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Abstract

Argentina is among the most important lemon fruit producers in the world. Penicillium digita-

tum is the primary lemon fungal phytopathogen, causing green mold during the postharvest.

Several alternatives to the use of synthetic fungicides have been developed, being the use of

biocontrol yeasts one of the most promising. Although many of the reports are based on the

use of a single yeast species, it has been shown that the combination of agents with different

mechanisms of action can increase control efficiency through synergistic effects. The com-

bined use of native yeasts with different mechanisms of action had not been studied as a bio-

logical control strategy in lemons. In this work, the mechanisms of action of native yeasts

(Clavispora lusitaniae AgL21, Clavispora lusitaniae AgL2 and Clavispora lusitaniae AcL2)

with biocontrol activity against P. digitatum were evaluated. Isolate AgL21 was selected for its

ability to form biofilm, colonize lemon wounds, and inhibit fungal spore germination. The com-

patibility of C. lusitaniae AgL21 with two killer yeasts of the species Kazachstania exigua

(AcL4 and AcL8) was evaluated. In vivo assays were then carried out with the yeasts applied

individually or mixed in equal cell concentrations. AgL21 alone was able to control green mold

with 87.5% efficiency, while individual killer yeasts were significantly less efficient (43.3% and

38.3%, respectively). Inhibitory effects were increased when C. lusitaniae AgL21 and K. exi-

gua strains were jointly applied. The most efficient treatment was the combination of AgL21

and AcL4, reaching 100% efficiency in wound protection. The combination of AgL21 with

AcL8 was as well promising, with an efficiency of 97.5%. The combined application of native

yeasts showed a synergistic effect considering that the multiple mechanisms of action

involved could hinder the development of green mold in lemon more efficiently than using sin-

gle yeasts. Therefore, this work demonstrates that the integration of native yeasts with diverse

modes of action can provide new insights to formulate effective microbial consortia. This could

lead to the development of tailor-made biofungicides, allowing control of postharvest fungal

diseases in lemons while remaining competitive with traditionally used synthetic chemicals.
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Introduction

Citrus fruits are one of the main fruit crops worldwide. They are grown in more than 140

countries and exported around the world for their nutritional and therapeutic benefits [1].

Particularly, lemon fruit is one of the most important crops in Argentina in terms of produc-

tion and export, and the main producing areas are in the province of Tucumán.

Penicillium digitatum, the causative agent of green mold in citrus, is responsible for serious

economic losses during harvest, transportation and storage, thus limiting the commercial life

of harvested fruit [2, 3]. The large amount of airborne spores not only represents an important

source of inoculum in the field and during packaging, but can also cause allergic responses in

humans [4]. Moreover, it has been recently proved that P. digitatum produces tremorgenic

mycotoxins (tryptoquialanines A and C), capable of generating persistent or intermittent

tremors in vertebrate animals [5].

For some years now, synthetic fungicides such as imazalil and thiabendazole have been the

main means of controlling green mold decay [6]. However, the emergence of resistant fungal

strains [7], their increasingly restricted use and the growing concern about contamination of

food and the environment [8, 9] have promoted the search for alternatives and safer biological

control strategies.

The use of yeasts with biocontrol activity targeting phytopathogenic fungi appears as a prom-

ising alternative to chemical pesticides [10–14]. Yeasts have been extensively studied as biocon-

trol agents due to their simple nutritional requirements adapting to the fruit’s environment,

their ability to colonize surfaces for long periods [15, 16], their high tolerance to a wide range of

temperatures, pH, and oxygen levels [17], their easy and rapid growth in bioreactors, and the

greater acceptance by consumers as they are microorganisms commonly used in the food indus-

try, either for the production of bread, wine and beer, or as nutritional supplement [18, 19].

While most research has focused on the individual application of biocontrol yeasts against

green mold decay in citrus [20–26], less is known about their combined effect. Panebianco

et al. [27] combined Pseudomonas strains with Trichoderma fungi to control P. digitatum in

citrus; Agirman et al. [28] investigated the in vitro effect of combining Aureobasidium pullu-
lans and Meyerozyma guilliermondii against P. digitatum in lemons; Öztekin et al. [29] com-

bined three yeast strains (Hanseniaspora uvarum, M. guilliermondii, and Metschnikowia
pulcherrima) for the biocontrol of P. digitatum in mandarins. To the best of our knowledge,

there were no reports on the use of compatible antagonist yeast mixtures for the biological

control of green mold decay in lemons.

