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Consciousness then is to be identified theoretically with a certain degree of complexity of
phase sequence in which both central and sensory facilitation merge, the central acting to
reinforce now one class of sensory stimulations, now another.

The Organization of Behavior, Donald Hebb.1949.



Abstract

La comprensión de la actividad cerebral en múltiples escalas es esencial para desentrañar
las complejidades de la función neural. Desde el nivel macroscópico hasta el microscópico,
el cerebro exhibe diversas dinámicas, moldeadas por miles de millones de neuronas y sus
intrincadas conexiones sinápticas. Sin embargo, navegar a través de estas escalas presenta
desafíos significativos debido a limitaciones técnicas y conceptuales. El análisis de la
complejidad ofrece un marco prometedor para abordar estos desafíos, ofreciendo ideas
sobre cómo la actividad neural se extiende a través de las escalas y cómo las alteraciones,
como las inducidas por drogas, impactan en la función cerebral. Esta tesis explora la utilidad
del análisis de la complejidad en el estudio de la actividad cerebral, enfatizando su papel en
la navegación de las escalas neurales y en la elucidación de la compleja relación entre la
dinámica neuronal microscópica y la función cerebral macroscópica. A través de esta
perspectiva, nuestro objetivo es fomentar una comprensión más profunda de la complejidad
cerebral y sus implicaciones para la investigación en neurociencia.
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Introducción

Una multitud de escalas caracteriza la actividad cerebral [1–4]. El cerebro comprende miles
de millones de neuronas, cada una con miles de conexiones sinápticas, formando una red
vasta e interconectada [4–6]. Como resultado, la actividad cerebral abarca un rango de
escalas que van desde lo macroscópico hasta lo microscópico. A nivel macroscópico, la
actividad de las diferentes áreas cerebrales puede estudiarse a través de la resonancia
magnética funcional (fMRI) [4,7] o la electroencefalografía (EEG) [8,9], capturando las
dinámicas colectivas de grandes poblaciones de neuronas. A nivel mesoscópico,
encontramos circuitos neuronales, donde diversos grupos de neuronas dan lugar a redes
intrincadas que permiten que ocurran cálculos específicos [10–14]. Estas redes suelen
estudiarse mediante potenciales locales de campo (LFP) [15] e imágenes de calcio [16].
Finalmente, a escala microscópica, los patrones de disparo de las neuronas individuales
pueden estudiarse mediante registros de patch-clamp [17] o arrays de electrodos [18]. Estas
técnicas nos permiten estudiar cómo el tiempo preciso y la frecuencia de los trenes de
espigas codifican la información básica utilizada para diversos cálculos en distintas escalas.

Navegar a través de las escalas neuronales es un problema difícil [19–26]. Las dificultades
surgen tanto de limitaciones técnicas como conceptuales, lo que dificulta nuestra capacidad
para conectar observaciones en diferentes niveles de análisis. Si bien las técnicas
imagenológicas, como la fMRI, ofrecen una excelente resolución espacial, a menudo
carecen de la resolución temporal necesaria para capturar las dinámicas rápidas de la
actividad neuronal individual. Por el contrario, los métodos electrofisiológicos sobresalen en
el registro de las dinámicas temporales a escala de milisegundos de la actividad neuronal,
pero están limitados por su cobertura espacial limitada, típicamente enfocándose en
pequeñas poblaciones de neuronas o incluso células individuales. Es importante destacar
que los nuevos métodos ópticos, como la imagen de calcio o de voltaje, prometen ofrecer
tanto alta resolución espacial como temporal [27–30], pero estos métodos aún no se
emplean tan ampliamente en el contexto de investigación y clínica como los mencionados
anteriormente.

Además, el cerebro opera a través de una organización jerárquica de circuitos
interconectados, donde la información se procesa e integra en múltiples niveles [33,34]. Por
lo tanto, para comprender completamente el cerebro, es necesario saber cómo los cambios
en la actividad a nivel de neuronas individuales se traducen en fenómenos emergentes a
nivel de circuitos neuronales y dinámicas de todo el cerebro. Además, la naturaleza
dinámica de la actividad cerebral añade otra capa de complejidad. La actividad neural es
altamente dependiente del contexto, influenciada por factores como el estado conductual, la
entrada sensorial y las señales neuromoduladoras [27,28,35–38]. Integrar estos factores
dinámicos a través de las escalas presenta un desafío significativo, ya que la relación entre
la actividad neural y el comportamiento puede ser no lineal y multifacética.

Dado que la actividad cerebral exhibe una amplia disposición temporal [39-41], la cual es
observada a menudo en sistemas complejos [42], se han desarrollado diferentes
herramientas en las últimas décadas para cuantificar directamente la complejidad de la
actividad cerebral [43-45]. El uso de estas herramientas ha mostrado que la complejidad de
las señales de EEG disminuye durante los estados de inconsciencia, como durante el sueño
o la anestesia [45-47]. Sin embargo, estas señales macroscópicas tienen limitaciones



importantes: tienden a estar contaminadas por variables confundentes (por ejemplo,
actividad muscular o movimientos oculares) y recuperar su fuente neural exacta a menudo
es imposible. Por lo tanto, los patrones neuronales que causan los cambios de complejidad
a lo largo de los estados de vigilia y sueño no han sido dilucidados.

Objetivos

1) Estudiar los estados cerebrales en base a la diversidad de patrones eléctricos
corticales (complejidad neural).

2) Explorar cómo la actividad macroscópica cortical, registrada mediante el
electrocorticograma, se relaciona con los patrones de descarga de neurona única.

3) Estudiar cómo la actividad de pequeñas poblaciones neuronales es capaz de afectar
la diversidad de patrones electrográficos.

Hipotesis

La diversidad de patrones eléctricos corticales, complejidad neural, se asemeja a una
cantidad conservada a distintas escalas neuronales. Es decir, los cambios en la complejidad
neural en los distintos estados cerebrales (por ejemplo: vigilia, sueño) se mantiene
constante independiente de que tipo de registro neuronal se emplee.
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Decreased electrocortical temporal 
complexity distinguishes sleep 
from wakefulness
Joaquín González1, Matias Cavelli1, Alejandra Mondino1, Claudia Pascovich1,  
Santiago Castro-Zaballa1, Pablo Torterolo1* & Nicolás Rubido  2

In most mammals, the sleep-wake cycle is constituted by three behavioral states: wakefulness (W), 
non-REM (NREM) sleep, and REM sleep. These states are associated with drastic changes in cognitive 
capacities, mostly determined by the function of the thalamo-cortical system. The intra-cranial 
electroencephalogram or electocorticogram (ECoG), is an important tool for measuring the changes 
in the thalamo-cortical activity during W and sleep. In the present study we analyzed broad-band 
ECoG recordings of the rat by means of a time-series complexity measure that is easy to implement 
and robust to noise: the Permutation Entropy (PeEn). We found that PeEn is maximal during W and 
decreases during sleep. These results bring to light the different thalamo-cortical dynamics emerging 
during sleep-wake states, which are associated with the well-known spectral changes that occur 
when passing from W to sleep. Moreover, the PeEn analysis allows us to determine behavioral states 
independently of the electrodes’ cortical location, which points to an underlying global pattern in the 
signal that differs among the cycle states that is missed by classical methods. Consequently, our data 
suggest that PeEn analysis of a single EEG channel could allow for cheap, easy, and efficient sleep 
monitoring.

!e sleep-wake cycle is a critical physiological process and one of the most preserved biological rhythms through 
evolution1. !is cycle is composed of di"erent states, commonly distinguished by their electro-physiological sig-
natures and behavioral characteristics. !ese states correspond to wakefulness (W), non-rapid eye movement 
(NREM) sleep, and rapid eye movement (REM) sleep. W and sleep are associated to di"erent brain functional 
states, which can be captured by electroencephalographic (EEG) signals containing a broad frequency spectrum. 
Accompanying the electrocortical di"erences among the states, the cognitive capacities drastically change dur-
ing the cycle. Fundamentally, consciousness is lost during deep NREM sleep, emerging in an altered fashion 
during REM sleep. Altered states of consciousness can also arise during special normal states, such as during 
lucid-dreams2, or under toxic or pathological conditions, such as the states induced by psychedelic drugs or 
psychosis3,4.

Cognitive states are mostly determined by the function of the thalamo-cortical system1. Part of this neuronal 
processing can be accurately measured by intra-cranial elecroencephalogram (EEG), known as electrocortico-
gram (ECoG). Due to the complex nature of the standard EEG and ECoG signals, traditional methods employed 
in neuroscience have divided the complex spectrum of the signal into frequency bands3,5–9, and analyzed its 
changes during di"erent cognitive functions4,7, and sleep states5,6,8. !ese methods only describe particular char-
acteristics of the recorded signals and do not account for the complex nature of the cortical electric potentials. In 
contrast, the #eld of non-linear dynamics has developed measures and models that account for the complexity of 
the systems and their emerging interactions10–13. !ese properties are fundamental for the characterization of the 
thalamo-cortical function and for the emergence of consciousness14.

A general approach to study time-signals is the characterization of their randomness; for example, by means 
of the Shannon entropy (SE)15, which measures the average unpredictability of a signal. However, SE requires a 
random source and an invariant probability distribution (which is typically unknown), also is a"ected by noise, 
by measurement precision, and by data length. All these elements are relevant when dealing with real-world sig-
nals. In order to #nd a similar non-linear measure to quantify unpredictability from real-world data, Bandt and 
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Montevideo, Uruguay. 2Universidad de la República, Instituto de Física de Facultad de Ciencias, Iguá 4225, 11400, 
Montevideo, Uruguay. *email: ptortero@fmed.edu.uy
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Pompe10 introduced the Ordinal Pattern (OP) analysis, allowing to encode any signal into OPs and approximate 
its SE. !is approximation is known as Permutation Entropy (PeEn). In contrast to other methods, PeEn is a 
time-series complexity measure that is simple to implement, is robust to noise and short time-series, and works 
for arbitrary data sets13,16–24. In particular, it has been shown that PeEn applied to EEG signals captures di"erent 
states associated with the level of consciousness, both during anesthesia24–27 and sleep28,29. Hence, in order to 
study the thalamo-cortical function during W and sleep, PeEn is a practical and reliable method, where results 
can be understood from primary principles, and can be related to the signal characteristics.

Previous works have analyzed PeEn in standard EEG recordings25–29. However, EEG signals have frequency 
limitations due to scalp-#ltering, are o$en recorded with low sampling rates, and pre-acquisition #lters are com-
monly applied. In addition, as the recording electrodes are placed above the scalp’s skin, other sources can inter-
fere with the cortical neural activity (e.g., muscular activity)30. These limitations exclude the possibility of 
considering high-frequency oscillations; for example, γ frequency band ( − Hz30 100 ), which is known to vary 
substantially during the sleep-wake cycle and is an active #eld of research in Neuroscience3,5–9,31,32. !us, PeEn 
analysis of standard EEG signals is technically limited and is unable to assess the signi#cance of the broad fre-
quency spectrum in relation with the thalamo-cortical function and its cognitive counterpart. Consequently, it is 
still uncertain whether previous results hold when considering ECoG measurements and whether these results 
would depend on cortical location, frequency content, or PeEn parameters.

In the present study, we characterized the PeEn of recordings from freely moving rats during W and sleep. 
We found that ECoG’s PeEn is maximal during W and decreases during both sleep states. Moreover, we noted 
that these results are independent of the cortical location (namely, the electrodes placement), pointing towards 
a global cortical pattern for each sleep-wake state that is captured by the PeEn analysis but is missed by classical 
methods.

Results
Permutation entropy during wakefulness and sleep. Figure 1a shows examples of polysomnographic 
recordings obtained from electrodes placed directly above the cortex of a representative rat. Electrode locations 
are shown on the le$ panel and the intra-cranial polysomnographic recordings for W (blue), NREM (green), and 
REM sleep (red) states are shown on the right panels, which have been distinguished by means of the standard 
sleep scoring criteria (see Methods). In Fig. 1b we show, for the same animal, the hypnogram (top), as well as the 
spectrogram (middle) and PeEn values (bottom) processed from the ECoG recorded with the V2r electrode (with 
a sampling rate of Hz1024  and =D 3 embedding dimension for the PeEn analysis; see Methods for details). !e 
hypnogram shows the standard sleep scoring, the spectrogram shows the ECoG frequency content, and the PeEn 
quanti#es its complexity; namely, its randomness or unpredictability. Maximal PeEn values were achieved during 
W, PeEN values decreased during NREM sleep and reached minimum values during REM sleep. !is result states 
that the ECoG becomes more predictable – less random – during sleep, especially during REM sleep. More 
importantly, we found that PeEn is able to detect transitions between behavioral states, which are typically di&-
cult to be noticed from raw data or from the spectrogram. For example, the power spectrum in Fig. 1b (middle 
panel) shows similarities between W and REM sleep, but PeEn values are drastically di"erent between these states 
(W epoch at 11 to 13 minutes and REM sleep epoch at 22 to 24 minutes). !e average PeEn values for all rats, 
behavioral states, and cortical locations are shown in Fig. 1c and Table 1, there are signi#cant di"erences among 
behavioral states for all recorded neocortical regions; in the Olfactory Bulb (OBr, archicortex) there was a ten-
dency to decrease = .p( 0 056) when REM was compared to NREM sleep (#rst row in Table 1). Consequently, the 
PeEn of the ECoG characterizes and follows the state transitions regardless of the electrode’s location.

Permutation entropy dependence on the embedding dimension. We characterized how PeEn 
re'ects the ECoG temporal complexity during W and sleep. In order to do this characterization, we modi#ed the 
embedding dimension D, which is the parameter that sets the ordinal pattern (OP) length encoding the ECoG 
signal. Speci#cally, each OP captures the relationship between the relative amplitudes (ranking its values) inside 
a D-sized non-overlapping time-window of the signal (see Methods for details on the encoding procedure). 
Hence, changing D modi#es the time scale of the ECoG being analyzed and the resultant PeEn calculation. !e 
larger the OP, the more details are obtained from the signal; thus, the less random the signal becomes and the 
smaller its PeEn value. For example, Fig. 2 shows that the PeEn values consistently decrease as we increased the 
embedding dimension from =D 2 to =D 4, either for W or sleep. Overall, averaged PeEn values during W were 
larger than during sleep for all Ds. Also, the fact that PeEn variability is minimal for =D 2 is because this dimen-
sion has the greatest sensitivity to random 'uctuations: i.e., it mainly captures noise.

Permutation entropy relationship with the frequency spectrum. As our results show that REM sleep 
had the lowest temporal complexity out of all states considered, we examined whether the frequency content could 
be in'uencing our PeEn assessment. In order to associate the PeEn values with the di"erent frequency bands, we 
performed successive down-samples to the ECoG signals. !is process allows for the ordinal patterns to capture 
lower frequency components of the ECoG signal, while keeping constant the embedding dimension, D.

We down-sampled the ECoG from a sampling rate of Hz1024 , halving it down to Hz64 ; thus, changing the 
maximum frequency resolution from Hz512  to Hz32 . By doing this, the PeEn value changed, revealing its rela-
tionship to the frequency spectrum. Fig. 3a shows averaged PeEn using =D 3 for all rats and electrode locations, 
for W (blue), NREM (green) and REM sleep (red). !e shaded areas indicate the mean ± standard error of these 
averages, showing that the states di"erentiate in average signi#cantly (the exact statistics are exhibited in Table S1 
at the Supplementary Material). Average PeEn values for the ECoGs during REM sleep are larger than NREM 
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sleep until the maximum frequency resolution increases beyond Hz128 , remaining lower than W values for all 
frequencies. Although Fig. 3a shows only the PeEn values for =D 3, we obtained similar results for larger embed-
ding dimensions (data not shown). "e relationship between the PeEn values and the sampling frequency can be 

Figure 1. Permutation Entropy (PeEn) during wakefulness and sleep. Panel a shows a schematic representation 
of the 7 electrodes’ placement across the cortex and representative ECoGs – 5 second windows referenced to the 
cerebellum and the neck electromyogram (EMG) for each sleep-wake state: wakefulness (blue), NREM (green), 
and REM sleep (red). From top to bottom, Olfactory Bulb (OBr), right and le# Primary Motor (M1r/M1l), 
Primary Somatosensory (S1r/S1l), and Secondary Visual (V2r/V2l) cortices. Using s30  sliding windows for the 
V2r electrode, panel b shows the hypnogram (top) with the visually scored sleep states, the power spectral 
density (middle) with yellow indicating high power, and PeEn analysis (bottom) for embedding dimension 

=D 3. Panel c gathers the time-averaged PeEn values (for embedding dimension =D 3) for 12 rats, 
di$erentiating each cortex electrode and sleep state (colour code as in panel a). Namely, each dot in panel c 
corresponds to the time-averaged PeEn value of each rat and cortex, where the horizontal bars are the 
population mean (the statistic is shown in Table 1).

Electrode pValue F DF
W-NREM W-REM NREM-REM
(pValue) (pValue) (pValue)

OBr <0.0001 40.2 2,11 0.0003 0.0002 0.056

M1r <0.0001 37.68 2,11 0.0005 0.0002 0.028
M1l 0.0001 29 2,11 0.0014 0.0007 0.007
S1r <0.0001 32.1 2,11 0.0011 0.0007 0.046

S1l <0.0001 41.18 2,11 0.0004 0.0002 0.005

V2r <0.0001 23.09 2,11 0.0043 0.0017 0.009

V2l <0.0001 24.92 2,11 0.0022 0.0017 0.036

Table 1. Statistical comparisons between PeEn values during sleep and wakefulness. Each row corresponds to a 
di$erent cortical location, as shown in Fig. 1a. Data was evaluated by repeated ANOVA (pValue column) and 
Bonferroni post-hoc test measures (last 3 columns of the table). "ese results correspond to encoding the 
electro-corticographic signals with =D 3 and Hz1024  sampling frequency (see Methods for details).
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further understood by comparing these results with the power spectral density (PSD) analysis shown in Fig. 3b. 
In general, the PSD of a signal is the probability distribution function of its frequency content; namely, the degree 
of presence that each frequency component has in the signal. As we down-sampled the ECoG signals, as in 
Fig. 3a, the higher frequencies are cut-o" from the PSD [Fig. 3b]. For the higher frequencies, i.e., > Hz200 , there 
is a large di"erence in the PSD value between W and sleep. However, when lower frequencies are considered, 
REMs PSD increased above NREMs. Note that below Hz200  REMs lower frequencies become more relevant 
(Fig. 3b) and PeEn (Fig. 3a) values are larger than NREM sleep and closer to W.

Ordinal pattern probability distributions. In addition to the Entropy quanti#cation, we considered the 
qualitative di"erences and variations appearing in the OP probability distributions during W and sleep. $e OP 
distributions shown in Figs. 4 and 5 quantify the relative frequency of appearance that each OP has in the encoded 
ECoG signal; namely, the OP probability. Figure 4a shows the 6 possible OPs when the embedding dimension is 

=D 3 (top panel), and the resultant OP probability distribution we found from the ECoGs in each sleep-wake 
state (bottom panel). Similarly, Fig. 4b shows the OPs and OP distribution for =D 4. It is readily observed from 
both panels that the increasing or decreasing OPs (i.e., labels 1 and 6 in Fig. 4a and labels 1 and 24 in Fig. 4b) have 
a larger probability of occurrence, irrespective of the sleep-wake state or the embedding dimension (results hold 
for larger D – not shown). We note that, in spite of having qualitatively similar distributions for =D 4, other OPs 
start to emerge, such as labels 7 and 18, which are modi#ed versions of labels 1 and 24, respectively. Nevertheless, 
these OPs are not statistically signi#cant, since they fall within the null hypothesis con#dence interval (signaled 
by the shaded grey areas in both panels). On the contrary, the OP distribution in Fig. 4a for =D 3 during sleep 
(red and green) signi#cantly departs from the null hypothesis, which corresponds to the uniform distribution 
(shaded grey area).
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Figure 2. Permutation Entropy (PeEn) of electro-corticograms (ECoG) as a function of the embedding 
dimension. $e PeEn values are normalized according to the maximum possible entropy for each embedding 
dimension, D; namely, by Dlog( !). From le% to right, wakefulness (W), non-rapid eye movement (NREM) and 
rapid eye movement (REM) sleep are shown. Symbols represent each PE value for all electrode locations ( =n 7) 
and animals ( =n 12) [as shown in Fig. 1c], when using =D 2 (black), =D 3 (grey), or =D 4 (white) for the 
ordinal pattern encoding of the ECoG signals recorded at a sampling frequency of Hz1024 . $e horizontal lines 
represent the population and electrode location average for the respective embedding dimensions.

Figure 3. Permutation entropy (PeEn) relationship with frequency content and power spectrum (PSD). $is 
#gure presents the results as the average values of the 7 cortical recording sites for the 12 rats analyzed (shown in 
Fig. 1). Each sleep-wake state is indicated using the colour code in panel b’s inset. Panel a shows the averaged 
PeEn values as a function of the electro-corticograms (ECoG) maximum frequency resolution. Shaded areas in 
this panel depict the standard error of the mean for the PeEn. $e maximum frequency resolution is the ECoGs 
sampling frequency divided by 2, according to the Nyquist-Shannon criterion. Panel b shows the averaged PSD 
as a function of the frequency components. Shaded areas in this panel depict twice the standard error of the 
mean.
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Comparison with classical amplitude encoding. Classical analysis of time-series uses the probability dis-
tribution function of the signal; namely, the signal is encoded using a histogram of its amplitudes. !is process dis-
cards the information coming from the signal’s time stamps; in other words, the amplitude time-dependence. We 
compared the entropy values using histograms with 18 bins of the ECoG, where the results are shown in Fig. 5. As 
can be directly observed, there were some di#erences among the sleep states (either NREM or REM), but there were 
no consistent global pattern and no single electrode was able to di#erentiate between all sleep-wake states (see 
Table S2). Moreover, these results remain practically invariant when using larger number of bins (data not shown).

Discussion
In this work, we described that the collective cortical activity measured by ECoG in male adult rats $uctuates 
between periods of high temporal complexity during W, and periods of low temporal complexity during sleep 
(see Fig. 1b,c). !ese ECoG complexity variations re$ect the di#erences in the thalamo-cortical function between 
sleep-wake states. Consequently, our results strongly support and extend studies in human that carried out PeEn 
analyses and other complexity measures in standard EEG recordings25–29,33.

Figure 4. Ordinal Pattern (OP) probability distributions during wakefulness and sleep. !e OP probability 
distributions shown in the bottom panels correspond to the rat population and electrode location average 
distributions for each sleep-wake state: Wakefulness (blue), NREM (green) and REM sleep (red). !e grey areas 
show the null hypothesis region with a 95, 4% con%dence, which correspond to the uniform OP distribution 
with twice the standard error of the mean (i.e., σ±p 2NH NH). Panel a [Panel b] shows the possible OPs for 
embedding dimension =D 3 [ =D 4].
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Figure 5. Amplitude entropy during wakefulness and sleep. From le& to right and top to bottom, the panels 
show the entropy values calculated from the electro-corticographic (ECoG) histograms coming from the 
di#erent cortical locations shown in Fig. 1; i.e., olfactory bulb, right and le& motorsensory, somatosensory, and 
visual cortices, respectively. !e colour code signals the sleep-wake cycle states (W, blue; NREM, green and 
REM sleep, red) and the symbols and horizontal lines represent the same as in Fig. 1c. !e entropy values were 
calculated from the ECoG amplitude histograms using 18 bins. !e sampling rate was Hz1024 . !e statistic is 
shown in the Supplementary Material (see Table S2).
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We also showed that PeEn pro!le during W and sleep did not change according to the cortical recording site, 
re"ecting a common micro-structure motif and a dynamical behavior which are independent from the origin 
of the cortical signal. #e average randomness of these micro-structure patterns distinguished sleep from W, 
regardless of the changes in the embedding dimensions employed in PeEn analysis (Fig. 2) and the sampling 
frequencies considered (Fig. 3a). #ese results suggest the use of PeEn as a quantitative tool for understand-
ing thalamo-cortical dynamics during various physiological conditions, the in"uence of psychoactive drugs, or 
pathological conditions.

