
Improving the performance of analog acquisition
in low-power low-range microcontrollers

Diego Belzarena, Giannina Marrero, Marı́a Sofı́a Rijo and Julián Oreggioni
Universidad de la República. Montevideo, Uruguay

Email: {diego.belzarena, giannina.marrero, maria.sofia.rijo, juliano}@fing.edu.uy

Abstract—Low-power low-range microcontrollers provide the
means to acquire analog signals. This work focuses on the
development of a real-time embedded system that acquires and
processes analog signals using the MSP430G2553 microcontroller,
which could be valuable for the recording of biopotentials. We
aim to push this system to its limits in terms of throughput,
identifying the bottlenecks that restrict the maximum sample
frequency.

In short, our system is capable of acquiring, processing, and
transmitting using UART communication eight analog channels
at an effective throughput of 729 kbps. This throughput is
achieved by improving the performance of each of the system’s
building blocks and implementing a simple yet effective data
packing scheme. In addition, we propose another packing scheme
that offers the means to detect the loss of information and
synchronize the data acquisition while slightly reducing the
effective throughput (625 kbps).

I. INTRODUCTION

Low-power low-range microcontrollers (CPU of 8 and 16
bits and up to tens of MHz, 10-bit or 12-bit analog-to-
digital converters, etc.), such as Microchip’s ATmega328PB
or Texas Instruments’ MSP430, specify the availability of
multiple analog channels (up to eight in the mentioned micro-
controllers) and high sampling frequencies for their analog-to-
digital converters (ADCs), for example, 80 ksps (kilo samples
per second) in the case of the ATmega328PB, or 200 ksps in
the MSP430 family.

Operating analog acquisition in low-power low-range mi-
crocontrollers at its maximum speed is fundamental in a
broad range of applications in the manufacturing industry [1]
(4 channels, 10 ksps, 16 bit, 640 kbps), physiological monitor-
ing [2] (2 channels, 1 ksps, 10 bits, 20 kbps), ultrasound [3]
(8 channels, 6 Hz, 12 bits, 0,6 kbps), among others.

This work is a continuation of [4] (1 channel, 35,6 ksps,
10 bits, 356 kbps). [4] performed a first approach to identify
bottlenecks and explore the feasibility of harnessing the afore-
mentioned theoretical maximum sampling rates. In this work,
we introduce the prototype of an embedded system based on
the MSP430G2553 microcontroller (see Fig. 1). Our system
acquires up to eight analog signals, processes them (data pack-
ing), and transmits them to a personal computer (PC) via serial
communication, aiming to operate at its maximum capacity.
Additionally, we implemented a graphical user interface (GUI)
in Python on the PC, allowing data reception and visualization.

This work was partially funded by CSIC (Comisión Sectorial de Investi-
gación Cientı́fica, Udelar, Uruguay), and Erasmus+ Project NEON, 618942-
EPP-1-2020-1-AT-EPPKA2-CBHE-JP.

Fig. 1: Schematic diagram of the system.

II. SYSTEM DESCRIPTION

In Fig. 1 a schematic diagram of the system is presented.
The analog signals acquired by the microcontroller are gen-
erated using an Analog Discovery 2 (AD2) and subsequently
sent to a PC using the UART protocol. Furthermore, the scope
of the AD2 is connected to the UART transmission pin (TXD)
to analyze the processed signals and measure response times.

A. Hardware

We use the MSP430G2553 microcontroller from Texas
Instruments, which is included in the MSP-EXP430G2ET
Launchpad, and it is powered by 3,3 V. The microcontroller
has a 16-bit RISC architecture with a CPU speed of up to
16 MHz. It features 512 bytes of RAM and 16 kB of flash
memory. It offers three basic clock configurations, two 16-
bit timers, a 10-bit A/D converter with 8 channels (ADC10),
and a Universal Serial Communication Interface (USCI) with a
maximum UART communication rate of 2 Mbps. Additionally,
it includes the Data Transfer Controller (DTC) peripheral,
which allows the transfer of data acquired by the ADC to
RAM without involving the CPU.

The Launchpad includes a programmer, a debugger, a UART
terminal, and a system for measuring energy consumption
(Energy Trace). The Launchpad’s UART data transfer rate is
limited to 115,2 kbps (see Table 4 on page 19 of [5]) but
the use of an external UART/USB adapter (FTDI) allows a
maximum frequency of 3 Mbps.

