution time. A more
detailed analysis of the trade–off between accuracy and execution time is, therefore, a useful line
of work.

Reagarding CMIE, it is also of interest to analyse the asymptotic behaviour and to see how
close or how far it is to have Bounded Relative Error and/or Bounded Normal Approximation.

A topic to improve in CMIE is the selection of the intermediate states sets. For the case of
only one set, it was proven that, from the accuracy point of view, the best selection is the closest
cut to the initial state. In the case of two sets, the selection of the second set is tied to the graph
topology and is not straightforward. This topic deserves further attention in order to generalize the
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mechanism, not only for two but also for more than two sets of intermediate states.
Like in Splitting/CP, and becasue of similar reasons, an important issue to work on is the

trade–off between accuracy and execution time. In the case of only one set of intermediate states,
this analysis may give support to decide the most appropriate “location” for such set; in the case
of more than one set it may help to decide not only the “locations”, but also the number of sets to
use.

All these lines of work, either for Splitting/CP or CMIE, would be greatly simplified if closed
form expressions for the variance were given. However, there are alternatives (eg. the use of
bounds) for cases —like Splitting/CP— in which these expressions seem to be very difficult to
obtain.





APPENDIX A

Variance in the case of two sets of

Intermediate States

In this appendix, the variance of the CMIE estimator, for the case of two intermediate states, C̃1

and C̃2, is developed. The probabilities used are shown in Figure 6.2.
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Expression (A.1) can be used to derive the case of more than two sets of intermediate states.

V{γ̂cie} = A+B



107

=
1

N1

(
n1∑

l=0

pl γ
′
l
2 − γ2

)
+

1

N1

n1∑

l=0

plV
{
γ̂′l

}

=
1

N1

(
n1∑

l=0

pl γ
′
l
2 − γ2

)
+

1

N1

n1∑

l=0

pl

(
1

N2

(
n2∑

k=0

plkγ
2
k − γ′l

2

)
+

1

N2N

(
γ′l −

n2∑

k=0

plk γ
2
k

))





APPENDIX B

Variance comparison between the cases

of one and two sets of Intermediate

States

In this appendix it is shown that if a second set of intermediate states C̃2 is added to a model with
a single set C̃1, the variance of the resulting estimator is less than or equal the variance in the case
with only C̃1. The proof is based on a comparison between the formula obtained in Appendix A,
for two sets, and the variance expression shown in (6.11), for one set.

Referring to Figure 6.2, omitting the set C̃2 and considering that C̃1 is the only set of interme-
diate states, the variance of the CMIE estimator, shown in (6.11), can be written as:
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Considering now Figure 6.2 with both sets of intermediate states, C̃1 and C̃2, the variance of
the CMIE estimator, developed in Appendix A, is:
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An attempt to prove that the latter variance is lower than or equal the prior one, translates into
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States

proving that:
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which, considering that N ≥ 1, completes the proof.
It is simple to extend this proof to show that if additional cut is added to a model with Z sets

of intermediate states, the variance in the model with Z + 1 sets will be lower than or equal the
variance in the model with Z intermediate states.
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