
Universidad de la República
Facultad de Ingenieŕıa

PhotoHolmes: Study and
implementation of techniques for

detecting forgeries in digital images

Memoria de proyecto presentada a la Facultad de
Ingenieŕıa de la Universidad de la República por

Julian O’Flaherty, Rodrigo Paganini, Juan Pablo Sotelo,
Julieta Umpiérrez

en cumplimiento parcial de los requerimientos
para la obtención del t́ıtulo de

Ingeniero Electricista.

Tutor
Marina Gardella École Normale Supérieure Paris-Saclay
Pablo Musé . Universidad de la República
Mat́ıas Tailanian . Digital Sense

Tribunal
Mat́ıas Di Martino Universidad Católica del Uruguay
Alicia Fernández . Universidad de la República
Rafael Grompone. École Normale Supérieure Paris-Saclay
Lara Raad . Universidad de la República

Montevideo
Friday 14th June, 2024

PhotoHolmes: Study and implementation of techniques for detecting forgeries in
digital images, Julian O’Flaherty, Rodrigo Paganini, Juan Pablo Sotelo, Julieta
Umpiérrez.

This thesis was written in LATEX using the iietesis (v1.1).
It contains 196 pages.
Compiled Friday 14th June, 2024.
http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

The past was erased, the erasure was forgotten,
the lie became the truth.

1984, George Orwell

This page intentionally left blank.

Agradecimientos

Queremos agradecer a las personas que nos acompañaron durante este emocionante
y desafiante proceso. Proceso que comenzó cinco años atrás con un nuevo caṕıtulo
de nuestras vidas, y que hoy culminanamos con este proyecto.

Agradecemos en primer lugar a nuestras familias, parejas y amigos, tanto a los
que nos acompañan desde el primer d́ıa, como a los que fuimos encontrando a lo
largo del camino.

A nuestros tutores, Pablo, Marina y Mat́ıas, que con dedicación, paciencia y
buena voluntad, dedicaron tiempo y conocimentos a guiarnos en este proyecto. Su
apoyo continuo fue fundamental para el correcto desarrollo del mismo, que tuvo
como fruto un profundo aprendizaje y crecimiento del equipo, crecimiento tanto
académico como personal.

Agradecemos a la Facultad de Ingenieŕıa de la Universidad de la República, por
los años de formación brindados, por la oportunidad de llevar acabo este proyecto
y por todas las experiencias que nos ha dado. Queremos hacer un agradecimiento
especial al Instituto de Ingenieŕıa Eléctrica de la UdelaR, y en particular al Depar-
tamento de Procesamiento de Señales, cuyos integrantes acompañaron y motivaron
los últimos años de la carrera.

Agradecemos nuevamente al Instituto de Ingenieŕıa Eléctrica de la UdelaR, a
Pento.ai y a DigitalSense, donde los miembros de este proyecto se desempeñan pro-
fesionalmente y quienes han aportado a nuestra formación, la cual fue fundamental
para el desarrollo de este proyecto. Este agradecimiento se extiende también a em-
presas e instituciones pasadas a las cuales pertenecieron los miembros.

Agradecemos a ClusterUY, por proveernos con capacidad de cómputo y alma-
cenamiento.

Por úlitmo, queremos agradecer al tribunal de este proyecto, por su disposición
para evaluar nuestro trabajo. En especial, agradecer a Alicia, quien forma parte
del mismo y fue quien nos dio el voto de confianza para realizar el proyecto los
cuatro juntos.

This page intentionally left blank.

Acknowledgments

We would like to thank the people who accompanied us during this exciting and
challenging process. A process that began five years ago with a new chapter of our
lives, and that today, we culminate with this project.

First of all, we thank our families, partners and friends, both the ones who
have been with us since the first day, and the ones we met along the way.

To our tutors, Pablo, Marina and Mat́ıas, who with dedication, patience and
good will, dedicated time and knowledge to guide us in this project. Their con-
tinuous support was a cornerstone of the project’s progression, which allowed the
team to learn deeply and grow, both academically and on a personal level.

We thank the School of Engineering of the University of the Republic (UdelaR),
for the years of training provided, for the opportunity to carry out this project
and for all the experiences it has given us. We would like to give special thanks
to the Institute of Electrical Engineering of the UdelaR, and in particular to the
Department of Signal Processing, whose members accompanied and motivated the
last years of the degree.

We thank again the Institute of Electrical Engineering of the UdelaR, Pento.ai
and DigitalSense, where the members of this project work and who have con-
tributed to our formation, which was fundamental for the development of this
project. This gratitude is also extended to past companies and institutions to
which the members belonged.

We thank ClusterUY for providing us with computing and storage capacity.
Finally, we would like to thank the commitee of this project for their willingness

to evaluate our work. In particular, we would like to thank Alicia, who is part of
it and who gave us her vote of trust to carry out the project together with the
four of us.

This page intentionally left blank.

Resumen

Desde que el ser humano comenzó a pintar, hemos utilizado las imágenes como
forma de comunicar información. Tras la invención de la cámara digital, las
imágenes se han convertido incrementalmente en una forma de consumir infor-
mación, llegando al punto en el que consideramos que un hecho es más veraz si
hay una imagen que lo valide. Como consecuencia de esta importancia otorgada
a las imágenes, surge una necesidad importante en poder identificar las imágenes
que hayan sido manipuladas.

Esta tesis presenta un estudio del estado del arte en detección y localización de
manipulación de imágenes, y el consiguiente desarrollo de Photoholmes, una nueva
libreŕıa de código abierto en Python.

El trabajo comienza sentando las bases de la forensica de imágenes, partiendo
de cómo se adquiere una imagen digital y cómo podemos modelar las trazas que de-
jan las distintas etapas de este proceso, definiendo qué constituye una falsificación
y cómo pueden ser detectadas a nivel teórico, y una breve introducción al apren-
dizaje profundo. Habiendo expuesto estos conceptos básicos del área, presentamos
una colección de conjuntos de datos y métricas seleccionadas de la literatura, pro-
fundizando en los detalles de cómo las diferentes elecciones impactan en el análisis
del rendimiento de un método. A continuación, presentamos una selección de diez
métodos de detección de falsificaciones, elegidos por su singularidad, desempeño
y relevancia, en donde incluimos una breve descripción de cómo funciona cada
método y qué sesgos puede tener su desempeño.

Para garantizar una evaluación justa y reproducible, desarrollamos Photo-
Holmes. PhotoHolmes es una libreŕıa de código abierto en Python que compila
los métodos, conjuntos de datos y métricas mencionados anteriormente. Además,
incluye funcionalidades para ejecutar y evaluar fácilmente los métodos. La libreŕıa
está diseñada para ser fácilmente extensible, con el objetivo de mantenerla ac-
tualizada con el estado del arte a medida que avanza. Utilizando PhotoHolmes,
realizamos una evaluación exhaustiva de los métodos seleccionados en los conjun-
tos de datos. Finalmente, como fruto de esta evaluación, se expone un análisis de
las fortalezas, debilidades y particularidades de los métodos.

This page intentionally left blank.

Abstract

Ever since humanity began painting pictures, we have used images as a way to
communicate information. After the invention of the digital camera, images have
increasingly become a part of how information is consumed, reaching a point where
we consider something to be more truthful if there is an accompanying image that
validates it. Given the importance placed on images, it is crucial to be able to
identify images that have been tampered with. This thesis presents a study of the
state of the art in image forgery detection and localization, and the consequent
development of Photoholmes, a novel open-source Python library.

We begin the works by laying the groundwork on which image forensics is
based, starting from how a digital image is acquired and how we can model the
traces left by the different steps, defining what constitutes a forgery and how they
can be theoretically detected, and a brief introduction to deep learning. With a
basic understanding of the subject matter, we present a collection of datasets and
metrics selected from the literature, diving into the details of how the different
choices might impact the performance analysis of a method. We later introduced
a selection of ten forgery detection methods, chosen for their uniqueness, perfor-
mance, and relevance, where we include a brief description of how each method
works and what biases we should expect when running and evaluating them.

To ensure a fair and reproducible evaluation, we developed PhotoHolmes. Pho-
toHolmes is an open-source Python library that compiles the previously mentioned
methods, datasets, and metrics. Additionally, it includes functionalities to run and
evaluate methods easily. The library is designed to be easily extensible, with the
aim of keeping it up to date with the state of the art as it progresses. Using
PhotoHolmes, we thoroughly evaluated the methods selected across the datasets.
By analyzing the results, we identified the methods’ strengths, weaknesses, and
quirks.

This page intentionally left blank.

Contents

Acknowledgments iii

Abstract vii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 4
1.3 Related Works . 4
1.4 Thesis outline . 5

2 Background 7
2.1 Image Acquisition Pipeline . 7

2.1.1 RAW Acquisition . 7
2.1.2 Demosaicing . 10
2.1.3 Color Correction . 14
2.1.4 Image file formats and compression 15

2.2 Forgeries . 19
2.2.1 Defining a forgery . 19
2.2.2 Making a forgery . 19
2.2.3 Detecting a forgery . 20
2.2.4 Two different challenges . 21
2.2.5 Falsification types . 21

2.3 Machine Learning . 23
2.3.1 Introduction . 25
2.3.2 Data and biases . 27
2.3.3 Neural Networks . 28

3 What we are looking at: the data 31
3.1 Importance of data . 31

3.1.1 The generalization problem 31
3.2 Benchmark datasets in image forensics 32

3.2.1 Columbia . 33
3.2.2 CASIA 1.0 . 33
3.2.3 COVERAGE . 34
3.2.4 DSO-1 . 34
3.2.5 Korus . 34

Contents

3.2.6 AutoSplice . 34
3.2.7 miniTrace dataset . 36
3.2.8 Social networks versions . 38
3.2.9 WebP datasets . 40
3.2.10 Summary of datasets . 41

4 Measuring and qualifying the predictions: the metrics 43
4.1 What is a metric? . 43
4.2 The importance of good metrics . 44

4.2.1 Characteristics of Good Metrics 44
4.2.2 Consequences of Poor Metrics 45

4.3 Global definitions . 45
4.3.1 True and False, Positives and Negatives 45
4.3.2 Aggregating metrics . 46

4.4 Metrics . 47
4.4.1 Recall (rec) or True Positive Rate (TPR) 47
4.4.2 False Positive Rate (FPR) 47
4.4.3 Precision (prec) . 47
4.4.4 F1 score . 47
4.4.5 Matthews correlation coefficient (MCC) 48
4.4.6 Intersection over Union (IoU) 48
4.4.7 Reciever Operating Characteristic curve (ROC) 48
4.4.8 Area Under the ROC curve (AUROC) 49
4.4.9 Weighted Metrics . 49

5 Putting the traces together: the methods 53
5.1 Splicebuster . 54

5.1.1 Method . 54
5.1.2 Target forgeries . 55

5.2 Noisesniffer . 56
5.2.1 Method . 56
5.2.2 Target forgeries . 57

5.3 DQ . 58
5.3.1 Method . 60
5.3.2 Target forgeries . 62

5.4 ZERO . 62
5.4.1 Method . 63
5.4.2 Target forgeries . 66

5.5 CAT-Net . 66
5.5.1 Method . 68
5.5.2 Target forgeries and dataset biases 68

5.6 EXIF as Language . 69
5.6.1 Method . 70
5.6.2 Target forgeries and dataset bias 71

5.7 TruFor . 72
5.7.1 Noiseprint++ . 72

xii

Contents

5.7.2 Method . 73

5.7.3 Target forgeries and dataset biases 75

5.8 PSCC-Net . 75

5.8.1 Method . 76

5.8.2 Target forgeries and dataset biases 76

5.9 Adaptive CFA forensics . 77

5.9.1 Method . 77

5.9.2 Target forgeries and dataset biases 78

5.10 FOCAL . 80

5.10.1 Method . 80

5.10.2 Target forgeries and dataset bias 81

6 The PhotoHolmes library 83

6.1 What is PhotoHolmes? . 83

6.2 Design principles . 84

6.3 Design choices . 84

6.4 Structure . 85

6.4.1 Datasets . 86

6.4.2 Preprocessing . 87

6.4.3 Methods . 88

6.4.4 Postprocessing . 91

6.4.5 Metrics . 92

6.4.6 Benchmark . 94

6.4.7 Command Line Interface (CLI) 95

7 Evaluation 99

7.1 Recapitulation and evaluation notes 99

7.1.1 Benchmarked methods . 99

7.1.2 Metrics . 101

7.1.3 Datasets . 103

7.2 Non-semantic evaluation . 103

7.2.1 Localization . 104

7.2.2 Detection . 108

7.3 Popular datasets evaluation . 111

7.3.1 Localization . 113

7.3.2 Detection . 125

7.4 Summary . 125

8 Conclusions and future work 133

A Photoholmes library code 137

A.1 Dataset . 137

A.1.1 Base . 137

A.1.2 Implementation example . 142

A.2 Preprocessing . 144

A.2.1 Base . 144

xiii

Contents

A.2.2 Pipeline . 144
A.3 Method . 146

A.3.1 Base . 146
A.4 Benchmark . 149

References 161

Table Index 170

Figure Index 173

xiv

Chapter 1

Introduction

Come, Watson, come! The game is afoot!”

Sherlock Holmes

1.1 Motivation
Images play a crucial role not only in communications but also in the way we as
humans perceive the world. There is no room for doubt around the importance of
an image when it comes to corroborating a story in the press, as lately, we receive
most information through images and videos instead of text. From social networks
to news outlets and publicity, images are used to capture the users’ attention and
transmit a diverse amount of information quickly and effectively. With this comes
the surge of the so-called fake images that have the malicious intention of spreading
fake news.

Fake images are replicated in every corner of social networks such as Twitter,
Reddit, and Instagram, to name but a few, and probably are the main way to
spread misinformation. However, these forged images are not as new as anyone
would think. There are many examples of Stalinist propaganda using manipulated
images such as the one shown in Figure 1.1 in which, according to M. Jansen and
N. Petrov [48], Nikolai Yezhov was erased from the picture after Stalin declared
him an enemy of the state.

Another notable and famous example is the one shown in Figure 1.2, usually
referred to as the Tourist Guy. This viral image depicts a tourist, apparently
unaware of an approaching airplane moments before it crashed into one of the Twin
Towers on September 9, 2001. It fueled an urban myth claiming it was recovered
from a camera found in the rubble. Many observers rapidly found inconsistencies
in the image, from the fact that the plane was coming from the north when the
airplane that crashed into that tower came from the south or that the man was
wearing too many clothes, which was inconsistent with the temperature recorded
that day. Later, Péter Guzli came forward and admitted that he had spliced the
photo he had taken of himself in 1997 with a plane he found on the internet as a

Chapter 1. Introduction

(a) Original image (b) Forged image

Figure 1.1: Example of a forged image used by Stalinist propaganda. Image (a) shows Stalin
walking by a river accompanied by three people. One of them is erased in the image (b).
Images extracted from [4].

(a) Spliced image (b) Original image (c) Image used for splicing

Figure 1.2: (a) Famous spliced image denominated Tourist Guy. (b) Original image. (c) Image
used to do the splicing. Images extracted from [6].

joke to his friends and admitted he did not think the picture would spread across
the internet.

More recently, with the surge of editing software such as Photoshop and so-
cial networks such as Instagram, the circulation of manipulated images has only
increased. Some harmless examples can be found in Average Rob’s Instagram pro-
file [73] who, back in 2016, posted a lot of pictures splicing himself into images of
different celebrities such as Taylor Swift, as shown in Figure 1.3. On top of that,
in recent years, an increasing amount of deep learning-based techniques, such as
DALL-E 3 [18], have been released to the public, making it even more accessible to
anyone to manipulate an image and change its narrative according to the interest
of different people or organizations.

After considering the examples mentioned above, it is evident that certain ma-
nipulations, such as the infamous “Tourist Guy” phenomenon, can be identified
by visual inspection, trying to find inconsistencies in the context of the image,
misalignment of objects, differences in shadows, discrepancies in vanishing points,
among others. This is called doing a semantic analysis of an image. However,
detecting such manipulations is increasingly challenging as image processing soft-

2

1.1. Motivation

(a) Spliced image (b) Original image

Figure 1.3: (a) Spliced image of Average Rob into an image of Taylor Swift extracted from [73].
(b) Original image extracted from [5].

ware becomes more advanced and individuals with malicious intent have easier
access to these tools. Consequently, image processing algorithms have been devel-
oped to aid in detecting forged images. These algorithms take advantage of the
entire image acquisition pipeline, illustrated in Figure 1.4, to detect forgeries in
suspicious images. Each stage of this pipeline leaves distinct traces, enabling the
identification of inconsistencies that may reveal potential forgeries.

The pipeline begins with the raw acquisition, during which the image is cap-
tured with some noise introduced by the sensors. Subsequently, the image under-
goes demosaicing, a process that leaves traces due to the color filter array (CFA)
grid and demosaicing algorithm. Color adjustments, such as white balance and
color correction, are then applied. Finally, the image is saved, potentially in a
JPEG or WebP format, introducing additional traces due to lossy compression.
All of these steps will be discussed further in the next chapter.

Because of the relevance of the images themselves, it is vital to develop ways
to detect image forgeries. Because of their widespread use, these methods need
to be transparent and easy to use by people from areas that have no knowledge
of image processing, for example by returning masks that indicate the portion of
the image that was manipulated. In addition, the forgery detection community
is currently in a very early stage, with few research groups actively developing
methods and new techniques. This is evidenced by the lack of development tools
or libraries that centralize methods, datasets, and utilities or facilitate using the
same methods to perform different performance tests.

3

Chapter 1. Introduction

Figure 1.4: Full image acquisition pipeline with key steps that leave traces that are useful to
later detect potential forgeries.

1.2 Goals
As explained in the previous section, it is vital to have a diverse set of methods
available to test suspicious images. What was once solved by semantic analysis
is now becoming virtually impossible. Indeed, the advances in editing software
and new generative AI-powered tools, such as DALLE-3 [18], allow users to create
realistic forgeries impossible to detect by the naked eye. This is without considering
the malicious intentions of some people and organizations that actively try to
conceal said forgeries, making the challenge even more difficult. As previously
mentioned, the strategy for confronting this is to find inconsistencies within the
different traces left by the image acquisition pipeline. However, the nature of the
forgeries is rather unpredictable, meaning that no assumption can be made about
the kind of forgeries. Therefore, in most cases, inconsistencies are only present in
some traces of the imaging pipeline, not all. That is why complementary methods
are needed.

Due to the aforementioned reasons, this thesis aims to review different image
forgery detection and localization methods and then to build a Python library
that collects them all. This library will incorporate state-of-the-art methods that
exploit the inconsistencies in as many traces as possible to increase the chance of
successfully detecting forgeries. The last objective of this work is to evaluate the
methods implemented using the tools provided by the library. This evaluation will
contemplate different cases regarding types of forgeries and image formats, which
will be done using the diverse datasets integrated with the library. Furthermore,
such evaluation will be conducted using various metrics provided in the library to
highlight the strengths and weaknesses of each method.

1.3 Related Works
Similar ideas to the ones proposed as the goal of this thesis have been found
in the literature. For example, Zamploglou et al. [93] describes the creation of a
Matlab toolbox to detect image splicing by testing different methods. However, this
work’s limitation is its reliance on Matlab, which is proprietary software, making
it less usable than an open-source language. Related to that work is the Image

4

1.4. Thesis outline

Verification Assistant [94] which is a website1 created by the same authors that
allows any user to upload a picture and return the result of many algorithms
applied to the image. This one considers the necessity of evaluating an image with
different methods to increase the chances of a correct localization of the forgery.
However, due to lack of maintenance, new methods are rarely added, so the website
does not rapidly keep up with the state of the art.

Another related work is a GitHub repository, calledmatlab-forensics containing
different implementations of methods in Matlab [92]. Another example is the
fake-detection-lab [91] that started with similar ideas as this project but stopped
receiving updates shortly after and rapidly became outdated. The last notable
related work is InVID plugin2 [78], a browser plugin developed by the Agence
France Presse (AFP) to help journalists verify information coming from social
networks. Amongst several functionalities, the plugin provides forensic analysis
of suspicious images by displaying the results obtained by different algorithms on
the image to be tested. This plugin, which is public and free, can be used directly
from a browser. This allows people without coding expertise to test images easily.
Still, as in the case of the Image Verification Assistant [94], such platforms are
not well-suited for benchmark purposes. Besides, the code of the implemented
methods is not publicly available.

Despite the timid attempts in the field of forgery detection to develop a unified
open-source library, such kinds of libraries have already emerged in other fields. A
notable example is the Anomalib library [13], a Python library specially designed
to benchmark and develop anomaly detection methods. Even though said library
was designed with another problem in mind, the core design principles lay really
close to the ones needed to achieve the goal of this thesis. Therefore, it is taken as a
model to design the PhotoHolmes library presented in this work. Other remarkable
examples are the libraries developed by OpenMMLab, which include MMSegmenta-
tion [24] for image segmentation, MMPose [23] for pose estimation, MMOCR [53]
for text detection, recognition and understanding and MMDetection [20] for object
detection, to mention a few.

1.4 Thesis outline
The present chapter introduced the subject of this thesis: detecting forgeries on
digital images. More specifically, it described the motivation behind the problem
and the objectives of this thesis and additionally presented related work in the
field. The rest of the thesis is structured as follows.

Chapter 2 provides the necessary background to understand the problem. It
starts with Section 2.1, that describes the image acquisition pipeline. Section 2.2
presents definitions related to forgeries, explains the two different challenges we
study in this thesis, and describes the different forgery types one can encounter.
The final Section 2.3 explains basic machine learning concepts that are used

1https://mever.iti.gr/forensics/index.html
2https://www.invid-project.eu

5

https://mever.iti.gr/forensics/index.html
https://www.invid-project.eu

Chapter 1. Introduction

throughout this work.
Chapter 3 introduces the data used in this problem. The opening section of this

chapter, Section 3.1, explains the purpose of data in most problems and this one
specifically. Section 3.2 gives a detailed description of the selected datasets, pro-
viding some insights into the processing images suffer when uploaded to different
social networks, and introduces novel WebP datasets.

The selected evaluation metrics are discussed in Chapter 4. To achieve this,
Section 4.1 gives a brief definition of what is a metric and Section 4.2 begins by
explaining why selecting good metrics to evaluate performance is necessary. Then,
Section 4.3 gives global definitions used by almost every metric and explains the
two considered approaches used when aggregating metrics in evaluating a dataset.
Lastly, Section 4.4 presents a thorough explanation of the metrics chosen in this
thesis.

Chapter 5 presents the chosen methods. It is constitued by ten sections that
correspond to the ten selected methods, describing their methodology and the
forgeries they are likely to discover.

The PhotoHolmes library is presented in Chapter 6, which comprises the
datasets, metrics, and methods presented in the previous chapters. Sections 6.1
and 6.2 present an overview of the library and the design principles. The chapter
ends with Section 6.4 describing the structure of the library.

Chapter 7 presents the evaluation of the included methods in the different
datasets using some of the presented metrics, and Section 7.4 presents the main
takes from the chapter.

Finally, in Chapter 8, we present this project’s conclusions and future work.

6

Chapter 2

Background

“Elementary, my dear Watson.”

Sherlock Holmes

This chapter will introduce the background concepts needed to understand the
rest of the thesis. We will describe the image acquisition pipeline and the different
steps an image goes through before storing it in a digital format. These steps
introduce traces that can be exploited to detect tampering. In addition, we shall
define what we consider a forgery, how they are created, the different types, and,
more importantly, what kind of inconsistencies we can expect in each of them.
Finally, we will introduce basic concepts related to the field of machine learning,
on which many forgery detection methods are based.

2.1 Image Acquisition Pipeline
The image acquisition pipeline is the complete process of obtaining an image, from
the moment incoming light is captured by the camera sensors until the image is
stored in a digital format. This process is composed of several steps, each of which
introduces artifacts that can be exploited to detect tampering. The main stages
in the image acquisition pipeline are the following:

• RAW Acquisition, described in Section 2.1.1.

• Demosaicing, described in Section 2.1.2.

• Color Correction, described in Section 2.1.3.

• Image file formats and compression, described in Section 2.1.4.

2.1.1 RAW Acquisition
The acquisition is the first step of the image pipeline, and it refers to the conversion
from light to the earliest digital electric signal present in the camera sensor. We

Chapter 2. Background

describe first how the process is achieved in Section 2.1.1.1, according to [58]. With
this in mind, a full statistical noise model is described in Section 2.1.1.2, based
on [12].

2.1.1.1 Light sensors
In order to understand how cameras turn light into digital images, we first need
to describe light on a physical level. In modern physics, light is described by a
quantum particle called photon, which also has properties of an electromagnetic
wave, such as frequency or wavelength [58]. Light travels at a constant speed, so
it admits a spectral decomposition on the frequency axis or the wavelength axis
since c = λf is constant, where c is the speed of light, λ the wave-length and f
the frequency. Visible light is essentially a collection of photons with wavelengths
ranging from 380nm to 700nm (the human visible spectrum). White light is
comprised of an equal mixture of all wavelengths. When it impacts an object,
this one will absorb energy from certain wavelengths and reflect the light in the
remainder of the spectrum. The remainder is a composition of different intensities
at different wavelengths. It is due to this phenomenon that, when the reflected
light reaches our eyes, we see color. An optimal representation of light with color
can be achieved by a tuple of three numbers describing, for example, the intensity
at the red (700nm), green (546.1nm), and blue (435.8nm) colors. The sum of
these three colors at different intensities will result in a colored dot at a given
intensity.

Hence, a digital image can be represented as a matrix of colored light cells, or
pixels, each being a tuple of three numbers: the light intensity at red, green, and
blue. The combination of these three colors creates a colored dot, and a matrix of
colored dots composes a digital image. To capture this information, one must be
able to measure the light intensity reflected from the object of interest, at different
wavelengths (according to the three different primary colors).

Acquiring a RAW digital image requires cameras to be equipped with sensors
that convert light to digital signals. There are mainly two mechanisms to do so:
charge-coupled devices (CCDs) and complementary metal-oxide semiconductors
(CMOS) [58]. In either of them, light is captured by photo-diodes, which create
an electric charge in response to an incoming photon. For these to appropriately
measure intensity, the electric charge is accumulated in a potential well throughout
a given time called exposure time. In this section, we focus on the measurement
of light intensity in general. Sensing intensity at different wavelengths can be
achieved through a matrix of optical filters preceding the photo-diodes and with a
series of operations called “demosaicing”, which will be covered in Section 2.1.2.

More specifically, a digital camera will acquire an image with a system com-
prised of a lens, followed by an integrated circuit that contains a dense matrix of
photo-diodes and a conversion circuit that outputs the digital signal in the form of
voltage. It is in this conversion system that CCDs and CMOS sensors differ: the
first will have the potential well charge be carried into another potential well that
later converts the signal, while the latter will convert the signal at the location of
the photo-diode.

8

2.1. Image Acquisition Pipeline

Figure 2.1: Diagram showing the pixel acquisition stages, indicating the noise sources. Ex-
tracted from [12].

2.1.1.2 Sensor noise model

In the interest of performing image forensics, this stage of the camera acquisition
pipeline is where one can begin to model the digital image’s noise. Noise in a
signal is essentially the errors on the final measured signal with respect to the
actual signal. Noise is usually modeled as a random variable following a certain
distribution. An image’s noise model is specific to the image itself, as it depends
not only on the camera that captured the image but also on the specific parameters
used during the acquisition process, which are related to the scene and the user’s
settings. Therefore, a digital image’s noise model may be useful information to
reveal tampering.

Errors or noise come from several sources in the RAW acquisition of an image
(see Figure 2.1). First, a variable Si ∼ Poisson(λi) is introduced to model what
is called random shot noise and dark current. Shot noise refers to the random
variations of the incoming photons in a pixel, so the same pixel may read a different
value at the same light intensity, and dark current is the term for the thermally
generated electrons stored in the potential well. Both of these can be modeled
as independent Poisson variables. Therefore, the variable Si, which is a linear
combination of both, is also a Poisson variable. A Poisson distribution implies that
the noise levels are signal-dependent, as the variance depends on the mean value:
the intensity of the light incident on the pixel at each exposure. Moreover, the
previous noise model also has a spatial dependency introduced by manufacturing
details on each sensor, resulting in a variance in their gain. This is often referred
to as Photo Response Non-Uniformity (PRNU), which is a random variable that
depends both on the signal and the spatial location of the pixel and is unique to
each camera.

Added to this, a second noise source NR refers to readout noise, which is
Gaussian distributed as it is associated with the thermal noise in the readout
circuitry. This can be modeled equally for the whole image in the case of CCDs,
or as column-dependent in the case of CMOS sensors, due to their difference in
the readout mechanism.

9

Chapter 2. Background

Finally, another noise source is quantization noise, denoted by Q. It corre-
sponds to the error produced by the digital representation of the voltage value and
can be modeled by a uniform distribution.

Putting all of this together, and denoting gi the total gain of the sensor sig-
nal, the complete model for the final pixel i voltage noise (RAW image before
demosaicing) is:

Zi ∼ giSi +NR +Q. (2.1)

This model can be simplified in some ways. The first way is to observe which
is the most predominant noise. In this regard, it has been established that photon
shot noise is more relevant under high illumination, while the readout noise is
dominant under low illumination. Another way of simplifying this is by neglecting
the quantization noise and approximating the Poisson noise as Gaussian, thus
modeling the complete noise model as Gaussian as explained in [12].

Finally, the non-uniformity of the noise model is very relevant in several image
processing applications but is of little use in blind image forgery detection methods
as it is too weak compared to other types of traces.

2.1.2 Demosaicing
For capturing color in a real image, most cameras have a juxtaposition of sensors
with different chromatic filters (red, green, and blue), meaning each pixel “truly”
measures the intensity at only one of the three primary colors. With a sensor cap-
turing one color and its neighboring sensors capturing the others, when captured,
a RAW image has only one color intensity for each pixel. A three-color image
can be reconstructed by applying an interpolation algorithm. This interpolation
is usually referred to as demosaicing.

The different color sensors’ arrangement configuration is called chromatic ar-
rays or color filter arrays (CFA). There have been various configurations proposed,
starting from the simple striped arrays (see Figure 2.2(a)) to more complex con-
figurations such as X-Trans array which implements a hexagonal pattern (see
Figure 2.2(b)).

One of the most used chromatic arrays is the Bayer filter, also referred to
as Bayer mosaic, which B.E. Bayer invented at Kodak [17]. Due to the high
popularity of this configuration, it deserves to be explained more deeply.

2.1.2.1 Bayer filtering

The Bayer filter favors the green channel, assigning half of the sensors to this color,
whereas the red and blue channels are assigned a quarter of the sensors each [17].
The mosaic consists of the repetition of a 2 × 2 matrix (see Figure 2.3), where
half of the pixels sample the green color, and are placed diagonally. Naturally, this
means the Bayer array can follow four basic configurations, as shown in Figure 2.4.

This design is based on the principle that the Human Visual System (HVS) is
more responsive to green detail than to red and blue details [17]. By sampling the

10

2.1. Image Acquisition Pipeline

(a) Striped array (b) X-Trans array

Figure 2.2: (a) Striped array: One-third of the pixels are allocated to each color channel,
resulting in an imbalanced sampling between the two directions. There is a significant under-
sampling in one direction, whereas the sampling is done correctly in the other direction. (b)
X-Trans array: This arrangement is said to minimize moiré effects and, in turn, increase
resolution by eliminating the need for a low-pass filter. Images extracted from [58]

Figure 2.3: Bayer array : arrangement of color sensors in a Bayer filter pattern. The repeating
2x2 grid showcases the distribution of red, green, and blue sensors. Image extracted from [58].

green channel twice as much as the other two channels, the Bayer array provides
a higher quality perception to the human observer by matching its visual system.

The raw output of Bayer-filter cameras is referred to as a Bayer pattern image
and this image is interpolated using demosaicing.

2.1.2.2 Demosaicing algorithms

Let S be the matrix of sampled pixels in the chromatic array layout shown in
Figure 2.5. Given a pixel (x, y), the entry S(x, y) has a label associated, which
can be r(x,y), g(x,y) or b(x,y), depending on which color was sampled at pixel (x, y),
where r stands for red, g for green and b for blue. The demosaicing problem

11

Chapter 2. Background

Figure 2.4: Bayer array configurations. From left to right: GBRG, BGGR, GRBG and RGGB.
Image extracted from [58].

Figure 2.5: The top-left portion of a CFA image obtained from a Bayer array, where the letter
r, g, or b denotes the color filter at the pixel position, and the sub-indexes denote the pixel
position. Extracted from [67].

consists of estimating the missing colors for each pixel. More specifically, if we
define R̃(x, y), G̃(x, y) and B̃(x, y) as the channels extracted from the chromatic
filter:

R̃(x, y) =

S(x, y) if label[S(x, y)] = rx,y

0 otherwise
, (2.2)

G̃(x, y) =

S(x, y) if label[S(x, y)] = gx,y

0 otherwise
, (2.3)

B̃(x, y) =

S(x, y) if label[S(x, y)] = bx,y

0 otherwise
, (2.4)

then the goal of demosaicing algorithms is to find the interpolated channels R(x, y),
G(x, y) and B(x, y) by estimating the missing samples in R̃(x, y), G̃(x, y) and
B̃(x, y), respectively.

Several demosaicing algorithms are designed to interpolate RAW pattern im-
ages [22,37,55]. Some of these are brilliant in their simplicity and achieve accept-
able results, while others are highly complex but manage to represent details more
finely. To get a glimpse of how demosaicing algorithms operate, we present a list of

12

2.1. Image Acquisition Pipeline

some traditional algorithms and a brief description of them, following [67]. Since
the Bayer pattern is one of the most widely used CFA patterns, the demosaicing
algorithms presented below are based on this array.

• Kernel-based: This methods treat each channel separately and apply linear
operations to interpolate the missing values as follows:

R(x, y) =

N∑
u,v=−N

hr(u, v)R̃(x− u, y − v) (2.5)

B(x, y) =
N∑

u,v=−N

hg(u, v)G̃(x− u, y − v) (2.6)

G(x, y) =

N∑
u,v=−N

hb(u, v)B̃(x− u, y − v) (2.7)

where hr(·),hg(·) and hb(·) are linear filters of size (2N + 1)× (2N + 1) for
the red, green, and blue channels, respectively. The size and values of the
filters vary depending on the type of interpolation. For bilinear and bicubic
interpolations, with N = 1 and N = 3, the filters are shown below.

hbilinear =
1

4

(
0 1 0
1 4 1
0 1 0

)
hbicubic =

1

256

0 0 0 1 0 0 0
0 0 −9 0 −9 0 0
0 −9 0 81 0 −9 0
1 0 81 256 81 0 1
0 −9 0 81 0 −9 0
0 0 −9 0 −9 0 0
0 0 0 1 0 0 0

 (2.8)

• Smooth Hue Transition [22]: This method is based on the hypothesis that
color hue varies smoothly in natural images and thus can be considered con-
stant in a small region. Here, the definition of hue is the ratio between the
chrominance (red and blue channel intensities) and the luminance (green
channel intensities). This algorithm first estimates G(x, y) using bilinear
interpolation. Then, the hue channels R(x, y)/G(x, y) and B(x, y)/G(x, y)
are biliearly interpolated from R̃(x, y)/G(x, y) and B̃(x, y)/G(x, y), respec-
tively. After this is done, the missing red and blue pixels can be calculated
by doing a pointwise multiplication between G(x, y) and the aforementioned
hue channels.

• Median filter [37]: First R̃(x, y), G̃(x, y) and B̃(x, y) are bilinearly interpo-
lated. Then, the pairwise differences of the interpolated channels are calcu-
lated as red minus green, red minus blue, and green minus blue, and these
differences are filtered using a sliding window that converts the value of the
central pixel of the window into the median value of the window, commonly

13

Chapter 2. Background

referred to as median filtering. In this algorithm, the filtered differences at
every pixel are used as estimations of R(x, y)−G(x, y), R(x, y)−B(x, y) and
G(x, y) − B(x, y). Hence, one can operate by applying a sum or difference
between these and S(x, y) to obtain R(x, y), G(x, y) and B(x, y). Whether
a sum or a difference applies depends on the estimated channel and the true
color intensity S(x, y) at the pixel.

• Gradient-Based [55]: This interpolation method uses the gradient informa-
tion of S(x, y) to interpolate missing values of G̃(x, y) in order to avoid
interpolating across edges. After this is done, bilinear interpolation obtains
R̃(x, y) and B̃(x, y). This type of interpolation technique is called adaptive.

There are other demosaicing algorithms, and there will be more in the future,
as this step is crucial in the image processing pipeline and directly impacts the
final image color and detail quality.

2.1.3 Color Correction
When we take a picture, the image is not always a perfect representation of what
we see with our eyes. This is because the camera sensor does not have the same
capabilities as the HVS. The HVS is capable of adapting to different lighting
conditions and can perceive a wide range of colors and intensities. On the other
hand, the camera sensor has a limited dynamic range and color gamut and is not
capable of adapting to different lighting conditions. This is why we need to apply
color correction techniques to the images we capture, to make them look more like
what we see with our eyes.

Color correction is the process of adjusting the colors of an image to make them
look more natural. This process can involve several steps, such as white balance
and gamma correction.

2.1.3.1 White Balance

White balance is a color-correcting process that aims to counteract the effect of
a colored light source on an image, as a means to obtain an image under neutral
light. In other words, white balance makes objects that are white in real life appear
white in the image.

White balancing can happen automatically, as is the case for most images taken
by our phones, or can be done manually if the image is taken with more specialized
devices. The HVS is really good at detecting white colors under various lighting
conditions, but it is a challenge to replicate this behavior automatically in digital
images.

An example of an automatic white balance algorithm is the White Patch
Retinex [33]. This algorithm works under the assumption that the brightest patch
in an image corresponds to a white spot. Essentially, it works as a sort of channel-
wise normalization to obtain white color at the most intense point in the image.
However, this algorithm estimates the highest intensity in each channel not by the

14

2.1. Image Acquisition Pipeline

(a) Image with Canon auto White Balance (b) Image with custom White Balance

Figure 2.6: (a) A scene photographed using the Canon auto white balance setting. (b) The
same scene with a custom white balance setting. Images extracted from [35].

maximum value, but rather the value at the top kth-percentile, and thus corrects
the image by dividing by these estimates and clipping, leading to a more robust
output.

Figure 2.6 shows an example of how white balance affects an image.

2.1.3.2 Gamma Correction

As described in Section 2.1.1, the intensity is proportional to the number of photons
that reach a given sensor during the exposure time. This means that if twice the
amount of photons reaches the sensor, the intensity read by the sensor increases
twofold. However, human perception does not follow this linear response. The
HVS, under normal lighting conditions1, follows a power law response [77]. This
type of response makes human perception more sensitive to relative differences in
darker tones than brighter tones.

If we were to see the captured image right off the sensor, we would have washed
out images, with many details lost in the high-intensity bands. To address this,
the image goes through a process called gamma correction that transforms the
image in a way that is more suitable to our perception, allocating more bits to the
bandwidths we can perceive [69].

2.1.4 Image file formats and compression
Once an image has undergone several processing steps, it is stored in a file format
that a computer can read. The file format is a standard way of organizing and
storing data, and it is essential to understand the different types of file formats
and their characteristics to work with images. On top of that, some compression
formats leave traces that are of great assistance in the context of image forgery
detection. In this section, we discuss the most common image file formats and
their compression methods.

1This response is not valid in pitch black darkness and extremely bright environments

15

Chapter 2. Background

2.1.4.1 Tag Image File Format (TIFF)
Tag Image File Format [11], commonly referred to as TIFF, is a computer file
used to store raster graphics and image information. The TIFF makes it possible
to store the image either uncompressed or using LZW lossless compression [25],
while also being able to attach any extra information needed to the file. The file
specification’s copyright is held by Adobe. This image format is used for high-
quality photographs, high-resolution scans, or as container files, as they allow the
storage of multiple JPEG compressed images in one file. In the image forgery
domain, TIFF images are used for their ability to store images in raw format and
uncompressed.