The yeast Clavispora lusitaniae is commonly present in locally produced lemons [12, 30]. In

previous studies, we investigated the antagonistic potential of different isolates of this species

against green mold [12]. Besides lemon fruits, its notable action as a biocontrol agent was evi-

dent in sweet oranges, tangerines and grapefruits; however modes of action through which the

yeasts exert their antagonistic activity are unknown. Furthermore, we have previously focused

on native epiphytic lemon yeasts with killer phenotype as the main mechanism of action,

showing promising results in the biocontrol of P. digitatum [30]. Therefore, the aim of this

work was to study the mechanisms of action of C. lusitaniae isolates and determine the possi-

ble synergistic effect on the biocontrol of green mold in lemons by combining the most effec-

tive isolate with yeast exerting killer phenotype.

Material and methods

Microorganisms and fruit

Penicillium digitatum CSM/Pd-01 was kindly provided by the Phytopathology Lab of the citrus

company San Miguel S.A. (Tucumán, Argentina). The pathogen was grown and maintained
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by regular subculturing on potato dextrose agar (PDA, 4 g/L potato extract, 20 g/L glucose, 15

g/L agar, Biokar, Allonne, France) at 25 ºC for 5 days. Spores were collected from plates in ster-

ile saline solution containing 0.1% Tween 80 and adjusted to a final concentration of 106

spores/mL, using a Neubauer chamber.

Clavispora lusitaniae AgL21 (MT649498.1), C. lusitaniae AgL2 (MT649496.1) and C. lusita-
niae AcL2 (MT649495.1) were previously isolated from samples of a citrus packinghouse in

Tucumán province [12]. They were grown and maintained on yeast extract peptone dextrose

agar (YEPD agar, 5 g/L yeast extract, 10 g/L, peptone, 20 g/L glucose, 20 g/L agar, pH 4.5).

Eureka cultivar lemons (Citrus limon (L.) Burm) were harvested from local fields. These cul-

tivars had not received any preharvest treatment with synthetic pesticides. Healthy fruits were

transported to the laboratory for immediate use or storage at 8 ˚C for no more than 7 days.

Selected fruits were free of any visible injuries or signs of rot and exhibited uniform size,

shape, and ripeness.

Modes of action

Biofilm formation. The ability of C. lusitaniae strains to form biofilm was determined

using freshly squeezed lemon juice as the culture medium. Wells of a 96-well microtiter plate

containing 180 μL of sterile juice were inoculated with 20 μL of the yeast suspension and incu-

bated for 72 h at 25 ˚C. Negative controls containing only sterile lemon juice were included.

After incubation, the wells were emptied, rinsed with water, and air-dried at room tempera-

ture. The adherent biofilm layer was stained with an aqueous solution of violet crystal 1% (w/

v) for 20 min. The bound dye was eluted from each well with 200 μL of acetic acid and absor-

bance was measured at 620 nm.

Biofilm formation by yeasts in the presence of P. digitatum was also determined: 20 μL of

the yeast was inoculated with 20 μL of the pathogen in a 96-well microtiter plates containing

sterile lemon juice, and the same procedure described above was carried out. Biofilm forma-

tion was considered positive in those wells where the absorbance was greater than the mean of

the negative control plus three standard deviations [31]. The assays were done in triplicate.

Siderophores production. Siderophore production was assessed by a modified Chro-

mium Azurol Sulfonate (CAS) medium plate assay [32]. The culture medium was prepared

without nutrients, serving as a revealing medium (overlay-CAS, O-CAS) [33]. The composi-

tion for 1 L of coating was: 60.5 mg CAS, 72.9 mg hexadecyltrimethylammonium bromide

(HDTMA), 30.24 g piperazine-1,4-bis (2-ethanesulfonic acid) (PIPES), and 1 mM chloride fer-

ric hexahydrate (FeCl3.6H2O) in 10 mL of 10 mM HCl. Agarose (0.9% w/v) was used as a gel-

ling agent.