A strong bene!t from PeEn analyses is that PeEn variations across states can be explained by dynamical sys-
tems theory10,16,34; conversely, with other techniques the tractability is lost (such as, machine-learning 
approaches). During NREM sleep, the neuro-modulation coming from the activating systems drastically 
decreases, which favors the occurrence of slow δ waves ( − Hz1 4 ) and sleep spindles ( − Hz9 12 ) in the thala-
mus and cortex1. #is means that, as the animal transits from W to sleep, the higher-frequency cortical patterns 
(complex signals) decrease, while lower-frequency oscillations (less complex signals) rise (Fig. 3b). As a conse-
quence, the OPs probability distribution becomes less uniform (in other words more predictable). Speci!cally, we 
found that strictly increasing or decreasing OP motifs are strongly favored in all ECoG signals, particularly during 
sleep (Fig. 4), making the remaining OP motifs to appear less frequently.

Surprisingly, we found that NREM’s PeEn is larger than REM’s PeEn, which contradicts previously reported 
results28,29. However, we showed that as the frequency content of the ECoG varies, the PeEn changes its value. For 
example, Fig. 3a exhibits that as we down-sampled the ECoG, REM sleep PeEn becomes larger than NREM’s 
PeEn; these low sampling rates are similar to those used in previous studies28,29. Moreover, we analyzed the results 
from the PeEn as a function of the maximum frequency resolution (Fig. 3a) in conjunction with those from the 
power spectral density (PSD) of the ECoG (Fig. 3b). We observed that the rise in REM’s PeEn as the frequency 
content decreased follows the variations in the PSD. Speci!cally, REM sleep presents larger power than NREM 
sleep around and below Hz120  corresponding to the high frequency oscillations and gamma band oscillations5,6. 
#is means that when higher frequencies are cut-o%, the PSD slope signi!cantly increases approaching a more 
uniform frequency distribution, which corresponds to a more complex time-series. #ese analyses reveal that 
PeEn results depends on the frequency content of the signal. In particular, REMs temporal complexity resembles 
W when gamma oscillations are captured by the PeEn.

One of the main di%erences between W and sleep, is that muscle tone and movements are mainly absent dur-
ing sleep (specially during REM sleep). In this regard, the power of the higher frequencies of the spectrum is 
signi!cantly higher during W than during sleep. It is possible that exists a contribution of muscular activity on the 
ECoG (by volume conduction) on the high frequency bands (> Hz100 ), as supported by experimental evi-
dence30. Hence, the high values of PeEn during W could be determined by the muscle electrical activity (pro-
duced mainly by the muscle tone, because epochs with movement artifacts were discarded from the analysis) that 
inevitably pollutes the ECoG. Nevertheless, the PeEn values remained constant during W following downsam-
pling, in spite of the fact that higher frequencies were bypassed and the contribution from muscle tone became 
less relevant. Still, more research is needed in order to quantify the weight of the muscle artifact in the PeEn 
results.

As a !nal remark, sleep classi!cation is usually performed by visual analysis, or automated spectral methods 
usually in research contexts. For instance, in rodents methods which employ spectral ratios (such as the theta/
delta ratio) obtained from hippocampal or intra-craneal recordings in rodents, are able to distinguish sleep-wake 
states35,36. #us, these methodologies rely heavily upon the use of narrow band characteristics of the EEG signal. 
In contrast, our data suggest that the sleep-wake states di%er globally in their time-series complexity as assessed 
by PeEn. Hence, we suggest that cheap, robust, and reliable sleep monitoring could be achieved by means of PeEn 
analysis of a single ECoG channel.

Methods
Experimental animals. All experimental procedures were conducted in agreement with the National 
Animal Care Law (No. 18611) and with the “Guide to the care and use of laboratory animals” (8th edition, 
National Academy Press, Washington DC, 2010). Furthermore, the Institutional Animal Care Committee 
(ComisiÃşn de Etica en el Uso de Animales) approved the experiments (Exp. No 070153-000332-16), where 12 
Wistar adult rats were maintained on a − h12  light/dark cycle (lights on at h07: 00 ) with food and water freely 
available. #e animals were determined to be in good health by veterinarians of the institution. We took adequate 
measures to minimise pain, discomfort, and stress in the animals, and all e%orts were made to use the minimal 
number of animals necessary to obtain reliable scienti!c data.

Surgical procedures. #e animals were chronically implanted with electrodes to monitor the states of sleep 
and W. We employed similar surgical procedures as in previous studies5,6. Anaesthesia was induced with a mix-
ture of ketamine-xylazine ( mg kg90 / ; mg kg5 /  i.p., respectively). #e rat was positioned in a stereotaxic frame and 
the skull was exposed. To record the ECoG, stainless steel screw electrodes were placed on the skull above motor, 
somatosensory, visual cortices (bilateral), the right olfactory bulb, and cerebellum, which was the reference elec-
trode (see Fig. 1a and Table 2). In order to record the EMG, two electrodes were inserted into the neck muscle. 
#e electrodes were soldered into a 12-pin socket and !xed onto the skull with acrylic cement. At the end of the 
surgical procedures, an analgesic (Ketoprofen, mg kg1 / , s.c.) was administered. A'er the animals had recovered 
from these surgical procedures, they were le' to adapt in the recording chamber for 1 week.

Experimental sessions and sleep scoring. Animals were housed individually in transparent cages 
( × × cm40 30 20 ) containing wood shaving material in a temperature-controlled ( −21 24 C) room, with water 
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and food ad libitum. Experimental sessions were conducted during the light period, between 10 AM and 4 PM in 
a sound-attenuated chamber with Faraday shield. !e recordings were performed through a rotating connector, 
to allow the rats to move freely within the recording box. Polysomnographic data were amplified (X1000), 
acquired and stored in a computer using Dasy Lab So"ware employing Hz1024  as a sampling frequency and a 16 
bits AD converter. !e states of sleep and W were determined in 10 s epochs. W was de#ned as low voltage fast 
waves in the motor cortex, a strong theta rhythm ( − Hz4 7 ) in the visual cortices, and relatively high EMG activ-
ity. NREM sleep was determined by the presence of high voltage slow cortical waves together with sleep spindles 
in motor, somatosensory, and visual cortices associated with a reduced EMG amplitude; while REM sleep as low 
voltage fast frontal waves, a regular theta rhythm in the visual cortex, and a silent EMG except for occasional 
twitches. An aditional visual scoring was performed to discard artifacts and transitional states.

Ordinal pattern encoding. In order to quantify the EEGs’ randomness, we encoded the time-series into 
ordinal patterns (OPs) following Bandt and Pompe method10. !e encoding involves dividing a time-series, 

= …x t t T{ ( ), 1, , }, into −⌊ ⌋T D D( )/  non-overlapping vectors, where ⌊ ⌋y  denotes the largest integer less than or 
equal to y and D is the vector’s length, which is much shorter than the time-series length ( D T ). !en, each 
vector is classi#ed according to the relative magnitude of its D elements. !e classi#cation was done by determin-
ing how many permutations are needed to order its elements increasingly; namely, an OP is associated to repre-
sent the vector’s permutations. For example, for =D 2, the time-series would be divided into vectors containing 
two consecutive values, such as { +x t x t( ), ( )i i 1 }, that are non-overlapping (the next vector to { +x t x t( ), ( )i i 1 } is the 
{ + +x t x t( ), ( )i i2 3 } vector, where ti is the i-th time stamp). !ese vectors have only two possible OPs for any time ti: 
either < +x t x t( ) ( )i i 1  or > +x t x t( ) ( )i i 1 , which correspond to making 0 permutation or 1 permutation, respectively. 
It is worth noting that the number of possible permutations increases factorially with increasing vector length; i.e, 
for vectors of length D there are D! possible OPs. In particular, we labeled the OPs as the number of permutations 
plus one; hence, our OPs are labeled by means of integers, α, that range from α = 1 to α = D!. For =D 2, α = 1 
or 2. Similarly, for =D 3, the OPs α = 1 and α = 2 correspond to having a vector from the time-series with 3 
values ordered as < <+ +x t x t x t( ) ( ) ( )i i i1 2  and < <+ +x t x t x t( ) ( ) ( )i i i2 1 , respectively, but there are 4 more possi-
bilities (for =D 3, α = … = …1, , 3! 1, , 6). Small noise $uctuations were always introduced into the time-series 
in order to remove degeneracies; i.e., avoid the cases where, for example, = +x t x t( ) ( )i i 1 .

Randomness quantification. Shannon entropy (SE) is a quantity used in Information theory to quantify 
the average randomness (information content) of a signal. It is de#ned as15 α α= −∑α∈H S p p( ) ( ) log[ ( )]S , where 

αp( ) is the probability of #nding symbol α in the signal (among the set of symbols S) and the summation is carried 
over all possible symbols. In other words, SE shows that H S( ) is the average value of plog(1/ ) with respect to an 
alphabet S. Hence, in order to #nd H for any real-valued time-series, we need to transform the time-series into a 
symbolic sequence. When using OPs, the resultant symbolic sequence has a #nite number of symbols; i.e., the 
alphabet, which is given by the OP’s length D and holds =D S! #{ } possible symbols. For bin histograms, the 
number of possible symbols depends on the number of bins, Nb, used to create the time-series histogram, which 
is another way of encoding any bounded time-series into a #nite set of values. In order to compare entropy values 
coming from OPs or bins, we need to set both quantities such that the probabilities involved in the summation of 
H S( ) are found with identical statistics. For example, when using non-overlapping OPs with =D 3, there are 

=D! 6 possibly di%erent symbols in an encoded time-series of length T , which accounts to ~T D/  total encoded 
symbols.

We highlight that the number of bins we chose corresponds to making an amplitude encoding that has the 
same statistical average as the OP encoding with dimension, D. Namely, a signal with T  time-stamps, is encoded 
by non-overlapping OPs into a symbolic sequence of length = − ⌊ ⌋S T D D T D( )/ / , where ⋅⌊ ⌋ indicates the 
smaller integer closer to the argument. !e resultant range for the symbolic sequence distribution is D!, which is 
the different OP possibilities. This means that a length T  time series has an OP statistical average of 

×S D T D D/ ! / !. On the other hand, the statistical average for histograms with Nb bins of the same time-series 
is T N/ b. Consequently, in order to have the same statistical average per bin and be able to compare the results, we 
need to set = ×N D D!b , which for =D 3 corresponds to having = × =N 3 6 18b  bins.

Power spectral density and statistical analysis. !e power spectral densities were performed using the 
pwelch function on MATLAB by employing the following parameters: = =swindow 30 , noverlap [],

= =fs 1024, nfft 1024. !ese parameters correspond to 30 second sliding windows with half windows overlap, 
a =f Hz1024s  sampling frequency and a frequency resolution of Hz1 .

Electrode OBr M1r M1l S1r S1l V2r V2l
Antero-Posterior + . mm7 5 + . mm2 5 + . mm2 5 − . mm2 5 − . mm2 5 − . mm7 5 − . mm7 5

Lateral + . mm1 25 + . mm2 5 − . mm2 5 + . mm2 5 − . mm2 5 + . mm2 5 − . mm2 5

Table 2. Electrode Location. Schematic representation and electrode locations. All coordinates are referenced 
to Bregma (Lateral: 0, Antero-posterior: 0) according to Paxinos and Watson 200637.
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On the other hand, the statistics for each ECoG PeEn calculations were based on non-overlapping windows of 
size × ×D D N! S, where =N 200S  is the statistical average we use for our null-hypothesis. Namely, our 
null-hypothesis is a Bernoulli process where each ordinal pattern of size D has an equal probability of appearance, 

=p D1/ !NH , and a standard error of the mean σ = −p p N(1 )/NH NH NH S . For example, for ordinal patterns 
with =D 3, the non-overlapping windows contained × × =3 6 200 3600 data points, which accounts to 
approximately .3 5 seconds at a =f Hz1024s  sampling frequency. !e null-hypothesis in this case has an average 
probability = = .p 1/3! 1/6 0 167NH  and a standard error of the mean σ = −p p N(1 )/NH NH NH S

. × −2 64 10 2, which makes its con"dence interval σ±p 2NH NH narrow and the statistical signi"cance of the PE 
results robust. In general, given an embedding dimension D, any time-series with T  data points is analysed using 
non-overlapping windows with × ×D D N! S data points. OP probabilities – as well as the corresponding PeEn 
value – are found for each of the × ×T D D N/ ! S data windows and then averaged (namely, results are 
time-averaged).

For the state comparisons, we veri"ed that PeEn distributes normally through Lilliefors test, and then applied 
a repeated measures ANOVA together with the Bonferroni post-hoc test and < .p 0 05 in order for the result to be 
considered signi"cant.

Data availability
Data is available upon reasonable request to the authors.
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ABSTRACT
The states of  sleep and wakefulness are critical physiological processes associated with different 
brain patterns of  activity. The intracranial electroencephalogram allows us to measure these 
changes, thus, it is a critical tool for its study. Recently, we showed that the electrocortical temporal 
complexity decreased from wakefulness to sleep. Nevertheless, the origin of  this complex activity 
remains a controversial topic due to the existence of  possible artifacts contaminating the brain 
signals. In this work, we showed that complexity decreases during sleep, independently of  the 
electrode configuration employed. This fact strongly suggests that the basis for the behavioral-state 
differences in complexity does not have an extracranial origin; i.e., generated from the brain.

Keywords: NREM; REM; Entropy; Ordinal Patterns

Joaquín González 1

Matias Cavelli 1,2

Alejandra Mondino 1,3

Claudia Pascovich 1

Santiago Castro-Zaballa 1

Nicolás Rubido 4,5

Pablo Torterolo 1*

1 Departamento de Fisiología, Facultad 
de Medicina, Universidad de la República, 
Montevideo, 11200, Uruguay.
2 Department of  Psychiatry, University 
of  Wisconsin, Madison, WI, USA.
3 Department of  Anesthesiology, 
University of  Michigan, Ann Arbor, 
MI, USA.
4 Instituto de Física de Facultad de 
Ciencias, Universidad de la República, 
Montevideo, 11400, Uruguay.
5 Institute for Complex Systems and 
Mathematical Biology, University of  
Aberdeen, Aberdeen, AB24 3UE, 
United Kingdom.



48Electrocortical temporal complexity

XV Latin American Symposium on Chronobiology 2019

INTRODUCTION
The sleep-wake cycle is a critical physiological process 

and one of  the most preserved biological rhythms through 
evolution. It is composed by the states of  wakefulness (W), non-
rapid eye movement (NREM) sleep, and rapid eye movement 
(REM) sleep1. These states are associated with different 
dynamical patterns of  electric activity, which can be recorded 
accurately through the intracranial electroencephalogram, also 
known as electrocorticogram (ECoG).

In our previous work2, we found that the ECoGs’ 
temporal complexity decreased from wakefulness to sleep; 
i.e., the repertoire of  dynamical motifs was reduced when 
the animals fell asleep (Figure 1A, B and C). Interestingly, we 
observed this result in several cortical locations independent of  
its function (motor, olfactory, somatosensorial and visual), which 
suggested that the loss in temporal complexity was a global 
motif  developed in the passage from W to sleep. Nevertheless, 
whether this result originated because a genuine change in brain 
dynamics happened or was a consequence of  an artefactual 

measurement common to all recording electrodes, remained 
unanswered. It is important to consider this possibility because 
our previous recordings2 employed a common reference in the 
cerebellum, which is in close proximity to the neck muscles and 
could be contaminated by the muscular activity.

In order to discard this possibility, we re-referenced 
our data to obtain bipolar recordings, and then we measured 
their temporal complexity employing the same method as our 
previous work. Therefore, this approach removes the influence 
of  the reference electrode and all common signals from our 
ECoGs, allowing us to investigate whether our previous results 
arise from a common background noise or were truly reflecting 
a global neural pattern which shifted from W to sleep.

MATERIAL AND METHODS
In this report, we re-analyzed our previous data, therefore, 

the methods will be explained briefly and should be consulted 
in2 for a detailed description. We employed 12 Wistar adult rats 
maintained in a 12h light/dark cycle. All experimental procedures 

Figure 1. The ECoGs temporal complexity is independent of  the electrode configuration. A Electrode localization in the rats cortex. The primary motor (M1; r and l, right 
and left) and right somatosensory (S1) cortex are shown together with the reference electrode placed above the cerebellum. B The hypnogram (top) from a representative animal 
is plotted simultaneously with the permutation entropy (bottom) from the M1r cortex as a function of  time. C Scatter plots showing the time-average permutation entropy for 
each animal (12 rats) in each sleep state, blue W, green NREM and red REM. D The same scatter plots are now shown obtained from the bipolar configuration, interhemispheric 
(M1r-M1l) and intrahemispheric (M1r-S1r). E Permutation entropy decreases through sleep in all the bipolar configurations studied. Each dot depicts a bipolar electrode in each 
sleep and wake state (averaged from all the animals). 7 bipolars are plotted:  M1r-M1l, M1r-S1r, M1l-S1l, S1r-S1l, S1r-V2r, S1l-V2l, V2r-V2l.
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were conducted in agreement with the National Animal Care 
Law (No. 18611) and with the “Guide to the care and use of  
laboratory animals” (8th edition, National Academy Press, 
Washington DC, 2010). Furthermore, the Institutional Animal 
Care Committee (Comisión de Ética en el Uso de Animales) 
approved the experiments (Exp. No 070153-000332-16).

The animals were chronically implanted with electrodes to 
monitor the states of  sleep and W. To record the ECoG, stainless 
steel screw electrodes were placed on the skull above motor 
(bilateral), somatosensory (bilateral), visual cortices (bilateral), 
the right olfactory bulb, and cerebellum, which was the reference 
electrode (see Fig. 1a and Table 2 in González et al. 2019). A neck 
bipolar electrode was employed to record the EMG. Experimental 
sessions were conducted during the light period, between 10 AM 
and 4 PM in a sound-attenuated chamber with Faraday shield. The 
recordings were performed through a rotating connector, to allow 
the rats to move freely within the recording box. Polysomnographic 
data were amplified x1000, acquired and stored in a computer using 
Dasy Lab Software employing 1024 as a sampling frequency and a 
16 bits AD converter. The states of  sleep and W were determined in 
10 s epochs. W was defined as low voltage fast waves in the motor 
cortex, a strong theta rhythm (4-7 Hz) in the visual cortices, and 
relatively high EMG activity. NREM sleep was determined by the 
presence of  high voltage slow cortical waves together with sleep 
spindles in motor, somatosensory, and visual cortices associated 
with a reduced EMG amplitude; while REM sleep as low voltage 
fast frontal waves, a regular theta rhythm in the visual cortex, and 
a silent EMG except for occasional twitches. An additional visual 
scoring was performed to discard artifacts and transitional states.

To assess the ECoGs temporal complexity, we employed 
the measure known as Permutation Entropy, which has been 
employed widely3–7. This metric is robust to noise and it is 
computationally efficient. The permutation entropy is calculated 
as follows: we encoded the ECoGs time-series into  ordinal 
patterns (OPs) by dividing the time-series into sequences of  
non-overlapping vectors (each containing 3 time stamps), and 

classifying them according to the relative magnitude of  its 
elements. This transforms the graded ECoG time-series into a 
symbolic one, which can only contain up to six symbols maximum 
(factorial of  the number of  elements in a vector). Each symbol 
then represents a dynamical motif  found in the ECoGs.

We note that small noise fluctuations are always introduced 
into the time-series in order to remove degeneracies; i.e., avoid the 
cases where, for example x(t) = x(t+1). After the symbolic time-
series is obtained, the permutation entropy is calculated applying 
the Shannon Entropy8 (SE = −∑p(α) log[p(α)]) to the probability 
distribution. Where p(α) is the probability (relative frequency 
of  alpha in the symbolic time-series) of  the α symbol. For the 
statistical analysis, we employed the repeated measures ANOVA 
and set p<0.05 to be considered significant.

RESULTS
In order to discard the contribution of  extracranial noise 

to the complexity decrease during sleep, we generated bipolar 
recordings by subtracting two active electrodes. As our original data 
came as a differential recording to a common reference, the bipolar 
configuration eliminates the contribution of  this electrode9–11, in our 
case, the cerebellum. This is especially important because of  the close 
proximity between our reference electrode and the neck muscles.

Figure 1D shows the results we obtained employing two 
anatomically relevant configurations: one an interhemispheric 
(M1r - M1l) and the other an intrahemispheric (M1r - S1r) 
combination. When we analyzed this new data, we found that 
the temporal complexity still decreased from W to NREM sleep 
and reached its lowest values during REM sleep. Furthermore, 
this result was observed in all the bipolar recordings analyzed 
(Figure 1D), irrespective of  being inter or intrahemispheric 
combinations; notice that the complexity decrease during 
sleep is seen in every bipolar configuration employed (Figure 
1E). When we investigated the origin of  this complex activity, 
we found that the predominant temporal patterns were the 
monotonically increasing or decreasing ones (Figure 2A). 

Figure 2. The dynamical characteristics of  the ECoGs are preserved in the bipolar configuration . A Ordinal pattern probability distribution 
from the interhemispheric combination (M1r-M1l). The shaded area depicts the 95 percent confidence interval of  the mean. The color code employed 
is the same as in panel B. B Average power spectral density (12 animals) during wakefulness and sleep, for the M1r-M1l bipolar configuration. The 
shaded areas depict the mean +/- the standard error.
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This happened during W and was further overexpressed during 
sleep. It is worth noting that the frequency distribution of  the 
bipolar ECoGs showed a power-law distribution which was 
steepened during the sleep states (Fig.2B), similar to our previous 
result found in monopolar electrodes (see Figure 2.B in (2)).