The ADC10 peripheral has four operating modes: single-
channel (single conversion), sequence of channels, single-
channel repetition, and sequence of channels repetition. To
acquire data from all 8 channels (A7-A0), we have chosen
to operate the ADC10 in the sequence of channels mode.
The sequence of channels mode facilitates the acquisition



Fig. 2: Embedded software module diagram.

of multiple channels without the need for manual channel
switching, as is required in the single-channel mode (single
conversion). In this way, the TIMER triggers a new series of
8 acquisitions each time it interrupts.

B. Embedded software architecture

The development of this system uses C as the program-
ming language, and Texas Instruments Code Composer Studio
(CCS) as the development, programming, and debugging tool.
It employs a Round Robin embedded software architecture
with interrupts [6]. The use of interrupts allows us to “put the
CPU to sleep” when there are no pending tasks, effectively
reducing power consumption while ensuring a fast response
to critical events, such as the completion of data acquisition.

C. System modules

The system implementation is divided into the modules
shown in Fig. 2. Firstly, we have a hardware-independent
software layer (SW HI). On the other hand, we identify a
software layer that controls the hardware being used, meaning
it facilitates the management of peripherals such as TIMER,
ADC, and UART (SW HD). The operation of each module is
detailed below.

timer hw.c contains the function config Timer, in which
the timer is initialized along with its corresponding interrupt
service routine. During initialization, the SMCLK clock source
is selected, and it’s configured in up-mode. This means that
the timer counts from zero up to the value specified in
the TACCR0 register. The interrupt service routine (ISR),
isr timer, is responsible for enabling the ADC10 conversion,
automatically triggering the acquisition. These interrupts occur
periodically and determine the sampling frequency.

In adc queue.c, functions for managing the queue where
data acquired by the ADC will be stored are defined. A queue
with the capacity to store 48 samples (6 acquisitions of 8
channels) is utilized.

The module uart.c has an initialization function where the
port for transmission is configured, and it includes functions
for managing the UART transmission queue.

The module data packing.c contains functions that allow
data to be added to the UART transmission queue in a packed
format (see Section IV).

The adc.c module contains the initialization function for
ADC10 and its interrupt service routine. The ADC references
are set to VR+ = 1,5 V and VR− = 0 V. Additionally, the
sample-and-hold input is set to be stable for 4 ADC10CLKs
(the faster option). The MSC (multiple sample and convert) bit
is set to 1 to perform successive conversions automatically and
as fast as possible (no SAMPCON trigger is used to initiate
acquisition). We configure the ADC clock with the fastest
clock source available (see Section III-A). Furthermore, the
ADC is configured to operate in the sequence of channels
mode (see Section II-A). Whenever a conversion is completed
and the result is loaded into the ADC10MEM register, the
DTC is enabled and carries out the data transfer to RAM. In
this case, the DTC has been configured in continuous mode,
and the block size has been set to 48 samples. This means
that 48 consecutive conversions will be transferred before
an interrupt is generated. When this occurs, the ADC ISR
(isr adc) is responsible for setting the ADC flag, which is
checked in the main routine.

The main module of the system, main.c, is the one that
implements the Round Robin architecture with interrupts.
First, the TIMER, ADC, and UART peripherals are initialized.
Then, it enters the main loop where it checks the ADC flag. If
the flag is set, data is retrieved, packed and added to the UART
transmission queue. Once the data is acquired, the ADC flag
is cleared. The low power mode LPM3 is activated when the
ADC flag is off and will end when the ADC ISR is executed.

III. TESTING AND MEASUREMENTS

A. DCO Oscillator

To achieve the highest possible sampling frequency, it is
necessary for both the CPU clock and the ADC10 clock to
operate at their maximum speed. The CPU clock (MCLK) is
limited to a maximum speed of 16 MHz.

These clocks are sourced by the Digitally-Controlled Os-
cillator (DCO) as it is capable of providing the highest
frequencies. It is observed in MCU datasheet (page 29 in
[7]) that for the highest frequency ranges, there isn’t a typical
value, and the range of variation is very large. This is why the
DCO was configured to the maximum possible value below
16 MHz, and its value was experimentally verified to be
15,6 MHz in our test-bench.

B. Maximum UART Transmission Speed

To determine the limit of the UART transmission speed, we
conducted the following test: i) the microcontroller transmits
10.000 characters to the PC via UART; ii) we evaluate how
many of them are correctly received in a terminal on a PC.
It was possible to receive all 10.000 characters at a speed of
1,54 Mbps. Additionally, it was observed that when attempting
to transmit at a speed of 1,56 Mbps, virtually none of the
transmitted characters were received.

