
Real time anomaly detection in network traffic
time series

Sergio Mart́ınez Tagliafico1, Gastón Garćıa González1, Alicia Fernández1,
Gabriel Gómez Sena1, and José Acuña1,2

1 Instituto de Ingenieŕıa Eléctrica, Facultad de Ingenieŕıa,
Universidad de la República, Uruguay

{sematag,gastong,alicia,ggomez,acuna}@fing.edu.uy
2 Telefónica Móviles, Uruguay
jose.acuna@telefonica.com

Abstract. Anomaly detection is a relevant field of study for many ap-
plications and contexts. In this paper we focus in on-line anomaly detec-
tion on unidimensional time series provided by different network opera-
tor equipments. We have implemented two detection methods, we have
optimized them for on-line processing and we have adapted them for in-
tegration into a testbed of a well known Hadoop big data platform. We
have analyzed the behavior of both methods for the particular datasets
available but we also have applied the methods to a publicly available
labeled datasets obtaining good results.

Keywords: Anomaly Detection · Kalman Filter · Hadoop.

1 Introduction

Detecting anomalies in the behavior of multiple variables gathered from the net-
work infrastructure is an essential task to be able to detect failures and also
to react as soon as possible to solve the issues. Although common monitoring
systems can be able to report failures in hardware equipment or software ser-
vices, they do not normally provide alarms when the quality of one service is
being degraded. Moreover, an efficient anomaly analysis can be useful to detect
performance issues, attacks to network security and fraud attempts.

Although anomalies analysis in telecommunications traffic is a mature area
[2][12][5][3][9] with approaches based on statistical methods [11][8], the emer-
gence of big data platforms which enable the processing of massive and diverse
data, poses new opportunities and challenges. Particularly the development of
analytics for platforms that solve the detection of anomalies of large volumes of
data simultaneously is a important issue [1][4][13] and determines the need of
adapting the algorithms implementations for parallel processing.

All the variables considered in this work have some kind of periodic behavior
so our methods will provide a prediction based on the statistical of the past
samples of the variable. Also a decision process is needed to signal which samples
should be considered as anomalies. As stated, the ability to detect anomalies in

2 S. Mart́ınez et al.

real time is a value added feature because it enables a fast reaction to reduce
the service unavailability or degradation time for the customer.

The main contribution of this work is the development of an anomaly detec-
tion strategy based on stochastic modeling and the implementation on a Hadoop3

big data platform testbed. We have also implemented a classification strategy
based on Parzen Windows and we have compared both methods. For the vali-
dation process we used real data provided by a network operator and we also
tested our method with publicly available labeled datasets.

In this document, we define in Section 2 the relevant types of anomalies for
the specific application field and the proposed methods. In section 3 we depict
some implementation details. In Section 4 we show some selected validation
scenarios and finally in Section 5 we conclude and identify some possible future
works.

2 Strategy for anomaly detection

2.1 Type of anomalies

We can define an “anomaly” as a set of values of a variable that are far from its
normal or expected values. Therefore, we need to define a region of the feature
space of the data that represents its normal behavior. Any data out of the normal
region, will be consider as an anomaly.

The definition of the normal feature space can be a complex task. In some
cases the normal behavior feature space may vary along the time and also it is
sometimes difficult to have labeled traffic to aid the normal region definition.

Based on [5], anomalies can be classified as:

– Point Anomalies: A single value can be considered as anomalous with respect
to the rest of the data.

– Contextual Anomalies: A single value is anomalous in the context of its
neighbors values but in other cases can be considered normal.

– Collective Anomalies: A collection of related data values is anomalous with
respect to the entire data set.

The data used for this work is non labeled unidimensional time series obtained
from telecommunication infrastructure, for instance, the interface traffic from a
router. The relevant anomaly types for this scenario are “Point Anomalies” and
“Collective Anomalies”. When we find an abnormal change of the series value
respect to the expected value for that time instant, we will be in presence of a
point anomaly. Besides, we can find that some values have a slight but prolonged
withdrawal in time so as to be considered a collective anomaly.