DISCUSSION
In the present study, we show that the loss in temporal 

complexity during sleep is not a consequence of  a common noise 
entering through our reference electrode. This was evidenced 
by generating bipolar recordings, thus severely reducing the 
background noise common to all ECoG electrodes9–12. This is 
particularly relevant because our reference electrode was closely 
located to the neck muscles and thus could be contaminated by 
the changes in muscle tone during sleep. In contrast, all bipolar 
recordings showed a significant complexity decrease as sleep 
progressed and reached its lowest values during REM. This 
means that our initial findings were independent on the electrode 
configuration employed (bipolar vs monopolar), and are less 
likely to simply reflect the changes in muscle activity during the 
sleep-wake cycle. Furthermore, the bipolar recordings retained 
a similar frequency and ordinal pattern distribution to what we 
had observed by the monopolar configuration, implying that 
these new changes in complexity arise from the same dynamic 
profile as in the monopolar case. Taken together, our results 
confirm that the electrocortical temporal complexity decreases 
from W to sleep, and this fact is not a consequence of  a muscle 
artifact recorded through the reference electrode.
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ABSTRACT: Ibogaine is a psychedelic alkaloid that has attracted large
scientific interest because of its antiaddictive properties in observational
studies in humans as well as in animal models. Its subjective effect has
been described as intense, vivid dream-like experiences occurring while
awake; hence, ibogaine is often referred to as an oneirogenic
psychedelic. While this unique dream-like profile has been hypothesized
to aid the antiaddictive effects, the electrophysiological signatures of this
psychedelic state remain unknown. We previously showed in rats that
ibogaine promotes a waking state with abnormal motor behavior along
with a decrease in NREM and REM sleep. Here, we performed an in-
depth analysis of the intracranial electroencephalogram during “ibogaine
wakefulness”. We found that ibogaine induces gamma oscillations that,
despite having larger power than control levels, are less coherent and
less complex. Further analysis revealed that this profile of gamma activity
compares to that of natural REM sleep. Thus, our results provide novel biological evidence for the association between the
psychedelic state and REM sleep, contributing to the understanding of the brain mechanisms associated with the oneirogenic
psychedelic effect of ibogaine.
KEYWORDS: ibogaine, intracranial electroencephalogram, computational neuroscience, sleep-wake cycle, psychedelics

Ibogaine is a potent psychedelic alkaloid that has attracted
scientific interest because of its long-lasting antiaddictive

properties,1 evidenced in anecdotal and observational studies in
humans,2−5 and in extensive preclinical work in rodents.6−14

Subjective reports portray the ibogaine experience as entering
into an intense dream-like episode while awake, involving
memory retrieval and prospective imagination, without
producing the typical interferences in thinking, identity
distortions, and space−time alterations produced by classical
psychedelics (e.g., DMT, LSD, psilocybin).15−18 Thus, ibogaine
is often referred to as an oneirogenic psychedelic.16,18

In spite of the vast amount of preclinical research regarding
the antiaddictive effects of ibogaine, the biological substrate of
its unique oneiric effects remains elusive. Although seemingly
unrelated, the oneirogenic effects of ibogaine have been
hypothesized to aid its antiaddictive properties.1,19 Taking into
account that most vivid dreams occur during REM sleep, the
dream-like experiences would be the manifestation of a REM
sleep-like brain state, which in turn could favor the antiaddictive
effects through an increase in neural plasticity and memory
reconsolidation, similar to previously reported functions of
natural REM sleep.20 Therefore, if this conjecture is true, we
should expect to find REM sleep characteristics in the
electrocortical activity following the administration of ibogaine.

In our previous work,21 we showed in rats that ibogaine
promotes a wakefulness state with abnormal motor behaviors in
a dose dependent manner. These effects were accompanied by a
decrease in NREM sleep and a profound REM sleep
suppression. Nevertheless, as the analysis relied on visual
inspection, we were not able to answer which features
characterize the waking state induced by ibogaine. Therefore,
in the present work we performed a state-of-the-art computa-
tional analysis of the intracranial electroencephalogram (iEEG),
employing a set of electrodes distributed across the cortex
bilaterally, to analyze effects of ibogaine during the first 2 h after
its intraperitoneal administration. Upon analyzing the data, we
found a unique iEEG profile during wakefulness, which is
compatible with a REM-like brain state. Hence, our results
provide the first electrophysiological evidence of a wakefulness
dream-like brain state produced by ibogaine.
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■ RESULTS

Ibogaine Alters iEEG Oscillatory Components. To
understand the acute effects of ibogaine on the rat brain, we
recorded iEEG signals following its intraperitoneal adminis-

tration (40 mg/kg). Electrodes were located above the olfactory
bulb (OB), primary motor (M1), primary somatosensory (S1)
and secondary visual cortex (V2), allowing us to monitor the
dynamical and regional effects of ibogaine (Figure 1A). As a

Figure 1. Ibogaine significantly alters iEEG frequency distribution. (A) Location of the analyzed intracranial electrodes in the right hemisphere (OB,
olfactory bulb; M1, primary motor cortex; S1, primary somatosensory cortex; V2, secondary visual cortex). (B) Spectrograms from a representative
animal following the administration of saline (control) and ibogaine (40 mg/kg). The hypnograms are plotted on top. (C) Normalized power spectra
during wakefulness (see Methods for normalization details). The solid line represents the mean (n = 6 animals) for the first 2 h postinjection; the
shaded area depicts the standard error of the mean (S.E.M.). The black dots mark the statistically significant frequencies (p < 0.05) corrected by a
cluster-based permutation test. The traditional frequency bands (Greek letters) are delimited by gray and white boxes in each plot. The differences
between hemispheres were minimal (see Figure S2). (D) Mean power for theta, gamma, >100 Hz (up to 512 Hz) frequency bands. Each point
corresponds to an electrode of a single animal; bars show mean ± S.E.M. *p < 0.05, *** p < 0.001, paired t test.

Figure 2. Ibogaine decreases long-range phase synchronization. (A) Location of the analyzed intracranial electrodes. (B) Coherogram following saline
(control) and ibogaine (same animal and epoch as in Figure 1B). The hypnograms are plotted on top. This plot shows the phase coherence between
the right and left primary motor cortex as a function of time and frequency. (C) The left column shows the t-statistic (t-stat) of the pairwise coherence
difference matrix (i.e., the average difference is divided by the S.E.M.) for three frequency bands (sigma-beta, gamma and >100Hz, up to 512Hz). The
right column shows the electrode pairs with a significant difference (p < 0.05, corrected cluster-based permutation test; r, right; l, left). (D) Z′
coherence as a function of frequency of three representative combinations of electrodes (same labels, statistical analysis, and wakefulness epochs as in
Figure 1C).
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working example, Figure 1B shows the OB time-frequency
response after we administered saline (control) and ibogaine;
time zero corresponds to the moment of injection. Compared to
control, gamma oscillations (30−80Hz) increased following the
administration of ibogaine; this increase lasted for at least 2 h.
Note that this higher gamma power occurred associated with a
longer time the animal spent awake (shown in the hypnogram).
To analyze ibogaine effects at the group level, we considered
only the wakefulness episodes in experimental and control
conditions (Figure 1)C. In comparison to control, ibogaine
significantly increased gamma oscillations in the OB, M1, S1,
and V2 areas (Figure 1C, and summarized in Figure 1D).
Along with the changes in gamma frequencies, the mean theta

power increased (Figure 1D), while also decreasing its peak
frequency from 9 to 8Hz (readily observed in S1 and V2 cortices
because of their proximity to the hippocampus, Figure S1).
Additionally, the high-frequency power (>100 Hz and up to 512
Hz) decreased in M1, S1, and V2 (see Figure 1C,D), though the
lack of a spectral peak suggests this result arises from changes in
muscular activity produced by the drug.22

Ibogaine Decreases Inter-regional Synchronization.
Since ibogaine significantly altered the oscillatory power content
of the iEEG, we next quantified its impact on long-range
synchronization of brain areas within and across hemispheres

(Figure 2A). Figure 2B shows an example of interhemispheric
coherence between M1 cortices as a function of time (same
animal as in Figure 1B). Interestingly, as opposed to its effect on
gamma power, ibogaine strongly decreased inter-regional
gamma synchronization.
Figure 2C shows a group level analysis separated by frequency

bands by means of pairwise electrode matrices (left column),
which depict coherence differences (t-statistic) between
conditions (saline vs ibogaine) in pseudocolor scale for each
electrode pair (blue indicates a coherence decrease while red an
increase). The electrode pairs with significant differences are
also indicated in the right column. Ibogaine decreased phase
coherence at the sigma-beta, gamma, and high-frequency bands
in multiple cortical areas, including the OB, M1, and S1 (Figure
2C,D). In particular, inter-regional gamma coherence decreased
in 9 of the 21 electrode pairs, including between right OB and
right S1 cortex (Figure 2D, left panel), two areas that had an
increase in their gamma power (Figure 1C). The same gamma
coherence reduction occurred in the interhemispherical M1−
M1 and M1−S1 electrode combination, but not in the
intrahemispherical M1−S1 (see Figure 2D and Figure S3).

Ibogaine Decreases iEEG Temporal Complexity. In the
previous sections, we showed that ibogaine promoted local
gamma oscillations which were uncoupled between areas. This

Figure 3. Ibogaine decreases iEEG complexity. Permutation entropy is employed to quantify the iEEG temporal complexity in normal (blue) and
ibogaine (red) wake states (same electrodes as in Figure 1). Each dot shows the average permutation entropy of an animal (n = 6). Bars represent mean
± S.E.M. *p < 0.05, paired t test.

Figure 4. The ibogaine wakefulness shows REM sleep features in the gamma band. (A) Power spectrum comparison between REM sleep (black) and
the ibogaine wakefulness (red); only the right hemisphere is shown. The solid line represents the mean (n = 6 animals); the shaded area depicts the
S.E.M. (B) Coherence comparisons between REM sleep and ibogaine. The black dots mark the statistically significant frequencies (p < 0.05) corrected
by a cluster-based permutation test.

ACS Pharmacology & Translational Science pubs.acs.org/ptsci Article

https://dx.doi.org/10.1021/acsptsci.0c00164
ACS Pharmacol. Transl. Sci. XXXX, XXX, XXX−XXX

C



activity resembles gamma oscillations that naturally occur
during REM sleep23−25 (Figure S4), suggesting that the awake
state under ibogaine exhibits similar REM sleep characteristics.
To delve further into this matter, we tested the resemblance
between states in their temporal complexity. This is important
because the temporal complexity during REM sleep is
significantly lower than during wakefulness, which can be
observed independent of the cortical area and for a wide range of
time-scales.26

To assess the temporal complexity, we down-sampled the
original signals to 128 Hz (avoiding muscular contamination)
and measured the permutation entropy of the time-series. This
metric quantifies the diversity of dynamical motifs in the iEEG
(larger values mean the signal has higher diversity, hence more
complexity) and is robust to the presence of noise and short time
measurements (seeMaterial andMethods and.27 Figure 3 shows
the average permutation entropy for each cortical electrode.
Interestingly, in comparison to normal (control) wakefulness,
ibogaine wakefulness displayed significantly lower levels of
dynamical complexity in OB, M1 and S1 cortex. Note that these
areas are the ones with most prominent changes in power and
coherence. No significant changes were observed in V2. We
should also point out that by virtue of downsampling, the
gamma band oscillations are the only relevant frequencies
contained in our complexity estimate.
Ibogaine Wakefulness and REM Sleep Have Similar

iEEG Gamma Activity. The previous section showed that the
ibogaine awake state differs from normal wakefulness. We next
compared the ibogaine-induced brain state with physiological
REM sleep (Figure 4A). We found that theta, sigma, and beta
power were lower during ibogaine wakefulness than in REM
sleep. On the other hand, the high-frequency component (>100
Hz) had significantly higher power, likely due to muscular
activity. Noteworthy, the power of gamma oscillations was
similar between both states and minor statistically significant
differences were found in the OB and M1 with larger gamma
power during REM (Figure 4A). Furthermore, we also found

similar levels of gamma coherence in the ibogaine wakefulness
and REM sleep, even for electrode combinations which showed
significant changes between physiological and ibogaine wakeful-
ness (compare Figure 2B with Figure 4C). In contrast, the high-
frequency spectrum was more coherent during ibogaine
wakefulness than during REM sleep, probably as a consequence
of the absence of muscle activity during REM sleep.
We also found that the temporal complexity during the

ibogaine wakefulness was close to that of REM sleep (Figure
S5); it was only significantly larger during ibogaine wakefulness
in the M1 cortex. Overall, the data show that iEEG complexity
during ibogaine wakefulness is between normal wakefulness and
REM sleep. Thus, although there are differences between
ibogaine wakefulness and REM sleep, the power, complexity,
and inter-regional synchronization of gamma oscillations are
comparable.
Finally, we directly tested whether the ibogaine wakefulness

was closer to a REM-like state or to physiological wakefulness.
For this purpose, we trained an artificial neural network to
automatically classify the states of wakefulness and REM sleep.
Figure 5A shows a schematic representation of the network,
which is fed with the levels of gamma power, and coherence of
single 10-s artifact free epochs (input layer) and the output were
the behavioral states (wake or REM, output layer). After
supervised training, the network successfully distinguished
between wakefulness and REM (the confusion matrix for a
representative animal is shown in Figure 5B). Then, the network
was fed with ibogaine wakefulness data, these epochs were
mostly classified as being REM sleep instead of wakefulness
(Figure 5C). In fact, in 5 out of 6 animals the majority of the
ibogaine epochs were classified as REM sleep, and in 3 animals
all ibogaine epochs were classified as such. Therefore, these
results show that the gamma oscillations induced by ibogaine
have convincing REM sleep-like features.

Figure 5. The ibogaine-induced brain state is considered a REM-like state by an automatic sleep scoring algorithm. (A) Schematic representation of
the neural network employed to classify the states of wakefulness and REM sleep. The network contains one input layer which receives the gamma
features (power and coherence of the OB,M1, and S1 electrodes), and 10 hidden layers (only three of them are shown in the picture). The network has
one output layer with two nodes (wake and REM). (B) Confusion matrix for an individual animal. (C) Bar plots showing how ibogaine wakefulness
epochs were classified. Each animal is shown separately and was tested with its own control network.
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■ DISCUSSION
In the present study, we found that intraperitoneal admin-
istration of ibogaine in male rats induces a waking brain state
that has electrocortical REM sleep traits. These traits appear in
the form of high-power local gamma oscillations in the OB, M1,
S1 areas, which are less coherent and less complex than in
normal wakefulness. These features of gamma oscillations are
similar to the ones present during REM sleep (Figures 4 and 5
and Figure S4). Therefore, by measuring an important
neurophysiological trait, our results support previous oneiro-
genic conjectures of ibogaine’s induced psychedelic state.1,19

Interestingly, some of these traits were dragged into NREM
sleep; compared to physiological NREM sleep, ibogaine NREM
sleep showed gamma power increase circumscribed to the OB,
and lower gamma coherence in several derivations (Figure S6).
It should be noted, however, that our results only suggest the
oneirogenic nature of the ibogaine state, but do not provide
further evidence of the relationship between this oneiric state
and the antiaddictive properties of ibogaine.
The relationship between this unique wakefulness promoted

by ibogaine and the antiaddictive properties is speculative, as
another experimental design should be employed to address this
matter. However, considering that it had been reported by
several ibogaine users that the dream-like experiences helped
them change their addictive behaviors, and our findings showing
that ibogaine induces a wakefulness state showing REM-like
traits (i.e., a dissociate state), it is likely that this unique
wakefulness state could be related to its antiaddictive properties.
Nevertheless, we cannot rule out that the suppression of REM
sleep by itself, could be also related to the antiaddictive effect
induced by ibogaine.
When comparing our results to the effects elicited by other

psychedelics, the lack of previous reports involving quantitative
iEEG analysis of the psychedelic state in rodents forces us to
compare our results to previous literature in human beings. For
instance, the administration of 5-HT2A agonist (e.g., LSD,
psilocybin, DMT) in humans reduces alpha (8−12Hz) and beta
band power and decreases their functional connectivity.28−32

Similarly, our results show that ibogaine also reduced the
connectivity at sigma and beta bands (10−30 Hz). Additionally,
it is worth noting that we found significant changes in the OB,
while in humans the predominant effects of traditional
psychedelics are observed in the visual cortex.29 Thus, both
psychedelic effects involve major sensory areas relevant to each
species. Furthermore, complementary analyses show that the
gamma coupling to other frequencies is not affected by ibogaine
in any of the cortical locations (Figure S7). As the slow OB
oscillations (1−4 Hz) reflect the slow respiratory potentials,33,34

our results suggest that sensory information is still likely to reach
the OB, but is later integrated in an altered way, similar to the
psychedelic state in humans.28

In addition to the electrophysiological similarities between
ibogaine and serotoninergic psychedelics, the type of cognition
elicited by the latter has been described as analogous to the one
present during dreams28 (both referred as primary states of
consciousness). In fact, a recent work shows that unlike other
drugs (cocaine, opioids, etc.), the semantic content of
psychedelic experiences is closely related to dreams.35 Since
dreams are to a large extent the cognitive correlates of REM
sleep,36 our report confirms such connection for ibogaine.
Nevertheless, as mentioned before, human subjective reports

also indicate differences between the experience elicited by

ibogaine and classic psychedelics. Pharmacological and
behavioral data in rodents also support these differences.
While classical psychedelics share the ability to interact with
the 5-HT2A receptor in the low nanomolar range inducing the
head twitch response (HTR) in rodents,17 ibogaine binds to this
receptor in the micromolar range37,38 without producing HTR
or similar responses.21 Also, previous drug discrimination
studies in rats showed that although ibogaine may produce
some of its effect via 5-HT2A activation, this does not appear to
be essential to the ibogaine-discriminative stimulus, since
pirenperone (5-HT2A antagonist) did not affect the ibogaine-
appropriate response.38,39 Further studies employing the same
iEEG methodology should shed light into the electrophysio-
logical similarities and differences between the wakefulness state
induced by classical psychedelics and ibogaine.
It should be noted that ibogaine is rapidly metabolized (half-

life: 1.22 hs) to produce noribogaine, which has its own
pharmacological and pharmacokinetic profiles.40,41 According
to pharmacokinetic data,42 both substances are present in the rat
brain at pharmacologically relevant concentrations during the
first 2 h after ibogaine 40 mg/kg i.p. administration. Non-
competitive antagonism of N-methyl-D-aspartate receptors
(NMDA-R) by ibogaine43−48 and to a lesser extent by
noribogaine44,45 should be considered as a key factor to explain
the effects on the gamma band, since ketamine (a non-
competitive NMDA-R antagonist) also produces a marked
increase in gamma power49−52 while decreasing inter-regional
gamma coherence.51,52

Nevertheless, effects on other neurotransmitter systems and
receptors should be also considered. Since ibogaine and
noribogaine inhibit serotonin reuptake by modulating SERT
activity (noribogaine being approximately ten-times more
potent than ibogaine),53,54 the increase in serotoninergic
transmission, in addition to the above-mentioned interaction
of ibogaine with 5HT2A receptor, could explain some of the
similarities found in the electrocortical activity between ibogaine
and classic psychedelics. Additionally, the potential contribution
of the kappa opioid action of noribogaine55 as a biased agonist
should also be considered, as other kappa agonists induce
oscillations in the theta range (4−10 Hz),56−58 resembling our
results.
As a final remark, our results show that ibogaine promotes a

waking brain state with REM sleep traits. Because most dreams
occur during REM sleep, this new finding accounts for the
oneirogenic psychedelic effect experienced after ibogaine
consumption, thus providing novel biological evidence linking
psychedelics and REM sleep.

■ METHODS
Ibogaine. Ibogaine was obtained and purified from T. Iboga

extracts following the procedures employed in ref 21 (see
Ibogaine Supplementary Information in the SupportingMaterial
for the purification protocol, structure elucidation, and purity
profile). A 40 mg/kg dose (i.p.) was employed in this work,
which is the effective dose used in the preclinical literature to
obtain long lasting effects in the self-administration paradigms in
rats, and that in our previous study showed to have the largest
effect on the wakefulness−sleep architecture.21 Dissolution of
ibogaine−HCl to prepare the samples for intraperitoneal (i.p.)
injection was carried out using warm saline that was previously
degassed by nitrogen bubbling (∼17 mg of ibo-HCl/mL of
saline).
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Experimental Animals. Six Wistar male adult rats were
maintained on a 12-h light/dark cycle (lights on at 07.00 h).
Although to analyze only one gender is a limitation of the

study, we took it as a first approach to explore the effects of
ibogaine on electrocortical activity. Food and water were freely
available. The animals were determined to be in good health by
veterinarians of the institution. All experimental procedures
were conducted in agreement with the National Animal Care
Law (No. 18611) and with the “Guide to the Care and Use of
Laboratory Animals” (8th edition, National Academy Press,
Washington, DC. 2010). Furthermore, the Institutional Animal
Care Committee approved the experimental procedures (Exp.
No. 070153-000332-16). Adequate measures were taken to
minimize pain, discomfort, or stress of the animals, and all efforts
were made to use the minimal number of animals necessary to
obtain reliable scientific data. Each animal received the ibogaine
and the vehicle dose in different days, and was therefore its own
control.
Surgical Procedures. The animals were chronically

implanted with electrodes to monitor the states of sleep and
wakefulness. We employed similar surgical procedures as in our
previous studies.21,24,25 Anesthesia was induced with a mixture
of ketamine−xylazine (90 mg/kg; 5 mg/kg i.p., respectively).
The rat was positioned in a stereotaxic frame and the skull was
exposed. To record the iEEG, stainless steel screw electrodes
were placed in the skull above motor, somatosensory, visual
cortices (bilateral), the right olfactory bulb, and cerebellum,
which was the reference electrode (see Table S1). To record the
electromyogram (EMG), two electrodes were inserted into the
neck muscle. The electrodes were soldered into a 12-pin socket
and fixed onto the skull with acrylic cement. At the end of the
surgical procedures, an analgesic (ketoprofen, 1 mg/kg, s.c.) was
administered. After the animals had recovered from these
surgical procedures, they were left to adapt in the recording
chamber for 1 week.
Experimental Sessions. Animals were housed individually

in transparent cages (40 × 30 × 20 cm3) containing wood
shaving material in a temperature-controlled room (21−24 °C),
with water and food ad libitum. Experimental sessions were
conducted during the light period, between 10 AM and 4 PM
during the light phase in a sound-attenuated chamber with
Faraday shield. Before the beginning of the recordings, animals
were injected with a 40 mg/kg ibogaine dose or vehicle i.p. The
recordings were performed through a rotating connector, to
allow the rats to move freely within the recording box.
Polysomnographic data were acquired and stored in a computer
using the Dasy Lab Software employing 1024 Hz as a sampling
frequency and a 16 bits AD converter.
Sleep Scoring. The states of sleep and wakefulness were

determined in 10-s epochs. Wakefulness was defined as low-
voltage fast waves in the motor cortex, a noticeable theta rhythm
(4−7 Hz) in the somatosensory and visual cortices, and
relatively high EMG activity. NREM sleep was determined by
the presence of high-voltage slow cortical waves together with
sleep spindles in frontal, parietal, and occipital cortices
associated with a reduced EMG amplitude; REM sleep as low-
voltage fast frontal waves, a regular theta rhythm in the occipital
cortex, and a silent EMG except for occasional twitches. Artifacts
and transitional epochs were removed employing visual
supervision.
Data Analysis. To evaluate the ibogaine effect on iEEG

activity, we selected the first 2 h following its i.p. administration
(10 AM to 12 AM) since almost continuous wakefulness and

abnormal motor and autonomic effects (tremor, piloerection)
were only evident during this period.21 From the first 2 h, only
artifact-free wake epochs were analyzed from both the control
and ibogaine experiments. NREM sleep epochs were selected
from the entire 6 h due to the reduced time of this state after
ibogaine i.p. administration. Additionally, REM sleep epochs
from control experiments were also examined. REM sleep
following ibogaine administration was not considered due to the
lack of this state in several animals.

Power Spectrum. The power spectrum was obtained by
means of the pwelch built-in function in Matlab (parameters:
window = 1024, noverlap = [], fs = 1024, nfft = 1024), which
corresponds to 1-s sliding windows with half-window overlap,
and a frequency resolution of 1 Hz. The time-frequency
spectrograms were obtained employing the function mtspec-
gramc from the Chronux toolbox59 (available at: http://
chronux.org), using five tapers and a time-bandwidth product
of 5. All spectra were whitened by multiplying the power at each
frequency by the frequency itself, thus counteracting the 1/f
trend. In addition, the spectra were normalized to obtain the
relative power by dividing the power value of each frequency by
the sum across frequencies. The traditional frequency bands
depicted in the figures were taken as delta (1−4 Hz), theta (5−
10 Hz), sigma (11−14Hz), beta (15−29Hz), and gamma (30−
100 Hz).

