
UNIVERSIDAD DE LA REPÚBLICA DEL URUGUAY

MASTER THESIS

Detection and classification of privacy leaks enabled by
third-party trackers in COVID-19 mobile applications

Author:
Ing. Nicolás SERRANO

Supervisors:
Dr. Gustavo BETARTE

Dr. Juan Diego CAMPO

A thesis submitted in fulfillment of the requirements
for the degree of Magister en Informática

April 29, 2024

https://www.udelar.edu.uy

iii

Declaration of Authorship
I, Ing. Nicolás SERRANO, declare that this thesis titled, “Detection and classification
of privacy leaks enabled by third-party trackers in COVID-19 mobile applications” and
the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

UNIVERSIDAD DE LA REPÚBLICA DEL URUGUAY

Abstract
PEDECIBA

Área Informática

Magister en Informática

Detection and classification of privacy leaks enabled by third-party trackers in
COVID-19 mobile applications

by Ing. Nicolás SERRANO

HTTPS://WWW.UDELAR.EDU.UY
https://www.pedeciba.edu.uy/
https://www.fing.edu.uy/inco/inicio

vi

Abstract

Since 2019, the world has been experiencing a pandemic without precedents in our

current technological era. Governments and other high-profile organizations devoted

special efforts to developing and sponsoring mobile applications that, while varying in

their goals, tried to help contain the spread of COVID-19 and enable people to have

the best quality of life possible. However, while third-party libraries and their impact

on the user’s privacy have been studied before, especially those considered trackers,

these have found their way into COVID-19 applications backed by high-profile orga-

nizations. By trackers we considered third-party libraries included in applications to

provide certain functionalities that, in addition, gather information regarding the ap-

plication, the device and their use, and send it to their servers. The research for this

thesis found that 402 out of 595 studied applications contained at least one tracker.

In addition, it was confirmed that sensitive information was transferred to the tracker

servers, potentially disclosing the health status of the application users. On the other

hand, evidence indicates that governments can improve their data protection impact

assessments and the disclosure they make in their privacy policies; the latter also ap-

plies to trackers. Finally, SAPITO, an easy-to-use open-source tool, is presented. Based

on the knowledge and lessons learned during this research, it was created with the ob-

jective of helping privacy teams and researchers to detect automatically data leakages

when analyzing third-party libraries in Android applications.

Keywords: Privacy, Trackers, SDK, Android, Mobile Applications, COVID-19.

UNIVERSIDAD DE LA REPÚBLICA DEL URUGUAY

Resumen
PEDECIBA

Área Informática

Magister en Informática

Detección y clasificación de violaciones en la privacidad de datos en aplicaciones
móviles para la COVID-19 debido a la inclusión de librerías de terceros en estas

por Ing. Nicolás SERRANO

HTTPS://WWW.UDELAR.EDU.UY
https://www.pedeciba.edu.uy/
https://www.fing.edu.uy/inco/inicio

viii

Resumen

Desde el 2019, el mundo ha venido sufriendo una pandemia sin precedentes en la

presente era tecnológica. Gobiernos y otras organizaciones de alto perfil han desti-

nado recursos especialmente para el desarrollo y promoción de aplicaciones móviles

que, aunque variando en su objetivo, estuvieron enfocadas a contener el avance de la

COVID-19, permitiendo a los ciudadanos poder tener la mejor calidad de vida posi-

ble durante la pandemia. Sin embargo, a pesar de que la utilización de librerías de

terceros y el impacto que esto tiene en la privacidad de los usuarios ha sido estudiado

previamente, en especial cuando estas librerías son en efecto “trackers”, estas fueron in-

cluídas en las aplicaciones móviles usadas para combatir la COVID-19. Con “tracker”

hacemos referencia a librerías de terceros que proveen ciertas funcionalidades al ser in-

cluídas en aplicaciones móviles y que, además, recolectan información en tiempo real

sobre la aplicación, el dispositivo y las interacciones del usuario, enviando luego esta

información recogida a sus servidores. En la investigación comprendida en esta tesis,

encontramos que 402 de las 595 aplicaciones móviles estudiadas contenían al menos un

“tracker”. Adicionalmente, identificamos que información sensible fue transferida a

los servidores de los “trackers”, potencialmente revelando información sobre el estado

de salud de los usuarios de estas aplicaciones. Por otro lado, sobre lo investigado para

estas aplicaciones móviles, la evidencia indica que los gobiernos podrían mejorar sus

evaluaciones de impacto en protección de datos y lo que es detallado en sus políticas de

privacidad; esto último también aplicando a los proveedores de “trackers”. Por último,

presentamos SAPITO, una herramienta para el análisis de privacidad open-source con

foco en su facilidad de uso. En base al conocimiento adquirido y las lecciones apren-

didas durante nuestra investigación, SAPITO fue creado con el objetivo de apoyar a

los equipos e investigadores de privacidad a detectar de manera automática problemas

de privacidad al analizar el uso de librerías de terceros en aplicaciones móviles para

Android.

ix

Acknowledgements
First and foremost, I wish to extend my deepest gratitude to my Thesis Supervisors,

Gustavo Betarte (also serving as Academic Director) and Juan Diego Campo. Their un-
wavering support, insightful guidance, steadfast dedication, trust, and patience were
not only vital in the completion of this thesis but also instrumental in navigating the
extensive research endeavors associated with my pursuit of a Master’s Degree.

Additionally, I would like to express my sincere appreciation to the esteemed panel
consisting of Federico La Rocca (as Reviewer), Álvaro Martín (in the capacity of Presi-
dent), and Lorena Etcheverry for graciously evaluating this work.

Lastly, I am profoundly thankful to my wife for her continual encouragement and
support, and to my family for instilling in me the motivation from an early age to em-
bark upon such stimulating academic pursuits.

xi

Contents

Declaration of Authorship iii

Abstract v

Keywords vi

Resumen vii

Acknowledgements ix

1 Introduction 1

2 Related Work 7

3 Methodology and Tools 9
3.1 On the Hunt for Trackers . 9

3.1.1 Coronavirus Apps From Around the World 11
3.1.2 Preparing the Data Set Using ClusterUY 11
3.1.3 Trackers in Sight. Using Exodus as Detection Tool 11
3.1.4 Trackers Autopsy: Dissecting Apps to Detect Data Harvesting . . 12
3.1.5 Limitations Faced . 12

3.2 Research Ethics . 13

4 Findings 15
4.1 What do the Numbers Say: Applications and Trackers Statistics 15
4.2 Trackers in Action: Observed Methodology of Trackers 18

4.2.1 Real-Time vs Store & Retrieve: . 18
4.2.2 Event-Based vs General: . 20
4.2.3 Centralized vs Iterative vs Decentralized: 20
4.2.4 Centralized Connections vs Decentralized Connections: 20

4.3 Detailed Information of Analyzed Trackers 20
4.3.1 Airship (Centralized Connection) 21

Introduction . 21
Tracked Information . 21
Data Flow Diagram . 23

4.3.2 Amplitude (Store and Retrieve Collection) 23
Introduction . 23

xii

Tracked Information . 23
Data Flow Diagram . 25

4.3.3 Branch (Real-Time Collection) . 25
Introduction . 25
Tracked Information . 25
Data Flow Diagram . 27

4.3.4 Bugsnag (Decentralized Connection) 27
Introduction . 27
Tracked Information . 27
Data Flow Diagram . 29

4.3.5 Flurry (Decentralized Collection) 29
Introduction . 29
Tracked Information . 29
Data Flow Diagram . 31

4.3.6 Google AdMob (Iterative Collection) 31
Introduction . 31
Tracked Information . 31
Data Flow Diagram . 33

4.3.7 Mapbox (Event-Based Collection) 33
Introduction . 33
Tracked Information . 33
Data Flow Diagram . 35

4.3.8 Matomo (General Collection) . 35
Introduction . 35
Tracked Information . 35
Data Flow Diagram . 37

4.3.9 OneSignal (Centralized Collection) 37
Introduction . 37
Tracked Information . 37
Data Flow Diagram . 39

4.4 Tracking the Trackers Tracks: On Data Collection 39
4.5 Leaking Data in Every Message: On Push Notifications 43

5 SAPITO: a tool for information leaking analysis of Android mobile applica-
tions 45
5.1 Analysing Apps One Hop at a Time: Presenting SAPITO 45

5.1.1 Motivation for Developing the Tool 45
5.1.2 Technology Behind SAPITO . 45
5.1.3 What is SAPITO Capable of? . 46

5.2 SAPITO Features in Detail . 49
5.2.1 APK Loading . 49
5.2.2 Main Report . 50

xiii

5.2.3 Packages Clustering . 51
5.2.4 App Info . 52
5.2.5 Google Play Info . 53
5.2.6 Exodus Info . 54
5.2.7 Library Cross-References . 55
5.2.8 Library Permissions Checks . 56
5.2.9 Library Rooted Checks . 57
5.2.10 Library Reflection Use . 58
5.2.11 Library Connections . 59
5.2.12 Library Push Notifications Use . 60
5.2.13 Ruleset Loading . 61

6 Discussion 65
6.1 On the Known Practices of Device Identification: Impact of Data Collection 65
6.2 A Design Issue: Impact of Using Push Notification Services 66
6.3 Data Privacy Posture from Governments 66
6.4 What the Trackers Declare . 67
6.5 Observations Regarding Possible Roots of the Problem 68

7 Conclusion and Further Work 71

Bibliography 75

A List of COVID-19 Android applications analyzed 83

B Detailed Information of Other Analyzed Trackers 89
B.1 AdColony . 89

B.1.1 Introduction . 89
B.1.2 Tracked Information . 89
B.1.3 Data Flow Diagram . 91

B.2 AltBeacon . 91
B.2.1 Introduction . 91
B.2.2 Tracked Information . 91
B.2.3 Data Flow Diagram . 92

B.3 AppNext . 92
B.3.1 Introduction . 92
B.3.2 Tracked Information . 92
B.3.3 Data Flow Diagram . 94

B.4 Braze . 94
B.4.1 Introduction . 94
B.4.2 Tracked Information . 94
B.4.3 Data Flow Diagram . 96

B.5 Google Firebase Analytics . 96
B.5.1 Introduction . 96

xiv

B.5.2 Tracked Information . 97
B.5.3 Data Flow Diagram . 98

B.6 Google Tag Manager . 98
B.6.1 Introduction . 98
B.6.2 Tracked Information . 98
B.6.3 Data Flow Diagram . 98

B.7 New Relic . 99
B.7.1 Introduction . 99
B.7.2 Tracked Information . 99
B.7.3 Data Flow Diagram . 100

B.8 Open Telemetry . 100
B.8.1 Introduction . 100
B.8.2 Tracked Information . 100
B.8.3 Data Flow Diagram . 100

B.9 Pushwoosh . 101
B.9.1 Introduction . 101
B.9.2 Tracked Information . 101
B.9.3 Data Flow Diagram . 102

B.10 Segment . 102
B.10.1 Introduction . 102
B.10.2 Tracked Information . 102
B.10.3 Data Flow Diagram . 104

B.11 Splunk MINT . 104
B.11.1 Introduction . 104
B.11.2 Tracked Information . 104
B.11.3 Data Flow Diagram . 106

B.12 Startapp . 106
B.12.1 Introduction . 106
B.12.2 Tracked Information . 106
B.12.3 Data Flow Diagram . 109

C Examples of Trackers Code 111

xv

List of Figures

1.1 COVID-19 statistics for Uruguay. Source Google Statistics, with data
from: JHU CSSE COVID-19 Data. 1

1.2 Data tracking scenario . 4

3.1 Tracker analysis methodology. 10

4.1 Proportion of concurrent usage of trackers. 18
4.2 Data flow in Airship . 23
4.3 Data flow in Amplitude . 25
4.4 Data flow in Branch . 27
4.5 Data flow in Bugsnag . 29
4.6 Data flow in Flurry . 31
4.7 Data flow in Google AdMob . 33
4.8 Data flow in Mapbox . 35
4.9 Data flow in Matomo . 37
4.10 Data flow in OneSignal . 39
4.11 Tracker data collection example. 40
4.12 Tracker push notification example . 44

5.1 SAPITO’s architecture . 46
5.2 Landing page in SAPITO, where the user must select a binary to analyze. 49
5.3 Report page in SAPITO, where potential trackers are highlighted. 50
5.4 Cluster page in SAPITO, where trackers are grouped to detect similarities

between them. 51
5.5 App info page in SAPITO, where general information of the app is pre-

sented. 52
5.6 Store info page in SAPITO, where information extracted from Google

Play is detailed. 53
5.7 Exodus info page in SAPITO, where privacy reports related to the tracker

from Exodus are shown. 54
5.8 xRefs page in SAPITO, where cross-references found in the trackers code

are enumerated. 55
5.9 Permissions page in SAPITO, where permissions checks found in the

trackers code are enumerated. 56
5.10 Rooted page in SAPITO, where rooted and similar checks found in the

trackers code are enumerated. 57

5.11 Reflection page in SAPITO, where reflection calls found in the trackers
code are enumerated. 58

5.12 Connections page in SAPITO, where connections calls found in the track-
ers code are enumerated. 59

5.13 Notifications page in SAPITO, where push notification usage found in
the trackers code are enumerated. 60

B.1 Data flow in AdColony . 91
B.2 Data flow in AppNext . 94
B.3 Data flow in Braze . 96
B.4 Data flow in Google Firebase Analytics 98
B.5 Data flow in New Relic . 100
B.6 Data flow in Pushwoosh . 102
B.7 Data flow in Segment . 104
B.8 Data flow in Splunk MINT . 106
B.9 Data flow in Startapp . 109

xvii

List of Tables

1.1 Example of analyzed apps and their purposes. 3

4.1 Number of trackers found in the studied applications, and their respec-
tive percentage. 15

4.2 Top 15 applications with most trackers included. 16
4.3 Increase and decrease of trackers per application, based on Exodus his-

torical reports. 16
4.4 Number of applications (out of 595) in which the identified trackers were

found, together with their percentage of occurrence. 17
4.5 Types of services offered to the developers by the trackers analyzed.

Their main service was chosen for trackers that fit more than one cate-
gory. 19

4.6 For each service category, count of times trackers belonging to these cat-
egories were included. 19

4.7 Tracked information by Airship. 22
4.8 Tracked information by Amplitude. 24
4.9 Tracked information by Branch. 26
4.10 Tracked information by Bugsnag. 28
4.11 Tracked information by Flurry. 30
4.12 Tracked information by Google Ad Mob. 32
4.13 Tracked information by Mapbox. 34
4.14 Tracked information by Matomo. 36
4.15 Tracked information by One Signal. 38
4.16 Applications that were analyzed to detect tracking behavior. 41
4.17 Type of information harvested by the trackers and sent to their servers. . 43

6.1 Trackers declaration of data collected with their Android SDK. 69

A.1 List of studied COVID-19 Android applications (Part 1/5). 83
A.2 List of studied COVID-19 Android applications (Part 2/5). 84
A.3 List of studied COVID-19 Android applications (Part 3/5). 85
A.4 List of studied COVID-19 Android applications (Part 4/5). 86
A.5 List of studied COVID-19 Android applications (Part 5/5). 87

B.1 Tracked information by AdColony. 90
B.2 Tracked information by AppNext. 93

xviii

B.3 Tracked information by Braze. 95
B.4 Tracked information by Google Firebase Analytics. 97
B.5 Tracked information by New Relic. 99
B.6 Tracked information by Pushwoosh. 101
B.7 Tracked information by Segment. 103
B.8 Tracked information by Splunk MINT. 105
B.9 Tracked information by Startapp. (Part 1/2) 107
B.10 Tracked information by Startapp. (Part 2/2) 108

1

Chapter 1

Introduction

At this point, sadly, Coronavirus (COVID-19) does not need a lengthy introduction. It
is an infectious disease caused by the SARS-CoV-2 virus, where infected people experi-
ence mild to moderate respiratory illness [30]. The first case of COVID-19 was reported
at the end of 2019, and it rapidly became a global pandemic. At the time of writing this
thesis, there have been almost 700 millions infections, and around 6.8 millions deaths
caused by this virus [34]. While the weekly deaths counter is lower than during the
first two years of the disease, it is still a severe global health issue.

Technology permeates every aspect of our life. One field experiencing a continu-
ous expansion in recent years is digital health. It includes mobile health, health in-
formation technology, wearable devices, telehealth and telemedicine, and personalized
medicine. In the context of COVID-19, mobile applications (apps from now on) for
digital health have been seen in almost every country. Some sponsors of the devel-
opment of that technology have been governments, international organizations, health
institutions, and universities. The motivation for this work started at the beginning of
2022, when Uruguay was traversing its most difficult moment regarding the impact of
COVID-19, as shown in Figure 1.1. The overall objective for this thesis was to under-
stand the use of third-party libraries in the context of COVID-19 Android apps, and
measure its impact from the perspective of the users’ privacy. In table 1.1, some ex-
amples of analyzed apps are listed (apps marked with ’*’ symbol have other purposes
besides those stated in the table).

FIGURE 1.1: COVID-19 statistics for Uruguay. Source Google Statistics,
with data from: JHU CSSE COVID-19 Data.

2 Chapter 1. Introduction

The study of this particular class of applications is motivated by the fact that the
intended user usually trusts the institutions sponsoring them. Furthermore, in some
cases, governmental apps were mandatory or convenient to continue with people’s
daily activities (as in the cases where, to assist a public place, vaccination certificates
stored in the application needed to be shown). Data protection and privacy have been
significant concerns related to COVID-19 apps, especially those whose purpose is con-
tact tracing, since it involves the identification of citizens, what places they frequent,
who they meet, and sensitive health information regarding their possible COVID-19
infection. Privacy by design is a must, and special care is required to comply with
regulations like HIPAA, GDPR, and other applicable data protection acts and laws.
Moreover, data protection impact assessments are becoming increasingly used in the
development life-cycle of apps of this magnitude. Privacy policies are another critical
component. Users must be informed, and give their consent to anything the applica-
tion, the collector, and the processor do with their data. On the technical side, some de-
velopers published the application code as open-source, which enormously contributes
to transparency. Transparency and privacy need to go hand in hand.

It is a common practice today, however, for mobile applications to include third-
party libraries through software development kits, or SDKs, given the benefits they
provide to developers (special functions like a map or login with social media creden-
tials, monetization, crash reports, user engagement, among others). Some libraries col-
lect sensitive information from the user, the device, and how the former interacts with
the latter. Information they are capable of tracking includes, among others, location, de-
vice information, application attributes, and app usage times. This information is later used
to create profiles of the app’s users, which are then used, for instance, for targeted ads.

In general, the life-cycle of data tracking follows this pattern: first, the company
behind the SDK develops it and sets up the infrastructure for the back-end. After that,
the company offers its SDK and the app developers start integrating it within their
apps code. Later, these developers publish their apps and, at a given time, the users
start installing them. This is the moment when the data harvesting starts to happen. As
the users use the app, the trackers will start harvesting data from the device, the app,
the app’ usage, and the user. Later on, based on time or specific events, the trackers will
start exfiltrating the harvested data, sending it to their back-end servers. After that, the
harvested data is in the hands of the company that provided the SDK, and it could
make a legitimate or an illegitimate use of it. The general idea of this process is shown
in Figure 1.2.

Another scenario of data leakage involving third-parties SDKs happens when these
libraries are used at some point during the process of sending push-notifications to
the users. For example, using a third-party infrastructure to deliver sensitive clear text
content of push notifications for apps. In that scenario, the privacy of the notification
text would be lost.

Given this scenario, while for tracker libraries any piece of information they can
obtain from users is precious, for the actual processor of COVID-19-related sensitive

Chapter 1. Introduction 3

Country Name Developer Goal

Australia
Coronavirus Aus-
tralia

Australian De-
partment of
Health

Official Information

Brazil Coronavírus - SUS
Ministério da
Saúde

COVID Guidance (*)

Denmark Coronapas
Danish Ministry
of Health

COVID Passport

France TousAntiCovid
Ministère de la
Santé et de la
Prévention

Contact Tracing (*)

Germany
Corona-
Datenspende

Robert Koch-
Institut

Studies

Hong Kong StayHomeSafe
Office of the Gv-
ment. Chief Inf.
Officer

Quarantine Enforce-
ment

India
West Bengal Emer-
gency Fund

Govt. of West
Bengal

Donations

International
COVID-19: re-
sponse

United Nations Information

Italy LAZIOdrCovid Salute Lazio Telemedicine

Jordan Cradar
Nat. Center for
Sec. and Crisis
Mgment.

Gatherings Denounc-
ing

Malaysia MySejahtera
Government of
Malaysia

Self-Diagnostic (*)

New Zealand
Āwhina - for health
workers

Ministry of
Health

Health Workers Sup-
port

Norway
Kontroll av ko-
ronasertifikat

Institute of Public
Health

Certificates Verification

UAE COVID-19 EHS
Emirates Health
Services

Vaccination (*)

Uruguay Coronavirus UY
E-Government
Agency

Statistics (*)

US COVID Coach
US Department
of Veterans
Affairs

General Well-Being

Vietnam
Vietnam Health
Declaration

Ministry of
Health

Travelers Health Decla-
ration

TABLE 1.1: Example of analyzed apps and their purposes.

4 Chapter 1. Introduction

FIGURE 1.2: Data tracking scenario

information it demands great responsibility. Hence, data collected and shared with
third parties must be limited to the minimum required and for the specific purpose
of the application. Many countries were aware of this when developing their contact
tracing apps, as stated in [33]: “13. The use of coding libraries, frameworks, APIs, SDKs,
and other software components must be clarified, including those within the mobile operating
system. Data collection by third parties for other purposes must be avoided.”

In this study, the presence of trackers was analyzed in over 500 Android apps re-
lated to COVID-19, coming from respected entities such as governments and interna-
tional organizations. The information they collected was identified, and the impact
on the application users was reviewed. In particular, this research tried to answer the
following questions:

• RQ1) Are trackers being used in the COVID-19 app ecosystem?

• RQ2) What information is being tracked?

• RQ3) What are the potential impacts on users if trackers are used and harvest that
information?

The main contributions of this work are:
• The work for this thesis involved the analysis of almost 600 Android apps related

to COVID-19, being the first one to include such number of apps in a privacy-
focused research regarding COVID-19. In addition, these apps were carefully
identified and selected for our study, since our goal was to study the approach to
app privacy taken by governments and other highly regarded organizations.

Chapter 1. Introduction 5

• We found that over two-thirds of the studied apps included, at least, one tracker.
Furthermore, the analysis conducted in this research provided evidence that in-
dicates that sensitive information related to the users and their health may have
potentially reached the servers of third-party libraries detected in the apps.

• Privacy-oriented initiatives taken by different governments are presented and
discussed. There are indications that the presence of trackers in sensitive appli-
cations has not been identified yet as a serious threat to the privacy of citizens’
data.

• An open-source tool that helps privacy teams audit third-party libraries included
in Android apps was developed. It aims to detect data leakages through them.
Particular emphasis was put on its usability so that non-technical analysts could
use it.

• Our research was presented in two venues. A brief virtual presentation was pre-
pared for Congreso interdisciplinario COVID 19, pandemia y pospandemia 2022 (Mon-
tevideo, Uruguay) under the title Privacidad en aplicaciones móviles: riesgos en el uso
de librerías de terceros. On the other hand, a research paper was presented at The
12th Latin-American Symposium on Dependable and Secure Computing, (LADC 2023 -
La Paz, Bolivia), with the title Third-Party Trackers in COVID-19 Mobile Applications
Can Enable Privacy Leaks. Our work was awarded the best paper of the confer-
ence. Additionally, an extended version of our work was invited to be presented
in a special issue of JISA (Journal of Internet Services and Applications).

The rest of this thesis is structured as follows: Chapter 2 describes research related
to this study, highlighting studies of COVID-19 apps, and the trackers’ ecosystem. In
Chapter 3, the methodology used is described, including its limitations and ethics.
Next, Chapter 4 details the direct outcomes of this study, including elaborated informa-
tion regarding the studied trackers, their methodology of data harvesting, the sensitive
data that was collected from the users and their devices, and the problems related to the
use of push notifications to send sensitive data to the users using third-party infrastruc-
tures. Following that, Chapter 5 describes SAPITO, the automated tool created with the
objective of facilitating privacy investigations, based on the experience and knowledge
obtained during our analytical research of trackers code. On the other hand, Chapter 6
elaborates on our findings, providing analyzes on the impact of the data collection and
push notification issues found previously. Moreover, the stance of governments and
tracking companies is described, and further arguments are presented in relation to the
causes of these problems, accompanied by general solutions and suggestions based on
what was seen during the study. At the end of this chapter, the research questions are
discussed as well. The last Chapter 7 briefly details the conclusion of this thesis work,
alongside potential future work.

7

Chapter 2

Related Work

Plenty of research related to COVID-19 apps from different perspectives already exists.
For example: apps survey [7], the platform governance [62], their effectiveness [1], their
taxonomy [57], new approaches for contact tracing [55], COVID-19 themed malware
[90], surveillance [94], and overall lessons learned from the apps [96].