For this particular context it is also relevant the ability to perform anomaly
detection in real time. The scenario is that a monitoring system will produce
a stream of sample values for the chosen variable. The cadence of the variable
samples will depend on the monitoring system configuration, typically in the

3 http://hadoop.apache.org/

Real time anomaly detection in network traffic time series 3

order of minutes. The detection process will receive a streaming of values and
it should produce an indication if an anomaly is detected. It is obvious that the
detection process cannot take longer than the sample interval.

2.2 Point and Collective anomalies: ARIMA+Kalman models

There are a lot of techniques mainly used for anomaly detection in this scenarios
[5] and our first approach is to adjust a stochastic model for the time series and
define an anomaly based on whether an observation is suspicious of not being
generated by this model.

Let be yk a time series and Yk = (y1, . . . , yk) the vector of observations
which represents its evolution up to time k, the detection process used is based
on obtaining the distribution of the series in time k + 1 given its evolution Yk.
We will write this distribution as:

p(yk+1|Yk) = p(yk+1|yk, . . . , y1)

In this approach we use ARIMA (Autoregressive Integrated Moving Average)
models represented as a state space model [7].

yk = Zxk + εk, {εk} iid ∼ N(0, σ2
ε) (1)

xk+1 = Txk +Rηk, {ηk} iid ∼ N(0,Q) (2)

where Z, T and R are fixed matrices. Matrices are represented by bold letters
in our notation.

As every distributions in this model are Gaussian, the distributions p(yk+1|Yk),
p(xk|Yk) y p(xk+1|Yk) are also Gaussian. Lets call x̂k|k = E [xk|Yk], x̂k+1|k =
E [xk+1|Yk], P k|k = Var [xk|Yk] y P k+1|k = Var [xk+1|Yk], then

p(xk|Yk) = N(x̂k|k,P k|k) (3)

p(xk+1|Yk) = N(x̂k+1|k,P k+1|k) (4)

p(yk+1|Yk) = N(Zx̂k+1|k,ZP k+1|kZ
′ + σ2

ε) (5)

where x̂k|k, x̂k+1|k, Zx̂k+1|k are minimum variance linear unbiased estimators
(MVLUE) of xk, xk+1 and yk+1 respectively given Yk.

The on-line estimation of this distribution can be done by the well known
Kalman Filter equations.

ek = yk −Zx̂k|k−1, Fk = ZP k|k−1Z
′ + σ2

ε

x̂k|k = x̂k + P k|k−1Z
′F−1k ek, P k|k = P k|k−1 − P k|k−1Z

′F−1k ZP k|k−1

xk+1|k = T x̂k|k−1 +Kkek, P k+1|k = TP k|k−1(T −KkZ)′ +RQkR
′

Using this result, we can manage to efficiently update the distributions and
the state as soon as each sample arrives to the system. As can be seen, only
matrix sum and product are involved. This result will be very important for
on-line anomaly detection.

4 S. Mart́ınez et al.

Anomalies definitions The first stage in our anomaly detection process is to
identify an abrupt change of the data values from the expected value for a given
time instant. This condition can be defined as:

Definition (Type A anomalies - Point Anomalies): Let be yk a Gaussian
process modeling a time series, Yn = (y1, . . . , yn) the set of realizations repre-
senting the evolving up to the time instant n and p(yn+1|Yn) = N(mn+1, Pn+1)
the conditional distribution of yn+1 given its evolution up to time instant k = n.
A point type anomaly occurs at k = n+ 1 if

‖yn+1 −mn+1‖ > r ∗
√
Pn+1

that means at k = n + 1 the value is more than r standard deviations far from
its expected value.

The second stage is intended to detect an slight but sustained in time shift
from the expected series value.

Definition (Type B anomalies - Collective Anomalies): Let be yk a Gaussian
process modeling a time series, {yn−(l−1), . . . , yn} the last l observations of the
series and p(yk+1|Yk) = N(mk+1, Pk+1) the conditional distribution of yk+1

given its evolution up to the time instant k. A collective anomaly occurs at
k = n if

yk −mk <
√
Pk ∀ k = n− (l − 1) : n

or
yk −mk >

√
Pk ∀ k = n− (l − 1) : n

2.3 Point anomalies: Parzen windows

The analyzed data has an intrinsic weekly periodicity, so we have chosen the
Parzen windows method4, to measure how near is a sample from its nearest
neighbors.