Spectral Coherence. To measure synchronization between
electrodes, we employed the magnitude squared coherence
using the mscohere built-in function in Matlab (parameters:
window = 1024, noverlap = [], fs = 1024, nfft = 1024), which
corresponds to 1-s sliding windows with half-window overlap,
and a frequency resolution of 1 Hz. The time-frequency
coherograms were obtained employing the function cohgramc
from the Chronux toolbox, using 10 tapers and a time-
bandwidth product of 100.

Cluster-Based Permutation Test. To obtain statistical
thresholds for group comparisons of power and coherence, we
employed a data-driven approach comparing empirical clusters
of frequencies instead of comparing traditionally defined
frequency bands. The method consisted of first comparing
individual frequencies (512 frequencies) in each condition by
means of paired t tests (α = 0.05). Once we obtained the p values
for each frequency, all consecutive significant frequencies were
grouped into empirical clusters (defining a minimum cluster size
of four frequency points), and a new statistic was formed by
summing the t-statistic of each frequency inside the cluster. To
assess whether a given cluster was significant, a null hypothesis
distribution of cluster statistics was constructed by randomizing
labels (control and ibogaine) and repeating the cluster
construction method for a total of 10 000 randomizations.
The p values of the empirical clusters were obtained by
comparing each cluster statistic to the randomized cluster
statistic distribution (X). We employed two-tailed comparisons
for the power spectrum and permutation entropy (pvalue = 2
min(P(X > Xobs)), P(X < Xobs)), and one-tailed for the
coherence comparisons (pvalue = P(X < Xobs)).

Permutation Entropy. Prior to quantifying the permuta-
tion entropy, the iEEGs were down-sampled to 128 Hz. The
framework consisted of 2 main steps. In the first step, we
encoded the time-series into ordinal patterns (OP) following the
Bandt and Pompe method.27 The encoding involves dividing a
time-series {x(t), t = 1, ···,T} into ⌊(T−D)/D⌋ nonoverlapping
vectors, where ⌊y⌋ denotes the largest integer less than or equal
to y and D is the vector length, which is much shorter than the
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time-series length (D ≪ T). Then, each vector is classified
according to the relative magnitude of its D elements. Namely,
we determined how many permutations between neighbors are
needed to sort its elements in increasing order; then, an OP
represents the vector permutations. The second step consists in
applying the Shannon entropy to quantify the average
randomness (information content) of the OP distribution.
Shannon entropy is defined as H = −∑p(OP) log[p(OP)],
where p(OP) is the probability of finding a givenOP in the signal
(among the set of all OPs), and the summation is carried over all
possible OPs. To assess the statistical significance between
conditions, we employed paired two-tailed t tests with α = 0.05.
Gamma-Band Sleep Scoring Neural Network. A multi-

layer perceptron (10 hidden layers) was employed to distinguish
between the states of wakefulness and REM sleep.
We used the built-in classification network patternnet in

Matlab. The input to the network consists of values of gamma
power (OB, M1r, M1l, S1r) and coherence (the nine significant
pairs in Figure 2C). The network was trained through a
supervised scheme employing the visually scored states in the
control condition (either Wake or REM). The training was
performed employing the scaled conjugate gradient back-
propagation algorithm (trainscg built-in function in Matlab),
and the performance of the network was evaluated by the cross-
entropy algorithm (crossentropy built-in function in Matlab).
Phase-Amplitude Coupling. To measure coupling be-

tween frequencies within a same region, we employed the
modulation index method.60 Briefly, the raw signal was filtered
between 1 and 15 Hz in 1-Hz steps and 3-Hz bandwidth (eegf ilt
function in EEGLAB;61 to obtain the slow frequency
components, and then the phase time series were extracted
from their analytical representation based on the Hilbert
transform (hilbert built-in function in Matlab). In addition, the
same raw signal was also filtered between 40 and 180 Hz in 10
Hz steps (bandwidth 10 Hz) to obtain the faster frequency
components, and their amplitude time series are also obtained
from the analytical representation. Then, phase-amplitude
distributions were computed between all slow-fast frequency
combinations. Finally, the modulation index was obtained as MI
= (Hmax − H)/Hmax, where Hmax is the maximum possible
Shannon entropy for a given distribution (log(number of bins))
and H is the actual entropy. The MI value of each slow-fast
frequency combination was plotted in pseudocolor scale to
obtain the comodulation maps. To assess the statistical
significance between conditions, we employed paired two-tailed
t tests with α = 0.05.
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Abstract—Recently, the sleep-wake states have been analysed using novel complexity measures, complementing
the classical analysis of EEGs by frequency bands. This new approach consistently shows a decrease in EEG’s
complexity during slow-wave sleep, yet it is unclear how cortical oscillations shape these complexity variations.
In this work, we analyse how the frequency content of brain signals affects the complexity estimates in freely mov-
ing rats. We find that the low-frequency spectrum – including the Delta, Theta, and Sigma frequency bands –
drives the complexity changes during the sleep-wake states. This happens because low-frequency oscillations
emerge from neuronal population patterns, as we show by recovering the complexity variations during the
sleep-wake cycle from micro, meso, and macroscopic recordings. Moreover, we find that the lower frequencies
reveal synchronisation patterns across the neocortex, such as a sensory-motor decoupling that happens during
REM sleep. Overall, our works shows that EEG’s low frequencies are critical in shaping the sleep-wake states’
complexity across cortical scales. ! 2022 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Key words: EEG, sleep-wake cycle, low frequency oscillations.

1. INTRODUCTION

The sleep-wake cycle is one of the most prevalent
biological rhythms in the animal kingdom, being crucial
to regulate physiological functions. The cycle is divided
into 3 main states: wakefulness (Wake), rapid-eye
movement (REM), and non rapid-eye movement sleep
(NREM). At the neocortical level, Wake is characterised
by asynchronous and irregular neuronal activity (Evarts,
1964; Vyazovskiy et al., 2009; Watson et al., 2016b).
REM sleep is strikingly similar to Wake’s activity, with
the difference that muscular activity is absent (Chase
and Morales, 1983; Chase et al., 1989). In contrast,
NREM exhibits neuronal synchronous silences that con-
form the nominative slow waves recorded in electroen-
cephalograms (EEG) (Evarts, 1964; Vyazovskiy et al.,

2009; Watson et al., 2016b; Nir et al., 2011; Todorova
and Zugaro, 2019).

In order to understand cortical function during the
sleep-wake cycle, classical analysis divides EEG
oscillations into specific frequency bands (Buzsáki and
Draguhn, 2004). These divisions stem from the oscilla-
tions being: 1) state-dependent, i.e., happen in relation
to specific sleep-wake states, 2) related to different phys-
iological functions, and 3) produced by distinct neuronal
circuits. For example, frequencies up to 12Hz contain
the Delta (1-4Hz), Theta (4-8Hz), and Sigma (8-12Hz)
bands, which have been associated to state-dependent
oscillations (Gervasoni et al., 2004; Watson et al.,
2016b). On the other hand, higher frequencies, like Beta
(15-30Hz) or Gamma (30-150Hz), have been predomi-
nantly associated to cognitive functions (Kisley and
Cornwell, 2006; Kanayama et al., 2007; Bastos et al.,
2015; Richter et al., 2017; Bastos et al., 2020; Wiesman
et al., 2020) – even during sleep (Carr et al., 2012;
Valderrama et al., 2012; Eichenlaub et al., 2020).
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Recently, the classical analysis of EEG per frequency
bands has been complemented by the study of EEG’s
complexity (Jordan et al., 2008; Ouyang et al., 2010;
Nicolaou and Georgiou, 2011; Sitt et al., 2014; Abásolo
et al., 2015; Sarasso et al., 2015; Bandt, 2017;
González et al., 2019; González et al., 2020; Varley
et al., 2020; Hou et al., 2021; Mateos et al., 2021;
Varley et al., 2021; González et al., 2021); Sarasso
et al., 2021 provides a up-to-date literature review. Com-
plexity analyses usually focus on the EEG signal as a
whole, instead of its frequency components (or bands).
Under this framework, it has been shown that EEG’s com-
plexity changes according to the behavioural state, but
irrespective of the animal species (including mice, rats,
cats, monkeys, and humans). In particular, it has been
consistently reported (Nicolaou and Georgiou, 2011;
Abásolo et al., 2015; Bandt, 2017; González et al.,
2019; González et al., 2020; Mateos et al., 2021; Varley
et al., 2021; González et al., 2021; Pascovich et al.,
2021) that Wake is a highly complex state, that complexity
decreases during NREM when consciousness is lost, and
that it increases during REM sleep when a state of altered
consciousness emerges, i.e., dreams. However, it is still
unclear how these complexity results are related to the
classical frequency bands during the sleep-wake states.

Here, we study intracranial EEG (ECoG) complexity
during the states of Wake, NREM, and REM sleep by
dividing the ECoG recordings into low and high
frequency-bands. We find that the low frequency band –
including the classic Delta, Theta, and Sigma bands –
contains most of the information that determines the
state’s complexity. Importantly, we show that this low
frequency-band preserves information across neuronal
scales, from the activity of neuronal ensembles, up to
the local field potentials and ECoGs. This means that
our division effectively denoises ECoG signals, revealing
the underlying neural oscillations. Moreover, we find
novel synchronization patterns across the cortex. In
particular, we find that although Wake and REM sleep
have similar complexity values at the local level, cortical
sensory-motor integration is severely compromised
during REM sleep. Overall, our work supports classical
EEG analyses that focus on the low-frequency
oscillations in order to study the sleep-wake cycle, since
these frequency bands contain highly relevant
information.

2. RESULTS

The complexity of a signal can be quantified by means of
its information content, for example, by finding the signal’s
Shannon Entropy (Shannon, 1948). However, for finite
and real-valued signals, such as an electro-corticogram
(ECoG), estimating the Shannon Entropy is challenging.
Instead, we encode the ECoG signal into a finite alphabet
using Ordinal Patterns (OPs), and then find the entropy –
known as Permutation Entropy (Bandt and Pompe, 2002;
Zanin et al., 2012). This quantification depends on the OP
dimension, D (number of data points), and embedding
delay, s (resampling). In order to increase differences
between close OP distributions, we use the Permutation

Minimum-Entropy (PME) instead of its classical value
(Zunino et al., 2015).

2.1. Frequency bands affect the complexity of sleep-
wake states differently

We study the effects that ECoG’s low and high frequency
bands have on the PME of brain signals for Wake, REM,
NREM sleep. We divide the recordings from 12 rats
(under freely moving conditions through their sleep-
wake cycle) into a frequency band 6 12Hz and
frequency band > 12Hz. This division separates the
classic frequencies commonly employed to visually
classify sleep-wake states from the higher frequencies,
which are prone to noise contamination. In particular,
the low frequency-band contains different sub-bands,
such as the Delta band (i.e., d ¼ f1; 4gHz) related to
slow-wave activity, the Theta band (i.e., h ¼ f4; 8gHz)
related to exploratory behaviour and cognitive functions
during REM sleep, and the Sigma band (i.e.,
r ¼ f8; 12gHz) related to sleep spindles and memory.

Fig. 1A shows the rat’s brain, where we record the
activity from the primary motor cortex (M1), primary
somatosensory cortex (S1) and secondary visual cortex
(V2). As it can be seen from Fig. 1B, the ECoG in each
cortex changes as a function of the behavioural state,
from an asynchronous state during Wake and REM
sleep, to a synchronous slow-wave activity during
NREM sleep. We analyse the PME [Eq. (3)] per
frequency band during each sleep-wake state (Fig. 1B),
finding the optimal temporal scale for encoding the
frequency bands into OPs. Namely, we find a state-
dependent embedding delay, sI, for the OP encoding of
each band [Eq. (5)].

Resultant PME values for low and high-frequency
bands are respectively shown in Fig. 1C and D. We can
see that these values are similar across cortical areas,
suggesting that PME is a cortical-area independent
measurement. In particular, we find that Wake is the
most complex state (regardless of the frequency band),
while NREM sleep shows significantly lower complexity
values for both frequency bands. Interestingly, REM’s
PME strongly depends on the frequency content,
showing Wake-like PME values for the lower
frequencies, and NREM-like PME values for the higher
frequencies.

We also show that the low-frequency band’s PME
robustly differentiates the sleep-wake states even when
the frequency cutoff is changed – as can be seen in
Fig. 1E, where we set a range of cut-off frequencies
from 8 to 20Hz. For example, when the frequency cut-
off is 8Hz, the PME values in Fig. 1E for the
frequencies 6 8Hz are similar to those from Fig. 1C. As
the cut-off is increased, higher frequencies are included
in the low-frequency band, affecting the PME values
and revealing a cortical dependence, where S1 and V2
behave similarly (middle and bottom panels in Fig. 1E)
approaching an intermediate PME value between Wake
and NREM sleep.

Overall, these results suggest that the low frequency-
band contains most of the relevant information of sleep-
wake states and their raw ECoG signals (i.e., before
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filtering). In particular, we find that in this band, Wake and
REM sleep show similar PME values, which aligns with
previous results by González et al., 2019 using PE. On
the contrary, the high frequency-band PME variations cor-
relate to the changes in muscular activity during sleep
(Fig.S1). Consequently, for the following analysis we
focus on the low-frequency band.

2.2. Dependence of the embedding delay on the
frequency band

A signal’s information-content changes when looking at
different frequency bands. This implies that the
encoding needs to take into account the signal’s
frequency content by adjusting the encoding
parameters. In our work, when encoding an ECoG

Fig. 1. Permutation Minimum-Entropy (PME) for different sleep-wake states, cortical locations, and frequency bands. (A) Cortical locations for the
ECoG sensors: primary Motor cortex (M1), primary Somato-sensory cortex (S1), and secondary Visual cortex (V2). (B) Examples of ECoG
recordings for wakefulness (Wake), rapid-eye-movement sleep (REM), and non-REM sleep (NREM). Top traces correspond to the raw ECoG signal
and bottom traces show the respective low- and high-frequency oscillations (6 12Hz and > 12Hz, respectively). Box plots show population PME
values (12 rats) for the low (panel C) and high (panel D) frequency-bands at the M1, S1, and V2 cortical locations according to the sleep-wake state.
PME [Eq. (3)] values obtained by encoding the ECoG signals with ordinal-patterns of dimension D ¼ 5 and embedding delay, sI (Bandt and Pompe,
2002), where sI ¼ 25 for Wake, sI ¼ 21 for REM, and sI ¼ 17 for NREM low frequency bands and sI ¼ 1 for all states in the high frequency band.
(E) Population average PME (error bars represent the 95% confidence interval) for each state and cortical location as a function of the maximum
frequency included in the low-frequency band (frequency cut-off) for the sI in panel C. * p < 0:05, ** p < 0:01, **** p < 0:0001, ***** p < 0:00001.
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signal with ordinal patterns (OPs), we need to analyse the
resultant PME [see Eq. (3)] as a function of the
embedding delay, s, for each frequency band. In Fig. 2
we show the results of finding the optimal embedding
delay, sI [see Eq. (5)], for the ECoG’s low frequency-
band across the sleep-wake states and cortical locations.

Fig. 2A shows ECoG’s power spectra. We find that
Wake and REM sleep have similar low-frequency
content (shaded rectangle) in all neocortical areas, with
a peak in the Theta range (h ¼ ½4; 8#Hz). On the other
hand, NREM sleep shows more power at the sleep-
spindles (r ¼ ½8; 12#Hz) and slow-wave range
(d ¼ ½1; 4#Hz). In Fig. 2B we show how the PME
changes as we increase s from 1 (OP constructed with
consecutive data points) to 35 (OP constructed with
data taken every 35 points) for the low frequency-band.
We note increasing complexity values for all sleep-wake
states – independently of the neocortical area. However,
the growth is non-monotonic, as Fig. 2C reveals by the
PME rates [see Eq. (4)]; that is, the PME tangents.

At the maximum PME rate, the encoding captures the
optimal information content generated by the low
frequencies. From Fig. 2C, we can see that this is
obtained by an optimal embedding delay, sI [see Eq.
(5)], which depends on the behavioural state (coloured
curves) but is independent of the cortical location
(panels). In particular, we find that Wake’s PME rate
peaks at sI ¼ 25, NREM’s at sI ¼ 17, and REM’s at
sI ¼ 21. We note that during REM sleep, we cannot
statistically differentiate between PME Rate(s ¼ 21) and
PME Rate(s ¼ 25) in the M1 area (left panel in Fig. 2C),
so we set sI ¼ 21 to match the other neocortical sites.
These sI values are the ones used in Fig. 1C. We then
conclude that the optimal temporal scale to study ECoG
dynamics solely depends on the behavioural state of the
low frequencies. On the other hand, doing the same
analysis to the high frequency band results in sI ¼ 1 for
all sleep-wake states and cortical locations (Fig.S2),
since at this band entropy is generally driven by the
high frequencies, which require a high sampling rate
(i.e., that of the raw signal).

2.3. ECoG’s lower frequencies contain neuronal
information across recording scales

Our findings show that Wake and REM sleep ECoG’s low
frequency-bands have larger PME than NREM sleep.
Now we analyse whether these PME values are
conserved across cortical scales; that is, if Local-Field
Potentials (LFP) and neuronal spiking activity has the
same complexity features according to the animal’s
behavioural state. In addition, we use the spiking activity
binary signals to construct synthetic LFP (sLFP), which
we generate by making convolutions with a decreasing
exponential and then taking a population average. The
resultant signal is similar to an LFP, which mainly
originates from the spatial average of excitatory post-
synaptic potentials (Buzsáki et al., 2012). We then per-
form the same analysis as in Fig. 2 to LFP and sLFP sig-
nals focusing on their low frequency-bands (6 12Hz).

From top to bottom, Fig. 3A shows low-frequency
band signals for an M1 ECoG of our experiments on 12

freely-moving rats (Cavelli et al., 2017; Cavelli et al.,
2018) and a frontal cortex LFP, sLFP, and spike trains
(units) of the data-set with 11 rats from the work by
Watson et al., 2016b. Fig. 3B shows box plots of the resul-
tant PME values from our analysis of these recording
scales in all animals, where the top panel is the same
as the left panel in Fig. 1C. Here, we can see that NREM’s
PMEs are significantly smaller than Wake’s and REM’s
PMEs across cortical scales; that is, our findings are con-
sistent for ECoG, LFP, and sLFPs. We also find that PME
grows with increasing s for all recording scales (Fig. 3C),
which we previously observed in Fig. 2B for the ECoG sig-
nals. Similarly, PME rates in Fig. 3D for ECoGs, LFPs,
and sLFPs exhibit comparable behaviours, where we note
that sI values are always larger during Wakefulness or
REM sleep than during NREM sleep. Consequently, our
findings show that low frequency-bands contain state-
dependent information that stems from the spiking activ-
ity, which is conserved across the recording scales.

2.4. Sensory-motor integration is compromised
during REM sleep

Having shown that the low-frequency ECoG band
contains state-dependent spiking information, we now
study how this activity is integrated across the
neocortex. We do this by quantifying the Permutation
Minimum-Mutual-Information (PMMI) between the low-
frequency ECoG recordings of every pair of cortical
locations, where we encode each ECoG signal into
ordinal patterns (Bandt and Pompe, 2002) of length
D ¼ 5 and optimal embedding delay sI for each sleep-
wake state (i.e., sI ¼ 25 for Wake, sI ¼ 21 for REM,
and sI ¼ 17 for NREM, as it can be seen from Fig. 2C).

Fig. 4A shows the low-frequency ECoG signals during
each sleep-wake state. During Wake (left panel in
Fig. 4A), we note synchronous h oscillations on M1
(primary motor), S1 (primary somato-sensory), and V2
(secondary visual) cortical regions. During NREM sleep
(middle panel in Fig. 4A), slow waves appear almost
synchronously in all cortices. On the other hand, we
note that during REM sleep (right panel in Fig. 4A), the
M1 cortex decouples from the rest, while S1 and V2
exhibit synchronous h rhythms that resemble Wake.

In line with these observations, PMMI values [see Eq.
(6)] between cortical areas show a dependence on both
the distance between cortices and the sleep-wake state
(Fig. 4B). The inter-electrode distance for S1-V2 and
M1-S1 is ’ 5mm, but is ’ 10mm for the M1-V2
combination. In particular, Fig. 4B shows that PMMI is
significantly higher for cortical pairs that are ’ 5mm
apart in comparison to those that are ’ 10mm,
regardless of the sleep-wake state. However, we find a
significant decrease in PMMI during REM sleep when
comparing the equidistant pairs S1-V2 and M1-S1,
which is absent during Wake or NREM sleep. These
results point to a loss in sensory-motor integration
during REM sleep that is not emerging because of
cortical distances.

When comparing PMMI from different sleep-wake
states, we find that REM’s M1-S1 and M1-V2 PMMI are
significantly smaller than those from Wake. For
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example, REM’s and Wake’s population-averaged PMMI
between M1 and V2 is 0:09 and 0:12 (normalised units),
respectively. We highlight that this decrease in PMMI
between M1 and V2 low frequencies happens even
though their PME values for Wake and REM are similar
(Fig. 1C). On the contrary, the decrease in PMMI values
happening during NREM sleep between M1-V2 in
comparison to Wake can be explained from the
significantly smaller PME values that NREM shows in all
cortical areas (Fig. 1C).

3. DISCUSSION

Complex neural dynamics are thought to be necessary for
consciousness (Tononi and Edelman, 1998; Oizumi et al.,
2014). Different reports show that cortical activity exhibits

complex patterns during Wakeful-
ness, that are reduced during deep
NREM sleep (Ouyang et al., 2010;
Nicolaou and Georgiou, 2011;
Abásolo et al., 2015; Schartner
et al., 2017(1):niw022; Bandt,
2017; González et al., 2019;
González et al., 2020; Hou et al.,
2021; Mondino et al., 2021;
Mateos et al., 2021) or anesthesia
(Jordan et al., 2008; Sitt et al.,
2014; Sarasso et al., 2015;
Fagerholm et al., 2016; Thul et al.,
2016; Varley et al., 2020; Varley
et al., 2021). However, it was
unclear how the different frequency
bands contribute to the observed
complexity changes in EEG
analyses.

3.1. Low-frequency oscillations
drive complexity changes during
the states of wake and sleep

In this work, we show that the intra-
cranial EEG (ECoG) frequencies
up to 12Hz are sufficient to
reproduce the complexity
variations that are typically
observed across the sleep-wake
states. According to our findings
(Figs. 1C and 2), Delta, Theta,
and Sigma bands are the most
important frequencies contributing
to the state’s complexity and its
decrease during NREM sleep.
Thus, our work highlights the fact
that EEG complexity critically
depends on the modulation of the
thalamocortical loops (Llinás et al.,
1999; Llinás et al., 2005), particu-
larly in the orchestration of the
slow-wave activity (1-4Hz) during
NREM sleep (Pigorini et al., 2015;
D’Andola et al., 2018; Rosanova
et al., 2018; Dasilva et al., 2021;
Sarasso et al., 2021; González

et al., 2021). Consistent with these results, we have
shown that population DOWN states trap cortical activity
into recurrent dynamics (González et al., 2021), explain-
ing why slow-oscillations – caused by DOWN states and
synchronised by the thalamus (Steriade et al., 1993;
Vyazovskiy et al., 2009; Nir et al., 2011; Todorova and
Zugaro, 2019; Hay et al., 2021) – reduce the complexity
of cortical activity during sleep.