Academic research and industry studies on privacy in these apps have been per-
formed since the beginning of the pandemic [52, 92, 63, 10]. However, most of them
did not focus on the impact of SDKs inclusion. This could be dangerous, since a critical
perspective of data privacy, sharing personal information with third parties, remained
potentially unseen. Moreover, too much focus was given to application permissions.
Although this could be dangerous since trackers could piggyback these permissions,
it is not necessarily alarming that an application that uses Bluetooth as its underlying
technology for contact tracing requests Bluetooth-related permissions; or one that per-
forms video calls with a doctor requests Camera permissions. On the other hand, the
few studies that discussed the use of trackers limited their scope to naming the trackers
included [88, 6]. Finally, Dehaye et al. in [36] demonstrated using dynamic analysis
how easily third-party libraries can access device private data of apps, and linked it to
the potential it may have with contact tracing apps used for COVID-19 containment.
We reached the same conclusion in our study using static analysis of the trackers code.
Therefore, with the detailed analysis provided by this study of SDKs and their data
tracking, we provide a complementary approach to other academic research, adding
an essential perspective in relation to privacy in COVID-19 apps.

Outside COVID-19, the intersection of apps, trackers, and privacy has also been
studied. Several privacy leak detection tools at the application level have been pre-
sented. For example, Continella et al. described AGRIGENTO in [29], which outper-
formed previous tools. Another dynamic privacy leakage analysis for third-parties
trackers was studied by He et al. [54]. However, since for this research it was desired to
find exactly which library within the app was leaking private information, and in order
to avoid false positives and negatives, it was preferred to perform manual static anal-
ysis of the selected apps code using specific reverse engineering techniques and tools
for that type of analyzes. Additionally, the lack of open-source and well-documented
tools geared to the identification of data exfiltration in third-party libraries was one
motivation to develop SAPITO, as it is discussed in Chapter 5.

8 Chapter 2. Related Work

The ecosystem of tracking companies was studied by Razaghpanah et al. [78] and
Binns et al. [18]. The organizations behind the most used trackers, described there as
Advertising and Tracking Services (ATS), found in these studies (Alphabet, Facebook and
Microsoft) coincide with the findings in this study scoped to COVID-19 apps. In addi-
tion, other ATS highlighted in these studies were also found in this research (AppsFlyer,
AdColony, Adobe, Appnext, ComScore, Flurry, Lotame, MixPanel, New Relic, Segment
and Startapp). Liu et al. [61] performed a privacy risk analysis focusing on analytic li-
braries for Android (instead of advertisement libraries, where most research has been
made), finding that apps leak private information through these types of libraries as
well. In our study, we analyzed 10 of the 26 tracker libraries to validate their tracking
behavior. These libraries collected and transmited user and mobile information. The
same was found in advertisement libraries for Android by Stevens et al. [84] and sev-
eral other studies, whereas in our study, from the five ad libraries that were flagged
as trackers, we analyzed three, finding tracking behavior in two of them. The lack of
consent from users for data gathering by third-party trackers was studied by Kollnig
et al. [59]. In our work, we detected cases where the declaration of data collection
made by companies behind trackers differed from the actual data being collected (in
all cases they tracked more data than declared), therefore, any potential consent from
the users would still be inappropriate for the actual data harvesting that ends being
done by tracking libraries. Recently, Caputo et al. [26], besides studying the impact of
mobile analytic libraries, proposed MobHide, a data anonymization tool, that, although
it presented some limitations, it could have the potential to block data harvesting ac-
tivities by third parties. A focused study on mobile health apps, including what the
trackers track, was performed by Tangari et al. [87]. Given the results of our work, it
was concluded that, as a subset of mobile health apps, COVID-19 apps shared the same
lack of protection regarding the sharing of private information with third parties, even
though in general, these apps were backed by governments and national agencies. Fi-
nally, the unfavorable position where developers find themselves when deciding on the
convenience of using trackers was studied by Tahaei et al. [68]. Given the pressure of
launching COVID-19 apps amid a pandemic, it can be suspected that developing teams
faced the same issue with the studied apps.

9

Chapter 3

Methodology and Tools

This chapter describes and discusses methodological aspects that guided our research.

3.1 On the Hunt for Trackers

This section describes the approach followed to detect the trackers included in COVID-
19-related apps and the data they harvested from the device, application, and usage.
Figure 3.1 illustrates the methodology approach that was utilized.

The term tracker is used as it has been used in related works: to describe a third-
party library included in apps to provide analytics, advertisements, technical, or other
functionalities without the need for developers to code them when this library gathers
information regarding the application, the device, and their use, and sends it to its
servers.

10 Chapter 3. Methodology and Tools

FIGURE 3.1: Tracker analysis methodology.

3.1. On the Hunt for Trackers 11

3.1.1 Coronavirus Apps From Around the World

The first goal of this research was to identify apps related to COVID-19 that were devel-
oped or sponsored by government bodies, well-respected international organizations,
or recognized universities. Every applicable country, region, or independent jurisdic-
tion was analyzed for neutrality and completeness. This work was done from March
1st to March 15th, 2022.

The study started the identification of apps using related works as reference, such
as [5, 28, 9] and curated online lists like [66, 32], and then complemented these with a
methodical manual online search (with the goal of finding applications for all relevant
countries and regions).

Special attention was placed on the validation of the apps included in our study.
It was manually verified that every app selected was indeed used in the context of the
COVID-19 pandemic (in contrast to other automatic crawling methods using some key-
words, where, for example, the keyword “corona” may yield results totally unrelated
to COVID-19).

A total of 619 Android apps were identified. Based on Google Play download fig-
ures, 80 were downloaded between 1 million and 5 million times, 14 between 5 million
and 10 million times, 21 between 10 million and 50 million, one downloaded in the
range 50-100 million, and another one over 100 million times.

3.1.2 Preparing the Data Set Using ClusterUY

The collection, processing, and storage of binaries (APK files) were performed using
the infrastructure of ClusterUY [69].

Our primary source of binaries was Google Play Store. The number of binaries down-
loaded from this source was maximized to ensure the integrity of the files. We used the
gplaydl Python script [51] to automatize the downloading process. However, some apps
were unavailable for download in the Uruguayan region or were no longer in the store.
Therefore, three additional sources were inspected. AndroZoo, a collection of Android
apps maintained by Université du Luxembourg [11], was used.

Another data set used was created by Wang et al. [91] for a previous study of mal-
ware in COVID-19 apps, hosted in the open data repository Zenodo [95]. Finally, some
binaries were not available in any of the previous sources. Hence, we decided to down-
load them manually from APK banks such as Apksos, Apkpure and Apkgk. From the
initial 619 apps identified, a total of 595 binaries were collected between the 15th and
the 30th of March: 356 from Google Play, 152 from AndroZoo, 8 from Zenodo, and 79
manually downloaded. The list of collected binaries can be found in Appendix A.

3.1.3 Trackers in Sight. Using Exodus as Detection Tool

To detect trackers present in the collected binaries, the exodus-standalone tool [45], devel-
oped by the Exodus team, was used. This tool takes an APK file as input and generates
an output, including the trackers found in the binary.

12 Chapter 3. Methodology and Tools

The process performed by the tool to detect trackers in the binary relies on signature
matching. It dumps the Java classes from the APK file and then, for each class found,
compares their package name with a database of previously identified trackers [46].

Setting the tool output as JSON, and with an automation process, the data set of
trackers found in the analyzed apps was created. A total of 58 trackers were detected.

3.1.4 Trackers Autopsy: Dissecting Apps to Detect Data Harvesting

Finally, since we wanted to go beyond any other study concerning precisely what data
was collected by the trackers in the COVID-19 apps ecosystem, reverse engineering of
the trackers code was done. JADX tool was used to help with the reverse engineering
activities and the static analyses [58]. This tool, which decompiles Dalvik bytecode and
generates Java source code from Android APK files, provides a GUI similar to an IDE
(also a console appliance is offered) helping view decompiled code with highlighted
syntax and other common functionalities related to static analysis.

To be more specific, the tool helped to identify the exact classes and methods in
the APK file where the data was harvested and, following the data flow through the
observed tracker package, to detect the internet connection instructions where the col-
lected data was sent to their servers. The apps binaries were not run, thus, no dynamic
analyses were performed.

Out of the 58 trackers found, the behaviors of 22 of them were analyzed using the
binaries of apps where they were included. Since it was a complex and time-consuming
task, and given time and resource restrictions, an analysis of the totality of the trackers
flagged by Exodus was unfeasible.

After studying the selected trackers, patterns were sought, starting from particu-
lar cases and converging to general observed practices. The findings are detailed in
Chapter 4.

3.1.5 Limitations Faced

The research faced some limitations. For example, given the lack of tools that provide
automated support to perform behavioral analysis on Android apps, most of the in-
spections were performed manually. The study of all the trackers flagged by Exodus
was out of the scope of the investigation. Therefore, some trackers may have passed
unnoticed (thus, the motivation to develop the inspection tool described in Chapter 5).

It is important to note that although a tracker is present in the application binary, it
might not be called and executed (though this is rather unlikely). This possibility was
not considered; thus, if a tracker was present in the code, it was assumed it would be
executed and the data collected.

Both of the above limitations (analyzing every flagged tracker and trackers pass-
ing undetected) could also have been present if we had used dynamic analysis of the
application code.

3.2. Research Ethics 13

Finally, if a tracker wanted to obfuscate its code using reflection and then dynami-
cally download the strings used in the class and method calls, this study would proba-
bly be unfeasible. This specific problem was not found in the analyzed trackers, how-
ever.

3.2 Research Ethics

The research has been conducted following rigorous ethic procedures. To understand
the behavior of the trackers and detect what information was being collected, it was
needed to perform reverse engineering steps of the app binaries (APK files). We limited
the scope of these activities to identifying what data from the user, the device, and app
usage were harvested and then sent to the tracker servers. No other action was done
with the binaries.

All platforms used, like Google Play and Exodus websites, were accessed according
to their terms of service.

Every country, region, and jurisdiction possible was covered, and every application
that could be downloaded was analyzed.

15

Chapter 4

Findings

In this chapter, the results of our research are presented. Details of the analyzed trackers
are provided, and there is a discussion about the privacy issues caused by the use of
these libraries when implementing COVID-19-related applications.

4.1 What do the Numbers Say: Applications and Trackers Statis-
tics

Over two-thirds of the studied apps included a tracker. It can be appreciated in Table
4.1. Around half of them only contain one tracker, and around 80% of the apps include
no more than two trackers. On the other hand, 30 apps had over five trackers. In Table
4.2, the 15 apps that presented the most trackers in our data set are shown, ranging
from 11 to 9. The purpose of these apps varies; some have been downloaded hundreds
of thousands or even millions of times (it shows “-” if the application is no longer in
Google Play).

Given the urgency to provide digital health apps to restrain the spread of the virus
at the beginning of the pandemic, it would not be surprising if, initially, applications
extensively used third-party libraries and then removed or reduced their use in subse-
quent releases. Using historical information of application reports from Exodus, the
number of trackers detailed in each one of these reports was queried to determine
whether the tracker number per application decreased over time. The goal was to un-
derstand if, since the containment of the virus was successful, governments, organiza-
tions, and other providers of COVID-19-related apps improved their privacy aspects.

Trackers Count Applications Percentage
None 193 32.44%
One 123 20.67%
Two 160 26.89%
Three 49 8.24%
Four 22 3.70%
Five 18 3.03%
More than five 30 5.04%

TABLE 4.1: Number of trackers found in the studied applications, and
their respective percentage.

16 Chapter 4. Findings

Application Region Goal Trackers Downloads
WebMD: Symptom
Checker International Information 11 10M+

COVID Symptom Study UK Studies 10 1M+
Korona Önlem Turkey Self Diagnostics 10 -
C Spire Health - UMMC
Virtual COVID-19 Triage USA Information 10 10K+

Sydney Care USA Information 9 -
Manitoba Immunization
Verifier Canada Certificate

Verification 9 50K+

Manitoba Immunization
Card Canada Certificate 9 50K+

QMUNITY Malaysia Contact Tracing 9 -
Ministry of Health,
Trinidad and Tobago

Trinidad and
Tobago Telehealth 9 1K+

CoVerified USA Certificate 9 10K+
SMART Health Card Ver-
ifier USA Certificate

Verification 9 100K+

SafeEntry (Business) Singapore Contact Tracing 9 100K+
Covid-19 Cuernavaca Mexico Information 9 -
WHO LENA International Healthworkers 9 1K+
RBC-C19 Rwanda Certificate 9 10K+

TABLE 4.2: Top 15 applications with most trackers included.

Case Status Count

Decrease Trackers at end 19
No trackers at end 6

Increase Trackers at start 15
No trackers at start 6

Equal Trackers 56
No trackers 51

One report - 184
No Report - 258

TABLE 4.3: Increase and decrease of trackers per application, based on
Exodus historical reports.

The results can be seen in Table 4.3: for apps that contained more than one privacy
report (153 in total), so there could be a comparison, 25 of them (≈16%) decreased the
count of trackers included, with 6 of these 25 ending with no trackers detected in their
latest report; 21 (≈14%) increased their count of trackers, with 6 of them starting with
no trackers but including at least one at some point; 56 (≈37%) maintained the same
number of trackers, and 51 apps (≈33%) did not include any tracker in any version.

From the perspective of the trackers, 58 different trackers were present in the 595
apps analyzed. In Table 4.4, the results show that trackers detected by Exodus such as
Google Firebase Analytics and Google CrashLytics are present in a significant number of
the apps of the data set, especially the former (almost two out of three apps contained
it). It can also be appreciated that nearly half of the detected trackers, 28 out of 58,
were included in no more than two apps. Braze was previously known as Appboy,
which appears with this name in the binary packages. Same with ex Urban Airship

4.1. What do the Numbers Say: Applications and Trackers Statistics 17

Trackers Applications Percentage
Google Firebase Analytics 357 60.00%
Google CrashLytics 180 30.25%
Google AdMob 47 7.90%
Facebook Login 40 6.72%
Facebook Share 38 6.39%
Facebook Analytics 34 5.71%
Google Analytics 28 4.71%
OneSignal | HMS Core 24 4.03%
Microsoft Visual Studio App Center Crashes 22 3.70%
Microsoft Visual Studio App Center Analytics 20 3.36%
Facebook Places 18 3.03%
Facebook Ads | Google Tag Manager | Amplitude 14 2.35%
OpenTelemetry 13 2.19%
AltBeacon | Bugsnag 12 2.02%
Matomo 9 1.51%
Segment 8 1.35%
Mapbox | Branch 7 1.18%
New Relic | Braze 5 0.84%
MixPanel 4 0.67%
Splunk MINT | Pushwoosh | Facebook Flipper | Air-
ship | Flurry 3 0.50%

Esri ArcGIS | Demdex | AppMetrica | Appcelerator An-
alytics | AppsFlyer | Adobe Experience Cloud | Hyper-
Track | Bugfender | County

2 0.34%

Startapp | AdColony | Radius Networks | RjFun |
Heap | MOCA | Kontakt | ComScore | LotaData |
Snowplow | Pusher | Appnext | Split | Instabug | Con-
versant | Scandit | TNK Factory | Bolts | Lotame

1 0.17%

TABLE 4.4: Number of applications (out of 595) in which the identified
trackers were found, together with their percentage of occurrence.

now known as Airship.
The correlation between the most included trackers was also studied. This can be

appreciated in Figure 4.1: the value of the cell (i, j) indicates the proportion of cases
in which, if tracker i was present in an application, so was tracker j. It can be seen
how using libraries of the same provider is a common practice, especially in the case
of Facebook. Also, it is interesting to note what can be inferred from Table 4.4: the de-
pendence on Google Firebase Analytics SDK, unless the libraries from Microsoft are used,
or the specific case of Bugsnag, which shows no usage correlation with other trackers.
The opposite happens to Amplitude since the chart indicates that when that tracker is
included, SDKs from Facebook and Google are also used by the developers.

Application developers are encouraged to add SDKs to their code because of their
functionality and services. The extended usage of SDKs is shown in Table 4.5, where
it can be seen that almost half the SDKs included were related to analytics (“Perct.”
column). Remarkably, five mobile advertisement SDKs were used in our universe of
studied apps (“Count” column).

18 Chapter 4. Findings

FIGURE 4.1: Proportion of concurrent usage of trackers.

Finally, in Table 4.6 we show the number of times trackers in the categories de-
scribed above were included in the studied apps. While it can be seen that these li-
braries were broadly used to assist in the development and maintenance of apps in
production, trackers offering advertisement services, whose pertinence with the stud-
ied apps is debatable, were included 77 times.

4.2 Trackers in Action: Observed Methodology of Trackers

The analyzed trackers indicated some common patterns with their methodology of data
harvesting. In this section, the most common methodologies are discussed, based on
how they collect the data, when they collect it, and how they send it to their servers.
Important to note is that the different perspectives discussed are not mutually exclu-
sive, thus, a tracker can collect the information using a real-time approach, triggered
after an event, in a centralized form. For reference, we provide the name of a tracker
using each methodology described.

4.2.1 Real-Time vs Store & Retrieve:

- Real-Time Collection (e.g. Branch) Trackers using this methodology will harvest
all the information on the go. They will start collecting the information in a specific
method from a class, and then it will make a chain of methods calls until it reaches the
last method, where the data is finally sent to their servers in a POST request.
- Store and Retrieve Collection (e.g. Amplitude) In this methodology, trackers first
collect the information and immediately store it in classes’ fields (AdColony) or in in-
ternal databases (MixPanel). At a later moment, this previously stored data is queried
by the tracker and sent to its servers using POST requests.

4.2. Trackers in Action: Observed Methodology of Trackers 19

Service Description Count Perct.
App Usage, Audi-
ence and Engage-
ment

Analytics of how the app is used, and by
who, events monitoring and tracking, user

engagement
26 44.83%

Crash Reporting
and Monitoring

Monitoring of resources, logs, crashes, and
general app functioning 10 17.24%

Technical Function-
ality

Specific functionality for the user that is
integrated into the app (e.g. maps, beacons

and code scanning)
8 13.79%

Mobile Advertising Distribution of ads into the app,
monetization 5 8.62%

Devel. and Back-
end Framework

Libraries for ease of app development and
back-end services (e.g., hosting, storage and

distribution)
3 5.17%

Push Notification Push notification and other messaging
channels 3 5.17%

Social Media Inte-
gration

Integration with social media within the app
(e.g login and content sharing) 3 5.17%

TABLE 4.5: Types of services offered to the developers by the trackers
analyzed. Their main service was chosen for trackers that fit more than

one category.

Main Service Apps Count
Devel. and Back-end Framework 382
Crash Reporting and Monitoring 242
App Usage, Audience and Engagement 156
Social Media Integration 96
Mobile Advertising 77
Push Notification 28
Technical Functionality 27

TABLE 4.6: For each service category, count of times trackers belonging
to these categories were included.

20 Chapter 4. Findings

4.2.2 Event-Based vs General:

- Event-Based Collection (e.g. MapBox) Trackers using this approach will harvest the
data when determined events fire. This data includes information related to the event
and any other piece of information that the tracker or app developer wants to collect.
- General Collection (e.g. Matomo) Under this approach, trackers collect general infor-
mation regarding the device, the user, the app and its use, without the need for waiting
specific events in the app.

4.2.3 Centralized vs Iterative vs Decentralized:

- Centralized Collection (e.g. OneSignal) Here, all the information is collected from a
unique point in the tracker, in other words, within a single method of a class. Given the
advantages of polymorphism in Object Oriented Programming, some trackers call the
same method to collect the data, but the data collected varies based on the class where
that method is implemented (Braze).
- Iterative Collection (e.g. AdMob) Trackers that harvest data in an iterative way, col-
lect the information in several methods that are called in chain, adding to the set of
collected data in previous methods of the chain, the data that is harvested in each suc-
cessive call.
- Decentralized Collection (e.g. Flurry) Under this approach, the tracker harvest the
data at different places in its code, that are unrelated to each other. For example, in
a method, it can collect and send the device information, and in a different class and
method harvest and exfiltrate data about specific app events.

4.2.4 Centralized Connections vs Decentralized Connections:

- Centralized Connections (e.g. Airship) In this case, although the tracker could collect
the information in a centralized or decentralized way, the requests that are sent to its
servers in order to exfiltrate data leave from a single class.
- Decentralized Connections (e.g. Bugsnag) Trackers that use this approach send the
information using requests from methods that belong to more than one class. In gen-
eral, the data harvesting happens in a decentralized way for cases from to this category.

4.3 Detailed Information of Analyzed Trackers

This section details, for a selected subset of the studied trackers (one for each method-
ology discussed above), the information that they gather and then they send to their
servers, and its associated high-level data flow, taking as reference a loose UML nota-
tion. Tones of red were used to indicate the process of harvesting data, whereas blue
was used to highlight the steps involved in the sending of the captured data to the
trackers’ servers (a dotted blue arrow means that several successive classes are called
in between the two extremes of the arrow). The names of classes, methods and fields
correspond to the naming made by JADX while analysing the app, therefore, for the

4.3. Detailed Information of Analyzed Trackers 21

cases where obfuscation was used by the developers, the names may appear cryptic
(e.g. C12345 for a class, or m67890 for a method). In the cases where obfuscation was
not used, the names tend to hint what these classes or methods do, especially when
tracking the information. Methods bordered on black mean that data is mainly har-
vested in there. Moreover, in order to bring context to the reader, a brief introduction
of the tracker is provided, in addition to a table describing the information that it har-
vested (more information regarding all the information gathered by trackers can be
found in Section 4.4).

The details of the complete set of analyzed trackers can be found in Appendix B.

4.3.1 Airship (Centralized Connection)

Introduction

Formerly known as Urban Airship, it was founded in 2009. Its main goal is to pro-
vide marketing and branding services, allowing companies to send custom messages
to consumers via push notifications, email, web notifications, SMS messages, among
others, enabling customer engagement. It also offers analytics services. Its website is
https://www.airship.com/.

Tracked Information

Table 4.7 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://www.airship.com/

22 Chapter 4. Findings

Category Details

Tracker Category App Usage, Audience and Engagement
Push Notifications Yes
AAID -

User ID Session id
Push id

Location SW

Timezone
Locale country
Language
Locale variant
Daylight saving

Location HW

Latitude
Longitude
Accuracy
Location provider

Device SW OS version

Device HW
Device manufacturer
Device model
Device type / Platform / family (“android”, “amazon”)

APK

App version
Package name
Package version
Production (True, False)
Google Play referrer

Applications and Processes Foreground
Disk and Memory -

Network
Carrier
Connection type
Connection subtype

Screen and Audio Screen
Previous Screen

Rooted, Jailbroken, Emulated and Simulated -

Time

Timestamp (event)
Entered time
Exited time
Duration

Battery -

SDK API version
SDK/Lib version

Others

Event type
Action (enter, exit)
Metadata
Update Dist

TABLE 4.7: Tracked information by Airship.

4.3. Detailed Information of Analyzed Trackers 23

Data Flow Diagram

Airship collects the information from three different classes. When it is harvested in
AirshipChannel, then it is sent to ChannelAPIClient, and after that a request is sent to
the server with the data as payload. When the data is gathered in RemoteDataAPIClient,
immediately the Request class is called and the data is sent. Finally, when the harvesting
happens in Analytics, the data collected there is related to an event that was triggered
in the app. This data is complemented with further data from a local database (DBO),
and then it is sent to the server as a request with a payload as well.

FIGURE 4.2: Data flow in Airship

4.3.2 Amplitude (Store and Retrieve Collection)

Introduction

Founded in 2014, Amplitude provides a series of analytics to help app developers un-
derstand how users use their apps. It is one of the most successful trackers and a leader
in the analytics market. Its website is https://amplitude.com/.

Tracked Information

Table 4.8 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://amplitude.com/

24 Chapter 4. Findings

Category Details

Tracker Category Technical Functionality
Push Notifications -

AAID Android id
Limited ad tracking

User ID UUID

Location SW
Country code
Language
Locale country

Location HW
Latitude
Longitude
Network Country ISO

Device SW OS version
OS name

Device HW
Device manufacturer
Device model
Device brand

APK App version
Google Play Services enabled

Applications and Processes -
Disk and Memory -
Network Carrier
Screen and Audio -
Rooted, Jailbroken, Emulated and Simulated -
Time Timestamp (event)
Battery -
SDK -

Others
Event type
Event sequence number
Tracking Options

TABLE 4.8: Tracked information by Amplitude.

4.3. Detailed Information of Analyzed Trackers 25

Data Flow Diagram

Amplitude’s data flow is quite simple. First, it collects the device information each time
an event is triggered and stores it in a local database. Later, when the updateServer(...)
method is fired, it gets all pending events from the local database and sends them to
their server as a POST request.

FIGURE 4.3: Data flow in Amplitude

4.3.3 Branch (Real-Time Collection)

Introduction

Another provider of app usage, audience and engagement, Branch was founded in
2014. Also known as Branch Metrics, it helps companies drive seamless mobile experi-
ences through its linking infrastructure. Its website is https://branch.io/.

Interestingly, its web-tracking services contained a XSS vulnerability that was pub-
licly reported and had the potential to impact million of users of top-level websites and
apps (www.vpnmentor.com/blog/dom-xss-bug-affecting-tinder-shopify-yelp).

Tracked Information

Table 4.9 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://branch.io/
www.vpnmentor.com/blog/dom-xss-bug-affecting-tinder-shopify-yelp

26 Chapter 4. Findings

Category Details

Tracker Category App Usage, Audience and Engagement
Push Notifications -
AAID Ad ID
User ID Unique id

Location SW Language
Country code

Location HW -

Device SW
User agent (webSettings)
OS version
OS (“android”)

Device HW Device manufacturer
Device model

APK App version
Applications and Processes -
Disk and Memory -

Network Local IPs
WiFi connected

Screen and Audio

UI mode
DPI
Height
Width

Rooted, Jailbroken, Emulated and Simulated -

Time First time install
Last update time

Battery -

SDK SDK (“android”)
SDK version

Others Device fingerprint ID
identity

TABLE 4.9: Tracked information by Branch.