Each strain of C. lusitaniae was streaked onto YEPD agar plates and allowed to grow for 48

h at 25 ˚C. Ten mL of the O-CAS medium was poured on the grown microorganisms to deter-

mine the production of siderophores. After 30 min, the production of siderophores was

observed by the color change in the superimposed medium that exclusively surrounds the pro-

ducing microorganisms: from blue to purple (for catechol-type siderophores) or from blue to

orange (for microorganisms that produce hydroxamates). As a positive control, a strain of Leu-
cosporidium scottii At17 capable of producing siderophores was used [34].

Wound site colonization. The ability of C. lusitaniae AgL21 to colonize lemon wounds

was evaluated using the technique described by Perez et al. [15] with some modifications. Five

lemons were selected, disinfected with 70% ethanol, and wounded once in the equatorial zone

(2 mm deep x 1 mm wide). They were subsequently dipped in a yeast suspension (108 cells/

mL) for 2 min, placed in plastic trays and incubated at 25 ˚C. To monitor yeast growth in the

wound, tissue samples containing the entire wound were taken (5 mm in diameter) at days 0,
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1, 3, 5 and 7 of incubation, and subsequently placed in microtubes with 1 mL of saline solution

added with 0.1% Tween 80. Samples were shaken for 20 min at 180 rpm. Dilutions of each

sample were made and seeded on YEPD agar plates supplemented with ampicillin (100 μg/

mL) and chloramphenicol (50 μg/mL). Yeast colonies were counted after 48 h and a growth

curve was constructed by plotting the logarithm of viable cells in each wound versus storage

time.

Wound colonization capacity of C. lusitaniae AgL21 at low temperature was also evaluated.

For this, treated lemons were incubated at 8 ˚C and wound samples were taken at 10, 20, 30

and 40 days. Both assays were performed in triplicate.

Scanning electron microscopy of inoculated wounds. The effect of wound colonization

by yeast strain AgL21 on the development of P. digitatum was visualized by scanning electron

microscopy (SEM). Lemons were disinfected, wounded and dipped in the yeast suspension as

described above, and 24 h later they were dipped in a P. digitatum spore suspension (106

spores/mL). After 72 h of incubation, tissue samples containing the entire wound were taken.

Samples were fixed by immersion in Karnovsky’s fixative (pH 7.2 phosphate buffer, 1.7% glu-

taraldehyde, 2.7% paraformaldehyde) for 24 h [35]. After that, they were dehydrated in a series

of ethanol concentrations and passed through 100% acetone twice before the critical point of

drying with CO2 (Denton Vacuum). Dried tissues were mounted on gold-coated aluminum

chips (JEOL Ion Sputter JFC 1100, USA) and observed using a Zeiss SUPRA 55 VP scanning

electron microscope (SEM (Oberkochen, Germany).

Effect on pathogen spore germination. The assay was performed in a 96-well microtiter

plates containing 100 μL of potato dextrose broth (PDB) medium inoculated with 10 μL of a

suspension of P. digitatum (106 spores/mL) and 10 μL of a suspension of C. lusitaniae AgL21

(108 cells/mL). Wells containing pathogen spores without the addition of AgL21 cells served as

sporulation controls. Additionally, a strain of Candida catenulata M1.4 was used as a negative

control of sporulation inhibition [15]. The microplate was incubated for 12 h at 25 ˚C. Spore

germination rate was recorded by viewing at least 100 spores at a time. The treatment con-

sisted of three replications and the experiment was repeated twice.