Our present results also suggest that ECoG’s high
frequencies (> 12Hz) contain muscular information,
which we can explain as follows. On the one hand,
REM sleep shows the least complex EEG signals in the
high frequency range (Fig. 1D), in spite of having
neuronal activity resembling that of wakefulness
(Abásolo et al., 2015; González et al., 2021). The fact that

Fig. 2. Power spectra and entropy variations for wakefulness (Wake), rapid-eye movement (REM)
and non-REM (NREM) sleep. (A) Power spectral densities for different cortical locations and sleep-
wake states. Shaded rectangular areas signal the low frequency band (6 12Hz). (B) Permutation
Minimum-Entropy (PME) values for the EEG’s low frequency-band as the embedding delay, s, of the
ordinal pattern (OP) is increased (i.e., data sampled at increasing steps) in each cortical location from
Fig. 1A. (C) Corresponding PME rates [Eq. (4)] from panel B, i.e., PME tangents as a function of s.
OP dimension in panels B and C is D ¼ 5 data points (as in Fig. 1C). All panels show population
averages (solid curves) with their 95% confidence interval (coloured shading) after 1000 bootstrap
samples.
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muscular tone is absent during REM sleep (Fig.S1) can
explain this discrepancy between neuronal activity and
ECoG’s complexity values. On the other hand, we find
that the optimal delay embedding for encoding high-
frequency signals is always sI ¼ 1 (Fig.S2) for all
sleep-wake states and cortical locations. This sI ¼ 1
implies that the ordinal patterns can encode most of the
information coming from frequencies in the range
1024Hz=5 " 200Hz up to 512Hz – according to Eq. (1).
This range is higher than any up-to-date physiological fre-
quency band, making the high-frequency band analysis
with ordinal patterns prone to capture extra-neural
sources, such as electrical muscular activity.

Because muscular activity is intrinsically random and
our approach is to maximise the entropy rates, we could
be missing relevant information from the frequencies
contained in the 12 to 200Hz when analysing the high-
frequency range. This limitation in our high-frequency
band analysis could require the inclusion of an
intermediate band of frequencies. Such intermediate
frequencies could contain the Beta (15-30Hz) and
Gamma (30-150Hz) bands, potentially capturing
complementary information to our present work; but
outside of its current scope. Nevertheless, our results

remain practically unchanged when we choose a
different cut-off frequency to define the low and high
frequency bands (Fig. 1E), exploring cut-off values
between 8 to 20Hz.

3.2. Frequency Content of an Ordinal Pattern

When trying to measure the content of information from
an ECoG signal, we need to tune the encoding to match
the relevant frequencies of the signal under study. In
our case, the Ordinal Pattern (OP) encoding has the
embedding dimension, D, and delay, s parameters,
which set the number of points to be taken as a single
OP and at which sampling rate. Consequently,
depending on their values, an OP can see different
frequencies, m. Specifically, we can estimate the OP
frequency range by

ms
DsI K mK ms

2sI ; ð1Þ

where ms is the sampling frequency of the signal (in our
case, ms ¼ 1024Hz), D is the OP’s embedding
dimension, and sI is the optimum embedding delay from
Eq. (5).

Fig. 3. Permutation Minimum-Entropy (PME) across recording scales. (A) Brain recordings at different scales. From top to bottom, electro-
corticograms (ECoG), local field potential (LFP), synthetic LFP (obtained by the convolution of the spike trains and a decreasing exponential kernel),
and units (spikes from individual neurons recorded from the extracellular medium). ECoG data comes from our experiments, as in Figs. 1 and 2, but
the other recordings come from the work by Watson et al., 2016b (data-set available at: CRCNS.org). We note that we inverted both LFP and ECoG
recordings for representation purposes. (B): Box plots show PME values for the ECoGs (from Fig. 1C), LFPs, and sLFPs data-sets.* p < C PME as
a function of s (delay embedding); as in Fig. 2B. (C) PME Rate as a function of s; as in Fig. 2C. The solid lines show the population average values
and the shaded areas their 95% confidence interval.* p < 0:05, ** p < 0:01, **** p < 0:0001, ****** p < 0:000001.
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Eq. (1) implies that for our low frequency-band ECoG
analysis (! 12Hz), when we have D ¼ 5 and sI ¼ 25
(corresponding to wakefulness), the OP lower and
upper frequency limits are approximately equal to 8Hz
and 20Hz, respectively. This means that the D ¼ 5 OP
encoding will be quantifying the information content from
a signal mostly within 8 and 20Hz. However, we note
that for different D and sleep-wake states, we find
different sI – although independently of the cortical
location. The optimal sI of the low frequency band for
each sleep-wake states can be seen in Fig. 2C. On the
other hand, for the high frequency-band ECoG analysis
(> 12Hz), we find sIðDÞ ¼ 1 independently of the
embedding dimension or sleep-wake state (see Fig.
S2C). In this case, the OP has an upper limit of 512Hz,
coinciding with the Nyquist-Shannon criterion, but a
lower limit that depends on D, being 256Hz if D ¼ 4 and
approximately 200Hz if D ¼ 5.

It is worth noting that, although Eq. (1) sets a
frequency range that an OP can capture for a given D
and sI, this range only considers part of the information
that an OP captures. Specifically, frequencies m that are
smaller than the lower bound, ms=DsI, are still captured
by the OP. For example, a slow wave oscillation would
constitute monotonically increasing or decreasing OPs,
which would (strictly) have insufficient data-points to
represent the slow-wave’s period, but still contain local
information about the signal and contribute to
differentiate it to other frequencies.

3.3. Low-frequency ECoG oscillations recover
neuronal dynamics

We find that we can bridge several cortical scales by
focusing on the lower ECoG frequencies (Fig. 3). We
note that decoding specific neuronal firing patterns from
a field recording, such as an ECoG, is an ill-posed
problem, but we can approximate (to a degree) the
amount of information that neuronal populations
generate during each sleep-wake state. In this sense,
our analysis shows that Wake and REM’s neuronal
dynamics and field recordings are complex across
scales (Fig. 3B). In contrast, the appearance of DOWN
states in neuronal populations and slow-waves in field
recordings make NREM activity more predictable and
less complex (González et al., 2021).

We note that although our frequency band division is a
simple procedure, invariant complexity across scales
disappears when considering the whole ECoG signal
frequency content. In particular, if we include the high
frequencies, extra-neural contamination likely confounds
the complexity results and brakes the scale invariance
we are finding in this work. Moreover, extra-neural
sources of contamination above 20Hz are already
reported by Whitham (Whitham et al., 2007) for scalp
EEG, which supports our decision to use a division at
12Hz – making it available for scalp EEG analysis.

Fig. 4. Permutation Minimum Mutual Information (PMMI) for Wakefulness, NREM and REM sleep. (A) Standardised ECoG recordings of the
primary Motor cortex (M1), primary Somato-sensory cortex (S1), and secondary Visual cortex (V2) in each sleep-wake state. (B) Box-plots with the
pair-wise PMMI values [Eq. (6)] between the 3 neocortical areas during each of the sleep-wake states. % signals a P < 0:05 Wilcoxon signed-rank
test with a Benjamini-Hochberg multiple comparisons correction.
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3.4. Low-frequency synchronization reveals cortical
sensory-motor decoupling during REM sleep

Finally, our mutual information analysis of the low
frequency band reveals particular synchronization
patterns between neocortical areas during REM sleep.
We find that the motor cortex decouples from sensory
and visual cortices (Fig. 4), in spite of the different
cortical areas maintaining complex patterns of activity.
Given that the activity of these lower frequencies
correlates with true neuronal dynamics (Fig. 3B), it
seems unlikely that the sensory-motor decoupling is
spurious. Because REM sleep is characterized by
muscle atony and a decreased proprioceptive sensory
entrance (Chase and Morales, 1983; Chase et al., 1989;
Soja et al., 1993), a reduction in the mutual information
between the motor cortex and the rest of the brain is
expected (Fig. 4B). We argue that a possible cause for
this sensory-motor decoupling (i.e., less information shar-
ing between motor areas and the rest of the neocortex), is
because motor feedback signals are unable to synchro-
nize the sensory cortices with the motor areas due to
motor pathways being inhibited.

4. EXPERIMENTAL PROCEDURES

Experimental procedures are in agreement with the
National Animal Care Law (No. 18611) and with the
‘‘Guide to the care and use of laboratory animals” (8th
Edition, National Academy Press, Washington DC,
2010), and approved by the Institutional Animal Care
Committee, Uruguay (Exp. No 070153–000332-16). The
experiments involve 12 Wistar adult rats, sustaining a
controlled 12h light/dark cycle (light comes on at 07:00
UYT) with unrestricted access to food and water.
Veterinarians of the institution determined the animals
were all in good health and we took extra care to
minimise pain, discomfort, and stress in the animals.
Also, we made an effort to use the minimum number of
animals necessary to obtain reliable data.

Surgical procedures imply chronically implanting
electrodes to the animals, where we follow procedures
carried in previous studies by Cavelli et al., 2017,Cavelli
et al., 2018. Anaesthesia is induced by a mixture of
ketamine-xylazine (90mg=kg and 5mg=kg i.p., respec-
tively), the rat is then positioned in a stereotactic frame,
and the skull is exposed to attach 8 stainless-steel
screw-electrodes, which record the intra-cranial EEG. 6
electrodes are placed bilaterally above motor (M1),
somato-sensory (S1), and visual (V2) cortices. Remaining
electrodes are placed in the right olfactory bulb (OB) and
cerebellum (taken as the reference electrode). EMG reg-
istration is done by inserting 2 electrodes into the neck
muscle. All electrodes are soldered into a 12-pin socket
and fixed onto the skull with acrylic cement. At the end
of the surgical procedures, an analgesic (Ketoprofen,
1mg=kg, s.c.) is administered. After the animals recover
from these surgical procedures, they are left to adapt in
separate transparent cages (40! 30! 20cm) for 1 week
before data is collected. Cages contain wood-shaving
material in a temperature-controlled room (set to 21–
24 !C), with water and food ad libitum.

Experimental sessions are conducted during the light
period, between 10AM and 4PM UYT. Data from each
rat is collected individually in a sound-attenuated
recording chamber with a Faraday shield by a rotating
connector that allows free movement within the cage.
Polysomnographic recordings are amplified (!1000),
acquired (by a 16 bits AD converter set at a 1024Hz
sampling frequency), and stored using DASY LAB SOFTWARE

– recordings available upon request. The states of
REM, NREM and Wake are determined in 10s epochs.
Wake is defined by low-voltage fast-waves in M1, strong
theta-rhythm (4–7Hz) in V2, and relatively high EMG
activity. REM sleep is defined by low-voltage fast-
frontal-waves, a regular theta-rhythm in V2, and a silent
EMG (except for occasional twitches). NREM sleep is
determined by the presence of high-voltage slow-
cortical-waves (1–4Hz), sleep spindles in M1, S1, and
V2, and a reduction in EMG amplitudes. Additionally, a
visual scoring is performed to discard artifacts and
transitional states.

Frontal cortex data-set We also employ the data-set
from Watson et al., 2016b,Watson et al., 2016a to study
population dynamics and local field potentials in the fron-
tal cortex; freely available at CRCNS.org. For these
recordings, silicon probes were implanted in frontal corti-
cal areas of 11 male Long-Evans rats. Recording sites
include the medial prefrontal cortex (mPFC), anterior cin-
gulate cortex (ACC), pre-motor cortex/M2, and orbito-
frontal cortex (OFC). Recordings took place during light
hours in the home cage, including 25 sessions with mean
duration of 4:8hs " 2:2 std, at a 20kHz sampling fre-
quency. We exclude BWRat19_032413 from our analy-
ses because the recording lack REM sleep data. We
extract Local-Field Potentials (LFPs) by applying low-
pass filters to the recordings and resampling at 1250Hz.
We extract neuronal spikes by applying a high-pass filter
at 800Hz and then by detecting threshold crossings.
Spike sorting is carried by means of the KLUSTAKWIK

open-source software. Sleep-wake states are identified
by means of Principal Component (PC) analysis. In partic-
ular, SWS exhibits high LFP PC1 (power in the low
< 20Hz) and low EMG. REM sleep shows high Theta with
low EMG cluster, and a diffuse cluster of low broadband
LFP with high EMG. Wake has a diffuse cluster of low
broadband LFP with higher EMG, and a range of Theta
oscillations.

5. DATA ANALYSIS

Pre-processing of field recordings is done by a 1st-order
Finite-duration Impulse Response (FIR1) band-pass
½0:1; 450$Hz. We divide these signals into Low-
Frequency Oscillations (LFO) by a ½0:1; 12$Hz FIR1
band-pass and High-Frequency Oscillations (HFO) by a
½13; 450$Hz FIR1 band-pass, which corresponds to
making a division according to the classical
polysomnographic frequency bands (Buzsáki and
Draguhn, 2004). Then, we fix the total signal length, T,
to a range between 3! 105 to 3! 106 data points for all
cortical locations and sleep-wake states. This means that
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the shortest [largest] signals last
TDt ¼ 3" 105=1024Hz ’ 5 minutes [TDt ’ 50 minutes].

Encoding of signals into Ordinal Patterns (OPs)
[Bandt and Pompe, 2002] is done to quantify the signals’
randomness and how it changes during the sleep-wake
states. This encoding involves dividing a signal,
X ¼ fxðtÞ : t ¼ 0; . . . ; ðT% 1ÞDtg (where 1=Dt is the sam-
pling frequency of the signal), into sliding vectors with D
data-points (such that D & T) at a new sampling s, where
D P 2 is known as the embedding dimension and s as the
delay embedding. For example, fxðtÞ; xðtþ sÞ; xðtþ 2sÞg
is a vector at time t with D ¼ 3 data points and sampled at
sP 1 times. Each of these vectors is assigned an OP
according to the relative magnitude of its D elements
and how many permutations are needed to order them
increasingly. In other words, an OP represents the neces-
sary permutations needed to order the elements of the
embedded vector, which has up to D! possible permuta-
tions. In what follows, we set D ¼ 5 (meaning there are
5! ¼ 120 possible OPs), and analyse how results change
for different s. We note that similar results for both the low
and high-frequency bands are obtained employing D ¼ 4
(see Fig.S3).

Permutation Entropy (Bandt and Pompe, 2002) (PE)
quantifies the temporal randomness of a signal X after
encoding it into OPs. It is defined from the probability dis-
tribution of OPs (PðD; sÞðafXgÞ, with a ¼ 1; . . . ;D! and s the
delay embedding) by

PEXðD; sÞ ¼ %
XD!

a¼1

PðD; sÞðaÞ
log2 PðD; sÞðaÞ

! "

log2 D!½ )

¼ %
XD!

a¼1

PðD; sÞðaÞ logD! PðD; sÞðaÞ
! "

; ð2Þ

which depends on D and s and is normalised by the
maximum PE, log2ðD!Þ; namely, 0 6 PEX 6 1 for any
signal X, dimension D, or delay s. In general, there are
slight changes in the probability distribution of OPs when
analysing different consciousness states. This means
that PE values from Eq. (2) are similar and differences
can be hindered in the statistical comparisons. In order
to enhance these differences, we use the Permutation
Minimum-Entropy (PME), which is the infinit limit of the
Rényi entropy (Rényi et al., 1961; Rényi, 1965; Zanin
et al., 2012; Zunino et al., 2015), is defined by

PMEXðD; sÞ ¼
min
a
f%log2 pðaÞ½ )g

log2 D!½ )
¼ %logD! max

a
fpðaÞg

h i
: ð3Þ

Entropy Rates are the incremental variations that
entropy has when a parameter is changed. In our case,
a PME rate is given by changes in the delay
embedding, s ¼ 1; . . . ; 40, for a fixed embedding
dimension; namely, D ¼ 4 or 5. We are interested on
the entropy rates because of the low and high
frequency-bands, which imply different relevant
frequencies. Specifically, we find the PME rate of a
signal X by

DPMEX

Ds ¼ PMEXðD; sþ DsÞ % PMEXðD; sÞ
Ds ; ð4Þ

where we choose Ds ¼ 4 for most of the PME analysis (we
also explore finer values, using Ds ¼ 1; results not shown
here). In particular, we optimise s by selecting the
maximum PME for each cortical location and sleep-wake
state. Namely,

sIðDÞ ¼ s : max
s

DPMEX

Ds

# $% &
: ð5Þ

Mutual Information, IðX;YÞ, is the amount of shared
information between 2 random signals, X and Y. It is a
non-linear measure of the correlation between the
signals, found from
IðX;YÞ ¼ HðXÞ þ HðYÞ % HðX;YÞ;HðXÞ [HðYÞ] being the
marginal entropy of signal X [Y] and HðX;YÞ being their
joint entropy. In this work, we use the PME [Eq. (3)] to
quantify the entropy of a signal, so we use this entropy
to quantify a Permutation Minimum-Mutual-Information
(PMMI) between pairs of signals. Namely,

PIX;YðD; sÞ ¼ PMEXðD; sÞ þ PMEYðD; sÞ % PMEX;YðD; sÞ; ð6Þ

where PMEX;YðD; sÞ is the joint permutation minimum-
entropy at a given D and s (meaning that we are
comparing both signals after they have been encoded
into OPs).

5.1. Statistics

We present data as regular boxplots showing the median,
the 1st and 3rd quartiles, and the distribution range.
Because of the complexity metrics we analyse, we
employ non-parametric statistics. In particular we use
the Friedman test (available with the scipy.stats) to
compare the results among states (Wake-NREM-REM)
with the Siegel post hoc test applying the Benjamini-
Hochberg false discovery rates correction (available with
the scikitlearn python 3 package (https://scikit-learn.org/
stable/)). We set p < 0:05 for a result to be considered
significant.
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Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical
networks. Science 304(5679):1926–1929.

Carr MF, Karlsson MP, Frank LM (2012) Transient slow gamma
synchrony underlies hippocampal memory replay. Neuron 75
(4):700–713.

Cavelli M, Castro-Zaballa S, Mondino A, Gonzalez J, Falconi A,
Torterolo P (2017) Absence of eeg gamma coherence in a local
activated cortical state: a conserved trait of rem sleep. Transl
Brain Rhythmicity. 21132017.

Cavelli M, Rojas-Lı́bano D, Schwarzkopf N, Castro-Zaballa S,
Gonzalez J, Mondino A, Santana N, Benedetto L, Falconi A,
Torterolo P (2018) Power and coherence of cortical high-
frequency oscillations during wakefulness and sleep. Eur J
Neurosci 48(8):2728–2737.

Chase MH, Morales FR (1983) Subthreshold excitatory activity and
motoneuron discharge during REM periods of active sleep.
Science 221(4616):1195–1198.

Chase MH, Soja PJ, Morales FR (1989) Evidence that glycine
mediates the postsynaptic potentials that inhibit lumbar
motoneurons during the atonia of active sleep. J Neurosci 9
(3):743–751.

D’Andola M, Rebollo B, Casali AG, Weinert JF, Pigorini A, Villa R,
Massimini M, Sanchez-Vives MV (2018) Bistability, Causality, and
Complexity in Cortical Networks: An In Vitro Perturbational Study.
Cereb Cortex 28(7):2233–2242.

Dasilva M, Camassa A, Navarro-Guzman A, Pazienti A, Perez-
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Abstract

Neuronal interactions give rise to complex dynamics in cortical networks, often described in

terms of the diversity of activity patterns observed in a neural signal. Interestingly, the com-

plexity of spontaneous electroencephalographic signals decreases during slow-wave sleep

(SWS); however, the underlying neural mechanisms remain elusive. Here, we analyse in-

vivo recordings from neocortical and hippocampal neuronal populations in rats and show

that the complexity decrease is due to the emergence of synchronous neuronal DOWN

states. Namely, we find that DOWN states during SWS force the population activity to be

more recurrent, deterministic, and less random than during REM sleep or wakefulness,

which, in turn, leads to less complex field recordings. Importantly, when we exclude DOWN

states from the analysis, the recordings during wakefulness and sleep become indistin-

guishable: the spiking activity in all the states collapses to a common scaling. We comple-

ment these results by implementing a critical branching model of the cortex, which shows

that inducing DOWN states to only a percentage of neurons is enough to generate a

decrease in complexity that replicates SWS.

Introduction

Cognition and behaviour drastically change across the sleep-wake cycle [1]. During wakeful-
ness, animals are able to interact with their environment, but lose this ability as they fall asleep.
During sleep, there is an alternation between slow-wave sleep (SWS), associated with dimin-
ished cognitive capacities, and rapid eye movement (REM) sleep, an active state where most
dreams occur [2, 3]. The electroencephalogram (EEG) concomitantly changes along with
behavior: fast and desynchronised activity appears during wakefulness and REM sleep, while
slow quasi-synchronous patterns characterize SWS. Nevertheless, in spite of having well-docu-
mented, state-dependent EEG signatures, their underlying mechanisms remain to be fully
understood.

In the last decade, there has been a significant rise in the use of complexity metrics (which
often measure the diversity of patterns in a signal) capable of revealing hidden non-linear
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effects in electrophysiological recordings. These tools have repeatedly shown that the complex-
ity of EEG signals decreases during unconscious states, such as during sleep [4–15] or anaes-
thesia [14, 16–23]. However, these macroscopic signals have major limitations: they tend to be
contaminated by confounding variables (e.g., muscular activity or eye movements) and recov-
ering their exact neural source is often impossible. Thus, the neural patterns driving complex-
ity changes across the sleep-wake states have not been elucidated.

A possible mechanism causing the complexity reduction during sleep is the emergence of
DOWN states, defined as synchronous periods of spiking silence [24–29] which generate the
extracellular slow waves characteristic of SWS [24–31]. These states are hypothesised to disrupt
neural interactions [32], and have been shown to directly alter the complexity of evoked corti-
cal responses [33, 34]. However, no direct analysis of in-vivo neuronal populations has shown
that DOWN states reduce the complexity of spontaneous cortical activity during sleep.

Here, we analyse in-vivo recordings of neuronal populations in the neocortex and hippo-
campus, quantifying their spontaneous ensemble dynamics in terms of their phase-space
recurrences. Our analyses, along with neuronal modelling, show that DOWN states fully
account for the complexity decrease during SWS, while a common spiking regime character-
ises all sleep-wake states in the neocortex and hippocampus.

Results

We study in-vivo neuronal recordings from the neocortex and hippocampus of 15 rats cycling
through the states of wakefulness (Wake), slow-wave sleep (SWS), and rapid-eye movement
(REM) sleep (Fig 2A). We analyse’1600 neurons, corresponding to 31 independent sessions
with 51±5 neurons simultaneously recorded (details in Methods: Datasets). We use recurrence
quantification analysis (RQA) to characterise the evolution of the whole population firing
counts in each session during each sleep-wake state, extending the characterisation of a popu-
lation activity beyond a single measure (such as Hurst exponent, entropy, or fractal dimension)
or an aggregate of individual neurons. We complement the RQA with coherence and entropy
analyses of local field potentials (LFP), spike avalanches, and a critical branching model.

Recurrence analysis reduces high-dimensional dynamics to a 2D
representation

The population activity from a cortical location at any given time is a high-dimensional vari-
able detailing the system instantaneous state, i.e., the spiking activity of all neurons (Fig 1A,
left). Its evolution gives a trajectory in the N-dimensional phase-space, which has the firing
counts of each neuron as its components (Fig 1A, right). An attractor is evidenced as a mani-
fold that attracts different trajectories of the system to the same region of the phase-space; the
more convoluted (fractal) the attractor is, the higher the temporal complexity of its trajectories.
The trajectory of a cortical area is typically high-dimensional, since 50 neurons from any given
experimental session results in N = 50-dimensional phase-space. By applying Recurrence
Quantification Analysis (RQA), we reduce these dimensions to the analysis of 2-dimensional
recurrence plots (RP) (Fig 1C).