4.3. Detailed Information of Analyzed Trackers 27

Data Flow Diagram

Branch’s data collection is straightforward. If a Restful GET is made to the server, the
query parameters are harvested in class ServerRequest. On the other hand, if a Restful
POST is made, the device information is gathered in class DeviceInfo, which name is self
explanatory.

FIGURE 4.4: Data flow in Branch

4.3.4 Bugsnag (Decentralized Connection)

Introduction

Differently to previous discussed trackers, Bugsnag is used for crash reporting and app
monitoring, instead of for audience reach, engagement, and monetization. It is owned
by SmartBear company, and it provides an error monitoring and application stability
management solution. Its website is www.bugsnag.com/.

Tracked Information

Table 4.10 details the information tracked by this tracker (up to ten elements per cate-
gory).

www.bugsnag.com/

28 Chapter 4. Findings

Category Details

Tracker Category Crash Reports and Monitoring
Push Notifications -
AAID -

User ID

Device id
Build UUID
Session UUID
User UUID

Location SW Locale
Location HW Location status (“allowed”)

Device SW

App type
OS name
OS version
OS build
Android API level

Device HW
Device model
Device manufacturer
Device brand

APK

App id / Package name
Stage (“production”)
App version
App version code
App name

Applications and Processes Active screen (activity)

Disk and Memory

Memory Usage
Low memory
Total memory
Free disk
Free memory

Network Network access (type)

Screen and Audio

Orientation
Density
DPI
Resolution

Rooted, Jailbroken, Emulated and Simulated Jailbroken
Emulator

Time

Duration
Duration foreground
Time (event/crash)
Started at (session)
Sent at (connection header)

Battery Battery level
Charging

SDK Payload version

Others

Notifier
Binary arch
Code bundle id
Autotracking (“true”)

TABLE 4.10: Tracked information by Bugsnag.

4.3. Detailed Information of Analyzed Trackers 29

Data Flow Diagram

In Bugsnag, class SessionTracker is in charge of calling classes DeviceDataCollect and Ses-
sion, where data is collected. Later, this class calls to DefaultDelivery and the gathered
data is sent to the servers. At the same time, class Client also collects data and sends it
to the servers on its own.

FIGURE 4.5: Data flow in Bugsnag

4.3.5 Flurry (Decentralized Collection)

Introduction

Flurry is another mobile analytics, monetization, and advertising company, which was
founded in 2005, therefore is one of the oldest companies studied. It develops and mar-
kets a platform for analyzing consumer interactions with mobile applications, packages
for marketers to advertise in-apps, as well as a service for applying monetization struc-
tures to mobile apps. In 2014 Flurry was purchased by Yahoo!. It can be found at
www.flurry.com.

Flurry was notorious in 2010 when Apple changed its ToS after discovering the
tracker harvesting device information from their own new devices, as Steve Jobs stated
in an interview: “Well we learned this really interesting thing. Some company called Flurry
had data on devices that we were using on our campus – new devices. They were getting this
info by getting developers to put software in their apps that sent info back to this company! So
we went through the roof. It’s violating our privacy policies, and it’s pissing us off! So we said
we’re only going to allow analytics that don’t give our device info – only for the purpose of adver-
tising”. (https://www.engadget.com/2010-06-01-steve-jobs-live-from-d8.html)

From a privacy perspective, from 2010 to now, things have changed for the worse,
and tracking activities have been normalized in the app ecosystem.

Tracked Information

Table 4.11 details the information tracked by this tracker (up to ten elements per cate-
gory).

www.flurry.com
https://www.engadget.com/2010-06-01-steve-jobs-live-from-d8.html

30 Chapter 4. Findings

Category Details

Tracker Category Crash Reports and Monitoring
Push Notifications Yes
AAID Ad tracking enabled

User ID

Count
Device id (advertising id, install id, device id)
Crash map id
User id
Guid (uuid)

Location SW Locale

Location HW
Latitude
Longitude
Accuracy

Device SW
OS version release
OS architecture
Platform (3)

Device HW

Device model
Device device
Device brand
Device board
Device id
Device product

APK
Package version name
Package version code
Package name / bundle id

Applications and Processes State (active, background)

Disk and Memory

JAVA max memory
PSS memory
RSS memory
Free disk
Total disk

Network Net status
Screen and Audio Orientation
Rooted, Jailbroken, Emulated and Simulated -

Time

Time
Initial run time
Timestamp
J2

Battery -
SDK Agent / SDK version

Others

Number of reports to send
Reports content
Report type
IncludeBackgroundSessionsInMetrics
Referrer info
Referrer number
Launch options
Origin
Signature keys
ETag
(5 other elements)

TABLE 4.11: Tracked information by Flurry.

4.3. Detailed Information of Analyzed Trackers 31

Data Flow Diagram

Flurry collects and sends information from several independent sources. For example,
classes C0713eu, C0478ba, C07430 and C0493bj perform both tasks. In addition, data is
also harvested in C0493bj, C07459 and C0487be.

FIGURE 4.6: Data flow in Flurry

4.3.6 Google AdMob (Iterative Collection)

Introduction

AdMob was one of the first mobile advertisement companies, founded in 2006. It was
later purchased by Google in 2009. It offers advertising options for several mobile
platforms, including Android, iOS, webOS, Flash Lite, Windows Phone and all stan-
dard mobile web browsers. Its website is https://admob.google.com/home/, under
Google’s domain.

There was some controversy when Google purchased it. For example, the Center for
Digital Democracy and Consumer Watchdog stated that “The consolidation of AdMob into
Google would provide significant amounts of data for targeting advertising”, and “The super
data profiles that a combined Google/AdMob would facilitate and their use to target advertising
raise tremendous privacy issues” [60].

Tracked Information

Table 4.12 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://admob.google.com/home/

32 Chapter 4. Findings

Category Details

Tracker Category Mobile Advertising
Push Notifications -

AAID

Ad id
Limited tracking enabled
Ad flags
Ad format

User ID Pd id
Pd id type

Location SW
Locale
Locale country
Language

Location HW
Latitude
Longitude
Accuracy

Device SW

Platform (“Mozilla/5.0 (Linux; U; Android”)
OS version release
OS version SDK
User agent (webview)
Build fingerprint

Device HW

Device model
Device device
Device display
Device manufacturer

APK

Target API
Package version code
Package name
Is latchsky
Is sidewinder
Is instant app

Applications and Processes Activity
Is privileged process

Disk and Memory

Runtime mem free
Runtime mem max
Runtime mem total
Private dirty
PSS
Shared dirty
Native private dirty
Native PSS
Native shared dirty
Other private dirty
(2 more elements)

Network

Network coarse
Network fine
Carrier
Connectivity network type
Telephony network type
Phone type
Active network type
Active network metered

Screen and Audio

Audio mode
Music active
Speaker on
Stream Volume
Ringer mode
App volume
App muted
Screen format
Density
Width pixels
(2 more elements)

Rooted, Jailbroken, Emulated and Simulated Simulator
Time Time (event)

Battery Battery level
Is charging

SDK

GMB SDK
V (3)
Is lite SDK
SDK environment
Lite

Others

Id (“gmob-apps”)
GWS query id
Width
height
Parent
Consent string
Consent info
Web view count
Native version
Is non agon
(Other fifteen elements)

TABLE 4.12: Tracked information by Google Ad Mob.

4.3. Detailed Information of Analyzed Trackers 33

Data Flow Diagram

The data collection in Google AdMob involves several clusters of classes and methods
calls working independently. Examples are classes C4855t3 and C4804o4. Other exam-
ples are classes C4085rl and C3515do. Finally, in class el0 data is also harvested, which
after several methods called in chain, it is sent to their servers.

FIGURE 4.7: Data flow in Google AdMob

4.3.7 Mapbox (Event-Based Collection)

Introduction

Mapbox provides integration with online maps for websites and apps, and it is a solid
competitor to Google Maps. It was founded in 2012. Its website is www.mapbox.com.

Tracked Information

Table 4.13 details the information tracked by this tracker (up to ten elements per cate-
gory).

www.mapbox.com

34 Chapter 4. Findings

Category Details

Tracker Category Technical Functionality
Push Notifications -
AAID -
User ID UUID

User id
Session id

Location SW -

Location HW

Authorization
Horizontal accuracy
Altitude
Latitude
Longitude

Device SW OS release

Device HW Device
Device model

APK -
Applications and Processes App state
Disk and Memory -

Network
Carrier
Cell network type
Wifi id

Screen and Audio
Orientation
Resolution
Font scale

Rooted, Jailbroken, Emulated and Simulated -

Time Timestamp
Created (event)

Battery Battery level
Plugged in

SDK

Identifier
Version
SKU id
Source (“mapbox”)

Others Event type
Enabled telemetry

TABLE 4.13: Tracked information by Mapbox.

4.3. Detailed Information of Analyzed Trackers 35

Data Flow Diagram

It can be appreciated that Mapbox collects information from two sources. In class
MapboxTelemetry, information related to events is harvested, which then is sent to the
servers. On the other hand, in class MapboxAccounts the user ID is gathered and later
sent to the servers as well.

FIGURE 4.8: Data flow in Mapbox

4.3.8 Matomo (General Collection)

Introduction

Previously known as Piwik (founded in 2007, at that time an open-source and free
project), currently Matomo provides analytic services and is a direct competitor of
Google Analytics. It allows developers to collect data from websites and apps, and
then analyze it. Its website is https://matomo.org/.

In 2020, a vulnerability with CVSS Score of 10 was found in one of Matomo’s docker
images provided https://www.cvedetails.com/cve/CVE-2020-29578/.

Tracked Information

Table 4.14 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://matomo.org/
https://www.cvedetails.com/cve/CVE-2020-29578/

36 Chapter 4. Findings

Category Details

Tracker Category App Usage, Audience and Engagement
Push Notifications -
AAID -

User ID User id
Visitor id

Location SW Language
Location HW -
Device SW -
Device HW User agent
APK Package name
Applications and Processes -
Disk and Memory -
Network -
Screen and Audio Resolution
Rooted, Jailbroken, Emulated and Simulated -

Time
Timestamp (first event)
Previous visit timestamp
Date time of request

Battery -

SDK Tracker name
API version

Others
Opt Out
Visit count
Session start

TABLE 4.14: Tracked information by Matomo.

4.3. Detailed Information of Analyzed Trackers 37

Data Flow Diagram

Matomo tracking involves getting information from class Tracker (revealing name), and
then, altogether data collected from events, it is sent to its servers over the internet.

FIGURE 4.9: Data flow in Matomo

4.3.9 OneSignal (Centralized Collection)

Introduction

OneSignal services revolve around customer messaging and engagement, for example,
through push notifications, in-app messaging, SMS and email. It was founded in 2014
and its website is located at https://onesignal.com/.

Tracked Information

Table 4.15 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://onesignal.com/

38 Chapter 4. Findings

Category Details

Tracker Category Push Notification
Push Notifications Yes
AAID Ad id
User ID Player id

Location SW Timezone
Language

Location HW

Accuracy
Time
Latitude
Longitude

Device SW Device os
Device type

Device HW Device model

APK
App id
Android package
App version

Applications and Processes -
Disk and Memory -

Network Network type
Carrier

Screen and Audio -
Rooted, Jailbroken, Emulated and Simulated Rooted
Time -
Battery -
SDK -

Others
Identifier
Subscribable status
Events

TABLE 4.15: Tracked information by One Signal.

4.4. Tracking the Trackers Tracks: On Data Collection 39

Data Flow Diagram

OneSignal collects several information in class OneSignal, that later is stored in a field
of class UserStats. As in other trackers, then this field is accessed and its information is
finally sent over the internet to the tracker servers (in this case, from class OneSignal-
RestClient).

FIGURE 4.10: Data flow in OneSignal

4.4 Tracking the Trackers Tracks: On Data Collection

One of the main findings of this study is that data from the user, device, and usage of
COVID-19 apps was being tracked. The methodology of trackers is shown in Figure
4.11. The tracker’s company offers mobile developers an SDK that provides certain
functionality when integrated into the application (1). Aligned, they setup the SDK
server so the tracker can connect back when in use (2). Later, a developer, in this case
probably a government, international organization, or someone sponsored by them,
will include the SDK into its COVID-19-related application (3), which will be sent to
Google Play (4) for release. Mandated by their government, compelled by living cir-
cumstances, fearful of being misinformed, or by any other incentive, users will down-
load these COVID-19 apps (5) and start using them (6). While running, at some point,
the SDK code will run, including the part dedicated to tracking information, and, at
a given time, it will upload the information harvested to the SDK servers (7). Finally,
the company behind the SDK will make use of the collected data storing it (8a), for
example, to fingerprint the device [37], processing it so they can profile the user of the
application (8b) (Engagement Data in [20]), or simply sharing it with third parties for a
revenue (8c) (point 9 in [83]).

To verify exactly what pieces of information the trackers harvest, the code of the
apps shown in Table 4.16 was checked. Since SDKs included in the apps may vary

40 Chapter 4. Findings

FIGURE 4.11: Tracker data collection example.

between releases, and even the code of the tracker may change over time, their corre-
sponding versions are detailed. For OpenTelemetry, two applications were studied to
validate our findings. In the case of Segment, a pattern in applications developed using
the EXPO framework (an open-source platform for making universal native apps that
run on Android, iOS, and the web) was found, where several wrappers for trackers
(including Segment) were automatically included in the applications.

Based on the findings of the study, the data gathered by the trackers can be cataloged
into the following categories (actual harvesting examples observed in the trackers’ code
can be found in Appendix C):
Android Advertisement ID (AAID). To this category, as the name suggests, belongs
the Android Advertisement ID and whether its tracking is limited. This 32-digit string
of characters identifier is unique for each Android device, and any application (and
any library included in the app) has access to it. Since the same AAID can be accessed
by different apps in a device, it allows advertisers build databases profiling customers

4.4. Tracking the Trackers Tracks: On Data Collection 41

Tracker Tracker
Version Application Package App.

Version
AdColony 4.1.2 covid19.cuernavaca 9.8
Airship 5.1.0 au.com.vodafone.dream-labapp 3.3.1. 3218
AltBeacon 2.16.4 gov.georgia.novid20 1.0.467
Amplitude 2.23.2 sg.gov.tech.safeentry 0.11.0
AppNext 2.4.5.472 covid19.cuernavaca 9.8
Branch 3.2.0 ca.bc.gov.health.hlbc.CO-VID19 1.42.0
Braze 8.0.0 com.clearme.clearapp 1.11.1
Bugsnag 5.1.0 gov.adph.exposure-notifications 1.10.0
Flurry 11.5.0 mu.mt.healthapp 2.0.103
Google AdMob 12.4.51 tr.gov.saglik.korona-onlem 1.0.3
Google Firebase Ana-
lytics 17.0.0 ca.ontario.verify 1.1.1

Google Tag Manager 5.06 az.gov.my 1.6.1
Mapbox 9.6.2 com.healthcarekw.app 2.1.9
Matomo N/A cy.gov.dmrid.covtracer 3.3.12
MixPanel 4.8.7 com.moh.alert.ramzor 1.15.0
New Relic 6.3.1 ar.gob.coronavirus 3.5.32
OneSignal 3.12.3 uy.gub.salud.plancovid-19uy 9.1.1
Open 0.21.0 es.gob.asistenciacovid19 1.0.11
Telemetry 0.21.0 au.gov.health.covid19 1.4.10
Pushwoosh 6.3.6 gov.cdc.general 3.1.4

Segment 4.8.2 com.thecommons-
project.smarthealthcard-verifier 1.0.27

Splunk MINT 5.0.0 et.gov.moh.oppia.covid 7.3.0-et.2.int
Startapp 4.5.0 covid19.cuernavaca 9.8

TABLE 4.16: Applications that were analyzed to detect tracking behavior.

42 Chapter 4. Findings

based on the content they consume and the applications they use.
User ID. Most of the identification artifacts in this category are based on UUID variants.
Sometimes, the AAID was used, or the user ID came directly from the main application
code. In a few cases, an ID was assigned at installation time or was set with a push
notification. As described above, while the AAID is unique for a device and any app
that access it gets the same string of characters, the UUID scope is for each app and it
varies between apps.
Location Software. In this category, it is included tracking information that can approx-
imate the location of the application user, which is based on the software configurations
of the device. For example, calls to track the locale, language and timezone, country code,
input languages and daylight saving.
Location Hardware. Contrary to the above, the calls to get the user’s and device’s exact
geographic location in this category are grouped here.
Device Software. This category includes the information related to the operating sys-
tem (its name, version, architecture, and build) and the user-agent used at connection
time. In general, the OS name was hardcoded as “Android” in the trackers’ code.
Device Hardware. The information about the physical device was grouped within this
category, including elements like: the device manufacturer, model and brand, name, id,
board, display and if it is a tablet or phone. Also, in this category, the tracking of the SIM
card is included.
Android Package Kit (APK). Another typical piece of data tracked was the applica-
tion’s information, including the tracker SDK. Elements like the package name, version
name and version code belong to this category. Also, information related to the applica-
tion bundle, the permissions granted, the environment, the development framework, if it is
an instaApp [56], and the app store, and its given ID by the tracker on its platform.
Applications/Processes. Some trackers gathered information about the activities run-
ning, the installed apps, the state of the application, the threads running, and the Java
Virtual Machine.
Disk/Memory. There were some trackers that gathered information about the disk, the
filesystem and the memory of the device.
Network. To this category belong the calls the trackers did to get information about the
carrier, the network used by the device, the wifi, and bluetooth. For a particular tracker
(Startapp), the collection of over one hundred different elements related to this category
was observed.
Screen/Audio. Information about the display and its orientation was commonly har-
vested. There was also information related to the audio, like the ringer mode, if an earplug
connection exists, and the volume level, among others.
Rooted/Jailbroken/Emulated/Simulated. A few trackers tried to identify if the device
was rooted/jailbroken or if it was an emulation/simulation.
Time. In this category, time-related tracking activities are grouped. For example, the
time of the application install, its last update, or other events that the trackers monitor. An
example that is not a timestamp is the session duration.

4.5. Leaking Data in Every Message: On Push Notifications 43

Tracker AAID User
ID

Loc.
SW

Loc.
HW

Dev.
SW

Dev.
HW APK A/P. D/M Net. S/A R/E Time Batt. SDK Oth.

AdColony
Airship
AltBeacon
Amplitude
AppNext
Branch
Braze
Bugsnag
Flurry
Google Ad-
Mob
Google Fire-
base Analyt-
ics
Google Tag
Manager
Mapbox
Matomo
MixPanel
New Relic
OneSignal
OpenTelemetry
Pushwoosh
Segment
Splunk
MINT
Startapp

TABLE 4.17: Type of information harvested by the trackers and sent to
their servers.

Battery. Information about the battery was also tracked, for example, its level and if it
is being charged.
Software Development Kit (SDK). The tracker tracked data of itself as well, for exam-
ple, its version and flavor (hardcoding these values in their code).
Others. In addition to the categories described above, trackers harvested many other
dissimilar types of information from the device and its usage; a clear example of this is
the metadata and type associated with the events they monitored.

In Table 4.17, we detail what information was found to be harvested by each
tracker in our analysis of their code. The data tracked is classified based on the cate-
gories previously described. AltBeacon, Google Tag Manager and OpenTelemetry are high-
lighted in green since we could not find tracking behavior in their code for the analyzed
version of the SDK. On the other hand, Google AdMob and Startapp are painted in a red
tone given that they track information in every described category.

4.5 Leaking Data in Every Message: On Push Notifications

Another problem found was the use of push notifications to communicate sensitive in-
formation to the application users. Indeed, given the type of applications studied, push
notifications can include sensitive information, such as exposure alerts, COVID-19 test
results, and health-related notifications, among others. Similarly to the data collection
functionality, this behavior is illustrated in Figure 4.12. First, the SDK developer will
provide its push notification SDK (1) and its associated server (2). As in the previous
case, the developer will include the push notification SDK in the application (3) and
publish it in the store (4). The user will then download (5) and use the application (6).
At the moment of sending a new push notification to all users, a specific group, or a

44 Chapter 4. Findings

targeted user of the application; the developers of the apps need to choose the recipi-
ents and specify the content of the message to be sent using the service platform at the
push notification server (7). This means the message is passed in plaintext to the SDK
provider, who can store, process, or transfer this information to a third party (8).

FIGURE 4.12: Tracker push notification example

Out of the 22 trackers analyzed, 6 of them (Airship, Braze, Google Firebase Analyt-
ics, Flurry, OneSignal and Pushwoosh) included push notification services to the apps.
Reference to end-to-end encryption could not be found in the services documentation,
except for the case of Pushwoosh [77]. This shall be discussed in Chapter 6.

Other trackers included in the our applications data set that also provide push no-
tification services were: Adobe Experience Cloud, AppMetrica, Countly, Facebook Analytics,
HMS Core, LotaData, MOCA, and Pusher.

45

Chapter 5

SAPITO: a tool for information
leaking analysis of Android mobile
applications

This chapter presents the tool we developed, SAPITO, and provides detailed insight
about its features.

5.1 Analysing Apps One Hop at a Time: Presenting SAPITO

5.1.1 Motivation for Developing the Tool

One of the biggest challenges faced during this investigation was identifying suspicious
packages and the classes and methods of data harvesting. Manually identifying dan-
gerous behaviors of the SDKs is a very time-consuming task. In addition, while Exodus
is a great tool that instantly flags trackers inside an application, it is based on a database
of tracker signatures. If a package signature matches one in the Exodus database, that
package is flagged as a tracker [46]. This process limits the potential of finding new
trackers in the wild that were not yet included in the Exodus database. Additionally,
Exodus does not explicitly detail the data that the trackers harvest.

As a further contribution to this work, a prototype of a tool called SAPITO (SDK
Audit and Privacy Investigation TOol) was developed. The purpose of SAPITO is to
flag packages included in Android apps as suspicious of leaking sensitive information
concerning the phone, the user, and the app usage.

5.1.2 Technology Behind SAPITO

The detection of dangerous SDKs is automatically done through a static analysis of the
APK file, which is performed with the assistance of Androguard [15]. This tool facilitates
the instrumentation of Android binaries analysis, providing a python API with several
methods that can be called to access the code and other information of the APK file.

Further information is scraped from Exodus and Google Play Store websites in real-
time. SAPITO is implemented in Python 3, and its detection rules are loaded as JSON

46
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

files, hence, they can be easily updated (more details in following section). Moreover,
it uses Flask for its web interface. Figure 5.1 displays the architecture of the tool.

The tool can be manually accessed via its web interface, or loaded as a separate
module in Python 3 to automate privacy checks.

FIGURE 5.1: SAPITO’s architecture

5.1.3 What is SAPITO Capable of?

As previously mentioned, SAPITO automatically flags suspicious third-party libraries
from Android apps. In order to do so, the privacy analysts, developers, researchers,
students, or any individual using SAPITO must start the tool locally in their computer.
After the tool is ready for use, the user can access SAPITO’s landing page at http:
//localhost:5000.

The landing page is used to load the binaries of the app to be analyzed, hence, a
panel is displayed where the user can select the APK file of the app from the computer
drive.

http://localhost:5000
http://localhost:5000

5.1. Analysing Apps One Hop at a Time: Presenting SAPITO 47

After loading, processing and analyzing the app, the tool automatically provides
a report with packages included in the application showing suspicious activities that
were already observed (when doing our manual analysis) on trackers. These are activ-
ities such as performing specific cross-references1, checking for granted permissions to
the application in order to piggyback these2, monitoring whether the device was root-
ed/jailbroken/emulated, making use of reflection calls, connecting to the internet, and
providing push-notification services. These highlighted libraries would be excellent
candidates for further analysis.

The tool also allows the user to analyze in detail these dangerous activities in each
third-party library included in the app. For example, a developer may want to know
what kind of activities an included library performs in the background when the app is
running, and a privacy analyst would like to understand exactly which sensitive data
is harvested by the libraries reported. Thus, SAPITO includes several specific analyses.

An option that SAPITO provides is to verify which cross-references each library
makes. The goal of this feature is to verify that a library does not call dangerous na-
tive methods or fields to harvest sensitive data. Or at least, if these calls are made,
they are justified and approved by the developer or privacy analyst. For a better user
experience, SAPITO already highlights in red potential dangerous calls, and in yellow
suspicious cross-references. We consider dangerous calls any cross-reference to a func-
tion/field that was seen used by trackers to harvest sensitive data in our manual study
of trackers. On the other hand, suspicious calls are cross-references to classes where
dangerous calls are included, but when a dangerous method/field is not exactly called.

Another analysis provided by the tool covers the permissions checks that the se-
lected library makes. This option allows the user to verify that the library is only using
appropriate permissions for its correct functioning. For example, a push-notification
library may check at run-time if the app has been granted with location access permis-
sions. In that case, it could indicate a malicious behavior by the library that piggybacks
on these permissions to harvest location data of the app users, given that, in general,
push-notification libraries do not require these kind of permissions to operate.

SAPITO also allows the user to investigate if the library performs checks in order to
detect if the device has been rooted or jailbroken, or if it is being emulated or simulated.
Most of these checks done by the trackers involve verifying if the app can run the su
command and if it has access to restricted directories.

Additionally, SAPITO can detect when libraries make reflection calls and, in some
cases, even the method called and its parameters. Since reflection can be used to access
sensitive information in a rogue way, this particular study may be useful for a privacy
or cybersecurity analysis.

1Also called "XREFs", cross-references are references, calls or invocations to a certain instruction in a
program, that could be a function or a data-section (e.g. variable) address for example. In this case, we
use it to detect the invocation of functions in certain libraries that could return sensible information.