C. Time Analysis

1) Acquisition time: to measure the acquisition time, two
of the microcontroller’s pins are set as output. One of them



(a) (b)

Fig. 3: Acquistion time with ADC10CLK = DCO = 15,6 MHz. The orange
signal switches every time the TIMER interrupts while the blue one does so
every time the ADC interrupts. (b) shows the same signals as (a) but zoomed-
in on an ADC interruption.

Fig. 4: Processing time with MCLK = DCO = 15,6 MHz.

switches every time the TIMER interrupts (orange signal in
Fig. 3, signaling that it is time to acquire a new set of 8
channels), while the other one switches every time the ADC
interrupts (blue signal in Fig. 3, signaling that the digitized
block of 48 samples has already been stored in memory).
Afterwards, the distance between the falling edges of the
signals is measured with an oscilloscope, which resulted in
an acquisition time of 9,6 µs for the 48 samples, as seen in
Fig. 3b. The time it takes for the outputs to switch, once the
TIMER interruption occurs, is negligible.

2) Processing time: as a baseline reference for the pro-
cessing time, we measured the time required to copy the data
from where it was stored in RAM by the DTC to the UART
transmission queue. This baseline time, with a DCO frequency
of 15,6 MHz, is 256,7 µs, equivalent to approximately 4.000
MCLK clock cycles (see Fig. 4). Any additional processing
performed on the data will contribute to increase the actual
processing time.

3) UART transmission: an experimental setup was designed
to measure the time it takes for our system to transmit the 48
samples (6 acquisitions for each channel). Depending on the
configured baud rate, different transmission times are obtained
(see Table I). Fig. 5 shows the acquired signal for a baud rate
of 115.200 bps.

TABLE I: Transmission time for different UART speeds.

Baud rate (kbps) TTX (ms)
115,2 8,28
256 3,68
921 1,02

1.540 0,62

Table I shows that for the lower baud-rates, the UART

Fig. 5: Data transmission time at 115.200 bps.

transmission times are of a higher order than the times it
takes to acquire and copy the data to the transmission queue
(256,7 µs). On the other hand, as the speed increases, even
though UART transmission times are still higher, they become
comparable. This shows that the system’s bottleneck is the
UART transmission.

For the case with the highest transmission rate (1,54 MHz),
using the DCO at 15,6 MHz, our system takes a total time of
Ttotal = 9,6 µs + 256,7 µs + 624 µs = 890,3 µs to acquire
and transmit a total of 48 samples. This equates to a per-
sample time of 18,5 µs. Similarly, this calculation can be
performed for the other baud-rates (see Table II) to arrive at
the minimum time values required for our system to function
correctly (or equivalently, the maximum sampling frequencies
for each baud-rate). Then, the maximum sampling frequency
is 54,1 kHz and it is achieved at the highest transmission rate
(1,54 MHz).

TABLE II: Comparison of the maximum sampling frequency (fS ) of the
system for different transmission rates.

Baud rate (kbps) T48 (ms) T1 (µs) fS (kHz)
115,2 8,54 178,0 5,6
256 3,94 82,1 12,2
921 1,29 26,8 37,3

1.540 0,89 18,5 54,1
Note: Tx is the time to acquire and transmit x samples

IV. DATA PACKING

In the application presented so far, digitized signals are ac-
quired and transmitted in 10 bits, occupying 16 bits in memory.
This results in a waste of 6 bits per sample. With the aim of
improving the efficiency in the information transmission, a
data packing scheme is introduced, where multiple samples
are combined into a single byte.

A. 7&3 Data packing

Without using data packing, we have an efficiency in
memory usage for transmission of 62,5 % (10 bits of data
for every 16 bits transmitted). The proposed solution involves
packing the data in such a way that 3 samples are transmitted
per 2 bytes. This solution improves the data-to-bit transmission
ratio up to 83 % (20 bits of data for every 24 bits transmitted).

The proposed packing method is referred to as “7&3 pack-
ing” because the samples are divided into sets of 7 and 3 bits



Fig. 6: Distribution of samples with 7&3 packing.

(see Fig. 6). We begin by splitting the first sample into its
7 most significant bits on one side and the remaining 3 bits
on the other. Then, the 7 most significant bits are placed in
the first transmission byte, and the remaining 3 bits are added
in the next transmission byte. This second transmission byte
will be shared by the two samples to be transmitted. In the
case of the second sample, it is also divided into 7 and 3 bits.
However, unlike the previous case, the 3 most significant bits
are separated from the 7 remaining bits (it could be said that
the division is “3&7” instead of “7&3” in this case). These 3
most significant bits are added to the second transmission byte
following the bits from the first sample. Then, the remaining
7 bits are placed in the third transmission byte.