Production of antifungal enzymes. Production of chitinase and β-1,3-glucanase by C.

lusitaniae AgL1 was assayed in the presence of fungal cell wall (FCW) of P. digitatum, as

described Vero et al. [36], with modifications. The fungus was grown in yeast extract sucrose

medium (YES, 5 g/L yeast extract and 15 g/L sucrose) at 25 ˚C for 5 days. Obtained mycelia

was dried with sterile filter paper and crushed in a sterile mortar in the presence of liquid

nitrogen until a fine powder was obtained; it was suspended in 5 M NaCl, sonicated for 5 min

and centrifuged at 7,000 rpm (TGL16 Table Top High Speed Centrifuge, Yingtai, Huntan,

China) for 20 min. The supernatant was discarded, and the precipitate was washed three times

with distilled water. FCW was dried in Petri dishes at 60 ˚C for 3 h and the obtained powder

was added to yeast nitrogen base medium (YNB) at a concentration of 1 mg/mL and auto-

claved. The resulting medium was inoculated with AgL21 strain (108 cells/mL) and incubated

at 25 ˚C for 7 days. Additionally, YNB medium without FCW was also inoculated. Aliquots of

the cultures were filtered daily through a 0.45 mm nitrocellulose filter.

Chitinase activity was assayed as described by Mahadevan et al. [37], measuring the release

of p-nitrophenol from p-nitrophenyl N-acetylglucosamidine [pNP(GlcNAc)]. pNP(GlcNAc)

(Sigma-Aldrich, EEUU) was dissolved in 0.05 M potassium acetate buffer (pH 6). In a micro-

plate, 10 μL of the filtered culture was added to 90 μL of the 0.18 mmol/L p-nitrophenyl

reagent, and incubated at 37 ˚C for 6 h. The reaction was stopped by adding 10 μL of 1 mol/L

NaOH. Absorbance was measured at 405 nm in a microplate reader (Bio-tek Instruments,

Winooski, VT, USA). One unit of enzyme was defined as the amount that releases 1 mmol of

p-nitrophenol per mg of protein.
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β-1,3-glucanase production was tested as in Masih el at. [38]. A reaction mixture was pre-

pared by adding 62.5 μL of 0.05 M potassium acetate buffer (pH 6) containing 1% laminarin

to 62.5 μL of filtered culture and incubated at 37 ˚C for 6 h. Glucanase activity was deter-

mined as the amount of reducing sugars released from laminarin, measured according to the

Nelson-Somogyi method [39, 40] using glucose as a standard. One unit of β-1,3-glucanase

was defined as the amount of enzyme that liberates 1 mmol of reducing sugars per mg of

protein.

In vitro determination of yeasts killer phenotype. Molecular identification. Killer activ-

ity determination was carried out on 43 yeasts isolated in our previous work, with proven

antagonistic activity against P. digitatum [12].

The killer assay was performed using the plate diffusion technique described by Perez et al.

[30]. Saccharomyces cerevisiae CEN.PK2-1c [41] was used as the reference sensitive strain,

while Kazachstania exigua 120 [30] and S. cerevisiae GS1731 [42] served as positive and nega-

tive controls for killer activity, respectively. The assay was conducted in Petri dishes with

YEPD agar medium (pH 4.5) added with 0.003% (w/v) methylene blue and 2% NaCl [43].

Killer activity was evidenced by a clear zone of inhibition around the colonies.

DNA extraction from those isolates that tested positive for killer activity was performed as

described in Pereyra et al. [12]. Taxonomic identification was achieved by PCR amplification

of the D1/D2 domain of the 26S rRNA gene using primers NL-1 (50-GCA TAT CAA TAA
GCG GAG GAA AAG-30) and NL-4 (50-GGT CCG TGT TTC AAG ACG G-30) [44].

Sequencing of the purified PCR products was performed at Microsynth Seqlab (Göttingen,

Germany). The obtained sequences were processed using Clone Manager 9 Software (Cary,

NC, USA), and sequence similarity searches were performed with the BLAST network service

of the NCBI database (http://www.ncbi.nlm.nih.gov/BLAST). The sequences of these killer iso-

lates have been deposited in the GenBank database under the following accession numbers:

OL780468 (AcL4) and OL780469 (AcL8).

Combination of biocontrol yeasts

In vitro compatibility of yeasts. In order to determine if the protection efficiency of C.

lusitaniae AgL21 could increase in combination with yeasts strains showing killer phenotype,

their compatibilities were first determined. 200 μL of C. lusitaniae AgL21 (108 cells/mL) were

mixed with melted YEPD agar and was poured into a Petri dish; once solidified, killer yeasts

were spotted on the agar surface. The plate was incubated at 25 ˚C for 48 h and it was deter-

mined whether the yeasts were compatible by evaluating the presence or absence of an inhibi-

tion halo around the killer colonies.