For that purpose, we began constructing a circular buffer with the accu-
mulated samples of the last week indexed by its collected time-stamp. When a
new test sample arrives, a cluster of an hour history of samples centered in its
time-stamp is created.

For each value in the cluster, we considered a gauss function with mean value
the sample and a presetted variance value. The new test sample is then evaluated
with each of the cluster functions and the accumulated value is compared with
a presetted threshold value. If the sum is above the threshold, it means that in
the environment of the current sample there are several samples of the cluster.
Otherwise it means that the current sample is far from the values of the cluster
and it is labeled as an out-lier. The outliers are discarded for updating the
circular history buffer.

4 Inspired on the density estimation by Parzen windows.[6]

Real time anomaly detection in network traffic time series 5

Method The circular buffer can be represented as W = (xnt , ..., x
n
t+m), where

the index t indicates the temporal position in the buffer, and the index n indicates
the week where the sample belongs. At the beginning all the samples of the buffer
are from the same week.

When the samples begin to arrive in real time, the current sample xn
k is taken

and a cluster wk is generated from the samples of the circular buffer taken half
hour back and half hour forward referring to the time of the current sample.

wk = (xnk−h/2, ...x
n
k−1, x

n−1
k , xn−1k+1 , ..., x

n−1
k+h/2)

Then, for each cluster sample, a window function is used, where the value of
the current sample is evaluated. In this case we will use a gauss function where
the mean will be the value of the sample and the variance σ will be a presetted
parameter.

pk = (N(xnk−h/2, σ), ...N(xnk−1, σ), N(xn−1k , σ), N(xn−1k+1 , σ), ..., N(xn−1k+h/2, σ))

All the values obtained from the evaluated functions are added and the result
is compared with a threshold value U . If the sum is above the threshold it means
that in the environment of the current sample there are several samples of the
cluster nearby. Otherwise it means that the current sample is very far from the
values of the cluster, then it is labeled as out-lier. The outliers are discarded
when updating the circular buffer.

k+h/2∑
i=k−h/2

pki(x
n
k) < U. (6)

3 Implementation highlights

The implementation was done in Python and has been integrated into a Hor-
tonworks HDP5 platform testbed. The on-line data ingestion was done through
Apache NiFi and Apache Kafka and then the data processing was done running
the python code with pySpark. The implemented software was thought with
a modular architectural design in mind so as to enable an easy change of the
detection algorithms.

For the modeling phase, we use the module statsmodels.tsa.statespace6

and particularly the class statsmodels.tsa.statespace.sarimax.SARIMAX, which
allow modeling by ARIMA space state models.

The anomaly detection algorithm is implemented in the module anomaliasKF7.
The two main components of the anomaly detection process for real time detec-
tion are implemented in the class AnomalyDetector.py helped with the pykalman8

module for the Kalman Filter equations.

5 https://hortonworks.com/products/data-platforms/hdp/
6 (http://www.statsmodels.org/dev/statespace.html)
7 https://iie.fing.edu.uy/ sematag/anomalias/
8 https://pykalman.github.io/

6 S. Mart́ınez et al.

4 Experiments and results

4.1 Dataset characterization

The available time series for evaluating the proposed methods come from our
partner, a mobile operator in Uruguay. Table 1 show the main characteristics
of the series and figure 1 illustrate the general behavior of each one. For each
series, we use the data of the first days to adjust the stochastic model and the
rest of the data was used to test the method.