We construct a recurrence plot as follows. Let f~xÖt1Ü; ~xÖt2Ü; . . . ; ~xÖtnÜg be a trajectory,
where~xÖtiÜ is the state-vector whose components are firing counts, xk(ti), for each neuron k in
the population (k = 1, . . ., N) at time ti with i = 1, . . ., T, T being the number of 50 ms time
bins. We choose this time-bin width to match the definition of a neocortical OFF-period, i.e., a
period� 50 ms without spikes. Hence, our firing counts are integer variables that can range
from 0 up to 50 (assuming a maximum of 1 spike per ms). A recurrence plot is then defined by
a symmetric matrix whose entries are R(i, j) = 1 if k~xÖtiÜ �~xÖtjÜk < ✏, or R(i, j) = 0 otherwise,
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with i, j = 1, . . ., T and ✏> 0 defining closeness. A recurrence happens whenever the system
trajectory returns to the same region of phase-space up to ✏. We set ✏ = σp (σp being the stan-
dard deviation of the population activity during wakefulness) to guarantee a sufficiently sparse
plot but with sufficient points to carry statistical analyses. Nevertheless, our results are robust
to changes in ✏ or time-bin width (S1 Fig).

Two generic structures appear in a recurrence plot: diagonal lines, originating from peri-
odic trajectories, and vertical lines, originating from trapped (frozen) trajectories. These struc-
tures help to differentiate between periodic, random, or chaotic trajectories (corresponding
panels in Fig 1C), which can be quantified by different metrics (see RQA in Methods). We use
RQA to measure (i) Recurrence Rate (density of points), RR, (ii) Determinism (proportion of
points forming diagonal lines), DET, (iii) Laminarity (proportion of points forming vertical
lines), LAM, (iv) Trapping Time (average length of vertical lines), TT, and (v) Divergence
(inverse of the longest diagonal line, excluding the identity line), DIV.

To illustrate how the RQA metrics behave, we compute them for the examples of Fig 1C.
RR is slightly larger for the periodic system since it recurs more often into similar states than
the other examples, while the chaotic trajectory recurs more than the random example. DET
and LAM, on the other hand, are maximal for periodic and chaotic systems because all points
form vertical and diagonal structures, while these drop near zero for the random system
since recurrent times are rarely connected. Moreover, TT is larger for the periodic system
since there are no isolated recurrent times (all points form small vertical structures). TT
decreases in the chaotic system due to isolated recurrent times and lowers even further for
the random system because recurrences occur by chance and rarely form any vertical struc-
ture. Finally, DIV is the largest for the random system since no diagonal structures are
formed, while DIV plummets to near zero for the periodic system since all points form long
diagonal lines. DIV lies in-between for the chaotic system since it forms short diagonal lines.
Thus, predictability in the system trajectory is quantified by RR, DET, LAM, and TT, where
the larger [smaller] their values, the more [less] predictable. On the other hand, randomness
is quantified by DIV, where the larger [smaller] its value, the more divergent [convergent]
the trajectory.

Fig 1. Recurrence example of population activity. A Left Example of spike trains for 3 neurons (N1-N3). The continuous line on top shows the firing
counts of each spike train. Right Resultant phase-space trajectory (evolution), where the axes represent the firing counts of each neuron. For every pair of
points in the trajectory, their distance (d) is computed (the dashed lines illustrate two such distances); If the distance is less than a predefined ✏ value, a
recurrence between the time points is defined to occur. Two recurrent times are shown in red (ti,tj), while two non-recurrent times are shown in blue (tk,
tl). B Recurrence plot for the trajectory shown in panel A. Red and blue time pairs are now depicted as coordinates in the resulting map. C Example
recurrence plots from periodic, random, and chaotic trajectories. On top of the recurrence plot, we show the phase-space of the example; below we illustrate
how the RQA metrics behave for each trajectory type. RR: Recurrence Rate, DET: Determinism, LAM: Laminarity, TT: Trapping Time, DIV: Divergence.

https://doi.org/10.1371/journal.pone.0290146.g001
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The complexity of neuronal dynamics is reduced during slow-wave sleep

Fig 2A shows the LFP and spike trains of frontal cortex neurons in a session for a representa-
tive animal under each sleep-wake state. The corresponding recurrence plots for 10-second
trajectories are shown in Fig 2B. Note that SWS exhibits a denser plot than Wake or REM
sleep, implying that SWS has firing patterns recurring more often than Wake or REM sleep.
Also, SWS shows a distinctive square-shaped recurrence pattern, which points to the existence
of time windows when the trajectory of the population activity is frozen (or practically
unchanged). The RQA metrics applied to all available 10-second trajectories for all recorded
sessions confirm that frontal cortex activity (*900 neurons in total) is significantly more pre-
dictable and less random during SWS than Wake or REM sleep (Fig 2C; see statistics in S1
Table in S1 File).

Specifically, SWS has the largest RR, DET, LAM, and TT, indicating high predictability of
the neuronal activity, whereas it has the smallest DIV, suggesting that SWS is less random than
Wake or REM sleep. Noteworthy, these RQA changes during SWS correlate with the number
of recorded neurons (S2 Fig), suggesting the complexity reduction is a population-level phe-
nomena. Also note that the RQA differences across states are not due to a change of the attrac-
tor’s topology (S3 Fig). Moreover, the RQA results hold true when dividing the frontal cortex
into specific areas (Fig 2D and 2E) or when analysing the population activity from the hippo-
campus (S2 Table in S1 File). In fact, when comparing the RQA metrics among the secondary

Fig 2. Recurrence quantification analysis (RQA) of in- vivo population activity from the frontal cortex and hippocampus. A Local field potentials
(LFP) and spike-train raster plots (1s interval) for a representative rat during Wake (left), SWS (middle), and REM sleep (right). B Recurrence plots
constructed from a 10s interval of the population activity (see Methods for details). C 5 RQA metrics for the sleep-wake states; boxplots show results from
the pool of 24 sessions across 12 animals (outliers are not shown). *p< 0.001, **p< 0.0001, ***p< 0.00001 (corrected for multiple comparisons). D
Example recurrence plots for different cortical locations sleep-wake states. ACC: anterior cingulate cortex; OFC: orbito-frontal cortex; mPFC: medial
prefrontal cortex; M2: secondary motor cortex; CA1: hippocampus. E RQA metrics for the sleep-wake states in each cortical area shown in the previous
panel.

https://doi.org/10.1371/journal.pone.0290146.g002
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motor cortex (M2), medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cin-
gulate cortex (ACC) and the CA1 hippocampus region, we find no statistical differences (Krus-
kal-Wallis test across cortex: RR [p = 0.68], DET [p = 0.39], LAM [p = 0.69], TT [p = 0.21] and
DIV [p = 0.46]), suggesting that the complexity reduction in the spiking activity is conserved
across brain regions. Thus, these results demonstrate that SWS is the least complex spiking
state, consistent with previous reports of decreased EEG complexity during sleep [4–15] or
anaesthesia [14, 16–22].

Neuronal recurrences during SWS are mainly driven by DOWN states

The square-shaped recurrences appearing during SWS in Fig 2 can be generated by two possi-
ble mechanisms. Either a subset of the neurons (or even all) remains constantly active for a
period of time, or the neurons remain silent (null firing counts) corresponding to a trajectory
in the origin of the phase space. Next, we show that the latter is true and is mainly due to
DOWN states.

DOWN states are the neural substrate underlying slow-wave activity (0–4Hz) [24–26, 28,
30]. Therefore, a correlation between recurrent trajectories and DOWN states provides a phys-
iological mechanism for the loss of complexity during sleep. For the neocortex, DOWN states
can be obtained by finding OFF- periods [26, 28, 29], i.e., periods�50ms when almost all neu-
rons remain silent [26] (Fig 3A left). For the hippocampus, we obtain DOWN states by select-
ing the times when less than 10% of the recorded neurons fired since hippocampal neurons
maintain a minimal firing activity during DOWN states [35] (Fig 3A right).

The time-series of DOWN states in the neocortex match the times when the trajectory has a
recurrence (see the pink and black curves in Fig 3B bottom panel). We find a significant corre-
lation between these time-series (R = 0.77 ± 0.02, p< 10−64 for all sessions). This means that
the majority of the SWS recurrences is due to DOWN states. We observe a similar scenario in
the hippocampus (right panels in Fig 3A and 3B), where we find an even higher correlation
between the time-series of DOWN states and that of the recurrences (R = 0.84 ± 0.01,
p< 10−64 for all sessions).

Notably, SWS becomes more complex if we exclude DOWN states; namely, if we employ a
trajectory containing only the population UP states. The corresponding recurrences and met-
rics are shown in Fig 3D and 3E; note that RR, DET, LAM, TT and DIV significantly change
and become comparable to those of Wake and REM sleep (S4 Fig and Fig 2C). Overall, these
results support the hypothesis that neuronal trajectories are similar in SWS UP states to Wake
and REM sleep [36, 37].

Neocortical DOWN states explain the EEG complexity reduction during
sleep

We next investigate how the population activity results translate to the EEG and LFP signals
simultaneously recorded from the freely moving animals. To that end, we create synthetic
local field potentials (sLFP) (Fig 4) from the actual excitatory spiking activity, in which we
assume that each spike generates an exponentially decaying PSP. The motivation behind this
method is that it allows to precisely control the sources which dictate the field potential and
avoid the influence of any external variable not directly related to spiking activity (such as
EMG contamination and volume-conducted signals [38]). Since LFPs primarily reflect post-
synaptic potentials (PSPs) [39], we average the modelled PSPs over the population of neurons
at each time in order to obtain the instantaneous sLFP (Fig 4A).

We find that sLFPs have asynchronous low-amplitude activity during Wake and REM
sleep, but have synchronous activity during SWS with periodic high-amplitude waves (Fig 4B).

PLOS ONE Sleep reduces spiking complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0290146 August 17, 2023 5 / 21



These waves correspond to slow-oscillations of 0–4Hz (Fig 4C top), coherent to the LFP activ-
ity (Fig 4C bottom). Thus, our sLFP recovers the slow-wave activity oscillatory profile present
in the real LFP recordings, including a peak in the delta band particularly visible during SWS
(compare Fig 4C and S5 Fig).

We then quantify the temporal-complexity of LFPs and sLFPs by using Sample Entropy
(SE) [40], Permutation Entropy (PE) [41], and Lempel-Ziv Complexity (LZ) [42]. Fig 4D
shows that results are independent of the chosen complexity measure. The true LFP activity is
significantly less entropic during SWS than during REM or Wake (left panels in Fig 4D; S4
Table in S1 File), consistent with previous EEG and electrocorticogram (ECoG) results [4–15].
Accordingly, the sLFP exhibits similar temporal-complexity values (right panels of Fig 4D; S3
Table in S1 File), and also shows a significant decrease during SWS. Importantly, the complex-
ity reduction during SWS is not easily observed for single units: some neurons decrease while
others increase their spiking complexity (S6 Fig), suggesting that the temporal coordination
among neurons is necessary for the LFP/sLFP complexity results.

Interestingly, when constructing SWS sLFP only employing UP states (i.e., excluding
DOWN states) or actually excluding DOWN state periods from the LFP activity, we find that
the decrease in complexity during SWS is lost (Fig 4D, S3 Table in S1 File). In fact, the SWS
UP states have significantly higher levels of complexity than the SWS sLFP or LFP containing

Fig 3. Correlation between recurrent spiking activity and DOWN states in the neocortex and hippocampus during SWS. A Example of LFP (different
calibrations) and spiking activity in the neocortex (left) and hippocampus (right) exhibiting DOWN states during SWS. B Recurrence plots for the
corresponding population activity. The number of recurrences per time (sum over columns) is shown in the bottom panel along with the DOWN state
periods. C Scatter plot between RQA metrics and the average duration of the DOWN state in each recording session, the different colours depict different
individual sessions; solid lines indicate the LOWESS regression estimate taking into account all sessions. D SWS recurrence plots computed using the
whole period (DOWN + UP) or discarding the DOWN states (UP only) for the neocortex (Neo) and hippocampus (Hip). E Boxplots of the RQA metrics
for DOWN + UP vs. UP only. Neo, N = 24 sessions; Hip, = 9 sessions; *p< 0.00001.

https://doi.org/10.1371/journal.pone.0290146.g003
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both UP and DOWN states, reaching values comparable to those from Wake or REM states.
Therefore, we conclude that DOWN states are necessary for the complexity reduction
observed in field recordings since spiking periods are similar across states.

Spiking periods across states exhibit similar avalanches

Our previous results show that DOWN states disrupt population dynamics in the neocortex
and hippocampus (Figs 2–4). We next complement these results by analysing spike avalanches
to understand the factors underlying spiking complexity across sleep-wake states. Avalanches
are cascades of activity in quiescent systems [43–50], which in our case correspond to active
spiking periods within a brain region; by definition, avalanches exclude DOWN states.

Fig 5A shows a neuronal population exhibiting an avalanche, where the time bin defining
its occurrence is set as the average inter-spike interval (ISI). By definition, an avalanche starts
after a time bin without spikes and finishes when another empty time bin is reached. Two

Fig 4. Construction and analysis of synthetic local fieldpotentials (sLFP) during Wake, SWS, and REM sleep. A The sLFP is
defined as the average of the convolutions between spike trains and a decaying exponential function. B Examples of sLFP resulting
from Wake, SWS, and REM sleep population activity. C sLFP power spectra(top) and coherence between sLFP and LFP (bottom) for
the different sleep-wake states (colour coded). D Boxplots of Sample Entropy (top), Permutation Entropy (middle), and Lempel-Ziv
Complexity (bottom) of the sLFPs and LFPs in each state (N = 24 sessions). *p< 0.05, **p< 0.01, *** = p< 0.001.

https://doi.org/10.1371/journal.pone.0290146.g004
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parameters commonly characterise an avalanche: its size, i.e., the total number of spikes, and
its duration, i.e., the time interval from start to finish. The avalanche statistics for each sleep-
wake state are derived from the probability distribution of these parameters [44, 45].

Fig 5B and 5C show minimal differences between the probability distribution of avalanche
duration and size during Wake, REM sleep, or SWS in the neocortex and hippocampus,
respectively. For instance, avalanches occurring during SWS tend to be shorter due to DOWN
states. The power-law exponents for the avalanche duration (τt) and size (τ) are related by the

crackling noise relationship, tt�1

t�1
, which is a more stringent criticality statistics [45]. Consider-

ing all sleep-wake states, we get tt�1

t�1
à 1:19 (inter-quartile range, IQR = 0.33) for the neocortex

and tt�1

t�1
à 1:24 (IQR = 0.37) for the hippocampus, with no significant differences across states

(p = 0.31 and 0.68, respectively). More importantly, we find that the avalanche size and dura-
tion distributions collapse to the same scaling function resembling a power-law behaviour
characterised by the exponent 1/σνz[45] (right panels in Fig 5B and 5C). This suggests that the
spiking periods (UP states) have a common behaviour across sleep-wake states. We find that
1
snz à 1:11ÖIQR à 0:05Ü for the neocortex with no significant differences across sleep-wake

states (p = 0.21). Similarly, 1
snz à 1:20ÖIQR à 0:02Ü for the hippocampus (p = 0.09 for state

differences).
Thus, once the spiking activity is initiated, it follows a common avalanche regime irrespec-

tive of the sleep-wake state. Consequently, complexity differences in the sleep-wake states
should originate from DOWN states where no spikes occur. Noteworthy, these results restrict
the possible mathematical models which can describe cortical dynamics, since the model must
be able to reproduce DOWN states (during SWS) and the avalanches appearing for any state
during spiking activity.

Fig 5. Avalanche distributions for Wake, SWS and REM sleep. A Example of a neuronal avalanche. The average ISI is used to bin the raster plot (shaded
rectangles) and count the number of spikes per bin. B Avalanche statistics for the neocortex. Left: distribution of avalanche duration, used to estimate the τt
exponent. Middle: distribution of avalanche size, used to estimate τ. Right: avalanche size as a function of its duration, from which the 1

snz exponent is
estimated. C As in B but for hippocampal avalanches. For each state (colour coded), the mean distributions are shown in solid lines with a shaded area
depicting the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0290146.g005
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Critical branching model for the spiking activity in the cortex

Here, we show that cortical spiking patterns during wakefulness and sleep can be captured by
a critical branching model, known to exhibit universal behaviour [51], when implemented
using exponents matching our in-vivo results (see Methods). The critical branching model
consists of interacting discrete units whose internal state may be resting, spiking, or refractory.
The units evolve in time according to the excitation coming from neighbouring units (as con-
trolled by a branching parameter) as well as due to a noisy drive set by a Poisson distribution,
which can randomly make a unit fire at any given time. The branching parameter, σ, deter-
mines the probability of a spike from unit A at time t affecting unit B at time t + 1. When σ = 1,
the system is critical; the network exhibits a phase transition from a sub- critical quiescent
state for σ< 1 (activity dies out after a small transient) to a super-critical active state for σ> 1
(activity is self-sustained). The interplay between units interacting due to branching and noise
recreates a network of higher-order neurons that receives inputs from lower areas such as the
thalamus [52]. To reproduce an SWS state, we add to the branching model a periodic silencing
of the noisy drive for some (adjustable percentage of) units in order to model DOWN states.

Fig 6A shows an example of the resultant spike trains for the branching model without (left
panel) and with (right panel) the periodic silencing. These results are obtained using 50 units
(similar size to the experimental ensembles recorded) and setting the branching parameter at

Fig 6. Critical branching model for neuronal activity during Wake and SWS. A Left: Population activity (raster plot) and synthetically generated local-
field potential (sLFP, as in Fig 4) of a critical branching model with 50 interacting units. The branching parameter is set at σ = 1 (critical); an excitatory
Poisson noise drive each unit independently. Right: DOWN states are generated by periodically silencing (4Hz) the noisy drive of a percentage of units. B
Resultant recurrence plots for the data in A. C Average (± standard deviation) results from 100 simulations using different network connectivity and initial
conditions. Each simulation consisted of 106 iterations in time. Top left: RQA metrics for the original model (i.e., without silencing) as function of σ; shaded
[unshaded] area shows the sub-critical [super-critical] phase. Remaining panels: differences (Δ) between RQA metrics of the original model and the model
with periodical silencing as a function of the percentage of neurons having their noise drive silenced (referred to as % of neurons in DOWN state). The
horizontal dashed lines show the difference between the actual SWS RQA metrics (Fig 2C) and those of the critical branching model.

https://doi.org/10.1371/journal.pone.0290146.g006
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the critical point σ = 1. The respective recurrence plots are shown in Fig 6B. For the modified
branching model, we periodically silence the noise input arriving at a given set of units during
a 250ms interval (similar to Ref. [44]) and call it Critical + DOWN. This external silencing is
enough to synchronize the network to a state of inactivity (Fig 6A), trapping the population
trajectory into recurrent square-like patterns (Fig 6B), similar to the experimental results from
the neocortex and hippocampus (Fig 2).

We use RQA to quantify the differences between the original and modified branching mod-
els. The top left panel of Fig 6C displays RQA metrics for the branching model with 50 units as
a function of σ, where the shaded area marks the sub-critical phase. For σ = 1, the model has
RR’ 0.02, DET’ 0.2, LAM’ 0.4, DIV’ 0.3, and TT’ 2.5, which are comparable to the
average RQA values of Fig 2C during Wake and REM sleep. The remaining panels show the
change in the RQA metrics when the periodic noise-silencing is added to the model—changes
are shown as a function of the percentage of units having their noise periodically silenced. The
horizontal dashed lines show the difference between the SWS RQA metrics and those of the
critical branching model. In other words, this relative SWS metric is found by taking the value
obtained from the experimental average RQA metric shown in Fig 2C and subtracting the crit-
ical branching model RQA metric from the top left panel in Fig 6C. Using this, we can find the
percentage of units with periodically-silenced noise that are needed to reproduce the experi-
mental values found for SWS.

We find that as the number of units with a DOWN state increases (i.e., number of neurons
with periodical silencing), the RQA metrics cross those observed during SWS from the in-vivo
recordings (horizontal dashed line) (Fig 2C). When the model is at the critical point (σ = 1), a
periodic noise-silencing to 40–60% of the units is enough to reproduce the RQA values during
SWS (intersection of the Δ RQA metrics with the corresponding horizontal dashed lines), with
the exception of RR, which requires 80%. On the other hand, both the sub- (σ = 0.2) and
super-critical (σ = 1.8) models need a considerably larger percentage of silencing (80–100%) to
reproduce the observed SWS values. Therefore, these results suggest that: i) the branching
model needs to be close to σ = 1 (criticality) to reproduce the recurrent properties observed
during Wake or REM sleep, and ii) that the inclusion of a periodic silencing of the noisy drive
to 40–60% of the units reproduces the recurrent properties observed during SWS.

Discussion

Our main findings can be summarised in the following points. The complexity of neuronal
dynamics in rats is reduced during SWS owing to spiking patterns repeating more often (i.e.,
greater recurrences). This spike pattern repetition occurs during DOWN states, thus bridging
the decrease in complexity observed in the cellular and field recording levels (such as local
field potentials or EEG). Moreover, we reveal a common behaviour in the population spike
avalanches appearing across the sleep-wake states (which by definition exclude DOWN states).
This scaling makes the sleep-wake states indistinguishable from each other, and demonstrates
that the DOWN periods are responsible for the complexity reduction which characterises
SWS. Finally, we reproduce these experimental results by numerical experiments employing a
critical branching model, suggesting that criticality may favor transitions between states.

Recurrence quantification analysis improves the study of cortical
population dynamics

Our study is based on the analysis of the spiking activity from in- vivo population recordings
of the neocortex and hippocampus. To that end, we employ RQA, which leads to clear results
and interpretations (see Fig 1), is robust to parameter tuning (e.g., changing the tolerance
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parameter or time bin width; S1 Fig), and is computationally efficient (e.g., 10s windows are
enough to distinguish states). Importantly, RQA allows analysing a population of neurons
using various complementing non-linear metrics, such as randomness, entropy, or fractal
dimension. This extends the typical characterisation of neuronal dynamics based on single
neurons and single metrics (such as the basal firing rate, coefficient of variation, or
rhythmicity).

We also compared our results with those provided by topological data analyses (S3 Fig). In
particular, persistent homology analyses the topology of a high-dimensional cloud of points
(manifold) in phase space [21, 53]. Interestingly, by using this analysis we find that the low-
dimensional topology of the neocortical phase-space attractor appears to remain unchanged
throughout the sleep-wake cycle (S3 Fig). This contrasts with results from the anterior nucleus
of the thalamus which exhibits a ring-like structure during Wake and REM sleep, but not dur-
ing SWS [53]. Thus, our observations suggest that the dynamical differences across states are
still contained within the same manifold.

Population DOWN states reduce the complexity of cortical activity during
SWS

In contrast to the unchanged attractor topology (S3 Fig), our results show that the evolution of
neocortical and hippocampal spiking activity is significantly altered during SWS. We show
that the cause for this alteration is (mainly) due to the appearance of synchronous DOWN
states that disrupt the population spiking patterns and force them into a recurrent, determin-
istic state. We find a strong correlation between the duration of DOWN states and the number
of recurrences in the population activity (Fig 3B and 3C). Then, we show that the decrease in
complexity is lost once we discard the DOWN states from the SWS analysis (Fig 3D and 3E),
making SWS spiking-patterns similar to those from REM sleep or wakefulness.