The four unused bits (one in the first transmission byte,
two in the second, and one in the third, see Fig. 6) are used
for packet loss detection and synchronization. In the case of
packet loss, it was chosen to add a specific value in the last
bit of each byte. As seen in Fig. 6, a “0” is placed in the first
byte, a “1” in the second, and a “0” in the third. In this way,
during reception, we can check that this sequence of last bits
is always as expected, allowing the detection of both single
and double packet losses.

For synchronization, a “0” is placed in the second trans-
mission byte’s penultimate bit. This ensures that the byte
0xFF is never transmitted. Therefore, at the beginning of the
transmission, a 0xFF can be sent, which when detected at the
receiver indicates the start of the sequence. This also allows for
periodically sending (every m packets) the 0xFF “flag”, and
with a counter (counting up to m), detecting if any packets
were lost.

B. Data packing time analysis

Data packing affects two of the three previously studied
times: processing time and transmission time (see Section
III-C). It is expected that the former will increase, while the
latter will decrease.

An initial implementation (referred to as Imp1) consists
of a function that packs a sample according to a flag that
is set to 0 if it is the first sample of the block, or 1 if it
is the second. Then, it checks which case it is (with an if
statement) and performs the corresponding actions to pack it.
Algorithm 1 displays the corresponding pseudocode. With this
implementation, the time it took to process (pack and copy to
the transmission queue) 48 samples (Tproc) and transmit them
(TTX ) was measured (see Table III). The processing time is

independent of the transmission speed being used and depends
solely on the CPU clock speed (MCLK).

Algorithm 1: IMP1 7&3 DATA PACKING SCHEME.
Input: m = [m9,m8, ...m1,m0] is a 10-bit ADC

sample; and c flag is a flag that indicates
whether m is the first or second sample of the
7&3 data block.

Result: The algorithm packs and places the input
sample in the UART transmission queue in
concordance with the 7&3 data packing
scheme.

Data: txq head is the transmission queue head.
if c flag == 0 then

txq head← [mk
9m

k
8m

k
7m

k
6m

k
5m

k
4m

k
3 0];

txq head ++;
txq head← [mk

2m
k
1m

k
0 −−−−]

else
txq head← [mk

2m
k
1m

k
0m

k+1
9 mk+1

8 mk+1
7 0 1];

txq head ++;
txq head← [mk+1

6 mk+1
5 mk+1

4 mk+1
3 mk+1

2 mk+1
1 mk+1

0 0];
txq head ++

end

Without packing, 2 samples are transmitted for every 4
bytes, while with packing, 2 samples are transmitted for every
3 bytes. Therefore, it is expected that the transmission time
for the packed data will be 75% of the case without packing.
This is confirmed when observing Table III.

The Table III also shows that as the transmission speed
increases, the transmission time begins to lose importance in
determining the total time (Tproc + TTx), and the processing
time, which is fixed, becomes more relevant. Additionally,
when packing is applied, the processing time increases, which
confirms that at very high transmission speeds, packing ad-
versely affects the total time. For example, in the case of 1,54
MHz, the total time without packing is 0,88 ms, while with
packing using Imp1, it is 0,94 ms.

Therefore, for data packing to be profitable, it must satisfy
the condition: Tproc < (0, 25).TTX , where in this case Tproc

is time used to pack the data.
In Fig. 7, you can see the frequency at which packing starts

to become detrimental (≈ 1,12 MHz in Imp1). From the above
analysis, it can be concluded that Imp1 is not suitable for using
data packing, as its execution time is very high.

In order to fully leverage the benefits of data packing at
the highest possible transmission speed, the implementation
Imp2 is proposed. It serves the same packing function but does
not significantly increase the processing time (it increases by
approximately 35 µs). This implementation, in broad strokes,
involves iterating over 2 data samples at a time and con-
structing the entire 3-byte block in each iteration (without if
statements and flags to evaluate the current case). Algorithm
2 displays the corresponding pseudocode.

Furthermore, in Fig. 7, it can be observed that with Imp2,
packing proves to be beneficial for all transmission speeds



TABLE III: Results of processing and transmission times.