Series Name Sample frequency Duration Train set

1 Mobile Data Downlink Bytes 1 sample each 5 minutes 28 days First 7 days

2 Voice Calls Originated 1 sample each 1 hour 28 days First 7 days

3 Accounting Mobile Data 1 sample each 5 minutes 18 days First 4 days

4 SMS Originated 1 sample each 5 minutes 28 days First 7 days

Table 1: Time series used for validation

(a) Mobile data download
(b) Voice calls

(c) Accounting
(d) Originated SMSs

Fig. 1: Global view of the time series analyzed

Among the referred real datasets and to improve the evaluation of the pro-
posed strategy in other types of time series, we have tested our approach in
two time series from the Numenta Anomaly Benchmark (NAB)[10]: the hourly
demand for New York City taxis and the real time traffic data (occupancy) from
the Twin Cities Metro area in Minnesota.

Real time anomaly detection in network traffic time series 7

4.2 ARIMA+Kalman results

The proposed approach was applied to detect anomalies for the four time series
referred in Table 1. Figure 2 shows some anomalies (in red) detected on the
series. In all cases anomalies were detected in zones where the series have an
obvious abnormal behavior. Moreover, no relevant false alarms were generated,
only some cases were generated immediately after a true anomaly was detected
as shown in figure 2b.

(a) Voice

(b) Mobile data download

Fig. 2: Anomaly detection results for Mobile data download and Voice data

We have obtained similar results for the NAB time series, as can be seen in
figure 3. In all cases, low false alarms were generated and labeled anomalies were
completely detected. Also good performance is achieved for others NAB time
series.

8 S. Mart́ınez et al.

(a) NYX taxi demand

(b) Minnesota Metro occupancy

Fig. 3: Anomaly detection results for NYC taxi demand and Minnesota Metro
occupancy

4.3 Parzen Windows results

The implementation of the Parzen Windows method was also done in Python
and in this section we are presenting the results for the mobile data download
series. As explained in section 2.3 the method has two parameters, the window
width σ and the decision threshold U . In this type of series during the night
and part of the morning the difference in values between consecutive samples is
larger than during the rest of the day, due to the rapid fall of the activity at
the end of the day and the rapid reactivation of the activity by the morning.
Then it is convenient to use different parameters for these two scenarios. When
the difference in values between consecutive samples is large, it is better to use
a larger window width (σ). For this test we have used this parameters:

– σnight = 0.05, U = 0.001. For the night and the early morning.

Real time anomaly detection in network traffic time series 9

– σday = 0.01, U = 0.001. For the rest of the day.

(a) Parzen method applied to mobile data download. Parameters: σnight =
0.05, σday = 0.01 and U = 0.001.

(b) Parzen method applied to mobile data download with a wider window.
Parameters: σnight = 0.07, σday = 0.03 and U = 0.001.

Fig. 4: Anomaly detection results for mobile data download

As shown in Figure 4a the outliers (in red), correspond to the detected point
type anomalies. The parameters were adjusted until an acceptable result was
obtained. In Figure 4b the effect of a wider window is shown (σnight = 0.07, and
σday = 0.03).

As can be seen, the amount of red samples decreased because the model is
more tolerant when the window width increases.

Another way to visualize the data is the one shown in Figure 5b. This repre-
sentation is quite helpful to find anomalies at a glance and to depict the weekly
evolution of the series.

Figure 5a shows a series corresponding to one month of data collected and
classified. In figure 5b you can see the same series represented as the flower. An

10 S. Mart́ınez et al.

(a) Series corresponding to one month of data.

(b) The same series represented in a flower of a week.

Fig. 5: Flower representation

entire turn of the flower represents a week’s time, in figure 5b are the four weeks
corresponding to the month of figure 5a. In figure 6 shows an example for three
day of the week.

5 Conclusions and future work

We have implemented an algorithm for real time anomaly detection using ARIMA
models and Kalman filtering, obtaining good performance results for our oper-
ator partner time series. Both point an contextual anomalies can be detected.
The approach was also tested with publicly available labeled time series showing
good results. The use of Kalman filtering enable us the use of the algorithm for
real time anomalies detection.

We have also implemented a Parzen Windows oriented method for point
anomalies which is simple and requires very few calculation resources. We have
also obtained interesting detection results.

Both methods were implemented and integrated as a module into a hadoop
platform sandbox, enabling the later integration to the operator production sys-
tems.