2.1.4.2 JPEG compression
JPEG compression has become the most popular way of compressing an image to
transmit it in a reasonable quality [58]. This form of compression (which is the
short form of the Joint Photographic Experts Group) was born in 1992 when a
group of experts presented a new method to compress images. The encoding is
based on the steps mentioned below:

1. Color space conversion from RGB to a luminance/chrominance space (e.g.
YCrCb). This is done leaning on the fact that according to the HVS the
human eye is much more sensitive to luminance changes than to chromatic
changes and allows for the second step explained below.

2. Subsampling of the chrominance channels in both directions (commonly by
a factor of 2).

3. Division on 8×8 non-overlapping blocks. In the case of the luminance chan-
nel, this maps to a 8× 8 window and, in the case of chrominance channels,
into 16× 16 blocks (which were subsampled by a factor of 2).

4. Discrete Cosine Transform 2D (DCT type II) of each block to concentrate
the energy of each block in a few coefficients. Let B be a block of size N×N
of any channel, B(x, y) the pixel value of that block at coordinates (x, y)
and D the DCT of that block, the value of the DCT block in the frequency
pair of coordinates (k, l), D(k, l), can be defined as follows:

D(k, l) =
2

N

N−1∑
i=0

N−1∑
j=0

B(i, j)C(i)C(j) cos

(
(2i+ 1)kπ

2N

)
cos

(
(2j + 1)lπ

2N

)

with C(i) =

√
2

2
if i = 0 and C(i) = 1 otherwise.

5. Quantization of each DCT coefficient. This is the most crucial step to ac-
complish the compression. Based on the HVS, the human eye fails to detect
changes in high frequencies, and so the compression scheme uses that by
highly quantizing those high frequencies. To do so, a quantization table Q is

16

2.1. Image Acquisition Pipeline

Figure 2.7: Quantization step in JPEG compression. Including a quantization table, the DCT
coefficients, and then the quantized DCT coefficients with the zig-zag followed to achieve
entropy encoding. Extracted from [70].

defined, where each entry of the table is represented by Q(k, l), which con-
tains a natural number representing the amount of quantization each DCT
coefficient will suffer. Afterwards, the (k, l) entry of the DCT block is quan-

tized as round
(
D(k,l)
Q(k,l)

)
. The quantization table is later saved in the image

metadata to allow the decoding of the image, by multiplying the values by
Q(k, l).

The higher the quantization coefficient Q(k, l), the higher the level of com-

pression, as D(k,l)
Q(k,l) has a smaller dynamic range (for a fixed round(.) function

to integer numbers). As an example, note that the least harsh compression
in the JPEG standard is associated with a table Q consisting of all ones.

6. Zig-zag of the quantized coefficients to encode by entropy coding. This
ordering process rearranges the coefficients within each block by following
a zig-zag pattern that begins at the top-left corner and weaves through
the block to the bottom-right. This specific pattern is designed to place
lower frequency components, which typically hold more significant visual
information and are less likely to be zero, at the start of the sequence. The
high-frequency components, often reduced to zero or near-zero values due
to aggressive quantization, are placed toward the end. The coefficients are
encoded using entropy coding techniques.

The last two steps are illustrated in Figure 2.7, which shows the DCT coefficients
after quantization, an example of a quantization table, and then the quantized
DCT coefficients.

It is in the quantization step of the method that the quality factor of the
compression comes into play. The quality factor is a number that ranges from 1
to 100 (the higher, the better quality) linked to the quantization table that saves
the information regarding how much each coefficient was quantized.

17

Chapter 2. Background

2.1.4.3 Portable Networks Graphics (PNG) compression

Portable Network Graphics [41], known by its abbreviation and file extension PNG,
is a computer file format for storing, transmitting, and displaying images. Nowa-
days, it is widely used in web development. Unlike JPEG, PNG compression is
lossless, allowing for the full reconstruction of the image after transmission. In the
domain of image forensics, PNG compression is not a relevant step of the image
processing pipeline, since the lossless compression does not destroy or add any
traces to the image.

PNG is also highly regarded for its support of transparency. The transparency
is managed through what is known as an alpha channel, an additional layer of
information that is integrated into the image file. It specifies the opacity of each
pixel in the image to be used when overlayed upon another, ranging from com-
pletely transparent to completely opaque. The output image is the pixel-weighted
average between the image and the background it was overlayed on, according to
the value of the alpha channel.

2.1.4.4 WebP compression

WebP is an image compression format [40] developed to improve web performance
by reducing the file size of images, thus minimizing the data transferred in web
applications. It employs both lossy and lossless compression methods. In its
lossless mode, WebP can achieve file sizes that are approximately 26% smaller
than equivalent PNG files. However, its lossy compression, which is particularly
relevant in the context of image forensics, can reduce file sizes by approximately 25-
34% compared to JPEG images while maintaining a similar Structural Similarity
Index (SSIM), a measure of image quality [85].

The procedure for WebP compression format is based on block prediction, and
uses the same principle as existing video encoders (VP8 in particular). The image
is divided into non-overlapping blocks, and an encoder will attempt to predict
the block values from the previously processed blocks. The residue between the
prediction and the original image is then compressed, in a similar fashion to JPEG
compression (Section 2.1.4.2), by computing the DCT of each block, quantizing,
and entropy encoding the coefficients. The lossy step in this procedure is only
the quantization step, although the encoder allows for similar results with further
compression than the traditional JPEG compression.

Lossy WebP compression is noteworthy not only for its efficiency in reducing
file size but also for its support of transparency, a feature not typically associated
with lossy image formats. This can result in files that are up to three times smaller
than their PNG counterparts when transparency is required. This characteristic
is especially significant in web contexts where transparency and compression can
greatly enhance performance without compromising visual quality.

In the domain of image forensics, we are interested in lossy WebP as this
image compression method introduces specific artifacts that can serve as forgery
detection hints. However, they can also alter the previously existing traces left
by image manipulation operations. If WebP artifacts cover the traces that the

18

2.2. Forgeries

methods rely on to try to detect forgeries, the detection process may be hindered
or even rendered ineffective.

2.2 Forgeries
The main subject of this work is the detection of forgeries in digital images. There-
fore, it is important to understand what a forgery is, how it is made, and how it
can be detected. In this section, we will explore these topics.

2.2.1 Defining a forgery
In image forensics, the main type of data are images and, in particular, forged
images. A forgery is a local manipulation of an image with the intent to change
the original captured scene. The use of the word local is key in this definition
since we consider the forged regions in an image to be small compared to the size
of the image. This works as an important prior for both developing methods and
evaluating them.

While working with this problem, we will encounter annotated data. In this
case, the data will be an image and the corresponding ground truth mask. The
ground truth mask is an image of the same size as the original image. If the image
is pristine this ground truth mask will be an image full of zeros. If the image is
forged, the ground truth mask will be an image with ones in the area in which the
image was tampered with. Throughout this work, we will refer to these masks as
ground truth masks or forgery masks.

2.2.2 Making a forgery
Traditionally, forgeries in digital images were done manually, using software like
Adobe Photoshop [1], by copying and pasting parts of an image, painting over
regions whose content wants to be hidden, or even pasting some parts of images
on top of another one.

Recently, there has been an outburst of text-to-image and image-to-image gen-
eration models, such as DALL-E 3 [18], Midjourney [61] or Stable Diffusion
XL [65] to name a few. Concretely, these are deep learning generative models
that allow to, in one way or another, generate artificial imagery (as opposed to
that generated by a camera pipeline). The images generated by these models are
outstanding, and currently, the challenge of detecting whether or not an image
is artificially generated is very relevant. However, this work focuses on identify-
ing image acquisition traces, which may not be present in artificially generated
images. Moreover, as better described in Section 2.2.3, the strategy will be to
identify anomalous behavior within these traces, and hence completely artificially
generated images are excluded from the detection methods in this study.

Having said this, we will consider a dataset that creates local in-painting of
images using AI generation tools to see how the detection methods fare.

19

Chapter 2. Background

2.2.3 Detecting a forgery
In Section 2.1 we discussed how an image, after being captured by a camera, flows
through a processing pipeline that converts the reading from the photo-electric
sensors to a digital image. The resulting images have numerical patterns, that
should be consistent throughout the image. These patterns are what we refer to
as traces, which include noise from the sensors and artifacts from compression or
demosaicing, among others.

When a modification is applied to an image, the traces are also modified.
Here is where the locality of forgeries becomes key to the problem. As mentioned
before, the traces are mostly uniform throughout the image, but this uniformity
is altered when a part of an image is modified. There is now a new region of the
image that has distinct traces from the rest of it. Let us frame the problem as
a segmentation problem, where we want to segment image regions with different
trace distributions.

Although it may seem like a simple problem, the reality is that trace unifor-
mity is a crucial assumption that rarely occurs because patterns from the image
scene itself are added to the traces generated by the pipeline. For instance, pixel
saturation in images with extreme luminosity or darkness, or part of an image
featuring a large textured region (rapid luminosity changes), can alter the traces
in specific zones of the image.

One thing to keep in mind is that, while the approach described before is
theoretically correct and yields the most explainable results, one can brute force
the problem by training a supervised machine learning model on pairs of forged
images and masks, as some deep learning-based methods do. These approaches
perform well most of the time on popular datasets but are prone to errors when
used in other contexts. In addition, deep learning models lack the explainabil-
ity that methods that work upon the trace distributions have, which can be an
important requirement in some applications of image forensics. Nonetheless, un-
derstanding how the problem can be solved enriches the research behind these
methods, regardless of whether the approach is by brute force or not.

The approaches described before are statistical approaches, where detection
or localization is achieved by analyzing the pixel statistics of the image. Another
approach to forgery detection is by using context information within the image,
which is what we call a semantic evaluation or a semantic cues analysis. Illumina-
tion details, noticeable cropping and resizing, duplicates within the image, all of
these and more constitute semantic clues. These are elements that methods could
use to detect forgeries. However, these clues are not reliable enough in light of
the recent development of tools that are making forgeries almost invisible in this
regard, and because forgers are paying close attention to avoid such clues.

In addition, humans could perform a richer semantic analysis by including their
knowledge of the world, something that methods will not do. Some images, such as
the Tourist Guy presented in Chapter 1, can be analyzed more in-depth by using
external information, such as dates, context or even finding the original images.
All in all, in this work when we refer to semantic evaluation or semantic cues, we
will be referring to analyzing the suspicious area within the context of the image

20

2.2. Forgeries

but without taking into account real-world knowledge that methods’ are unaware
of.

2.2.4 Two different challenges
By now, it should be clear that the goal of this project is to detect whether
a digital image was tampered with or not. At first thought, one could assume
that the subject matter is to solve a classification problem in which the target is
between two classes, tampered and untampered. This problem, from now on, will
be referred to as detection problem.

Detection outputs can be binary predictions (1 for tampered and 0 for pristine)
or scores. The latter is a number ranging from 0 to 1, that can be interpreted as
the probability of an image being forged.

The detection problem, although it is of vital importance, is not the only goal
of this work. As was described in Chapter 1, one of the reasons that motivate this
project is to provide tools for people not familiar with advanced image processing,
for them to visualize which parts of an image can be trusted and which may have
been tampered with. The aforementioned problem from now on will be called
localization problem. If the method tackles the localization problem, it should
output an image of the same size as a suspected image, which will be referred to
as a localization map.

The localization map can be of two types, either a binary mask or a heatmap.
The binary mask has two possible values for each pixel pixel, either zero, which
means no tampering, or one, which means it is tampered. The heatmap is a type
of localization output that allows each pixel to take a continuous value between
zero and one, which should correlate with how likely a pixel is to be tampered.
From this point on, we will refer to the heatmap outputs as heatmaps, and to
binary masks simply as masks.

It is worth mentioning that some of the methods that tackle the localization
problem also provide a detection prediction. In the cases where the method only
tackles the localization, the highest values in the heatmap highlight the most
suspicious regions, but no confidence is provided to judge whether it constitutes a
forgery.

2.2.5 Falsification types
One might think that there are as many types of forgeries as the imagination of
forgers allows. While this is true to some extent, in the field of forgery detection,
falsifications are often grouped into a few categories. In this section, we will explore
these categories, each of which has unique traits that can either aid detection or,
conversely, make detection very difficult.

2.2.5.1 Copy-move
Copy-move forgeries consist on cloning a region of an image on itself. The copied
region can also be resized and rotated when moved. Figure 2.8 provides an example

21

Chapter 2. Background

(a) Original image (b) Copy-move forgery (c) Forgery mask

Figure 2.8: Example of a copy-move forgery (b) extracted from the Casia-V1 dataset [32].
Notice how the flowers in the top left corner of the image (a) are duplicated in the forgery (b).
On image (c) you can see the forgery mask.

alongside the forgery mask.

From the forger’s perspective, this kind of forgery has the upside that the forged
region went through the same image generation pipeline and compression history as
the rest of the image, making them difficult to detect with noise-based algorithms.
However, if the part used for copy-move is resized, some noise-based methods
might be able to detect the forgery because the noise level will be modified.

The downside of this type of forgery is that the forged region has an exact
replica in the image, so one could try and find the pair to check if it was tampered
with. Sometimes, the human eye can spot the forged regions, but this is not always
the case as transformations can be applied to the copied region, like rotation or
scaling, or simply because the region is not easily recognizable. At the trace level,
though noise-based methods rarely work on this kind of forgeries, there are still
some things that can be exploited to detect forgeries, such as misalignment of the
Bayer filter or the JPEG grid.

Some methods that are dedicated to this type of forgery, which seek to find two
identical objects in the image. For example, in [8] a method based on detecting
copy-move forgeries with Scale Invariant Feature Transform (SIFT), which iden-
tifies and describes local features in images robustly against scaling and rotation,
and then clusters these features into similar groups, and when features in the same
cluster are spatially separated they are reported as possible copy-move forgeries.
This type of method is not the subject of this thesis.

2.2.5.2 Image Splicing

Image splicing is a technique that consists of pasting one or more regions of an
image onto another. This is often the type of forgery one is familiar with, by

22

2.3. Machine Learning

(a) Original image (b) Spliced image (c) Forgery mask

Figure 2.9: A forged image of Paul McCartney drinking fernet from a makeshift glass (b)
alongside the original image (a) and the forgery mask (c). The forged image source is unknown,
the original image was extracted from Paul’s twitter [7]

encountering it on the Internet or social media (at least before the boom of gen-
erative models). In Chapter 1, Figure 1.2 and Figure 1.3 are two examples of this
type of forgery. In Figure 2.9 we can see another example of image splicing, where
Paul McCartney’s teacup has been replaced by the bottom of a plastic bottle with
Fernet with a cola soft drink.

In Figure 2.10, we can also see another example of image splicing with all the
images involved in the forgery.

Unlike copy-move forgeries, the resulting image has regions that may have
been subjected to different camera pipelines. Most methods try to exploit this by
modeling pipeline traces, be it by camera noise, compression, or demosaicing, and
looking for parts of the image where those differ from the rest.

2.2.5.3 Image Inpainting
Image inpainting is the task of reconstructing regions of an image. In the con-
text of image manipulation, image inpainting is used to erase regions of an image
and reconstruct them with other content. Several techniques that can be used
for image inpainting. A classical approach is to replicate the image content to
complete the scene. Modern approaches like Photoshop’s Generative Fill [2] or
ClipDrop [3] make use of deep-learning generative models to reconstruct parts of
the image. They analyze the surrounding areas of the region to be filled to gener-
ate new and fitting content, as opposed to simpler copy-and-paste methods. This
approach allows for more natural and cohesive image restorations or alterations.
In Figure 2.11, an example of image inpainting is shown.

2.3 Machine Learning
The last piece of background we need before continuing with this dissertation is
in the field of machine learning, as it is how most recent methods try to solve the
problem at hand.

23

Chapter 2. Background

(a) Original image (b) Image used for splicing

(c) Spliced image (d) Forgery mask

Figure 2.10: Example of an image splicing forgery. In (a) the background image, (b) the
donor images, (c) the forged image, and (d) the forgery mask. Extracted from the Casia-V1
dataset [32].

(a) Original image (b) Image inpainting (c) Forgery mask

Figure 2.11: An example of image inpainting. The tampered image (b) was made using DALL-
E 2. The image was extracted from the AutoSplice dataset [49].

24

2.3. Machine Learning

2.3.1 Introduction
When engineering a solution for a problem, one of the first steps is obtaining a
model through physics and mathematical modeling. This model, which is a set of
equations, depends on a set of parameters that represent properties or character-
istics of the system being modeled. By adjusting these parameters, either through
measurements or analytically, we can make the model approximate the phenomena
featured in the problem, which can be used to make predictions, decisions, or an
analysis.

In recent years, using Machine Learning (ML) to solve problems has become
increasingly popular, where instead of manually describing the problem through
mathematical equations, a generic parametric multi-purpose model is postulated
and the parameters are fitted to a set of data using an optimization algorithm.

Machine learning is the field of study that attempts to give computers the
capacity to “learn” from given data without being explicitly programmed [43].
More concretely, this means that the solution is first outlined by a much more
general mathematical model f(x; θ), where θ is a set of parameters that can be
adjusted. This model’s parameters are fitted to a set of data using an optimization
algorithm, which aims to minimize (or maximize) a certain metric, commonly
referred to as loss function.

Machine learning is a vast field with a lot of different algorithms and techniques.
One of the most common ways to classify machine learning techniques is in the
following categories: supervised, unsupervised, and reinforcement. More recently,
the term self-supervised learning has been added to this classification. Each of
these types of learning was designed to tackle a different kind of problem, stemming
from how the data is received and dealt with. Supervised learning deals with
labeled datasets, aiming at extracting specific information from the data to make
a prediction that matches the provided label. Unsupervised learning deals with
unlabeled data, where the aim is to find relations between data points in the
dataset. In self-supervised learning, the model is trained on a task using the data
itself to generate supervisory signals, rather than relying on external labels. Lastly,
reinforcement learning aims to optimize behavior, where the model is rewarded or
penalized according to the events it triggers.

2.3.1.1 Supervised Learning

In a supervised scenario, the data is labeled, meaning the data fed to the model
consists of an input x ∈ X and an expected output y ∈ Y. To put the problem in
mathematical terms, we can say there is an unknown target function g : X → Y
mapping the input data to its correct output.

The goal of supervised learning is to approach the target function g with an
explicit known function f from a set of labeled input data (x, y) ∈ X ×Y [10]. To
tackle this, a variety of hypothesis f functions are explored, whose parameters, θ,
need to be adjusted to their optimal values for the specific problem. An optimizing
algorithm will then find the values of said parameters θ̂ according to a set of data
{X,y}, by minimizing (or maximizing) a loss function L(X,y, θ). This means

25

Chapter 2. Background

(a) Clustering algorithm (b) Anomaly detector

Figure 2.12: Visual representations of some of the unsupervised learning algorithms. Extracted
from [43].

that the final hypothesis fθ̂ is the optimal solution to approximate g in terms of
the loss function L and data available. The stage where a model optimizes to
certain data, or fits certain data, is called training.

2.3.1.2 Unsupervised Learning

In contrast to supervised learning, in unsupervised learning, the data is not la-
beled, meaning that the model only has access to the input data X. The goal
of unsupervised learning is to find patterns in the data without the need for an
output y. Different types of problems can be solved with unsupervised learning,
but for this thesis, we will focus on clustering and anomaly detection.

Clustering aims to group the input data X into a set of classes. An easy
example is to have a distribution of properties of coins, such as their weight or
radius, and attempt to find how many types of coins there are and how to classify
them. An illustration of this task is shown in Figure 2.12(a). Regarding image
forensics, a good example of this can be found in some methods that achieve forgery
localization by treating an image as a set of pixels x and trying to identify which
group of pixels is tampered with and which is not. The optimal way of performing
this is to apply clustering over what is known as a feature map of the image, not
directly to the set of pixels. Feature maps of images are an important concept
in ML and Computer Vision. They are essentially a transformation of the input
image of size M ×N ×3 into a M ×N ×k volume, where each pixel is transformed
into a vector in Rk that (hopefully) captures the relevant characteristics of it.

Anomaly detection attempts to model the “normal” class and identifies an
anomaly as anything that is sufficiently odd to this class, as depicted in Fig-
ure 2.12(b). An example of solving this task is by attempting to represent normal
data through a probabilistic model and setting a low probability threshold to in-
dicate an anomaly. Naturally, finding anomalies has a lot to do with the tasks
involved in forgery detection, where anomalies in traces indicate the presence of a
region foreign to the image pipeline.

One commonly used technique in unsupervised learning models is dimensional-
ity reduction, which aims to transform data X into another space Z with smaller
dimensions than the original but that still captures the relevant information of

26

2.3. Machine Learning

the data. This is useful as more dimensions in a model mean training is a harder
task that requires more data and also, reducing the dimensionality of the data can
help to speed up the process of training the model. An example of this type of
algorithm is the Principal Component Analysis (PCA) [43].

2.3.1.3 Self-supervised Learning

Self-supervised learning is a unique approach that falls between supervised and
unsupervised learning. In self-supervised learning, the model is trained using the
data itself to generate labels, eliminating the need for manual labeling. The goal
is to design a pretext task where the model predicts certain parts or properties of
the input data based on other parts of the same data. This approach to learning
has recently gained popularity given the ability to learn from massively available
unlabeled data, the more notable examples being the generative text models. Since
they learn to generate text, the text itself is used both as input and target to the
model.

Another self-supervised strategy that is commonly used is contrastive learning,
where the label is whether two or more data points relate to each other. OpenAi’s
CLIP model [71] is an example of this strategy, where images and their captions are
used to train an image and text encoder simultaneously. A batch of image-caption
pairs is fed to the encoders, and then every image encoding is compared with
every caption encoding. The objective is to cluster the encoded representation if
the image-caption pair is correct and disperse them if they do not match.

2.3.1.4 Reinforcement Learning

In reinforcement learning the model learns by interacting, using declared rules,
with an environment. The model receives a reward or penalty for each action it
takes, and the goal is to learn a policy that maximizes the reward. This type of
learning is commonly used in games, where the model learns to play a game by
playing it and receiving a reward or penalty for each action it takes.

2.3.2 Data and biases
ML is a data-driven solution, and the parameters of the model are adjusted to fit
the data, so the data quality is crucial for the model’s performance. For instance,
the data needs to be representative of the problem and include all the possible
variations of the problem in order for the model to learn to tackle it correctly. In
some cases, data is not as abundant as needed, and so the model may not be able
to learn the problem correctly. This happens in image forensics, where it is hard
to obtain labeled data with actual in-the-wild forgeries (a problem we will discuss
further in Chapter 3), and researchers opt to simulate the required data, making
it hard for the model to have insight of the real problem.

Behind this difficulty is the concept of generalization [43]: how well the model
performs beyond the training dataset, in the real world. Even when the dataset
is representative enough, an appropriate dataset needs to be large enough for the

27

Chapter 2. Background

Figure 2.13: Graph representing the structure of a very simple neural network. The vertical
alignment of dots represents a layer. This diagram contains an input layer, a couple of hidden
layers in the middle (as an example), and an output layer. Image extracted from [39].

model to “see” the variability of the problem. In fact, the more complex the
problem is, the more data is required to train a model that generalizes well.

Another issue to avoid in the quest for generalization is overfitting. It refers
to learning patterns from the data instances themselves rather than patterns from
the general data of the problem. A way to estimate this is by the gap between
the performance on train data compared to the performance on unseen data. To
be able to measure this, available data needs to be split before training into a
train and a test dataset, so that the model only trains on certain data and is later
validated on new unseen data in the test dataset.

Regarding this thesis, the lack of data is not a problem as there are several
popular datasets accessible for research purposes that will be used for benchmark-
ing. However, it is important to be cautious about datasets used in the training of
the machine learning-based methods, as it is likely they will be biased to perform
better within these, as we will discuss further in Chapter 3.

2.3.3 Neural Networks
One of the most famous ML algorithm families is the Neural Networks (NNs).
Essentially, these algorithms take an input and transform it into a predicted out-
put by transferring the data over a stack of layers, where each layer is comprised
of an affine function followed by an activation function (a non-linear transforma-
tion) [43]. The concatenation of affine and activation transformations of the input
data produces an output that can be a number, vector, or feature image, which
can be used for regression or classification purposes.

The nomenclature of Neural Networks comes from a basic graph diagram of
layers (Figure 2.13) and the propagation of the input from one to the next, which
can be said to resemble the connections of neurons in the human brain.

Earlier, when discussing the supervised learning paradigm in Section 2.3.1.1,
we mentioned that models have a defined architecture and a set of parameters to
tune to the data. With the development of computing power, the number of model

28

2.3. Machine Learning

parameters has increased, as has their complexity. This advancement leads to the
term Deep Learning (DL), which refers to models with a large number of layers
and great expressive power. This term is more than just a term for a collection of
architectures, as several training difficulties and techniques are related to this field
specifically. Within common DL models come the Convolutional Neural Networks
(CNNs) [43], where each affine transform is a linear convolution with a fixed kernel.
The more recent Transformers [81] paradigm treats image input and outputs as a
sequence of inputs by dividing them into blocks and applying a series of attention
mechanisms to them.

In this chapter, we have presented the different steps in the image acquisition
pipeline, such as RAW acquisition, demosaicing, color correction, and image for-
mats and compression. We have also defined what constitutes a forgery, how it
is made, how to detect it, and the different categories into which it is classified.
Additionally, we have briefly introduced the generalities of machine learning and
relevant concepts in this field.

In the next chapter, we will delve into the importance of data in image forensics
and the datasets chosen for this work. We will also discuss the importance of
selecting good datasets and how they can influence the results of our work. Finally,
we will provide a comprehensive report of all the datasets selected for this work.

29

This page intentionally left blank.

Chapter 3

What we are looking at: the data

“It is a capital mistake to theorize before one has data.”

Sherlock Holmes

As stated in Chapter 1, one of the goals is to evaluate state-of-the-art methods
in forgery detection. To achieve that goal, data is needed. This chapter will begin
by explaining the importance of data itself in diverse fields, and then delving into
the importance of benchmark data in image forensics. Finally, we will present the
datasets that were chosen for this work and the reasons behind their selection.

3.1 Importance of data
When it comes to data, its importance cannot be overstated. Data is the corner-
stone of any research in any field, and the same applies to image forensics. As with
many other fields within image processing, data is used to adjust parameters in
algorithms, either manually or through machine learning techniques, and to eval-
uate the performance of the proposed methods. Understanding the role of data in
each of these tasks is crucial to reach good results.

Our main and central data type is images, particularly forged ones since we
want to tackle the problem of detecting and localizing forgeries. Within this do-
main, several datasets have been proposed in the literature. The data distribution
within each of them may vary depending on forgery types, compression types and
rates, and differences in image acquisition. Analyzing the characteristics of each
dataset allows for a more in-depth understanding of the strengths and weaknesses
of each method.

3.1.1 The generalization problem
As mentioned before, data is essential in the world of research, and image forensics
is no exception. When selecting the data for these tasks, it is important to consider
what is called the generalization problem, introduced in Chapter 2. This problem
arises when the data used for training or tuning the parameters of a method is

Chapter 3. What we are looking at: the data

not the same as the data the method will encounter in the real world. Selecting a
good evaluation dataset is crucial to reflect the method’s real-world performance.

As mentioned in Chapter 2, some of the recent works in image forensics are
based on machine learning techniques. These models are data-driven, meaning
they are optimized to recognize patterns in a certain dataset, which is referred to
as the training set.

Most classical forgery detection algorithms, which rely on filters, thresholds,
and mathematical constraints, have tunable parameters that can greatly impact
the method’s performance. These parameters are usually adjusted using a training
set to find the best values.

All of these algorithms and models have one thing in common: They perform
well in the training set. However, they may not perform as well in the wild. This
may happen because the parameters were adjusted to maximize the performance
in the training set, and the training set may not be representative of the data in
the real world, or it may not have sufficient data to cover all the possible scenarios
and learn the patterns that are present in real cases.

This poses a clear problem because it is hard to sample the variety of forgeries
out in the wild, and since forgers will not necessarily disclose their methodologies,
detection methods will be blind to newer or unknown forgery types. Although
the generalization problem is common to all data-driven models in general, it is
especially problematic in this field where there is a mismatch between the available
research data and the data encountered in the real world. This mismatch might
also be referred to as domain shift. Generally, to simulate real-world performance,
the model is evaluated in a test set that ought to be different from the training
set. In this work, the benchmark datasets will act as the test set, covering a wide
variety of forgeries and image processing pipelines.

Several antidotes to the lack of generalization can be applied during training.
However, this work focuses on evaluating the methods and the importance of
selecting good benchmark datasets to reflect the methods’ real-world performance.

3.2 Benchmark datasets in image forensics
As mentioned before, benchmark data is crucial for evaluating methods’ perfor-
mance and comparing their results against those of other methods.

The benchmark datasets will contain forgery masks indicating the tampered
region. As it was explained in Section 2.2, a forgery mask is a binary image with
the same dimensions as the image, where the value 1 indicates a tampered pixel,
and the value 0 indicates an untampered pixel. The mask is used to compare the
predicted tampered region with the ground truth. In the case of pristine images,
the masks are all zeros, indicating the absence of forgery.

Given the discussions presented above, there is no room for doubt about the
importance of carefully selecting datasets to ensure a fair evaluation of methods.
This involves selecting datasets that encompass the full spectrum of forgery types
outlined in the previous chapter and incorporating datasets with as many process-

32

3.2. Benchmark datasets in image forensics

ing pipelines as encountered in the wild1.

The first aspect is vital because establishing which type of forgery a particular
method excels in, compared to others, is essential. For instance, some methods
excel in detecting almost any type of forgery, while others focus on identifying
how a specific trace left by the imaging pipeline varies across different areas of an
image. The second aspect is also crucial because certain methods are designed to
detect compression artifacts. Evaluating them solely on uncompressed datasets
would be unfair, as they were not designed to operate under those conditions.
Using compressed images is also relevant because it allows us to see how robust
methods are to compression in general.

Given all of the aforementioned requirements, seven datasets were chosen,
which will be described below. The first six of the chosen datasets also contain
pristine images that allow for a proper evaluation of the detection problem. In
the case of miniTrace, where only tampered images are available, the detection
evaluation lacks true negative images. All seven datasets include ground truth
masks, so they will all be used to evaluate localization.

An image and its corresponding mask for each of the selected datasets for this
work is shown in Figure 3.1.

3.2.1 Columbia
The Columbia Uncompressed Image Splicing Detection Evaluation Dataset [45]
contains spliced images, which are not realistic at all and could be easily detected
by semantic evaluation. This means a person can identify the suspicious area
by just looking at the image and considering the context. One could argue that
detecting forgeries of this type does not add value to a method, as they can be
easily identified by the human eye. However, the dataset allows us to see how well
each method solves a simpler problem before confronting it with more challenging
datasets. The authors of this dataset ensure that images are uncompressed and
that their sizes range from 757× 568 to 1152× 768.

3.2.2 CASIA 1.0
CASIA 1.0 [32, 64] contains both splicing and copy-move forgeries, which are not
so easy to identify to the naked eye and are JPEG compressed. The images in
this dataset are very small: they do not exceed the size of 374× 256. Given that
the dataset is already separated into two different types of forgeries, in this work,
we are going to consider them as two different datasets, CASIA 1.0 Splicing, and
CASIA 1.0 Copy-Move, to assess the performance of the methods in each kind of
forgery by itself.

1Given that in most datasets, the processing history of the images is not available, we
are going to focus on covering a variety of compression types which is something we can
get from the image itself.

33

Chapter 3. What we are looking at: the data

3.2.3 COVERAGE
COVERAGE [86] is the most popular dataset for evaluating copy-move forgeries.
The images in this dataset are stored in TIFF format, yet they were captured
using the front camera of an iPhone 6, which typically saves images in JPEG for-
mat. Consequently, the images underwent compression at some stage. Despite
the iPhone 6 front camera’s resolution being 1280 × 960, the average size of the
images in the dataset is 400× 486. This indicates that the images underwent sub-
sampling, cropping, or both. The pristine images consistently feature a repetition
of a certain object. For the forged images, one of these objects is cut and pasted
elsewhere, with the pasted object sometimes easily noticeable and other times not.
This dataset helps determine whether a method merely searches for similar parts
within the image to detect a copy-move forgery or if it looks for inconsistencies in
traces, such as the demosaicing grid or the JPEG grid.

3.2.4 DSO-1
DSO-1 [29] is a dataset that contains spliced images of size 2048× 1536 in which
the subjects used for the splicing are humans. At first glance, the splices are hard
to catch; however, most of the time, a semantic evaluation of the illumination (or
other details) shows which subject is spliced. Even though the image format is
PNG, the dataset creators do not provide users with the full editing history of the
images, so we can not assume that they are uncompressed.

3.2.5 Korus
The Korus Dataset [50, 51] is also named realistic tampering. As the title sug-
gests, this dataset contains forgeries that are almost impossible to detect through
semantic evaluation. It has uncompressed images containing splicing, copy-move,
and object removal. The images are all of size 1920× 1080.

Although the dataset is uncompressed and distributed in TIFF format, the
image DSC07222 was spliced with a JPEG image. This will be taken into consid-
eration when evaluating methods.

3.2.6 AutoSplice
This novel dataset incorporates generative inpainting. Jia et al. [49] introduce
the utilization of DALL-E2 to generate forged images guided by a text prompt.
These images are JPEG compressed, and the dataset includes variations with three
JPEG quality factors: 100, 90, and 75, but the 90 and 75 versions include only
forged images. This diversity facilitates the quantification of how well methods
can handle varying degrees of JPEG compression. The image sizes range from
256× 256 to 4232× 4232.

34

3.2. Benchmark datasets in image forensics

Forged image GT Mask

C
ol
u
m
b
ia

C
O
V
E
R
-

A
G
E

D
S
O
-1

K
or
u
s

C
A
S
IA

1.
0
S
p

C
A
S
IA

1.
0
C
M

A
u
to
S
p
li
ce

Figure 3.1: Examples of each chosen dataset, including a forged image and the corresponding
ground truth mask. Some images were cropped for visualization purposes. All images were
extracted from each original dataset.

35

Chapter 3. What we are looking at: the data

(a) Source Image (b) Endogenous mask
overlay

(c) Exogenous mask over-
lay

Figure 3.2: An example image from the miniTrace dataset (a) and its endogenous (b) and
exogenous (c) masks to illustrate the mask selection procedure. The endogenous mask follows
the edges of the grass patch in the image, while the exogenous mask spreads randomly across
multiple objects. Extracted from [15].

3.2.7 miniTrace dataset
All of the previously described datasets encompass a wide variety of forgery types,
incorporating different types of compression. From now on, these will be referred
to as popular datasets. However, evaluating these datasets solely is insufficient for
several reasons. Firstly, some methods use these datasets to train their networks.
In such cases, it is natural to expect that these methods may outperform others
that did not incorporate these datasets into their training process. Additionally, if
the evaluation is exclusively conducted using these selected datasets, it raises the
question of whether the methods solely rely on semantic cues or if they focus on
the various traces left by the imaging pipeline.

The answer to this question distinguishes a more effective method from a less
effective one, as the latter case ensures better generalization to in-the-wild forg-
eries, given that relying just on semantic cues may lead to overfitting on popular
datasets. To address this concern, Bammey et al. [15] proposed the creation of the
Trace dataset, providing a means for non-semantic evaluation.

In Trace, the forged and pristine regions differ only in the traces left behind
by the imaging pipeline. This approach enables the creation of extensive datasets
without the need to invest time in making forgeries appear realistic. The concept
involves selecting and processing a raw image using two distinct imaging pipelines.
The results are then merged, forming a single image with two areas, each corre-
sponding to one of the two pipelines. The merging of these images is accomplished
using a mask.

The authors propose two types of masks, resulting in the code outputting two
forged images for each image-pipelines pair. The first forged image corresponds
to the utilization of what the authors term an endomask. This endomask is con-
structed by segmenting the image and then choosing a random pixel whose corre-
sponding segment becomes the endomask of the image. In this case, the forgeries
are constrained by the natural borders of the image. An example for this type of
mask can be found in Figure 3.2(b).

The second mask is named exomask, which has no commonalities with any

36

3.2. Benchmark datasets in image forensics

edges of the image. It is essentially a randomly selected endomask from another
image. The only condition for this random selection of endomask from another
image is that it has a similar area to the endomask of the image in question.This
type of mask can be viewed in the example of Figure 3.2(c).

The authors of [15] emphasize the importance of considering that raw images
inherently contain noise, and all pixels in the image are sampled from the same
CFA pattern. To control the level of noise and eliminate the CFA pattern, the
authors opt to downsample the image by a factor of 2. This downsampling allows
for adding any desired noise and selecting any CFA pattern for mosaicing the
image. Consequently, the image processed with the two different pipelines is the
downsampled version.

Bammey et al. [15] use the RAISE dataset [28], especially the RAISE-1K con-
taining 1000 raw images to create six datasets, each with a different pipeline in-
consistency:

• Raw Noise Level dataset: The authors add random noise to both images
and then process them with the same pipeline. The random noise variance
follows a linear relation, σ2 = A+Bu where A and B are constants chosen
randomly for each area (the authors bound A and B to ensure the images
look natural and are not overly corrupted by noise), and u is the noiseless2

image after down-sampling.

• CFA Grid dataset: This dataset changes the origin of the CFA grid inside
the forged part of the image, this new pattern has a chance of 1/4 of being
aligned with the main pattern. The rest of the pipeline remains the same
for both areas.

• CFA Algorithm dataset: The dataset involves changing the demosaicing
algorithm in the different pipelines and also randomly choosing a new grid
pattern, this new pattern has a chance of 1/4 of being aligned with the main
pattern. The rest of the pipeline remains the same for both areas.

• JPEG Grid dataset: It changes the compression grid origin and then ran-
domly selects a compression quality factor, which is the same in both pipelines.
In this case, the chance of getting an alignment between grids is 1/64.

• JPEG Quality dataset: This dataset randomly chooses two quality factors,
one for each pipeline and for one of the images it also chooses a new grid
pattern, this new grid has a chance of 1/64 of being aligned with the main
grid. The rest of the pipeline remains the same for both areas.

• Hybrid dataset: Consists of introducing two differences between pipelines to
account for the evaluation of methods that do not rely solely on one trace
as a detection cue. The dataset combines noise, demosaicing, and/or JPEG
compression.

2The image is called noiseless because it is the down-sampled version with reduced
noise.

37

Chapter 3. What we are looking at: the data

The authors provide the resulting dataset and the code to generate it. As
previously stated, the authors use the RAISE-1K dataset [28] that contains 1000
images. However, to reduce the complexity of the analysis and given that this will
not be the only dataset used for evaluation, it was decided to create a new dataset
called miniTrace that uses 200 images from the full RAISE dataset.

One could simply sample 200 images from the original Trace dataset; however,
two problems might arise. First, one criterion for sampling could be to get a
subsample with the same mask size distribution as the original. In this case, the
image from which the exomask was extracted might not be sampled in the new
dataset. This is not a major problem because the original image from which the
exomask is extracted is not relevant for the evaluation.

However, one might want to sample in a way that represents the distribution
of the traces. This means that we maintain the same proportion of images with
each camera pipeline. For example, in the noise datasets, this would mean that the
new subsample has the same representation of noise levels as the original Trace.
However, the sample satisfying this might not have the same representation of
demosaicing algorithms, JPEG grid origins, or every other variant as the original
Trace had. The problem lies in the almost impossibility of obtaining a sample that
accurately represents all datasets. Adding this to the fact that the original code
is available made us opt to generate the dataset ourselves.

The RAISE dataset comprises 8156 raw images that can simultaneously belong
to multiple categories, such as outdoor, indoor, landscape, nature, people, objects,
and buildings. For instance, an image can naturally fall into categories like out-
door, landscape, and nature concurrently. Maintaining the distribution of these
categories is crucial to correctly sampling 200 images from the available 8156.