Baud rate (kbps) Method Implementation Tproc (µs) TTx (µs) (Tproc + TTx) (µs)

115,2

Without Packing - 257 8280 8540

7&3 Packing Imp1 471 6210 6680
Imp2 292 6210 6500

Alternative Packing - 266 5080 5350

1.540

Without Packing - 257 624 880

7&3 Packing Imp1 471 470 940
Imp2 292 470 760

Alternative Packing - 266 380 650

Fig. 7: Impact of 7&3 packing on processing and transmission times. The
ratio between the sum of processing and transmission times without packing
(Twop) and with packing (Twp) is plotted. Additionally, a comparison is
made between the two implemented approaches. The dashed red line indicates
where the ratio of times is equal to 1, meaning that in terms of time, packing
is equivalent to not doing it.

Algorithm 2: IMP2 7&3 DATA PACKING SCHEME.
Input: Two 10-bit ADC samples,

mk = [mk
9 ,m

k
8 , ...m

k
1 ,m

k
0 ] and

mk+1 = [mk+1
9 ,mk+1

8 , ...mk+1
1 ,mk+1

0 ]
Result: The algorithm builds a 7&3 data block from

two input samples and places it in the UART
transmission queue.

Data: txq head is the transmission queue head.
txq head← [mk

9m
k
8m

k
7m

k
6m

k
5m

k
4m

k
3 0];

txq head ++;
txq head← [mk

2m
k
1m

k
0m

k+1
9 mk+1

8 mk+1
7 0 1];

txq head ++;
txq head← [mk+1

6 mk+1
5 mk+1

4 mk+1
3 mk+1

2 mk+1
1 mk+1

0 0];
txq head ++

within a reasonable range (the dashed red line would intersect
with the orange one at a baud rate of approximately 6,6 MHz).

C. Alternative data packing methods

Other data packing strategies were evaluated and imple-
mented. In particular, one of them involved not leaving any
bits unused when packing, which means filling the entire
transmission block with data. This allowed sending 4 samples
every 5 bytes and, by design, resulted in 100 % data bits per
transmitted bit (40 bits of data for every 40 bits transmitted).

This packing method has the disadvantage that there are no bits
available for controlling and detecting packet losses (as it is
the case with the 7&3 packing). Additionally, the packets can
take any value (including 0xFF), so the same synchronization
strategy as in 7&3 cannot be followed.

Tests were conducted with this packing strategy, similar to
those for 7&3, and the results in Table III were obtained. It can
be observed that this packing strategy presents a significant
reduction in processing time, reaching values close to those
of not doing packing, and reduces the transmission time by
approximately 20 % with respect to the 7&3 packing scheme.
However, despite the significant improvement, it should be
kept in mind that there may be cases where the error detection
and synchronization capabilities of 7&3 are essential.

V. MAXIMUM SAMPLING FREQUENCY

To determine the maximum sampling frequency, the sum of
all the involved times is considered. The maximum sampling
frequency with 7&3 packing is fs = 62,5 kHz (see Table
IV). This implies an improvement of ≈ 15% compared to not
packing, and ≈ 76 % compared to [4]. On the other hand, if
the alternative packing scheme is used, the maximum sampling
frequency is fs = 72,9 kHz. This implies an improvement
of ≈ 17 % compared to 7&3 packing, ≈ 35% compared
to not packing, and ≈ 105% compared to [4]. fs = 72,9
kHz corresponds to the maximum sampling frequency if only
one channel is used. If we acquire 8 channels, the maximum
sampling frequency of each channel would be fs/8 = 9,1 kHz.

While the transmission time is greatly reduced, the trans-
mission stage is the one that takes most of the time. Given this,
we conclude that the bottleneck lies in the UART transmission:

Tadq = 9, 6µs≪ Tproc = 266µs < TTx = 380µs

In order to validate the above presented results, an ex-
periment was carried out where the end to end system was
tested (see Fig. 8). This experiment consisted in sampling 8
analog signals, packing the data (with the alternative packing
strategy), transmitting the data via UART to a PC, and finally
unpacking and visualizing the data in the GUI. All this at a
throughput of 729 kbps.

Table V shows the consumption measurements obtained
using Energy Trace for the system while acquiring and trans-
mitting data.



TABLE IV: Comparison of the maximum sampling frequency of the system with [4] and with the addition of packing.