2For example, an app may require legitimate access to the phone contacts, however, after approval by
the user to this permission, any function within the app could read the contact details, including code
inside third-party libraries in the app.

48
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

The connection calls made by the third-party library can also be analyzed using
SAPITO. For this, the most used connection libraries were added into SAPITO internal
knowledge information, and if any of them are detected in the code of the third-party
library, they are reported to the user.

The user can also investigate if push notifications are being used by the third-party
library. As in Chapter 4 will be discussed, push notifications can be a source of sensitive
data leakage if private data is transmitted over there (in plain text, as it is the general
case).

Additionally, SAPITO uses unsupervised machine learning algorithms to display
package clustering. This analysis groups packages that perform similar cross-references,
and as a result, it helps to focus the attention on certain libraries that may behave as
trackers in the wild (for example, if these end up inside a cluster with known trackers).
The two main concepts behind the model are PCA for feature reduction and KMeans
for clustering. From a technical point of view, the model creates a data set with all the
cross-references present in the code of third-party libraries. Then, using PCA, the data
set is shrunk into two dimensions. With this new bi-dimensional data set, four runs of
KMeans are processed, iterating on the cluster number, from two to five. The run with
the best performance is selected. With the model output, the clusters are displayed us-
ing the Python library Plottly, given its good user experience (the user can interact in
real time with the graph for detailed information). For visualization enhancement, the
markers for libraries already detected as suspicious by SAPITO are differentiated, thus,
other markers next to these could mean that these libraries could be harvesting data as
well.

Finally, the tool is complemented with input from three main sources: The app
manifest, Google Play Store, and Exodus website. General information from the app is
gathered from its manifest. The manifest information section not only provides a gen-
eral overview of the app, since it also details insight about the permissions the app
requests. This is important given that libraries included in the app could make use of
these permissions (a practice know as permission piggybacking), that are unknowingly
granted by the user. Thus, a malicious library could, in fact, harvest these details and
exfiltrate them to its servers. On the other hand, Google Play extracted information gives
a general overview of the app from the public perspective (assuming the app was made
public in the store). For example, the user of SAPITO may want to check the app score
and reviews in order to detect flaws in the app (potentially related to cybersecurity or
privacy), or directly access the privacy policy of the app (or, at the same time, noting
the absence of it). Last, the information extracted from Exodus website enumerates, for
each version of the app that was analyzed in that platform, the trackers included in the
code for that version. It is especially useful since it helps to identify trackers already
detected that are present in the application (if the app has been analyzed previously).
Additionally, since historical information is provided as reports from versions of the
app analyzed over the time, the evolution of trackers inclusion in the app can be stud-
ied.

5.2. SAPITO Features in Detail 49

Further explanation of the tool features can be seen in the following section. The
code and related files can be found at the group’s GitLab [79].

5.2 SAPITO Features in Detail

Next, the features that SAPITO currently offers are detailed.

5.2.1 APK Loading

This is the first screen the user sees. The goal of this page is to choose an APK file stored
in the user’s device, and load it into SAPITO. After the binary is selected and the user
clicks on Analyze! button, SAPITO begins doing its static reverse engineering analysis
using the Androguard wrapper.

In Figure 5.2, it can be seen how the APK of the Uruguayan Coronavirus UY app is
being loaded.

After the binary is analyzed, SAPITO will redirect the user to the main report page
(as detailed next). After that, the user can choose between several detailed information
of the app and the detected third-party libraries, at the left-top panel. Additionally,
in the left-bottom panel, the detected third-party libraries are enumerated. For xRefs,
Permissions, Rooted, Reflections, Connections, and Notifications information option, at least
one package must be selected from there (the ones that present a red alarm before their
name, were highlighted by SAPITO as dangerous packages, meaning that they could
be trackers).

FIGURE 5.2: Landing page in SAPITO, where the user must select a bi-
nary to analyze.

50
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

5.2.2 Main Report

This is the landing page after SAPITO initial analysis is finished. Suspicious directories
are automatically flagged by SAPITO. These directories (as packages proxies) are high-
lighted since they contain classes that establish internet connections, make calls to get
sensitive information about the phone or its usage, checks for permissions or whether
the device is rooted, make use of reflection calls, or process notifications. Suspicious
colors increase from yellow to red in the badges with the package names, based on
the previous detailed dangerous behavior. These third-party libraries can be good can-
didates for examining, hence, the user can select their check-boxes at the bottom-left
panel to get more info about these packages.

In Figure 5.3, it can be seen how the tracker OneSignal was flagged by SAPITO
(among other potentially dangerous third-party libraries). The report of this tracker
indicates it makes internet connections (globe icon), processes notifications (bell icon),
checks for permissions (lock icon), uses reflection calls (abc icon), checks if the device is
rooted or emulated (danger sign icon), and has dangerous calls within the code (snip-
pet icon) (“dangerous calls” means cross-references that are used to gather sensitive
information and that were seen in the manually studied trackers). Since six categories
of dangerous behavior are present on this tracker, its name label is in red.

FIGURE 5.3: Report page in SAPITO, where potential trackers are high-
lighted.

5.2. SAPITO Features in Detail 51

5.2.3 Packages Clustering

Using PCA for feature reduction and KMeans for clustering, under this option, SAPITO
shows how packages may be grouped based on cross-references found in the code of
their classes. As the clustering is based on KMeans, different runs of the algorithm will
yield different results, though.

In general, a big cluster of close packages will be formed, while some outliers will
appear separated from the main cluster. If the privacy analyst already knows that a
package is suspicious, points close to that package may be interesting candidates for
further investigation, given that it means that they have similar (potentially danger-
ous) cross-references. Packages already detected as suspicious by SAPITO have their
markers drawn as ’x’ in the graph.

In Figure 5.4, it can be seen how a cluster was formed to the left of the chart, with
some other third-party libraries spread to the middle and opposite side of the figure.
Since the chart is interactive, pointing with the mouse to any point will yield details of
it. In this case, OneSignal’s point was highlighted, and since it is a known tracker, the
three points that appear next to it may be potential trackers as well (One of them was
Firebase, which was also analyzed in this thesis, and proved to be a tracker. The other
two packages were not analyzed, since they were not flagged by Exodus.).

FIGURE 5.4: Cluster page in SAPITO, where trackers are grouped to de-
tect similarities between them.

52
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

5.2.4 App Info

This option details general information about the app extracted from its manifest file.
Here, while this section is added for the sake of completeness of app information, it may
be interesting to check the permissions required by the app, since SDKs may piggyback
on these.

The complete information detailed here contains: App Name, Package, Main Activ-
ity, Dex Names, Android Version Code, Android Version Name, Activities, Services, Receivers,
Providers, Libraries, Features, Declared Permissions, Permissions, Requested AOSP Permis-
sions Details, Requested Not AOSP Permissions Details, Uses Implied Permissions, Min SDK
Version, Max SDK Version, Effective Target SDK Version, and Target SDK Version. Other
information present in the manifest is not included, given its irrelevance.

In Figure 5.5, the first pieces of information from the app’s manifest can be seen.
Although they do not appear in the figure, in this case, the permissions requested by
the app included:

• android.permission.RECORD_AUDIO
• android.permission.ACCESS_NETWORK_STATE
• android.permission.WAKE_LOCK
• android.permission.RECEIVE_BOOT_COMPLETED
• android.permission.BLUETOOTH
• android.permission.FOREGROUND_SERVICE
• android.permission.CHANGE_NETWORK_STATE
• android.permission.INTERNET
• android.permission.VIBRATE
• android.permission.CAMERA

Dangerous scenarios may appear to the user in case a third-party library within the app
would want to use these permissions.

FIGURE 5.5: App info page in SAPITO, where general information of the
app is presented.

5.2. SAPITO Features in Detail 53

5.2.5 Google Play Info

Under this option, general information about the app is detailed, extracted at real time
using scraping techniques from its Google Play Store page (if the app is published in
the store). As with the previous option, this page is provided so the analyst can have
further information regarding the app.

The information provided in here includes: the app URL in Google Play, Description,
Summary, Installs, Real Installs, Score, Ratings, Reviews, Developer, Developer Email, Devel-
oper Website, Privacy Policy, Genre, Released, Version, and a few users Comments left on
the store platform.

In Figure 5.6, the first pieces of information from the app’s page in Google Play can
be seen. The analyst may be interested in checking the app score, or to read a few of the
comments, in order to potentially detect issues the app users were facing.

FIGURE 5.6: Store info page in SAPITO, where information extracted
from Google Play is detailed.

54
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

5.2.6 Exodus Info

Live information extracted from the Exodus website is presented on this option. Here,
the analyst can see the trackers (if any) that were detected by Exodus, if at least one
analysis of the app was already performed on that platform. For each analysis for the
app found in the Exodus website, here are detailed the app version and the trackers
found in that version. In addition, links to the full reports, trackers’ information, and
trackers’ webpage are included.

In Figure 5.7, two of the four total reports can be seen (all the data for version 9.1.0,
and just the title for version 7.3.4). It can be seen how the report of the newest version
contains four trackers highlighted by Exodus: Google CrashLytics, Google Firebase Ana-
lytics, Huawei Mobile Services (HMS) Core, and OneSignal. Furthermore, a comparison
of the evolution of trackers’ usage over the app versions can be performed with this
information.

FIGURE 5.7: Exodus info page in SAPITO, where privacy reports related
to the tracker from Exodus are shown.

5.2. SAPITO Features in Detail 55

5.2.7 Library Cross-References

This section details the cross-references found in the app, in the code of the selected
packages. The filter can search for keywords, and the columns header can be clicked to
sort the content of the table. Additionally, the content of the table can be downloaded
as CSV or JSON.

In Figure 5.8, a few cross-references present in OneSignal can be appreciated (since
it was the only package selected in the left panel). There can be seen a red (dangerous)
and a yellow (suspicious) lines. Cross-references (exact methods or field) that were seen
used to gather sensitive data are highlighted in red, while in case when not the exact
method or field as seen before were used, but it is another element of a class with a
dangerous cross-reference, the call will be appear yellow.

FIGURE 5.8: xRefs page in SAPITO, where cross-references found in the
trackers code are enumerated.

56
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

5.2.8 Library Permissions Checks

In this section, the permissions checks performed by the selected trackers can be seen.
Also, the usage of these permissions found in the app, in the code of the selected pack-
ages, is shown. As before, the filter can be used to search for keywords, and the columns
header can be clicked to sort the content of the table. Additionally, the content of the
table can be downloaded as CSV or JSON.

In Figure 5.9, the five times OneSignal checks for or use permissions can be appreci-
ated. Of these five, the three permissions are: RECEIVE_BOOT_COMPLETED (to start
the app as soon as the device finishes booting), ACCESS_FINE_LOCATION, and AC-
CESS_COARSE_LOCATION (this and the previous one, to access the location of the
device).

FIGURE 5.9: Permissions page in SAPITO, where permissions checks
found in the trackers code are enumerated.

5.2. SAPITO Features in Detail 57

5.2.9 Library Rooted Checks

Under this option, the checks for the device rooted, jailbroken, emulation or simulation
status found in the app by the selected package are detailed. As before, the filter can be
used to search for keywords, and the columns header can be clicked to sort the content
of the table. Additionally, the content of the table can be downloaded as CSV or JSON.

In Figure 5.10, these checks made by OneSignal can be seen. In this case, and in sev-
eral others that were found, the tracker would test if it can run the su command, and if
it has access to several restricted directories, meaning that it has root-level permissions,
hence, the device is rooted. At the same time, it can be seen how these calls originate in
a method named a, from the class h2 of package com.onesignal, showing the obfuscation
done by the tracker to make the reading of its code as difficult as possible.

FIGURE 5.10: Rooted page in SAPITO, where rooted and similar checks
found in the trackers code are enumerated.

58
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

5.2.10 Library Reflection Use

This option allows the analyst to identify the reflection calls found in the app, in the
code of the selected packages. As before, the filter can be used to search for keywords,
and the columns header can be clicked to sort the content of the table. Additionally, the
content of the table can be downloaded as CSV or JSON.

In Figure 5.11, the use of reflection made by OneSignal can be seen. The importance
of analyzing the reflection calls made by a third-party library lies in the fact that these
could be considered cross-references that, for some reasons, legitimate or not, are made
using this method. A clear example of miss-use of reflection by third-party libraries
within Android apps to harvest sensitive data was detected in [89]. In the case of OneS-
ignal, while not a dangerous call, it can be seen how at method <init> (class constructor)
from class i2, it calls to method d of class com.amazon.device.iap.internal.d. Again, obfus-
cation of code undermines the understanding of these calls.

FIGURE 5.11: Reflection page in SAPITO, where reflection calls found in
the trackers code are enumerated.

5.2. SAPITO Features in Detail 59

5.2.11 Library Connections

As its name implies, this option enumerates the use of connection libraries found in
the app, in the code of the selected packages. To detect these connection calls, the most
used connection functions, classes, and third-party libraries for that goal were added
to a set, therefore, if the package code makes a call present in that set, it means that it
is establishing a connection with a remote server, with the potential of data exfiltration.
As before, the filter can be used to search for keywords, and the columns header can
be clicked to sort the content of the table. Additionally, the content of the table can be
downloaded as CSV or JSON.

In Figure 5.12, it can be seen how OneSignal calls several times to java/net connection
library, specifically to the class HttpURLConnection and its methods for sending data
and closing the connections.

FIGURE 5.12: Connections page in SAPITO, where connections calls
found in the trackers code are enumerated.

60
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

5.2.12 Library Push Notifications Use

Finally, the last feature of SAPITO (as for now) details the notification service calls
found in the app, in the code of the selected packages. As before, the filter can be
used to search for keywords, and the columns header can be clicked to sort the content
of the table. Additionally, the content of the table can be downloaded as CSV or JSON.
A SDK that provides notification services may be dangerous since the content of these
notifications may be processed in plain text by the SDK servers, without the awareness
and consent of the app users.

In Figure 5.13, it can be seen how OneSignal processes push notifications within its
code.

FIGURE 5.13: Notifications page in SAPITO, where push notification us-
age found in the trackers code are enumerated.

5.2. SAPITO Features in Detail 61

5.2.13 Ruleset Loading

SAPITO looks for suspicious activity in third party-libraries based on instructions found
in their code. These dangerous instructions that SAPITO must find in the code must me
specified in a file called rules.json. By default, we provide a set of rules we found to be
used by trackers to harvest data. The rules are grouped by the type of data harvested,
for example: location, TimeZone, telephony, os, net, etc. This file can be expanded or
pruned based on the research needs.

The file rules.json that comes with SAPITO contains:

{
"location": ["Accuracy", "Time", "Latitude", "Longitude", "Altitude", "

Provider", "VerticalAccuracyMeters", "Bearing", "Speed", "CountryCode",
"AdminArea", "Locality", "ProviderEnabled", "LastKnownLocation", "
AllProviders", "FromLocation"],

"Locale": ["Language", "Country", "Variant", "DisplayLanguage", "
DisplayCountry", "DefaultLocale"],

"Calendar": ["Timezone"],
"TimeZone": ["DefaultTimezone"],
"util": ["Density", "DensityDpi", "WidthPixels", "HeightPixels", "Xdpi", "

Ydpi"],

62
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

"telephony": ["NetworkOperatorName", "NetworkOperator", "NetworkType", "
NetworkCountryIso", "SimOperator", "SimCountryIso", "PhoneType", "
PhoneCount", "SimState", "SimOperatorName", "DataState", "CellLocation",
"ManufacturerCode", "AllCellInfo", "CallState", "Registered", "

CellConnectionStatus", "CellSignalStrength", "TimingAdvance", "
SubscriberId", "GroupIdLevel1", "DefaultDataSubId", "DefaultSmsSubId", "
DefaultSubId", "DefaultVoiceSubId", "MultiSimConfiguration", "GsmLac", "
GsmCid", "GsmPsc", "CdmaBaseStationId", "CdmaBaseStationLatitude", "
CdmaBaseStationLongitude", "CdmaNetworkId", "CdmaSystemId", "State", "
DuplexMode", "IsManualSelection", "ChannelNumber", "
GsmCellSignalStrength", "GsmRegistered", "GsmTimeStamp", "
GsmCellIdentity", "GsmMcc", "GsmMnc", "GsmCid", "GsmLac", "GsmPsc", "
GsmArfcn", "GsmBsic", "GsmDbm", "SignalStrength", "CellSignalStrengths",
"Level", "CdmaEcio", "LteCqi", "LteRsrp", "LteRssnr", "LteRsrq", "

LteRssi", "LteRegistered", "LteCellSignalStrength", "LteTimeStamp", "
LteCellIdentity", "LteMcc", "LteMnc", "LteCi", "LtePci", "LteTac", "
LteEarfcn", "LteDbm", "LteTimingAdvance", "NrDbm", "NrCsiRsrp", "
NrCsiRsrq", "NrCsiSinr", "NrSsRsrp", "NrSsRsrq", "NrSsSinr", "NrTac", "
NrPci", "NrTimeStamp", "NrNrarfcn", "NrNci", "NrMccString", "NrMncString
", "NrRegistered", "NrTimeStamp", "NrCellIdentity", "LteSignalStrength",
"LteDbm", "Dbm", "GsmEcno", "LteCqi", "LteRsrp", "LteRsrq", "LteRssnr",
"WcdmaRscp", "UsingCarrierAggregation", "DataEnabled", "NetworkRoaming"

, "From", "ActiveSubscriptionInfoCount", "ActiveSubscriptionInfoCountMax
", "ActiveSubscriptionInfoList", "CarrierName", "CountryIso", "IccId", "
Mcc", "Mnc", "SimSlotIndex", "SubscriptionId", "DataRoaming", "
WcdmaCellIdentity", "WcdmaRegistered", "WcdmaTimeStamp", "
WcdmaCellSignalStrength", "WcdmaDbm", "WcdmaMcc", "WcdmaMnc","WcdmaPsc",
"WcdmaUarfcn", "WcdmaCid", "WcdmaLac", "CdmaCellIdentity", "

CdmaRegistered", "CdmaTimeStamp", "CdmaSystemId", "CdmaNetworkId", "
CdmaBasestationId", "CdmaLatitude", "CdmaLongitude", "CdmaDbm", "
CdmaCdmaDbm", "CdmaEvdoDbm", "CdmaEvdoEcio", "CdmaEvdoSnr"],

"net": ["ActiveNetworkInfo", "NetworkCapabilities", "ActiveNetworkMetered",
"ActiveNetwork", "Transport", "ConnectionInfo", "WifiEnabled", "
ScanResults", "CalculateSignalLevel", "ScanSSID", "ScanBSSID", "Level",
"Timestamp", "NetworkId", "WifiSSID", "Type", "TypeName", "Subtype", "
SubtypeName", "Connected", "State", "DetailedState", "Roaming", "
MobileRxBytes", "MobileTxBytes", "TotalRxBytes", "TotalTxBytes", "
WifiRxBytes", "WifiTxBytes", "MobileIfaces"],

"InetAddress" : ["HostAddress"],
"rooted": ["Rooted", "Jailbroken", "Simulated"],

5.2. SAPITO Features in Detail 63

"os": ["Version.Release", "Version.Incremental", "Version.SDK", "Model", "
Brand", "Manufacturer", "Id", "Supported_Abis", "Display", "Fingerprint"
, "Device", "Board", "Product", "RootDirectory", "
ExternalStorageDirectory", "DataDirectory", "AvailableBlocksLong", "
BlockSizeLong", "Init", "BlockSize", "AvailableBlocksLong", "
AvailableBlocks", "BlockCountLong", "BlockCount", "FreeBlocksLong", "
ElapsedRealtime", "UptimeMillis", "TotalPss", "DalvikPrivateDirty", "
DalvikPss", "DalvikSharedDirty", "NativePrivateDirty", "NativePss", "
NativeSharedDirty", "OtherPrivateDirty", "OtherPss", "OtherSharedDirty",
"Pid", "Uid", "ScreenOn", "Interactive", "PowerSaveMode", "

BatteryManager"],
"content": ["ContextPackageName", "SystemService", "Resources", "FilesDir",

"CheckPermission", "Configuration", "Orientation", "FontScale", "
ScreenLayout", "UiMode", "Locale", "Locales", "VersionCode", "
VersionName", "PackageName", "InstallerPackageName", "ApplicationLabel",
"ApplicationInfo", "InstalledApplications", "FirstInstallTime", "

LastUpdateTime", "SystemFeature", "TargetSdkVersion", "MetaData", "Flags
", "RequestedPermissions", "Query", "SystemAvailableFeatures", "
InstalledPackages", "StringExtra", "Action", "Extras", "IntentFilter"],

"app": ["ProcessMemoryInfo", "MemoryClass", "RunningAppProcessInfo", "
ProcessInfoImportance", "ProcessName", "TaskInfo", "IsRunning", "
MyMemoryState", "MemoryInfo", "LowMemory", "Threshold", "AvailMem", "
TotalMem", "RunningTasks", "TopActivity", "BackgroundRestricted", "
RunningAppProcesses", "NotificationsEnabled", "StorageEncryptionStatus",
"CurrentModeType", "NotificationChannelImportance", "Sound", "

QueryUsageStats", "AppInactive", "TotalTimeInForeground"],
"AdvertisingIdClient": ["AdvertisingIdInfo", "LimitAdTrackingEnabled", "Id"

],
"notificationManager": ["NotificationManagerCompat"],
"webkit": ["DefaultUserAgent", "UserAgentString"],
"view": ["Parent", "BoundingRects", "CurrentInputMethodSubtype", "Locale", "

EnabledInputMethodSubtypeList"],
"System": ["Property", "CurrentTimeMillis"],
"Thread": ["CurrentThread", "Id", "Name"],
"permission": ["AndroidPermission"],
"UUID" : ["RandomUUID"],
"Date" : ["Date", "Time"],
"Runtime": ["Runtime", "Exec", "TotalMemory", "MaxMemory", "FreeMemory"],
"File" : ["UsableSpace", "Init"],
"Battery" : ["Battery_Changed"],
"provider": ["SettingsSecure", "SettingsSystem", "SettingsGlobal", "

INTERNAL_CONTENT_URI", "EXTERNAL_CONTENT_URI", "LocationProvidersAllowed
"],

"bluetooth": ["DefaultAdapter", "Enabled", "BondedDevices", "BondState", "
Name", "BluetoothClass", "Address", "BondState", "DeviceClass"],

"media": ["Mode", "SpeakerphoneOn", "StreamVolume", "RingerMode", "
StreamVolume", "WiredHeadsetOn", "Devices", "MusicActive", "Type"],

"Commands": ["Meminfo", "Version", "Uname", "Cat"],

64
Chapter 5. SAPITO: a tool for information leaking analysis of Android mobile

applications

"instantApp": ["InstantApp"],
"Kotlin": ["KotlinVersion"],
"security": ["CleartextTrafficPermitted"],
"accounts": ["AccountsByType"],
"StackTraceElement": ["ClassName", "MethodName"],
"hardware": ["Name", "Vendor", "Version", "MaximumRange", "Power", "

Resolution", "accuracy", "timestamp", "values"],
"Class": ["Name", "Method", "DeclaredMethods"],
"Object": ["Class"],
"reflect": ["invoke"],
"others": ["Amazon", "GooglePlayServicesAvailable", "ReactNativeVersion", "

Audios.raw", "Www.res", "LiteSDK", "ActivityTransitionEvent", "
MainAction", "Method"]

}

65

Chapter 6

Discussion

In this chapter, the findings of the study are elaborated. We highlight two problems
third-party libraries generate: the data collection of trackers, and the disclosure of sen-
sitive data with push notification service providers. Additionally, further details are
presented regarding the posture taken by governments and trackers with data privacy.
Finally, potential causes for the issue studied in our research are discussed.

6.1 On the Known Practices of Device Identification: Impact of
Data Collection

Device fingerprinting and identification with user segmentation and attribution goals
is not an unknown practice. There is already academic research in this field of study,
for example, proposing efficient fingerprinting mechanisms to improve authentication
[93]. Even trackers openly declare in their privacy policies the purpose of data collec-
tion “...for device identification and attribution” [20]. This process is even easier if they
collect the ADID of the phone.

However, in COVID-19-related apps, this tracking and identification behavior can
pose a very high risk to users and their health-related sensitive data. For example, 34
of the total apps processed were mainly used for quarantine enforcement. Of these
34, 29 contained trackers that, among other information, collected the APK identifier.
Therefore, if companies behind these trackers knew these APKs were used for quar-
antine enforcement, they could infer that it was highly likely that the device user was
infected with COVID-19. From another perspective, governments, through their apps,
sent third parties the COVID-19 infection status of their citizens without their knowl-
edge or consent. Moreover, since some trackers collect location information, they could
know, with a GPS level of detail, where users of the devices were being infected. The
same reasoning could be applied, for example, to apps focused on vaccination schedul-
ing and COVID-19 certification. Also, they could know the places the user visits, poten-
tially identifying the times the user goes to hospitals. Furthermore, since some trackers
collect the SSID of WI-FI hotspots at a range, they could validate that the user is at a
particular place.

66 Chapter 6. Discussion

6.2 A Design Issue: Impact of Using Push Notification Services

As stated in Chapter 4, developers need to send the message content to the push noti-
fication service provider in plaintext. Hence, messages like “Your test results were posi-
tive...” or “You are scheduled for your X COVID-19 vaccination dose...” have the potential
to disclose sensitive health information of the users to third parties. Even worse is the
fact that, again, the application users are not aware that this is happening, and they did
not give consent to this specific information disclosure to third parties.