The challenge lies in achieving multilabel stratified sampling. The solution
is found in the iterative stratification algorithm proposed by Sechidis et al. [75].
In each iteration, this greedy algorithm selects the label with fewer remaining
examples, as those with more examples have more iterations to achieve a balanced
distribution. For each example of a selected label, the algorithm determines the
subset placement based on the following criteria: firstly, it chooses the subset that
will need the greatest number of elements to represent the label accurately. In
the case of a tie, it selects the subset that will require the highest total number of
elements. If there is still a tie, the choice is made randomly. This process continues
until all elements are assigned to one of the subsets. The chosen implementation
for this algorithm is from [79].

From the 200 sampled images, the code provided by Bammey et al. [15] was
executed, providing a dataset for non-semantic evaluation.

3.2.8 Social networks versions
In a recently published paper by Wu et al. [89], some popular datasets were up-
loaded to social networks such as Whatsapp and Facebook, which allows researchers
to see if the proposed methods are resistant to the new traces left by the social
networks processing pipelines which are unknown to the public. Columbia, CASIA

38

3.2. Benchmark datasets in image forensics

(a) Original image (b) Whatsapp Residual (c) Facebook Residual

(d) Original Q-table (e) Whatsapp Q-table (f) Facebook Q-table

(g) Original image (h) Whatsapp Residual (i) Facebook Residual

(j) Original Q-table (k) Whatsapp Q-table (l) Facebook Q-table

Figure 3.3: Original images and the residual after uploading it to Whatsapp and Facebook
and the corresponding quantization tables. Images extracted from the CASIA-V1 dataset [32].

1.0, and DSO-1 are the only datasets previously mentioned in this version. Eval-
uating the methods on these datasets is of high importance, given that with the
correct metrics, it allows for the quantification of how well or poorly a method can
generalize in-the-wild forgeries, especially in the context of the different processing
an image undergoes when uploaded to any social network. From the two available
social networks, we chose to report the results on the Facebook datasets; however,
we did explore the difference between the original images and both their Whatsapp
and Facebook versions.

For the Whatsapp case, we found out that for large images, the unknown
pipeline applied by the social network must include resizing operations because

39

Chapter 3. What we are looking at: the data

some of the new images are smaller than the originals. We did not encounter this
behavior on the Facebook images. We also computed the residual between the
original image and the version through each social network, which are shown in
Figures 3.3(b) and 3.3(c). The residuals are calculated as the absolute value of the
difference between the original image and its corresponding social network version.
While these residuals might look fairly similar, upon closer inspection, one can find
some differences, as expected, because each social network has its own processing
pipeline. Figures 3.3(d), 3.3(e) and 3.3(f) show the different JPEG quantization
tables, the main difference between the original and the social networks version is
the harsher compression that the latter employ for the higher frequencies with the
Facebook version being harsher than the Whatsapp ones.

We also found that when images are lightweight enough, Facebook does not add
any artifacts. This only occurs for images belonging to CASIA 1.0 [32], as shown
in Figures 3.3(g), 3.3(h) and 3.3(i) which showcase an image that is modified when
uploaded to Whatsapp, whereas it remains unchanged when uploaded to Facebook.
Accordingly, the Facebook Q-table shown in Figure 3.3(l) remains the same as the
original shown in Figure 3.3(j). The difference between the two examples is the
weight of each original image. The first is 41.320 bytes, whereas the second is
20.915 bytes.

3.2.9 WebP datasets

One thing we noticed when looking for forgery datasets is the lack of datasets with
WebP files, despite this being an increasingly popular format. Indeed, pushed by
Google, it is intended to become the standard format for images on the web. That is
why we decided to create two WebP datasets based on existing datasets. To do so,
we used OpenCV imwrite function and saved the images with an 80 quality factor.
This value was chosen as it is the standard value encountered when uploading an
image to the web.

We chose uncompressed datasets because we wanted to avoid adding double
compression given that, as explained in Chapter 2, WebP works similarly to JPEG.
The goal motivating this kind of dataset is to see how robust methods are to this
kind of compression. In order to achieve that, we used Columbia and Korus
datasets. Columbia is a fairly easy dataset that poses a simple problem to the
methods and allows us to assess the methods’ performance before jumping into
more challenging datasets. The comparison between the original and the WebP
version of Columbia will allow us to see how robust the methods are to this type
of compression. On the other hand, Korus is a challenging dataset in which many
methods might achieve a poor performance, but in those that do a good job, we
want to find out if these challenging forgeries can still be detected when the image
underwent this compression and actually assess the methods performance over
in-the-wild forgeries.

40

3.2. Benchmark datasets in image forensics

Dataset Types of forgery Nb. of images (forged + pristine) Format Social network version WebP version
Columbia
[45,89]

Splicing 363 (180 + 183) TIFF ✓ ✓

COVERAGE
[86]

Copy-move 200 (100 + 100) TIFF ✗ ✗

DSO-1
[29,89]

Splicing 200 (100 + 100) PNG ✓ ✗

Korus
[50,51]

Splicing, copy-move
object removal

440 (220 + 220) TIFF ✗ ✓

CASIA 1.0
[32,64,89]

Splicing, copy-move 1023 (923 + 100) JPEG ✓ ✗

AutoSplice
[49]

Generative inpainting 5894 (3621 + 2273) JPEG ✗ ✗

miniTrace
[15]

Alterations to
acquisition pipeline

2400 (2400 + 0) PNG ✗ ✗

Table 3.1: Summary of the main characteristics of the datasets, such as the type of forgery
they feature, the number of images (both pristine and forged) included in each of them, the
images’ format, and whether their social network and WebP versions are also incorporated.

3.2.10 Summary of datasets
All of the previously presented datasets are summarized in Table 3.1. This table
shows the number of images each dataset has, how many of those are forged and
how many are pristine, and indicates whether the dataset has a social network
version or a WebP version.

In this chapter, we presented the importance of data and the generalization
problem that might arise in data-driven approaches. We also presented the chosen
datasets used in this work, six of which we will refer to as popular datasets, and
the seventh, miniTrace, will allow us to do non-semantic evaluation. Additionally,
two possible variants for the popular datasets were shown. First, the social network
versions, for which we analyzed the impact of unknown processing pipelines used
by various social networks on an image. Second, we introduced the WebP versions
of two datasets, which will enable us to evaluate the performance of methods on
this increasingly popular image format.

The next chapter will introduce another fundamental part of this thesis: the
metrics that will allow us to evaluate different methods on the chosen datasets.

41

This page intentionally left blank.

Chapter 4

Measuring and qualifying the
predictions: the metrics

“They can only see the mere show, and never can tell what it really
means.”

Sherlock Holmes

The previous chapters introduced the image forgery detection problem and the
datasets that can be used to tackle the problem. However, one fundamental ingre-
dient is missing: how do we decide which method is good, and how do we compare
them? This is the vital puzzle piece that is described in this chapter. To do so,
the importance of good metrics will be discussed first, followed by global definitions
and discussions on how to aggregate metrics. The chapter will end with a rigorous
report of all the metrics used in this work.

4.1 What is a metric?
Mathematically speaking, a metric is a function m : Rn × Rn → R, that maps
(x,y) ∈ Rn×Rn to a real value m(x,y), which captures some relationship between
x and y. In the context of evaluation, x represents the predicted output obtained
by a model, and y represents the labeled target, commonly referred to as ground
truth. The use of metrics during the evaluation phase comes from the need to
have a quantifiable measure of how a method is performing. Having quantified
performance allows for comparing a method’s configurations and different methods.

Having said this, metrics often emphasize certain dimensions of performance
while overlooking others. With this in mind, one should select one or more metrics
that address all aspects of the problem to be evaluated.

Chapter 4. Measuring and qualifying the predictions: the metrics

4.2 The importance of good metrics
Metrics are the backbone of any scientific evaluation, providing a quantifiable
amount against which to compare and benchmark solutions. Paired with the data
used, the metrics can offer crucial insights into the strengths and weaknesses of
the evaluated subjects. Forgery detection is no different, yet there is no consensus
or a common benchmark that all researchers use when publishing. Unfortunately,
in many cases, the choice is made to favor a particular method.

Let us give a quick example of how choosing a good metric matters. Suppose
we have a dataset of wheel images where 95% of them depict normal wheels and
the other 5% flat wheels, and we want to build a classifier that predicts whether a
wheel is flat or not. Imagine we build a classifier that predicts all wheels as being
normal. Even if it is not working properly, its percentage of correct classifications
(commonly called accuracy) is 95%, which is a really high value. In this case,
accuracy is not a good metric for evaluating the classifier because it does not
capture the fact that the classifier does not detect any flat wheel. If we had used
a metric that captures the number of flat wheels detected, we would have noticed
that the classifier is not working as expected.

In the case of image forgery detection, we aim to classify whether something is
tampered or pristine. Going back to the two problems presented in Section 2.2.4,
in the case of the localization problem, we classify whether a pixel is tampered or
not; when detecting, we classify the whole image as tampered or pristine.

4.2.1 Characteristics of Good Metrics
For a metric to be effective in its purpose, it should fulfill the following require-
ments:

• Relevance: The metric should aim to evaluate the core objective of the
problem.

• Consistency: The metric should yield identical results under identical con-
ditions.

• Sensitivity: The metric should detect small variations in the prediction
with respect to the ground truth. In the case of images, a one-pixel difference
should be enough for the metric to pick it up.

• Scalability: As the amount of data grows, the metric must maintain its
effectiveness, ensuring that it remains relevant in a variety of scenarios.

• Interpretability: The value of a metric lies not only in its calculation but
also in its communication. It must be easy to understand what the metric
is evaluating and the implications of the measurement.

Returning to our previous example, let us define our core objective of detect-
ing flat tires. While accuracy is relevant to our problem, it lacks scalability and

44

4.3. Global definitions

sensitivity, especially with a very imbalanced dataset. Missing a flat tire does not
impact the metric in a meaningful way when our dataset mainly consists of normal
tires. In the case of image forgeries, some of the problems to look out for are the
relative size of forgeries with respect to the image size when evaluating localization
and the amount of pristine and tampered images in the dataset when evaluating
detection.

4.2.2 Consequences of Poor Metrics

As illustrated in the example, a poor selection of evaluation metrics can lead
to a false sense of good performance, masking problems or not evaluating what is
desired. In the case of image forensics, many metrics fail to capture the localization
quality of a prediction if the forged area is small. Suppose we gave an image in
which 10% of its pixels are tampered. If we take, for instance, the accuracy of a
mask that predicted all pixels as untampered, then we would have a method with
a 90% accuracy. This is a fairly common problem since forgeries are usually small
compared to the whole image.

Another common error is selecting a limited number of metrics to evaluate the
results or metrics that only evaluate one aspect of the problem. When developing
a method, one tends to overfit the selected metrics as they measure performance
and serve as comparisons to other methods. In turn, if our metric selection is poor,
the end result is unlikely to generalize to other metrics or real-world scenarios.

4.3 Global definitions
Before defining the metrics used in this thesis, we present some general notions
and details about how the metrics are calculated.

4.3.1 True and False, Positives and Negatives

In the problem of data classification, many metrics are based on the definitions of
True and False Positives, or True and False Negatives [68]. A single classification
can be considered Positive or Negative, where the meaning of “positive” is arbi-
trarily assigned in a given problem. In the case of image forensics, a forged image
(or a forged patch or pixel when evaluating localization) is labeled as positive, and
untampered data is considered negative. On the other hand, the classification is
True or False according to whether or not the prediction matches the ground truth,
respectively. This concept can be better understood with the diagram shown in
Figure 4.1.

Using these simple definitions, we can calculate all the metrics we will present
later on in the chapter, often creating an easier way to understand the metric.

45

Chapter 4. Measuring and qualifying the predictions: the metrics

True positiveTampered

Tampered

False negative

Untampered

False positiveUnpatmpered True negativeA
ct
u
a
l
cl
a
ss

Predicted class

Figure 4.1: Confusion matrix: rows represent the actual classes while columns represent the
prediction. The matrix has four possible values corresponding to the four possible combinations
of predicted and actual classes.

4.3.2 Aggregating metrics
When evaluating a method on a dataset, we need to define how we aggregate the
results into a single value that reflects the performance of the method in the chosen
dataset. There are many ways to aggregate results that preserve different aspects
of a data distribution, yet we will only work with two of them.

The first and simplest way to aggregate results is to store every prediction
and calculate the metric over all data points, whether pixels or patches, when
evaluating localization or the whole image if we are interested in detection. For
example, let us assume for a moment that we want to evaluate a metric defined
as TP

TN . If we were to aggregate the metric in this way, we would accumulate
the TP and TN for every image of the dataset. Then, with the accumulated
values, we would compute the metric using the aforementioned definition in order
to obtain a single number that summarizes the method’s performance. We will
refer to this way of aggregating the metrics as dataset-level score. This aggregation
technique is used by Torchmetrics [31] in most metrics in their module. In the case
of localization, this aggregation type gives us a pixel-wise performance since the
metrics are calculated over all the pixel predictions of the method under evaluation.

The second approach we consider is the average performance over the dataset.
To calculate this, we compute the metric for each image and store the result.
Then, we compute the average performance on the dataset. So, following the same
example as before, in this case, we would calculate the TP

TN for each evaluated image
and accumulate said values to later divide them over the number of images in the
dataset to obtain a single number that summarizes the method’s performance. We
will refer to this way of aggregating the metric as the average image-level score. In
the case of detection, where the method’s output is a single value, this aggregation
is not possible for most metrics and is not useful either. However, in the case of
localization, this aggregation captures a method’s image-wise performance, that
is, how well we can expect a method to work on a single image.

A natural question to ask is why make the distinction between the two if,
intuitively, the results should be equal or extremely similar. To see that this is not

46

4.4. Metrics

the case, let us look at the following example: two images, one of size 4096x4096
and another of size 10x10. Also, suppose a method works perfectly on the large
image but poorly on the small one. If we aggregate the results using the mean, the
final result will land somewhere between the performance of both images. However,
if we accumulate all the pixel results and then calculate the metric, the number
of correctly labeled pixels will be far larger than the number of incorrectly labeled
pixels. Then, the final result will be close to the perfect performance of the large
image.

The example above is a bit extreme, but it illustrates that how we aggregate
the results can have a big impact on the final score.

4.4 Metrics
This section introduces some of the classic metrics used in image forensics. These
metrics will be later considered in Chapter 7 to benchmark state-of-the-art meth-
ods.

4.4.1 Recall (rec) or True Positive Rate (TPR)
It is the ratio between the True Positives and all the positive-labeled data. Fol-
lowing a probabilistic interpretation, this would be the probability that a Positive
labeled data be predicted as such,

rec = TPR =
TP

P
=

TP

TP + FN
. (4.1)

4.4.2 False Positive Rate (FPR)
It is the ratio between the False Positives and all the Negative labeled data,

FPR =
FP

N
=

FP

TN + FP
. (4.2)

4.4.3 Precision (prec)
It is the ratio between the True Positives and all the predicted Positive, reflecting
the probability that data predicted as forged is actually forged,

prec =
TP

TP + FP
. (4.3)

4.4.4 F1 score
It is frequently useful to combine precision and recall into a single metric. The most
common way of doing so is by taking their harmonic mean. This metric is known
as the F1 score. Unlike the conventional mean, which assigns equal importance to

47

Chapter 4. Measuring and qualifying the predictions: the metrics

all values, the harmonic mean heavily emphasizes lower values [43]. This metric is
calculated as:

F1 =
2

1
prec +

1
rec

= 2× prec× rec

prec+ rec
. (4.4)

It is also common to express metrics in terms of the confusion matrix, as
follows:

F1 =
2TP

2TP + FN + FP
. (4.5)

4.4.5 Matthews correlation coefficient (MCC)
The MCC is a metric that measures the quality of a binary prediction, which can
be used both for the classification task and for the localization task [60], which is
defined by:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (4.6)

This definition shows that the MCC goes from -1 (worst) to 1 (best). The MCC
is often regarded as a measure of the quality of a confusion matrix. The difference
between this metric and precision or recall is that the MCC takes into account
both true and false, positive and negative rates, with some authors [21] crowning
it as the best binary classification metric. Another important characteristic of the
MCC is that it is a correlation, meaning it does not matter which class is defined
as positive or negative.

4.4.6 Intersection over Union (IoU)
Intersection over Union, also known as the Jaccard Index, is a metric that measures
the quality of a spatial prediction.This metric allows us to measure the localization
quality of our method. If A denotes the ground truth region and B the predicted
forged region, IoU is defined as

IoU(A,B) =
|A ∩B|
|A ∪B|

. (4.7)

The IoU can also be written in terms of the confusion matrix:

IoU =
TP

TP + FP + FN
. (4.8)

4.4.7 Reciever Operating Characteristic curve (ROC)
The receiver operating characteristic (ROC) curve is a common metric used in
binary classification. It is very similar to the precision/recall curve, but instead of
plotting precision versus recall, the ROC curve plots the TPR against the FPR [43].

As explained above, prediction often occurs by outputting a probability or
score value, which is compared to a threshold to determine the predicted binary

48

4.4. Metrics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Receiver Operating Characteristic (ROC) Curve

A bad performance

An almost perfect performance

Random Guess

Figure 4.2: Example of ROC curve showing a random classifier, a classifier achieving a barely
acceptable performance, and a classifier achieving an almost perfect performance.

class. Different threshold values serve different purposes, as they can lead to over-
prediction when too low or missing detections when set too high. Varying this
threshold can plot a set of operation points (a TPR and FPR tuple). Ideally, this
curve should be a square, meaning that when TPR ≈ 1 for every value of FPR
except at FPR = 0, where it two should be zero. The benefit of this metric (or
others similar) is that it contemplates the variety of operation points of score or
probability outputting methods, allowing for a fair comparison.

Figure 4.2 shows an example of a ROC curve.

4.4.8 Area Under the ROC curve (AUROC)
One way to compare classifiers numerically using the ROC curve is to measure
the area under the curve, commonly referred to as AUROC (Area Under the ROC
curve). A perfect classifier will have an AUROC equal to 1, whereas a purely
random classifier will have an AUROC equal to 0.5 [43].

4.4.9 Weighted Metrics
Many of the aforementioned metrics assume that the prediction is a binary result;
however, as previously mentioned, some methods output a heatmap instead of
a binary output. For instance, metrics like F1 score, MCC score, and IoU are
designed for binary outputs. One approach to handle heatmaps is to binarize
them using a threshold, often set to 0.5 by default. Alternatively, an optimal
threshold can be determined to maximize a specific metric on a chosen dataset.

49

Chapter 4. Measuring and qualifying the predictions: the metrics

Some authors present another solution by proposing the definition of weighted
metrics. This allows for comparing methods that output heatmaps and those that
output binary outputs. Gardella et al. [38] and Bammey et al. [15], by inter-
preting the heatmap at each pixel as the probability of the pixel being forged,
define weighted true positives (4.9a), weighted false positives (4.9b), weighted true
negatives (4.9c), and weighted false negatives (4.9d):

TPw =
∑
x

H(x)M(x), (4.9a)

FPw =
∑
x

H(x)(1−M(x)), (4.9b)

TNw =
∑
x

(1−H(x))(1−M(x)), (4.9c)

FNw =
∑
x

(1−H(x))M(x). (4.9d)

Here, H(x) is the heatmap value (ranging from 0 to 1) and M(x) is the binary
ground truth mask.

With this definition, the F1 score, the MCC score, and the IoU defined in the
previous subsections have their weighted version.

These metrics can be implemented as either dataset or average image-level
scores. Of course, they can be used for either localization or detection. The only
thing to keep in mind is that given the reasons outlined above, the dataset-level
version should be used for detection, whereas for localization, the average image-
level is preferred. However, both yield reasonable results.

For the detection case, the weighted metrics serve to compare methods with
binary classification outputs to detection scores. To this end, the definition given
in 4.9 is modified in the sense that the prediction and the target are both single
numbers, so the weighted scores correspond to weighted TP, TN, FP, FN according
to the detection score given by the method.

In this chapter, we have discussed the importance of metrics in the evaluation of
forgery detection methods. We have seen the importance of selecting good metrics
and the consequences of selecting bad ones. We presented some global definitions
used later in the chapter and two ways of aggregating metrics. Lastly, we presented
the most common metrics used to evaluate forgery detection methods.

In the following chapter, the key element missing in terms of forgery detection
will be described, namely the methods. We will discuss different forgery detection
methods, from those that marked the beginning of forgery detection to the most
recent and advanced ones, from methods that aim to detect forgeries by exploiting

50

4.4. Metrics

different types of traces with a classical signal processing approach to those relying
on machine learning techniques to detect forgeries.

51

This page intentionally left blank.

Chapter 5

Putting the traces together: the
methods

“I see no more than you, but I have trained myself to notice what I
see.”

Sherlock Holmes

In the previous chapters, we introduced the context of the problem to be solved
and discussed the selection of data and metrics, showing the importance this has in
the evaluation process. In the present chapter, we will analyze the core of the field
of forgery detection: the methods. This section is structured in the following way:
for each method selected, there is a brief summary of its procedure, followed by a
more detailed description, followed by the target forgery trace or type the method
searches for.

In recent years, the growing field of image forensics has proposed a myriad of
methods trying to solve the problem of detecting forgeries in digital images. This
wide array of methods comprises solutions that target specific types of forgeries or
exploit a specific type of trace inconsistency left in forged images, such as noise,
CFA, and JPEG. There are also versatile methods, often using deep learning,
designed to detect a wider range of forgeries by simultaneously examining multiple
traces.

In this chapter, ten of these methods are discussed, each of which has been
chosen on the basis of its performance, uniqueness, and complementary to the
other methods on the list. These methods will be the ones implemented in the
PhotoHolmes library. For each of these methods, we explain how they work and
analyze which type of forgery they target. In the case of deep learning methods,
we will list the datasets used during training and how that might introduce biases
in our evaluation later on.

Chapter 5. Putting the traces together: the methods

5.1 Splicebuster
The Splicebuster method [27] aims to extract a set of blockwise features that
capture camera-processing traces. Using these features and statistical analysis
tools, the method computes two clusters, grouping tampered pixels in one cluster
and pristine ones in the other. The assumption is that, under forgery, an image’s
features will follow different distributions in the tampered and pristine regions.
Finally, the method delivers a heatmap pointing to the most suspicious zones of
the image.

This is a model-driven approach and thus offers some advantages. Namely,
its results are interpretable and not data-dependent. Interpretability can be of
interest in some applications, and data independence relieves the possibility of
biases in the method (although it also limits its performance). These are some of
the reasons why it was selected for the PhotoHolmes project.

5.1.1 Method
The first stage of this method consists of extracting the image’s features from
its high-frequency components. The image’s residual is obtained by high-pass
filtering. More specifically, the residual is computed by estimating the third-order
derivatives in both the horizontal and vertical directions, obtaining two residuals
rh and rv, which are then quantized in three levels. These quantized residuals,
which we denote as r̂h and r̂v, respectively, are then subject to the following post-
processing.

For both r̂h and r̂v, the method computes the local co-occurrences of four
pixels along the horizontal and vertical directions. These co-occurrences can be
represented as four 4-dimensional tensors:

Ch,h(k0, k1, k2, k3) :=
∑
i,j

1(r̂hi,j = k0, r̂
h
i,j+1 = k1, r̂

h
i,j+2 = k2, r̂

h
i,j+3 = k3)

Ch,v(k0, k1, k2, k3) :=
∑
i,j

1(r̂hi,j = k0, r̂
h
i+1,j = k1, r̂

h
i+2,j = k2, r̂

h
i+3,j = k3)

Cv,h(k0, k1, k2, k3) :=
∑
i,j

1(r̂vi,j = k0, r̂
v
i,j+1 = k1, r̂

v
i,j+2 = k2, r̂

v
i,j+3 = k3)

Cv,v(k0, k1, k2, k3) :=
∑
i,j

1(r̂vi,j = k0, r̂
v
i+1,j = k1, r̂

v
i+2,j = k2, r̂

v
i+3,j = k3).

(5.1)

With these four flattened tensors, a single vector concatenating Ch,v + Cv,h

with Ch,h + Cv,v is created. A PCA is then applied to reduce its dimensionality.

The process previously described is applied to 128 × 128 overlapping blocks,
with stride 4 if the image size is below a specified threshold and stride 8 if above.
This way, we obtain a flat vector for every block.

The resulting feature map is used to fit a two-class mixture model using an
Expectation-Maximization (EM) algorithm. Two types of mixtures can be con-
sidered: Gaussian-uniform or Gaussian-Gaussian. The concept behind this is that

54

5.1. Splicebuster

the forged region can have either a uniform or a Gaussian distribution, depending
on the size of the forgery applied (small vs. relatively large, respectively), while
the pristine region is expected to have a Gaussian distribution. According to the
Splicebuster authors, modeling small forgery traces by a uniform distribution con-
templates the fact that intra-class variability is mostly accounted for by the image
content.

Once the parameters of the mixture models have been computed, a heatmap
is built. For the Gaussian-uniform mixture model, the heatmap is obtained as
the Mahalanobis distance of the block’s feature histogram and the Gaussian dis-
tribution. In the case of a Gaussian-Gaussian mixture model, the heatmap is the
quotient of both Mahalanobis distances. The heatmap is later normalized to take
values from 0 to 1.

A pseudo-code of the method is presented in Algorithm 1, and the method’s
output on an example is shown in Figure 5.1.

Algorithm 1 Splicebuster pseudo-code

Input: Image (in grayscale), stride
Output: heatmap

blocks← tiled image(Image, block size = 128, stride = stride)
features← empty list
for b in blocks do

rh, rv ← residual(b)
r̂h, r̂v ← quantize(rh, rv, threshold)
Ch,h, Ch,v, Cv,h, Cv,v ← co-occurrence(r̂h, r̂v)
feat reduced← PCA((Ch,h + Cv,v, Cv,h + Ch,v))
features.append(feat reduced)

end for
µ, σ, π ← expectation maximization(features)
heatmap←mahalanobis distance(feat reduced, µ, σ, π)

5.1.2 Target forgeries

The EM algorithm is rooted in the assumption that the method has a forgery.
This implies that the base model is built to localize potential forgeries but not for
forgery detection.

The feature extraction begins from the co-occurrences of the image’s residual,
as the authors had found it convenient for image forensics. The residuals can track
traces of many sorts, so this method is not targeted to any trace in particular.
Additionally, as this method has no training nor parameter-tuning of any sort, it
is not biased toward a particular dataset.

55

Chapter 5. Putting the traces together: the methods

(a) Original image (b) Predicted heatmap

Figure 5.1: Result of running Splicebuster on an image. The original image (a) was extracted
from [27], and the predicted mask (b) is the result of our implementation of the method.

5.2 Noisesniffer
The Noisesniffer method described by Gardella et al. [38] exploits the effects that
the acquisition pipeline described in Chapter 2 has on the noise model of a digital
image by inspecting whether or not the noise model is consistent across the image.

Many methods that apply this principle while searching for noise-related traces
follow the same procedure: They find blocks useful for noise estimation, make a
local estimation of the noise level, and search for inconsistencies in this domain.
The issue with these methods is that the noise level estimation might be unreliable,
so the consequent anomaly detection is inaccurate.

In contrast, Noisesniffer differs in the last step: it finds blocks that are optimal
for noise estimation and computes the noise variance within these blocks, but
then the consistency is expected in the spatial distribution of the selected blocks.
By doing so, this method relieves the burden of having to model the noise levels
with such accuracy. Anomalies are detected following the a contrario theory of
Desolneux, Moisan, and Morel [30], which allows forgery detections to be based
on sufficient statistical evidence.

5.2.1 Method
The noise level is best estimated in homogeneous regions where noise dominates
over the signal. The overall procedure is to sort the blocks in a homogenous region
by their variance to distinguish the lowerm-percentile. If this class has a suspicious
concentration within the homogeneous regions, it is likely produced by a difference
in the noise model and, hence, introduced by forgery.

To do so, the input image is divided into overlapping blocks of size N × N .
Blocks that contain saturated pixels are discarded to avoid unreliable noise es-
timations. Then, for each channel, blocks are grouped in bins of a fixed size
according to their mean intensity. As explained in Chapter 2, the noise model

56

5.2. Noisesniffer

is signal-dependent, so it is not appropriate to compare noise levels for different
intensities.

For a given channel and intensity bin, the following steps are performed: first,
the DCT type II (described in Section 2.1.4.2) is computed for each block; then,
the variance in low and medium frequencies is calculated for each block. In each
bin, blocks are arranged in ascending order according to the variance computed
in the previous step, and only a percentile n of them is kept. The blocks kept in
that step are the most homogeneous ones.

After that, the variances of each of those blocks are computed, and the blocks
are ordered in ascending order, from which only the ones with the m% lowest
variance are kept. If more than m% of blocks have zero variance, the bin is
declared invalid. Ultimately, this part of the method obtains the group of most
homogeneous blocks, L, and a subset V conformed by the blocks within L having
the lowest variance.

In the absence of tampering, the spatial distribution of blocks of V and L
should be the same, and this is adopted as the null hypothesis H0. However, some
fluctuations in that spatial distribution are bound to happen due to randomness,
so the question is whether the spatial distribution of blocks can be observed by
chance or not. If the answer is the latter, that region could have been tampered
with. Here is where the a contrario approach comes into play, where the selection
of the subset V of L is modeled as uniform, and thus, a Number of False Alarms
(NFA) can be computed for every region.

A region-growing algorithm is used to establish which regions are forgeries.
This algorithm starts from a square tessellation of the image. Firstly, the authors
describe a criterion in order to determine which cells are most significant (or suspi-
cious), namely that the proportion of cells inside of V with respect to L is superior
to m (which is suspicious with respect to a uniform Binomial model). From those
cells, the algorithm iteratively adds contiguous cells that make the region more
meaningful in the sense of the NFA.

This algorithm results in a mask of the fully-grown regions that indicate forgery.
An example of the method’s output is shown in Figure 5.2, along with a represen-
tation of the spatial distribution of the L and V blocks. A high-level description
of the method is in Algorithm 2.

5.2.2 Target forgeries
This method is responsive to noise-related traces. Some inherent limitations are
that textured regions can be misinterpreted as noise or that JPEG compression
and image downsampling can reduce the noise-based traces and inhibit detection.

An assumption made in this method is that forged regions have a suspiciously
low variance with respect to the remainder of the image. This means forgeries with
a higher variance than the original image are undetected, or in some cases (if the
forgery region is large enough), it can lead to a false attribution (the complemen-
tary mask) as a prediction. Other limitations were also pointed out in the original
paper. A small forgery region or saturated forgery region can make a forgery pass

57

Chapter 5. Putting the traces together: the methods

(a) Forged image (b) Ground truth

(c) Distributions (d) Predicted mask

Figure 5.2: The method performance on a forged image. Along with the original image (a)
and the ground truth mask (b), the distributions (c) with the output predicted mask (d) are
shown. The distributions (c) are illustrated by painting the blocks in L in white, and on top
of these, the blocks in V are painted in red. Images extracted from [38].

under the radar. Alternatively, a homogeneous forgery amongst a textured image
can produce a false detection.

The main reason this method is selected for the project is that it is a classical
noise-based model. This means it covers noise-based traces and has an inter-
pretable pipeline that can justify detection (or, in some cases, even explain false
detection).

5.3 DQ
Double quantization methods identify forgery through inconsistent traces left by
double JPEG compression. As described previously in Chapter 2, the JPEG al-
gorithm quantizes each DCT coefficient in a particular scale. Therefore, double
JPEG compression implies a double quantization in the frequency domain. Double
quantization of any signal in any context has the peculiarity to induce periodic
peaks in the signal distribution, as long as the quantizations are done with differ-
ent scales [66]. In the JPEG compression context, this effect can occur over the
DCT coefficient distribution when an image undergoes double JPEG compression

58

5.3. DQ

Algorithm 2 Noisesniffer pseudo-code
Input: Image
Output: mask

function compute blocks(Iblocks)
for c in channels do

for b in intensity bins do
coefs← DCT 2D(Iblocks[b, c])
σ2
LF ← sum((coefs[low frequencies])2)

L[c, b]← sort ascending(coefs, sort by = σ2
LF)[low indices]

σ2
L ← var(L[c, b])

V [c, b]←mth percentile(L[c, b], sort by = σ2
L)

end for
end for
return V , L

end function

Iblocks ← tiled image(Image)
V, L← compute blocks(Iblocks)
mask ← region growing(Iblocks, V, L)

with different quality factors, as these are associated with different quantization
scales in the DCT coefficients domain.

A forged image could be created following this procedure: the original image is
in JPEG format, decompressed to have some sort of forgery applied to it, and then
re-compressed for distribution. Should the forgery be some sort of inpainting or
splicing, there is a good chance the forged area does not have the same compression
history as the rest of the image. For instance, the re-compression could have a
different quality than the original image, resulting in the double quantization effect.
If this effect is present but is not uniform across the image, it is a sign of tampering.

Lin et al. [56] propose a classical image processing method for detecting forgery
through this procedure. It is based on the observation that double JPEG com-
pression with different JPEG qualities will result in a double quantization with
different quantization steps. In [66], it is shown that the double quantization of a
signal produces periodic peaks, as illustrated in Figure 5.3. This effect could be
useful for detecting double JPEG compression, which could then reveal tampering
if it is inconsistent. Furthermore, the quantization of the JPEG algorithm occurs
at the DCT coefficient level, meaning this method can work on a JPEG image
without decompressing it. Figure 5.4 shows an example of how a specific channel’s
histogram of the DCT coefficient can show a double-quantization effect.

59

Chapter 5. Putting the traces together: the methods

Figure 5.3: An illustration of the double-quantization effect. The left two figures are histograms
of single quantized signals with steps 5 (a) and 2 (b), respectively. The two right figures are
histograms of double quantized signals with steps 5 followed by 2 (c) and 2 followed by 3
(d). Note the periodic artifacts in the histograms of double-quantized signals. The shaded
rectangles show one period of the histograms. Figure extracted from [56].

Figure 5.4: A typical DCT coefficient histogram of a tampered JPEG image. The shaded
rectangle shows one estimated period of the histogram. Figure extracted from [56].

5.3.1 Method
The method operates on the DCT coefficients of the JPEG image. If the image is
not in JPEG format, a workaround is to convert it to JPEG with quality 100.

The first step is to build a histogram of the DCT coefficients of the blocks
across the image for each of the 64 DCT frequency components and for each
YUV color channel, which leads to 64 × 3 = 192 histograms. Note that in this
implementation, histograms have bin size 1, so each bin counts the occurrences of
each of the DCT coefficients. This method exploits each of these histograms by
producing a probability map for each block being tampered.

To achieve this, two distribution models are provided, one for tampered blocks
that undergo single quantization and one for untampered blocks that are untam-
pered and double quantized. A Naive Bayes approach permits deriving from these
a tampered probability function for each value of the histogram bins. Finally,
this last function can be interpreted as a probability map for the image’s blocks,

60

5.3. DQ

namely, the probability of each block being tampered given its DCT coefficient
value (at a certain frequency and channel). An overall illustration of this proce-
dure can be seen in Figure 5.5. The maps of each channel and of a set of frequencies
are then aggregated to produce a final heatmap.

We shall describe this procedure in further detail. The probability maps, called
Block Posterior Probability Maps (or BPPMs), correspond one to one to the
histograms obtained, meaning there is a probability map for each frequency bin of
the 64 used in the DCT, and also for each of the three color channels. The main
logic behind constructing this BPPM from the histogram h is as follows.

First, since the histogram showcases periodic peaks, with a period we denote
as p, we estimate the period p using different techniques we will not delve into.
Next, we consider the peak period surrounding cDCT , meaning cDCT ∈ [sk, sk + p)
with h(sk) being a peak value. This allows for the definition of the probabilitiesPu(cDCT) := P (cDCT |untampered, Tk) =

h(cDCT)∑p−1
i=0 h(sk+i)

Pt(cDCT) := P (cDCT |tampered, Tk) =
1
p ,

(5.2)

where Tk is the event “cDCT ∈ [sk, sk + p)”. These formulas model the probability
mass functions conditioned to Tk, for the case of tampered and untampered blocks.
Once again, the hypothesis is that tampered blocks suffer single JPEG compression
whilst untampered blocks undergo double JPEG compression. An interpretation
behind these estimations is that single JPEG compressed blocks have uniform
distribution (as there was a single quantization of the DCTs), while double JPEG
compressed blocks will have a higher chance to take peak values in the histogram
(a consequence of double quantization).

The authors claim that a Bayesian approach can derive the probability map
for each frequency and channel, earlier referred to as BPPM , defined as

BPPM =
Pt

Pt + Pu
. (5.3)

This derivation is not presented in the original work [56], but applying Bayes
theorem, it is easy to see that for (5.3) to hold, it is necessary that the prior
probability of a block being tampered is 1/2. While fixing such a value is not
evident, in our opinion, this choice seems to be too high.

By averaging the histogram’s BPPMs over the frequencies and channels, a
heatmap for the entire image is produced, with values ranging from 0 to 1. It
is important to point out that when averaging, the high-frequency range is not
considered since it may degrade the estimates. Indeed, higher frequencies are
too heavily quantized and exhibit a dynamic range that is too limited to present
double-quantization artifacts.

the authors’ implementation, besides the heatmap, includes a predicted mask
for forgeries. This mask is obtained using an SVM trained on a set of features
extracted from the heatmap, which include an optimal threshold, class variances,
and tampered-class connectivity. We did not include this mask prediction stage
in PhotoHolmes’ implementation of the method since the training dataset and
procedure are not provided.

61

Chapter 5. Putting the traces together: the methods

Figure 5.5: How the DCT coefficient histograms are built (for each YUV channel) and how the
histograms vote for a Block Posterior Probability Map (or BPPM). A histogram is obtained
for each channel and each of the 64 frequencies, from which the peak period can be estimated
and a probability map can be derived. Averaging all of these together yields the BPPM. Figure
extracted from [56].

Figure 5.6 shows an example of this method’s output. The method is summa-
rized in Algorithm 3.

5.3.2 Target forgeries
The method identifies anomalies in the double JPEG compression effect, so it is
intended to work within a sub-domain of JPEG traces: those with pronounced
double compression of different compression qualities. The paper also claims the
results are better when the double compression goes from low to higher.

5.4 ZERO
As described in the acquisition pipeline in Chapter 2, JPEG compression is com-
puted in non-overlapping 8×8 blocks that form a JPEG grid. The ZEROmethod [62,
63] works by predicting the JPEG compression grid origin for every pixel in the
image, or as the paper describes it, each pixel “votes” for a main grid origin. If
the vote map presents an anomaly with enough significance, it indicates forgery.

The grid votes are obtained by observing a pattern that JPEG compression
leaves. Concretely, the compression algorithm quantizes the DCT coefficients of
non-overlapping 8×8 blocks of images, setting many of the coefficients in the higher
frequency range to zero. With this in mind, the method identifies the presence of
a JPEG grid when a significant number of DCT zeros are observed for a given grid
origin.

Similar to the Noisesniffer method presented in Section 5.2, the ZERO algo-
rithm includes a statistical validation step according to the a contrario approach,
which associates the NFA to each tampering detection. The detections are ob-
tained by a threshold of the NFA.

62

5.4. ZERO

Algorithm 3 DQ pseudo-code
Input: Image
Output: heatmap

function calculate tampered probability(coefs, hist, p)
BPPM ← empty map(shape = shape(coefs))
for c dct in coefs do

b← bin(h, c dct)
s← previous peak(b, hist)
period range← [s : s+ p− 1]
Pu ← h[b]/sum (h[i ∈ period range])
Pt ← 1/p
BPPM [s]← Pt/(Pt + Pu)

end for
return BPPM

end function

dct coefs← read jpeg(Image)
BPPMs← empty list
for c in channels do

for f in low frequencies do
coefs← dct coefs[channel = c, frequency = f]
hist← histogram(coefs, bin size = 1)
p← detect period(hist)
BPPM ← calculate tampered probability(coefs, hist, p)
BPPMs.insert(BPPM)

end for
end for
heatmap←mean(BPPMs)

5.4.1 Method
The outline of the ZERO algorithm is described in Algorithm 4. First, the lumi-
nance channel is computed from the RGB image, following the YCrCb conversion
used in the JPEG standard.