DOWN states appear to disrupt neuronal patterns in neocortical and hippocampal areas
similarly, although both regions have different mechanisms for the generation of DOWN
states [25, 35]. During SWS, hippocampal neurons oscillate between long, quiescent, stable
periods (without clear membrane hyperpolarization [25]) and bursts of spiking activity (dur-
ing sharp-wave ripples). In contrast, neocortical neurons oscillate between stable periods of
spiking activity and unstable periods of quiescence (associated with hyperpolarization [25]). In
spite of these differences, both populations have spiking patterns that are consistent with excit-
able UP/DOWN states [35].

For individual neocortical neurons, the complexity of firing patterns decreases during SWS
[6]. In principle, this decrease could be expected due to the DOWN states, as their appearance
causes neurons to remain silent during synchronous intervals. Here, however, when we ana-
lyse the firing patterns of individual neurons independently, we find that a considerable num-
ber maintain complex patterns even during SWS (S6 Fig). This can occur because either there
are DOWN state active neurons, as previously shown in [54], or because the complexity reduc-
tion is a collective phenomenon that can only be studied at the population level. We support
this latter argument by showing that the difference in complexity between Wake or REM sleep
and SWS increases with the number of analyzed neurons (S2 Fig).

Measuring complexity from synthetic and experimental field recordings

The complex nature of brain recordings—and the decrease in complexity during unconscious
states—has been reported using classical neuroscience approaches [55, 56]. For instance, the
EEG power spectrum shows a power-law decay, f−α, for a broad range of frequencies, referred
to as 1/f noise. Interestingly, the exponent α becomes greater than 1 (a more pronounced
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decay) during sleep and anaesthesia [55, 56] since DOWN states and slow oscillations promote
the appearance of low-frequency power, leading to a steeper spectral decay.

These observations match our sLFP analyses, which recover both the slow oscillations pres-
ent in true LFPs during sleep (Fig 4C), and their entropy variations during the sleep-wake
cycle (Fig 4C)—independently of the chosen entropy metric (i.e., permutation entropy [41],
sample entropy [40], and Lempel-Ziv complexity [42]). Notably, the decrease in complexity
during SWS is lost when we eliminate the DOWN states from the LFPs and sLFPs (Fig 4E),
implying that DOWN states are responsible for reducing the complexity of field recordings
during SWS. Consistent with our results, the slow-wave activity (0.1–4Hz) has been associated
with the loss of complex neuronal interactions during sleep [32, 57, 58] and is caused by syn-
chronous neuronal DOWN states [24–31]. Of note, the similarities in slow-wave activity [25,
28, 30, 31], and neural complexity [4, 5, 9, 15] between rodents and humans suggest that
related mechanisms could also act in the latter during sleep.

It should be noted that estimating neural complexity directly from field recordings might
lead to spurious results since there are major differences between the exponent variations in
ECoGs and LFPs. For instance, we also find a f −α behaviour in the power spectra of LFPs and
ECoGs (S5 Fig) and get similar decay exponents during SWS and REM (αsleep’ 2). Neverthe-
less, for ECoGs, we find a significant difference in exponent values from Wake (when αwake’
1), while, for LFPs, αsws’ 2 as during sleep. Thus, this could point to the presence of extra-
neural sources during Wake that alter the ECoG power spectrum decay but do not influence
the LFP recording level. Therefore, we argue that complementing field recordings with spiking
activity is necessary to unveil and study genuine neural complexity.

Spiking periods show similar dynamics across states

An important result verified through complementing approaches (Figs 3–5) is that while spik-
ing activity is occurring, SWS behaves similar to Wake or REM sleep. Thus, we suggest near-
critical dynamics might be a necessary (but not sufficient) condition for neural complexity.
We show that neuronal avalanches of length t contain an average of g(t) spikes, where g is a
scaling function independent of the sleep-wake state. This means that avalanches from the
frontal cortex and hippocampus of rats across states follow a close behaviour that resembles a
power law (Fig 5B and 5C), similar to previous results in the visual cortex [44]. We find that

the exponents 1
snz and tt�1

t�1
are relatively close in both areas (which follows the crackling noise

relationship, claimed as a more stringent criticality test [45]). Specifically, for the neocortex,

we have 1
snz à 1:11 and tt�1

t�1
à 1:19, and for the hippocampus, we have 1

snz à 1:20 and
tt�1

t�1
à 1:24. These similar exponents are expected if the system is close to a critical point and

have been reported for intermediate levels of spiking variability in anaesthetized rats and freely
behaving mice [45]. Therefore, our results support the hypothesis that complex cortical activity
arises from near-critical dynamics [43–47, 49, 50, 59–62].

DOWN states are sufficient to reproduce the complexity reduction in a
critical model of the cortex

To complement our in-vivo results, we show that introducing DOWN states into a critical
branching model is sufficient to generate an SWS-like state (Fig 6A and 6B). We achieve this
by periodically silencing the noisy drive to a given percentage of units, thus mimicking the syn-
aptic input reduction to pyramidal cells during SWS in the neocortex [63]. This reduction is
likely caused by a pre-synaptic GABAb inhibition of the excitatory inputs arriving at the apical
dendrites of principal cells [64], coordinated by the thalamus [65]. In contrast to neocortical
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mechanisms, UP/DOWN states in the hippocampus are related to sharp-wave ripple genera-
tion, where low-spiking DOWN states predominate, and UP-states are initiated by recurrent
excitation from CA3 neurons [66]. Therefore, in the hippocampus, the periodic silencing
reproduces DOWN states occurring between sharp-wave ripples.

In our model, there is no need to silence the input to 100% of the neurons to reproduce the
experimental results, consistent with the lack of hippocampal OFF-periods and minimal firing
levels during DOWN states [35]. Additionally, we note that a similar strategy has been
employed to model slow-wave oscillations during anaesthesia [44]. Moreover, we find that
being near the critical point (Fig 6C) allows for more flexible transitions to the SWS-like state
with respect to the sub- or super-critical model. Specifically, silencing the input to 40–60% cre-
ates a decrease in complexity similar to that observed experimentally. Notice further that,
despite the subcritical model requiring less silenced neurons to achieve RR levels, it fails to cap-
ture LAM and DIV SWS values. These results further add to the idea of criticality in the brain,
which would explain increased complexity [67], information processing and transmission
[43], and dynamical range [60].

Conclusion

Complexity has been suggested as a necessary condition for cognition [14, 68]. Accordingly, it
has been widely reported that during SWS the complexity of brain dynamics decreases [4–14].
However, the reason why brain signals are complex when animals are awake or why this com-
plexity is lost during unconscious remains controversial [69]. In the present work, we conclude
that DOWN states fully account for the complexity decrease during SWS, while a common
underlying spiking regime describes all sleep-wake states in the neocortex and hippocampus.

Materials and methods

Datasets

Datasets We analyse 2 datasets: Watson et al. (neocortex, available at CRCNS.org/fcx) [70];
and Grosmark and Buzsaki (hippocampus, available at CRCNS.org/hc) [71]. The reader is
referred to the original publications for details about experimental methods. We provide a
summary below.

For the neocortex dataset [70], silicon probes were implanted in frontal cortical areas of 11
male Long Evans rats. Recording sites included medial prefrontal cortex (mPFC), anterior cin-
gulate cortex (ACC), pre-motor cortex/M2, and orbitofrontal cortex (OFC). Recordings took
place during light hours in the home cage (25 sessions, mean ± SD duration of 4.8 ± 2.2 h). We
note that we exclude BWRat19_032413 from the analysis since it did not contain REM sleep.
Data was sampled at 20 kHz. To extract LFPs, recordings were low-pass filtered and re-sam-
pled at 1.25 kHz. To extract spikes, data was high-pass filtered at 800 Hz, and then threshold
crossings were detected. Spike sorting was accomplished by means of the Klusta-Kwik soft-
ware. Sleep-wake states were identified by means electrophysiological and EMG analyses [70].
OFF periods were extracted as periods of population silence lasting at least 50ms and no more
than 1250ms. Conversely, ON periods consisted of periods of population firing between OFF
periods with at least 10 total spikes and lasting 200–4000ms.

For the hippocampus dataset [72], 7 silicon probes were implanted in the dorsal CA1 of 4
male Long Evans rats. LFP and spikes were extracted the same way as in the neocortex dataset;
similar criteria were employed to identify the sleep-wake states. DOWN [UP] states were iden-
tified during SWS selecting the times when less [more] than 10% of neurons fired.
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Recurrence quantification analysis

Prior to analyse the recurrences of the neuronal population [73–75], we bin the spike train of
each neuron using 50ms non-overlapping spike count windows. The dynamics of the neuronal
population is then described by the evolving firing counts of all neurons, which defines a tra-
jectory (with a time resolution of 50ms) in the population phase space (that has N dimensions
for N neurons).

A recurrence plot of the evolving firing counts is defined by the symmetric matrix

RÖi; jÜ à 1; if k~xÖtiÜ �~xÖtjÜk  ✏;

RÖi; jÜ à 0; otherwise;

(

Ö1Ü

where~xÖtiÜ [~xÖtjÜ] is the phase-space vector containing the firing counts of all neurons at the

time bin ti [tj], with i = 1, . . ., T (T being the number of 50ms bins that are available from the
spike-train signals, e.g., T = 200 when using 10s windows) and ✏> 0 is the tolerance parameter
defining closeness. We set ✏ = σP, where σP is the standard deviation (across time) of the
summed firing counts (across neurons) during wakefulness. R(i, j) = 1 corresponds to having
the trajectory of the neuronal population at time ti returning to the same region (up to ✏) of
phase space that it was at time tj; that is, a recurrence happens after ti − tj.

To quantify the patterns arising from recurrences, we employ common measures from
Recurrence Quantification Analysis (RQA) [73–75]. The metrics we use are: recurrence rate
(RR), determinism (DET), laminarity (LAM), trapping time (TT) and divergence (DIV),
which are defined by

RR à 1

N2

XN

i;jà1

Ri;j; DET à
PN

làlmin
lPÖlÜ

PN
là1 lPÖlÜ

; LAM à
PN

vàvmin
vPÖvÜ

PN
và1 vPÖvÜ

;

TT à
PN

vàvmin
vPÖvÜ

PN
vàvmin

PÖvÜ
; DIV à 1

Lmax
;

where P(l)[P(v)] indicates the probability of finding a diagonal [vertical] line of length l[v], and
Lmax indicates the longest diagonal line excluding the identity line.

Synthetic LFPs and field complexity measures

We construct synthetic Local Field Potentials (sLFPs) by averaging the convolutions between
spike counts in 80ms non-overlapping bins of each excitatory neuron and an exponentially
decreasing kernel. Namely, Cn(t) = Sn(t) ? exp(−t/τ), where Sn(t) is the n-th neuron spike
count time series, τ = 24ms is the characteristic time-scale of the kernel (typical mEPSP time
for pyramidal neurons in the frontal cortex [76]), and ? the convolution operator.

The resultant sLFP is then obtained from

sLFPÖtÜ à 1

N
XN

nà1

CnÖtÜ; Ö2Ü

where N is the number of simultaneously recorded neurons.
For the frequency analysis, we compute the power spectrum of the sLFP using Welch’s algo-

rithm. We apply the signal.welch scipy python 3 function (scipy.org), with a 1s moving
Hanning window (without overlap), and a 1Hz frequency resolution. For computing the
sLFP-LFP coherence, we first downsample the LFP recordings to 125Hz and average them
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across channels; we then employ the signal.coherence scipy function, using the same
parameters as the power spectrum. We note that the 80ms spike count bin equals a 125 Hz
sampling frequency.

For measuring sLFP and LFP complexity, we use Permutation Entropy (PE) [41], Sample
Entropy (SE) [40], and Lempel-Ziv (LZ) [42] Complexity, implemented through the
antroPy python 3 package (github/antropy). Prior to computing these measures, we also
downsample the LFP recordings to 125Hz and average them across channels.

PE [41] requires dividing the sLFP or the average LFP signal, {x(t), t = 1, . . ., T}, into b(T −
D)/Dc non-overlapping vectors of D data points, with D⌧ T (shorter than the time-series
length). Then, each vector is classified as a symbol α according to the number of permutations
needed to order its D elements. We employ τ = 5, where τ is the distance between consecutive
time-stamps inside each vector containing D = 3 time points. Finally, the PE [41] is the Shan-
non entropy [77] of the resultant symbolic sequence; that is, H = −∑α p(α) log [p(α)], where p
(α) is the probability of finding symbol α in the signal.

Similar to PE, SE [40] consists of dividing a time-series into a series of D-sized vectors

(~yDÖiÜ à fxÖtiÜ; xÖtiá1Ü; . . . ; xÖtiáD�1Üg) and is defined as SE à �log A
B

� �
, where A and B are,

respectively, the number of times that dâ~yDá1ÖiÜ; ~yDá1ÖjÜä < r and dâ~yDÖiÜ; ~yDÖjÜä < r for all i, j
vector pairs, and d is the Chebyshev distance and r> 0 is a tolerance parameter (0.1 * SD of
the signal). In our case D = 3, and we downsample the signals by a factor of 5 in order to
match τ from PE.

LZ [42] complexity is estimated by the LZ-76 algorithm. We start by creating a binary
sequence from the mean value of the sLFP or the average LFP recording—all points larger
than the signal mean are converted to 1, and 0 otherwise. Then, we count the number of differ-
ent binary sub-strings from beginning to end, #substrings. The LZ complexity is given by LZw
= (#substrings)/(w/ log(w)), where w is the length of the binary sequence.

Neuronal avalanches

We quantify neuronal avalanches following previous studies [44, 45]. First, population activity
is binned employing the average inter-spike interval. Then, we measure the time (duration)
and number (size) of spikes between one empty bin (0 spikes) to the following empty bin. We
use the powerlaw (pypi.org/powerlaw) python 3 package to construct the probability distri-
butions and obtain their exponents: τt and τ. We also compute the average number of spikes as
a function of the avalanche duration, and obtain the exponent 1

nsz by means of an ordinary least

square fit on the log-log scale distribution.

Critical branching model

The critical branching model consists of 50 interacting units randomly connected in an Erdös-
Rényi topology with a 0.03 attachment probability (i.e., each pair of units has a 0.03 probability
of having a link). The time step was set as 1ms. Each unit has 3 possible states: resting, firing or
refractory. The transition between resting and firing can either occur from the excitation com-
ing from a connected neuron firing in the preceding time, or by the intrinsic Poisson noise
that each neuron receives independently. The excitatory Poisson noisy drive is set by generat-
ing a random matrix whose values come from a [0, 1] uniform distribution, and then setting
for each entry a spike if the value is less than 1 − e−λ (λ = 0.014). We periodically silenced the
Poisson noise for 250ms at a 4Hz frequency to create a SWS-like state. Once a neuron fires, it
goes to the refractory state and it cannot be excited again. After one step in the refractory state,
the neuron goes to the resting state and becomes excitable again. The propagation of spikes is
controlled by the branching parameter σ, which regulates the overall excitability of the system.
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For instance, if neuron i fires, the probability that a connected unit fires is defined as Pprop = σ/
hkji, where hkji is the average node degree across all units j.

Statistics

We present data as boxplots showing the median, the 1st and 3rd quartiles, and the whiskers
corresponding to 1.5 times the inter-quartile range. Because of the non-Gaussian distributions
of the complexity metrics, we employ non-parametric statistics. We use the Friedman test
available with the scipy.stats from python 3 package to compare the results among
states, i.e., Wake-SWS-REM (Wake-SWS-SWSup-REM, Fig 4D), with the Siegel post-hoc test
applying the Benjamini-Hochberg false discovery rate correction available with the
scikitlearn (scikit-learn.org). We set p< 0.05 for a result to be considered significant. In
addition to p-values, we also report Cohen’s d, which quantifies the magnitude of a result in
terms of a standardised difference between conditions; an effect size is considered to be large if
Cohen’s d is> 0.8. For the power spectra and avalanche results, we present the data as the
mean with the 95% confidence interval (obtained through bootstrap sampling). For the corre-
lation analysis, we employ LOWESS regression to fit the best estimate to the scatter plot by
means of the regplot python 3 function available at seaborn.pydata.org. As LOWESS
regression has no associated p value, we employ a linear regression for each session and con-
sider the result as significant only if p< 0.05 for all sessions. Additionally, to correlate the
DOWN states to the recurrence sum, we employ the point-biserial correlation
pointbiserialr function available at scipy.org.

Supporting information

S1 Fig. RQA differences among states are robust to parameter choice. A RQA metrics for
different tolerance levels ✏ defining recurrence in phase space. We vary ✏ from 0 std to 4 std of
the population firing counts. Setting ✏ to 0 means that a recurrence occurs between two times
for the exact same neuronal firing pattern. The time bin is kept fix at 50 ms. B RQA metrics for
different time binning of the population activity. Time bins are changed from 20 ms to 200 ms
in order to define the firing counts for each neuron. The ✏ is kept fix at 1 std. The mean and its
corresponding 95% confidence intervals are shown for each plot.
(TIF)

S2 Fig. RQA differences between states correlate with the number of neurons recorded.
Absolute RQA differences between states as a function of the number of simultaneously
recorded neurons. Each dot shows a recording session while the solid line the linear regression
estimate with its 95% confidence interval. A shows the SWS-Wake difference, while B the
SWS-REM difference.
(TIF)

S3 Fig. Persistent Homology cannot distinguish the sleep-wake states in the neocortex.
Top panels: Point clouds obtained after dimensionality reduction. A representative animal is
shown during Wake, SWS and REM sleep. Bottom panels: Betti 0 (HO) and Betti 1 (H1) bar-
codes for the same animal shown in the top panel. The length of each bar shows the level of
persistence of each Betti 0 and 1 component.
(TIF)

S4 Fig. UP state recurrences are similar to Wake or REM sleep. A Recurrence plots con-
structed from a 10s interval of the population activity using. B 5 RQA metrics for the sleep-
wake states; boxplots show results from the pool of 24 sessions across 12 animals (outliers are
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not shown).
(TIF)

S5 Fig. Power spectrum slope differs among states. A LFP [ECoG] recordings coming from
the frontal cortex [M1 cortex] during the states of Wake, SWS and REM sleep. The mean and
its corresponding 95% confidence intervals are shown for each plot. B Power spectrum expo-
nents calculated through ordinary least-squares fit on a log-log scale (OLS) or through the
FOOOF parametrized spectra (FOOOF) [78] which only includes the aperiodic component.
(TIF)

S6 Fig. Single neurons deviate from the ensemble behaviour. Lempel-Ziv Complexity of sin-
gle neuron firing pattern between Wake and SWS. Each bar shows the total number of neu-
rons or sessions whose temporal complexity decreased or increased during sleep. Left: LFP
recordings. Middle: sLFP recordings- Right: Single unit recordings.
(TIF)

S1 Text. Supplementary methods [9, 21, 53].
(PDF)

S1 File.
(ZIP)
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Resources: Adriano B. L. Tort.

Software: Joaquı́n González.
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Abstract

Understanding brain activity across multiple scales is essential for unraveling the
complexities of neural function. From the macroscopic to the microscopic level, the brain
exhibits diverse dynamics, shaped by billions of neurons and their intricate synaptic
connections. However, navigating across these scales presents significant challenges due to
technical and conceptual limitations. Complexity analysis provides a promising framework to
address these challenges, offering insights into how neural activity spans across scales and
how alterations, such as those induced by drugs, impact brain function. This article explores
the use of complexity analysis to study brain activity, emphasizing its role in navigating
neural scales and elucidating the intricate relationship between microscopic neuronal
dynamics and macroscopic brain function. Through this perspective, we aim to foster a
deeper understanding of brain complexity and its implications for neuroscience research.

Keywords: EEG, LFP, sleep, REM, ibogaine, urethane, entropy

Introduction

A multitude of scales characterizes brain activity (Buzsáki, 2004; He and Raichle, 2009;
Lewis et al., 2024, 2015). The brain comprises billions of neurons, each with thousands of
synaptic connections, forming a vast and interconnected network (Binzegger et al., 2004; He
and Raichle, 2009; Sporns et al., 2005). As a result, brain activity encompasses a myriad of
scales ranging from the macroscopic to the microscopic (Fig. 1A). At the macroscopic level,



the activity of the different brain areas can be studied through the lens of functional magnetic
resonance imaging (fMRI) (He and Raichle, 2009; Ogawa et al., 1990) or
electroencephalography (EEG) (Berger, 1929; Biasiucci et al., 2019), capturing the collective
dynamics of large populations of neurons. At the mesoscale level, we encounter neuronal
circuits, where diverse groups of neurons give rise to intricate networks that allow specific
computations to occur (Buzsáki et al., 2012; Buzsáki and Wang, 2012; Douglas and Martin,
2004; Gonzalez et al., 2023; Luo, 2021). These networks are usually studied through local
field potentials (LFP) (Herreras, 2016) and calcium imaging (Tian et al., 2009). Finally, at the
microscopic scale, the firing patterns of individual neurons can be studied through
patch-clamp recordings (Sakmann and Neher, 1984) or multi-electrode arrays (Jun et al.,
2017). These techniques allow us to study how the precise timing and frequency of the spike
trains encodes the basic information employed for diverse computations across scales.

Navigating across the neural scales is a hard problem (Bohara et al., 2018; Gao and
Ganguli, 2015; Huang et al., 2021; Munn et al., 2023; Paninski and Cunningham, 2018;
Scholtens and van den Heuvel, 2018; Sejnowski et al., 2014; Williamson et al., 2019). The
difficulties arise from both technical and conceptual limitations, hindering our ability to
connect observations across different levels of analysis. While whole-brain imaging
modalities like fMRI offer excellent spatial resolution, they often lack the temporal resolution
necessary to capture the rapid dynamics of individual neurons firing. Conversely,
electrophysiological methods excel in recording the millisecond-scale temporal dynamics of
neuronal activity but are constrained by their limited spatial coverage, typically focusing on
small populations of neurons or even single cells. Noteworthy, novel optical methods, such
as calcium or voltage imaging, promise to offer both high spatial and temporal resolution
(Abdelfattah et al., 2019; Grinvald and Hildesheim, 2004; Stringer et al., 2019a, 2019b), but
these methods are still not as widely employed in research and clinical context as the
abovementioned ones.

Moreover, the brain operates through a hierarchical organization of interconnected circuits,
where information is processed and integrated across multiple levels (Friston, 2005; Kiebel
et al., 2008). Therefore, to fully understand the brain, one needs to know how changes in
activity at the level of individual neurons translates into emergent phenomena at the level of
neural circuits, and whole-brain dynamics. Furthermore, the dynamic nature of brain activity
adds another layer of complexity. Neural activity is highly context-dependent, influenced by
factors such as behavioral state, sensory input, and neuromodulatory signals (Adamantidis
et al., 2007; Lee and Dan, 2012; Nir and de Lecea, 2023; Steinmetz et al., 2019; Stringer et
al., 2019a, 2019b). Integrating these dynamic factors across scales presents a significant
challenge, as the relationship between neural activity and behavior can be nonlinear and
multifaceted.

In this article, we will offer a perspective on how the analysis of neural complexity offers a
novel approach to studying brain activity across different scales. The text will be organized
as follows: 1) We provide an overview of brain activity at different scales.
2) We demonstrate how the analysis of neural complexity enables navigation across these
scales. 3) We present an example of how psychedelic and anesthetic drugs affect neural
complexity. 4) We provide a proof-of-concept illustrating how changes at the microscopic
scale can impact the macroscopic scale.