Even in cases where encryption was used to protect the notification contents’ confi-
dentiality, the practice was arguably problematic. Based on asymmetric cryptography, a
key pair can be created on the user’s device, sending the public key to the SDK servers.
Any push notification would then be end-to-end encrypted so that only the device can
decrypt the message and display it to the user. Therefore, other parties would not be
able to read the push notification content as they are delivered to an appropriate device.
However, the problem lies in who are the ends of this end-to-end encryption scheme.
This approach would preserve privacy if one end were the user and the other the ap-
plication developer. However, in all studied cases that implement this, the encryption
happens at the service provider servers, so they process the message in plaintext until
it is encrypted.

What are the alternatives for the developers? In the context of COVID-19 sensitive
information being sent over push notifications, they should rethink their needs. Are
they strictly mandatory? Switching to alternatives like email or SMS may face the same
problem, but a phone call could avoid this problem. Alternatively, the push notification
content could be just an alert, indicating the user to open the application for further
details. Another option could be the use of real end-to-end encryption libraries (from
the developer servers to the device), like Capillary [25].

6.3 Data Privacy Posture from Governments

As commented in Chapter 4, while data privacy is of utmost importance (not in vain,
privacy is considered a human right [75]), in a pandemic that puts the entire world
at risk, understandably it might be regarded by governments and people as a lower
priority. Therefore, with the hope the early launching of an app would help contain
the pandemic, it could be justified for some trackers to be included within the app’s
code. However, what is not a display of data privacy due care from governments and
other reputable organizations is that after the first releases of the apps (and with the
pandemic under relative control), the number of trackers included in those apps did
not decrease. Moreover, it can be seen in Table 4.3 that this number increased over time
during the pandemic in some apps.

Furthermore, several application privacy policies were checked for the research. It
was found that transparently informing users of the trackers’ presence within the appli-
cation was not a practice that all governments followed [53, 74, 44]. On the other hand,

6.4. What the Trackers Declare 67

there were cases where developers explicitly declared the included third-party libraries,
allowing users to be aware of their presence in the apps; for example, “Smart app uses
third-party services that declare their Terms and Conditions. Link to Terms and Conditions of
third-party service providers used by the Covid-19 DXB app: Google Play Services, Google Ana-
lytics for Firebase, Firebase Crashlytics” [35] and “The app may transfer data relating to the use
of the app and the device to Firebase (to detect problems in the app) with the user’s consent. The
transfer is subject to the following privacy policy: https://firebase.google.com/support/privacy.
No data related to the content of the certificates will be transmitted.” [31].

Additionally, some governments have conducted Data Protection Impact Assess-
ments (DPIA) [19, 43, 38] to identify and minimize data protection risks of their COVID-
19-related apps. That is a huge step forward from the perspective of the international
normalization of efforts to protect data privacy and enforce privacy-by-design method-
ologies. Concerning the analyzes of trackers inclusion within the application, some
state ...there will be no third-party trackers gathering personal data in the app... [41], or eval-
uate, for example, the impact of using Firebase for push notifications or the SDK of Mi-
crosoft to diagnose performance and stability issues [42]. Meanwhile, as with privacy
policies, some DPIAs omitted the tracker’s impact analyzes [39, 40].

Hence, it could be concluded that in some cases, on the one hand, users did not
have complete information on the privacy policies of the apps they were required to
download, and, on the other hand, governments took decisions regarding the release
of COVID-19 related apps without completely understanding the impacts of trackers
inclusion.

6.4 What the Trackers Declare

It was found that, generally, trackers publicly declare what data they collect, explicitly
enumerating the collected items in their privacy policies. However, some claim fewer
items than were found during the code analyzes of this study. Therefore, since we can-
not have a total trust in the third-party libraries ecosystem, detailed privacy analyzes
and tools like SAPITO are indispensable, especially in very privacy-sensitive apps.

The overall results can be appreciated in Table 6.1. Column Declares has the values
Enumeration if they enumerate each element they track, Policy if they provide a general
idea in their Privacy Policy, but without explicitly detailing the collected items, or Mix
if they enumerate within the Privacy Policy. Column Coincides indicates if what they
declare coincides with the findings of our research.

It could be estimated that Google’s requirement for their Google Play’s new safety sec-
tion [50] has encouraged (or, up to a point, mandated) trackers to transparently indicate
the data they collect with their SDKs.

While AdColony in its privacy policy details some items being collected using the
wording “Our technology Platform collects and uses personal data, including but not limited
to:...”, they missed declaring, for example, that they collect information about the screen

68 Chapter 6. Discussion

and battery of the device. Something similar happens with AppNext, where some ele-
ments collected are not mentioned, for example, if the camera was activated in the last
15 minutes, if the device is charging, and information about the screen and audio sys-
tem, among others. In the case of Braze, there are hints it may collect the Android ID
along with other information. However, this element was not declared in the sources
checked. No documentation could be found from Google AdMob stating that they col-
lect location information like Accuracy, Latitude and Longitude, information regarding
the system memory, if it was a simulator instead of a real device, and information about
the state of the battery. New Relic, from what could be found, does not state that it
collects information about the disk, memory and application orientation. Pushwoosh enu-
merated the elements they collected, however, there was no evidence from them stating
that the jailbroken status and connection information is collected. Finally, based on what
was found, Startapp misses to detail that they collect information regarding the battery,
root status, screen properties, memory, and dozens of elements related to the network of
the device, in their policy.

To the best effort, it could not be found a disclosure by Amplitude and Segment
(Twilio) of the data they collect from their Android SDKs. No privacy policy or data
collection information was found for AltBeacon and Open Telemetry (however, no track-
ing behavior from them was found).

Finally, some trackers, like Startapp, openly declare that they will share/sell the
tracked information from the users of the apps where their SDK is included: “We will
share, license, sell, transfer or make available your data (or part of it) with Advertisers, adver-
tising networks, Business Partners and/or our Data Partners which may use it while serving
you targeted and/or personalized advertisements...”. Including these kinds of trackers in
government-sponsored apps that restrain the spread of a global pandemic can be, at
the very least, controversial.

6.5 Observations Regarding Possible Roots of the Problem

One interesting question is, why do trackers find their way into these critical apps,
most of them sponsored by governments, highly influential organizations, universities,
or health providers? How is this possible?

Without a doubt, to answer these questions, a focused study would be required;
however, based on the information studied, we provide some initial explanations.
SDKs and privacy implications. Developers and privacy teams may not be aware of
the privacy implications of including SDKs in their apps. Adding SDKs, especially
trackers, involves information flowing from the device to the SDK server (thus, a third
party). Therefore, they need to validate that this data exfiltration is adequate and ac-
cepted by the user.
Technical complexity. For privacy teams, understanding what trackers do and how
they can find this information (for example, following the steps taken in this study) can
be too complex or technical. On the other hand, understanding what information is

6.5. Observations Regarding Possible Roots of the Problem 69

Tracker Declares Coincides References
AdColony Policy No [3] [2]
Airship Enumeration Yes [8]
AltBeacon - - No Data
Amplitude Policy No Data [13]
AppNext Policy No [17] [16]
Branch Mix Yes [20]
Braze Enumeration No [22] [23]
Bugsnag Enumeration Yes [24]
Flurry Enumeration Yes [49]
Google AdMob Enumeration No [4]
Google Firebase Enumeration Yes [47] [48]
Google Tag Manager Enumeration Yes [85]
Mapbox Policy Yes [64]
Matomo Enumeration Yes [65]
MixPanel Enumeration Yes [67]
New Relic Enumeration No [71]
OneSignal Enumeration Yes [72]
Open Telemetry - - No Data
Pushwoosh Enumeration No [76]
Segment Policy No Data [80]
Splunk MINT Enumeration Yes [81]
Startapp Policy No [82] [83]

TABLE 6.1: Trackers declaration of data collected with their Android
SDK.

sensitive, personal, or private under applicable regulations may be outside the scope of
development teams.
Tools availability. To the best of our efforts, we could not find open-source tools to
help privacy or development teams review the activity performed by the tracker’s code
within their apps. This lack of tools may hinder privacy analysis since the unique avail-
able approach would be to read the SDK code (if publicly available in, for example,
repositories as GitHub or Bitbucket) or, even more complex, resort to reverse engineer-
ing mechanisms. As previously stated in Chapter 5, this was one of the main motiva-
tions to develop SAPITO.
Communication issues. As in every organization with multiple disparate teams, good
communication channels are essential. Here, for example, development teams should
make privacy teams aware of the inclusion of SDKs into the apps and what it implies
since the privacy impact of that could even be an obstacle to its release or, at least, may
demand a revision of the application’s privacy policy. The practice of using Privacy
Champions in development teams shows promising results [86].
Project priorities and resources. Currently, privacy should be a priority in any software
project. Sadly, this does not happen. For example, this lack of attention to privacy was
found in startups [27]. However, governments and other international organizations
are not startups, and they must take privacy as one of the most important requirements
in the systems and applications they develop or sponsor. On the other hand, in juris-
dictions where privacy is a priority, resources for it may not be abundant, especially in

70 Chapter 6. Discussion

the governmental sector.
Privacy statements by SDK providers. Companies behind SDKs (including trackers)
want these to be used. Hence, it is in their best interest not to highlight their SDKs’
tracking behavior. The common practice is to put the minimum information on their
policies simply to comply with applicable law. This information is mostly written in
their terms of services, using legal jargon. What ends up happening is that the decision
whether to use the tracker or not is taken by developers, which may not have the proper
role and legal knowledge to take them [68].
Privacy services. Finally, another cause could be the lack of expert teams provid-
ing third-party privacy services with enough understanding of the legal and technical
components in every jurisdiction releasing these critical and widely used mobile apps.
However, important regulations like GDPR and other data protection laws may have
helped with data privacy awareness and the creation of new privacy services offered
and demanded worldwide.

71

Chapter 7

Conclusion and Further Work

As described in Chapter 4, trackers were extensively used in COVID-19 mobile apps.
A total of 58 different trackers were found in the 595 studied apps, some of them con-
taining over 5 trackers. However, it is worth noting that almost one-third of the apps
in the collected data set did not include any tracker. In addition, historical research of
Exodus reports demonstrated that the number of trackers included in the apps did not
necessarily decrease throughout the pandemic. Of 102 apps that contained more than
one report and a tracker in the first one of these, only 25 apps showed a decrease in the
number of contained trackers (and just 6 of these removed all trackers present in the
app).

Furthermore, the analysis of the trackers’ code allowed us precisely to identify the
information being collected and sent to their servers. It was found that in COVID-19 re-
lated apps, information shared with third-parties included the Android Advertisement
ID of the device; its specific location and locale configuration; its operating system,
model, brand, manufacturer and rooted condition; the status of memory, disk, screen,
audio, and battery; network data; and the application where the trackers were in-
cluded, plus other running apps and processes. These elements were contrasted with
what trackers detail in their data collection disclosure documentation and found that,
in some cases, there was not a complete disclosure of all items being collected. More-
over, the use of push notification services also has the potential to disclose sensitive
information related to the health status of app users to the providers of these services,
depending on the content of the messages.

Chapter 6 discusses the possible consequences of including trackers and push noti-
fication services for COVID-19 apps. It was concluded that, under certain conditions,
sensitive information related to users’ health could be disclosed to third parties, poten-
tially violating applicable regulations. For example, since trackers collect the app ID,
in case this app were used to enforce quarantine or to track the disease evolution in a
user, they could infer that the app user was infected with COVID-19. Moreover, since
they collect location information, they could identify where infected users were and the
places they visited (including identifying in this manner their health provider). An-
other example of disclosure to third parties could be when the users’ positive infection
status is notified using push notification services. Additionally, some trackers openly
disclose that data collected could be transferred or sold to other parties. Therefore, the

72 Chapter 7. Conclusion and Further Work

impact on the users increases when these trackers are used. Finally, since trackers were
included in apps with millions of downloads, the number of affected users is extremely
large (hundreds of millions).

Data protection initiatives were also discussed, coming mainly from the govern-
ment sector, oriented toward providing guidelines and requirements concerning the
privacy of citizens’ data manipulated by the applications studied. Despite a vast amount
of research focused on the ecosystem of Android trackers, industry and government
sectors seem to be unaware of the impact these libraries may have on data protection
when included in their apps. It is clear that privacy policies and data protection impact
assessments have room for improvement.

This kind of research of trackers in the scope of COVID-19 apps can be extrapo-
lated to application ecosystems like financial and payments, where bank secrecy could
be violated if practical information regarding the financial activities of the app users is
transferred to third parties. It would also be interesting to keep exploring the health
domain, where apps could allow trackers to collect information about users without
their consent.

As commented in Chapter 6, further study would be needed to identify why track-
ers are included in critical apps. Are their services strictly necessary for the apps? Are
there safer alternatives? Even if no health data is directly processed, the health status
of the apps users could be inferred, with some data aggregation.

Similarly, push notification services could violate data protection regulations, since
sensitive information is transmitted in plaintext to third parties. Developers should
publicly inform the users of this data transfer method (not only in the privacy policy)
and, ideally, obtain their consent to use it.

Research focused on why trackers end in critical apps has the potential to identify
mitigating measures encouraging best practices regarding privacy analyzes. As an ex-
ample, the execution of data protection impact assessments in every future application
developed or sponsored by governments must be encouraged, including the analysis
of SDK usage in the apps. Based on what was seen, just a few jurisdictions studied the
impact of their inclusion in COVID-19 apps.

On the other hand, trackers that explicitly indicate that they segment users and sell
the collected information to other parties must be avoided at all costs in these apps.

Also, a prototype of an open-source tool to analyze SDKs in Android apps was
developed (SAPITO), especially helpful to detect tracking behavior from these pack-
ages.

In its current status, the tool SAPITO has some limitations. First, it can detect track-
ers present in the application, but it does not check whether they are activated or called
at any point. As long as they are dormant and do not have an API key associated, they
are not dangerous. Besides these false positives, there may also be some false negatives,
since the dangerous behavior detection rules are based on what has been observed in
the trackers analyzed. Thus, there may be cases that were not found in this study and
are not included in those detection rules.

Chapter 7. Conclusion and Further Work 73

Additionally, to study tracking behavior, the analysis done from finding the instruc-
tion where data is collected to the moment it is sent to the third-party server is quite
complex (the binary usually has thousands of classes and dozen of thousand of meth-
ods, most of them obfuscated). Hence, it would then be helpful to add to the developed
tool a module to manually, or even better, automatically, build a diagram following the
path of the harvested data, such as a data flow diagram, a class diagram, or a call graph.

A different line of work is to extend SAPITO with the ability to process iOS appli-
cations and to provide support for the analysis of trackers in the web landscape since
most trackers analyzed in this research provide web SDKs as well [21, 14, 70, 12, 73].

75

Bibliography

[1] Anglemyer A et al. “Digital contact tracing technologies in epidemics: a rapid
review”. In: Cochrane Database Syst Rev (2020).

[2] AdColony Consumer Policy. https://www.adcolony.com/consumer- privacy/.
Accessed: 2022-09-29.

[3] AdColony Privacy Policy. https://www.adcolony.com/privacy- policy/. Ac-
cessed: 2022-09-29.

[4] AdMob Data Collection. https://support.google.com/admob/answer/9755590.
Accessed: 2022-09-29.

[5] AWO Agency. “GOVERNMENT RESPONSES TO THE COVID-19 PANDEMIC”.
In: (2021).

[6] AWO Agency. “Report on the privacy risks of COVID-19 software”. In: (2020).

[7] Nadeem Ahmed et al. “A Survey of COVID-19 Contact Tracing Apps”. In: IEEE
Access 8 (2020), pp. 134577–134601. DOI: 10.1109/ACCESS.2020.3010226.

[8] Airship Data Collection. https://docs.airship.com/platform/android/data-
collection/. Accessed: 2022-09-29.

[9] Zainab Alfayez, Nabaa Al-Sinayyid, and Sadeq AL-Ameri. “Mobile Applications
Developed By Arab Countries In Response To Covid-19: A review”. In: Journal
of Information System and Technology Management 6 (Sept. 2021), pp. 200–211. DOI:
10.35631/JISTM.622016.

[10] Amal Awadalla Ali et al. “Contact Tracing Apps for COVID-19: Access Permis-
sion and User Adoption”. In: 2020 7th International Conference on Behavioural and
Social Computing (BESC). 2020, pp. 1–7. DOI: 10.1109/BESC51023.2020.9348327.

[11] Kevin Allix et al. “AndroZoo: Collecting Millions of Android Apps for the Re-
search Community”. In: Proceedings of the 13th International Conference on Mining
Software Repositories. MSR ’16. Austin, Texas: ACM, 2016, pp. 468–471. ISBN: 978-
1-4503-4186-8. DOI: 10.1145/2901739.2903508. URL: http://doi.acm.org/10.
1145/2901739.2903508.

[12] Amplitude Analytics Browser. www.npmjs.com/package/@amplitude/analytics-
browser. Accessed: 2022-09-19.

[13] Amplitude Privacy. https://amplitude.com/privacy. Accessed: 2022-09-29.

https://www.adcolony.com/consumer-privacy/
https://www.adcolony.com/privacy-policy/
https://support.google.com/admob/answer/9755590
https://doi.org/10.1109/ACCESS.2020.3010226
https://docs.airship.com/platform/android/data-collection/
https://docs.airship.com/platform/android/data-collection/
https://doi.org/10.35631/JISTM.622016
https://doi.org/10.1109/BESC51023.2020.9348327
https://doi.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
www.npmjs.com/package/@amplitude/analytics-browser
www.npmjs.com/package/@amplitude/analytics-browser
https://amplitude.com/privacy

76 Bibliography

[14] Analytics.js 2.0 Source. https : / / segment . com / docs / connections / sources /
catalog/libraries/website/javascript/#analytics-js-2-0-source. Ac-
cessed: 2022-09-19.

[15] Androguard. https://github.com/androguard/androguard. Accessed: 2022-09-
19.

[16] Appnext DPA. https://www.appnext.com/dpa/. Accessed: 2022-09-29.

[17] Appnext Policy. https://www.appnext.com/policy.html. Accessed: 2022-09-29.

[18] Reuben Binns et al. “Third Party Tracking in the Mobile Ecosystem”. In: Proceed-
ings of the 10th ACM Conference on Web Science. WebSci ’18. Amsterdam, Nether-
lands: Association for Computing Machinery, 2018, pp. 23–31. ISBN: 9781450355636.
DOI: 10.1145/3201064.3201089. URL: https://doi.org/10.1145/3201064.
3201089.

[19] Kirsten Bock et al. “Data Protection Impact Assessment for the Corona App”. In:
SSRN Electronic Journal (Jan. 2020). DOI: 10.2139/ssrn.3588172.

[20] Branch Privacy Policy. https://branch.io/policies/privacy-policy/#privacy-
what-information-does-branch-collect-from-our-services. Accessed: 2022-
09-29.

[21] Branch Web Full Reference. https://help.branch.io/developers-hub/docs/
web-full-reference. Accessed: 2022-09-19.

[22] Braze Data Collection. https://www.braze.com/docs/developer_guide/platform_
integration_guides/android/google_play_privacy/. Accessed: 2022-09-29.

[23] Braze SDK Data Collection. https://www.braze.com/docs/user_guide/data_
and_analytics/user_data_collection/sdk_data_collection. Accessed: 2022-
09-29.

[24] Bugsnag Data Collection. https : / / docs . bugsnag . com / platforms / android /
automatically-captured-data/. Accessed: 2022-09-29.

[25] Capillary. https://github.com/google/capillary. Accessed: 2022-10-02.

[26] Davide Caputo et al. “You Can’t Always Get What You Want: Towards User-
Controlled Privacy on Android”. In: IEEE Transactions on Dependable and Secure
Computing (Jan. 2022), pp. 1–1. DOI: 10.1109/TDSC.2022.3146020.

[27] Wenhong Chen et al. ““As We Grow, It Will Become a Priority”: American Mo-
bile Start-Ups’ Privacy Practices”. In: American Behavioral Scientist 62.10 (2018),
pp. 1338–1355. DOI: 10.1177/0002764218787867. eprint: https://doi.org/10.
1177/0002764218787867. URL: https://doi.org/10.1177/0002764218787867.

[28] Hyunghoon Cho, Daphne Ippolito, and Yun William Yu. “Contact Tracing Mobile
Apps for COVID-19: Privacy Considerations and Related Trade-offs”. In: ArXiv
abs/2003.11511 (2020).

https://segment.com/docs/connections/sources/catalog/libraries/website/javascript/#analytics-js-2-0-source
https://segment.com/docs/connections/sources/catalog/libraries/website/javascript/#analytics-js-2-0-source
https://github.com/androguard/androguard
https://www.appnext.com/dpa/
https://www.appnext.com/policy.html
https://doi.org/10.1145/3201064.3201089
https://doi.org/10.1145/3201064.3201089
https://doi.org/10.1145/3201064.3201089
https://doi.org/10.2139/ssrn.3588172
https://branch.io/policies/privacy-policy/#privacy-what-information-does-branch-collect-from-our-services
https://branch.io/policies/privacy-policy/#privacy-what-information-does-branch-collect-from-our-services
https://help.branch.io/developers-hub/docs/web-full-reference
https://help.branch.io/developers-hub/docs/web-full-reference
https://www.braze.com/docs/developer_guide/platform_integration_guides/android/google_play_privacy/
https://www.braze.com/docs/developer_guide/platform_integration_guides/android/google_play_privacy/
https://www.braze.com/docs/user_guide/data_and_analytics/user_data_collection/sdk_data_collection
https://www.braze.com/docs/user_guide/data_and_analytics/user_data_collection/sdk_data_collection
https://docs.bugsnag.com/platforms/android/automatically-captured-data/
https://docs.bugsnag.com/platforms/android/automatically-captured-data/
https://github.com/google/capillary
https://doi.org/10.1109/TDSC.2022.3146020
https://doi.org/10.1177/0002764218787867
https://doi.org/10.1177/0002764218787867
https://doi.org/10.1177/0002764218787867
https://doi.org/10.1177/0002764218787867

Bibliography 77

[29] Andrea Continella et al. “Obfuscation-Resilient Privacy Leak Detection for Mo-
bile Apps Through Differential Analysis”. In: Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS). San Diego, CA, Feb. 2017.

[30] Coronavirus disease COVID-19. www.who.int/health-topics/coronavirus. Ac-
cessed: 2022-09-15.

[31] Covid Safe Privacy Policy. https://cert-app.be/en/privacy-covidsafe.html.
Accessed: 2022-09-30.

[32] Covid Tracing Tracker. https://docs.google.com/spreadsheets/d/1ATalASO8KtZMx_
_zJREoOvFh0nmB-sAqJ1-CjVRSCOw. Accessed: 2022-10-05.

[33] COVID-19 Contact tracing: data protection expectations on app development. https:
//ico.org.uk/media/for-organisations/documents/2617676/ico-contact-

tracing-recommendations.pdf. Accessed: 2022-10-04.

[34] COVID-19 Dashboard, Johns Hopkins University. www.arcgis.com/apps/dashboards/
bda7594740fd40299423467b48e9ecf6. Accessed: 2022-09-15.

[35] COVID19 - DXB Smart App Privacy Policy. https : / / www . dha . gov . ae / en /
privacy-policy. Accessed: 2022-09-30.

[36] Paul-Olivier Dehaye and Joel Reardon. “Proximity Tracing in an Ecosystem of
Surveillance Capitalism”. In: Proceedings of the 19th Workshop on Privacy in the Elec-
tronic Society. WPES’20. Virtual Event, USA: Association for Computing Machin-
ery, 2020, pp. 191–203. ISBN: 9781450380867. DOI: 10.1145/3411497.3420219.
URL: https://doi.org/10.1145/3411497.3420219.

[37] Device Fingerprinting. https://blog.getsocial.im/device-fingerprinting-
for-mobile-attribution/. Accessed: 2022-10-03.

[38] DPIA Covid Tracker App. https : / / github . com / HSEIreland / covidtracker -
documentation/blob/master/documentation/privacy/. Accessed: 2022-09-30.

[39] DPIA CovidCert. https://covid-19.hscni.net/covidcert-ni-mobile-app/.
Accessed: 2022-09-30.

[40] DPIA Koronavirus. https://www.koronavirus.hr/uploads/Stop_COVID_19_
Data_Protection_Impact_Assesment_Summary_2020_11_16_58dea76816.pdf.
Accessed: 2022-09-30.

[41] DPIA NHS. https : / / assets . publishing . service . gov . uk / government /
uploads/system/uploads/attachment_data/file/1028998/NHS_COVID_19_

App_DPIA.pdf. Accessed: 2022-09-30.

[42] DPIA NZ COVID Tracer. https://www.health.govt.nz/system/files/documents/
pages/contact_tracing_app_pia_for_release_10_final.pdf. Accessed: 2022-
09-30.