In vivo biocontrol assay against P. digitatum. The effect of the combination between the

yeasts was carried out by individually combining yeast AgL21 with compatible killer yeasts

(AcL4 and AcL8). A total of 60 lemons per yeast were used (4 replicates of 15 lemons). Lemons

were disinfected, wounded once in the equatorial zone with an awl (2 mm deep × 1 mm wide),

placed in mesh bags and dipped for 2 min in yeast suspensions. Yeast cultures (C. lusitaniae
AgL21, AcL4 isolate and AcL8 isolate) and their mixtures [M1 = AgL21+AcL4 and

M2 = AgL21+AcL8 (1:1, v/v; 108 cells/mL)] were prepared by combining equal volumes of sus-

pensions of each antagonist. The treated fruit was incubated at 25 ˚C for 24 h and then dipped

in the P. digitatum suspension (106 spores/mL) for 2 min. Yeast protection efficiency (PE) was

calculated after 5 days of incubation using the formula: protection efficiency (%) = (number of

healthy fruit /numbers of total fruits) × 100.
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Statistical analysis

All data obtained from the in vivo experiments were subjected to analysis of variance according

to parametric and non-parametric approaches (InfoStat/L software, Córdoba, Argentina) [45].

All percentage data were transformed using arcsine (sin-1 square root x) prior to statistical

analysis. Data were analyzed using ANOVA and mean values were compared with Tukey’s test

at the 5% significance level.

Limpel’s formula, described by Richer et al. [46], was used to assess synergism. The formula

is: Ee = X + Y—(XY/100), where Ee represents the expected effect from the additive response

of two treatments, and X and Y represent the percentage protection efficiencies observed with

each agent used alone. Therefore, if the combined protection efficiency of the two agents

exceeds Ee, synergism is considered to be present.

Results and discussion

Modes of action

Biofilm formation and siderophores production. Microorganisms compete with each

other and with their hosts for nutrients and space; which is considered the main mode of

action among several biological control yeasts [47, 48]. Competition for space and nutrients is

effective when the antagonist is present in sufficient number at the right time and place, and is

able to use limited resources more efficiently than the pathogen [14]. Once antagonistic yeasts

come into contact with the wounded fruit surface, they colonize the wounds and rapidly

deplete nutrients, limiting fungal spore germination. Afterward, further action mechanisms—

inhibition of spore germination, production of antifungal enzymes—will be involved to coop-

eratively control postharvest pathogens [49, 50].

Biofilm formation can be considered a specific and highly successful strategy to compete

for space with the pathogen. In this process, microorganisms form multicellular structures

embedded in a complex matrix that allows them to improve their adhesion to surfaces and

resistance to stress. It is considered an important attribute of postharvest antagonists, aiding

their ability to successfully colonize and protect both wounds and the fruit surface [50, 51]. In

this regard, the ability of C. lusitaniae AgL21, AgL2 and AcL2 to form biofilms was determined

in a microplate assay using lemon juice as a culture medium, in the presence and absence of P.

digitatum. Table 1 shows the results represented by the absorbance measurements. In both

treatments, the control absorbance (lemon juice) yielded similar OD values: 0.245 in the

absence of the pathogen and 0.225 in its presence; this would indicate that the fungus is not

capable of producing biofilm on its own and, therefore, its presence would not interfere with

the OD quantification. Without P. digitatum, the only yeast capable of forming biofilm was C.

lusitaniae AgL21, taking as reference the OD limit value for biofilm formation of 0.386

Table 1. Biofilm formation by C. lusitaniae strains in the presence and absence of P. digitatum.

Treatment A620 (media ± standard deviation)

Without P. digitatum With P. digitatum
Control* 0.245 ± 0.047a 0.225 ± 0.018a

C. lusitaniae AgL21 0.476 ± 0.052bA 0.645 ± 0.165bA

C. lusitaniae AcL2 0.303 ± 0.015a 0.419 ±0.141ab

C. lusitaniae AgL2 0.287 ± 0.072a 0.445 ± 0.004ab

*Squeezed lemon juice. Treatments with the same letter in the same column are not significantly different (p < 0.05). Same capital letters in the same row do not differ

significantly from each other (p < 0.05).

https://doi.org/10.1371/journal.pone.0301584.t001
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(control absorbance plus three standard deviations). When the pathogen was included (OD

limit = 0.279), the three strains were capable of forming biofilm; however, AgL21 differed sta-

tistically from the rest. Although biofilm formation by C. lusitaniae AgL21 was higher in the

presence of the fungus, no significant difference was observed with respect to its behavior

without the fungus.