Each pixel can belong to 64 different overlapping 8× 8 blocks, which are asso-
ciated with the different possible grid origins, as shown in Figure 5.7.

For each pixel, the method counts the number of zeros in the DCT coefficients
corresponding to each grid origin. A zero in this context is a DCT coefficient
with an absolute value smaller than 0.5, which is considered to be zero due to a
rounding error introduced by image decompression.

Each pixel then “votes” for the grid origin where more zeros are observed. The
grid origin receiving the most votes is considered as the most likely original grid.
However, if another grid origin also receives a significant number of votes, it may

63

Chapter 5. Putting the traces together: the methods

(a) Original image (b) Tampered image

(c) Predicted mask (d) Predicted heatmap (BPPM)

Figure 5.6: Result of running our implementation of DQ on an image. The original image (a),
the tampered image (b), the predicted mask (c), and the predicted heatmap (BPPM) (d).

indicate a forgery, particularly in the pixels that voted for this alternative grid.

It is important to mention that blocks with constant values along either the ver-
tical or horizontal direction are excluded from the voting process. This is because
constant blocks, by their nature, will have many zeros in their DCT coefficients.
Allowing them to vote could result in a misleading emphasis on a particular grid
origin that is not actually the true grid.

Finding the main grid cannot be reduced to simply choosing the grid with the
most votes since JPEG compression and, therefore, a main JPEG grid may not
be present. To address this issue, an a contrario statistical validation is used to
ensure that the detection of a grid is not merely caused by noise or stochasticity.
In this step, a null model is defined that considers possible correlations between
neighboring pixels.

Considering the complete model, the NFA is defined for a certain grid origin to
reject the null hypotheses if it is below a certain threshold. A low NFA means that
the number of votes received by this grid is rare under the null hypothesis and has
a very low probability of occurring just by chance, so it is statistically significant.
Then, the most significant grid that scores below a certain threshold is considered

64

5.4. ZERO

Figure 5.7: Each pixel (yellow) belongs to 64 different 8× 8 blocks of the image. Six of them
were drawn in different colors on the left. The top right shows (in red) the position of a
patch not aligned with the grid. The bottom right shows (in green) the position of the patch
containing the pixel matching the JPEG grid. Extracted from [63].

the main grid. This threshold is by default equal to 1 because in the a contrario
approach, it is the expected number of false detections under the null hypothesis,
which is a pretty acceptable standard to establish. This grid detection procedure
can be performed globally on the entire image or locally on an image window.

Putting all of this together, a forgery can be detected by comparing a locally
detected grid in a region to the main grid detected. If these differ (or one of
them is a no-vote), it is an indicator of forgery. The ZERO method applies this
concept with a region-growing algorithm to return a forgery prediction mask. To
obtain a more homogeneous forged region, the morphological closing operation is
performed on the predicted mask to obtain the final mask of the algorithm, F . A
view of a given image, vote map, and forgery mask F is shown in Figure 5.8.

The method also has an additional feature: identifying regions with missing
JPEG compression overall. If one region of the image lacks JPEG compression
and the rest does not, this is taken as another indicator of forgery. To do this,
the image is compressed with quality 99, which introduces some lossy compression
(but a minimal amount) with the grid origin at (0, 0). Then, the grid vote map
and forgery detection algorithms are performed, but the pixels that previously
voted for the main grid are set to a no-vote. This unveils forgery by producing the
predicted mask M if a group of pixels suspiciously votes for the origin (0, 0) after
the second compression when it is not the main grid previously detected. If this

65

Chapter 5. Putting the traces together: the methods

Figure 5.8: Top: forged image from the well-known Twitter account GuillaumeTC, its vote
map and forgery mask F . Bottom: original image found online, its vote map and forgery
mask F . Extracted from [62].

feature is also computed, a way to merge M with F to produce a final mask is by
computing element-wise logic or function between the two: a pixel is forged if any
of both methods detect it as such.

5.4.2 Target forgeries
ZERO method targets forgeries that misalign JPEG grids, which means it is in-
tended for JPEG compression traces (either in the forged region, the main, or
both). Cases of tampering in which both the forged region and the main grid
are aligned, which happens with 1 in 64 chance, will fall under the radar. The
authors also report a poor performance when images undergo too harsh of com-
pression, as it produces several blocks with horizontal or vertical uniformity that
are disregarded in the procedure.

The method’s threshold is chosen to have NFA < 1, which provides a prudent
criterion that avoids over-detecting forgeries but has good evidence in the case of
detection. Viewing an example such as the one presented in Figure 5.8, it is clear
by looking at the vote maps that the method offers great interpretability of its
results, as it provides an explanation for the forgery detection (or lack thereof).

5.5 CAT-Net
CAT-Net [54] is an end-to-end fully convolutional neural network designed to de-
tect compression artifacts in images. CAT-Net combines both RGB and DCT
streams, allowing it to learn image acquisition and compression artifacts jointly.
Each stream considers multiple resolutions to accommodate the various shapes
and sizes of the spliced objects. This comprehensive deep-learning method is used

66

https://twitter.com/guillaumetc?lang=es

5.5. CAT-Net

Algorithm 4 ZERO pseudo-code

Input: Image, [Image quality 99]
Output: mask, missing grid regions

function grid votes map(luminance)
for p in pixels do

zeros amount← 0
best grid← None
for g in grids do ▷ 64 possible grids

grid pixels← luminance[g]
coefs← DCT 2D(grid pixels)
zeros amount← sum(abs(coefs) < 0.5)
if zeros amount > most zeros then

zeros amount← most zeros
best grid← grid codification(g)

end if
end for
votes[p]← best grid

end for
return votes

end function

L← luminance(Image)
votes← empty array(size = L)
votes← grid votes map(L)
main grid← detect main grid(votes)
F ← detect forgeries(votes,main grid)
if Image quality 99 is an input then ▷ Missing grids computation

if main grid ̸= NO VOTE then
votes← grid votes map(Image q99[luminance])
votes[votes = main grid]← NO VOTE
M ← detect forgeries(votes,main grid, grid ≤ 0

end if
else

M ← None
end if
mask ←M elementwise-or F

67

Chapter 5. Putting the traces together: the methods

for localizing spliced regions in JPEG and non-JPEG images.

The RGB stream processes the semantic and color information of the image,
which is often altered during image splicing, while the DCT stream analyzes the
compression artifacts, which are usually introduced when an image is saved in a
compressed format like JPEG. By analyzing both color information and compres-
sion artifacts, CAT-Net can better discern inconsistencies associated with splicing
or copy-move compared to using only one of the streams.

Multiple-resolution analysis refers to the processing of image data at various
scales or resolutions. This is crucial in image splicing or copy-move detection
because forged objects can come in different sizes and shapes. By analyzing the
image at multiple resolutions, CAT-Net can adapt to various scales, making it
more versatile and accurate in detecting spliced regions, regardless of their size.

5.5.1 Method
The method uses HRNet [84] as the backbone architecture for both streams. The
choice of such architecture relies on its multi-resolution analysis. Using pooling
layers is avoided since pooling reinforces content and suppresses noise-like signals,
undesirable for a fine-grained analysis [19]. The architecture for this method is
shown in Figure 5.9. In Figures 5.10 and 5.11, the basic blocks of the network and
the JPEG stream are shown in detail.

Several considerations are made in order to aid the DCT stream to focus on
JPEG compression artifacts. Firstly, the DCT stream is encoded into a binary
volume, which is a representation not far from DCT histograms other methods
use for analyzing compression artifacts (see Section 5.3) whilst maintaining local
information of the coefficients. The JPEG quantization tables are also an input
of the DCT stream. Furthermore, the DCT stream weights are initialized by
pre-training them for the task of detecting double quantization.

On the other hand, the RGB stream is an HRNet that was initialized by
pretraining on the ImageNet [52] classification problem.

The network is designed to work with JPEG images, but it can also process
non-JPEG images by treating them as if they were JPEG images with a quality
factor of 100. This is achieved by placing a JPEG encoder at the beginning of the
network to convert non-JPEG images into JPEG format.

Figure 5.12 shows an example image and the output corresponding output
heatmap.

5.5.2 Target forgeries and dataset biases
The network architecture is developed to be sensitive to JPEG artifacts, so this
network should be expected to perform better under the presence of these, although
it may also find other traces through the RGB stream.

Within the datasets that were used for training and running experiments is
CASIA v2 [32]. Although this dataset is not one of the datasets selected for this
work, its images are very similar to those in CASIA v1.

68

5.6. EXIF as Language

Figure 5.9: CAT-Net architecture includes an RGB stream, a DCT stream, and a final fusion
stage. The RGB stream takes the RGB pixels, while the DCT stream takes the Y-channel
DCT coefficients and a Y-channel quantization table as input. Extracted from [54].

Figure 5.10: Elements in the CAT-NET network. A convolutional unit mainly consists of four
consecutive basic blocks. The fusion unit fuses multi-resolution feature maps by summing
them after matching resolutions. Extracted from [54].

Figure 5.11: JPEG artifact learning module architecture. Extracted from [54].

5.6 EXIF as Language
An image file contains not only the pixel values but also a lot of extra metadata
accompanying the image: camera model, exposure time, focal length, JPEG quan-
tization details, and more. This is called the Exchangeable Image File Format or
EXIF. This method [96] is a more modern approach to Huh et al. [46], where a

69

Chapter 5. Putting the traces together: the methods

(a) Original image (b) Predicted heatmap

Figure 5.12: Result of running CAT-Net on an image. The original image (a) was extracted
from [54], (b) shows the predicted heatmap.

Figure 5.13: Illustration of the multi-modal embedding employed in EXIF. Extracted from [96].

cross-modal model is trained to understand the relationship between what is being
“said” about the image (in its EXIF metadata) and the image content itself. This
can later aid forgery detection by inspecting whether or not this information is
consistent across the image.

Interestingly, the method operates blindly by learning to map the EXIF infor-
mation with the image content into a shared embedding space through contrastive
learning on a cross-modal model, as illustrated in Figure 5.13. After adequate
training, the EXIF information can be captured in the embedding space directly
from the image. Once this is done, all that remains is to search for inconsistencies
in this embedding space across the image, as these indicate that a region of the
image does not match the original EXIF information.

5.6.1 Method
The method consists of training both an image and text encoder using contrastive
learning, obtaining a single, cross-modal embedding space. The paper draws inspi-
ration from OpenAI’s CLIP [71], changing out the natural language for the EXIF

70

5.6. EXIF as Language

Figure 5.14: Outputs of the different components in the EXIF pipeline. From left to right:
the original image, from which patches are drawn to map into the embedding space. These
patch embeddings are used to compute the Affinity Matrix, from which a detection heatmap
(through Mean Shift) or a detection mask (through Normalized Cuts) is inferred. Extracted
from [96].

information concatenated as a string.

This training scheme results in two encoders, image, and text, that operate in
the same embedding space. In other words, patches from the same image should
be close to one another in the embedding space, while patches from images with
different EXIF information should be farther apart. This allows the method to
use the image encoder to detect images that have been spliced without relying on
the EXIF information attached to the image. If patches are taken from the same
image cluster in two or more regions of the embedding space, that means that the
image is a splicing of images that share different EXIF data.

The procedure to predict forgery from the EXIF embeddings is shown in Fig-
ure 5.14. First, in order to find the inconsistencies the method extracts an “Affinity
Matrix”, by computing the cross product of all patch against patch combinations.
The matrix is then clustered by rows into similarity aggregations that can reveal
the tampered region. This last part has two approaches: Mean Shift [47], which
yields a heatmap, and spectral clustering via Normalized Cuts [76], which yields
a mask.

The encoder is a ResNet pre-trained to ImageNet [52], and DistilBERT [74] is
used as a text encoder for the training procedure.

5.6.2 Target forgeries and dataset bias

By searching for consistency with image metadata, this method is not oriented
into any particular trace of the ones discussed in Chapter 2, although it will likely
oversee copy-move type of forgeries (as the EXIF data should be consistent).

The method trained on datasets comprised of pristine images and their meta-
data, none of which included the datasets that we selected for the benchmark
(Section 3.2).

71

Chapter 5. Putting the traces together: the methods

Figure 5.15: A forged image (left) where the woman on the right has been introduced by
splicing, and its noiseprint (right). The inconsistencies caused by the manipulation are visible
in the extracted noiseprint. Figure obtained from [26].

5.7 TruFor
The method described in [42] is a forensic framework that solves a detection prob-
lem in order to say if an image has been manipulated or not and a localization
problem. The method not only returns a heatmap highlighting suspicious areas
but also returns a reliability map highlighting which areas might be error-prone.
To do so, the authors propose a combination of two inputs, the original RGB image
and a noise fingerprint called Noiseprint++. Through this combination, forgeries
are detected as the deviation from the regular pattern of non-tampered images.

5.7.1 Noiseprint++
The Noiseprint++ is a noise fingerprint that comes from retraining the original
Noiseprint [26] previously developed by the same authors but contemplating more
varied scenarios. Concretely, it is a deep learning model that produces a fingerprint
intended to capture not only the camera noise model but also the editing history
of the image (comprised of a combination of basic processing operations such as
resizing, compression, and illumination changes). Figure 5.15 illustrates how a
noiseprint may reveal a splicing of two images from different camera models.

This model is a CNN trained to differentiate different camera noise models and
edit history following a self-supervised contrastive learning paradigm. This is done
by taking a Siamese network that takes pairs of patches as input and training it
to produce distant outputs when the patches do not share the same camera model
and editing history and close outputs when they do. Figure 5.16 illustrates this
training paradigm. It is important to note that the spatial non-uniformity in
the camera noise model (see Section 2.1.1.2) is contemplated, meaning patches of
different spatial position in the image are also regarded as “different”. This is
useful for revealing forgery as different camera models or editing history within
the same image is a clear sign of splicing or other sorts of tampering, as discussed

72

5.7. TruFor

Figure 5.16: Noiseprint++’s training paradigm, represented in high-level. The objective is to
minimize the distance between patches with the same camera model and editing history and
maximize it otherwise. Extracted from [42].

in Chapter 2.

It is also interesting to note that, for this training procedure, the data required
is not from a forgery dataset but rather a pristine dataset that includes camera
model information. This means Noiseprint++ does not have a bias towards a
certain type of forgery; rather, it aims to capture the image pipeline altogether
and emphasize forgery traces in this process.

The weights of this network are initialized to a noise-extracting CNN (using a
successful denoiser CNN), which directs the model toward capturing the relevant
data in the higher frequencies range.

Noiseprint++ can then be used as a forensics feature input for image forensics.
The original Noiseprint ran on the head of a classical method previously presented
by the authors (Splicebuster [27]), but in TruFor, this is an input to the rest of
the network.

5.7.2 Method
The full Trufor framework is illustrated in Figure 5.17. An RGB image is the
framework input from which a noise feature is extracted with the Noiseprint++
module. Both the RGB image and the noise feature are the inputs of an encoder
that extracts dense features used in the next steps of the framework. Those features
serve as input to an anomaly decoder from which an anomaly map is extracted.
This anomaly map is the heatmap that allows users to identify forged regions.
Those same features are also an input of a confidence decoder whose output is
the confidence map, representing the confidence level the model assigns for each
pixel predicted in the anomaly map. The pipeline also combines the output of
both decoders with a pooling module to get a compact descriptor, going through

73

Chapter 5. Putting the traces together: the methods

Figure 5.17: Trufor full framework, extracted from [42]. The input image is x, from which
the Noiseprint++ residual r is extracted. Both of these are fed to the encoder, which, after
decoding, produces the anomaly map a, the confidence map c, and the integrity score y.

(a) Original image (b) Predicted heatmap (c) Confidence map

Figure 5.18: Result of running TruFor on an image. The original image (a) was extracted
from [42], (b) shows the predicted heatmap, and (c) shows the confidence map.

a forgery detector module to predict an integrity score. This detection score is
necessary to answer the detection problem.

As it was discussed in Section 5.7.1, the Noiseprint++ module is constituted
by a noise-extracting CNN. The encoder is based on a CMX architecture [95] that
relies on SegFormer modules [90]. Both decoders have the architecture of the
multilayer perceptron of SegFormer [90] and were trained with a dataset including
pristine and forged images with their respective ground truth masks. In the case
of the confidence decoder, the true class probability map (computed from the
anomaly map and the ground truth) was used as a mask in order to capture
the confidence of the anomaly prediction. The pooling module is in charge of
generating an 8-component feature vector that is fed to two fully connected layers
that predict the integrity score. Those fully connected layers that conform to the
forgery detector are trained with the same dataset as the decoders.

The output heatmap and confidence map for an example image are shown in
Figure 5.18.

74

5.8. PSCC-Net

5.7.3 Target forgeries and dataset biases

The method is trained on three distinct modules: Noiseprint++ on one side, the
encoder on another, and a block that consists of the anomaly decoder, the confi-
dence map decoder, and the forgery detector.

As mentioned before, the Noiseprint++ is trained using self-supervised con-
trastive learning. This form of blind training performed over pristine images favors
generalization, as it is not biased towards any forgery dataset. Moreover, no pris-
tine images from the forgery datasets selected for the benchmark are used in this
training (Section 3.2).

This makes TruFor a particularly interesting method to include, as it is deep
learning-based but has components to aid generalization, which, as discussed pre-
viously (Section 3.1), is especially relevant in media forensics. This is part of the
reason why it was chosen to be integrated into the PhotoHolmes library, added to
the fact that it also outperforms other self-supervised methods proposed by these
authors, like Noiseprint. Having said this, the remainder of the network, this being
the encoder, decoders, and forgery detectors, are trained in a supervised manner
on popular forgery datasets, so the overall method is not free of having a certain
degree of data bias.

The datasets used for training the encoder and anomaly decoder, and the
confidence decoder and forgery detector, are not used in the benchmarking of
PhotoHolmes (Section 3.2).

Regarding the specific traces targeted by the model, it is trained using both
the RGB image and Noiseprint++. Consequently, it is not possible to specify
exactly which forgery traces the overall model detects. However, Noiseprint++
is designed to identify camera models, potentially capturing noise-based traces,
CFA algorithm traces, and JPEG artifacts, which include considerations of editing
history and compression processing.

An important comment to make about the method selection for this library is
that the Multimedia Forensics group, led by Verdoliva at the University Federico
II of Naples, presents several methods that feature a sort of unsupervised finger-
print that can be used for forensics, such as Noiseprint [26], Comprint [59] and
TruFor [42]. Although this methodology is interesting and each of these methods
tackles different forgery traces, the PhotoHolmes team decided to include only
TruFor, which is the one reporting the best performance.

5.8 PSCC-Net

The method described in [57], referred to as PSCC-Net, consists of a neural network
implementing a coarse to fine approach. The method returns a mask locating
forgeries in the input image together with a label that indicates whether the image
has been manipulated or not.

75

Chapter 5. Putting the traces together: the methods

Figure 5.19: PSCC-Net full framework, extracted from [57], showing the top-down and bottom-
up paths along with the Detection Head. The output mask is Mask 1 and the detection score
from the Detection Head. There is also an illustration of how the output mask prediction
improves by learning on the outputs on the lower scales.

5.8.1 Method

Figure 5.19 depicts the architecture presented in [57]. The network consists of
two different sections, first the top-down path constituted by an HRNet backbone,
and then the bottom-up path that combines the features at different scales in a
detection head and a sequence of “Spatio-Channel Correlation Modules”. The
top-down path architecture is the HRNetV2p-W18 described in [82], initialized
with ImageNet [52] pre-trained weights. The main goal of this part is to compute
features at different scales that serve as inputs to the same levels of the bottom-up
path, as well as the detection head that indicates if the image is pristine or not.
In contrast to other encoder-decoder and no-pooling networks, HRNet performs
dense cross-connections between different scales in order to handle scale variation
better, progressively incorporating local and global features at each scale.

In the bottom-up path, the authors add to every level a Spatio-Channel Cor-
relation Module (SCCM) that tries to lay hold of spatial and channel-wise correla-
tions by applying attention to both spatial and channel-wise levels. Here, a coarse
to fine approach is used, obtaining an increasingly more precise resolution of the
masks as shown in Figure 5.19.

An example image and its resulting heatmap are shown in Figure 5.20.

5.8.2 Target forgeries and dataset biases

The full architecture is trained over synthetic datasets that include splicing, re-
moval, copy-move, and pristine images. The overall architecture design is not
directed towards a specific type of forgery trace.

To the interest of this project, it was trained on a fraction of Columbia [45] and
CASIA [32] datasets, among others not used in our benchmarking (Section 3.2).
It could be expected that the method will have a favorable bias towards Columbia
and CASIA.

76

5.9. Adaptive CFA forensics

(a) Original image (b) Predicted heatmap

Figure 5.20: Result of running PSCC-Net on an image. The original image (a) was extracted
from [57], (b) shows the predicted heatmap.

5.9 Adaptive CFA forensics
The method in [16] is a blind approach to identifying local mosaic inconsistencies.
This is done by means of an end-to-end CNN, which is set to detect inconsistencies
in the positioning of the Bayer matrix (see Section 2.1.2). More specifically, the
first part of the network is trained to predict the position of each pixel modulo
(2,2), which is reflective of the Bayer matrix position. Having done this, training
the remainder of the network for forgery prediction is a straightforward process
as an inconsistent Bayer matrix position reveals forgery, at least when it comes
to detecting copy-move or splicing forgeries with strong demosaicing artifacts. An
interesting feature of this model is that it can be trained directly on unlabeled
and possibly forged images, and it is designed for lightweight retraining on new
datasets.

5.9.1 Method
An end-to-end CNN architecture is presented that bases its layers on demosaicing
features. The architecture consists of the concatenation of four modules: a spatial
network, a pixel-wise causal network, a blocks preparation module, and a blockwise
causal network.

The first module is the spatial module, shown in Figure 5.21, intended to cap-
ture the spatial traces that a demosaicing algorithm leaves. The second module
enables the capturing of complex causal relations without adding more spatial
dependencies to the convolutions and is named the pixel-wise module, shown in
Figure 5.22. The following section in the pipeline performs the processing of the
pixel-wise output into blocks by grouping the pixel to make more reliable pre-
dictions and permutating the blocks to keep a balance between the four possible
CFA patterns (see Section 2.1.2.1). This module is shown in Figure 5.23. Each
block is spatially represented by one pixel due to the average pooling. Finally, the

77

Chapter 5. Putting the traces together: the methods

Figure 5.21: Spatial module of the network for Adaptive CFA, comprised of layers with full
and diluted convolutions, and skip connections. Extracted from [16].

Figure 5.22: Pixelwise causal module for Adaptive CFA, achieved by a sequence of 1×1 con-
volutional layers. Extracted from [16].

blockwise module processes the blockwise features to make a forgery prediction.
This module is shown in Figure 5.24.

The training procedure is to first train the spatial and pixel-wise networks, with
an auxiliary head of 4 pointwise convolutions, to predict a pixel’s position modulo
(2,2). After this is achieved, the auxiliary module is removed, and the pixel-
wise outputs are processed into blocks. The remaining procedure is to train the
blockwise network, taking the processed blocks as inputs. This sequence reduces
training time and empowers the network to detect the demosaicing algorithm.

Figure 5.25 shows the output of this method on an example image.

5.9.2 Target forgeries and dataset biases
This method is trained to detect CFA traces and is directed to detecting demosaic-
ing inconsistencies, which can be produced mainly by splicing or copy-move. Note
that in 1/4 of the cases, the forged and pristine region’s grid would be aligned,
preventing detection. It is also important to note that the paper indicates that
post-processing and compression severely hinder performance, so it will likely not
perform well under datasets with JPEG compression or other post-processing.

78

5.9. Adaptive CFA forensics

Figure 5.23: Processing module for Adaptive CFA that transforms the image into blocks,
which is done to make predictions more reliable. The image is split into four images according
to the four modulo (2,2) positions (illustrated as the red, yellow, light blue, and dark blue
matrices). A concatenation of these images in different positions produces 4 new features (the
4 blocks that are vertically aligned on the right). After average pooling, the blockwise output
is obtained. Extracted from [16].

Figure 5.24: Blockwise module of the Adaptive CFA network. After the blockwise processing,
each resulting pixel maps to one block. Pointwise convolutions are computed over these fea-
tures to process the data in each block. The first three layers process the blocks independently
through group pixel-wise convolutions, and the remainder of the network merges the features
through full-depth pixel-wise convolutions. Extracted from [16]

(a) Original image (b) Predicted heatmap

Figure 5.25: Result of running Adaptive CFA on an image. The original image (a) was extracted
from [16], (b) shows the predicted heatmap.

79

Chapter 5. Putting the traces together: the methods

An important issue to address is that although the capacity to adapt the model
by retraining on test data is alluring, the PhotoHolmes team opted not to do this
on the benchmark process. This decision was made primarily because it could
result in an unfair comparison to other methods, which may also benefit from
retraining.

Having said this, the training data, which is RAW data synthetically demo-
saiced with different methods, is not present in the benchmark data (Section 3.2).

5.10 FOCAL
Forensic Contrastive Clustering [88] (or FOCAL) comprises a feature extractor
module, followed by a clustering module that obtains the predicted mask. The
concept behind this method is that the feature extraction should be trained sepa-
rately from the classifier, and more importantly, the classifier be an unsupervised
online learning algorithm.

This paper argues that the classification of image regions as either genuine or
forged depends heavily on the context within the image. Specifically, a spliced
region should not be considered tampered with if it aligns with its original con-
text within the image. While traditional supervised classifiers are trained to pre-
dict based on features alone, without considering feature distributions, this paper
contends that a more effective approach is to segment features within each image
context independently. This is what FOCAL resolves by utilizing a trained feature
extractor along with an unsupervised clustering method to produce the predicted
mask.

5.10.1 Method
The extractor module, the only trained component of this pipeline, comprises a
ViT [83] and an HRNet [84]. The output features are trained using contrastive
learning, which employs an InfoNCE++ (a modified version of [80]) loss with the
features represented by a set of keys and a query. The loss is computed image
by image and later averaged over a batch. A representation of this procedure is
shown in Figure 5.26, which illustrates that as a result of the contrastive training,
the feature vectors are close when they belong to the same mask class (forged or
pristine) and distant when they are not.

Once the feature extractor is trained, all that is left is to cluster it into the two
classes in order to predict a mask. For this task, the HDBSCAN [34] clustering
algorithm is used. Importantly, this last component is performed image by image,
which ensures there is no “contamination” learned between different images, and
the forgery is predicted by taking only into account the feature context of the
given image. The class with the lesser amount of pixels is regarded as the forged
class, under the assumption that forged regions are usually the lesser portion of
the image.

Finally, since clustering is applied to a set of features of any depth, this method
can be extended by concatenating other sorts of features and clustering them

80

5.10. FOCAL

Figure 5.26: FOCAL training and prediction framework. The training phase uses the ground
truth mask to train the feature extractor using contrastive learning. For inference, the model
extracts the features and clusters them into two groups, resulting in the output mask. Extracted
from [88].

(a) Original Image (b) Original Mask (c) Predicted mask

Figure 5.27: Results of running focal on a forged image (a), extracted from CASIA 1.0 SP [32].
FOCAL predicts a mask (c) almost identical to the ground truth (b).

altogether. Naturally, this only makes sense for features that capture the image-
processing pipeline in a certain way.

In Figure 5.27, we show the results of running this model on a forged image.

5.10.2 Target forgeries and dataset bias
FOCAL is not trained or designed to target a specific type of forgery. Within the
model, the dataset-sensitive component is the feature extractor. The extractor was
trained on the same datasets as CAT-Net, meaning amongst the PhotoHolmes’

81

Chapter 5. Putting the traces together: the methods

benchmarking datasets (Section 3.2), the use of CASIA v2 might result in a favor-
able bias towards CASIA v1 [32]. Although the feature extractor was trained for
the purpose of clustering (not quite a mask prediction), it could still be expected
for the method to have a positive bias towards this dataset.

This chapter provided a brief overview of a variety of methods that attempt to
detect and localize forgeries and that have been chosen to be implemented in the
PhotoHolmes library and benchmarked. The ten selected methods follow both clas-
sical and data-driven approaches. Some expose forgery by capturing specific traces
left from noise in the camera model, demosaicing, and compression, whereas other
methods achieve forgery detection or localization by recognizing patterns learned
from data.

In the next chapter, we introduce the PhotoHolmes library, which builds on the
concepts we have discussed so far in this manuscript. We present the library struc-
ture and principles behind its development, how it enables researchers to benchmark
a method easily, and how it allows for contribution and extension of itself.

82

Chapter 6

The PhotoHolmes library

“pip install photoholmes”

Future users

The previous chapters have provided a thorough exploration of the problem,
the relevant data, metrics, and methods available in the literature to address the
issue. The increasing number of publications around image forgery detection high-
lights the need for a standardized library integrating methods, metrics, and datasets.
Ideally, such a library should allow both to benchmark methods in popular forgery
datasets and test suspicious images using different methods without going through
each method’s implementations separately.

Considering most methods have strengths and weaknesses related to the forgery
type and acquisition traces they pursue, being able to run an image through different
methods with ease results in the possibility of quickly creating robust forgery reports
on a suspicious image.

With these considerations in mind, we created PhotoHolmes. The goal of this
chapter is to introduce and elucidate the purpose and functionalities of Photo-
Holmes. The chapter will begin by explaining the overall structure of the library
and subsequently delve into a detailed explanation of its various modules.

6.1 What is PhotoHolmes?
PhotoHolmes is a novel Python library for digital image forgery detection, which
includes a diverse array of state-of-the-art methods, as well as a variety of datasets,
metrics, and useful tools for evaluation and inference. The idea behind the library
arises from the survey of the state of the art carried out, where a lack of consistent
tooling, coding standards, and structure was noticed across different repositories.
This lack of standardization makes it difficult to compare methods and reproduce
results, relying on the authors to produce documentation or to answer questions
directly.

In an effort to supply the community with a tool that can help overcome
these issues, we created PhotoHolmes. The library is designed to be modular,

Chapter 6. The PhotoHolmes library

reproducible, extensible, and easy to use. As we mentioned when discussing the
related works section in Chapter 1, it is important to note that this is not the
first project of its kind. Matlab-forensics [92], for instance, is one of the earliest
libraries that compiled state-of-the-art image forgery detection methods, but it
is not being actively maintained and is built on Matlab, a licensed programming
language. A more recent example is fake-detection-lab [91], a Python project that
had the same objective as PhotoHolmes but has stopped receiving updates after
being published.

The library is available in two remote git repositories:

• The university’s Gitlab: used for developing the project
https://gitlab.fing.edu.uy/photoholmes/photoholmes/-/tree/main

• Photoholmes’ Github: a cleaner repository created for its publication
https://github.com/photoholmes/photoholmes

6.2 Design principles
To ensure the library fulfills its purpose and is maintained over time, the library is
designed with four main principles: modularity, reproducibility, extensibility, and
usability.

Modularity. The library is designed to be modular, where each module tackles a
specific aspect of the image forgery detection pipeline. This simplifies maintenance
work and makes for cleaner and simpler code.

Reproducibility. The library is designed to allow reproducibility, enabling the
user to easily replicate the experimental results of the different methods. Further-
more, it provides a transparent open-source implementation and detailed docu-
mentation of the methods.

Extensibility. The library is designed to be extensible, allowing contributors to
quickly expand the functionalities of the library by adding new methods, datasets,
metrics, and tools. This flexibility is facilitated through a wrapper-based code
architecture complemented by detailed guides on integrating new functionalities.

Usability. The library is designed to be easy to use. This is accomplished through
a Command Line Interface (CLI), which allows the user to invoke the library
without writing code. Classes are also available for seamless library integration
into the users’ code.

6.3 Design choices
Following the aforementioned principles, we designed and wrote the library follow-
ing an Object Oriented Programming (OOP) paradigm. In OOP, one can define
a parent class that sets a basic structure to follow, from which new classes can be
defined, inheriting properties and methods. The second reason OOP was chosen

84

https://gitlab.fing.edu.uy/photoholmes/photoholmes/-/tree/main
https://github.com/photoholmes/photoholmes

6.4. Structure

is because the language chosen, Python [36], is an interpreted OOP programming
language.

Choosing Python as the programming language has its roots in the popularity
the language has gained in the computer vision and data science community in
general, coming to a point where most of the research carried out today is written
in Python. Coincidentally, it is also the language the team is most familiar with.
Python’s strong foothold in the data science community comes from its simple
syntax and its extensive third-party libraries support. Libraries such as Numpy [44]
and PyTorch [14] enable quick and efficient numerical computations, allowing it to
reach speeds close to a compiled language like C, but with a much simpler syntax.

The last important design choice refers to the deep learning framework used.
There are many deep learning frameworks, but there are two that stand out:
Tensorflow [9] and PyTorch [14]. Until a few years ago, Tensorflow was the most
widely used deep learning framework, and some image forensics methods were
implemented using it, like the original Noiseprint [26]. Lately, the tide has turned
in favor of PyTorch [87], and most recent research has been trained using this
framework, which is why we chose only to support PyTorch.

6.4 Structure
The library is subdivided into 7 different modules, each of them with a specific
purpose. The modules are the following:

• Datasets: contains the code implementation for loading the different datasets
that can be used to benchmark the methods.

• Preprocessing: contains different preprocessing operations that can be
applied to the images before using the methods.

• Methods: contains the methods that can be used to detect forgeries.

• Postprocessing: contains different postprocessing functions that can be
used to post-process the outputs of the methods.

• Metrics: contains the different metrics that can be used to evaluate the
performance of the methods.

• Benchmark: contains the benchmark class that allows the user to bench-
mark a method with a list of metrics in different datasets.

• CLI: contains the CLI that allows the user to use the library from the
command line.

Following the modularity principle, each module tackles a specific aspect of the
forgery detection pipeline. The Datasets, Preprocessing, Methods, and Metrics are
designed to work in unison, but each of the modules can be used independently
from each other. Postprocessing groups useful functions used at the end of a
method’s pipeline, so the Methods module depends on it. The Benchmark and

85

Chapter 6. The PhotoHolmes library

the CLI are both designed to run image forgery pipelines, so naturally, they both
make use of all the modules.

6.4.1 Datasets
The Datasets module contains a compilation of popular datasets that are used to
evaluate methods. In the library, a Dataset is a class with instructions to find and
load the images of a dataset.

Following OOP principles, we define a BaseDataset to which we add common
attributes and methods that any dataset might use. In particular, the data load-
ing logic is implemented in a way that is reusable for all datasets, needing only
to override simple properties and methods to define the folder structure. Some
methods, like the ones that define the folder structure, need to be overwritten
when creating a new Dataset, while others should be overwritten when the default
implementation is not fit for the dataset, like mask binarization. An important
note is that the BaseDataset inherits from Pytorch’s dataset, meaning any Pho-
toHolmes’ dataset can be used within that framework. The code of the base class
and an example of how to create a dataset within PhotoHolmes can be found in
Appenddix A.1.1 and Appendinx A.1.2 respectively.

From the survey of the state of the art, we identified three types of image data
that methods use: the image itself, the DCT coefficients, and quantization tables
(qtables) of JPEG images (Section 2.1.4.2). With that in mind, our datasets can
load the three types of data, specified either through the load parameter or by the
preprocessing pipeline’s input, which will be defined in the next section. Another
important parameter is tampered only, which allows the user to specify whether
they want all the images to be loaded or only those where a forgery does exist.

The first release of PhotoHolmes includes 7 benchmarking datasets: Columbia
[45, 89], CASIA 1.0 [32, 64, 89], DSO-1 [29,89], Korus [50, 51], AutoSplice [49] and
Trace [15]. On top of the original versions, we include the social media versions
of Columbia, DSO-1, and CASIA v1, as well as a WebP compressed version of
Korus and Columbia. As mentioned in Chapter 3, the selected datasets cover a
wide range of forgery types and image formats, which we deemed important to
benchmark the diverse array of included methods. The most relevant information
about the included datasets is summarized in Table 3.1 on Section 3.2.10.

Following the design principles from which we built PhotoHolmes, using the
included datasets is a straightforward process. For example, to use the Columbia
dataset and get the first image of the dataset, the following code snippet can be
used:

from photoholmes.datasets.columbia import ColumbiaDataset

from photoholmes.utils.image import plot

Load the dataset

dataset_path = "data/Columbia"

dataset = ColumbiaDataset(

dataset_path=dataset_path ,

preprocessing_pipeline=None ,

86

6.4. Structure

tampered_only=True ,

load=["image"]

)

Get the first image

data , mask , image_name = dataset [0]

image = data["image"]

plot(image)

On top of the dataset definitions, the module contains a registry that lists the
available datasets, as well as a factory that allows the user to easily load any of
the available datasets. Using the factory, the code to load the Columbia dataset
becomes:

from photoholmes.datasets import DatasetRegistry ,

DatasetFactory

Load the dataset

dataset_path = "data/Columbia"

dataset = DatasetFactory.load(

DatasetRegistry.COLUMBIA , # can use "columbia" instead

dataset_path=dataset_path ,

preprocessing_pipeline=None ,

tampered_only=True ,

load=["image"]

)

Given the simple extensibility achieved with how the module was designed, we
expect to continue growing the PhotoHolmes dataset registry as new datasets are
proposed.

6.4.2 Preprocessing
Most forgery detection methods work on transformations of the image data rather
than the image itself. Some transformations are simple, for example, a grayscale
transformation, while others require more complex operations like computing the
DCT volumes in CAT-Net (see Section 5.5). To give structure to these transfor-
mations, we define the Preprocessing module.

Within this module, we define a BasePreprocessing class. This class is ex-
tremely simple, only requiring children classes to implement the call method,
as can be seen in Appendix A.2.1. In order to allow preprocessing operations to
be mixed and matched in different pipelines, each preprocessing operation expects
a dictionary as input and outputs a dictionary. The preprocessing operations can
modify, add, or remove entries in this dictionary as long as they are composed in
a compatible fashion. In the first release of PhotoHolmes, we include the prepro-
cessing operations:

• ZeroOneRange: changes the image pixel values from [0, 255] to [0, 1].

• Normalize: applies standardization to the image by subtracting the mean
and dividing by the standard deviation.

87

Chapter 6. The PhotoHolmes library

• RGBtoGray: converts an image from the RGB colorspace to grayscale.

• GraytoRGB: converts the image from grayscale to RGB.

• RoundToUInt: rounds the input float tensor and converts it to an unsigned
integer.

• ToNumpy: converts tensors to numpy arrays.

• ToTensor: converts a numpy array to a Torch tensor.

• GetImageSize: adds the size of the image to the dictionary.

Some methods require preprocessing operations outside this list, but given their
specificity, we opted to define them within the method’s module. Each method has
a preprocessing.py file where custom preprocessing operations can be defined,
and more importantly, the pre-processing pipeline is defined.

The PreprocessingPipeline is a class that sequentially runs a list of pre-
processing operations on the input data and leaves it ready for the method to
intake. The pipeline is designed to be easy to use, simplifying the composition of
transforms and controlling the input to the model. The PreprocessingPipeline
requires three parameters: the list of preprocessing operations, the input keys
that need to be included in the initial dictionary provided to the pipeline, and the
output keys that the method expects. The input keys are used to validate the
pipeline input, avoiding obscure errors when used incorrectly, and are also used
by the Datasets to load only the necessary image information. The output keys
are used to filter out any extra keys that were left over during the preprocessing
operations. The implementation of the class is in Appendix A.2.2.

Here is a code snippet that implements a simple preprocessing pipeline. It
expects an image, converts it to a numpy array, and then converts it to grayscale.

from photoholmes.preprocessing import ToNumpy , RGBtoGray ,

PreProcessingPipeline

from photoholmes.utils.image import read_image

pipeline = PreProcessingPipeline(

transforms =[ToNumpy(image_keys =["image"]), RGBtoGray ()],

inputs =["image"],

outputs_keys =["image"]

)

image = read_image("example_image.jpeg")

result = pipeline(image=image)

6.4.3 Methods
The Methods module is the core of the library, and all the modules are designed
around it. As we mentioned in the introduction (Section 6.1), the implementations
of forgery detection methods are diverse in code structure, programming style,

88

6.4. Structure

(a) CAT-Net 5.5 (b) FOCAL 5.10 (c) Splicebuster GU 5.1

(d) Splicebuster GG 5.1 (e) Noisesniffer 5.2 (f) Trufor 5.7)

(g) AdaptiveCFA 5.9 (h) ZERO 5.4 (i) PSCC-Net 5.8

(j) DQ 5.3 (k) EXIF MS 5.6 (l) EXIF Ncuts 5.6

Figure 6.1: Results of running all the methods included in PhotoHolmes on the image presented
in Figure 2.9, showing the overlay of each method’s output over the original image, the former
being predicted masks or heatmaps accordingly.