[43] DPIA StopCOVID NI. https://covid-19.hscni.net/wp-content/uploads/
2020/10/DPIA- for- StopCOVID- NI- Proximity- App- 14.10.pdf. Accessed:
2022-09-30.

www.who.int/health-topics/coronavirus
https://cert-app.be/en/privacy-covidsafe.html
https://docs.google.com/spreadsheets/d/1ATalASO8KtZMx__zJREoOvFh0nmB-sAqJ1-CjVRSCOw
https://docs.google.com/spreadsheets/d/1ATalASO8KtZMx__zJREoOvFh0nmB-sAqJ1-CjVRSCOw
https://ico.org.uk/media/for-organisations/documents/2617676/ico-contact-tracing-recommendations.pdf
https://ico.org.uk/media/for-organisations/documents/2617676/ico-contact-tracing-recommendations.pdf
https://ico.org.uk/media/for-organisations/documents/2617676/ico-contact-tracing-recommendations.pdf
www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6
https://www.dha.gov.ae/en/privacy-policy
https://www.dha.gov.ae/en/privacy-policy
https://doi.org/10.1145/3411497.3420219
https://doi.org/10.1145/3411497.3420219
https://blog.getsocial.im/device-fingerprinting-for-mobile-attribution/
https://blog.getsocial.im/device-fingerprinting-for-mobile-attribution/
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/
https://covid-19.hscni.net/covidcert-ni-mobile-app/
https://www.koronavirus.hr/uploads/Stop_COVID_19_Data_Protection_Impact_Assesment_Summary_2020_11_16_58dea76816.pdf
https://www.koronavirus.hr/uploads/Stop_COVID_19_Data_Protection_Impact_Assesment_Summary_2020_11_16_58dea76816.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1028998/NHS_COVID_19_App_DPIA.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1028998/NHS_COVID_19_App_DPIA.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1028998/NHS_COVID_19_App_DPIA.pdf
https://www.health.govt.nz/system/files/documents/pages/contact_tracing_app_pia_for_release_10_final.pdf
https://www.health.govt.nz/system/files/documents/pages/contact_tracing_app_pia_for_release_10_final.pdf
https://covid-19.hscni.net/wp-content/uploads/2020/10/DPIA-for-StopCOVID-NI-Proximity-App-14.10.pdf
https://covid-19.hscni.net/wp-content/uploads/2020/10/DPIA-for-StopCOVID-NI-Proximity-App-14.10.pdf

78 Bibliography

[44] Ehteraz Privacy Policy. https://portal.moi.gov.qa/met2/privacyehteraz.
html. Accessed: 2022-09-30.

[45] Exodus Standalone. https://github.com/Exodus-Privacy/exodus-standalone.
Accessed: 2022-09-20.

[46] Exodus static analysis. https://exodus- privacy.eu.org/en/post/exodus_
static_analysis/. Accessed: 2022-09-19.

[47] Firebase Data Collection 1. https://support.google.com/firebase/answer/
9234069. Accessed: 2022-09-29.

[48] Firebase Data Collection 2. https://support.google.com/firebase/answer/
9268042. Accessed: 2022-09-29.

[49] Flurry Data Disclosure. https://www.flurry.com/blog/google- play- data-
disclosure-requirements/. Accessed: 2022-09-29.

[50] Google Play Safety Section. https://android-developers.googleblog.com/2021/
07/new-google-play-safety-section.html. Accessed: 2022-09-29.

[51] gplaydl. https://github.com/rehmatworks/gplaydl. Accessed: 2022-09-20.

[52] Majid Hatamian et al. “A Privacy and Security Analysis of Early-Deployed COVID-
19 Contact Tracing Android Apps”. In: Empirical Softw. Engg. 26.3 (May 2021).
ISSN: 1382-3256. DOI: 10.1007/s10664-020-09934-4. URL: https://doi.org/
10.1007/s10664-020-09934-4.

[53] Hayat Eve Sigar Privacy Policy. https://hayatevesigar.saglik.gov.tr/gizlilik_
politikasi_eng_index_V2.html. Accessed: 2022-09-30.

[54] Yongzhong He et al. “Dynamic privacy leakage analysis of Android third-party
libraries”. In: Journal of Information Security and Applications 46 (2019), pp. 259–270.
ISSN: 2214-2126. DOI: https://doi.org/10.1016/j.jisa.2019.03.014. URL:
https://www.sciencedirect.com/science/article/pii/S2214212618304356.

[55] Nakamoto I et al. “A QR Code–Based Contact Tracing Framework for Sustainable
Containment of COVID-19: Evaluation of an Approach to Assist the Return to
Normal Activity”. In: JMIR Mhealth Uhealth (2020).

[56] Instant Apps. https://developer.android.com/topic/google-play-instant.
Accessed: 2022-09-23.

[57] Samhi J, Allix K, and Bissyandé T Fand Klein J. “A first look at Android applica-
tions in Google Play related to COVID-19”. In: Empirical Software Engineering 26
(4 2021).

[58] jadx - Dex to Java decompiler. https://github.com/skylot/jadx. Accessed: 2022-
09-19.

[59] Kollnig Konrad et al. “A Fait Accompli? An Empirical Study into the Absence of
Consent to Third-Party Tracking in Android Apps”. In: (June 2021).

https://portal.moi.gov.qa/met2/privacyehteraz.html
https://portal.moi.gov.qa/met2/privacyehteraz.html
https://github.com/Exodus-Privacy/exodus-standalone
https://exodus-privacy.eu.org/en/post/exodus_static_analysis/
https://exodus-privacy.eu.org/en/post/exodus_static_analysis/
https://support.google.com/firebase/answer/9234069
https://support.google.com/firebase/answer/9234069
https://support.google.com/firebase/answer/9268042
https://support.google.com/firebase/answer/9268042
https://www.flurry.com/blog/google-play-data-disclosure-requirements/
https://www.flurry.com/blog/google-play-data-disclosure-requirements/
https://android-developers.googleblog.com/2021/07/new-google-play-safety-section.html
https://android-developers.googleblog.com/2021/07/new-google-play-safety-section.html
https://github.com/rehmatworks/gplaydl
https://doi.org/10.1007/s10664-020-09934-4
https://doi.org/10.1007/s10664-020-09934-4
https://doi.org/10.1007/s10664-020-09934-4
https://hayatevesigar.saglik.gov.tr/gizlilik_politikasi_eng_index_V2.html
https://hayatevesigar.saglik.gov.tr/gizlilik_politikasi_eng_index_V2.html
https://doi.org/https://doi.org/10.1016/j.jisa.2019.03.014
https://www.sciencedirect.com/science/article/pii/S2214212618304356
https://developer.android.com/topic/google-play-instant
https://github.com/skylot/jadx

Bibliography 79

[60] Letter to FTC. https://consumerwatchdog.org/resources/LtrFTCfinal.pdf.
Accessed: 2022-09-12.

[61] Xing Liu et al. “Privacy Risk Analysis and Mitigation of Analytics Libraries in
the Android Ecosystem”. In: IEEE Transactions on Mobile Computing 19.5 (2020),
pp. 1184–1199. DOI: 10.1109/TMC.2019.2903186.

[62] Dieter M et al. “Pandemic platform governance: Mapping the global ecosystem
of COVID-19 response apps”. In: Internet Policy Review 10 (3 2021).

[63] Azad MA et al. “A First Look at Privacy Analysis of COVID-19 Contact-Tracing
Mobile Applications”. In: IEEE Internet Things J (2020).

[64] Mapbox Privacy. https://www.mapbox.com/legal/privacy. Accessed: 2022-09-
29.

[65] Matomo Data Collection. https://matomo.org/faq/general/faq_18254/. Ac-
cessed: 2022-09-29.

[66] MIT Technology Review Covid Tracing Tracker. https://www.technologyreview.
com/2020/12/23/1015557/covid-apps-contact-tracing-suspended-replaced-

or-relaunched/. Accessed: 2022-10-03.

[67] Mixpanel Data Collection. https://help.mixpanel.com/hc/en-us/articles/
115004613766-Default-Properties-Collected-by-Mixpanel#android/. Ac-
cessed: 2022-09-29.

[68] Tahaei Mohammad and Vaniea Kami. “"Developers Are Responsible": What Ad
Networks Tell Developers About Privacy”. In: Extended Abstracts of the 2021 CHI
Conference on Human Factors in Computing Systems. CHI EA ’21. Yokohama, Japan:
Association for Computing Machinery, 2021. ISBN: 9781450380959. DOI: 10.1145/
3411763.3451805. URL: https://doi.org/10.1145/3411763.3451805.

[69] Sergio Nesmachnow and Santiago Iturriaga. “Cluster-UY: Collaborative Scientific
High Performance Computing in Uruguay”. In: Supercomputing. Ed. by Moisés
Torres and Jaime Klapp. Cham: Springer International Publishing, 2019, pp. 188–
202. ISBN: 978-3-030-38043-4.

[70] New Relic Browser Monitoring. https : / / newrelic . com / platform / browser -
monitoring. Accessed: 2022-09-19.

[71] New Relic Privacy. https://docs.newrelic.com/docs/mobile-monitoring/new-
relic-mobile/get-started/security-mobile-apps. Accessed: 2022-09-29.

[72] OneSignal Data Collection. https://documentation.onesignal.com/docs/data-
collected-by-the-onesignal-sdk. Accessed: 2022-09-29.

[73] OneSignal Web Push. https://onesignal.com/webpush. Accessed: 2022-09-19.

[74] Pedulilindungi Privacy Policy. https://www.pedulilindungi.id/kebijakan-
privasi-data?lang=en. Accessed: 2022-09-30.

[75] Privacy – a fundamental right. https://edps.europa.eu/data-protection/data-
protection_en. Accessed: 2022-09-30.

https://consumerwatchdog.org/resources/LtrFTCfinal.pdf
https://doi.org/10.1109/TMC.2019.2903186
https://www.mapbox.com/legal/privacy
https://matomo.org/faq/general/faq_18254/
https://www.technologyreview.com/2020/12/23/1015557/covid-apps-contact-tracing-suspended-replaced-or-relaunched/
https://www.technologyreview.com/2020/12/23/1015557/covid-apps-contact-tracing-suspended-replaced-or-relaunched/
https://www.technologyreview.com/2020/12/23/1015557/covid-apps-contact-tracing-suspended-replaced-or-relaunched/
https://help.mixpanel.com/hc/en-us/articles/115004613766-Default-Properties-Collected-by-Mixpanel#android/
https://help.mixpanel.com/hc/en-us/articles/115004613766-Default-Properties-Collected-by-Mixpanel#android/
https://doi.org/10.1145/3411763.3451805
https://doi.org/10.1145/3411763.3451805
https://doi.org/10.1145/3411763.3451805
https://newrelic.com/platform/browser-monitoring
https://newrelic.com/platform/browser-monitoring
https://docs.newrelic.com/docs/mobile-monitoring/new-relic-mobile/get-started/security-mobile-apps
https://docs.newrelic.com/docs/mobile-monitoring/new-relic-mobile/get-started/security-mobile-apps
https://documentation.onesignal.com/docs/data-collected-by-the-onesignal-sdk
https://documentation.onesignal.com/docs/data-collected-by-the-onesignal-sdk
https://onesignal.com/webpush
https://www.pedulilindungi.id/kebijakan-privasi-data?lang=en
https://www.pedulilindungi.id/kebijakan-privasi-data?lang=en
https://edps.europa.eu/data-protection/data-protection_en
https://edps.europa.eu/data-protection/data-protection_en

80 Bibliography

[76] Pushwoosh Data Collection. https://help.pushwoosh.com/hc/en-us/articles/
360015945252-What-user-data-does-Pushwoosh-collect-. Accessed: 2022-09-
29.

[77] Pushwoosh Push Notification Privacy. https://blog.pushwoosh.com/blog/how-
to-work-with-sensitive-data-if-you-want-to-use-push-notifications-

2/. Accessed: 2022-09-24.

[78] Abbas Razaghpanah et al. “Apps, Trackers, Privacy, and Regulators: A Global
Study of the Mobile Tracking Ecosystem”. In: NDSS. 2018.

[79] SAPITO. https://gitlab.fing.edu.uy/gsi/sapito. Accessed: 2023-11-12.

[80] Segment (Twilio) Privacy. https://www.twilio.com/legal/privacy. Accessed:
2022-09-29.

[81] Splunk MINT Data Collection. https://docs.splunk.com/Documentation/Mint/
1.0/ProductOverview/AboutSplunkMINTdatacollection. Accessed: 2022-09-29.

[82] Startapp Privacy. https://www.start.io/privacy-faq/. Accessed: 2022-09-29.

[83] Startapp Privacy Policy. https://www.start.io/policy/privacy-policy-site/.
Accessed: 2022-09-29.

[84] Ryan Stevens et al. “Investigating User Privacy in Android Ad Libraries”. In:
2012.

[85] Tag Manager Data Collection. https://support.google.com/tagmanager/answer/
9323295. Accessed: 2022-09-29.

[86] Mohammad Tahaei, Alisa Frik, and Kami Vaniea. “Privacy Champions in Soft-
ware Teams: Understanding Their Motivations, Strategies, and Challenges”. In:
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
CHI ’21. Yokohama, Japan: Association for Computing Machinery, 2021. ISBN:
9781450380966. DOI: 10.1145/3411764.3445768. URL: https://doi.org/10.
1145/3411764.3445768.

[87] Gioacchino Tangari et al. “Mobile health and privacy: Cross sectional study”. In:
BMJ 373 (June 2021), n1248. DOI: 10.1136/bmj.n1248.

[88] Kouliaridis V et al. “Dissecting contact tracing apps in the Android platform”. In:
PLoS One (2021).

[89] Jice Wang et al. “Understanding Malicious Cross-library Data Harvesting on An-
droid”. In: USENIX Security Symposium. 2021.

[90] Liu Wang et al. “Beyond the virus: a first look at coronavirus-themed Android
malware”. In: Empirical Software Engineering 26.4 (2021). ISSN: 1573-7616. DOI: 10.
1007/s10664-021-09974-4. URL: https://doi.org/10.1007/s10664-021-
09974-4.

[91] Liu Wang et al. Beyond the Virus: A First Look at Coronavirus-themed Mobile Malware.
2021. arXiv: 2005.14619 [cs.CR].

https://help.pushwoosh.com/hc/en-us/articles/360015945252-What-user-data-does-Pushwoosh-collect-
https://help.pushwoosh.com/hc/en-us/articles/360015945252-What-user-data-does-Pushwoosh-collect-
https://blog.pushwoosh.com/blog/how-to-work-with-sensitive-data-if-you-want-to-use-push-notifications-2/
https://blog.pushwoosh.com/blog/how-to-work-with-sensitive-data-if-you-want-to-use-push-notifications-2/
https://blog.pushwoosh.com/blog/how-to-work-with-sensitive-data-if-you-want-to-use-push-notifications-2/
https://gitlab.fing.edu.uy/gsi/sapito
https://www.twilio.com/legal/privacy
https://docs.splunk.com/Documentation/Mint/1.0/ProductOverview/AboutSplunkMINTdatacollection
https://docs.splunk.com/Documentation/Mint/1.0/ProductOverview/AboutSplunkMINTdatacollection
https://www.start.io/privacy-faq/
https://www.start.io/policy/privacy-policy-site/
https://support.google.com/tagmanager/answer/9323295
https://support.google.com/tagmanager/answer/9323295
https://doi.org/10.1145/3411764.3445768
https://doi.org/10.1145/3411764.3445768
https://doi.org/10.1145/3411764.3445768
https://doi.org/10.1136/bmj.n1248
https://doi.org/10.1007/s10664-021-09974-4
https://doi.org/10.1007/s10664-021-09974-4
https://doi.org/10.1007/s10664-021-09974-4
https://doi.org/10.1007/s10664-021-09974-4
https://arxiv.org/abs/2005.14619

Bibliography 81

[92] Haohuang Wen et al. “A Study of the Privacy of COVID-19 Contact Tracing
Apps”. In: Security and Privacy in Communication Networks. Ed. by Noseong Park
et al. Cham: Springer International Publishing, 2020, pp. 297–317. ISBN: 978-3-
030-63086-7.

[93] Wenjia Wu et al. “Efficient Fingerprinting-Based Android Device Identification
With Zero-Permission Identifiers”. In: IEEE Access 4 (2016), pp. 8073–8083. DOI:
10.1109/ACCESS.2016.2626395.

[94] F Yang, L Heemsbergen, and R Fordyce. “Comparative analysis of China’s Health
Code, Australia’s COVIDSafe and New Zealand’s COVID Tracer Surveillance
Apps: a new corona of public health governmentality?” In: Media International
Australia (2021).

[95] Zenodo, CERN. www.eui.eu/Research/Library/ResearchGuides/Economics/
Statistics/DataPortal/Zenodo. Accessed: 2022-09-20.

[96] Sophia L. Zhou et al. “Lessons on mobile apps for COVID-19 from China”. In:
Journal of Safety Science and Resilience 2.2 (2021), pp. 40–49. ISSN: 2666-4496. DOI:
https://doi.org/10.1016/j.jnlssr.2021.04.002. URL: https://www.
sciencedirect.com/science/article/pii/S2666449621000128.

https://doi.org/10.1109/ACCESS.2016.2626395
www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/Zenodo
www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/Zenodo
https://doi.org/https://doi.org/10.1016/j.jnlssr.2021.04.002
https://www.sciencedirect.com/science/article/pii/S2666449621000128
https://www.sciencedirect.com/science/article/pii/S2666449621000128

83

Appendix A

List of COVID-19 Android
applications analyzed

In this Appendix, we list the applications that were studied in our research, pointing to
the country, region or jurisdiction where it was intended.

Country App ID Country App ID

Albania dgca.verifier.app.covidpassandroidal Algeria com.covid19_algeria
Andorra ad.saas.andorrasalutapp Angola com.bullray.covid
Argentina com.c19.sl Argentina ar.gob.coronavirus
Armenia am.gov.covid19 Armenia com.sylex.armed
Aruba org.dvgapp.tourist Australia org.beatcovid19now.application
Australia au.gov.health.covid19 Australia au.gov.health.covidsafe
Australia au.gov.act.health.checkin Australia au.gov.nt.health.checkin
Australia au.gov.nsw.service Australia au.gov.qld.checkin
Australia au.gov.sa.my Australia au.gov.tas.checkin
Australia au.gov.vic.service.digitalwallet.citizen Australia au.gov.wa.digital.service.mobile.servicewa...
Austria at.roteskreuz.stopcorona Austria at.gv.brz.wallet
Azerbaijan az.gov.etabib Azerbaijan com.uptodate
Azerbaijan az.gov.my Bahrain bh.bahrain.corona.tracker
Bangladesh bd.com.cmed.agent Bangladesh com.bs.ccc
Bangladesh com.shohoz.tracer Bangladesh com.codersbucket.surokkha_app
Barbados com.xafe.bb.bimsafe Barbados io.xafe.bb.bimshield
Belgium be.sciensano.coronalert Belgium be.fgov.ehealth.DGC
Belize com.idealabstudios.mohwpassapp Bermuda org.wehealth.exposure
Bhutan bt.gov.moh.druktrace Bolivia com.sedes.bsana
Bolivia com.agetic.coronavirusapp Botswana com.gov.bw.iam
Brazil br.com.novetech.monitoracorona Brazil com.brazil.corona_brazil_check
Brazil com.apptodeolho Brazil br.gov.datasus.guardioes
Brazil br.gov.datasus.cnsdigital British Virgin Is. px.mw.android.aihealth.patient.bhslive...
Brunei egnc.moh.bruhealth Bulgaria bg.government.virusafe
Bulgaria dcc.check.bg Burkina Faso com.sante.dioula
Burkina Faso com.sante.covid2 Burkina Faso bf.diagnoseme.fasocivic
Cambodia com.khmer_vacc Canada ca.gc.cbsa.coronavirus
Canada ca.gc.hcsc.canada.covid19 Canada ca.bc.gov.health.hlbc.COVID19
Canada ca.albertahealthservices.contacttracing Canada ca.gc.hcsc.canada.stopcovid
Canada ca.quebec.vaxilecteurandroid Canada com.govmb.immunizationcard
Canada ca.bc.gov.vaxcheck Canada ca.ohri.immunizeapp
Canada ca.ontario.verify Canada ca.quebec.vaccandroid
Canada com.govmb.immunizationrecord Cape Verde com.devtrust.cv.comvida
Cape Verde cv.nosi.app.nhacard.validator Caribbean org.carpha.caritrvhealth
Cayman Islands com.cerner.iris.play Chile cl.gob.digital.coronapp
China com.systoon.dongaotoon China mo.gov.ssm.Macao_Health_Codev2
Colombia appinventor.ai_edwpores.SALUDPROY... Colombia co.gov.cali.calivallecorona
Colombia co.gov.ins.guardianes Colombia com.mocaplatform.cuidemonos
Colombia icesi.uccare Congo, Dem. Rep. id.jofarsystemskodine.dev

TABLE A.1: List of studied COVID-19 Android applications (Part 1/5).

84 Appendix A. List of COVID-19 Android applications analyzed

Country App ID Country App ID

Congo, Dem. Rep. com.rdctrack.covid1 Cook Islands ck.gov.cooksafeplus
Costa Rica com.ccss.expedienteunico Costa Rica gov.cr.enx.v3
Croatia hr.miz.evidencijakontakata Croatia hr.akd.dzp
Cuba club.postdata.covid19cuba Cuba cu.sld.COVID_19_InfoCU
Curacao com.dushistay.app Cyprus cy.gov.dmrid.covtracer
Cyprus cy.gov.eudcc.app.verifier_lite.android Cyprus cy.gov.eudcc.app.wallet.android
Czech Republic covid.czstatistika.covidcz Czech Republic com.appsisto.coronaviruscovid19
Czech Republic cz.covid19cz.erouska Czech Republic cz.seznam.mapy
Czech Republic cz.nakit.eocko.validate Czech Republic cz.nakit.eocko.wallet
Denmark com.netcompany.smittestop_exposure_noti... Denmark com.synlab.covidpass
Denmark dk.sum.ssicpas Dominican Rep. com.optic.covdr
Ecuador ec.gob.gobiernoelectronico.coronavirus Ecuador com.phuyusalud.movil
Ecuador ec.gob.asi.android Egypt com.egypt.hajj
Egypt com.vio.ettammen Egypt eg.com.eserve.sehatmisr
Egypt get.pid.egypt.health.passport Eritrea org.undp.er.health
Estonia ee.tehik.hoia Ethiopia com.twinsoftplc.covidtigray
Ethiopia et.gov.moh.oppia.covid Ethiopia com.ewenet.debo
Europe eu.europa.publications.reopeneu Europe com.secutix.blockchain.healthngo
Europe pt.incm.eudcc.app.lite Europe com.nocovid19.su
Fiji fj.gov.carefiji Finland fi.thl.koronahaavi
Finland fi.thl.koronatodistus France com.ambulis.aphm.covid
France fr.aphp.covidom France fr.gouv.android.stopcovid
France com.ingroupe.verify.anticovid France com.vogo.easycov
Georgia gov.georgia.novid20 Georgia com.moh.geehealth
Germany de.labuniq.medicover Germany de.rki.coronadatenspende
Germany com.coronacheck.haugxhaug.testyourcorona Germany de.bssd.covid19
Germany com.reactnativeapp Germany de.kreativzirkel.coronika
Germany de.rki.coronawarnapp Germany de.rki.covpass.app
Germany de.zollsoft.impfapp Ghana com.moc.gh
Gibraltar com.gha.covid.tracker Gibraltar com.gha.gibraltarvaccineapp
Greece com.docandu.checker Greece org.pathcheck.gr.bt
Greece gr.gov.dcc.mini Greece gr.gov.dcc.wallet
Grenada com.outsys.covidsupportapp Guatemala com.intelligent.alertaguate
Honduras com.doctor1847.unah.edu.hn Hong Kong com.compathnion.equarantine
Hong Kong hk.gov.ogcio.leavehomesafe Hong Kong hk.gov.ogcrio.covidresultqrscanner.full
Hungary com.hkr Hungary hu.gov.virusradar
Hungary hu.gov.eeszt.mgw.covidpassportcontrol Iceland is.landlaeknir.rakning
Iceland is.landlaeknir.skanni India com.negd.ayushfeedback
India com.NIC.covid19 India in.gov.surveyofindia.sahyog
India com.innovaccer.testyourselfgoa India com.innovaccer.testyourselfpuddu
India odisha.gov.covid19 India com.ksbcvirtualq
India com.bsafe.tracking India com.developmentlogics.patientgeotracker
India com.pixxonai.covid19 India com.bmc.qrtnwatch
India com.covid19.dgmup India com.homequarantine
India com.intutrack.covidtrack India com.pixxonai.covid19wb
India com.pratikthorat.coronatracker India www.facetagr.com.cobuddy
India org.nic.covidcarekannur India com.flowace.saiyam
India ai.zini.covoid India com.entrolabs.pharmacyap
India hr.gov.covid19.sahayak India com.app_release.covid19finalcourse
India com.app.coronabandungkab India com.delhi.covidcare
India com.entrolabs.apcovid19 India com.gmda.gcovid19
India com.ocac.covidodisha India com.qkopy.prdkerala
India com.stucare.ayush India com.tenten.coronawarriors
India com.tsstate.citizen India gov.mizoram.mcovid19
India in.gaia.smartcadre.agra India in.gov.chhattisgarh.cova
India in.mygov.mobile India in.gov.wb.wbrelieffund
India co.cellapp.bharatpurcovid India com.mahakavach
India nic.goi.aarogyasetu India com.ksrsac.drawshapefile
India com.cosafe.android India com.gcc.smartcity
India in.smc.covidout India com.allsoft.corona
India com.digilocker.android India in.gov.umang.negd.g2c
Indonesia com.kemenkes.inahac Indonesia com.LawanCovid19FC19S
Indonesia com.deepcovid19 Indonesia com.sepuluh.rumahaman
Indonesia id.go.jabarprov.pikobar Indonesia id.simpkb.guruberbagi
Indonesia id.anwarhasan.presensiwfh Indonesia com.telkom.tracencare
International com.solucionesun.pmovil International com.daon.glide.person.android
International cz.nmbbrno.covid International com.preemeyou.covid19
International com.webmd.android International de.xikolo.openwho
International org.un.corona International org.who.infoapp
International org.who.WHOA International com.who_mobile2020
International org.who.COVIDKAYA International org.who.LENA
International com.app.corona360 International com.bloomreality.sodi
International world.coalition.app International com.dhis2
International com.aokpass.aokpasspilot International com.tento.wallet
International eu.yourpass.wallet International org.thecommonsproject.android.commonpass
Iran co.health.covid Iraq com.y.twekl.CoronaVaccine
Iraq com.twekl.khg Ireland com.maithu.transplantbuddy.covid19
Ireland com.covidtracker.hse Ireland ie.healthpassportireland.patient
Ireland com.gnomon.ehealthpass.ie Israel com.hamagen
Israel org.track.virus Israel com.moh.alert.ramzor
Italy it.lispa.sire.app.mobile.allertalom Italy com.intellicare.covid
Italy com.siciliasicura.app Italy com.tommasomauriello.autocertificazione...
Italy com.salvagente.info Italy it.adilife.covid19.app
Italy it.adl.aslroma3.covid19.app Italy it.ministerodellasalute.immuni

TABLE A.2: List of studied COVID-19 Android applications (Part 2/5).