The molecular underpinnings of the process and the composition of different biofilms have

only been studied in detail for Pichia fermentans, capable of producing biofilm on apple

wounds to protect them against postharvest diseases [52]. Biofilm formation has also been

reported to be a key mechanism of action involved in the protective and biocontrol activities

of Aureobasidium pullulans [22, 53], Kloeckera apiculate [54], Pichia kudriavzevii [55], Wicker-
hamomyces anomalus [56] and Metschnikowia pulcherrima [57]. To our knowledge, this is the

first report concerning biofilm formation in C. lusitaniae species as fruit wound colonizing

agents.

Regarding nutrients, the fruit wound is a low-oxygen, low-iron microenvironment, thus

yeasts could benefit by producing siderophores to compete for iron and interfere with patho-

gen germination, growth, and virulence [14]. Siderophores production by yeast strains was

evaluated using the O-CAS medium. It was observed that none of the yeasts was capable of

producing these iron chelating agents, neither of the hydroxamate type nor of the catechol

type, in comparison with L. scotti At17 used in this assay as a positive control (Fig 1). The lack

of competition for iron by yeasts suggests that other mechanisms are involved in their biocon-

trol activity. Nitrogen, another key nutrient limiting postharvest pathogen growth, is also

worth investigating due to the abundance of sugars and scarcity of nitrogen sources in most

fruits [58]. Further studies are needed to confirm the significance of nitrogen sources in the

biocontrol efficacy of these yeasts.

Fig 1. Siderophores production on plates with O-CAS medium. Orange halo around the streak indicate

siderophores production. A strain of L. scotti At17 was used as a positive control.

https://doi.org/10.1371/journal.pone.0301584.g001
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Wound site colonization. Based on the biofilm formation results, the ability of C. lusita-
niae AgL21 to colonize wounds during 7 (25 ˚C) or 40 (8 ˚C) days of incubation was deter-

mined. Both at room (Fig 2A) and cold temperatures (Fig 2B), yeast development was similar:

the yeast grew and remained viable throughout the whole incubation time. At 25 ºC, AgL21

grew exponentially during the first day of incubation; then the growth rate remained stable,

reaching a population density of 7.30 log CFU/mL. At 8 ºC, the yeast growth was higher in the

first 10 days of incubation, reaching a final population of 7.12 log CFU/mL at 40 days. Proba-

bly, such ability to colonize wounds and compete with the pathogen for space is the determin-

ing factor why these C. lusitaniae isolates have been efficient in the control of green mold

when they were evaluated in different citrus species [12]. According to Liu et al. [11], among

the biocontrol agents, yeasts turn out to be the ones that mainly compete for space and some

nutrients with the pathogens, being able to grow rapidly during the first 24 h after treatment,

depleting available nutrients and physically occupying the wounds. Generally, they exert a fun-

gistatic effect on the pathogen, resulting in an inhibition of spore germination, which remains

alive and capable of germinating after the addition of other nutrients [59]. For this reason,

from the first day after treatment, other modes of action could participate and be decisive for

the success of disease control [51]. Numerous reports have demonstrated the ability of differ-

ent yeast species to colonize wounds and prevent the development of postharvest pathogens

[15, 21, 34, 60, 61].