89

Chapter 6. The PhotoHolmes library

inputs, outputs, and documentation, making it difficult to run quick inference or
evaluation unless the authors provide specific scripts for it.

To address this issue, following OOP principles, we designed a BaseMethod
class that all methods inherit from, and that ensures compatibility with the rest of
the modules provided in the library. Additionally, we defined BaseTorchMethod,
meant to be used by those methods that rely solely on neural networks. This
way, the methods are compatible with PyTorch and can be used for retraining
and other experiments. As with the Datasets, the BaseMethod includes default
implementations of some functionalities like loading from a configuration file, and
it requires the user to implement the benchmark function1. This function will be
used by the Benchmark module we will later introduce, simplifying a method’s
evaluation process. Another notable function2 is to device that allows the user
to move the method into a device optimized for tensor acceleration, such as a
GPU, especially useful for deep learning methods. The code for both base classes
is included in Appendix A.3.1.

Apart from the base definitions, the first version of PhotoHolmes contains the
implementation of ten image forgery detection methods: Adaptative CFA [16],
Noisesniffer [38], ZERO [62], DQ [56], CAT-Net [54], Splicebuster [27], EXIF as
a language [96], PSCC-Net [57], TruFor [42] and FOCAL [88]. For details about
any of these methods, refer to Chapter 5. In Figure 6.1, you can see the results of
running all the methods on the forged image in Figure 2.9.

To provide an example of how the methods module can be used, we provide a
code snippet to run CAT-Net on an image. In a few lines of code, we instantiate
the method, change the device to GPU for a faster inference, and run the method
on the image.

from photoholmes.methods.catnet import CatNet ,

catnet_preprocessing

from photoholmes.utils.image import read_image ,

read_jpeg_data

path_to_image = "path_to_image"

image = read_image(path_to_image)

dct , qtables = read_jpeg_data(path_to_image)

Preprocess data

image_data = {"image": image , "dct_coefficients": dct , "

qtables": qtables}

input = catnet_preprocessing (** image_data)

Declare the method and use .to_device if you want to run it

on cuda or mps instead of cpu

arch_config = "pretrained"

path_to_weights = "path_to_weights"

method = CatNet(

1This function is a method of the object. We chose not to use the word method for
clarity since we were discussing forgery detection methods.

2Also a method of the object

90

6.4. Structure

arch_config=arch_config ,

weights=path_to_weights ,

)

device = "cuda"

method.to_device(device)

Use predict to get the final result

output = method.predict (** input)

Just as in the Datasets module, the Methods module includes both a factory
and a registry that simplifies loading a model. The registry contains a list of all the
available models, while the factory loads the method and associated preprocessing
pipeline.

from photoholmes.methods import MethodFactory , MethodRegistry

from photoholmes.utils.image import read_image ,

read_jpeg_data

path_to_image = "path_to_image"

image = read_image(path_to_image)

dct , qtables = read_jpeg_data(path_to_image)

image_data = {"image": image , "dct_coefficients": dct , "

qtables": qtables}

Load the method

method , preprocessing = MethodFactory.load(

MethodRegistry.CATNET ,

{"weights": "path_to_weights", "arch_config": "pretrained

"},

)

device = "cuda"

method.to_device(device)

Preprocess the input

input = preprocessing (** image_data)

Use predict to get the final result

output = method.predict (** input)

Newer releases of PhotoHolmes will include more methods according to the
demand of the forgery detection community.

Not all the methods included in PhotoHolmes have a commercial license. In an
effort to include as many methods as possible while respecting the original author’s
rights, the decision was reached to include the original License inside the method’s
folder and to log warning messages advising the user to check whether the specific
method’s license is within their scope of use.

6.4.4 Postprocessing
Postprocessing is a common step in image forgery detection, as many methods
employ sliding window predictions or other sub-sampling strategies that yield a

91

Chapter 6. The PhotoHolmes library

prediction smaller than the input image or have an output that has to be rescaled
to a different dynamic range. Given that most methods employ at least one of
these functions, a module was created to centralize them for reusability.

Another commonly applied post-processing is casting types and moving data
across devices (ie. GPU to CPU). While the method itself might not need this
for prediction, they are useful to integrate with other parts of the PhotoHolmes
library or even third-party libraries.

Having identified the two main uses for postprocessing, the first version of
PhotoHolmes includes the following postprocessing functions:

• to device dict: moves dictionary values to the specified device.

• to tensor dict: converts dictionary values to tensors.

• to numpy dict: converts dictionary values to NumPy arrays.

• zero one range: rescales the output to [0, 1].

• resize heatmap with trim and pad: zero-pads or trims the heatmap to
match the original image size.

• upscale mask and simple upscale heatmap: interpolates the mask or heatmap
to match the original image size.

Unlike the previously introduced modules, Postprocessing doesn’t have a base
class that gives structure. This decision was taken to simplify the image forgery
pipeline, choosing to have the method output a comparison-ready mask rather
than having to include instructions or a pipeline to transform the output. However,
some methods may need custom post-processing, as is the case for Splicebuster. In
these cases, there are no restrictions regarding the structure of the postprocessing,
but we choose to have the code inside a postprocessing.py file.

6.4.5 Metrics
As covered in Chapter 4, metrics are essential to evaluate a method’s performance.
Unlike the previous modules, the Metrics module builds on top of the popular
Torchmetrics [31] library. This means that any metric implemented in Torch-
metrics is compatible with PhotoHolmes. This library includes implementations
for the most popular metrics and is easily extensible with new metrics.

Most metrics use a different naming than the one we used in this thesis, so we
decided to create wrappers with our naming conventions for all the metrics. The
module also includes implementations for the FPR (Section 4.4.2), the mAuroc,
and the weighted metrics introduced in Section 4.4.9. Table 6.1 summarizes the
metrics included in the first version of PhotoHolmes.

As was the case with the Datasets and Methods modules, by following the
design principles upon which we built PhotoHolmes, using one of the metrics in-
cluded in PhotoHolmes is a straightforward process. For example, to utilize the
weighted IoU on its first version, the following code snippet can be employed:

92

6.4. Structure

Implementation Dataset-level score Average image-level score

Torchmetrics
ROC, AUROC, TPR, -

Precision, F1, IoU, MCC

Custom F1v2w , IoUv2
w , MCCv2

w , FPR F1v1w , IoUv1
w , MCCv1

w , mAUROC

Table 6.1: Breakdown of the metrics included on the first release of PhotoHolmes.

from photoholmes.metrics import IoU_weighted_v1

import torch

iou_weighted_v1_metric = IoU_weighted_v1 ()

Generate random data

data = [

(torch.rand (256, 256), torch.randint(0, 2, (256, 256)))

for _ in range (10)

]

Update the metric for each image

for pred , mask in data:

iou_weighted_v1_metric.update(pred , mask)

Compute the final value

iou_weighted = iou_weighted_v1_metric.compute ()

print("IoU_weighted_v1:", iou_weighted)

The Metrics module also contains a registry of the available modules, as well
as a factory that allows the user to load any of the registered metrics easily. Unlike
the previous factories, the Metrics factory can receive a list as input, returning
the collection of metrics requested in one simple call.

from photoholmes.metrics import MetricFactory , MetricRegistry

load metrics

metrics = MetricFactory.load(

[

MetricRegistry.IoU ,

MetricRegistry.F1 ,

MetricRegistry.mAUROC

]

)

...

evaluating predictions

metrics.update(preds , mask)

93

Chapter 6. The PhotoHolmes library

6.4.6 Benchmark
This module aims to solve one of our initial problems, which was the lack of uniform
and reproducible evaluations of the state of the art. The Benchmark module,
which consists of a single Benchmark object, is designed to work seamlessly with
any method, dataset, and metric that was implemented using PhotoHolmes.

While one could build a custom benchmark script to run a method over a
dataset, our module includes some useful functionalities that simplify the process.
The most useful one is saving the outputs in a compressed npz format, making it
possible to resume a benchmark process if it was interrupted or quickly re-run the
outputs on a different set of metrics without running the method. It is important
to note that the benchmark process can take a long time, especially if the method
in place is slow and the dataset has a lot of images. Since batching requires the
images to be of the same size, it is not possible to optimize inference speeds with
this technique since resizing and cropping can destroy useful traces in the image.

The Benchmark object is used in two steps. Firstly, we need to instantiate
the class with the configurations the benchmark will follow. These configurations
include the device to run on, whether to store outputs, re-use stored outputs and
where to save them, and controlling the verbosity of the logging. Once we have our
benchmark instance, we can call the run method, providing it a method, a dataset,
and the set of metrics to run on. It is in this function that the benchmark method
required by the BaseMethod (see Section 6.4.3) is used. Figure 6.2 illustrates the
described end-to-end benchmarking pipeline.

During the state-of-the-art review, we identified three types of method outputs:
heatmaps, binary masks, and detection scores. As such, we introduce this notion
to our benchmark process, expecting a method to output at most one of each
category. This way, we create an interface for the benchmark and the methods to
interact. Each one of these output types is evaluated on a different set of metrics, so
if our method has the three types of output, at the end of the benchmark process,
we are left with three metric reports. A metric report is a JSON file, stored within
the output folder, where the metric results for the method are dumped.

Once finished, the benchmark results will be in the output folder selected when
creating the Benchmark objects, which defaults to output. Inside this folder, the
following structure is present:

output/

{method}/
{dataset}/

metrics/

{timestamp} {dataset mode}/
{output type 1} report.json
{output type 2} report.json

outputs/

...

The following code snippet provides an example of using the Benchmark mod-
ule by concatenating all of the other modules included in PhotoHolmes. The

94

6.4. Structure

examples showcase the benchmarking of DQ in Columbia with AUROC and F1
by using the corresponding factories.

from photoholmes.datasets import DatasetFactory ,

DatasetRegistry

from photoholmes.metrics.factory import MetricFactory

from photoholmes.methods import MethodFactory , MethodRegistry

from photoholmes.benchmark import Benchmark

Load the dataset

dataset = DatasetFactory.load(

DatasetRegistry.COLUMBIA ,

dataset_path=columbia_dataset_path ,

load=["image", "dct_coefficients"],

preprocessing_pipeline=dq_preprocessing ,

)

Load the metrics

metrics = MetricFactory.load(["auroc", "f1"])

print(metrics)

Load the method

dq , dq_preprocessing = MethodFactory.load("dq")

Create the Benchmark object

benchmark = Benchmark(

save_method_outputs=True ,

save_extra_outputs=False ,

save_metrics=True ,

output_folder="example_output",

device="cpu",

use_existing_output=False ,

verbose=1,

)

Run the benchmark

benchmark.run(method=dq,

dataset=dataset ,

metrics=metrics

)

In the repository, there is a Jupyter Notebook inside the notebooks folder with
a step-by-step guide on how to benchmark a method.

6.4.7 Command Line Interface (CLI)
As mentioned in the introduction, one of the design principles of the library was
usability. Following this principle, a Command Line Interface (CLI) was developed
to ease the user experience. In the first version of the library, the CLI contains
three commands: run, download weights, adapt weights.

The run command allows the user to run a method in a single image and

95

Chapter 6. The PhotoHolmes library

Figure 6.2: Benchmark class flow diagram. Everything starts by choosing a dataset and a
method, then according to the chosen method, the dataset is preprocessed with the corre-
sponding preprocessing. Then, outputs can be visualized, and chosen metrics are computed.
The metrics are then stored as benchmark reports.

check the results without writing code. Each method has its sub-command and
can expect more arguments (for instance, the path to the pre-trained weights in
the case of learning-based methods), but they all share the following arguments
and options:

• Arguments

– image path: path to the image to run the method on.

• Options

– output-folder: path to a folder where to save the method outputs.
If no path is provided, then the outputs are not saved.

– overlay: flag that if set, a plot with the mask or heatmap overlayed
on the image is included.

– show-plot / no-show-plot: whether to show results as a matplotlib
plot.

– device: torch device to run the methods on. Only available in methods
that use neural networks.

In Figure 6.3, we present the output of running CAT-Net on the forged image from
Figure 2.9.

The download weights provides a simple interface for a user to download
the model’s weight for a deep learning method. This command takes a method
as an argument and has the option to choose the folder where the weights are
downloaded. As mentioned before, some of the methods included in PhotoHolmes
have their weights licensed to be used only in research contexts. When this is the
case, the CLI will display a warning and require the user’s input on whether they
accept those terms or not, protecting the original author’s rights.

Lastly, the adapt weights script modifies original model weights to align with
PhotoHolmes’ methods implementations. Some methods have been adjusted to

96

6.4. Structure

Figure 6.3: Output of running photoholmes run catnet <image path> --overlay using
the photoholmes CLI. The forged image is the one presented in Figure 2.9.

eliminate unnecessary structures within the architecture and remnants from ap-
plying transfer learning. This streamlines the model, making it more efficient
and suitable for the intended tasks. For example, EXIF as Language [96] inherits
from OpenAI ’s Clip model [72], yet overrides some of its properties and leaves
some structures unused. Our scripts remove any unused modules for a cleaner
implementation.

In this chapter, we have introduced the PhotoHolmes library, a novel Python
library for digital image forgery detection. The library includes a diverse array
of state-of-the-art methods for detecting forgeries in digital images, as well as a
variety of datasets and metrics for benchmarking these methods. The library is
designed to be modular, reproducible, extensible, and easy to use. It is subdivided
into 7 different modules, each of them with a specific purpose. These modules are
Datasets, Preprocessing, Methods, Postprocessing, Metrics, Benchmark, and CLI.

In the next chapter, we exploit one of the PhotoHolmes library’s capabilities,
specifically the utility of the benchmark module. Using this tool, we have per-
formed a thorough analysis of the different methods in the library, comparing their
performance in different situations and metrics. This evaluation has enabled us
to provide a detailed evaluation of each method, highlighting their strengths and
weaknesses, as well as identifying the specific contexts in which they are most ef-
fective.

97

This page intentionally left blank.

Chapter 7

Evaluation

“There is nothing like first-hand evidence.”

Sherlock Holmes

The preceding chapter introduced the PhotoHolmes library, providing users
with the capability to benchmark various methods using a diverse range of datasets
and metrics. In this chapter, we conduct a detailed evaluation of the ten methods
included in PhotoHolmes, which cover a wide range of approaches to forgery de-
tection in digital images, in order to highlight their strengths and weaknesses. The
chapter is structured as follows: first, we provide a brief overview of the methods
selected for analysis. Next, we describe the metrics and datasets used. Lastly, we
present the evaluation and its results. The evaluation is split into two parts: the
non-semantic evaluation, which identifies specific traces targeted by each method,
if any, and the popular datasets evaluation, which benchmarks the methods against
widely used datasets. By doing the non-semantic evaluation first, the trace-related
information found allows us to further explain some results in the popular datasets
evaluation.

7.1 Recapitulation and evaluation notes
As mentioned throughout this thesis, the objective of this review of the state of
the art in forgery detection is to understand current technologies’ capabilities,
strengths, and weaknesses, as well as what follow-up research can be done to
mitigate these shortcomings. Before conducting the evaluation, we will briefly
recap the methods and datasets mentioned in the previous chapters and discuss
the selection of metrics for this evaluation. Regarding the latter, some clarifications
are made on the decisions that the team made.

7.1.1 Benchmarked methods
The methods chosen for study in this work were presented in Chapter 5 and are
summarized in Table 7.1. These ten methods were chosen based on their per-

Chapter 7. Evaluation

Method
Target Deep- Outputs
traces learning Heatmap Mask Detection

Adaptive CFA [16] CFA ✓ ✓ ✗ ✗

Noisesniffer [38] Noise ✗ ✗ ✓ ✓

ZERO [62] JPEG ✗ ✗ ✓ ✓

DQ [56] JPEG ✗ ✓ ✗ ✗

CAT-Net [54] JPEG ✓ ✓ ✗ ✗

Splicebuster [27] Multiple ✗ ✓ ✗ ✗

EXIF as language [96] Multiple ✓ ✓ ✓ ✓

PSCC-Net [57] Multiple ✓ ✓ ✗ ✓

TruFor [42] Multiple ✓ ✓ ✗ ✓

FOCAL [88] Multiple ✓ ✗ ✓ ✗

Table 7.1: Summary of the target traces of each method included in the first release of
PhotoHolmes as well as the kind of output they provide. The outputs can be continuous
heatmaps representing probability, binary masks, and detection scores.

formance, relevance, and complementarity, as the goal is to have a diverse set
of methods to contemplate the different types of forgeries covered in Chapter 2.
We also divide the methods into four categories: demosaicing-based, noise-based,
JPEG-based, and multi-purpose methods, as can be seen in the table, along with
the types of output the method yields.

All of them solve the localization problem, either through a heatmap or a
mask, with some cases returning both. To be able to compare the results to the
ground-truth mask, we need the heatmaps and masks to match the original image
size, so postprocessing might be needed to get the output to the correct size. In
the cases where the authors included that operation in their code, we followed it,
but in other cases, we had to opt for either a simple upscale using interpolation,
padding, or both. For example, when the method yields a heatmap where each
pixel corresponds to a DCT block of dimensions 8 × 8, the upscale is done by a
factor of 8 in both directions so that all pixels corresponding to that block have
the same value. Then, if the image dimensions differ with this resize by less than
8, it is padded with zeros or trimmed as necessary to match the dimensions.

Additionally, certain methods tackle the detection problem, yielding a detec-
tion score alongside the localization output. For ZERO and Noisesniffer that
generate a mask, we decide to generate a detection output as follows: if any pixel
in the mask appears as forged, then the detection is set to 1; conversely, if the
mask consists entirely of zeros, the detection output is 0.

Some important notes have to be made about some of the methods. Firstly,
we performed two localization evaluations for the method ZERO (Section 5.4).

100

7.1. Recapitulation and evaluation notes

One of them, which we will refer to as “ZERO” from now on, is the basic method
that only searches for misalignments in the JPEG grid. The other one corresponds
to an extension of the method proposed by the authors, which also searches for
missing grids, called “ZERO with missing grids” throughout this chapter. In the
case of detection, we only considered ZERO since the authors reported that the
missing grids version tends to introduce false positives.

By looking at the table, it is easy to see that EXIF as Language (Section 5.6) is
the only method that generates all three types of output. Regarding localization,
this method returns the heatmap when running the Mean-Shift algorithm over the
features and a mask when using NCuts clustering, so we include both evaluations
in the reports. However, in the case of detection, a modification was made to the
original implementation. The authors proposed to use the mean of the Mean Shift
heatmap as a detection score, but we found this could be misleading, especially in
images where the forgery is small proportionally to the image where a few high-
confidence predictions can be diluted by numerous pixels with low probability.
The authors themselves noted that the values were usually quite low and opted to
analyze the score only by determining whether it was high or low. Still, they do
not provide any threshold to establish a fair comparison and even discourage the
usage of the score itself. To address this, we propose a different approach based
on how the detection output is handled in ZERO and Noisesniffer.

We also remind the reader that although DQ (Section 3) outputs only a
heatmap, the original implementation additionally outputs a mask. This mask
is obtained by segmenting a set of features extracted from the heatmap with an
SVM, which we could not carry out due to a lack of implementation details. Re-
garding this chapter, it is important to consider that the final output from the
SVM may achieve better results than the implementation used in the benchmark.

Before moving on to evaluation, we must define the term hallucination. In this
work, hallucination will specifically refer to false positive localizations, but only
in instances where the model identifies a forgery in a region of the image that is
entirely authentic or in an image that contains no forgery whatsoever. This term
will not apply to cases where the model correctly detects a forgery but erroneously
extends this detection to small adjacent areas, nor does it cover false negatives,
where the model fails to identify actual forgeries.

7.1.2 Metrics
As presented in Chapter 4, the metrics need to be carefully selected to be able to
correctly describe the methods’ performance and ensure a fair comparison. In this
evaluation, we need metrics that can measure the performance of the two problems,
localization and detection, and also take into account the different types of outputs
that the methods can have (both heatmaps and masks). To this end, from all
the metrics described in this chapter and later implemented in the PhotoHolmes
library, we selected seven of them to report in this work. The selected metrics are
the weighted Matthews Correlation Coefficient (MCCw), Intersection over Union
(IoUw), and F1w, in both average image-level (v1) and dataset-level (v2) versions,

101

Chapter 7. Evaluation

and the Area Under the ROC (or AUROC).
As in the previous section, there are some comments to be made on implemen-

tation decisions of the metrics used in this evaluation. Regarding the AUROC, it
is important to note that if the prediction is a mask, the ROC curve is a single
point, and thus, the AUROC lacks meaning. Having said that, the implementa-
tion of the AUROC included in Torchmetrics outputs a value for these cases by
generating a ROC with three points: one point being the (0, 0) which implies an
empty mask, the (FPR, TPR) where FPR and TPR are calculated with the mask
as is, and the (1, 1) which is obtained when the mask is all ones. Although this
workaround exists, it will not be used for masks in this work because, as already
mentioned, it makes no theoretical sense to calculate the AUROC for these cases.
With this consideration in mind, the AUROC is reported only for methods that
output a heatmap for localization. Although AUROC does not permit a compari-
son between all evaluated methods, it is still included because it is one of the go-to
metrics authors use to evaluate the methods’ performance.

As was presented in Section 4.3.2 and Section 4.4.9, there are two versions of
the weighted metrics, the average image-level and the dataset-level. The image-
level metrics will be used to evaluate the localization problem, as it better captures
how the methods perform in each image, while the dataset-level version will be
used for the detection problem since the image-level does not make sense when the
output is a single number.

From the previously mentioned weighted metrics, the MCC is the least depen-
dent on the proportion of positive values to negatives in the ground truth [21].
Unlike IoU and F1 Score, which only penalize false negatives (FN) and false pos-
itives (FP), MCC takes into account the true negatives (TN), thus providing a
balanced assessment of a method’s performance across all categories, consider-
ing both positive and negative classifications. This makes the MCC particularly
effective in penalizing the overestimation of forged areas. In the case of an overes-
timation, the IoU and the F1 will only take into account the appearance of more
false positives; however, the MCC will also take into account the decrease in true
negatives, which will act as a double penalty. This is why the MCC will be re-
garded as the most complete and rigorous metric reported when evaluating the
localization problem. Coincidentally, when running detection on a dataset that
only has tampered images, the MCC will not be reported as it is undetermined
due to a lack of true negatives and false positives.

Finally, a design decision regarding the implementation of the weighted metrics
should be noted. When evaluating pristine images, where the ground-truth mask
is all zeros, if the prediction is only zeros, then the TP, FN, and FP are all zero,
resulting in an indetermination of the definition of these metrics. Unfortunately,
Torchmetrics, which is our framework of reference for the metrics, does not have a
standard strategy for handling these cases. In the case of the F1 score, it reports
a 0, in the case of the IoU it reports a NaN, and in the case of MCC, it yields a 1.
This lack of standardization left us with a choice of how to handle this case when
designing our custom-weighted metrics.

For the weighted MCC, we chose to follow Torchmetrics’s MCC by returning

102

7.2. Non-semantic evaluation

a 1, the highest value, if both the prediction and target are all zerosand thus
are identical. In the case of the IoU and F1 score, to avoid getting NaN values
during evaluations, we opted for Torchmetric’s F1 solution, returning a 0 if both
the prediction and ground truth are all zeros.

7.1.3 Datasets
The last piece of the puzzle is the datasets we are going to use, which, as described
in Chapter 3, fall under two categories. The first category consists of non-semantic
datasets, which make up miniTrace, a set of synthetic datasets created by apply-
ing different pipelines (Section 2.1.1) to raw images in a controlled environment,
resulting in images that have distinct image traces. This allows us to analyze what
type of traces, if any, each method exploits to make its prediction. As mentioned
in Section 3.2.7, the datasets within miniTrace are divided into exogenous and
endogenous datasets, so the tables presented in this chapter report two values for
each entry. Exogenous datasets will be reported in blue and the endogenous in
green.

The second category is the popular datasets, which are datasets that are used in
the literature and contain a mix of tampered and pristine images. These datasets
are Columbia, CASIA 1.0 v1, Coverage, DSO-1, Korus, and AutoSplice. When
evaluating these datasets, the tables will report three values: the original dataset
with all images (tampered and pristine) in blue, the original dataset with only the
tampered images in green, and the dataset with only tampered images that went
through Facebook in purple whenever it is available. This distinction is made for
several reasons:

• We want to study how well a method can locate forgeries; that is why we
are using datasets with just tampered images.

• It is important to analyze whether a method is able to detect whether a
forgery is present in an image or not. To this end, the comparison between
using tampered and pristine images and only tampered images is needed.

• We want to evaluate how sharing forged images over social media might
affect the methods’ performance, for which a comparison with the Facebook
datasets is required. However, the Facebook versions only include tampered
images, so the results can only be compared with the results of running the
method only on the tampered images in the original dataset.

One last detail is that Autosplice’s 90-quality and 75-quality versions (see Sec-
tion 3.2.6) only include tampered images, so only these results will be available.

7.2 Non-semantic evaluation
This section reports and analyzes the results obtained from the non-semantic eval-
uation of the methods on the miniTrace dataset for both localization and detection

103

Chapter 7. Evaluation

(a) Forged Image (b) Ground Truth Mask

Figure 7.1: Non-semantic sample image (a) with it’s exo-mask (b).

problems. The outputs of every method on a set of images from the miniTrace
dataset are shown in Figure 7.2.

7.2.1 Localization
Figure 7.2, which shows a single example from the dataset, reflects the localization
performance results obtained across the entire miniTrace dataset. These results
are reported in Tables 7.2, 7.3, 7.4 and 7.5.

The first notable observation to be made is that Adaptive CFA, Noisesniffer,
and ZERO stand out for their effectiveness in detecting the inconsistencies within
the traces they were designed to exploit, as can be visualized in Figure 7.3. This is
especially evident for ZERO and Adaptive CFA, which achieve the highest scores
in JPEG and CFA traces, respectively, with a significant margin ahead of the sec-
ond best. This exceptional performance is reflected in the figure, wherein the CFA
datasets, only Adaptive CFA can capture both the algorithm and grid inconsis-
tencies, ZERO gets the clearest mask in JPEG, and Noisesnifffer is the only one
that gets a mask close to the original in the noise traces.

Regarding ZERO, the performance in the JPEG Grid dataset is unsurprising,
given that the method is designed to detect misalignments in the JPEG grid. The
excellent performance on the JPEG Quality dataset might come as a surprise, but
is explained by the choice made by the Trace authors (Section 3.2.7) to not only
modify the quality factor in between camera pipelines but also to include a different
grid origin to simulate splicing. This enables ZERO to detect this inconsistency in
the image. It should also be noted that when there is no JPEG grid misalignment
ZERO does not report any forgeries, in other words, ZERO does not have any
false positives. This affirmation can be distilled from the tables and observed in
the figure.

An additional analysis regarding ZERO comes from a comparison between
ZERO and ZERO with missing grids. Firstly, ZERO with missing grids obtains
the same results as ZERO in the Noise and CFA datasets, which means that even
with this new step, ZERO does not detect anything in datasets without JPEG
compression. Regarding the JPEG and Hybrid datasets, we can observe a decrease

104

7.2. Non-semantic evaluation

Method CFA grid CFA alg
JPEG
grid

JPEG
quality

Noise Hybrid
A
d
a
p
ti
v
e

C
F
A

N
o
is
e
sn

iff
e
r

Z
e
ro

Z
E
R
O

m
is
si
n
g

g
ri
d
s

D
Q

C
A
T
-N

e
t

S
p
li
c
e
b
u
st
e
r

E
X
IF

a
s

la
n
g
u
a
g
e

M
e
a
n

S
h
if
t

E
X
IF

a
s

la
n
g
u
a
g
e

N
C
u
ts

P
S
C
C
-N

e
t

T
ru

F
o
r

F
O
C
A
L

Figure 7.2: Outputs in miniTrace datasets of all of the evaluated methods. Original image and
corresponding mask are shown in Figure 7.1.

105

Chapter 7. Evaluation

Figure 7.3: A spider diagram illustrating the MCCv1
w on miniTrace dataset for the top three

performing methods, according to Table 7.2. For each method, it shows the absolute value
of MCC on every axis, where each axis is a different dataset. Each method of the top three
performing methods is plotted with a different color, and a gray shade is used for the remaining
methods. The purpose of this figure is to show how different traces are best exploited by each
of the corresponding classical methods.

in performance when considering the missing grids, which might mean that when
adding the detection of the missing grids, the mask grows into non-forged areas.
However, even with the diminished performance, ZERO with missing grids is still
the second-best performer in the aforementioned datasets.

Adaptive CFA not only performs remarkablely in CFA datasets but also out-
performs all methods in those datasets. This was predictable as its architecture
is designed specifically to detect this type of inconsistency, paired with the fact
that most multipurpose methods do not take into account demosaicing inconsis-
tencies. As mentioned in Section 5.9, Adaptive CFA is trained upon a synthetic
demosaicing pipeline with several known demosaicing algorithms, which mimic
the demosaicing process used to generate miniTrace. It is yet to be seen how this
method performs in more complex, unknown demosaicing algorithms that may be
found in the wild. However, the performance in the Hybrid dataset is a bit low
as this dataset includes manipulations of the CFA algorithm and/or grid, but it
might also have a JPEG compression. This is coherent with the observation made
in Section 5.9 that Adaptive CFA lowers its performance in the presence of JPEG
compression.

In the case of Noisesniffer, a noteworthy remark is how, as expected, it excels
in detecting noise traces, judging by the MCCv1

w (Table 7.2) score on the Noise
datasets, where it gets the best score out of all methods. Despite being the highest
score, it is lower when compared to ZERO on its target forgery. As mentioned in
Section 5.2.2, the authors state that the method cannot detect forged areas with
higher noise levels than the original image, which the miniTrace Noise dataset
contains examples of. This known limitation might result in the difference in

106

7.2. Non-semantic evaluation

performance observed compared to its counterparts.
However, the case of IoUv1

w and F1v1w , shown in Tables 7.3 and 7.4 respectively,
suggest a different result as EXIF as Language with NCuts surpasses Noisesniffer
on the Noise endogenous datasets. As explained before, the IoU and F1 do not
penalize as hard as the MCC predictions with larger forged areas than the ones
in the ground truth. This means that EXIF as Language with NCuts is probably
estimating larger forged areas than the real ones, whereas Noisesniffer is not, and
that is likely why in terms of MCCv1

w the results are better.
This difference between MCCv1

w and the other metrics also appears for PSCC-
Net, where the results of IoUv1

w and F1v1w are better than MCCv1
w . Looking at the

latter, it can be inferred that despite being trained as a multipurpose method,
PSCC-Net performs best when JPEG traces are involved.

Another relevant observation is the good performance of TruFor across Noise
and JPEG traces as well as with the hybrid dataset, getting almost always third
place. This is unsurprising, taking into account that TruFor uses Noiseprint++ as
a feature, which was trained to distinguish between different processing pipelines
(including different compressions), cameras, and spatial positions (Section 5.7.1).
In the case of CAT-Net, the best performance is achieved with JPEG traces, which
can be attributed to its DCT stream, which enables it to detect compression-related
inconsistencies.

Analyzing FOCAL’s performance on the miniTrace datasets is surprising. Its
poor overall performance seems to indicate that the method isn’t exploiting any
trace inconsistencies when detecting a forgery. This suggests that it mainly relies
on exploiting the semantic inconsistency of the image.

Finally, Table 7.5 shows the results of the localization performance with the
AUROC metric. As mentioned before, reported results are only on methods whose
output is a heatmap. Among those methods, TruFor thrives in Noise, JPEG, and
hybrid datasets, whereas Adaptive CFA excels within the CFA ones. The results
reinforce those obtained previously; these methods detect trace inconsistencies very
well in the presence of their target traces. One noteworthy observation should be
made regarding DQ. Although the performance of DQ in terms of the weighted
metrics was not exceptional, the performance on the AUROC metric in JPEG
datasets is little short of remarkable. The most likely explanation for this is that
DQ outputs a probability map with relatively low values, and these low values
yield low-weighted metrics. However, it seems that the highest output values are
in the correct places, so with the correct thresholds, the final masks are good,
hence the good results in AUROC terms. An example of this behavior can be seen
in Figure 7.2, where on JPEG grid, JPEG quality, and Hybrid, the heatmap is
correct, but the image is grayed out due to the small dynamic range it has. As
brought up previously, the mask the original method generates using the SVM
may solve this issue, resulting in a better performance.

107

Chapter 7. Evaluation

Method Noise JPEG Quality JPEG Grid CFA Alg CFA Grid Hybrid

Adaptive CFA
0.001
0.020

0.033
0.025

0.035
0.036

0.509
0.513

0.675
0.658

0.126
0.119

Noisesniffer
0.187
0.137

0.074
0.037

-0.006
0.003

0.062
0.033

-0.005
-0.002

0.148
0.100

ZERO
0.000
0.000

0.737
0.663

0.783
0.697

0.000
0.000

0.000
0.000

0.565
0.572

ZERO with
missing grids

0.000
0.000

0.678
0.624

0.711
0.643

0.000
0.000

0.000
0.000

0.533
0.536

DQ
0.000
0.000

0.066
0.058

0.066
0.060

0.000
-0.002

0.000
-0.002

0.056
0.050

CAT-Net
0.006
0.002

0.279
0.316

0.272
0.314

0.002
0.002

0.002
-0.002

0.322
0.340

Splicebuster
0.086
0.077

0.071
0.074

-0.002
0.022

0.051
0.071

-0.005
0.013

0.103
0.102

EXIF as Language
Mean Shift

0.016
0.029

0.051
0.046

-0.004
0.011

0.046
0.056

0.000
0.023

0.034
0.053

EXIF as Language
NCuts

0.008
0.049

0.052
0.061

-0.004
0.040

0.056
0.064

-0.023
0.010

0.049
0.128

PSCC-Net
0.007
0.003

0.118
0.118

0.111
0.116

0.002
-0.001

0.002
-0.002

0.121
0.120

TruFor
0.118
0.076

0.504
0.524

0.532
0.552

0.033
0.022

0.004
-0.001

0.408
0.398

FOCAL
0.035
0.032

-0.002
0.017

-0.008
0.018

-0.001
0.016

0.002
0.012

0.033
0.045

Table 7.2: Localization performance in terms of the mean weighted MCC score (MCCv1
w) in

the miniTrace database, for both, the exogenous datasets and the endogenous datasets. In
bold, the highest score in each dataset, and underlined, the second highest one.

7.2.2 Detection
Although we previously stated that detection evaluation requires a dataset with
both tampered and pristine images, we will make an exception for this dataset to
highlight some interesting points. It is important to keep in mind that evaluat-
ing without pristine images does not penalize false positives on the metrics, so a
method with really low precision but high recall will appear on top. As mentioned
in Section 7.1.2, the dataset-level IoU and F1 scores are the only metrics used to
evaluate detection performance, reported on Table 7.6, and Table 7.7 respectively.

Looking at the detection results, what first stands out is the excellent per-
formance of EXIF as Language. Yet, this apparent success is misleading. The
method systematically flags images as forged, and since the dataset contains only
manipulated images, the predictions are always correct. This behavior stems from
our decision to derive the detection score from the mask prediction, also employed
in ZERO and Noisesniffer, where we consider a forgery is detected if any value
in the predicted mask is 1. However, this approach does not fully apply to the
case of EXIF as Language. Unlike ZERO and Noisesniffer, which in some cases

108

7.2. Non-semantic evaluation

Method Noise JPEG Quality JPEG Grid CFA Alg CFA Grid Hybrid

Adaptive CFA
0.014
0.026

0.120
0.116

0.121
0.121

0.459
0.457

0.603
0.584

0.184
0.180

Noisesniffer
0.192
0.141

0.116
0.083

0.043
0.049

0.107
0.076

0.041
0.042

0.158
0.119

ZERO
0.000
0.000

0.702
0.641

0.740
0.673

0.000
0.000

0.000
0.000

0.578
0.575

ZERO with
missing grids

0.000
0.000

0.642
0.605

0.657
0.612

0.000
0.000

0.000
0.000

0.540
0.534

DQ
0.096
0.096

0.127
0.123

0.128
0.124

0.101
0.100

0.101
0.100

0.124
0.121

CAT-Net
0.005
0.003

0.187
0.230

0.186
0.227

0.002
0.005

0.002
0.002

0.243
0.262

Splicebuster
0.070
0.071

0.076
0.084

0.037
0.053

0.055
0.077

0.033
0.045

0.092
0.095

EXIF as Language
Mean Shift

0.056
0.064

0.085
0.086

0.049
0.059

0.096
0.102

0.062
0.075

0.070
0.080

EXIF as Language
NCuts

0.132
0.176

0.164
0.187

0.111
0.159

0.168
0.190

0.102
0.140

0.176
0.230

PSCC-Net
0.117
0.117

0.117
0.114

0.108
0.113

0.125
0.145

0.123
0.122

0.122
0.119

TruFor
0.132
0.092

0.431
0.456

0.453
0.478

0.067
0.060

0.043
0.043

0.357
0.351

FOCAL
0.095
0.104

0.074
0.097

0.072
0.096

0.073
0.092

0.076
0.089

0.092
0.114

Table 7.3: Localization performance in terms of the mean weighted IoU score (IoUv1
w) in the

miniTrace database, for both, the exogenous datasets and the endogenous datasets. In bold,
the highest score in each dataset, and underlined, the second highest one.

generate empty masks, EXIF’s clustering method always generates two classes,
one corresponding to forged pixels and the other to authentic pixels, so there will
always be a forged class. This is why the detection score is always 1 and should
be disregarded.

Regarding ZERO and Noisesniffer, some interesting comments can be made.
As mentioned before, the detection score of these methods will be 1 if at least
one pixel is marked as forged in the output mask and 0 if no pixels are detected.
Taking this into account, Noisesniffer seems to detect a lot of tampered images,
even in cases such as JPEG grid or CFA grid datasets, for which the localization
shown in Tables 7.2, 7.3 and 7.4 was poor. This behavior can be explained by
the appearance of false detections, which are explained by the authors to happen
because of two reasons. First, in the presence of highly textured areas, as in
those cases, the method will detect the flat regions as forgeries. Secondly, some
false detections might be caused by what the authors name as wrong attributions.
Wrong attributions happen when the forgery’s size is large enough that small
pristine areas with lower noise levels are detected as local anomalies, which are
flagged by the method. Due to the lack of pristine images, we cannot determine

109

Chapter 7. Evaluation

Method Noise JPEG Quality JPEG Grid CFA Algorithm CFA Grid Hybrid

Adaptive CFA
0.023
0.039

0.197
0.191

0.198
0.197

0.531
0.531

0.692
0.676

0.265
0.260

Noisesniffer
0.255
0.199

0.168
0.126

0.075
0.082

0.154
0.116

0.072
0.070

0.222
0.173

ZERO
0.000
0.000

0.747
0.683

0.785
0.697

0.000
0.000

0.000
0.000

0.608
0.604

ZERO with
missing grids

0.000
0.000

0.699
0.660

0.711
0.662

0.000
0.000

0.000
0.000

0.576
0.567

DQ
0.163
0.163

0.207
0.202

0.209
0.204

0.170
0.169

0.169
0.169

0.202
0.199

CAT-Net
0.009
0.006

0.276
0.319

0.270
0.319

0.005
0.007

0.005
0.004

0.327
0.350

Splicebuster
0.116
0.118

0.124
0.132

0.070
0.088

0.096
0.124

0.060
0.077

0.147
0.150

EXIF as Language
Mean Shift

0.101
0.111

0.146
0.145

0.090
0.103

0.159
0.165

0.110
0.127

0.123
0.136

EXIF as Language
Ncuts

0.189
0.225

0.221
0.240

0.176
0.212

0.227
0.243

0.160
0.193

0.234
0.284

PSCC-Net
0.189
0.188

0.182
0.176

0.170
0.173

0.198
0.254

0.196
0.193

0.189
0.183

TruFor
0.198
0.145

0.542
0.561

0.564
0.583

0.114
0.103

0.077
0.077

0.458
0.446

FOCAL
0.149
0.151

0.118
0.137

0.116
0.135

0.117
0.131

0.122
0.129

0.146
0.163

Table 7.4: Localization performance in terms of the mean weighted F1 score (F1v1w) in the
miniTrace database, for both, the exogenous datasets and the endogenous datasets. In bold,
the highest score in each dataset, and underlined, the second highest one.