Appendix A. List of COVID-19 Android applications analyzed 85

Country App ID Country App ID

Italy it.softmining.projects.covid19.savelifestyle Italy it.regione.sardegna.autorizzazionicovid19
Italy srl.digit.diary Italy it.ministerodellasalute.verificaC19
Italy it.pagopa.io.app Jamaica com.jamcovid19
Japan jp.co.emergency.followup Japan jp.tokyo.chofu.city.w2.covid19
Japan jp.go.mhlw.covid19radar Japan jp.go.digital.vrs.vpa
Jersey com.governmentofjersey.jerseycovidalert Jordan com.menaitech.NCSCM
Jordan jo.gov.moh.aman Jordan com.modee.sanad
Kazakhstan kz.citysoft.smartastana Kazakhstan asyq.curs.kz
Kazakhstan kz.nitec.bizbirgemiz Kazakhstan kz.mobile.mgov
Kenya org.medicmobile.webapp.mobile.surveill... Kenya com.mhealthkenya.dm.mohkenya
Korea, South com.mohw.corona Korea, South kr.go.safekorea.sqsmo
Korea, South kr.go.safekorea.sqsm Korea, South com.caragon.caragon.coronamap
Korea, South com.bienciel.centeralarm Korea, South com.tina3d.corona100m
Korea, South kr.go.kdca.coov Kuwait com.healthcarekw.app
Kuwait com.mohkuwait.immune Kyrgyzstan kg.cdt.stopcovid19
Laos com.gov.mpt.laokyc Laos info.laoscovid19.laocovid19
Latin America org.bvsalud.eblueinfo Latvia lv.spkc.gov.apturicovid
Latvia lv.verification.dgc Lebanon com.apps2you.MOPH
Lebanon com.moph.dgcverifier Liberia com.tuma.libtravel
Libya ly.com.tmc.covid19_libya Libya com.speetar.app
Lithuania com.lympo.covid19 Lithuania lt.nvsc.coronawarnapp
Lithuania dgca.verifier.lt.app.android Luxembourg lu.etat.ci.dcc.android
Malaysia my.gov.onegovappstore.mysejahtera Malaysia com.gov.mcmc.projectcatur
Malaysia my.gov.onegovappstore.mytrace Malaysia com.mbks.qmunity
Malaysia com.sains.safetrace Malaysia com.app.jejakjohor
Malaysia com.qualitas.covidmy Malaysia my.gov.onegovappstore.healthcertverifier
Malaysia sel.main.selangkah Maldives mv.gov.mohiru
Mali io.ageticmali.soscovid Mali org.medicmobile.webapp.mobile.covid...
Malta mt.gov.dp3t Malta mt.gov.CovPassMalta
Mauritius net.epione.patient Mauritius mu.mt.healthapp
Mexico mx.gob.www Mexico gov.mx.yuc.enx.v3
Mexico covid19.cuernavaca Mexico mx.gob.tamaulipas.covid19
Mexico mx.covidradar.radar Mexico com.covid19.cgig
Mexico gov.mx.coa.enx.v3 Mexico gov.mx.jal.enx.v3
Mexico gov.mx.pue.enx.v3 Mongolia gov.mn.enx
Mongolia mn.callpro.shuurkhai Morocco covid.trace.morocco
Myanmar com.co.vi.d Myanmar mm.org.mcf.app001
Namibia com.globalgenecorp.namcotrace Nepal com.nhrc.healthtrackernepal
Nepal com.iclick.covidnew Nepal np.com.naxa.covid19
Nepal org.prixa.p5covidtracker Nepal co.cellapp.bardghatcovid19
Nepal co.cellapp.lgcovid19 Nepal co.cellapp.lumbinicovid
Netherlands com.umcutrecht.covapp Netherlands nl.rijksoverheid.ctr.holder
Netherlands com.umcutrect.bcg Netherlands nl.lumc.covidradar
Netherlands nl.focuscura.beeldbelapp Netherlands com.everywhereim.cocorico
Netherlands nl.rijksoverheid.en New Zealand nz.govt.health.covidpassverifier
New Zealand health.webtools.awhina.prod New Zealand nz.govt.health.covidtracer
Nigeria com.appcraftng.android5e7dbb5f7e3c4 Nigeria com.usa.lancorhealthcheck
North Macedonia rocks.gorjan.covid19vlada North Macedonia mk.gov.koronavirus.stop
North Macedonia com.mkwallet.mk Northern Ireland net.hscni.covidcertni
Northern Ireland net.hscni.covidtracker Norway no.fhi.KoronasertifikatKontrollapp
Norway no.fhi.smittestopp_exposure_notification Norway no.simula.smittestopp
Oman com.emushrif.hmushrif Oman om.gov.moh.tarassudapplication
Pakistan com.passtrack.nitb.gov.pk Pakistan pk.gov.nadra.nims.certificate
Pakistan com.sapphire.HealthMonitoringPDMA Pakistan sehat.check
Pakistan com.sapphire.HealthAssessmentPDMA Pakistan com.edu.aku.akuhccheck
Pakistan com.nap_pakistan.app Pakistan covid19care.virus.coronavirus.corona.sick...
Pakistan pk.pitb.gov.covidtrackerlahore Pakistan pk.pitb.gov.rahbar
Pakistan corona.tracking.system Pakistan com.govpk.covid19
Pakistan in.gov.punjab.cova Panama pa.gob.protegete
Paraguay py.gov.mitic.appcovid19 Peru pe.gob.regionsanmartin.coronaish
Peru peruentusmanos.gob.pe Peru com.salva.us
Peru corona.arequipa Philippines io.ionic.vaxcertph.verifier
Philippines com.end.cov Philippines ph.staysafe.mobileapp
Philippines com.voxptech.rc143 Philippines com.dxform.ph
Poland com.symptomate.mobile Poland pl.nask.mobywatel
Poland pl.nask.droid.kwarantannadomowa Poland pl.gov.mc.protegosafe
Poland pl.gov.cez.sws Poland pl.gov.cez.mojeikp
Portugal com.vost.covid19mobile Portugal fct.inesctec.stayaway
Qatar com.droobihealth.corona Qatar com.moi.covid19
Romania ro.sts.dcc Russia com.minsvyaz.gosuslugi.exposurenotific...
Russia com.programmisty.emiasapp Russia com.askgps.personaltrackerround
Russia ru.mos.socmon Russia com.dawsoftware.contacttracker
Russia com.minsvyaz.gosuslugi.stopcorona Rwanda rw.gov.rbc.rbcc19
Saint Lucia org.stlucia.carealert Samoa com.jelly.samoa.tracerv2
San Marino it.ministerodellasalute.coverifica19sm Saudi Arabia sa.gov.nic.tawakkalna
Saudi Arabia co.covid.coronavirus Saudi Arabia com.aramco.healthCode
Saudi Arabia com.tetaman.home Saudi Arabia com.lean.sehhaty
Saudi Arabia sa.gov.nic.tabaud Scotland scot.nhs.nss.vcert
Scotland com.spotteron.coronareport Scotland gov.scot.covidtracker
SE ASIA com.trig.tracvirus Senegal com.fehudigital.alertesantesn
Seychelles com.travizory.evisa.sc Seychelles com.panafricare.lasante
Singapore sg.gov.homer Singapore sg.gov.hpb.healthhub

TABLE A.3: List of studied COVID-19 Android applications (Part 3/5).

86 Appendix A. List of COVID-19 Android applications analyzed

Country App ID Country App ID

Singapore com.hitachi.shn_mobile Singapore sg.gov.mom.sgfwmomcare
Singapore sg.gov.tech.bluetrace Singapore com.contacttracer
Singapore example.safeentryscanner Singapore sg.gov.tech.safeentry
Slovakia sk.marekgogol.zostanzdravy Slovakia sk.it.greenpass
Slovakia sk.it.overpass Slovenia si.nijz.covid
Slovenia si.gov.ostanizdrav Slovenia si.gov.zvem
South Africa net.epione.reopen.android South Africa za.gov.health.covidconnect
South Africa com.coviid Spain org.madrid.ztav.tarjetaSanitariaVirtual
Spain com.atos.spain.th Spain cat.gencat.mobi.StopCovid19Cat
Spain com.erictelm2m.colabora Spain org.madrid.CoronaMadrid
Spain es.saludinforma.android Spain cat.gencat.mobi.confinApp
Spain es.gob.asistenciacovid19 Spain es.gva.responde
Spain es.gva.coronavirus Spain com.appandabout.defusing
Spain com.appfeel.interactiveclinics.dev Spain com.mostrarium.sjd
Spain es.gob.radarcovid Spain gal.xunta.covidpass
Spain es.juntadeandalucia.msspa.saludandalucia Spain es.sergas.appbox
Spain org.gobiernodecanarias.sanidad.scs.micert... Sri Lanka com.gatechnologies.rekemuapi
Sri Lanka org.sshield.selfshield Sri Lanka app.ceylon.selftrackingapp
Sudan com.fmoh_sd.covax_reg Sudan com.covid.www
Sweden com.giddir.coronafree Switzerland ch.admin.bag.covidcertificate.wallet
Switzerland ch.covid19bs.app.PMSMobile Switzerland com.hug_ge.coronapp
Switzerland ch.admin.bag.dp3t Switzerland com.arit.geohealthapp
Switzerland ch.admin.bag.covidcertificate.verifier Taiwan tw.gov.cdc.exposurenotifications
Taiwan com.nhiApp.v1 Tanzania com.rahisi.certificate_scanner
Thailand com.dga.thailandplus.android Thailand com.mor.promplus
Thailand com.articulus.sydekick Thailand th.or.nectec.ddc_care
Thailand com.devcnx.thaichana_qrcode Thailand com.ktb.thaichana.prod
Thailand com.thaialert.app Timor Leste appcovid19naromanxyz.wpapp
Togo org.caresptogo.covid_19tg Togo com.togo.covid19
Trinidad & Tobago com.mohtt.mohttapp Tunisia tn.onmne.e7mi
Turkey tr.gov.saglik.koronaonlem Turkey tr.gov.saglik.hayatevesigar
UAE com.knasirayaz.mohapcovid UAE ae.tracecovid.app
UAE ae.gov.dha.covid19 UAE ae.gov.dha.covid19.paramedic
UAE ae.haad.staysafe.stayathome UAE doh.health.shield
Uganda ug.go.health.mobile.covid19 Uganda org.definingtechnologies.covidtracer
Uganda com.ctiafrica.android.accelerator.mohctc UK com.instantaccessmedical.mobile.instant...
UK au.com.vodafone.dreamlabapp UK com.joinzoe.covid_zoe
UK uk.ac.cam.cl.covid19sounds UK com.nuasolutions.hse.prod
UK appinventor.ai_david_taylor.Coronavirus... UK com.virustracker.app
UK com.expertselfcare.covid_19 UK co.uk.healthcreatives.uclhcovid19
UK uk.nhs.covid19.production UK org.theviralapp.app1
UK com.eveio.pass Ukraine ua.gov.diia.app
Ukraine ua.gov.diia.quarantine Uruguay uy.gub.salud.plancovid19uy
USA gov.va.mobilehealth.ncptsd.covid USA com.clearme.clearapp
USA uk.co.tracktogether USA com.obviohealth.obvio19
USA jhu.edu.JohnsHopkinsCOVIDControl USA org.howwefeel
USA com.kencorhealth.covid USA tracker.healthcare.sentinel
USA com.carbonhealth.patient.prod USA com.openmed.corona
USA com.patientmpower.covid19.usa USA org.cvkey.cvkey
USA com.stratum.healthcheckguardapp USA com.childrensomaha.studentsymptomchecker
USA com.justmiine.miinehealth USA com.campusclear
USA com.infobeyond.preworkscreen USA com.kandasoft.workpass.today
USA com.sway.clearance19 USA com.work2live.app.entrsafeapp
USA edu.cmich.apps.healthscreen USA edu.columbia.reopen.cu
USA edu.uc.covidcheck USA edu.umich.ResponsiBLUE
USA edu.wabash.covidpass USA org.usezero.healthpass
USA com.stratum.healthcheckapp USA ai.carespree
USA com.paxerahealth.CoronaCare USA gov.cdc.general
USA org.covidprotocols.twa USA gov.cdc.niosh.PPETracker
USA edu.mit.privatekit USA org.pathcheck.covidsafepaths
USA mbks USA com.currentcareanalytics.coverified
USA com.virtualmasons.reelhealth USA gomeyra.scan
USA me.safehealth.protectwell USA – AL gov.adph.exposurenotifications
USA – AK gov.ak.covid19.exposurenotifications USA – AZ gov.azdhs.covidwatch.android
USA – CA gov.ca.covid19.exposurenotifications USA – CO gov.co.cdphe.exposurenotifications
USA – CO com.soc.mycolorado USA – CT gov.ct.covid19.exposurenotifications
USA – DE gov.de.covidtracker USA – DC gov.dc.covid19.exposurenotifications
USA – FL com.flherm USA – FL, UT co.twenty.stop.spread
USA – GA in.punch.alert USA – Guam org.pathcheck.guam.bt
USA – HI org.alohasafe.alert USA – HI org.thecommonsproject.android.phr
USA – IL edu.illinois.covid USA – LA org.pathcheck.la.bt
USA – MD gov.md.covid19.exposurenotifications USA – MA gov.ma.covid19.exposurenotifications
USA – Miami com.shield.CombatCovidMD USA – MI gov.michigan.MiCovidExposure
USA – MN org.pathcheck.covidsafepathsBt.mn USA – MS com.cspire.telehealth
USA – NV gov.nv.dhhs.en USA – NJ com.nj.gov.covidalert
USA – NJ com.foxhallwythe.docket.mobile USA – NM gov.nm.covid19.exposurenotifications
USA – NY gov.ny.health.proximity USA – NY gov.ny.its.healthpassport.verify
USA – NY gov.ny.its.healthpassport.wallet USA – NC gov.nc.dhhs.exposurenotification
USA – OR gov.or.covid19.exposurenotifications USA – Palm Beach com.shield.CombatCovidPBC
USA – PA gov.pa.covidtracker USA – Puerto Rico org.pathcheck.pr.bt
USA – RI com.ri.crushcovid USA – Sonoma com.sococheck

TABLE A.4: List of studied COVID-19 Android applications (Part 4/5).

Appendix A. List of COVID-19 Android applications analyzed 87

Country App ID Country App ID

USA – SC musc.exposurenotification USA – SD, ND, WY com.proudcrowd.exposure
USA – TX com.hornsense USA – UT gov.ut.covid19.exposurenotifications
USA – Various com.expii.novid USA – VA gov.vdh.exposurenotification
USA – WA gov.wa.doh.exposurenotifications USA – WI gov.wi.covid19.exposurenotifications
USA – WY com.proudcrowd.care Uzbekistan uz.uzinfocom.selfsafety
Uzbekistan uz.uicdevelopment.birgayengamiz Vietnam com.covidtrack
Vietnam vn.coquan.hd Vietnam vn.dtt.imsafe
Vietnam one.galaxy.igovn Vietnam com.family.tokhaiyte
Vietnam com.vnptit.innovation.ncovi Vietnam gov.moh.antoancovid
Vietnam com.Eha.covid_19 Vietnam net.cungmua365.ncovigialai
Vietnam vn.suckhoetoandan.v2 Vietnam com.mic.bluezone
Zimbabwe com.dencroft.covidapp

TABLE A.5: List of studied COVID-19 Android applications (Part 5/5).

89

Appendix B

Detailed Information of Other
Analyzed Trackers

In this Appendix, we complete the detailed information of analyzed trackers. The most
remarkable trackers were already discussed in Chapter 4 .

B.1 AdColony

B.1.1 Introduction

Founded in 2008, AdColony (purchased in 2021 by Digital Turbine) is a mobile video
advertising company and features its proprietary Instant-Play technology that serves
full-screen video ads instantly in HD across its network of iOS and Android apps. Its
website www.adcolony.com redirects to its parent company site, www.digitalturbine.com.

It has been involved in previous privacy issues, for example, in 2021 the Norwegian
Consumer Council filed a complaint against it since it collected data from app Grindr
without the proper consent of users (https://www.datatilsynet.no/en/news/2021/
intention-to-issue--10-million-fine-to-grindr-llc2/).

B.1.2 Tracked Information

Table B.1 details the information tracked by this tracker (up to ten elements per cate-
gory).

www.adcolony.com
www.digitalturbine.com
https://www.datatilsynet.no/en/news/2021/intention-to-issue--10-million-fine-to-grindr-llc2/
https://www.datatilsynet.no/en/news/2021/intention-to-issue--10-million-fine-to-grindr-llc2/

90 Appendix B. Detailed Information of Other Analyzed Trackers

Category Details

Tracker Category Mobile Advertising
Push Notifications -

AAID Android id
Limit tracking

User ID Session id
Zone ids

Location SW

Country locale
Country locale short
Language
Timezone ietf
Timezone gmt
Timezone dst

Location HW -

Device SW

OS version release
Platform / OS name (“android”)
Version SDK / Device API
OS arch

Device HW
Device manufacturer
Device model
Type (tablet, phone)

APK

Package name
Package version name
Package version code
Appid
Environment
App bundle name
App bundle version
Dark mode
Available stores
Permissions

Applications and Processes -

Disk and Memory Memory class
Memory used

Network

Carrier
Network type
MAC address
Network speed
Cell service country code
Clear text permitted

Screen and Audio

Display width
Display height
Screen width
Screen height
DPI
Current orientation
Density

Rooted, Jailbroken, Emulated and Simulated -
Time Date (of error)

Battery Battery info
Battery level

SDK
SDK version
Controller version
SDK type

Others

Index
Level (of error)
Message (log)
Data path
Media path
Temp storage path
Launch metadata

TABLE B.1: Tracked information by AdColony.

B.2. AltBeacon 91

B.1.3 Data Flow Diagram

It can be seen that AdColony gathers the information from two main points located
in classes C0968ak and C0856a. In the former, when method m15378c is fired, it gets
the information from the mentioned class, and then other methods are called in a chain
until the gathered information is finally sent to its server. For the latter case, the process
is completed in two stages, where in the first part the data is collected and stored in a
field from class C1068t, and then this field is queried to send the information at the end
to AdColony’s servers.

FIGURE B.1: Data flow in AdColony

B.2 AltBeacon

B.2.1 Introduction

AltBeacon allows Android devices to use beacons like iOS devices do. An app can re-
quest to get notifications when one or more beacons appear or disappear. An app can
also request to get a ranging update from one or more beacons at a frequency of approx-
imately 1Hz. It is an open source project (https://github.com/AltBeacon/android-
beacon-library) lead by radiusnetworks.com. Its documentation can be found at
https://altbeacon.github.io/android-beacon-library/.

The authors created this project motivated by the lack of an open and interoperable
specification for proximity beacons (https://altbeacon.org/).

B.2.2 Tracked Information

No data was found to be tracked by AltBeacon.

https://github.com/AltBeacon/android-beacon-library
https://github.com/AltBeacon/android-beacon-library
radiusnetworks.com
https://altbeacon.github.io/android-beacon-library/
https://altbeacon.org/

92 Appendix B. Detailed Information of Other Analyzed Trackers

B.2.3 Data Flow Diagram

Since no information was detected to be tracked, there is no data flow.

B.3 AppNext

B.3.1 Introduction

Created in 2012, AppNext’s platform provides mobile publishers and app marketers
with end-to-end technology solutions for premium monetization and app growth. They
state that they have created a marketplace that connects publishers and advertisers
directly and transparently, amplifying their monetization and advertising efforts. It
recommends apps to users “based on their needs”. Purchased by Affle company, its
website can be found at www.appnext.com.

B.3.2 Tracked Information

Table B.2 details the information tracked by this tracker (up to ten elements per cate-
gory).

www.appnext.com

B.3. AppNext 93

Category Details

Tracker Category App Usage, Audience and Engagement
Push Notifications -
AAID -

User ID
Session id
ID
CUID

Location SW

Timezone
Language
Locality
Country code

Location HW

Latitude
Longitude
Location Time
Activity transition

Device SW
OS version SDK
OS version release
DEvn (“android”)

Device HW

Device manufacturer
Device model
Device brand
Device name

APK Package id / Name / App package
Duse / Non-market apps

Applications and Processes

Activities running
DefLun
InsLun
Number of activities
Installed apps

Disk and Memory Filesystem access

Network

Network type
Carrier
Wifi
SSID
Near SSIDs
Bluetooth activated
Phone operator
Flight mode
Name of Bluetooth connected

Screen and Audio

Screen brightness
DPI
Resolution
Font scale
Ringer mode
Earplug connected
Device volume
Orientation
Is screen on

Rooted, Jailbroken, Emulated and Simulated -
Time Client date
Battery Device charging
SDK -

Others

Ad TID
Ad VID
AUID
Did privacy (false)
G (contacts)
OSID
Camera activated in last 15 mins
SSIDs by location
Data map

TABLE B.2: Tracked information by AppNext.

94 Appendix B. Detailed Information of Other Analyzed Trackers

B.3.3 Data Flow Diagram

From four main sources, AppNext collects data. The method mo14119a(...) is imple-
mented by several classes. This method collects data that later is sent to their servers
in class C1374f. This class also collects information by itself in the method m14311e(...),
and it is called by class C1306k which harvests data as well. Finally, in class C1321utils
data is also gathered and, after several calls in chain, sent to the servers.

FIGURE B.2: Data flow in AppNext

B.4 Braze

B.4.1 Introduction

Braze (previously known as Appboy) is a customer engagement platform used by busi-
nesses for multichannel marketing. It was founded in 2011. It is considered one of
the leaders in mobile marketing and customer engagement platforms. Its website is
www.braze.com.

B.4.2 Tracked Information

Table B.3 details the information tracked by this tracker (up to ten elements per cate-
gory).

www.braze.com

B.4. Braze 95

Category Details

Tracker Category App Usage, Audience and Engagement
Push Notifications Yes

AAID Ad ID
Ad tracking enabled

User ID Device id (UUID)
User id

Location SW Locale
Timezone

Location HW Event location
Event geofence

Device SW OS version
Device HW Device model

APK App version
App version code

Applications and Processes -
Disk and Memory -
Network Carrier

Screen and Audio Height
Width

Rooted, Jailbroken, Emulated and Simulated -

Time

Timestamp (event)
Time (event)
Last time sync
Last card updated

Battery -

SDK SDK flavor
SDK version

Others Background restricted
Feed
Triggers
Config
Trigger id
Trigger event type
Data
Device logs

TABLE B.3: Tracked information by Braze.

96 Appendix B. Detailed Information of Other Analyzed Trackers

B.4.3 Data Flow Diagram

As in other cases, in Braze it can be appreciated that several classes implement the
method mo564365(...). These are called from class RunnableC0814de and then sent to
the servers. Similarly, two classes implement the method mo56091b(...), where data is
collected and sent to internet as in the previously described process.

FIGURE B.3: Data flow in Braze

B.5 Google Firebase Analytics

B.5.1 Introduction

As a complete development and backend framework, it offers a myriad of products
and services like: Cloud Firestore, Extensions, App Check, Cloud Functions, Authenti-
cation, Hosting, Cloud Storage, Realtime Database, Crashlytics, Performance Monitor-
ing, Test Lab, App Distribution, Google Analytics, Machine Learning, In-App Messag-
ing, A/B Testing, Cloud Messaging, Remote Config, and Dynamic Links. Hence, it is
not a surprise that it was the most used third-party library in the study. Furthermore,
it can be integrated with several other solutions, like: Google Ads, AdMob, Google
Marketing Platform, Google Play, Data Studio, BigQuery, Slack, Jira, and PagerDuty.

Launched in 2011, it was acquired by Google in 2014. As an example of its relevance
in the current Android ecosystem, Firebase superseded Google Cloud Messaging ser-
vice for push notifications.

A privacy lawsuit accused Google “of violating federal wiretap law and California pri-
vacy law by logging what users are looking at in news, ride-hailing and other types of apps de-
spite them having turned off “Web & App Activity” tracking in their Google account settings.”.
“...the data collection happens through Google’s Firebase, a set of software popular among app

B.5. Google Firebase Analytics 97

Category Details

Tracker Category Development and Backend Framework
Push Notifications Yes
AAID -
User ID Firebase installation id
Location SW -
Location HW -
Device SW OS version SDK

Device HW
Device product
Device device
Device brand

APK App id
X-Android-Package

Applications and Processes -
Disk and Memory -
Network -
Screen and Audio -
Rooted, Jailbroken, Emulated and Simulated -
Time -
Battery -
SDK Auth version

Others

Project identifier
IID token
Fire core
Kotlin

TABLE B.4: Tracked information by Google Firebase Analytics.

makers for storing data, delivering notifications and ads, and tracking glitches and clicks. Fire-
base typically operates inside apps invisibly to consumers.” (https://www.reuters.com/
article/us-alphabet-google-privacy-lawsuit-idUSKCN24F2N4). The lawsuit was
later dismissed in court (https://app.ediscoveryassistant.com/case_law/41662-rodriguez-
v-google-llc).