Scanning electron microscopy. Wound colonization by C. lusitaniae AgL21 and its effect

on the mycelial development of P. digitatum was observed by SEM. As reported by Janisiewicz

et al. [59], yeasts can exert a fungistatic effect on the pathogen, resulting in an inhibition of

spore germination. This could be verified under electron microscopy observations. It was

determined that those lemons infected only with P. digitatum showed a high level of spore ger-

mination and mycelial growth on the third day of incubation (Fig 3A–3C), while wounds pro-

tected by the yeast revealed the ability of AgL21 strain to colonize and inhibit the pathogen

conidia germination. Non-germinated P. digitatum conidia could be observed both inside the

lemon wound (Fig 3E) and on the surface (Fig 3F). In addition, there was no evidence of fun-

gus mycelial development. This mechanism has been reported for several biocontrol yeasts,

including those that inhibit mycelial growth [15, 25, 62] and those that do not [36]. Having

proven in previous studies the ability of C. lusitaniae AgL21 to produce soluble [12] and vola-

tile organic compounds with fungistatic or fungicidal activity against P. digitatum [23], it

could be hypothesized that the sum of all such mechanisms could restrict spore germination.

Fig 2. Population dynamics of C. lusitaniae AgL21 in lemon wounds at 25 ˚C (A) and 8 ˚C (B). The error bars indicate the standard deviations.

https://doi.org/10.1371/journal.pone.0301584.g002
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Effect on pathogen spore germination. The assay was performed in a 96-well plate using

PDB medium inoculated with a suspension of P. digitatum and a suspension of C. lusitaniae
AgL21. Results showed that the presence of AgL21 significantly inhibited spore germination of

the pathogen (Fig 4). A 62% inhibition was achieved in relation to the 11% produced by the

species C. catenulata M 1.4, which did not differ significantly from the control (S1 Table).

These results are in agreement with the observations made under the electron microscope.

Production of antifungal enzymes. The secretion of enzymes such as chitinases [63, 64],

glucanases [36, 65] or proteases [66, 67] is commonly reported and highlighted in antagonistic

yeasts as a potential cause of their biocontrol activity, as they facilitate the breakdown of cell

wall components in plant pathogens, leading to cell lysis and leakage of cytoplasmic nutrients.

Here, the production of fungal cell wall-degrading enzymes by C. lusitaniae AgL21 could not

be detected even when grown in the presence of P. digitatum cell wall as the sole carbon source

detected. This suggests that the greatest potential of AgL21 as a biocontrol agent is based

Fig 3. SEM of lemon wounds after 3 days of treatment with C. lusitaniae AgL21 and P. digitatum. (A) (B) and (C) show

the lemon wound infected only with the pathogen. (D) (E) and (F) represent the wound previously treated with the yeast.

Image F was digitally colored with Adobe Photoshop CS6: P. digitatum spores are represented in green; cells of C. lusitaniae
AgL21 are represented in orange. The magnifications were as follows: 100X (A), 1.00 KX (B), 5.00 KX (C, F), 69X (D), 500X

(E).

https://doi.org/10.1371/journal.pone.0301584.g003

Fig 4. Effect on the inhibition of spore germination of P. digitatum after 12 h of incubation. (A) Germinated spores of

untreated P. digitatum. (B) P. digitatum in the presence of C. lusitaniae AgL21 cells. (C) P. digitatum in the presence of C.

catenulata M 1.4 cells, yeast unable to inhibit spore germination of the pathogen.

https://doi.org/10.1371/journal.pone.0301584.g004
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mainly on its ability to colonize the fruit wound through the formation of a microbial biofilm

and inhibit the germination of fungal spores by competing with the pathogen for space and

nutrients.

In vitro determination of yeasts killer phenotype. Yeast molecular identification. The

presence of the killer phenotype was determined for the 43 yeasts that were able to inhibit the

development of P. digitatum in our previous work. Only two yeast strains, AcL4 and AcL8

depicted a killer phenotype (Fig 5). The yeasts AcL4 (OL780468) and AcL8 (OL780469) were

identified as belonging to the genus Kazachstania exigua, showing 100% identity with the ref-

erence strain K. exigua LC219508.1. In previous isolations, Perez et al. [30] described a killer

phenotype for this species. The strain K. exigua 120 was found to inhibit the in vitro develop-

ment of P. digitatum, Penicillium italicum and Phomopsis citri, as well as the development of

human bacterial pathogens.