Main text

Brain patterns occur simultaneously at different temporal and spatial scales

Neural oscillations span a wide range of frequencies (Fig. 1B). Brain rhythms, observed for
instance through ECoG (electrocorticography) and LFP recordings, span from slow delta
waves (0.5-4 Hz), prominent during deep Non-REM sleep or slow wave sleep (SWS)
(Massimini et al., 2004), to faster gamma oscillations (30-150 Hz), associated during
wakefulness with sensory processing and cognitive tasks (Buzsáki and Draguhn, 2004;
Buzsáki and Wang, 2012; Fernández-Ruiz et al., 2021; Gonzalez et al., 2023; Tort et al.,
2009). Notably, these frequency bands follow a scale-free power-law P(f) = f-β, with an
exponent (β) close to 1 (commonly referred as pink noise or 1/f decay) (Donoghue et al.,
2020; González et al., 2023; Lendner et al., 2020; Miller et al., 2009). Note that the
power-law behavior can be evidenced and quantified by plotting the power spectrum on a
log-log scale and fitting a linear model to the data. This ~ 1/f decay is characteristic of a
heavy-tail distribution, i.e., despite the contribution of the different bands decreasing with the
frequency, high-frequency activity still contributes significantly to the field signal. Moreover, it
is important to point out that frequency ranges (which delimit the frequency bands) increase
as we move from the low to the high end of the spectrum (Buzsáki and Draguhn, 2004;
González et al., 2020; Mondino et al., 2020), making the contribution of each band more
similar in the overall recorded signal.



Figure 1. Different neural scales characterize brain activity. A Schematic representation of the
different brain scales, from the macroscopic scale (the brain as an organ) to the mesoscopic (neural
circuits in different brain areas) and to the microscopic (individual neurons). The brain image was
obtained from https://neuroscience-graphicdesign.com/, the neural circuit was reproduced from (Stern
et al., 2018), and the neuron was taken from Freepik.com. B LFP [ECoG] power spectrum from the
frontal cortex [M1 cortex] during the states of Wake, SWS and REM sleep. The mean and its
corresponding 95% confidence intervals are shown for each plot. C Example of a neuronal avalanche.
The average inter-spike interval ISI is used to bin the raster plot (shaded rectangles), and the number
of spikes per bin was counted. D Avalanche statistics for the neocortex (top) and hippocampus
(bottom). Left: Distribution of avalanche duration. Middle: distribution of avalanche size. Right:
avalanche size as a function of its duration. For each state (color coded), the mean distributions are
shown in solid lines with a shaded area depicting the 95% confidence interval. Modified from
(González et al., 2023).

Spiking activity in the brain also spans a wide temporal range (Fig. 1C). An example of this
phenomena are neural avalanches, which describe spontaneous bursts of activity that
propagate through neural networks, akin to the cascading effect of falling snowflakes in an
avalanche (Beggs and Plenz, 2003; Bellay et al., 2015; Ribeiro et al., 2010). A neuronal
avalanche starts after a time bin without spikes and finishes when another empty time bin is
reached; these avalanches can occur at various temporal scales, from milliseconds to
seconds (Fig. 1D), and involve the synchronized firing of large ensembles of neurons.
Notably, avalanches exhibit scale-invariant properties, meaning that their size and duration
distributions also behave as power-laws (Fig. 1D). Altogether, this scale-free behavior in
oscillatory and spiking activity suggests that the brain operates near a critical point (Chialvo,
2010; Fontenele et al., 2019; Priesemann et al., 2014, 2013), where small perturbations can
trigger large-scale cascades of activity, facilitating efficient information processing and
integration.

Navigating the cortical scales by studying neural complexity

The previous section showed how brain activity (oscillations and spikes) exhibits a wide
temporal arrangement and can be described by power-laws. This type of scaling often
emerges in complex systems (Barabasi and Albert, 1999). Therefore, different tools have
been devised over the decades to directly quantify the complexity of a system (Bandt and
Pompe, 2002; Casali et al., 2013; Massimini et al., 2005; Tononi et al., 1994). In this section,
we are going to show that by measuring neural complexity, it is possible to distinguish brain
states across different recording scales.

Defining neural complexity can be a daunting challenge. Measuring it, on the other hand,
often boils down to computing an entropy measure (e.g., permutation entropy, sample
entropy, etc.) on a given brain activity time-series (Fig. 2). For instance, permutation entropy
works by first converting the original time series into a sequence of ordinal patterns based on
the relative ordering of data points within a defined window (Bandt and Pompe, 2002). Then,
it calculates the probability distribution of these ordinal patterns. The Shannon entropy is
then computed from this probability distribution, measuring the average uncertainty or
randomness in the sequence of ordinal patterns. A higher permutation entropy value
indicates greater complexity or irregularity in the time series, whereas a lower value
suggests more regular and predictable behavior. Note that other metrics can also be applied



to a symbolic time-series to obtain complexity estimates, for instance, Lempel-Ziv, which
measures data compressibility and often yields similar results to entropy-based measures
(González et al., 2023; Lempel and Ziv, 1976; Mateos et al., 2020; Pascovich et al., 2022)

Figure 2. Measuring neural complexity. Top: The left panel shows an ECoG recording during
wakefulness in a freely behaving rat. 5 seconds are shown; each trace corresponds to one cortical
location. The middle panel exhibits the different possible ordinal patterns that can be obtained
employing an embedding dimension = 3. That is all possible relative orderings of a single ECoG
recording within a 3-point window. Thus, one transforms a continuous signal into a discrete sequence
of ordinal patterns. The right panel shows the distribution of each ordinal pattern in a whole six-hour
recording. Each color shows a different sleep state. Note that the purely increasing (1) or decreasing
(6) ordinal patterns are the most common ones. The Shannon entropy is then computed from the
ordinal pattern distribution. Modified from (González et al., 2019). Bottom: This panel shows how to
obtain a synthetic LFP (sLFP). The sLFP is defined as the average of the convolutions between spike
trains and a decaying exponential function. To the right we show examples of sLFP during Wake,
SWS, and REM sleep population activity. The figures were modified from (González et al., 2023).

It is worth mentioning that most of these complexity metrics were developed for analyzing
continuous 1-dimensional time-series. However, when dealing with spiking recordings from a
neural population, we can transform the discrete, high-dimensional recordings into a
1-dimensional signal (as illustrated in the bottom panel of Figure 2). This transformation can
be achieved by convolving the spikes from each neuron with an exponentially decaying
kernel, mimicking a postsynaptic potential triggered by each spike. Subsequently, the
convolved spikes can be averaged over the population of neurons for each time point,
resulting in a synthetic 1-dimensional local field potential (sLFP) suitable for neural
complexity analysis. An advantage of this approach is its ability to regulate the sources
influencing the field potential, thus mitigating the impact of external variables unrelated to
spiking activity, such as EMG contamination and volume-conducted signals (Buzsáki et al.,
2012; Torres et al., 2019).



Having defined a way to measure neural complexity in field and spike recordings (Fig. 2), we
can now show that this analysis bridges the different neural scales. To this end we compared
ECoG (electrocorticography, also referred to as intracranial EEGs), LFPs and sLFPs
recordings from frontal areas in freely behaving rats. By focusing on the low-frequency
bands (filtering all signals between below 13 Hz), our results suggest that neural complexity
differences remains relatively stable within each brain state, regardless of the scale at which
it is analyzed (Fig. 3A). In other words, we found that the neural complexity differences
across states were robustly maintained in all three recording scales. This result suggests
that the intricacy of neural dynamics and its changes across the sleep-wake cycle are
preserved across various levels of neuronal organization, from individual ensembles to
broader cortical networks.

To gain a deeper understanding of why changes in neural complexity are consistent across
different scales, we conducted an analysis of the microscopic (spiking) patterns underlying
these changes. Our investigation revealed that periods of reduced firing, known as DOWN
states (Isomura et al., 2006; Levenstein et al., 2019; Steriade et al., 1993) or OFF periods
(Cavelli et al., 2023; Nir et al., 2011; Vyazovskiy et al., 2009), were responsible for the
observed decrease in complexity in both synthetic local field potentials (sLFP) and traditional
local field potentials (LFPs) during NREM sleep (Fig. 3B). This finding was evidenced by the
observation that the removal of these periods prevented the decrease in complexity during
NREM sleep. It is noteworthy that these DOWN states manifested as slow wave activity in
LFPs and likely in ECoG recordings as well. Thus, our findings offer valuable insights into
the propagation of microscopic activity across different scales.

Figure 3. Bridging the scales through the use of complexity metrics. A Permutation
Minimum-Entropy (PME) across recording scales. From top to bottom, ECoG, LFP, synthetic LFP
(obtained by the convolution of the spike trains and a decreasing exponential kernel), and units
(spikes from individual neurons recorded from the extracellular medium). ECoG data comes from our
experiments, but the other recordings come from the work by (Watson et al., 2016) (data-set available



at: CRCNS.org). Note that we inverted both LFP and ECoG recordings for representation purposes.
Box plots show PME values for the ECoGs, LFPs, and sLFPs data-sets. * Modified from (González et
al., 2022). B Top: Example of LFP and spiking activity in the neocortex exhibiting DOWN states
(shown by pink boxes) during SWS. Bottom: Boxplots of Sample Entropy (top), Permutation Entropy
(middle), and Lempel-Ziv Complexity (bottom) of the sLFPs and LFPs in each state (N = 24 sessions).
*p < 0.05, **p < 0.01, *** = p < 0.001. SWS Up-only was obtained by concatenating SWS UP periods
only (excluding all down states). Modified from (González et al., 2023).

Drugs that alter consciousness disrupt neural complexity

In the previous section, we argued that the neural complexity differences between
sleep-wake states are conserved across neural scales. To give further biological meaning to
this quantity, we will next show that we can externally perturb neural complexity by
administering drugs that alter consciousness. Moreover, we are going to argue how studying
neural complexity can unveil functional convergence in the action of two unrelated drugs.

Figure 4. Ibogaine and urethane decrease neural complexity. A. Location of the analyzed
intracranial electrodes in the right hemisphere (OB, olfactory bulb; M1, primary motor cortex; S1,
primary somatosensory cortex; V2, secondary visual cortex). Either ibogaine (40 mg/Kg) or urethane
(1.2-1.5 mg/Kg) were administered intraperitoneally. B. Top: Control (blue) and ibogaine (red) wake
states (signal downsampled to 256 Hz) are shown. Bottom: Permutation entropy was employed to
quantify the ECoG temporal complexity for ibogaine recordings. Each dot shows the average
permutation entropy of an animal (n = 6). Bars represent mean ± S.E.M. *p < 0.05, paired t test. C.
For the urethane experiments, LZC was computed for frequencies between 1 and 195 Hz during
wakefulness (W) and the anesthetized states (NREM-like urethane, NREMure; REM-like urethane,



REMure) for each electrode localization in the right hemisphere. * indicates significant differences.
Modified from (González et al., 2021) (Mondino et al., 2022).

On one hand, ibogaine, an atypical psychedelic, has gained popularity for its ability to induce
long-lasting antiaddictive effects (Köck et al., 2022). However, its mechanisms of action
remain incompletely understood and involve several neurotransmitter systems (Mash, 2023),
including the action of an active metabolite (Baumann et al., 2000; Castro-Nin et al., 2023).
Our findings indicate that systemic administration of ibogaine promotes a waking state
characterized by a gamma frequency band (30-100 Hz) profile that resembles REM sleep
(González et al., 2021, 2018). On the other hand, urethane is a commonly used anesthetic in
animal research, which induces two alternating anesthetic states: NREMure and REMure
(Hara and Harris, 2002). Although these states are often used as pharmacological models of
sleep (Hay et al., 2021; Pagliardini et al., 2013), they differ significantly from natural sleep
states (Mondino et al., 2022). Its mechanisms of action involve a wide array of targets but,
unlike ibogaine, ultimately results in unconsciousness.

Crucially, despite the contrasting mechanisms and effects of the drugs (where ibogaine
enhances gamma activity while urethane diminishes it), both ibogaine and urethane
administration resulted in reduced neural complexity across the brain (Fig. 4). This finding
suggests that brain activity becomes less diverse during the acute effects of both drugs. It's
worth noting that urethane, especially in the synchronized state (referred to as NREMure in
Fig. 4), seemed to induce more pronounced complexity changes compared to ibogaine.
Hence, these examples illustrate how two drugs profoundly affecting cognition also disrupt
neural complexity.

The way up: how microscopic changes affect global brain states.

Finally, we show by proof of concept how manipulating the microscopic level can impact
macroscopic dynamics. These types of experiments and analyses can also help us
understand which factors determine and influence neural complexity. For this example, we
will see how a specific group of glutamatergic neurons in the preoptic area of the
hypothalamus not only controlled sleep state transitions but also neural complexity in each
state.

Noteworthy, the preoptic area of the hypothalamus is a crucial site for sleep generation,
which projects diffusely into arousal centers across the brain (Vanini and Torterolo, 2021).
While it has been historically considered an exclusive sleep promoting center, this notion has
been challenged by theoretical models and experimental results. The emergent picture
suggests that the preoptic area might play a dual role in sleep-wake control (Lombardi et al.,
2020; Mondino et al., 2021; Vanini et al., 2020), initiating (but not maintaining) arousal to
possibly prevent undesired REM sleep intrusions into NREM.

For this set of chemogenetic experiments (Mondino et al., 2021), the excitatory
cre-dependent designer receptor hM3Dq was injected into the medial-lateral preoptic region
of Vglut2-cre animals (Fig. 5A). As a result, only excitatory neurons expressed the designer
receptor and could be activated by the systemic injection of a designer drug (in this case
clozapine-n-oxide, CNO). When stimulated, this excitatory subgroup induced global state
transitions and fragmented sleep. Remarkably, chemogenetic stimulation led to an increase



in neural complexity at the global cortical level (Fig. 5B). This increase in neural complexity
occurred irrespective of the arousal state, as significant complexity increases were observed
during both wakefulness and NREM sleep. In fact, complexity during NREM following
chemogenetic stimulation reached similar levels to the unstimulated wakefulness. Hence,
these findings suggest that changes at the microscopic level, such as alterations in the firing
rate of a small subpopulation within a deep nucleus, can profoundly impact neural
complexity at a different recording scale.

Figure 5. Going up: how microscopic changes affect global brain states. A Schematic
representation of bilateral injections of a Cre-dependent adeno-associated virus for expression of the
excitatory designer receptor hM3Dq into the medial-lateral preoptic region of Vglut2-Cre mice. Three
weeks after the injection, mice were implanted with electrodes for recording the EEG from the right
frontal (purple) and right occipital (yellow) cortex. A reference electrode was placed over the
cerebellum (orange), and two electrodes were also implanted bilaterally in the neck muscles for
recording the EMG. Representative EEG and EMG signals from a mouse during wakefulness, NREM
sleep, and REM sleep. Below we show the cFos expression (green nuclei) in mCherry-positive (red)
neurons in the medial-lateral preoptic region after CNO (1.0 mg/kg; n = 4 mice) and VEH (n = 4)
administration. Brain image was modified from https://neuroscience-graphicdesign.com/. B Graphs
plot showing neural complexity as assessed by corrected Lempel-Ziv complexity (cLZc) values during
wakefulness (W) and NREM sleep for frontal and occipital regions. Data are mean ± SEM.
Differences between VEH and CNO (1.0 mg/kg) in n = 10 mice were analyzed by two-tailed paired t
tests. *Significant difference (p < 0.05) relative to control. Modified from (Mondino et al., 2021).

Conclusions

The brain exhibits activity across multiple scales, from the macroscopic to the microscopic,
highlighting its complexity. Complexity analysis offers a novel perspective for studying brain
activity across scales. It provides a framework for navigating the intricate dynamics of neural
networks, allowing researchers to uncover patterns and emergent phenomena that may not
be apparent with traditional analytical approaches. Studying the effects of drugs on neural
complexity can offer insights into common mechanisms of action at the macroscopic level.



Finally, understanding how changes at the microscopic scale, such as the firing patterns of
individual neurons, affect macroscopic brain activity is crucial for unraveling the mechanisms
underlying brain function. Such insights can provide a deeper understanding of how neural
circuits process information and generate behavior.
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Discusión

Resultados generales

Al comparar registros de la actividad cortical a distintas escalas (ECoG, LFPs y sLFPs de
las áreas frontales en ratas en libre comportamiento) y centrarnos en las bandas de baja
frecuencia (filtrando todas las señales por debajo de 13 Hz), nuestros resultados sugieren
que las diferencias en la complejidad neural permanecen relativamente estables dentro de
cada estado cerebral, independientemente de la escala en la que se analicen (Papers 1,2,4,
6). En otras palabras, encontramos que las diferencias en la complejidad neural a través de
los estados se mantenían robustamente en las tres escalas de registro. Este resultado
sugiere que la complejidad de las dinámicas neuronales y sus cambios a lo largo del ciclo
sueño-vigilia se conservan a través de varios niveles de organización, desde conjuntos
individuales hasta redes corticales más amplias.

Patrones de descarga que determinan la complejidad neural

Para obtener una comprensión más profunda de por qué los cambios en la complejidad
neural son consistentes a diferentes escalas, realizamos un análisis de los patrones
microscópicos (espigas) subyacentes a estos cambios (Paper 5). Nuestra investigación
reveló que la complejidad de las dinámicas neuronales en ratas se reduce durante el sueño
de ondas lentas debido a que los patrones de espigas se repiten con mayor frecuencia (es
decir, mayores recurrencias). Esta repetición de patrones de espigas ocurre durante los
estados DOWN, lo que explica la disminución de la complejidad observada tanto a nivel
celular como en los registros de campo (como los potenciales de campo local o el EEG).
Además, revelamos un comportamiento común en las avalanchas de espigas de la
población que aparecen a lo largo de los estados de sueño-vigilia (que por definición
excluye los estados DOWN). Esta universalidad hace que los estados de sueño-vigilia sean
indistinguibles entre sí (mientras las neuronas descargan potenciales de acción) y
demuestra que los períodos DOWN son responsables de la reducción de complejidad que
caracteriza al sueño.

Durante el sueño de ondas lentas, las neuronas del hipocampo oscilan entre largos
periodos de quietud y estabilidad (sin una hiperpolarización clara de la membrana [25]) y
ráfagas de descarga de espigas (durante los ripples de onda aguda). En contraste, las
neuronas neocorticales oscilan entre periodos estables de actividad y periodos inestables
de silencio (asociados con la hiperpolarización [48]). A pesar de estas diferencias, ambas
poblaciones presentan patrones de descarga neuronales que son consistentes con un
régimen excitable UP/DOWN [49].

Para las neuronas neocorticales, la complejidad de los patrones de disparo disminuye
durante el sueño de ondas lentas [50]. En principio, se podría esperar esta disminución
debido a los estados DOWN, ya que su aparición provoca que las neuronas permanezcan
en silencio durante intervalos sincrónicos. Sin embargo, al analizar los patrones de disparo
de las neuronas individuales de manera independiente, encontramos que un número
considerable mantiene patrones complejos incluso durante el SWS. Esto puede ocurrir
porque existen neuronas activas durante los estados DOWN, como se mostró previamente
en [51], o porque la reducción de complejidad es un fenómeno colectivo que solo puede



estudiarse a nivel de la población. Nuestros resultados apoyan este último argumento al
mostrar que la diferencia en complejidad entre la vigilia o el sueño REM y el sueño de ondas
lentas aumenta con el número de neuronas registradas en simultáneo.

Un modelo para reproducir la disminución en la complejidad neural durante el sueño

Para complementar nuestros resultados in-vivo, demostramos que la imposición de estados
DOWN en un modelo de branching crítico es suficiente para generar un estado similar al
sueño de ondas lentas (Paper 5). Logramos esto silenciando periódicamente el impulso
ruidoso a un porcentaje dado de unidades, imitando así la reducción del input sináptico a las
células piramidales durante este estado en el neocórtex [52]. Esta reducción (en
condiciones fisiológicas) es probablemente causada por una inhibición presináptica GABAb
de las entradas excitatorias en las dendritas apicales de las células piramidales [53],
coordinada por el tálamo [54]. En contraste con los mecanismos neocorticales, los estados
UP/DOWN en el hipocampo están relacionados con la generación de Sharp-Wave Ripples,
donde predominan los estados DOWN de baja actividad y los estados UP se inician por la
excitación recurrente de las neuronas CA3 [55]. Por lo tanto, en el hipocampo, el
silenciamiento periódico reproduce los estados DOWN que ocurren entre los ripples.

Importante, en nuestro modelo no es necesario silenciar la entrada al 100% de las neuronas
para reproducir los resultados experimentales, lo cual es consistente con la ausencia de
períodos de silencio completos en el hipocampo [49]. Además, notamos que se ha
empleado una estrategia similar para modelar las ondas lentas durante la anestesia [56].
Asimismo, encontramos que estar cerca del punto crítico permite transiciones entre estados
más flexibles en comparación con el modelo subcrítico o supercrítico. Específicamente,
silenciar la entrada entre el 40% y el 60% crea una disminución en la complejidad similar a
la observada experimentalmente. Estos resultados refuerzan la idea de la criticidad en el
cerebro, lo cual explicaría el aumento de la complejidad [57], el procesamiento y transmisión
de información [58], y el rango dinámico [59].

Alterando la complejidad neural exógenamente

En las secciones anteriores, argumentamos que las diferencias en la complejidad neural
entre los estados de sueño y vigilia se conservan a través de diversas escalas neuronales.
Para dar un significado biológico adicional a esta cantidad, nuestros resultados muestran
que podemos perturbar externamente la complejidad neural (Papers 3 y 6).

Nuestros hallazgos demuestran que tanto la ibogaína (psicodélico atípico) como el uretano
(anestésico general) reducen la complejidad neural en todo el cerebro, lo que sugiere que la
actividad cortical se vuelve menos diversa durante los efectos agudos de ambas drogas.
Estos ejemplos ilustran cómo dos drogas que afectan profundamente la cognición también
perturban la complejidad neural, esto ocurre a pesar de que los mecanismos y efectos de
las drogas difieren (por ejemplo, la ibogaína aumenta la actividad gamma mientras que el
uretano la disminuye).

Finalmente y de manera notable, la estimulación quimiogenética de un subgrupo de
neuronas glutamatérgicas en el área preóptica, causó un aumento en la complejidad neural
a nivel cortical global. Este aumento en la complejidad neural ocurrió independientemente



del estado de vigilia, ya que se observaron incrementos significativos en la complejidad
tanto durante la vigilia como durante el sueño NREM. De hecho, la complejidad durante el
sueño tras la estimulación quimiogenética alcanzó niveles similares a los de la vigilia sin
estimulación. Por lo tanto, estos hallazgos sugieren que cambios a nivel microscópico, como
alteraciones en la tasa de descarga de una pequeña subpoblación dentro de un núcleo
profundo, pueden impactar profundamente la complejidad neural en una escala neural
diferente.

Conclusiones

El cerebro exhibe actividad en múltiples escalas, desde el nivel macroscópico hasta el
microscópico, resaltando que distintos procesos relevantes para el comportamiento ocurren
en cada escala. El análisis de la complejidad ofrece una perspectiva novedosa para estudiar
la actividad cerebral en diferentes escalas. Proporciona un marco para navegar por las
dinámicas intrincadas de las redes neuronales, permitiendo descubrir patrones y fenómenos
emergentes que pueden no ser evidentes con enfoques analíticos tradicionales. Además,
estudiar los efectos de los fármacos en la complejidad neural puede ofrecer ideas sobre los
mecanismos de acción comunes a nivel macroscópico. Finalmente, entender cómo los
cambios a escala microscópica, como los patrones de disparo de las neuronas individuales,
afectan la actividad cerebral macroscópica es crucial para desentrañar los mecanismos
subyacentes de la función cerebral. Tales conocimientos pueden proporcionar una
comprensión más profunda de cómo los circuitos neuronales procesan la información y
generan comportamientos.
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