Real time anomaly detection in network traffic time series 11

(a) First Mon, Tue and Wed of the
month

(b) Second Mon, Tue and Wed

(c) Third Mon, Tue and Wed (d) Fourth Mon, Tue and Wed

(e) Flower representation of the four weeks data

Fig. 6: An example of how the data is represented with the flower

Based on the experience and results of this work, we have found some relevant
point to work on.

First of all, the anomaly definition is a relevant issue that condition the
detection process. For now, we have worked with a Gaussian model of the series
but an hypothesis test over the data distribution characteristics can be faced.

Regarding the ARIMA+Kalman Filter implementation we used ARIMA
state space models but other state space model families can be explored, for
instance structural models or dynamic factor models9. Moreover, we want to
work on some kind of automatic learning for the model in the training phase.
We have also shown that after an anomaly has been detected the subsequent
prediction is not good, so we want to improve the detection for this anomaly
stage, perhaps introducing robust Kalman filtering.

Regarding Parzen Windows method, we need to improve the parameters
adjusting for the different stages of the series values. We want to introduce some
kind of automatic adjusting depending on some statistical properties instead of
setting them manually.

9 http://www.statsmodels.org/dev/statespace.html)

12 S. Mart́ınez et al.

Acknowledgements

This work was partially supported by Telefónica Móviles (Uruguay) and the
Groups Program of the Comisión Sectorial de Investigación Cient́ıfica, Univer-
sidad de la República (Uruguay). The authors are thankful to both institutions.

The authors would like to thank Pedro Casas for its good advice at the
beginning of the project.

References

1. Bär, A., Finamore, A., Casas, P., Golab, L., Mellia, M.: Large-scale network traffic
monitoring with dbstream, a system for rolling big data analysis. In: Big Data (Big
Data), 2014 IEEE International Conference on. pp. 165–170. IEEE (2014)

2. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network Anomaly Detec-
tion: Methods, Systems and Tools. IEEE Communications Surveys & Tutorials
16(1), 303–336 (FebJan 2014). https://doi.org/10.1109/surv.2013.052213.00046,
http://dx.doi.org/10.1109/surv.2013.052213.00046

3. Brutlag, J.D.: Aberrant behavior detection in time series for network monitoring.
In: LISA. vol. 14, pp. 139–146 (2000)

4. Casas, P., Soro, F., Vanerio, J., Settanni, G., D’Alconzo, A.: Network security and
anomaly detection with big-dama, a big data analytics framework (2017)

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (Jul 2009). https://doi.org/10.1145/1541880.1541882,
http://doi.acm.org/10.1145/1541880.1541882

6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience,
second edition edn. (2000)

7. Durbin, J., Koopman, S.J.: Time series analysis by state space methods, vol. 38.
Oxford University Press (2012)

8. Knorn, F., Leith, D.J.: Adaptive kalman filtering for anomaly detection in software
appliances. In: INFOCOM Workshops 2008, IEEE. pp. 1–6. IEEE (2008)

9. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In:
ACM SIGCOMM Computer Communication Review. vol. 34, pp. 219–230. ACM
(2004)

10. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms–the nu-
menta anomaly benchmark. In: Machine Learning and Applications (ICMLA), 2015
IEEE 14th International Conference on. pp. 38–44. IEEE (2015)

11. Mazel, J., Casas, P., Labit, Y., Owezarski, P.: Sub-space clustering, inter-clustering
results association & anomaly correlation for unsupervised network anomaly de-
tection. In: Proceedings of the 7th International Conference on Network and Ser-
vices Management. pp. 73–80. International Federation for Information Processing
(2011)

12. Soule, A., Salamatian, K., Taft, N.: Combining filtering and statistical methods
for anomaly detection. In: Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement. pp. 31–31. IMC ’05, USENIX Association, Berkeley, CA,
USA (2005), http://dl.acm.org/citation.cfm?id=1251086.1251117

13. Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and
anomaly detection. In: Proceedings of the Workshop on Big Data Analytics and
Machine Learning for Data Communication Networks. pp. 1–6. ACM (2017)