Method Noise JPEG Quality JPEG Grid CFA Alg CFA Grid Hybrid

Adaptive CFA
0.496
0.507

0.536
0.525

0.542
0.543

0.812
0.824

0.935
0.926

0.608
0.599

DQ
0.534
0.534

0.810
0.782

0.828
0.795

0.551
0.530

0.547
0.535

0.791
0.777

CAT-Net
0.501
0.499

0.670
0.710

0.654
0.702

0.502
0.498

0.502
0.499

0.733
0.751

Splicebuster
0.603
0.585

0.598
0.570

0.522
0.522

0.556
0.554

0.491
0.485

0.640
0.613

EXIF as Language
Mean Shift

0.610
0.600

0.717
0.647

0.518
0.527

0.661
0.654

0.535
0.585

0.649
0.654

PSCC-Net
0.497
0.498

0.699
0.695

0.706
0.699

0.699
0.542

0.531
0.527

0.653
0.645

TruFor
0.727
0.640

0.920
0.932

0.915
0.944

0.601
0.565

0.548
0.535

0.913
0.912

Table 7.5: Localization performance in terms of AUROC in the miniTrace database, for both,
the exogenous datasets and the endogenous datasets. In bold, the highest score in each
dataset, and underlined, the second highest one.

110

7.3. Popular datasets evaluation

Method Noise JPEG Quality JPEG Grid CFA Alg CFA Grid Hybrid

Noisesniffer
0.850
0.820

0.915
0.925

0.850
0.855

0.850
0.825

0.780
0.780

0.880
0.885

ZERO
0.000
0.000

0.825
0.800

0.865
0.835

0.000
0.000

0.000
0.000

0.700
0.695

EXIF as Language
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

PSCC-Net
0.572
0.577

0.148
0.156

0.154
0.151

0.652
0.651

0.647
0.647

0.229
0.217

TruFor
0.141
0.106

0.673
0.679

0.654
0.668

0.118
0.112

0.100
0.100

0.612
0.608

Table 7.6: Detection performance in terms of the weighted IoU score over the full dataset
(IoUv2

w) in the miniTrace database, for both, the exogenous datasets and the endogenous
datasets. In bold, the highest score in each dataset, and underlined, the second highest one.

which of the two cases occurs the most, so we cannot draw any conclusions about
the reliability of the method.

On the other hand, ZERO has both 0.000 scores for localization in Noise and
CFA datasets while also having a 0.000 in detection in the same datasets, meaning
that it does not detect anything. This implies that ZERO only flags forgeries
when it is confident, which, in other words, means that ZERO is a high-precision,
low-recall method.

Lastly, PSCC-Net and TruFor are the only two methods in which the detection
output is a probability. Looking at the results, they appear to be fairly comple-
mentary, one succeeding where the other falls short. Compared to localization,
TruFor maintains its good detection performance on JPEG traces yet appears to
fall behind on noise detection. Given that detection and localization are performed
separately, we can assume that the method can pick up noise traces on the image
but is not confident enough to flag the traces as a forgery. In contrast, PSCC-Net,
whose localization performance was a little worse than TruFor’s, greatly outper-
forms it in detection. Again, the lack of pristine images means we cannot judge
if the method is better at detecting or just simply tends to predict more false
positives, but given that the JPEG-related scores are low, it appears to be able
to pick up noise and CFA trace inconsistencies really well when detecting but not
when localizing.

7.3 Popular datasets evaluation

This section reports and analyzes the results obtained from the evaluation of the
methods on popular datasets for both localization and detection problems.

111

Chapter 7. Evaluation

Forged image GT Mask

C
ol
u
m
b
ia

C
A
S
IA

1.
0
C
M

C
A
S
IA

1.
0
S
P

D
S
O
-1

K
or
u
s

A
u
to
sp
li
ce

C
O
V
E
R
A
G
E

Figure 7.4: Image samples from the popular datasets.

112

7.3. Popular datasets evaluation

Method Noise JPEG Quality JPEG Grid CFA Alg CFA Grid Hybrid

Noisesniffer
0.919
0.901

0.956
0.961

0.919
0.922

0.919
0.904

0.876
0.876

0.936
0.939

ZERO
0.000
0.000

0.904
0.889

0.928
0.910

0.000
0.000

0.000
0.000

0.824
0.820

EXIF as Language
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

PSCC-Net
0.727
0.732

0.258
0.270

0.267
0.262

0.789
0.788

0.786
0.786

0.372
0.356

TruFor
0.247
0.191

0.805
0.809

0.791
0.801

0.211
0.202

0.182
0.182

0.760
0.756

Table 7.7: Detection performance in terms of the weighted F1 score over the full dataset (F1v2w)
in the miniTrace database, for both, the exogenous datasets and the endogenous datasets. In
bold, the highest score in each dataset, and underlined, the second highest one.

Figure 7.5: A bar plot of the MCCv1
w performance for the Columbia Dataset, according to the

values in Table 7.8. The performance on tampered only images is shown in green, while the
tampered and pristine performance is shown in blue.

7.3.1 Localization
Results of the localization performance for evaluation in popular datasets with
MCCv1

w , IoUv1
w , F1v1w and AUROC are presented in Tables 7.8, 7.9, 7.10 and 7.11

respectively. Given the diversity of the datasets, this section will be structured
differently than the previous ones by describing different aspects of the problem
in different sections.

7.3.1.1 Forgery or no forgery

Earlier in this chapter, we brought up the fact that one critical aspect is to evaluate
whether the method is able to detect the absence of a forgery. Although this is
typically done with the detection score, we want to measure the quality of the
localization mask on pristine images too, as it reflects the tendency of a method

113

Chapter 7. Evaluation

to hallucinate. This is relevant because, in the wild, the number of pristine images
is much higher than the number of tampered ones. Within the literature, it is
common to evaluate the performance of localization methods only on tampered
images, overlooking this aspect of the problem. This section will present both the
tampered-only and the tampered-and-pristine performances, which will capture
how the methods behave on any given image. For this purpose we present the
MCCv1

w , IoUv1
w , F1v1w in Tables 7.8, 7.9 and 7.10 respectively, where as mentioned

in Section 7.1.3, the values in blue correspond to evaluating on the full dataset,
while the green correspond to evaluating on forged images only. To complement
the following analysis, Figure 7.5 shows MCCv1

w for the methods in the Columbia
dataset.

First, we will begin by evaluating the performance on pristine images. This
puts methods like Splicebuster, FOCAL, and EXIF as Language, which cluster
the features into two classes, at a disadvantage, so we expect them to perform
poorly. The other methods should potentially be able to tackle this task correctly,
especially in the case of Trufor, which runs an anomaly detector. Unfortunately,
this does not seem to be the case, as most methods perform better when evaluated
only on tampered images, as seen in Table 7.8.

However, this is not the case for ZERO and Noisesniffer. In most datasets,
both of these methods achieve a better score when they are evaluated with both
pristine and tampered images than when evaluated only on tampered, which is
indicative of their ability to detect the absence of forgery. In other words, these
methods rarely give false positives but fail to detect many of the forgeries when
the traces they are designed for are not present. When comparing ZERO with its
missing grids version, the basic version is better in this sense, given that, as stated
in Section 7.1.1, the missing grids version tends to have more false positives.

This is particularly interesting for Noisesniffer. During the non-semantic eval-
uation, we were not able to conclude how many false detections it gave. This
evaluation featuring pristine images shows that the method’s reliability, although
not as high as ZERO’s, is impressive nonetheless, rarely flagging pristine areas as
forged. There is one exception, the DSO-1 dataset, where Noisesniffer achieves a
better score when evaluating only tampered images. As the authors expressed, the
method is susceptible to highly textured images, so we believe this might be the
source of the increase in false positives.

7.3.1.2 Images through Facebook
Following the datasets presented in Section 3.2.8, we evaluated the methods on a
set of images that were passed through Facebook, where the images were subjected
to an unknown processing pipeline that might affect the performance of methods.
An example of DSO-1 is presented in Figure 7.6, where most methods that had
a good performance on the original image fail when run on the Facebook version.
It is also interesting to note that this is not the case with CASIA 1.0, as seen
in Figure 7.7, where passing the image through Facebook barely modifies it, as
images were already heavily compressed and small in size. Columbia is the middle
point, shown in Figure 7.10, where the changes are noticeable, but the methods

114

7.3. Popular datasets evaluation

Methods DSO-1
DSO-1
Facebook

Methods DSO-1
DSO-1
Facebook

A
d
a
p
ti
v
e

C
F
A

S
p
li
c
e
b
u
st
e
r

N
o
is
e
sn

iff
e
r

E
X
IF

a
s

la
n
g
u
a
g
e

M
e
a
n

S
h
if
t

Z
e
ro

E
X
IF

a
s

la
n
g
u
a
g
e

N
C
u
ts

Z
E
R
O

m
is
si
n
g

g
ri
d
s

P
S
C
C
-N

e
t

D
Q

T
ru

fo
r

C
A
T
-N

e
t

F
O
C
A
L

Figure 7.6: Outputs in all DSO-1 variants of all of the evaluated methods. Original image and
corresponding mask are shown in Figure 7.4.

do not fail as with DSO-1.
Tables 7.9, 7.10, and 7.8 show the contrast in performance on the original

datasets against the Facebook datasets. The former is reported in green and the
latter in purple. Intuitively, and judging by the examples provided before, one
might expect that the methods would perform better, or fairly similar, in the
original dataset than in the dataset that was passed through Facebook, as the
original traces of tampering are more evident in the original dataset.

However, this is not the case for CAT-Net and PSCCNet. In both cases,
the performance improves dramatically for the Columbia Facebook dataset. A
possible explanation for this phenomenon comes from the fact that Columbia is an
uncompressed dataset, along with the fact that CAT-Net and PSSCNet are both
deep-learning-based methods. Uncompressed data falls outside of the methods’
known data distribution, so when presented with an uncompressed image, they
hallucinate. When passed through Facebook, the images become more similar to

115

Chapter 7. Evaluation

the image seen during training, and their predictions become more accurate. This
also seems to apply to FOCAL, but the improvement is marginal.

As for the CASIA 1.0 datasets, the original dataset was already JPEG com-
pressed, so the methods’ performance in the dataset passed through Facebook is
a little worse than in the original dataset. An example of the impact of Facebook
on a CASIA 1.0 image, or lack thereof in this case, is presented in Figure 3.3
on Section 3.2.8, where the example image of CASIA v1 remains untouched after
passing through Facebook.

Going back to the first example of the section, we observe that the performance
of the methods on DSO-1 falters the most out of all the datasets passed through
Facebook. Given the big size of the images, it makes sense since they are heavily
compressed when shared over social networks to reduce the cost of transmission.
This also brings to light a problem with the DSO-1 dataset, which is the lack
of details regarding the images’ processing history. Still, when comparing the
behavior of the methods on the original and Facebook versions of this dataset, we
suspect that the images, before being stored in PNG format, suffered some kind of
compression. This suspicion is fueled by the performance of ZERO in the original
DSO-1 dataset. Of course, this is not a definite argument as the method may
fail, but, as shown before in Section 7.2.1, ZERO delivers very few, if any, false
alarms. Hence, either DSO-1 triggers ZERO to make a lot of false alarms, or there
is indeed a compression history in DSO-1 images.

Lastly, FOCAL is the method that gets impacted the least by the Facebook
compression, with an impressive example in the DSO-1 Figure 7.6. The first
detail is that FOCAL and the OSN datasets come from the same research group,
which does not ensure good performance per se, but it is reasonable to expect
they developed their solution with this problem in mind. Secondly, as seen during
the non-semantic evaluation, FOCAL does not appear to base its prediction on
any particular image trace but rather relies on the semantic information of the
image, so the modification of traces by the Facebook pipeline barely impacts its
performance.

7.3.1.3 Splicing forgeries
Splicing forgeries can be detected by inconsistencies in noise, JPEG, and CFA, as
stated in Section 2.2.5.2. In this part of the evaluation, we consider the dataset
obtained through the splicing of images, which are Columbia, CASIA 1.0 splicing,
and DSO-1. Example outputs of the methods on an image of each dataset are
presented in Figures 7.10, 7.7, and 7.6. This section will only focus on localization
results, thus considering just the tampered-only case, as the performance impact
when pristine images are involved was already covered earlier in Section 7.3.1.1.

When it comes to the Columbia dataset, the best-performing methods are
FOCAL, CAT-Net, and TruFor, with FOCAL leading significantly over the other
two. Adaptive CFA, Noisesniffer, and DQ perform poorly on the task, while
EXIF as Language, PSCC-Net, and Splicebuster perform similarly in the middle.
ZERO, keeping the trend observed, gets 0.000 in all metrics because the dataset
is uncompressed, meaning there are no JPEG traces in the images. That being

116

7.3. Popular datasets evaluation

Methods
CASIA1.0

SP
CASIA1.0 SP

Facebook
CASIA1.0

CM
CASIA1.0

CM Facebook

A
d
a
p
ti
v
e

C
F
A

N
o
is
e
sn

iff
e
r

Z
e
ro

Z
E
R
O

m
is
si
n
g

g
ri
d
s

D
Q

C
A
T
-N

e
t

S
p
li
c
e
b
u
st
e
r

E
X
IF

a
s

la
n
g
u
a
g
e

M
e
a
n

S
h
if
t

E
X
IF

a
s

la
n
g
u
a
g
e

N
C
u
ts

P
S
C
C
-N

e
t

T
ru

fo
r

F
O
C
A
L

Figure 7.7: Outputs in all CASIA 1.0 variants of all of the evaluated methods. Original images
and corresponding masks are shown in Figure 7.4.

117

Chapter 7. Evaluation

said, ZERO with missing grids makes some detections poorly localized, aligning
with the author’s comment on a loss of reliability compared to the basic method.

On the CASIA 1.0 Splicing dataset, FOCAL achieves the best result, followed
by CAT-Net and TruFor close behind. The image features in this dataset are
heavily JPEG compressed, making it natural for a method like CAT-Net, which
contains a neural network specially designed for processing DCT coefficients, to
achieve a really high performance. FOCAL is trained to detect splicing among
other forgeries, and one of the datasets used is CASIA 2.0, which features images
similar to version 1.0. Thus, a good result in this dataset can be expected.

In the case of ZERO, it manages to detect some forgeries, but the results
are still poor, which is not surprising given the high compression level of these
images, a weak spot detected by the method’s authors (Section 5.4). Except for
FOCAL, which achieves a medium-high score, the rest of the methods perform
poorly on these datasets, seeming to indicate a weakness to heavy compression.
As mentioned in the previous section, FOCAL does not seem to be affected by
compression when shared through Facebook, and the performance on this dataset
reinforces that idea.

Finally, on the DSO-1 dataset, TruFor achieves the best results. The second
best, though far behind, is FOCAL. Closely in third place is CAT-Net, which,
paired with TruFor’s results, contributes to support the claim that the images on
the dataset were compressed at some point. This becomes even more apparent
when evaluating ZERO, where the low performance (but not 0.000) in only tam-
pered images, along with the observed reliability of the method, seem to indicate
that JPEG traces are present on the images. On the topic of ZERO, ZERO with
missing grids outperforms the basic ZERO, which might also be explained by the
unknown processing history of the images, making missing grids more likely to
appear. With the exception of Adaptive CFA and DQ, which perform badly, the
rest of the methods achieve similar scores.

7.3.1.4 Copy-move forgeries
Copy-move forgeries, as covered in Section 2.2.5.1, are particularly interesting in
their nature, where parts of the image are pasted onto the image itself. This
process might introduce inconsistencies on the JPEG and CFA grids, while noise
inconsistencies can be found when the cloned part is resized. In this part of the
evaluation, we will consider the two copy-move datasets, CASIA 1.0 Copy-Move
and COVERAGE. Once again, we will only look at tampered images.

In the case of CASIA 1.0, copy-move results for all methods are much lower
than those in the case of CASIA 1.0 Splicing. The top three performers are FO-
CAL, CAT-Net, and TruFor. PSSC-Net is not far behind TruFor. Like its splicing
counterpart, CASIA 1.0 Copy-Move has heavily compressed images, so the top
performers are the same. The rest of the methods perform poorly in this dataset,
likely related to the high compression of the images.

The results for the COVERAGE dataset are low for most of the methods,
with the top performer being FOCAL. Far behind come TruFor, CAT-Net, and
PSCC-Net, with the rest of the methods achieving really low results. Once again,

118

7.3. Popular datasets evaluation

Methods Coverage Methods Coverage

A
d
a
p
ti
v
e

C
F
A

S
p
li
c
e
b
u
st
e
r

N
o
is
e
sn

iff
e
r

E
X
IF

a
s

la
n
g
u
a
g
e

M
e
a
n

S
h
if
t

Z
e
ro

E
X
IF

a
s

la
n
g
u
a
g
e

N
C
u
ts

Z
E
R
O

m
is
si
n
g

g
ri
d
s

P
S
C
C
-N

e
t

D
Q

T
ru

fo
r

C
A
T
-N

e
t

F
O
C
A
L

Figure 7.8: Outputs in Coverage of all of the evaluated methods. Original image and corre-
sponding mask are shown in Figure 7.4.

119

Chapter 7. Evaluation

ZERO detects forgeries on a seemingly uncompressed dataset, where the images
are saved in TIFF format. However, as covered in Section 3.2.3, the images were
taken with an iPhone 6 that saves the images in JPEG format, which is what
might be allowing ZERO to detect grid misalignments.

Taking the results of both datasets into account, certain details merit attention.
First, Noisesniffer is not able to detect much, most likely due to the noise distri-
bution being spatially uniform across the image. Secondly, Adaptive CFA barely
gets any results, possibly meaning that the more complex demosaicing algorithms
involved in in-the-wild images prevent the method from detecting forgery.

7.3.1.5 Korus forgeries

The Korus dataset introduced in Section 3.2.5, also known as the Realistic Tam-
pering dataset, contains forgeries that are almost impossible to detect by the naked
eye. Unfortunately, most methods also struggle with this dataset, as seen in the
example in Figure 7.9. Although the dataset contains splicing and copy-move im-
ages, it also contains more complex forgeries, such as object removal, and this is
why it has its section in this evaluation.

The best performances are achieved by FOCAL and TruFor, but they are not
as high as those achieved by the same methods in other datasets. This was fore-
seeable, given the level of difficulty that this dataset presents, but it still questions
the performance of these methods on in-the-wild forgeries.

Another remarkable result is obtained by Noisesniffer, which consistently ob-
tains third or fourth-best results across all of the weighted metrics despite it being
a classical method. Splicebuster also appears to capture some forgeries, as its
performance is not far behind that of Noisesniffer. This, paired with TruFor’s per-
formance, seems to indicate that noise-based traces are useful on these datasets.
Adaptive CFA achieves its best performance across all popular datasets in Korus,
competing for third place with Noisesniffer across the three metrics. Noisesnif-
fer wins in MCCv1

w , while Adaptive CFA wins in IoUv1
w and F1v1w , meaning that

Adaptive CFA is overestimating the forged area.
Once again, a curious observation is that ZERO achieves an almost zero but

still positive MCCv1
w score in this uncompressed dataset. The explanation for this

lies in image DSC07222, which is spliced with an image originally JPEG com-
pressed.

7.3.1.6 WebP

In Section 3.2.9, we present our novel WebP datasets, which are compressed ver-
sions of Columbia and Korus, to evaluate the impact of this increasingly popular
lossy image compression (Section 2.1.4.4). Examples of the impact can be seen in
Figures 7.10 and 7.9, which show the outputs obtained on both the original and
the WebP compressed image.

Given that some methods already did poorly on the original Korus dataset,
we will limit our analysis to the ones that were already proficient. As expected,
performance goes down for all methods, especially Adaptive CFA, which obtains

120

7.3. Popular datasets evaluation

Methods Korus
Korus
WebP

A
d
a
p
ti
v
e

C
F
A

N
o
is
e
sn

iff
e
r

Z
e
ro

Z
E
R
O

m
is
si
n
g

g
ri
d
s

D
Q

C
A
T
-N

e
t

S
p
li
c
e
b
u
st
e
r

E
X
IF

a
s

la
n
g
u
a
g
e

M
e
a
n

S
h
if
t

E
X
IF

a
s

la
n
g
u
a
g
e

N
C
u
ts

P
S
C
C
-N

e
t

T
ru

fo
r

F
O
C
A
L

Figure 7.9: Outputs in all Korus variants of all of the evaluated methods. Original image and
corresponding mask are shown in Figure 7.4.

121

Chapter 7. Evaluation

Methods Columbia
Columbia
Facebook

Columbia
WebP

A
d
a
p
ti
v
e

C
F
A

N
o
is
e
sn

iff
e
r

Z
e
ro

Z
E
R
O

m
is
si
n
g

g
ri
d
s

D
Q

C
A
T
-N

e
t

S
p
li
c
e
b
u
st
e
r

E
X
IF

a
s

la
n
g
u
a
g
e

M
e
a
n

S
h
if
t

E
X
IF

a
s

la
n
g
u
a
g
e

N
C
u
ts

P
S
C
C
-N

e
t

T
ru

fo
r

F
O
C
A
L

Figure 7.10: Outputs in all Columbia variants of all of the evaluated methods. Original image
and corresponding mask are shown in Figure 7.4.

122

7.3. Popular datasets evaluation

a result ten times worse on MCCv1
w . This degradation comes from the method’s

sensitivity to JPEG compression, which WebP resembles. TruFor retains its second
place but with less than half of the original performance. Splicebuster also halves
its previous result. FOCAL is the least affected, which is indicative of FOCAL’s
robustness to compression. Noisesniffer’s relative loss in performance is not as
small as FOCAL, but it is still much better than the rest.

The Columbia WebP datasets show a more promising scenario, with a smaller
performance loss in most methods. CAT-Net maintains the second place, and
TruFor the third. Once again, PSCC-Net, now joined by FOCAL, does better in
the WebP compressed images than the original. This might have to do with the
method’s training, making it perform better on compressed images. ZERO with
missing grids improved its performance, although marginally.

The most surprising result of the WebP datasets comes from ZERO, which
becomes a less reliable method in the sense that it produces more false detections.
This is particularly evident in the tampered and pristine evaluation of Korus, where
it goes from being the best method by a margin to second place. It is also the
case for ZERO with missing grids, where its performance drops close to zero. On
Columbia, the result is less extreme yet noticeable, coming from a method that
has been reliable so far. It appears the resemblance between WebP and JPEG
compression is enough to trigger false positives in ZERO’s algorithm.

7.3.1.7 AutoSplice
AutoSplice is the dataset that contains images inpainted using text-to-image gen-
eration models, which is a type of forgery gaining popularity. The dataset is
presented in three different compression rates: 100, 90, and 75 quality factor. An
example of the outputs obtained for these datasets is presented in Figure 7.11.

We first analyze the results on the uncompressed dataset, AutoSplice100. CAT-
Net performs best in all metrics, followed by TruFor and FOCAL, with TruFor
leading in MCCv1

m and FOCAL leading the rest. The performance of CAT-Net
is remarkable, especially considering it has not seen this type of forgery during
training. PSCC-Net falls a little behind these methods, getting fourth place. One
surprising observation is that ZERO with missing grids seems to be locating some
forgeries, indicating that the inpainted regions are missing the original grid traces,
even after the 100-quality compression. This might explain CAT-Net’s exceptional
performance, where its DCT stream allows it to exploit missing grid traces. The
rest of the methods fail to detect anything valuable. These methods score re-
ally low values of MCC but higher ones in IoU and F1, which indicates they are
overestimating the forged areas.

When analyzing the results of the compressed datasets, CAT-Net’s perfor-
mance decays heavily on Autosplice75, falling behind FOCAL, which takes the
lead. FOCAL is once again the most robust method of compression, but still
worsens its performance to almost half on both MCCv1

w and IoUv1
w when compar-

ing Autosplice100 and Autosplice75. CAT-Net’s behavior is probably due to the
fact that such a strong compression hides some of the traces left by the previ-
ous compression of the original image, making the compression traces uniform

123

Chapter 7. Evaluation

Method AutoSplice100 AutoSplice90 AutoSplice75

A
d
a
p
ti
v
e

C
F
A

N
o
is
e
sn

iff
e
r

Z
e
ro

Z
E
R
O

m
is
si
n
g

g
ri
d
s

D
Q

C
A
T
-N

e
t

S
p
li
c
e
b
u
st
e
r

E
X
IF

a
s

la
n
g
u
a
g
e

M
e
a
n

S
h
if
t

E
X
IF

a
s

la
n
g
u
a
g
e

N
C
u
ts

P
S
C
C
-N

e
t

T
ru

fo
r

F
O
C
A
L

Figure 7.11: Outputs in AutoSplice of all of the evaluated methods. Original image and
corresponding mask are shown in Figure 7.4.

124

7.4. Summary

throughout the image, including the inpainted regions. The 90 and 75 quality fac-
tor compression means ZERO with missing grids is not locating forgeries anymore,
given there is a new grid on the whole image.

7.3.1.8 AUROC

The AUROC results of the methods that output a continuous heatmap are shown
in Table 7.11. There are two clear winners in this analysis: CAT-Net and TruFor,
which score first or second place in almost all datasets. DQ has particularly bad
results in the CASIA 1.0 Copy-Move and Korus datasets, performs surprisingly
well in the AutoSplice100 and AutoSplice90 datasets, has average results in the
Columbia and Columbia WebP datasets, and performs poorly in the rest of the
datasets. Once again, the high performance of DQ on the AutoSplice datasets can
be due to the method’s ability to distinguish between two classes but with a low
dynamic range.

Adaptive CFA does not excel in any dataset, achieving results that are barely
better than those of a random classifier. EXIF as Language and PSCC-Net have
ups and downs across the datasets, performing very well in some and very poorly
in others. Splicebuster does a slightly worse job than the last two methods.

7.3.2 Detection
The evaluation results of the detection problem in the popular datasets are pre-
sented in MCCv2

w , IoUv2
w and F1v2w are presented in Tables 7.12, 7.14, and 7.13

respectively.
As mentioned in Section 7.2.2, our solution for the detection score of EXIF

as Language was not optimal, as the method always looks for two classes in the
image, and so the image is always classified as tampered. This is why the MCCv2

w

is always 0, and the IoUv2
w and F1v2w are always 1.

When looking at the results of the other methods, it is clear that TruFor and
PSCC-Net are the methods that excel in the detection task, with TruFor being
the best one. A little behind these two methods is Noisesniffer, which has medium
to high scores in IoU and F1 but a lower score in MCC.

ZERO continues to be a reliable method when it comes to making a positive
detection as it does not hallucinate any tampering. The results in the tables show
that, despite this, the method gets low scores in IoU, F1, and MCC.

7.4 Summary
The evaluation provided a detailed report of the performance of the ten methods
selected. This section serves as a summary, listing the most important findings.

Firstly, the results and analysis presented in this chapter show that Photo-
Holmes fulfilled its goal of being a library that allows to make a comprehensive
analysis of forgery detection methods easily.

125

Chapter 7. Evaluation

Method Columbia
Columbia
WebP

CASIA1.0
SP

CASIA1.0
CM

COVERAGE DSO-1 Korus
Korus
WebP

AutoSplice
100

AutoSplice
90

AutoSplice
75

Adaptive CFA
0.102
0.099
0.002

0.026
0.053
-

0.019
0.051
0.042

0.016
0.045
0.044

0.019
0.039
-

0.042
0.086
0.009

0.163
0.153
-

0.006
0.012
-

0.058
0.094
-

-
0.088
-

-
0.083
-

Noisesniffer
0.460
0.083
0.015

0.437
0.014
-

0.385
0.034
0.036

0.371
-0.006
-0.004

0.389
0.026
-

0.142
0.217
0.209

0.236
0.176
-

0.188
0.107
-

0.302
-0.025

-

-
0.007
-

-
0.017
-

ZERO
0.504
0.000
0.000

0.467
-0.002

-

0.651
0.054
0.000

0.632
0.001
0.000

0.528
0.009
-

0.568
0.114
0.000

0.503
0.005
-

0.170
0.004
-

0.377
-0.015

-

-
0.000
-

-
0.000
-

ZERO with
missing grids

0.466
-0.078
-0.007

0.423
0.031
-

0.608
0.052
-0.002

0.593
0.008
0.005

0.512
0.008
-

0.267
0.212
0.002

0.501
0.002
-

0.071
0.009
-

0.482
0.196
-

-
0.002
-

-
0.005
-

DQ
0.002
-0.002
0.003

0.005
0.010
-

0.003
0.007
0.002

0.000
0.001
0.001

0.000
-0.001

-

0.008
0.017
0.002

0.000
0.000
-

0.000
0.001
-

0.049
0.080
-

-
0.057
-

-
0.009
-

CAT-Net
0.367
0.739
0.866

0.341
0.688
-

0.266
0.723
0.573

0.208
0.567
0.553

0.143
0.300
-

0.228
0.468
0.103

0.038
0.076
-

0.029
0.057
-

0.455
0.741

-

-
0.673

-

-
0.289
-

Splicebuster
0.164
0.332
0.144

0.015
0.031
-

-0.016
-0.054
-0.059

-0.001
-0.038
-0.034

-0.024
-0.050

-

0.137
0.281
0.155

0.070
0.140
-

0.031
0.063
-

-0.081
-0.137

-

-
-0.121

-

-
-0.115

-

EXIF as Language
Mean Shift

0.142
0.282
0.214

0.057
0.109
-

0.005
0.015
0.009

-0.001
-0.002
-0.002

0.001
0.002
-

0.127
0.261
0.163

0.020
0.039
-

0.008
0.017
-

-0.004
-0.008

-

-
-0.019

-

-
-0.022

-

EXIF as Language
NCuts

0.146
0.293
0.133

0.043
0.086
-

0.013
0.036
-0.010

-0.005
-0.013
-0.012

-0.039
-0.082

-

0.108
0.221
0.210

0.023
0.046
-

0.006
0.013
-

-0.014
-0.024

-

-
-0.026

-

-
-0.027

-

PSCC-Net
0.180
0.363
0.561

0.205
0.413
-

0.174
0.472
0.354

0.156
0.424
0.419

0.135
0.283
-

0.113
0.252
0.004

0.004
0.007
-

0.006
0.012
-

0.281
0.459
-

-
0.062
-

-
0.037
-

TruFor
0.323
0.650
0.615

0.300
0.605
-

0.264
0.717
0.667

0.184
0.502
0.497

0.224
0.368
-

0.406
0.834
0.521

0.170
0.300
-

0.065
0.130
-

0.342
0.556
-

-
0.433
-

-
0.265
-

FOCAL
0.446
0.900
0.922

0.429
0.866

-

0.283
0.769
0.718

0.213
0.580
0.572

0.288
0.604

-

0.255
0.524
0.530

0.168
0.336

-

0.143
0.287

-

0.311
0.506
-

-
0.470
-

-
0.297

-

Table 7.8: Localization performance in terms of the mean weighted MCC score (MCCv1
w) in

popular datasets, for original dataset with tampered and pristine images, original dataset with
only tampered images and only tampered images through Facebook. In bold, the highest
score in each dataset, and underlined, the second highest one.

Secondly, the results confirm that the methods chosen to be included in Photo-
Holmes are complementary to each other. No method is able to solve the problem
at hand perfectly, but each method tries to solve the problem from different per-
spectives, contributing to the overall goal of the library. This also suggests that
there is significant room for improvement in developing new methods and enhanc-
ing performance, particularly in real-life scenarios.

Regarding non-semantic evaluation, the following remarks can be made:

• Methods that were created to find inconsistencies in different traces that the
camera pipeline leaves in the images are the ones that excel in each dataset:
Noisesniffer in noise, ZERO in JPEG, and Adaptive CFA in CFA.

• ZERO is more reliable in its predictions in the original version than in the
version with missing grids, as the latter has a higher amount of false alarms.

• TruFor achieves good results with JPEG and Hybrid datasets but completely
fails with the CFA ones.

126

7.4. Summary

Method Columbia
Columbia
WebP

CASIA1.0
SP

CASIA1.0
CM

COVERAGE DSO-1 Korus
Korus
WebP

AutoSplice
100

AutoSplice
90

AutoSplice
75

Adaptive CFA
0.127
0.257
0.189

0.113
0.227
-

0.038
0.103
0.099

0.026
0.070
0.070

0.055
0.114
-

0.071
0.145
0.115

0.067
0.134
-

0.027
0.054
-

0.155
0.252
-

-
0.243
-

-
0.240
-

Noisesniffer
0.035
0.071
0.031

0.008
0.017
-

0.017
0.047
0.048

0.008
0.022
0.022

0.019
0.040
-

0.103
0.212
0.196

0.066
0.132
-

0.041
0.082
-

0.021
0.033
-

-
0.024
-

-
0.027
-

ZERO
0.000
0.000
0.000

0.004
0.008
-

0.018
0.048
0.000

0.000
0.001
0.000

0.004
0.008
-

0.053
0.108
0.000

0.001
0.003
-

0.011
0.023
-

0.000
0.000
-

-
0.000
-

-
0.000
-

ZERO with
missing grids

0.001
0.003
0.001

0.037
0.075
-

0.018
0.049
0.002

0.004
0.011
0.011

0.004
0.008
-

0.111
0.228
0.004

0.002
0.004
-

0.022
0.053
-

0.175
0.284
-

-
0.005
-

-
0.006
-

DQ
0.088
0.178
0.119

0.090
0.182
-

0.021
0.056
0.053

0.013
0.036
0.036

0.047
0.099
-

0.053
0.109
0.069

0.023
0.046
-

0.023
0.047
-

0.156
0.255
-

-
0.157
-

-
0.084
-

CAT-Net
0.344
0.815
0.870

0.312
0.630
-

0.234
0.636
0.484

0.172
0.469
0.456

0.114
0.240
-

0.188
0.386
0.090

0.022
0.043
-

0.018
0.035
-

0.451
0.734

-

-
0.654

-

-
0.315

-

Splicebuster
0.142
0.287
0.163

0.055
0.110
-

0.016
0.043
0.040

0.012
0.034
0.035

0.023
0.048
-

0.098
0.200
0.118

0.051
0.101
-

0.029
0.059
-

0.050
0.082
-

-
0.088
-

-
0.089
-

EXIF as Language
Mean Shift

0.153
0.309
0.223

0.080
0.161
-

0.018
0.050
0.046

0.010
0.027
0.027

0.034
0.070
-

0.111
0.228
0.156

0.026
0.052
-

0.021
0.043
-

0.071
0.115
-

-
0.082
-

-
0.067
-

EXIF as Language
NCuts

0.272
0.549
0.439

0.173
0.350
-

0.045
0.122
0.104

0.022
0.059
0.059

0.037
0.078
-

0.181
0.371
0.322

0.038
0.075
-

0.029
0.058
-

0.173
0.281
-

-
0.274
-

-
0.268
-

PSCC-Net
0.215
0.433
0.541

0.216
0.435
-

0.147
0.398
0.280

0.130
0.353
0.347

0.114
0.240
-

0.113
0.232
0.016

0.028
0.056
-

0.018
0.036
-

0.266
0.433
-

-
0.051
-

-
0.023
-

TruFor
0.334
0.674
0.649

0.307
0.619
-

0.235
0.636
0.579

0.209
0.423
0.419

0.190
0.300
-

0.367
0.754
0.447

0.128
0.189
-

0.050
0.100
-

0.313
0.509
-

-
0.378
-

-
0.232
-

FOCAL
0.437
0.881
0.934

0.421
0.848

-

0.263
0.713
0.661

0.191
0.521
0.515

0.248
0.521

-

0.218
0.448
0.453

0.132
0.263

-

0.113
0.227

-

0.356
0.580
-

-
0.451
-

-
0.303
-

Table 7.9: Localization performance in terms of the mean weighted IoU score (IoUv1
w) in

popular datasets, for original dataset with tampered and pristine images, original dataset with
only tampered images and only tampered images through Facebook. In bold, the highest
score in each dataset, and underlined, the second highest one.

• FOCAL’s performance proves that the method does not look for inconsisten-
cies in any specific trace but rather performs image detection at a semantic
level.

• DQ gives low probabilities in the heatmaps, but the higher probabilities are
in the right places, which means that with the correct threshold, or including
the SVM, DQ achieves good localization with JPEG inconsistencies.

From the popular dataset evaluation, we can make the following comments:

• All methods, except Noisesniffer and ZERO, tend to hallucinate forgeries
even when there are none. This result is alarming as it shows that the
methods tend always to flag a forgery. The community should address this
issue as it is crucial to use them in real-world scenarios.

• All types of forgeries presented in Section 2.2.5 can be detected by at least
one of the methods selected,as visible in Figure 7.12, validating the claim
made that the selection of methods was appropiate.

127

Chapter 7. Evaluation

Method Columbia
Columbia
WebP

CASIA1.0
SP

CASIA1.0
CM

COVERAGE DSO-1 Korus
Korus
WebP

AutoSplice
100

AutoSplice
90

AutoSplice
75

Adaptive CFA
0.183
0.370
0.314

0.181
0.366
-

0.066
0.178
0.171

0.048
0.129
0.129

0.096
0.201
-

0.120
0.246
0.202

0.102
0.204
-

0.049
0.099
-

0.239
0.389
-

-
0.379
-

-
0.375
-

Noisesniffer
0.050
0.101
0.044

0.012
0.023
-

0.027
0.073
0.074

0.013
0.036
0.036

0.029
0.062
-

0.139
0.285
0.273

0.099
0.197
-

0.065
0.130
-

0.033
0.053
-

-
0.038
-

-
0.041
-

ZERO
0.000
0.000
0.000

0.006
0.011
-

0.020
0.054
0.000

0.000
0.001
0.000

0.004
0.009
-

0.057
0.116
0.000

0.002
0.004
-

0.021
0.042
-

0.000
0.000
-

-
0.000
-

-
0.000
-

ZERO with
missing grids

0.002
0.002
0.001

0.053
0.107
-

0.021
0.057
0.003

0.007
0.019
0.020

0.006
0.013
-

0.158
0.324
0.008

0.003
0.006
-

0.039
0.094
-

0.236
0.384
-

-
0.008
-

-
0.010
-

DQ
0.148
0.299
0.211

0.151
0.305
-

0.038
0.104
0.099

0.025
0.068
0.069

0.083
0.175
-

0.094
0.193
0.128

0.043
0.087
-

0.044
0.087
-

0.241
0.393
-

-
0.268
-

-
0.154
-

CAT-Net
0.383
0.773
0.902

0.353
0.713
-

0.271
0.735
0.589

0.212
0.577
0.563

0.154
0.322
-

0.231
0.474
0.125

0.033
0.066
-

0.027
0.053
-

0.513
0.835

-

-
0.767

-

-
0.433

-

Splicebuster
0.203
0.410
0.260

0.091
0.183
-

0.027
0.075
0.071

0.022
0.061
0.063

0.040
0.085
-

0.150
0.307
0.196

0.084
0.168
-

0.052
0.103
-

0.086
0.140
-

-
0.150
-

-
0.152
-

EXIF as Language
Mean Shift

0.227
0.458
0.356

0.135
0.274
-

0.034
0.093
0.087

0.019
0.052
0.053

0.062
0.130
-

0.167
0.344
0.253

0.048
0.096
-

0.040
0.080
-

0.124
0.201
-

-
0.150
-

-
0.124
-

EXIF as Language
NCuts

0.302
0.609
0.495

0.210
0.425
-

0.068
0.185
0.158

0.037
0.102
0.103

0.064
0.133
-

0.213
0.437
0.387

0.062
0.124
-

0.050
0.099
-

0.233
0.380
-

-
0.374
-

-
0.371
-

PSCC-Net
0.289
0.580
0.681

0.292
0.589
-

0.176
0.478
0.359

0.157
0.428
0.422

0.170
0.358
-

0.172
0.353
0.027

0.051
0.101
-

0.034
0.068
-

0.354
0.577
-

-
0.085
-

-
0.040
-

TruFor
0.381
0.769
0.740

0.361
0.728
-

0.271
0.734
0.685

0.191
0.520
0.516

0.245
0.461
-

0.408
0.838
0.574

0.173
0.279
-

0.080
0.159
-

0.396
0.646
-

-
0.515
-

-
0.349
-

FOCAL
0.459
0.927
0.950

0.448
0.904

-

0.289
0.784
0.739

0.219
0.596
0.589

0.298
0.626

-

0.281
0.576
0.581

0.177
0.355

-

0.155
0.311

-

0.428
0.696
-

-
0.585
-

-
0.429
-

Table 7.10: Localization performance in terms of the mean weighted F1 score (F1v1w) in popular
datasets, for original dataset with tampered and pristine images, original dataset with only
tampered images and only tampered images through Facebook. In bold, the highest score in
each dataset, and underlined, the second highest one.