Combining biocontrol yeasts

There is a growing interest among researchers in the use of combinations of antagonistic

microorganisms to exploit the possible synergistic effects and to improve the control strategies

[29]. Since the combination of biocontrol yeasts with different mechanisms of action can ide-

ally result in more efficient protection, the combined application of C. lusitaniae AgL21 with

killer yeasts was evaluated against P. digitatum in lemon. Combinations of non-competitive

yeasts can have a broader range of activity and be more effective in the treatment of

Fig 5. Plaque diffusion assay in YEPD medium to determine the killer phenotype of the isolated yeasts. C+

(positive control) corresponding to the yeast K. exigua 120 and C- (negative control) corresponding to the strain S.

cerevisiae GS1731.

https://doi.org/10.1371/journal.pone.0301584.g005
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postharvest diseases [27, 68]. For this reason, the compatibility of AgL21 strain with K. exigua
AcL4 and AcL8 was determined in a Petri plate assay. As a result, no growth inhibition of

AgL21 was observed around the killer colonies.

Yeasts combinations were then evaluated against P. digitatum in lemon. Protection efficien-

cies of the individually tested killer strains were rather low: K. exigua AcL4 reached 43.3%,

while strain AcL8 only achieved 38.3%. C. lusitaniae AgL21 protected lemon wounds with

87.5% efficiency. When combined yeasts were applied, the protection efficiency increased up

to 100% and 97.5%, for M1 and M2 treatments, respectively (Fig 6). These results showed a

synergistic effect in the use ofAgL21 strain together with the killer yeasts K. exigua AcL4 or

AcL8, compared to individual treatments.

There are several genera of yeast capable of producing killer proteins. These toxins are pre-

dominantly active at acidic pH and have lethal activity against sensitive microorganisms [69].

On citrus surface, the pH is less acidic than inside, and drops sharply when the fruit is

wounded or injured, which reduces the effectiveness of conventional fungicides. The incorpo-

ration of killer toxin-producing biocontrol yeasts could be a promising and effective approach

to protect citrus and fruits in general. Some authors such as Platania et al. [26], for example,

reported that different killer species such as W. anomalus and S. cerevisiae were able to control

the green mold disease in Tarocco oranges. Da Cunha et al. [70] also found strains of Candida
stellimalicola and S. cerevisiae capable of antagonizing P. italicum in “Valencia” sweet oranges.

In addition to citrus fruits, the use of killer yeasts as postharvest biocontrol agents was success-

fully reported in apple [71], peach and plum [72], tomato [73], and papaya [74].

In most of the studies related to the biological control of plant pathogens, only a single bio-

control agent is applied [36, 75–77]. However, attempts have been made to apply more than

Fig 6. Protection efficiency of C. lusitaniae AgL21 alone and in combination with K. exigua AcL4 and AcL8. The error bars indicate the standard

deviations. Identical letters are not, according to Tukey’s test, significantly different (p> 0.05). Asterisk indicates synergistic activity was present

according to Limpel’s formula.

https://doi.org/10.1371/journal.pone.0301584.g006
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one. Guetsky [78] suggested the application of Pichia guilliermondii and Bacillus mycoides to

prevent Botrytis cinerea infection in strawberry leaves. In other studies, simultaneous applica-

tion of more than two biological control agents was attempted to improve biocontrol efficacy;

for example, combinations with three microbial antagonists (yeast, bacteria and fungus) in

grapes significantly reduced B. cinerea infection [79]. As the use of mixtures of microorgan-

isms is an emerging approach in the field of postharvest diseases biocontrol, we suggest that

the application of more than one antagonist will increase reliability and decrease variability of

biological control.

Conclusion

Developing successful commercial formulations and effective application strategies requires a

thorough understanding of the individual mechanisms of action employed by biocontrol

agents. The use of different yeasts strains with diverse modes of action holds promise for

enhancing the effectiveness of postharvest rot control in lemons by expanding the biological

control potential of these agents. Our findings demonstrated a synergistic effect between com-

patible yeasts, as evidenced by the significantly increased biocontrol activity against P. digita-
tum when C. lusitaniae AgL21 was combined with killer yeasts K. exigua AcL4 or AcL8. This

highlights the potential of integrating antagonistic yeasts with diverse mechanisms of action as

a novel approach towards formulating effective microbial consortia that can serve as tailor-

made biofungicides for the biological control of postharvest fruit diseases.
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