B.5.2 Tracked Information

Table B.4 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://www.reuters.com/article/us-alphabet-google-privacy-lawsuit-idUSKCN24F2N4
https://www.reuters.com/article/us-alphabet-google-privacy-lawsuit-idUSKCN24F2N4
https://app.ediscoveryassistant.com/case_law/41662-rodriguez-v-google-llc
https://app.ediscoveryassistant.com/case_law/41662-rodriguez-v-google-llc

98 Appendix B. Detailed Information of Other Analyzed Trackers

B.5.3 Data Flow Diagram

For this tracker, data is collected in class FirebaseCommon Registrar method getCompo-
nents(...). This method updates a field from class LibraryVersion, which later is gotten
by method getUserAgent(...) from class DefaultUserAgentPublisher and finally sent in
method openHTTPURLConnection(...) from class FirebaseInstallationServiceClient.

FIGURE B.4: Data flow in Google Firebase Analytics

B.6 Google Tag Manager

B.6.1 Introduction

As its name implies, it is a tag management system provided by Google to manage
JavaScript and HTML tags, including web beacons for web tracking and analytics. It
was released in 2012. Simply put, it allows developers to manage and deploy market-
ing tags (snippets of code or tracking pixels) on their website or mobile apps without
having to change their code. The data collected with the tags can be later used as input
in analytics platforms. The tool can be accessed at https://tagmanager.google.com/.

It has been used by malicious parties, especially recently, as a weapon to inject ma-
licious code within commercial (https://geminiadvisory.io/magecart-google-tag-
manager/). Hence, caution is advised when using this tool.

B.6.2 Tracked Information

No data was found to be tracked by Google Tag Manager.

B.6.3 Data Flow Diagram

Since no information was detected to be tracked, there is no data flow.

https://tagmanager.google.com/
https://geminiadvisory.io/magecart-google-tag-manager/
https://geminiadvisory.io/magecart-google-tag-manager/

B.7. New Relic 99

Category Details

Tracker Category Crash Reports and Monitoring
Push Notifications -
AAID -
User ID Device id
Location SW Address / Country Code
Location HW -

Device SW

Application framework version
Agent name
OS build
OS name
OS version
OS arch

Device HW Device manufacturer
Device model

APK

App framework
App name
App version
App build
Package id

Applications and Processes
Thread id
Thread name
Runtime (jvm version)

Disk and Memory Disk available
Memory usage

Network Network status
Network WAN Type

Screen and Audio Orientation
Rooted, Jailbroken, Emulated and Simulated -
Time -
Battery -
SDK Version
Others Misc

TABLE B.5: Tracked information by New Relic.

B.7 New Relic

B.7.1 Introduction

Founded in 2008, New Relic provides app performance and troubleshooting manage-
ment services, under several products it offers: New Relic APM, New Relic Mobile,
New Relic Browser, New Relic Synthetics, New Relic Servers and New Relic Insights.
Its website is https://newrelic.com/.

B.7.2 Tracked Information

Table B.5 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://newrelic.com/

100 Appendix B. Detailed Information of Other Analyzed Trackers

B.7.3 Data Flow Diagram

In New Relic, the data tracking process is quite simple. Device information is collected
in class AndroidAgentImpl, which, after several classes calling, is stored in a field in
class HarvestData (another quite revealing class name). At the moment of sending the
collected data to their servers, this field and another field containing connection infor-
mation are queried.

FIGURE B.5: Data flow in New Relic

B.8 Open Telemetry

B.8.1 Introduction

Different to other third-party libraries studied, Open Telemetry is a collection of tools,
APIs, and SDKs used to instrument, generate, collect, and export telemetry data (met-
rics, logs, and traces), to help with analyzing app’s performance and behavior. In
other words, it is an observability framework. It is free and open-source, formed af-
ter the merge of Open Tracing and Open Census in 2019. Currently, it is a project
from CNCF, and the second most active after Kubernetes. It can be found at https:
//opentelemetry.io/.

B.8.2 Tracked Information

No data was found to be tracked by Google Tag Manager.

B.8.3 Data Flow Diagram

Since no information was detected to be tracked, there is no data flow.

https://opentelemetry.io/
https://opentelemetry.io/

B.9. Pushwoosh 101

Category Details

Tracker Category Push Notification
Push Notifications Yes
AAID -
User ID HW id

Location SW Timezone
Language

Location HW -

Device SW OS version
Device type

Device HW
Device model
Device manufacturer
Device name

APK Package name
App version

Applications and Processes -
Disk and Memory -

Network

SIM operator
Connection type
Connection type name
Connection sub type
Connection sub type name

Screen and Audio -
Rooted, Jailbroken, Emulated and Simulated Jailbroken

Time Timestamp UTC
Timestamp current

Battery -
SDK Version

Others

Application
Notification Type
Sounds
Push stat metadata
Message delivery metadata
Features
Action

TABLE B.6: Tracked information by Pushwoosh.

B.9 Pushwoosh

B.9.1 Introduction

As its name may indicate, Pushwoosh provides engagement services related to push
notifications. Using their SDK, developers can segment, communicate, experiment,
engage, convert and retain mobile app users and website visitors. Founded in 2014, its
website is www.pushwoosh.com.

Recently there have been some controversies, since a report from Reuters stated that
Pushwoosh origins are linked to Russia and its SDK was found in apps like the Center
for Disease Control and Prevention from the USA government or the USA Army app.

B.9.2 Tracked Information

Table B.6 details the information tracked by this tracker (up to ten elements per cate-
gory).

www.pushwoosh.com

102 Appendix B. Detailed Information of Other Analyzed Trackers

B.9.3 Data Flow Diagram

Pushwoosh harvesting of data is very simple. Class PushRequest is in charge of collect-
ing the data and immediately calling class C232b, which sends the harvested informa-
tion to the servers.

FIGURE B.6: Data flow in Pushwoosh

B.10 Segment

B.10.1 Introduction

Founded in 2011, Segment provides app usage, engagement and audience services. For
that, it collects data from mobile apps and helps developers take informed decisions
regarding their users. In 2020, it was acquired by Twilio, another customer engagement
company. Its website is https://segment.com/.

B.10.2 Tracked Information

Table B.7 details the information tracked by this tracker (up to ten elements per cate-
gory).

https://segment.com/

B.10. Segment 103

Category Details

Tracker Category App Usage, Audience and Engagement
Push Notifications -

AAID Ad id
Limit ad tracking

User ID Id

Location SW Timezone
Locale

Location HW -

Device SW
User agent
Name
Version

Device HW

Device model
Device manufacturer
Device name
Device type

APK

Name
Version
Namespace
Build

Applications and Processes -
Disk and Memory -

Network

Wifi
Bluetooth
Cellular
Carrier

Screen and Audio
Density
Height
Width

Rooted, Jailbroken, Emulated and Simulated -
Time -
Battery -

SDK Version
Name

Others Events

TABLE B.7: Tracked information by Segment.

104 Appendix B. Detailed Information of Other Analyzed Trackers

B.10.3 Data Flow Diagram

The class Analytics from Segment is in charge of collecting the information, with the as-
sistance of classes Client and Connection Factory. Following collecting the data, it sends
the data to its servers.

FIGURE B.7: Data flow in Segment

B.11 Splunk MINT

B.11.1 Introduction

MINT by Splunk was a library used for real time crash and error reporting, event anal-
ysis and monitoring. It also provided other features as engagement, screen tracking,
and user retention. It was discontinued at the end of 2021.

B.11.2 Tracked Information

Table B.8 details the information tracked by this tracker (up to ten elements per cate-
gory).

B.11. Splunk MINT 105

Category Details

Tracker Category Crash Reports and Monitoring
Push Notifications -
AAID -

User ID
UUID
Username
Session id

Location SW Locale
Location HW -

Device SW Platform
Os version

Device HW Device model
Device manufacturer

APK

Package name
App version
App version code
Environment (“release”)

Applications and Processes -

Disk and Memory

Filesystem encrypted
Mem sys low
Mem sys total
Mem sys available
Mem sys threshold
Mem app max
Mem app available
Mem app total

Network

Carrier
Connection type
Connection subtype
Connection state
GPS status

Screen and Audio Current view
Orientation

Rooted, Jailbroken, Emulated and Simulated Rooted

Time Milliseconds from start
Session duration

Battery Battery level
SDK SDK version

Others

Extra data
Custom data
Transactions
Event name
Level (Verbose, Debug, Info, Warning, Error)
Stacktrace
Breadcrumbs
Log

TABLE B.8: Tracked information by Splunk MINT.

106 Appendix B. Detailed Information of Other Analyzed Trackers

B.11.3 Data Flow Diagram

In Splunk MINT, data is collected in classes BaseDTO and ActionX. After its collection,
the data is sent to the servers from class NetSender.

FIGURE B.8: Data flow in Splunk MINT

B.12 Startapp

B.12.1 Introduction

Recently rebranded as Start.io, it is a mobile marketing and audience platform library
founded in 2011. Its website is www.start.io.

B.12.2 Tracked Information

Tables B.9 and B.10 detail the information tracked by this tracker (up to ten elements
per category).

www.start.io

B.12. Startapp 107

Category Details

Tracker Category App Usage, Audience and Engagement
Push Notifications -

AAID
User Advertising Id
Limited tracking
Advertesing id source (“APP”)

User ID
Ltr id
User id
Client session id

Location SW
Locale
Locale list
Input languages

Location HW

Accuracy
Vertical accuracy
Altitude
Bearing
Latitude
Longitude
Speed
Time
Provider
Timestamp
(1 more element)

Device SW

OS
OS version release
OS system version
OS version SDK

Device HW

Device model
Device manufacturer
build fingerprint
Sim operator
Sim operator name
TAC / Manufacturer code
Sim state
Phone count
Phone type
Sim infos
(9 more elements)

APK

App target version
Product id
Package id
Installer package
Outsource
App version name
App version code
Is ddbg

Applications and Processes Foreground app

Disk and Memory

Memory free
Memory total
Memory used
Memory state
Used ram
Free ram

Network

Cell identity longitude
Roaming
Signal Level
Preferred Network
Flight mode
Mobile data enabled
Connection type
Operator name
Service state
Bluetooth
(102 more elements)

Screen and Audio

Screen on / Screen state
Orientation
Width
Height
Density

Rooted, Jailbroken, Emulated and Simulated
Is rooted
Root
Simulator

Time

Location age
Device drift millis
Millis since last sync
Device up time / Time since boot (elapsed real time)
Duration overall no sleep
Duration Overall
Timestamp (event)
Timestamp Date
Timestamp Offset
Timestamp Millis
(1 more element)

TABLE B.9: Tracked information by Startapp. (Part 1/2)

108 Appendix B. Detailed Information of Other Analyzed Trackers

Category Details

Battery

Battery capacity
Battery current
Battery remaining energy
Battery voltage
Battery status
Battery health
Battery temperature
Battery charge plug
Battery technology
Battery level
(2 more elements)

SDK

SDK version
Flavor
Frameworks data
SDK id

Others

Measurement Type
IsSynced
Is Default Voice Sim
Is Default Data Sim
Airport code
Category (event)
Value (event)
App activity (stack trace)
Wifi info
Call State
(24 more elements)

TABLE B.10: Tracked information by Startapp. (Part 2/2)

B.12. Startapp 109

B.12.3 Data Flow Diagram

Most of the harvested data by Startapp is gathered in class C7380b, although in classes
C7299e, C7294a and AbstractC7199c some collection is done as well. All the tracked
information is later sent to the servers from class C6858e.

FIGURE B.9: Data flow in Startapp

111

Appendix C

Examples of Trackers Code

In this Appendix, we provide code examples of how trackers collect information about
the application, the device, and use, as seen in their code.

Android Advertisement ID (AAID):

adid = Settings.Secure.getString(contentResolver, "advertising_id");

Or using reflection:

Object invoke = Class.forName("com.google.android.gms.ads.identifier.
AdvertisingIdClient").getMethod("getAdvertisingIdInfo", Context.class).
invoke(null, context);

adid = invoke.getClass().getMethod("getId", new Class[0]).invoke(invoke, new
Object[0]);

User ID::

user_id = UUID.randomUUID().toString();

Location Software:

country_locale = Locale.getDefault().getCountry();
language = Locale.getDefault().getLanguage();
timezone = TimeZone.getDefault();
daylight_saving = Calendar.getInstance().getTimeZone().inDaylightTime(new Date

());

Location Hardware:

location_latitude = location.getLatitude();
location_longitude = location.getLongitude();
location_accuracy = location.getAccuracy();
location_provider = location.getProvider();
location_vertical_accuracy = location.getVerticalAccuracyMeters();
location_altitude = location.getAltitude();
location_bearing = location.getBearing();
location_speed = location.getSpeed();

112 Appendix C. Examples of Trackers Code

location_time = location.getTime();

Besides, most of the trackers would check if they had the right permissions to access
the device location, checking as follows:

if (context.getPackageManager().checkPermission("android.permission.
ACCESS_COARSE_LOCATION"...

...
if (context.getPackageManager().checkPermission("android.permission.

ACCESS_FINE_LOCATION"...

Or:

if (context.checkCallingOrSelfPermission("android.permission.
ACCESS_COARSE_LOCATION")...

...
if (context.checkCallingOrSelfPermission("android.permission.

ACCESS_FINE_LOCATION")...

Device Software:

os_version1 = Build.VERSION.RELEASE;
os_version2 = Build.VERSION.SDK_INT;
System.getProperty("os.arch").toLowerCase(Locale.ENGLISH);
user_agent1 = WebSettings.getDefaultUserAgent(context);
user_agent1 = System.getProperty("http.agent");

Device Hardware:

manufacturer = Build.MANUFACTURER;
model = Build.MODEL;
display = Build.DISPLAY;
...
try {

Class.forName("com.amazon.device.messaging.ADM");
device_type = "Amazon";

} catch (ClassNotFoundException unused) {
device_type = "Android";

}
...
TelephonyManager telephonyManager = context.getSystemService("phone");
sim_operator = telephonyManager.getSimOperator();
sim_operator_name = telephonyManager.getSimOperatorName();
sim_state = telephonyManager.getSimState();
...
SubscriptionManager x = SubscriptionManager.from(context);
active_sim_count = x.getActiveSubscriptionInfoCount();

Appendix C. Examples of Trackers Code 113

Android Package Kit (APK):

app_name = context.getPackageName();
app_version = context.getPackageManager().getPackageInfo(context.getPackageName

(), 0).versionName;
app_build_number = context.getPackageManager().getPackageInfo(context.

getPackageName(), 0).versionCode;
...
PackageManager packageManager = context.getApplication().getPackageManager();
app_bundle_name = packageManager.getApplicationLabel(packageManager.

getApplicationInfo(context.getPackageName(), 0));
app_bundle_version = context.getPackageManager().getPackageInfo(context.

getPackageName(), 0).versionName;
...
PackageInfo packageInfo = context.getPackageManager().getPackageInfo(context.

getPackageName(), 4096);
JSONArray requested_permissions = new JSONArray;
for (int i = 0; i < packageInfo.requestedPermissions.length; i++)

requested_permissions.put(packageInfo.requestedPermissions[i]);
...
String nameForUid = context.getPackageManager().getNameForUid(Binder.

getCallingUid()))
is_instant_app = context.getPackageManager().isInstantApp(nameForUid);

Applications/Processes:

List<ActivityManager.RunningTaskInfo> runningTasks;
ArrayList activities_running = new ArrayList();
UsageStatsManager usageStatsManager = context.getSystemService("usagestats");
currentTimeMillis = System.currentTimeMillis();
List<UsageStats> queryUsageStats = usageStatsManager.queryUsageStats(4,

currentTimeMillis - j, currentTimeMillis);
ListIterator<UsageStats> listIterator = queryUsageStats.listIterator();
while (listIterator.hasNext()) {

UsageStats next = listIterator.next();
if (!usageStatsManager.isAppInactive(next.getPackageName()) && next.

getTotalTimeInForeground() >= j2 && !str.contains("com.android"))
activities_running.add(next.getPackageName());

}
...
PackageManager packageManager = context.getPackageManager();
Intent intent = new Intent("android.intent.action.MAIN", (Uri) null);
intent.addCategory("android.intent.category.LAUNCHER");
number_of_activities = packageManager.queryIntentActivities(intent, 0).size();
...
for (ApplicationInfo applicationInfo : packageManager.getInstalledApplications

(128))
if (applicationInfo != null && (applicationInfo.flags & 1) == 0)

114 Appendix C. Examples of Trackers Code

installed_apps.add(applicationInfo);
...
int myUid = Process.myUid();
is_privileged_process = myUid == 0 || myUid == 1000;
...
ActivityManager activityManager = context.getSystemService("activity");
app_state = BACKGROUND;
for (ActivityManager.AppTask appTask : activityManager.getAppTasks())

if (appTask.getTaskInfo().isRunning)
app_state = FOREGROUND;

...
thread_id = Thread.currentThread().getId();
thread_name = Thread.currentThread().getName();
...
jvm_version = System.getProperty("java.vm.version");

Disk/Memory:

ActivityManager activityManager = context.getSystemService(""activity"");
memory_class = activityManager.getMemoryClass();
Runtime runtime = Runtime.getRuntime();
memory_usage = runtime.totalMemory() - runtime.freeMemory();
max_memory = runtime.maxMemory();
...
filesystem_access = (context.checkPermission("android.permission.

READ_EXTERNAL_STORAGE", Process.myPid(), Process.myUid()) == 0);
filesystem_encrypted = (3 == (context.getSystemService("device_policy")).

getStorageEncryptionStatus())
...
disk_free = Environment.getDataDirectory().getUsableSpace();
long j = statFs.getBlockSizeLong();
long j2 = statFs.getAvailableBlocksLong();
long j3 = statFs.getBlockCountLong();
disk_size_free = j2 * j
disk_size_total = j3 * j

Network:

TelephonyManager telephonyManager = context.getSystemService("phone");
carrier = telephonyManager.getNetworkOperatorName();
...
ConnectivityManager connectivityManager = context.getApplicationContext().

getSystemService("connectivity");
NetworkInfo activeNetworkInfo = connectivityManager.getActiveNetworkInfo();
network_type = activeNetworkInfo.getType();
network_type_name = activeNetworkInfo.getTypeName();
network_subtype_name = activeNetworkInfo.getSubtypeName();

Appendix C. Examples of Trackers Code 115

...
ssid = (context.getApplicationContext().getSystemService("wifi")).

getConnectionInfo().getSSID();
...
BluetoothAdapter defaultAdapter = BluetoothAdapter.getDefaultAdapter();
bluetooth_activated = defaultAdapter.isEnabled();
ble = context.getPackageManager().hasSystemFeature("android.hardware.

bluetooth_le");
...
ip_address = inetAddress.getHostAddress();
...
gps_enabled = (context.getSystemService("location")).isProviderEnabled("gps");

Screen/Audio:

DisplayMetrics displayMetrics = new DisplayMetrics();
WindowManager windowManager = context.getSystemService("window");
windowManager.getDefaultDisplay().getMetrics(displayMetrics);
width = displayMetrics.widthPixels;
height = displayMetrics.heightPixels;
dpi = displayMetrics.densityDpi;
density = context.getResources().getDisplayMetrics().density;
screen_brightness = Settings.System.getInt(context.getContentResolver(), "

screen_brightness");
PowerManager powerManager = context.getSystemService("power");
screen_on = (Build.VERSION.SDK_INT >= 20 && powerManager.isInteractive()) || (

Build.VERSION.SDK_INT < 20 && powerManager.isScreenOn());
screen_orientation = context.getApplicationContext().getResources().

getConfiguration().orientation;
...
AudioManager audioManager = context.getSystemService("audio");
ringer_mode = audioManager.getRingerMode();
earplug_connected = audioManager.isWiredHeadsetOn();
volume = return audioManager.getStreamVolume(stream);
music_active = audioManager.isMusicActive();
speaker_on = audioManager.isSpeakerphoneOn();

Rooted/Jailbroken/Emulated/Simulated:

jailbroken = !string_is_empty(context.getPackageManager().
getInstallerPackageName(context.getPackageName()));

ROOT_INDICATORS = {"/system/xbin/su", "/system/bin/su", "/system/app/Superuser.
apk", "/system/app/SuperSU.apk", "/system/app/Superuser", "/system/app/
SuperSU", "/system/xbin/daemonsu", "/su/bin"};

for (String str : ROOT_INDICATORS) {
if (!new File(str).exists()) {

...

116 Appendix C. Examples of Trackers Code

emulated = MoreExecutors.startsWith$default(Build.FINGERPRINT, "unknown", false
, 2) || StringNumberConversions.contains$default(Build.FINGERPRINT, "
generic", false, 2) || StringNumberConversions.contains$default(Build.
FINGERPRINT, "vbox", false, 2);

simulated = Build.DEVICE.startsWith("generic");

Time:

event_timestamp = new Date(System.currentTimeMillis());
...
startTimeMs = SystemClock.elapsedRealtime(); //created at a given time
Long.valueOf(SystemClock.elapsedRealtime() - startTimeMs);
...
install_time context.getPackageManager().getPackageInfo(context.getPackageName

(), 0).firstInstallTime;
update_time context.getPackageManager().getPackageInfo(context.getPackageName()

, 0).lastUpdateTime;

Battery:

Intent registerReceiver = context.registerReceiver(null, new IntentFilter("
android.intent.action.BATTERY_CHANGED"));

battery_level = registerReceiver.getIntExtra("level", -1) / registerReceiver.
getIntExtra("scale", -1);

battery_charging = registerReceiver.getIntExtra("plugged", -1);
battery_charging2 = registerReceiver.getIntExtra("status", -1);
battery_temperature = registerReceiver.getIntExtra("temperature", -1);
battery_health = registerReceiver.getIntExtra("health", -1);
battery_voltage = registerReceiver.getIntExtra("voltage", -1);
battery_technology = registerReceiver.getStringExtra("technology");
...
BatteryManager batterymanager = context.getSystemService("batterymanager");
batteryInfo[n] = batterymanager.getIntProperty(n); //iterating over n different

properties

	Declaration of Authorship
	Abstract
	Keywords
	Resumen
	Acknowledgements
	Introduction
	Related Work
	Methodology and Tools
	On the Hunt for Trackers
	Coronavirus Apps From Around the World
	Preparing the Data Set Using ClusterUY
	Trackers in Sight. Using Exodus as Detection Tool
	Trackers Autopsy: Dissecting Apps to Detect Data Harvesting
	Limitations Faced

	Research Ethics

	Findings
	What do the Numbers Say: Applications and Trackers Statistics
	Trackers in Action: Observed Methodology of Trackers
	Real-Time vs Store & Retrieve:
	Event-Based vs General:
	Centralized vs Iterative vs Decentralized:
	Centralized Connections vs Decentralized Connections:

	Detailed Information of Analyzed Trackers
	Airship (Centralized Connection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Amplitude (Store and Retrieve Collection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Branch (Real-Time Collection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Bugsnag (Decentralized Connection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Flurry (Decentralized Collection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Google AdMob (Iterative Collection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Mapbox (Event-Based Collection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Matomo (General Collection)
	Introduction
	Tracked Information
	Data Flow Diagram

	OneSignal (Centralized Collection)
	Introduction
	Tracked Information
	Data Flow Diagram

	Tracking the Trackers Tracks: On Data Collection
	Leaking Data in Every Message: On Push Notifications

	SAPITO: a tool for information leaking analysis of Android mobile applications
	Analysing Apps One Hop at a Time: Presenting SAPITO
	Motivation for Developing the Tool
	Technology Behind SAPITO
	What is SAPITO Capable of?

	SAPITO Features in Detail
	APK Loading
	Main Report
	Packages Clustering
	App Info
	Google Play Info
	Exodus Info
	Library Cross-References
	Library Permissions Checks
	Library Rooted Checks
	Library Reflection Use
	Library Connections
	Library Push Notifications Use
	Ruleset Loading

	Discussion
	On the Known Practices of Device Identification: Impact of Data Collection
	A Design Issue: Impact of Using Push Notification Services
	Data Privacy Posture from Governments
	What the Trackers Declare
	Observations Regarding Possible Roots of the Problem

	Conclusion and Further Work
	Bibliography
	List of COVID-19 Android applications analyzed
	Detailed Information of Other Analyzed Trackers
	AdColony
	Introduction
	Tracked Information
	Data Flow Diagram

	AltBeacon
	Introduction
	Tracked Information
	Data Flow Diagram

	AppNext
	Introduction
	Tracked Information
	Data Flow Diagram

	Braze
	Introduction
	Tracked Information
	Data Flow Diagram

	Google Firebase Analytics
	Introduction
	Tracked Information
	Data Flow Diagram

	Google Tag Manager
	Introduction
	Tracked Information
	Data Flow Diagram

	New Relic
	Introduction
	Tracked Information
	Data Flow Diagram

	Open Telemetry
	Introduction
	Tracked Information
	Data Flow Diagram

	Pushwoosh
	Introduction
	Tracked Information
	Data Flow Diagram

	Segment
	Introduction
	Tracked Information
	Data Flow Diagram

	Splunk MINT
	Introduction
	Tracked Information
	Data Flow Diagram

	Startapp
	Introduction
	Tracked Information
	Data Flow Diagram

	Examples of Trackers Code