• Although methods aimed at detecting generative inpainting were not in-
cluded, some methods still achieved good performance in datasets with this
type of forgery, such as CAT-Net, TruFor, and FOCAL.

• Noisesniffer competes with deep learning-based methods in Korus, which
proved to be the most challenging dataset included, proving that classical
methods are still relevant in the state of the art.

• FOCAL seems to be the most robust method when it comes to various types
of compression, where most methods are challenged.

Finally, regarding the detection performance, it is important to note that the
community has neglected this problem when proposing new methods, as only 5
out of the selected ten methods provide detection scores. In addition, methods
like EXIF as Language in their original version provide a score that is difficult to
interpret. Methods that output a probability, like PSCC-Net and TruFor, seem
to perform worse than in localization, probably because the probability output is

128

7.4. Summary

Method Columbia
Columbia
WebP

CASIA1.0
SP

CASIA1.0
CM

COVERAGE DSO-1 Korus
Korus
WebP

AutoSplice
100

AutoSplice
90

AutoSplice
75

Adaptive CFA
0.528
0.554
0.506

0.561
0.549
-

0.573
0.565
0.550

0.560
0.559
0.558

0.537
0.539
-

0.600
0.570
0.510

0.585
0.585
-

0.519
0.518
-

0.555
0.562
-

-
0.555
-

-
0.549
-

DQ
0.702
0.514
0.564

0.731
0.570
-

0.496
0.551
0.585

0.296
0.483
0.484

0.576
0.567
-

0.548
0.555
0.495

0.488
0.465
-

0.491
0.471
-

0.907
0.811
-

-
0.803
-

-
0.543
-

CAT-Net
0.928
0.921
0.979

0.913
0.913
-

0.981
0.983
0.918

0.920
0.923
0.918

0.762
0.751
-

0.729
0.743
0.539

0.535
0.535
-

0.530
0.531
-

0.895
0.935

-

-
0.930

-

-
0.777

-

Splicebuster
0.779
0.827
0.676

0.582
0.554
-

0.415
0.414
0.400

0.446
0.426
0.433

0.394
0.395
-

0.776
0.827
0.724

0.670
0.700
-

0.612
0.628
-

0.414
0.399
-

-
0.400
-

-
0.415
-

EXIF as Language
Mean Shift

0.905
0.861
0.915

0.843
0.827
-

0.629
0.570
0.536

0.416
0.498
0.498

0.578
0.560
-

0.950
0.927
0.882

0.667
0.666
-

0.624
0.622
-

0.694
0.597
-

-
0.510
-

-
0.449
-

PSCC-Net
0.549
0.811
0.922

0.871
0.874
-

0.858
0.857
0.815

0.787
0.779
0.779

0.812
0.796
-

0.857
0.767
0.518

0.499
0.503
-

0.562
0.574
-

0.925
0.864
-

-
0.608
-

-
0.550
-

TruFor
0.937
0.926
0.930

0.927
0.924

-

0.970
0.980
0.971

0.906
0.906
0.905

0.904
0.905
-

0.995
0.998
0.919

0.744
0.745

-

0.670
0.665

-

0.870
0.849
-

-
0.849
-

-
0.777

-

Table 7.11: Localization performance in terms of the AUROC in popular datasets, for original
dataset with tampered and pristine images, original dataset with only tampered images and
only tampered images through Facebook. In bold, the highest score in each dataset, and
underlined, the second highest one.

Method Columbia
Columbia
WebP

CASIA1.0
SP

CASIA1.0
CM

COVERAGE DSO-1 Korus
Korus
WebP

AutoSplice
100

Noisesniffer 0.142 -0.063 -0.151 0.040 0.066 -0.045 0.206 0.075 0.118

ZERO 0.000 0.013 0.198 0.011 0.076 0.307 0.068 0.059 0.143

EXIF as Language 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PSCC-Net 0.131 0.464 0.460 0.490 0.100 0.173 0.012 -0.014 0.701

TruFor 0.805 0.686 0.608 0.448 0.325 0.709 0.315 0.000 0.000

Table 7.12: Detection performance in terms of the dataset-level weighted MCC score (MCCv2
w)

for original dataset with tampered and pristine images. In bold, the highest score in each
dataset, and underlined, the second highest one.

Method Columbia
Columbia
WebP

CASIA1.0
SP

CASIA1.0
CM

COVERAGE DSO-1 Korus
Korus
WebP

AutoSplice
100

AutoSplice
90

AutoSplice
75

Noisesniffer
0.246
0.289
0.237

0.092
0.106
-

0.232
0.395
0.388

0.264
0.451
0.438

0.261
0.341
-

0.457
0.905
0.958

0.512
0.873
-

0.459
0.795
-

0.255
0.284
-

-
0.182
-

-
0.170
-

ZERO
0.000
0.000
0.000

0.073
0.078
-

0.065
0.065
0.000

0.002
0.002
0.000

0.011
0.011
-

0.168
0.168
0.000

0.009
0.009
-

0.432
0.718
-

0.052
0.052
-

-
0.000
-

-
0.000
-

EXIF as Language
0.496
1.000
1.000

0.496
1.000
1.000

0.369
1.000
1.000

0.367
1.000
1.000

0.476
1.000

-

0.487
1.000
1.000

0.500
1.000

-

0.500
1.000

-

0.614
1.000

-

-
1.000

-

-
1.000

-

PSCC-Net
0.505
0.992
0.791

0.545
0.654
-

0.348
0.361
0.201

0.380
0.396
0.397

0.171
0.194
-

0.110
0.113
0.018

0.407
0.679
-

0.181
0.223
-

0.723
0.728
-

-
0.103
-

-
0.071
-

TruFor
0.826
0.965
0.973

0.737
0.969
-

0.614
0.822
0.768

0.481
0.644
0.644

0.426
0.526
-

0.751
0.947
0.599

0.323
0.352
-

0.269
0.368
-

0.761
0.761
-

-
0.596
-

-
0.482
-

Table 7.13: Detection performance in terms of the dataset-level weighted IoU score (IoUv2
w)

in popular datasets, for original dataset with tampered and pristine images, original dataset
with only tampered images and only tampered images through Facebook. In bold, the highest
score in each dataset, and underlined, the second highest one.

129

Chapter 7. Evaluation

Method Columbia
Columbia
WebP

CASIA1.0
SP

CASIA1.0
CM

COVERAGE DSO-1 Korus
Korus
WebP

AutoSplice
100

AutoSplice
90

AutoSplice
75

Noisesniffer
0.395
0.448
0.383

0.168
0.191
-

0.376
0.566
0.559

0.418
0.622
0.609

0.413
0.508
-

0.628
0.950
0.978

0.677
0.932
-

0.629
0.886
-

0.406
0.442
-

-
0.306
-

-
0.291
-

ZERO
0.000
0.000
0.000

0.135
0.144
-

0.122
0.122
0.000

0.004
0.004
0.000

0.022
0.022
-

0.288
0.288
0.000

0.018
0.018
-

0.836
0.836
-

0.098
0.098
-

-
0.001
-

-
0.001
-

EXIF as Language
0.663
1.000
1.000

0.663
1.000

-

0.539
1.000
1.000

0.537
1.000
1.000

0.645
1.000

-

0.655
1.000
1.000

0.667
1.000

-

0.667
1.000

-

0.761
1.000

-

-
1.000

-

-
1.000

-

PSCC-Net
0.672
0.996
0.883

0.706
0.791
-

0.516
0.531
0.334

0.551
0.567
0.568

0.292
0.324
-

0.199
0.203
0.035

0.579
0.809
-

0.306
0.365
-

0.839
0.843
-

-
0.187
-

-
0.131
-

TruFor
0.905
0.982
0.986

0.849
0.984
-

0.761
0.902
0.869

0.649
0.784
0.783

0.580
0.690
-

0.857
0.973
0.749

0.488
0.521
-

0.424
0.538
-

0.865
0.865
-

-
0.747
-

-
0.650
-

Table 7.14: Detection performance in terms of the dataset-level weighted F1 score (F1v2w) in
popular datasets, for original dataset with tampered and pristine images, original dataset with
only tampered images and only tampered images through Facebook. In bold, the highest
score in each dataset, and underlined, the second highest one.

Figure 7.12: A spider diagram illustrating the MCCv1
w performance for the most notorious

methos in the popular datasets, according to Table 7.8. The absolute value of the MCC
is plotted on every axis, where each axis corresponds to a different dataset. The top three
perforing methods are outlined with a color, while the remaining methods’ performance is
shown as a gray shade. Different dataset types are also highlighted with different background
colors. This figure is used to show the complimentary nature of the methods across these
datasets and forgery types.

130

7.4. Summary

still low when the image is indeed forged. Lastly, methods like Noisesniffer and
ZERO are the most reliable ones in this sense, as they are less likely to hallucinate
forgeries. Given that the detection output is taken out of the predicted mask, this
remark still holds true for the detection problem.

This chapter made use of the Benchmark tool of PhotoHolmes presented in
the previous chapter. We evaluated ten state-of-the-art methods in the selected
datasets with different metrics. We analyzed the reports and made interpretations
that supported the results.

This was the last chapter that included the content of this thesis. The following
chapter will present the conclusions and future work.

131

This page intentionally left blank.

Chapter 8

Conclusions and future work

“The work is its own reward.”

Sherlock Holmes

The problem addressed by this thesis was the detection of digital image forg-
eries. This is a highly relevant social issue that has been addressed by members
of the image processing community in recent years. Our contribution to the mat-
ter was introducing PhotoHolmes, a novel open-source Python library designed
to run easily and benchmark forgery detection methods. The library comprises
ten state-of-the-art methods, a great variety of datasets and metrics, and modules
that simplify the execution and benchmark of a method. Most importantly, Pho-
toHolmes is designed to be extensible, encouraging the community to contribute
new methods, datasets, metrics, and tools.

In Chapter 1, we introduced the problem and its history and reported related
and previous works.

Chapter 2 consisted of the analysis of the image acquisition pipeline, starting
with the noise introduced by the sensors, followed by how it was modified by
the subsequent stages of the image processing pipeline: demosaicing, then color
correction, and the different formats an image can be compressed and saved into.
This analysis permits to understand which parts of the imaging pipeline leave
traces in an image, so in case there are inconsistencies in these traces in different
parts of the same image, it could indicate the presence of a forgery. This chapter
also delved into important definitions, such as what constitutes a forgery, how
a forgery can be detected, and the different falsification types. In addition, the
chapter explores the main concepts behind machine learning to give context to
some of the methods and techniques that follow in the study.

After understanding what constitutes a digital image, a forgery, and how they
can be detected, Chapter 3 laid out the basis of how data is used in the field of
image forensics. In this chapter, we explained the importance of data in general
and described the particularities of data in the subject at hand. The predominant
section in this chapter describes in detail the datasets chosen for an extensive eval-
uation of a method’s performance. We included popular datasets, contemplating

Chapter 8. Conclusions and future work

various forgery types and other properties, and even some versions containing im-
ages uploaded to Facebook to account for possible transformation an image goes
through when it is shared through this popular social network. We also introduced
the WebP compressed versions of two popular datasets because we identified a lack
of datasets in this increasingly popular format. We also described the inclusion
of the Trace dataset to do a non-semantic evaluation, from which we created the
miniTrace dataset, a smaller version of the original Trace.

Chapter 4 delved into another important piece of this dissertation: the metrics
used to evaluate performance. To do this, we first examine the importance of
selecting good metrics. Taking into account that we were evaluating the methods
on datasets, we explored two options on how to aggregate metrics to get a final
score and how each aggregation affects the result. Within the chapter, we presented
8 different metrics and 3 weighted metrics that allow for comparing the different
kinds of outputs methods can have.

Next, Chapter 5 describes the methods studied in this work. From all of the
different methods we analyzed, we chose ten, taking into account diversity, per-
formance, and how interesting the presented idea was, obtaining a set of methods
that work in a complementary fashion. We explained the mechanics behind each
method and gave some insights regarding what we would expect from each method
at the time of evaluation.

In Chapter 6, we presented the PhotoHolmes library. This chapter includes
a detailed explanation of every module included in the library, explaining how
they were designed and with usage examples in every case. The two main features
presented in this chapter are the Command Line Interface (CLI), which allows
users to run a method on an image, and the Benchmark, which allows users to
easily evaluate a method on multiple metrics on a certain dataset.

Finally, Chapter 7 presents the evaluation and analysis of the results obtained
using the Benchmark tool in PhotoHolmes. We evaluated all implemented methods
in all of the included datasets in the weighted metrics and the AUROC.

The work done during this thesis opens up a diverse variety of different follow-
up works. Firstly, we intend to build a community around PhotoHolmes that
proposes new methods, datasets, and metrics to be included in the library and
that contribute to it. Using PhotoHolmes will result in more reproducible research
and a lower technical barrier for those interested in researching image forensics.
With that objective, the first follow-up work is the maintenance and continuous
development of the library.

Secondly, new datasets inside miniTrace could be generated, such as one that
includes double compression, the appearance of missing JPEG grids or WebP
compression. This will enrich the variety of datasets available for non-semantic
evaluation, extending the trace detection analysis that can be applied to a method.
This type of analysis is crucial, especially in deep-learning methods, giving us a
way to interpret what information the method might use when predicting.

Also, given the thorough analysis of the included methods, we were able to
pinpoint many of the method’s weaknesses, which gives place to the proposal of
new methods or method improvements that could be easily evaluated by using the

134

PhotoHolmes Benchmark tool. If successful, those methods can be included in
newer library releases.

Regarding new methods, this thesis only focused on methods aimed at detect-
ing forgeries on digital images. However, the recent threats caused by deep-fake
images and videos raise the need to open the scope of the library and make acces-
sible methods that solely focus on these kinds of manipulations.

Lastly, while the CLI allows for a quick evaluation of a suspicious image, for
people with no coding experience, it might still be a complex procedure. On
top of that, the user also has to understand which methods to run and what the
results mean. Hence, to make this method more accessible, a web interface or a
graphic interface that allows a user to upload an image and receive a full report
can be designed using the implementations from the PhotoHolmes library. In the
meantime, we are also available to help individuals and the press analyze suspicious
images and provide them with comprehensive reports since the methods may fail
or not even present sufficient confidence in the predictions made. Caution should
be made regarding how the results are interpreted, and, as we have already seen,
none of these methods are infallible, so their predictions should not be taken as
truth indiscriminately.

To sum up, with our survey of the state of the art, we presented PhotoHolmes,
a novel Python library for forgery detection in digital images. The proposed library
comprises a wide array of methods, datasets, and metrics that, combined through
the Benchmark module, allows a user to do comparative studies of state-of-the-
art methods. Using these tools, we did an extensive report and analysis of the
methods selected.

Given the designed principles, we aim to keep extending PhotoHolmes by keep-
ing it up to date with the state of the art, with the hope of building a community
that will use it and help expand it.

135

This page intentionally left blank.

Appendix A

Photoholmes library code

“I am a brain, Watson. The rest of me is a mere appendix.”

Sherlock Holmes

A.1 Dataset
A.1.1 Base
import logging

import os

from abc import ABC , abstractmethod

from typing import Dict , List , Literal , Optional , Tuple ,

Union

import torch

from torch import Tensor

from torch.utils.data import Dataset

from photoholmes.preprocessing import PreProcessingPipeline

from photoholmes.utils.image import read_image ,

read_jpeg_data

logging.basicConfig(level=logging.INFO , format="%(levelname)s

- %(message)s")

logger = logging.getLogger(__name__)

logger.setLevel(logging.INFO)

class AttributeOverrideError(NotImplementedError):

"""

Exception raised when a subclass fails to override a

required class attribute.

"""

def __init__(self , attribute_name: str):

Appendix A. Photoholmes library code

message = f"Subclasses must override {attribute_name}

"

super ().__init__(message)

class BaseDataset(ABC , Dataset):

"""

Base class for datasets.

Subclasses must override the IMAGE_EXTENSION and

MASK_EXTENSION attributes.

The _get_paths and _get_mask_path methods must be

implemented as well , and in some

cases binarize_mask must alos be overriden.

"""

IMAGE_EXTENSION: Union[str , List[str]]

MASK_EXTENSION: Union[str , List[str]]

def __init__(

self ,

dataset_path: str ,

preprocessing_pipeline: Optional[

PreProcessingPipeline] = None ,

load: List[Literal["image", "dct_coefficients", "

qtables" ,]] = [

"image",

"dct_coefficients",

"qtables",

],

tampered_only: bool = False ,

):

"""

Initialize the dataset.

Args:

dataset_path (str): Path to the dataset.

preprocessing_pipeline (Optional[

PreProcessingPipeline]): Preprocessing

pipeline to apply to the images.

load (List[Literal [" image", "dct_coefficients", "

qtables "]]): List of

items to load. Possible values are "image", "

dct_coefficients" and

"qtables ". If the preprocessing_pipeline is

not None , the load

attribute will be ignored and the

preprocessing pipeline inputs will

be used instead.

tampered_only (bool): If True , only load tampered

images.

138

A.1. Dataset

Raises:

FileNotFoundError: If the dataset_path does not

exist.

AttributeOverrideError: If the subclass has not

overridden the

IMAGE_EXTENSION and MASK_EXTENSION attributes

.

"""

if not os.path.exists(dataset_path):

raise FileNotFoundError(f"Directory {dataset_path

} does not exist.")

self.load = preprocessing_pipeline.inputs if

preprocessing_pipeline else load

self.load_jpeg_data = "dct_coefficients" in self.load

or "qtables" in self.load

self.load_image_data = "image" in self.load

if self.load_jpeg_data:

self.check_jpeg_warning ()

self.check_attribute_override ()

self.dataset_path = dataset_path

self.tampered_only = tampered_only

self.preprocessing_pipeline = preprocessing_pipeline

if preprocessing_pipeline:

if set(load) != set(preprocessing_pipeline.inputs

):

logger.warning(

"The load attribute and the preprocessing

pipeline inputs do not "

f"match. Using the preprocessing pipeline

inputs: "

f"{preprocessing_pipeline.inputs}"

)

self.image_paths , self.mask_paths = self._get_paths(

dataset_path , tampered_only)

@abstractmethod

def _get_paths(

self , dataset_path , tampered_only

) -> Tuple[List[str], List[str] | List[str | None]]:

"""

Abstract method that returns an ordered list of image

and mask paths , mapped

in the correct order.

The correct implementation in a child class must

139

Appendix A. Photoholmes library code

follow:

- Make use of the dataset_path and tampered_only

arguments.

- In the case of pristine images , the corresponding

mask path must be set to ’None ’.

- Mask paths must be obtained by a correspondance of

the image path ,

using the _get_mask_path method.

Args:

dataset_path (str): Path to the dataset.

tampered_only (bool): Whether to load only the

tampered images.

Returns:

Tuple[List[str], List[str] | List[str | None]]:

Tuple with lists of image and mask paths (or None in

pristine images).

"""

pass

@abstractmethod

def _get_mask_path(self , image_path: str) -> str:

""" Abstract method that returns the corresponding

mask path for a given image path."""

pass

def __len__(self) -> int:

""" Return the length of the dataset."""

return len(self.image_paths)

def __getitem__(self , idx: int) -> Tuple[Dict , Tensor ,

str]:

""" Return the item at the given index."""

x, mask , image_name = self._get_data(idx)

if self.preprocessing_pipeline is not None:

x = self.preprocessing_pipeline (**x)

return x, mask , image_name

def _get_data(self , idx: int) -> Tuple[Dict , Tensor , str

]:

"""

Return the data at the given index.

Args:

idx (int): Index of the item to return.

Returns:

Tuple[Dict , Tensor , str]: A tuple containing the

data , the mask and the

image name.

140

A.1. Dataset

"""

x = {}

image_path = self.image_paths[idx]

image_name = image_path.split("/")[-1]. split(".")[0]

if self.load_image_data:

image = read_image(image_path)

x["image"] = image

if self.load_jpeg_data:

dct , qtables = read_jpeg_data(image_path ,

suppress_not_jpeg_warning=True)

if "dct_coefficients" in self.load:

x["dct_coefficients"] = dct

if "qtables" in self.load:

x["qtables"] = qtables

if self.mask_paths[idx] is None:

mask = torch.zeros(image.shape[-2:], dtype=torch.

bool)

else:

mask_im = read_image(self.mask_paths[idx])

mask = self._binarize_mask(mask_im)

return x, mask , image_name

def _binarize_mask(self , mask_image: Tensor) -> Tensor:

"""

Overridable method to binarize the mask image.

Binarized masks are boolean

tensors of one channel , regarding any degree of

tampering as True.

Arguments:

mask_image (Tensor): Original mask image.

Outputs:

Tensor: Binarized mask image.

"""

assert (mask_image <= 1).all()

return (mask_image == 1).float()

def check_attribute_override(self):

"""

Check that the subclass has overridden

IMAGE_EXTENSION and MASK_EXTENSION.

Raises an error if not.

"""

if not hasattr(type(self), "IMAGE_EXTENSION"):

raise AttributeOverrideError("IMAGE_EXTENSION")

if not hasattr(type(self), "MASK_EXTENSION"):

raise AttributeOverrideError("MASK_EXTENSION")

141

Appendix A. Photoholmes library code

def check_jpeg_warning(self):

"""

Check if the images are in JPEG format. If not , a

warning is issued.

"""

if not isinstance(self.IMAGE_EXTENSION , list):

image_ext = [self.IMAGE_EXTENSION]

else:

image_ext = self.IMAGE_EXTENSION

if not all(

[

ext in [".jpg", ".jpeg", ".JPG", ".JPEG", "

jpg", "jpeg", "JPEG", "JPG"]

for ext in image_ext

]

):

logger.warning(

"Not all images are in JPEG format. When

needed , an approximation will "

"be loaded by compressing the image in

quality 100."

)

A.1.2 Implementation example

import glob

import os

from typing import List , Optional , Tuple

from torch import Tensor

from .base import BaseDataset

class CasiaBaseDataset(BaseDataset):

IMAGES_TAMPERED_DIR: str

MASK_TAMPERED_DIR: str

AUTH_DIR: str = "Au"

IMAGE_EXTENSION: str = ".jpg"

MASK_EXTENSION: str = ".png"

def _get_paths(

self , dataset_path: str , tampered_only: bool

) -> Tuple[List[str], List[str] | List[str | None]]:

"""

Get the paths of the images and masks in the dataset.

Args:

dataset_path (str): Path to the dataset.

tampered_only (bool): Whether to load only the

142

A.1. Dataset

tampered images.

Returns:

Tuple[List[str], List[str] | List[str | None]]:

Paths of the images and

masks.

"""

image_paths = glob.glob(

os.path.join(

dataset_path , self.IMAGES_TAMPERED_DIR , f"*{

self.IMAGE_EXTENSION}"

)

)

mask_paths: List[Optional[str]] = [

os.path.join(dataset_path , self._get_mask_path(

image_path))

for image_path in image_paths

]

if not tampered_only:

pris_paths = glob.glob(

os.path.join(dataset_path , self.AUTH_DIR , f"

*{self.IMAGE_EXTENSION}")

)

pris_msk_paths = [None] * len(pris_paths)

image_paths += pris_paths

mask_paths += pris_msk_paths

return image_paths , mask_paths

def _get_mask_path(self , image_path: str) -> str:

"""

Get the path of the mask for the given image path.

Args:

image_path (str): Path to the image.

Returns:

str: Path to the mask.

"""

image_filename = image_path.split("/")[-1]

image_name_list = ".".join(image_filename.split(".")

[:-1]).split("_")

mask_name = "_".join(image_name_list + ["gt"])

mask_filename = mask_name + self.MASK_EXTENSION

return os.path.join(self.MASK_TAMPERED_DIR ,

mask_filename)

def _binarize_mask(self , mask_image: Tensor) -> Tensor:

"""

143

Appendix A. Photoholmes library code

Binarize the mask.

Args:

mask_image (Tensor): Mask image.

Returns:

Tensor: Binarized mask image.

"""

return mask_image [0, :, :] > 0

class Casia1SplicingDataset(CasiaBaseDataset):

"""

Class for the CASIA 1.0 Splicing (Sp) subset.

"""

IMAGES_TAMPERED_DIR = "Tp/Sp"

MASK_TAMPERED_DIR = "CASIA 1.0 groundtruth/Sp"

class Casia1CopyMoveDataset(CasiaBaseDataset):

"""

Class for the CASIA 1.0 Copy Move (CM) subset.

"""

IMAGES_TAMPERED_DIR = "Tp/CM"

MASK_TAMPERED_DIR = "CASIA 1.0 groundtruth/CM"

A.2 Preprocessing
A.2.1 Base

from abc import ABC , abstractmethod

from typing import Any , Dict

class BasePreprocessing(ABC):

@abstractmethod

def __call__(self , *args , ** kwargs) -> Dict[str , Any]:

pass

A.2.2 Pipeline

import logging

from typing import Any , Dict , List , Literal

from photoholmes.preprocessing.base import BasePreprocessing

144

A.2. Preprocessing

logger = logging.getLogger(__name__)

class PreProcessingPipeline:

"""

A pipeline of preprocessing transforms. In this library ,

the standard way of defining

the preprocessing of a method is by creating an instance

of this class with the corresponding

sequence of transforms.

"""

inputs: List[Literal["image", "dct_coefficients", "

qtables"]]

outputs_keys: List[str]

def __init__(

self ,

transforms: List[BasePreprocessing],

inputs: List[Literal["image", "dct_coefficients", "

qtables"]],

outputs_keys: List[str],

) -> None:

"""

Initializes a new preprocessing pipeline.

Args:

transforms (List[BasePreprocessing]): A list of

preprocessing transforms to

apply to the input.

inputs (List[str]): the inputs that the pipeline

will receive.

outputs_keys (List[str]): the keys of the outputs

that the pipeline will

return. These must coincide with the keyword

arguments of the predict and benchmark methods.

"""

self.transforms = transforms

self.inputs = inputs

self.outputs_keys = outputs_keys

def __call__(self , ** kwargs) -> Dict[str , Any]:

"""

Applies the preprocessing pipeline to the input.

Args:

** kwargs: Keyword arguments representing the

input to the pipeline.

Returns:

Dict[str , Any]: A dictionary with the output of

145

Appendix A. Photoholmes library code

the last transform in the

pipeline.

"""

self._check_inputs(kwargs)

for t in self.transforms:

kwargs = t(** kwargs)

return {k: v for k, v in kwargs.items() if k in self.

outputs_keys}

def _check_inputs(self , inputs: Dict[str , Any]) -> None:

"""

Checks the inputs required are included in the ones

declared in the pipeline and raises

a Warning for any input not used in the pipeline.

"""

for input_ in self.inputs:

if input_ not in inputs:

raise ValueError(f"Missing input {input_} in

inputs")

for input_ in inputs.keys():

if input_ not in self.inputs:

logger.warn(f"Input {input_} is not used by

the pipeline")

def append(self , transform: BasePreprocessing):

self.transforms.append(transform)

def insert(self , index: int , transform: BasePreprocessing

):

self.transforms.insert(index , transform)

A.3 Method
A.3.1 Base

import logging

from abc import ABC , abstractmethod

from pathlib import Path

from typing import Any , Dict , Optional , TypedDict , TypeVar ,

Union

import torch

from numpy.typing import NDArray

from torch import Tensor

from torch.nn import Module

from typing_extensions import NotRequired

146

A.3. Method

from photoholmes.utils.generic import load_yaml

logging.basicConfig(level=logging.INFO , format="%(levelname)s

- %(message)s")

log = logging.getLogger(__name__)

log.setLevel(logging.INFO)

T = TypeVar("T", NDArray , Tensor)

class BenchmarkOutput(TypedDict):

"""

Structure of the output expected from the benchmark

method.

Expected keys:

- heatmap: a probability map predicted by the method.

- mask: a binary mask predicted by the method.

- detection: score between 0 and 1, where 1 indicates

a forged image.

Extra keys:

- extra_outputs: any extra outputs that the method

might have

and could be useful to save.

"""

heatmap: Optional[Tensor]

mask: Optional[Tensor]

detection: Optional[Tensor]

extra_outputs: NotRequired[Dict[str , Any]]

class BaseMethod(ABC):

"""

Abstract class as a base for the methods.

Every method should inherit from this class (or

BaseTorchMethod) and implement the

’predict ’, ’benchmark ’ and ’__init__ ’ methods to enable

their utility within the library.

"""

device: torch.device

def __init__(self) -> None:

self.device = torch.device("cpu")

def predict(self , *args , ** kwargs) -> Any:

"""

147

Appendix A. Photoholmes library code

Runs method on an image’s data , and returns the

output of the original implementation.

"""

raise NotImplementedError("Method ‘predict ‘ not

implemented")

@abstractmethod

def benchmark(self , *args , ** kwargs) -> BenchmarkOutput:

"""

Runs method on an image’s data and returns the output

in the benchmark

format (BenchMarkOutput).

"""

return {"heatmap": None , "mask": None , "detection":

None}

@classmethod

def from_config(cls , config: Optional[str | Dict[str , Any

] | Path]):

"""

Instantiate the model from configuration dictionary

or yaml.

Params:

config: path to the yaml configuration or a

dictionary with

the parameters for the model.

"""

if isinstance(config , (str , Path)):

config = load_yaml(config)

if config is None:

config = {}

return cls (** config)

def to_device(self , device: Union[str , torch.device]):

""" Send the model to the device."""

logging.warning(

f"Method {self.__class__} isn’t a TorchMethod , so

it can’t be sent "

"to a device. If the method utilizes a torch

model as a feature extractor ,"

"override this method to sent it to the device."

)

self.device = torch.device("cpu")

class BaseTorchMethod(BaseMethod , Module):

"""

Abstract class as a base for methods that are end -to-end

148

A.4. Benchmark

Torch modules.

The child classes must implement the ’predict ’, ’

benchmark ’ and ’__init__ ’ methods

to enable their utility within the library.

"""

def __init__(self , *args , ** kwargs) -> None:

Module.__init__(self , *args , ** kwargs)

BaseMethod.__init__(self)

def load_weights(self , weights: Union[str , Path , dict]):

""" Load weights from a dictionary or a file when

given its path."""

if isinstance(weights , (str , Path)):

weights_ = torch.load(weights , map_location=self.

device)

else:

weights_ = weights

if "state_dict" in weights_.keys():

weights_ = weights_["state_dict"]

self.load_state_dict(

weights_ , assign=True

) # FIXME: asign limits torch version to >=2.1

def to_device(self , device: Union[str , torch.device]):

""" Send the model to the device."""

self.to(device)

self.device = torch.device(device)

A.4 Benchmark

import json

import logging

import os

import time

from pathlib import Path

from typing import Any , Dict , List , Literal , Optional , Union

import numpy as np

import torch

from torchmetrics import Metric , MetricCollection

from tqdm import tqdm

from photoholmes.datasets.base import BaseDataset

from photoholmes.methods.base import BaseMethod ,

BenchmarkOutput

149

Appendix A. Photoholmes library code

logging.basicConfig(format="%(levelname)s - %(message)s")

IO_MESSAGE = 11

logging.addLevelName(IO_MESSAGE , "IO_MESSAGE")

def io_message(self , message , *args , **kws):

if self.isEnabledFor(IO_MESSAGE):

self._log(IO_MESSAGE , message , args , **kws)

logging.Logger.io_message = io_message

log = logging.getLogger(__name__)

verbose_dict = {

0: logging.WARNING ,

1: logging.INFO ,

2: IO_MESSAGE ,

}

class Benchmark:

"""

Benchmark class for evaluating the performance of image

processing methods.

Attributes:

save_method_outputs (bool): Whether to save the

method outputs.

save_extra_outputs (bool): Whether to save extra

outputs.

save_metrics_flag (bool): Whether to save metrics.

output_path (Path): Path to the output folder.

device (torch.device): Device for computation.

use_existing_output (bool): Whether to use existing

saved outputs.

verbose (int): Verbosity level.

Methods:

run(method , dataset , metrics):

Run the benchmark using the specified method ,

dataset , and metrics.

"""

def __init__(

self ,

save_method_outputs: bool = True ,

save_extra_outputs: bool = False ,

save_metrics: bool = True ,

output_folder: str = "output/",

device: str = "cpu",

use_existing_output: bool = True ,

150

A.4. Benchmark

verbose: Literal[0, 1, 2] = 1,

):

"""

Args:

save_method_outputs (bool): Whether to save the

method outputs.

Default is True.

save_extra_outputs (bool): Whether to save extra

outputs.

Default is False.

save_metrics (bool): Whether to save metrics.

Default is True.

output_folder (str): Folder to save outputs.

Default is "output /".

device (str): Device for computation (e.g., "cpu"

or "cuda").

Default is "cpu".

use_existing_output (bool): Whether to use

existing saved outputs.

Default is True.

verbose (Literal[0, 1, 2]): Verbosity level (0,

1, or 2). Default is 1.

"""

self.save_method_outputs = save_method_outputs

self.save_extra_outputs = save_extra_outputs

self.save_metrics_flag = save_metrics

self.output_path = Path(output_folder)

self.use_existing_output = use_existing_output

self.verbose = verbose

if self.verbose not in verbose_dict:

log.warning(

f"Invalid verbose level ’{self.verbose}’. "

f"Using default verbose level ’1’."

)

self.verbose = 1

log.setLevel(verbose_dict[self.verbose])

if device.startswith("cuda") and not torch.cuda.

is_available ():

log.warning(

f"Requested device ’{device}’ is not

available. Falling back to ’cpu ’."

)

self.device = torch.device("cpu")

else:

self.device = torch.device(device)

self._mask = False

self._heatmap = False

151

Appendix A. Photoholmes library code

self._detection = False

def run(

self ,

method: BaseMethod ,

dataset: BaseDataset ,

metrics: Union[MetricCollection , List[Metric]],

):

"""

Run the benchmark using the specified method , dataset

, and metrics.

Args:

method (BaseMethod): The method to evaluate.

dataset (BaseDataset): Dataset to run the

evaluation on.

metrics (MetricCollection): Collection of metrics

to compute.

Returns:

dict: Computed metrics for the benchmark.

"""

log.info(f"Using device: {self.device}")

if method.device != self.device:

method.to_device(self.device)

if isinstance(metrics , list):

metrics = MetricCollection(metrics)

output_path = (

self.output_path

/ method.__class__.__name__.lower ()

/ dataset.__class__.__name__.lower ()

)

self._print_setup_message(method , dataset , metrics ,

output_path)

heatmap_metrics = metrics.clone(prefix="heatmap").to(

self.device , dtype=torch.float32

)

mask_metrics = metrics.clone(prefix="mask").to(self.

device , dtype=torch.float32)

detection_metrics = metrics.clone(prefix="detection")

.to(

self.device , dtype=torch.float32

)

image_count = 0

for data , mask , image_name in tqdm(dataset , desc="

Processing Images"): # type: ignore

output = None

152

A.4. Benchmark

if self.use_existing_output:

output = self._load_existing_output(

output_path , image_name)

if output is None:

data_on_device = self._dict_to_device(data)

output = method.benchmark (** data_on_device)

if self.save_method_outputs:

self._save_predicted_output(output_path ,

image_name , output)

mask = mask.to(self.device)

if output["detection"] is not None:

if output["detection"].ndim == 2:

output["detection"] = output["detection"

]. squeeze (0)

detection_gt = (

torch.tensor(int(torch.any(mask)))

.unsqueeze (0)

.to(self.device , dtype=torch.int32)

)

detection_metrics.update(output["detection"],

detection_gt)

self._detection = True

if output["mask"] is not None:

if output["mask"].ndim == 3:

output["mask"] = output["mask"]. squeeze

(0)

mask_metrics.update(output["mask"], mask)

self._mask = True

if output["heatmap"] is not None:

if output["heatmap"].ndim == 3:

output["heatmap"] = output["heatmap"].

squeeze (0)

heatmap_metrics.update(output["heatmap"],

mask)

self._heatmap = True

image_count += 1

log.info("-" * 80)

log.info("-" * 80)

if self.save_metrics_flag:

153

Appendix A. Photoholmes library code

tampered = (

"tampered_only" if dataset.tampered_only else

"tampered_and_pristine"

)

timestamp = time.strftime("%Y%m%d_%H:%M")

report_id = f"{timestamp}_{tampered}"

if self._heatmap:

log.info(" - Saving heatmap metrics")

self._save_metrics(

output_path=output_path ,

metrics=heatmap_metrics ,

report_id=report_id ,

total_images=image_count ,

)

else:

log.info(" - No heatmap metrics to save")

if self._mask:

log.info(" - Saving mask metrics")

self._save_metrics(

output_path=output_path ,

metrics=mask_metrics ,

report_id=report_id ,

total_images=image_count ,

)

else:

log.info(" - No mask metrics to save")

if self._detection:

log.info(" - Saving detection metrics")

self._save_metrics(

output_path=output_path ,

metrics=detection_metrics ,

report_id=report_id ,

total_images=image_count ,

)

else:

log.info(" - No detection metrics to save

")

else:

log.info(" - Not saving metrics")

log.info("-" * 80)

log.info("-" * 80)

log.info("Benchmark finished")

log.info("-" * 80)

log.info("-" * 80)

metrics_return = {}

if self._heatmap:

154

A.4. Benchmark

metrics_return["heatmap"] = heatmap_metrics.

compute ()

if self._mask:

metrics_return["mask"] = mask_metrics.compute ()

if self._detection:

metrics_return["detection"] = detection_metrics.

compute ()

return metrics_return

def _print_setup_message(

self ,

method: BaseMethod ,

dataset: BaseDataset ,

metrics: MetricCollection ,

output_path: Path ,

):

"""

Print the benchmark setup message.

Args:

method (BaseMethod): The method to evaluate.

dataset (BaseDataset): Dataset to run the

evaluation on.

metrics (MetricCollection): Collection of metrics

to compute.

output_path (Path): Path to the output folder.

"""

log.info("-" * 80)

log.info("-" * 80)

log.info("Running the benchmark")

log.info("-" * 80)

log.info("-" * 80)

log.info("Benchmark configuration:")

log.info(f" Method: {method.__class__.__name__}")

log.info(f" Dataset: {dataset.__class__.__name__}"

)

log.info(" Metrics:")

for metric in metrics:

log.info(f" - {metric}")

log.info(f" Output path: {output_path}")

log.info(f" Save method outputs: {self.

save_method_outputs}")

log.info(f" Save metrics: {self.save_metrics_flag}

")

log.info(f" Device: {self.device}")

log.info(f" Load existing outputs: {self.

use_existing_output}")

log.info(f" Verbosity: {logging._levelToName[

verbose_dict[self.verbose]]}")

log.info("-" * 80)

155

Appendix A. Photoholmes library code

log.info("-" * 80)

def _dict_to_device(self , data: Dict[str , Any]) -> Dict[

str , Any]:

"""

Move dict items to the benchmark ’s device.