Baud rate (kbps) T48 (ms) T1 (µs) fs (kHz) Throughput (kbps)
[4] 921 1,35 28,1 35,6 356

Without packing 1.540 0,89 18,5 54,1 541
7&3 Packing 1.540 0,77 16,0 62,5 625

Alternative Packing 1.540 0,66 13,7 72,9 729

Fig. 8: GUI with an 8 channel end-to-end test. We use fs = 9,1 kHz and the
alternative packing strategy. A 2,2 kHz sine wave was introduced in channels
0, 4 and 5; and a 4,4 kHz (≈ fs

2
) in channels 3, 6 and 7. Channels 1 and 2

are multiplexed with the UART ports.

TABLE V: Power consumption measurements.

Power (mW) Voltage (V) Current (mA)
Average 13,84 3,29 4,2
Minimum 4,48 1,36
Maximum 18,58 5,64

VI. CONCLUSIONS

We presented a real-time embedded system capable of
acquiring, processing, and transmitting eight analog signals
at its maximum capacity. We improved the acquisition and
processing times by setting the MCLK frequency to the
maximum possible value. Additionally, we managed to reach
a data transmission speed of up to 1,54 Mbps.

We determined that the bottleneck of the acquisition chain is
in the UART transmission, and we estimate that we need a 3,75
Mbps UART transmission speed to shift the bottleneck to the
processing stage. In addition, we showed that this bottleneck
can occur at 2,47 Mbps if the 7&3 data packing is performed
(which includes packet loss detection and synchronization) and
at 2,31 Mbps if the alternative packing is used.

The system increased the maximum sampling frequency
from the 35,6 kHz reported by [4] to 54,1 kHz by improving
the performance of the blocks we were already working
with. Furthermore, with the implementation of data packing,
we further increased this frequency to 72,9 kHz. Regarding
memory, our implementation involves a similar use of RAM
as in [4], and no significant differences in consumption were
observed.

Finally, Table VI provides a comparative summary of our
work with other works. This comparison shows that our data
packing scheme generates a very competitive throughput of
729 kbps, the highest amongst those compared.

As a next step, we propose to replace the AD2 with an
analog front-end developed in our laboratory based on [8],
and carry out tests recording biopotential signals.

TABLE VI: Comparison with other works.

[4] [1] [2] [3] TW
MCU: MSP430* G2553 - FR2355 FR5043 G2553
ADC bit resolution 10 16 10 12 10
Number of channels 2 4 2 8 8
Max fs (kHz) 35,6 40 2 0,05 72,9
Max throughput (kbps) 356 640 20 0,6 729
Baud rate (kbps) 921,6 - - - 1540
Acquisition time (µs) 29,8 - - - 9,6
Processing time (µs) 295,1 - - - 266
Note: TW = This Work

ACKNOWLEDGMENTS

We are thankful to Rosina D’ Eboli for her participation in
the early stages of this work, and Leonardo Steinfeld for his
advice and suggestions.

REFERENCES

[1] A. Barrancos, R. L. Batalha, and L. S. Rosado, “Towards enhanced
eddy current testing array probes scalability for powder bed fusion
layer-wise imaging,” Sensors, vol. 23, no. 5, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/5/2711

[2] S. Wood, D. Chakraborty, and J. Schmalzel, “Low power sensor fusion
targeted for ai applications at the edge,” in 2023 IEEE Sensors Applica-
tions Symposium (SAS), 2023, pp. 1–6.

[3] S. Frey, S. Vostrikov, L. Benini, and A. Cossettini, “Wulpus: a wearable
ultra low-power ultrasound probe for multi-day monitoring of carotid
artery and muscle activity,” in 2022 IEEE International Ultrasonics
Symposium (IUS), 2022, pp. 1–4.

[4] L. Gómez, R. González, M. J. Millán, and J. Oreggioni, “Cuellos de
botella en sistemas embebidos en la adquisición y transmision de señales
analógicas,” in Congreso Argentino de Sistemas Embebidos (CASE),
Bahı́a Blanca, Argentina, August 2023.

[5] Texas Instruments, “MSP debuggers user’s guide,”
https://www.ti.com/lit/ug/slau647o/slau647o.pdf, 2015.

[6] D. E. Simon, An embedded software primer. Addison-Wesley Profes-
sional, 1999, vol. 1.

[7] Texas Instruments, “MSP430G2x53, MSP430G2x13
mixed signal microcontroller datasheet (rev. j),”
https://www.ti.com/lit/ds/slas735j/slas735j.pdf, 2011.

[8] J. Oreggioni, A. Caputi, and F. Silveira, “Current-efficient preamplifier
architecture for cmrr sensitive neural recording applications,” IEEE Trans-
actions on Biomedical Circuits and Systems, vol. 12, no. 3, pp. 689–699,
jun 2018.