Args:

data (Dict[str , Any]): Data to move to the

benchmark ’s device.

Returns:

Dict[str , Any]: Data moved to the benchmark ’s

device.

"""

return {

key: (

value.to(self.device , dtype=torch.float32)

if isinstance(value , torch.Tensor)

else value

)

for key , value in data.items()

}

def _save_metrics(

self ,

output_path: Path ,

metrics: MetricCollection ,

report_id: str ,

total_images: int ,

):

"""

Save predicted outputs for an image.

Args:

output_path (Path): Path to the output folder.

metrics (MetricCollection): Collection of metrics

to compute.

report_id (str): ID for the report.

total_images (int): Total number of images

processed.

"""

metrics_path = output_path / "metrics" / report_id

os.makedirs(metrics_path , exist_ok=True)

metric_compute = metrics.compute ()

torch.save(metrics.state_dict (), metrics_path / f"{

metrics.prefix}_state.pt")

metric_report: Dict[str , Any] = {}

156

A.4. Benchmark

for key , value in metric_compute.items():

if isinstance(value , torch.Tensor) and value.dim

() == 0:

metric_report[key] = float(value)

elif isinstance(value , tuple) and all(

isinstance(v, torch.Tensor) for v in value

):

metric_report[key] = [v.tolist () for v in

value]

elif (

isinstance(value , int)

or isinstance(value , float)

or isinstance(value , str)

):

metric_report[key] = value

else:

log.warning(f"Skipping metric ’{key}’ of type

’{type(value)}’")

report = {

"metrics": metric_report ,

"total_images": total_images ,

"type": metrics.prefix ,

}

with open(metrics_path / f"{metrics.prefix}_report.

json", "w") as f:

json.dump(report , f)

def _save_predicted_output(

self , output_path: Path , image_name: str , output:

BenchmarkOutput

):

"""

Save predicted outputs for an image.

Args:

output_path (Path): Path to the output folder.

image_name (str): Name of the processed image.

output (BenchmarkOutput): Output to save.

"""

image_save_path = output_path / "outputs" /

image_name

os.makedirs(image_save_path , exist_ok=True)

output_dict = {}

if output["heatmap"] is not None:

output_dict["heatmap"] = output["heatmap"].cpu().

numpy ()

if output["mask"] is not None:

output_dict["mask"] = output["mask"].cpu().numpy

157

Appendix A. Photoholmes library code

()

if output["detection"] is not None:

output_dict["detection"] = output["detection"].

cpu().numpy()

np.savez_compressed(image_save_path / "output", **

output_dict)

if "extra_outputs" in output:

extra_outputs_arrays = {}

extra_outputs_other = {}

for key , value in output["extra_outputs"]. items()

:

if isinstance(value , (torch.Tensor)):

extra_outputs_arrays[key] = value.cpu()

elif isinstance(value , (list , np.ndarray)):

extra_outputs_arrays[key] = value

else:

extra_outputs_other[key] = value

if self.save_extra_outputs:

np.savez_compressed(

image_save_path / "extra_outputs_arrays",

** extra_outputs_arrays

)

with open(image_save_path / "

extra_outputs_other.json", "w") as f:

json.dump(extra_outputs_other , f)

log.io_message(f"Output for image ’{image_name}’

saved.")

def _load_existing_output(

self , output_path: Path , image_name: str

) -> Optional[BenchmarkOutput]:

"""

Load existing output for a given image.

Args:

output_path (Path): Path to the output folder.

image_name (str): Name of the processed image.

Returns:

Optional[BenchmarkOutput]: Loaded output if

available , else None.

"""

output_path = output_path / "outputs"

if not os.path.exists(output_path):

return None

if os.path.exists(output_path / image_name / "output.

158

A.4. Benchmark

npz"):

log.io_message(f"Loading existing output for

image ’{image_name}’")

prior_output = np.load(

output_path / image_name / "output.npz",

allow_pickle=True ,

)

output: BenchmarkOutput = {

"heatmap": (

torch.tensor(prior_output["heatmap"],

device=self.device)

if "heatmap" in prior_output

else None

),

"mask": (

torch.tensor(prior_output["mask"], device

=self.device)

if "mask" in prior_output

else None

),

"detection": (

torch.tensor(prior_output["detection"],

device=self.device)

if "detection" in prior_output

else None

),

}

return output

log.io_message(f"No existing output found for image

’{image_name }’.")

return None

159

This page intentionally left blank.

Bibliography

[1] Adobe Photoshop. https://www.adobe.com/la/products/photoshop.

html.

[2] Adobe Photoshop Generative Fill. https://www.adobe.com/products/

photoshop/generative-fill.html.

[3] ClipDrop Generative Fill. https://clipdrop.co/generative-fill.

[4] How Stalin’s propaganda machine erased people from photographs, 1922-
1953 — rarehistoricalphotos.com. https://rarehistoricalphotos.com/

stalin-photo-manipulation-1922-1953/. [Accessed 29-07-2023].

[5] Sad Taylor Swift—Photo Of The Pop Star Sat On A Bench Gets A
Very Funny Photoshop Battle — voomed.com. https://www.voomed.com/

sad-taylor-swift-pop-star-sat-bench-gets-funny-photoshop-battle/.
[Accessed 29-07-2023].

[6] The Man Who Wasn’t There;: Story of the Tourist Guy Photo — septter-
ror.tripod.com. https://septterror.tripod.com/touristguy.html. [Ac-
cessed 01-08-2023].

[7] Paul in scotland, 1970 #throwbackthursday #tbt. https://twitter.com/

PaulMcCartney/status/824659293022679042, Jan 2017. [Accessed 04-09-
2023].

[8] Hesham A. Alberry, Abdelfatah A. Hegazy, and Gouda I. Salama. A fast
sift based method for copy move forgery detection. Future Computing and
Informatics Journal, 3(2):159–165, 2018.

[9] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow, Large-scale machine learning on het-
erogeneous systems, November 2015.

https://www.adobe.com/la/products/photoshop.html
https://www.adobe.com/la/products/photoshop.html
https://www.adobe.com/products/photoshop/generative-fill.html
https://www.adobe.com/products/photoshop/generative-fill.html
https://clipdrop.co/generative-fill
https://rarehistoricalphotos.com/stalin-photo-manipulation-1922-1953/
https://rarehistoricalphotos.com/stalin-photo-manipulation-1922-1953/
https://www.voomed.com/sad-taylor-swift-pop-star-sat-bench-gets-funny-photoshop-battle/
https://www.voomed.com/sad-taylor-swift-pop-star-sat-bench-gets-funny-photoshop-battle/
https://septterror.tripod.com/touristguy.html
https://twitter.com/PaulMcCartney/status/824659293022679042
https://twitter.com/PaulMcCartney/status/824659293022679042

Bibliography

[10] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. Lin. Learning From Data, a
short course. AMLbook, 2012.

[11] Adobe. What are tiff files and how do you open them? https://www.adobe.

com/creativecloud/file-types/image/raster/tiff-file.html. [Ac-
cessed 9th April, 2024].

[12] Cecilia Aguerrebere, Julie Delon, Yann Gousseau, and Pablo Musé. Study of
the digital camera acquisition process and statistical modeling of the sensor
raw data. hal-00733538v3, 2013.

[13] Samet Akcay, Dick Ameln, Ashwin Vaidya, Barath Lakshmanan, Nilesh
Ahuja, and Utku Genc. Anomalib: A deep learning library for anomaly de-
tection. In 2022 IEEE International Conference on Image Processing (ICIP),
pages 1706–1710. IEEE, 2022.

[14] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain,
Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski,
Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary
DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh,
Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario
Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yun-
jie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio
Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang,
William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit
Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2:
Faster Machine Learning Through Dynamic Python Bytecode Transformation
and Graph Compilation. In 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Volume 2
(ASPLOS ’24). ACM, April 2024.

[15] Quentin Bammey, Tina Nikoukhah, Marina Gardella, Rafael Grompone,
Miguel Colom, and Jean-Michel Morel. Non-semantic evaluation of image
forensics tools: Methodology and database, 2021.

[16] Quentin Bammey, Rafael Grompone von Gioi, and Jean-Michel Morel. An
adaptive neural network for unsupervised mosaic consistency analysis in image
forensics. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14182–14192, 2020.

[17] Bryce Edward Bayer. Color imaging array, Jul 1976.

[18] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li,
Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra,
Prafulla Dhariwal, Casey Chu, Yunxin Jiao, and Aditya Ramesh. Improving
image generation with better captions. Openai, 2023.

[19] Mehdi Boroumand, Mo Chen, and Jessica Fridrich. Deep residual network for
steganalysis of digital images. IEEE Transactions on Information Forensics
and Security, 14(5):1181–1193, 2019.

162

https://www.adobe.com/creativecloud/file-types/image/raster/tiff-file.html
https://www.adobe.com/creativecloud/file-types/image/raster/tiff-file.html

Bibliography

[20] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,
Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,
Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue
Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change
Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

[21] Davide Chicco and Giuseppe Jurman. The advantages of the matthews cor-
relation coefficient (mcc) over f1 score and accuracy in binary classification
evaluation. BMC Genomics, 21(1):6, Jan 2020.

[22] D. R. Cok. Signal processing method and apparatus for producing interpo-
lated chrominance values in a sampled color image signal. US Patent, 4642678,
1987.

[23] MMPose Contributors. Openmmlab pose estimation toolbox and benchmark.
https://github.com/open-mmlab/mmpose, 2020.

[24] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic
segmentation toolbox and benchmark. https://github.com/open-mmlab/

mmsegmentation, 2020.

[25] Aldus Corporation. Tiff revision 6.0, June 3, 1992.

[26] D. Cozzolino and L. Verdoliva. Noiseprint: A cnn-based camera model finger-
print. IEEE Transactions on Information Forensics and Security, 15:144–159,
2020.

[27] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. Splicebuster: A new
blind image splicing detector. Conference: IEEE Workshop on Information
Forensics and Security, 2015.

[28] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato. RAISE –
A Raw Images Dataset for Digital Image Forensics. In ACM Multimedia
Systems, Portland, Oregon, March 18-20 2015.

[29] T.J. de Carvalho, C. Riess, E. Angelopoulou, H. Pedrini, and
A. de Rezende Rocha. Exposing digital image forgeries by illumination color
classification. Information Forensics and Security, IEEE Transactions on,
8(7):1182–1194, 2013.

[30] Agnès Desolneux, Lionel Moisan, and Jean-Michel Morel. From gestalt theory
to Image Analysis: A probabilistic approach. Springer, 2011.

[31] Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock, Ananya Harsh, Teddy
Koker, Luca Di Liello, Daniel Stancl, Changsheng Quan, Maxim Grechkin,
and William Falcon. Torchmetrics - measuring reproducibility in pytorch, 2
2022.

163

https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

Bibliography

[32] Jing Dong, Wei Wang, and Tieniu Tan. CASIA image tampering detection
evaluation database. In 2013 IEEE China Summit and International Confer-
ence on Signal and Information Processing. IEEE, July 2013.

[33] Marc Ebner. Color constancy. Color Constancy, pages 104–106, 05 2007.

[34] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Knowledge Discovery and Data Mining, 1996.

[35] Canon Europe. White balance: definition and settings. https://www.

canon-europe.com/pro/infobank/white-balance/.

[36] Python Software Foundation. Python programming language, 1991. Accessed:
April 17, 2024.

[37] W. T. Freeman. Median filter for reconstructing missing color samples. US
Patent, 4724395, 1988.

[38] Marina Gardella, Pablo Musé, Miguel Colom, and Jean-Michel Morel. Image
Forgery Detection Based on Noise Inspection: Analysis and Refinement of
the Noisesniffer Method. Image Processing On Line, 14:86–115, 2024. https:
//doi.org/10.5201/ipol.2024.462.

[39] GfG. Artificial neural networks and its applications, Jun 2023.

[40] Google. An image format for the web. https://developers.google.com/

speed/webp. [Accessed 9th April, 2024].

[41] PNG Development Group. Png (portable network graphics) specification, ver-
sion 1.2. http://www.libpng.org/pub/png/spec/1.2/png-1.2.pdf. [Ac-
cessed 9th April, 2024].

[42] Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas Dufour, and
Luisa Verdoliva. Trufor: Leveraging all-round clues for trustworthy image
forgery detection and localization, 2023.

[43] Aurélien Géron. Hands-on Machine Learning with Scikit-learn, Keras and
TensorFlow. O’Reilly Media, Inc, 2019.

[44] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Se-
bastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–
362, September 2020.

164

https://www.canon-europe.com/pro/infobank/white-balance/
https://www.canon-europe.com/pro/infobank/white-balance/
https://doi.org/10.5201/ipol.2024.462
https://doi.org/10.5201/ipol.2024.462
https://developers.google.com/speed/webp
https://developers.google.com/speed/webp
http://www.libpng.org/pub/png/spec/1.2/png-1.2.pdf

Bibliography

[45] Y.-F. Hsu and S.-F. Chang. Detecting image splicing using geometry invari-
ants and camera characteristics consistency. In International Conference on
Multimedia and Expo, 2006.

[46] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A. Efros. Fighting
fake news: Image splice detection via learned self-consistency, 2018.

[47] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A. Efros. Fighting
fake news: Image splice detection via learned self-consistency, 2018.

[48] M. Jansen and N. Petrov. Stalin’s Loyal Executioner: People’s Commissar
Nikolai Ezhov, 1895-1940. None. Hoover Institution Press, 2013.

[49] Shan Jia, Mingzhen Huang, Zhou Zhou, Yan Ju, Jialing Cai, and Siwei Lyu.
Autosplice: A text-prompt manipulated image dataset for media forensics. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 893–903, 2023.

[50] P. Korus and J. Huang. Evaluation of random field models in multi-modal
unsupervised tampering localization. In Proc. of IEEE Int. Workshop on Inf.
Forensics and Security, 2016.

[51] P. Korus and J. Huang. Multi-scale analysis strategies in prnu-based tamper-
ing localization. IEEE Trans. on Information Forensics and Security, 2017.

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Neural Information Processing
Systems, 25, 01 2012.

[53] Zhanghui Kuang, Hongbin Sun, Zhizhong Li, Xiaoyu Yue, Tsui Hin Lin,
Jianyong Chen, Huaqiang Wei, Yiqin Zhu, Tong Gao, Wenwei Zhang, Kai
Chen, Wayne Zhang, and Dahua Lin. Mmocr: A comprehensive tool-
box for text detection, recognition and understanding. arXiv preprint
arXiv:2108.06543, 2021.

[54] Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, and Heung-Kyu Lee. Cat-
net: Compression artifact tracing network for detection and localization of
image splicing. In 2021 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 375–384, 2021.

[55] C. A. Laroche and M. A. Prescott. Apparatus and method for adaptively
interpolating a full color image utilizing chrominance gradients. US Patent,
5373322, 1994.

[56] Zhouchen Lin, Junfeng He, Xiaoou Tang, and Chi-Keung Tang. Fast, au-
tomatic and fine-grained tampered jpeg image detection via dct coefficient
analysis. Pattern Recognition, 2009.

[57] Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu. Pscc-net: Progres-
sive spatio-channel correlation network for image manipulation detection and
localization, 2022.

165

Bibliography

[58] H. Mâıtre. From Photon to Pixel: The Digital Camera Handbook. ISTE
Limited, 2017.

[59] Hannes Mareen, Dante Vanden Bussche, Fabrizio Guillaro, Davide Coz-
zolino2, Glenn Van Wallendael, Peter Lambert, and Luisa Verdoliva. Com-
print: Image forgery detection and localization using compression fingerprints.
Proc. Int. Conf. on Pattern Recognition (ICPR), 2022.

[60] B.W. Matthews. Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein
Structure, 405(2):442–451, 1975.

[61] Inc Midjourney. Midjourney. https://www.midjourney.com/home, 2020.

[62] Tina Nikoukhah, J Anger, T Ehret, Miguel Colom, J M Morel, and
R Grompone von Gioi. JPEG Grid Detection based on the Number of
DCT Zeros and its Application to Automatic and Localized Forgery Detec-
tion. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, Long Beach, United States, June 2019.

[63] Tina Nikoukhah, Jérémy Anger, Miguel Colom, Jean-Michel Morel, and
Rafael Grompone von Gioi. ZERO: a Local JPEG Grid Origin Detector
Based on the Number of DCT Zeros and its Applications in Image Forensics.
Image Processing On Line, 11:396–433, 2021. https://doi.org/10.5201/

ipol.2021.390.

[64] Nam Thanh Pham, Jong-Weon Lee, Goo-Rak Kwon, and Chun-Su Park.
Hybrid image-retrieval method for image-splicing validation. Symmetry,
11(1):83, 2019.

[65] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn,
Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent dif-
fusion models for high-resolution image synthesis. (arXiv:2307.01952), July
2023. arXiv:2307.01952 [cs].

[66] Alin Popescu and Hany Farid. Statistical tools for digital forensics. volume
3200, 05 2004.

[67] Alin Popescu and Hany Farid. Exposing digital forgeries in color filter array
interpolated images. Signal Processing, IEEE Transactions on, 53:3948 –
3959, 11 2005.

[68] David M W Powers. Evaluation: From precision, recall and f-measure to
roc, informedness, markedness & correlation. Journal of Machine Learning
Technologies., 2011.

[69] Charles A. Poynton. Digital video and hdtv algorithms and interfaces. 2012.

[70] William Puech. Multimedia Security 1: Authentication and Data Hiding.
Wiley-ISTE, 2022.

166

https://doi.org/10.5201/ipol.2021.390
https://doi.org/10.5201/ipol.2021.390

Bibliography

[71] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021.

[72] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021.

[73] Average Rob. Instagram instagram.com. https://www.instagram.com/

averagerob/. [Accessed 29-07-2023].

[74] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter, 2020.

[75] Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. On the
stratification of multi-label data. InMachine Learning and Knowledge Discov-
ery in Databases: European Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011, Proceedings, Part III 22, pages 145–158. Springer, 2011.

[76] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905,
2000.

[77] So S Stevens. Neural events and the psychophysical law: Power functions
like those that govern subjective magnitude show themselves in neurelectric
effects. Science, 170(3962):1043–1050, 1970.

[78] Denis Teyssou, Jean-Michel Leung, Evlampios Apostolidis, Konstantinos
Apostolidis, Symeon Papadopoulos, Markos Zampoglou, Olga Papadopoulou,
and Vasileios Mezaris. The invid plug-in: web video verification on the
browser. In Proceedings of the first international workshop on multimedia
verification, pages 23–30, 2017.

[79] trent b. Iterative stratification. https://github.com/trent-b/

iterative-stratification, 2023.

[80] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning
with contrastive predictive coding, 2019.

[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017.

[82] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang
Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and
Bin Xiao. Deep high-resolution representation learning for visual recognition,
2020.

167

https://www.instagram.com/averagerob/
https://www.instagram.com/averagerob/
https://github.com/trent-b/iterative-stratification
https://github.com/trent-b/iterative-stratification

Bibliography

[83] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang
Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and
Bin Xiao. Deep high-resolution representation learning for visual recognition,
2020.

[84] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang
Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu,
and Bin Xiao. Deep high-resolution representation learning for visual recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(10):3349–3364, 2021.

[85] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004.

[86] Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-Tsong Ng, Xuanjing
Shen, and Stefan Winkler. Coverage - a novel database for copy-move forgery
detection. In IEEE International Conference on Image processing (ICIP),
2016.

[87] Papers with Code. Papers with code : Trends.

[88] Haiwei Wu, Yiming Chen, and Jiantao Zhou. Rethinking image forgery de-
tection via contrastive learning and unsupervised clustering, 2023.

[89] Haiwei Wu, Jiantao Zhou, Jinyu Tian, and Jun Liu. Robust image forgery
detection over online social network shared images. pages 13430–13439. IEEE,
6 2022.

[90] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez,
and Ping Luo. Segformer: Simple and efficient design for semantic segmenta-
tion with transformers, 2021.

[91] yizhe ang. Media forensics / fake detection experiments in pytorch. https:

//github.com/yizhe-ang/fake-detection-lab, 2021.

[92] Markos Zampoglou. Matlab forensics. https://github.com/caomw/

matlab-forensics, 12 2016.

[93] Markos Zampoglou, Symeon Papadopoulos, and Yiannis Kompatsiaris.
Large-scale evaluation of splicing localization algorithms for web images. Mul-
timedia Tools and Applications, 76(4):4801–4834, 2017.

[94] Markos Zampoglou, Symeon Papadopoulos, Yiannis Kompatsiaris, Ruben
Bouwmeester, and Jochen Spangenberg. Web and social media image
forensics for news professionals. In Social Media In the NewsRoom, SM-
News16@CWSM, Tenth International AAAI Conference on Web and Social
Media workshops, 2016.

168

https://github.com/yizhe-ang/fake-detection-lab
https://github.com/yizhe-ang/fake-detection-lab
https://github.com/caomw/matlab-forensics
https://github.com/caomw/matlab-forensics

Bibliography

[95] Jiaming Zhang, Huayao Liu, Kailun Yang, Xinxin Hu, Ruiping Liu, and
Rainer Stiefelhagen. Cmx: Cross-modal fusion for rgb-x semantic segmen-
tation with transformers, 2023.

[96] Chenhao Zheng, Ayush Shrivastava, and Andrew Owens. Exif as language:
Learning cross-modal associations between images and camera metadata,
2023.

169

This page intentionally left blank.

List of Tables

3.1 Summary of the main characteristics of the datasets, such as the
type of forgery they feature, the number of images (both pristine and
forged) included in each of them, the images’ format, and whether
their social network and WebP versions are also incorporated. . . . 41

6.1 Breakdown of the metrics included on the first release of PhotoHolmes. 93

7.1 Summary of the target traces of each method included in the first
release of PhotoHolmes as well as the kind of output they provide.
The outputs can be continuous heatmaps representing probability,
binary masks, and detection scores. 100

7.2 Localization performance in terms of the mean weighted MCC score
(MCCv1

w) in the miniTrace database, for both, the exogenous datasets
and the endogenous datasets. In bold, the highest score in each
dataset, and underlined, the second highest one. 108

7.3 Localization performance in terms of the mean weighted IoU score
(IoUv1

w) in the miniTrace database, for both, the exogenous datasets
and the endogenous datasets. In bold, the highest score in each
dataset, and underlined, the second highest one. 109

7.4 Localization performance in terms of the mean weighted F1 score
(F1v1w) in the miniTrace database, for both, the exogenous datasets
and the endogenous datasets. In bold, the highest score in each
dataset, and underlined, the second highest one. 110

7.5 Localization performance in terms of AUROC in the miniTrace
database, for both, the exogenous datasets and the endogenous
datasets. In bold, the highest score in each dataset, and underlined,
the second highest one. 110

7.6 Detection performance in terms of the weighted IoU score over the
full dataset (IoUv2

w) in the miniTrace database, for both, the exoge-
nous datasets and the endogenous datasets. In bold, the highest
score in each dataset, and underlined, the second highest one. . . . 111

7.7 Detection performance in terms of the weighted F1 score over the
full dataset (F1v2w) in the miniTrace database, for both, the exoge-
nous datasets and the endogenous datasets. In bold, the highest
score in each dataset, and underlined, the second highest one. . . . 113

List of Tables

7.8 Localization performance in terms of the mean weighted MCC score
(MCCv1

w) in popular datasets, for original dataset with tampered
and pristine images, original dataset with only tampered images
and only tampered images through Facebook . In bold, the highest
score in each dataset, and underlined, the second highest one. . . . 126

7.9 Localization performance in terms of the mean weighted IoU score
(IoUv1

w) in popular datasets, for original dataset with tampered and
pristine images, original dataset with only tampered images and
only tampered images through Facebook . In bold, the highest score
in each dataset, and underlined, the second highest one. 127

7.10 Localization performance in terms of the mean weighted F1 score
(F1v1w) in popular datasets, for original dataset with tampered and
pristine images, original dataset with only tampered images and
only tampered images through Facebook . In bold, the highest score
in each dataset, and underlined, the second highest one. 128

7.11 Localization performance in terms of the AUROC in popular datasets,
for original dataset with tampered and pristine images, original
dataset with only tampered images and only tampered images through
Facebook . In bold, the highest score in each dataset, and underlined,
the second highest one. 129

7.12 Detection performance in terms of the dataset-level weighted MCC
score (MCCv2

w) for original dataset with tampered and pristine im-
ages. In bold, the highest score in each dataset, and underlined,
the second highest one. 129

7.13 Detection performance in terms of the dataset-level weighted IoU
score (IoUv2

w) in popular datasets, for original dataset with tampered
and pristine images, original dataset with only tampered images and
only tampered images through Facebook . In bold, the highest score
in each dataset, and underlined, the second highest one. 129

7.14 Detection performance in terms of the dataset-level weighted F1
score (F1v2w) in popular datasets, for original dataset with tampered
and pristine images, original dataset with only tampered images
and only tampered images through Facebook . In bold, the highest
score in each dataset, and underlined, the second highest one. . . . 130

172

List of Figures

1.1 Example of a forged image used by Stalinist propaganda. Image (a)
shows Stalin walking by a river accompanied by three people. One
of them is erased in the image (b). Images extracted from [4]. . . . 2

1.2 (a) Famous spliced image denominated Tourist Guy. (b) Original
image. (c) Image used to do the splicing. Images extracted from [6]. 2

1.3 (a) Spliced image of Average Rob into an image of Taylor Swift
extracted from [73]. (b) Original image extracted from [5]. 3

1.4 Full image acquisition pipeline with key steps that leave traces that
are useful to later detect potential forgeries. 4

2.1 Diagram showing the pixel acquisition stages, indicating the noise
sources. Extracted from [12]. 9

2.2 (a) Striped array: One-third of the pixels are allocated to each color
channel, resulting in an imbalanced sampling between the two di-
rections. There is a significant under-sampling in one direction,
whereas the sampling is done correctly in the other direction. (b)
X-Trans array: This arrangement is said to minimize moiré effects
and, in turn, increase resolution by eliminating the need for a low-
pass filter. Images extracted from [58] 11

2.3 Bayer array : arrangement of color sensors in a Bayer filter pattern.
The repeating 2x2 grid showcases the distribution of red, green, and
blue sensors. Image extracted from [58]. 11

2.4 Bayer array configurations. From left to right: GBRG, BGGR,
GRBG and RGGB. Image extracted from [58]. 12

2.5 The top-left portion of a CFA image obtained from a Bayer array,
where the letter r, g, or b denotes the color filter at the pixel po-
sition, and the sub-indexes denote the pixel position. Extracted
from [67]. 12

2.6 (a) A scene photographed using the Canon auto white balance set-
ting. (b) The same scene with a custom white balance setting.
Images extracted from [35]. 15

2.7 Quantization step in JPEG compression. Including a quantization
table, the DCT coefficients, and then the quantized DCT coefficients
with the zig-zag followed to achieve entropy encoding. Extracted
from [70]. 17

List of Figures

2.8 Example of a copy-move forgery (b) extracted from the Casia-V1
dataset [32]. Notice how the flowers in the top left corner of the
image (a) are duplicated in the forgery (b). On image (c) you can
see the forgery mask. 22

2.9 A forged image of Paul McCartney drinking fernet from a makeshift
glass (b) alongside the original image (a) and the forgery mask (c).
The forged image source is unknown, the original image was ex-
tracted from Paul’s twitter [7] . 23

2.10 Example of an image splicing forgery. In (a) the background image,
(b) the donor images, (c) the forged image, and (d) the forgery
mask. Extracted from the Casia-V1 dataset [32]. 24

2.11 An example of image inpainting. The tampered image (b) was made
using DALL-E 2. The image was extracted from the AutoSplice
dataset [49]. 24

2.12 Visual representations of some of the unsupervised learning algo-
rithms. Extracted from [43]. 26

2.13 Graph representing the structure of a very simple neural network.
The vertical alignment of dots represents a layer. This diagram
contains an input layer, a couple of hidden layers in the middle (as
an example), and an output layer. Image extracted from [39]. . . 28

3.1 Examples of each chosen dataset, including a forged image and the
corresponding ground truth mask. Some images were cropped for
visualization purposes. All images were extracted from each original
dataset. 35

3.2 An example image from the miniTrace dataset (a) and its endoge-
nous (b) and exogenous (c) masks to illustrate the mask selection
procedure. The endogenous mask follows the edges of the grass
patch in the image, while the exogenous mask spreads randomly
across multiple objects. Extracted from [15]. 36

3.3 Original images and the residual after uploading it to Whatsapp
and Facebook and the corresponding quantization tables. Images
extracted from the CASIA-V1 dataset [32]. 39

4.1 Confusion matrix: rows represent the actual classes while columns
represent the prediction. The matrix has four possible values cor-
responding to the four possible combinations of predicted and ac-
tual classes. 46

4.2 Example of ROC curve showing a random classifier, a classifier
achieving a barely acceptable performance, and a classifier achieving
an almost perfect performance. 49

5.1 Result of running Splicebuster on an image. The original image (a)
was extracted from [27], and the predicted mask (b) is the result of
our implementation of the method. 56

174

List of Figures

5.2 The method performance on a forged image. Along with the original
image (a) and the ground truth mask (b), the distributions (c) with
the output predicted mask (d) are shown. The distributions (c) are
illustrated by painting the blocks in L in white, and on top of these,
the blocks in V are painted in red. Images extracted from [38]. . . 58

5.3 An illustration of the double-quantization effect. The left two fig-
ures are histograms of single quantized signals with steps 5 (a) and
2 (b), respectively. The two right figures are histograms of dou-
ble quantized signals with steps 5 followed by 2 (c) and 2 followed
by 3 (d). Note the periodic artifacts in the histograms of double-
quantized signals. The shaded rectangles show one period of the
histograms. Figure extracted from [56]. 60

5.4 A typical DCT coefficient histogram of a tampered JPEG image.
The shaded rectangle shows one estimated period of the histogram.
Figure extracted from [56]. 60

5.5 How the DCT coefficient histograms are built (for each YUV chan-
nel) and how the histograms vote for a Block Posterior Probability
Map (or BPPM). A histogram is obtained for each channel and
each of the 64 frequencies, from which the peak period can be esti-
mated and a probability map can be derived. Averaging all of these
together yields the BPPM. Figure extracted from [56]. 62

5.6 Result of running our implementation of DQ on an image. The
original image (a), the tampered image (b), the predicted mask (c),
and the predicted heatmap (BPPM) (d). 64

5.7 Each pixel (yellow) belongs to 64 different 8×8 blocks of the image.
Six of them were drawn in different colors on the left. The top right
shows (in red) the position of a patch not aligned with the grid. The
bottom right shows (in green) the position of the patch containing
the pixel matching the JPEG grid. Extracted from [63]. 65

5.8 Top: forged image from the well-known Twitter account GuillaumeTC,
its vote map and forgery mask F . Bottom: original image found
online, its vote map and forgery mask F . Extracted from [62]. . . . 66

5.9 CAT-Net architecture includes an RGB stream, a DCT stream, and
a final fusion stage. The RGB stream takes the RGB pixels, while
the DCT stream takes the Y-channel DCT coefficients and a Y-
channel quantization table as input. Extracted from [54]. 69

5.10 Elements in the CAT-NET network. A convolutional unit mainly
consists of four consecutive basic blocks. The fusion unit fuses multi-
resolution feature maps by summing them after matching resolu-
tions. Extracted from [54]. 69

5.11 JPEG artifact learning module architecture. Extracted from [54]. . 69

5.12 Result of running CAT-Net on an image. The original image (a)
was extracted from [54], (b) shows the predicted heatmap. 70

5.13 Illustration of the multi-modal embedding employed in EXIF. Ex-
tracted from [96]. 70

175

https://twitter.com/guillaumetc?lang=es

List of Figures

5.14 Outputs of the different components in the EXIF pipeline. From left
to right: the original image, from which patches are drawn to map
into the embedding space. These patch embeddings are used to com-
pute the Affinity Matrix, from which a detection heatmap (through
Mean Shift) or a detection mask (through Normalized Cuts) is in-
ferred. Extracted from [96]. 71

5.15 A forged image (left) where the woman on the right has been in-
troduced by splicing, and its noiseprint (right). The inconsistencies
caused by the manipulation are visible in the extracted noiseprint.
Figure obtained from [26]. 72

5.16 Noiseprint++’s training paradigm, represented in high-level. The
objective is to minimize the distance between patches with the same
camera model and editing history and maximize it otherwise. Ex-
tracted from [42]. 73

5.17 Trufor full framework, extracted from [42]. The input image is x,
from which the Noiseprint++ residual r is extracted. Both of these
are fed to the encoder, which, after decoding, produces the anomaly
map a, the confidence map c, and the integrity score y. 74

5.18 Result of running TruFor on an image. The original image (a) was
extracted from [42], (b) shows the predicted heatmap, and (c) shows
the confidence map. 74

5.19 PSCC-Net full framework, extracted from [57], showing the top-
down and bottom-up paths along with the Detection Head. The
output mask is Mask 1 and the detection score from the Detec-
tion Head. There is also an illustration of how the output mask
prediction improves by learning on the outputs on the lower scales. 76

5.20 Result of running PSCC-Net on an image. The original image (a)
was extracted from [57], (b) shows the predicted heatmap. 77

5.21 Spatial module of the network for Adaptive CFA, comprised of lay-
ers with full and diluted convolutions, and skip connections. Ex-
tracted from [16]. 78

5.22 Pixelwise causal module for Adaptive CFA, achieved by a sequence
of 1×1 convolutional layers. Extracted from [16]. 78

5.23 Processing module for Adaptive CFA that transforms the image into
blocks, which is done to make predictions more reliable. The image
is split into four images according to the four modulo (2,2) positions
(illustrated as the red, yellow, light blue, and dark blue matrices).
A concatenation of these images in different positions produces 4
new features (the 4 blocks that are vertically aligned on the right).
After average pooling, the blockwise output is obtained. Extracted
from [16]. 79

176

List of Figures

5.24 Blockwise module of the Adaptive CFA network. After the block-
wise processing, each resulting pixel maps to one block. Pointwise
convolutions are computed over these features to process the data
in each block. The first three layers process the blocks indepen-
dently through group pixel-wise convolutions, and the remainder of
the network merges the features through full-depth pixel-wise con-
volutions. Extracted from [16] . 79

5.25 Result of running Adaptive CFA on an image. The original image
(a) was extracted from [16], (b) shows the predicted heatmap. . . 79

5.26 FOCAL training and prediction framework. The training phase
uses the ground truth mask to train the feature extractor using
contrastive learning. For inference, the model extracts the features
and clusters them into two groups, resulting in the output mask.
Extracted from [88]. 81

5.27 Results of running focal on a forged image (a), extracted from CA-
SIA 1.0 SP [32]. FOCAL predicts a mask (c) almost identical to
the ground truth (b). 81

6.1 Results of running all the methods included in PhotoHolmes on the
image presented in Figure 2.9, showing the overlay of each method’s
output over the original image, the former being predicted masks
or heatmaps accordingly. 89

6.2 Benchmark class flow diagram. Everything starts by choosing a
dataset and a method, then according to the chosen method, the
dataset is preprocessed with the corresponding preprocessing. Then,
outputs can be visualized, and chosen metrics are computed. The
metrics are then stored as benchmark reports. 96

6.3 Output of running photoholmes run catnet <image path> --overlay

using the photoholmes CLI. The forged image is the one presented
in Figure 2.9. 97

7.1 Non-semantic sample image (a) with it’s exo-mask (b). 104

7.2 Outputs in miniTrace datasets of all of the evaluated methods. Orig-
inal image and corresponding mask are shown in Figure 7.1. 105

7.3 A spider diagram illustrating the MCCv1
w on miniTrace dataset for

the top three performing methods, according to Table 7.2. For
each method, it shows the absolute value of MCC on every axis,
where each axis is a different dataset. Each method of the top three
performing methods is plotted with a different color, and a gray
shade is used for the remaining methods. The purpose of this figure
is to show how different traces are best exploited by each of the
corresponding classical methods. 106

7.4 Image samples from the popular datasets. 112

177

List of Figures

7.5 A bar plot of the MCCv1
w performance for the Columbia Dataset,

according to the values in Table 7.8. The performance on tampered
only images is shown in green, while the tampered and pristine
performance is shown in blue. 113

7.6 Outputs in all DSO-1 variants of all of the evaluated methods. Orig-
inal image and corresponding mask are shown in Figure 7.4. 115

7.7 Outputs in all CASIA 1.0 variants of all of the evaluated methods.
Original images and corresponding masks are shown in Figure 7.4. 117

7.8 Outputs in Coverage of all of the evaluated methods. Original image
and corresponding mask are shown in Figure 7.4. 119

7.9 Outputs in all Korus variants of all of the evaluated methods. Orig-
inal image and corresponding mask are shown in Figure 7.4. 121

7.10 Outputs in all Columbia variants of all of the evaluated methods.
Original image and corresponding mask are shown in Figure 7.4. . 122

7.11 Outputs in AutoSplice of all of the evaluated methods. Original
image and corresponding mask are shown in Figure 7.4. 124

7.12 A spider diagram illustrating the MCCv1
w performance for the most

notorious methos in the popular datasets, according to Table 7.8.
The absolute value of the MCC is plotted on every axis, where each
axis corresponds to a different dataset. The top three perforing
methods are outlined with a color, while the remaining methods’
performance is shown as a gray shade. Different dataset types are
also highlighted with different background colors. This figure is
used to show the complimentary nature of the methods across these
datasets and forgery types. 130

178

This is the last page.
Compiled Friday 14th June, 2024.

http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Goals
	Related Works
	Thesis outline

	Background
	Image Acquisition Pipeline
	RAW Acquisition
	Demosaicing
	Color Correction
	Image file formats and compression

	Forgeries
	Defining a forgery
	Making a forgery
	Detecting a forgery
	Two different challenges
	Falsification types

	Machine Learning
	Introduction
	Data and biases
	Neural Networks

	What we are looking at: the data
	Importance of data
	The generalization problem

	Benchmark datasets in image forensics
	Columbia
	CASIA 1.0
	COVERAGE
	DSO-1
	Korus
	AutoSplice
	miniTrace dataset
	Social networks versions
	WebP datasets
	Summary of datasets

	Measuring and qualifying the predictions: the metrics
	What is a metric?
	The importance of good metrics
	Characteristics of Good Metrics
	Consequences of Poor Metrics

	Global definitions
	True and False, Positives and Negatives
	Aggregating metrics

	Metrics
	Recall (rec) or True Positive Rate (TPR)
	False Positive Rate (FPR)
	Precision (prec)
	F1 score
	Matthews correlation coefficient (MCC)
	Intersection over Union (IoU)
	Reciever Operating Characteristic curve (ROC)
	Area Under the ROC curve (AUROC)
	Weighted Metrics

	Putting the traces together: the methods
	Splicebuster
	Method
	Target forgeries

	Noisesniffer
	Method
	Target forgeries

	DQ
	Method
	Target forgeries

	ZERO
	Method
	Target forgeries

	CAT-Net
	Method
	Target forgeries and dataset biases

	EXIF as Language
	Method
	Target forgeries and dataset bias

	TruFor
	Noiseprint++
	Method
	Target forgeries and dataset biases

	PSCC-Net
	Method
	Target forgeries and dataset biases

	Adaptive CFA forensics
	Method
	Target forgeries and dataset biases

	FOCAL
	Method
	Target forgeries and dataset bias

	The PhotoHolmes library
	What is PhotoHolmes?
	Design principles
	Design choices
	Structure
	Datasets
	Preprocessing
	Methods
	Postprocessing
	Metrics
	Benchmark
	Command Line Interface (CLI)

	Evaluation
	Recapitulation and evaluation notes
	Benchmarked methods
	Metrics
	Datasets

	Non-semantic evaluation
	Localization
	Detection

	Popular datasets evaluation
	Localization
	Detection

	Summary

	Conclusions and future work
	Photoholmes library code
	Dataset
	Base
	Implementation example

	Preprocessing
	Base
	Pipeline

	Method
	Base

	Benchmark

	References
	Table Index
	Figure Index

