
ISSN 1688-2784

Universidad de la República
Facultad de Ingeniería

The avatars of noise in digital images and
their use in image forensics

Tesis presentada a la Facultad de Ingeniería de la

Universidad de la República por

Marina Gardella

en cumplimiento parcial de los requerimientos

para la obtención del título de

Doctor en Ingeniería Eléctrica.

Director de Tesis

Dr. Jean-Michel Morel . Centre Borelli, ENS Paris-Saclay
Dr. Miguel Colom . Centre Borelli, ENS Paris-Saclay
Dr. Pablo Musé . IIE, Facultad de Ingeniería, UdelaR

Tribunal

Agnès Desolneux . CNRS, ENS Paris-Saclay
Symeon Papadopoulos Centre for Research and Technology Hellas
Patrick Bas (revisor). CNRS, Université de Lille
William Puech (revisor) . CNRS, Université de Montpellier
Florent Retraint (Revisor) Université de Technologie de Troyes

Director Académico

Pablo Musé . IIE, Facultad de Ingeniería, UdelaR

Montevideo
Monday 4th March, 2024

The avatars of noise in digital images and their use in image forensics, Marina Gardella.

ISSN 1688-2784

Esta tesis fue preparada en LATEX usando la clase iietesis (v1.1).
Contiene un total de 215 páginas.
Compilada el Monday 4th March, 2024.
http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

Para mis hermanos

Esta página ha sido intencionalmente dejada en blanco.

Acknowledgements

Quisiera comenzar por agradecer a mis supervisores Miguel Colom, Jean-Michel Morel y Pablo
Musé. Gracias Miguel por toda la paciencia que tuviste conmigo cuando recién había llegado a
Francia. Gracias Jean-Michel por tantos valiosos intercambios, tanto a nivel académico como
humano. Finalmente, Gracias Pablo, nada de esto hubiese sido posible sin tu confianza y tu
apoyo.

Asimismo, quisiera agradecer profundamente a los miembros del jurado. Gracias Agnès
Desolneux por haberme guiado durante todos estos años. Sin tu ayuda, nunca hubiese superado
este laberinto. Gracias a Patrick Bas, Symeon Papadopoulos, William Puech y Florent Retraint
por su precioso feedback sobre my trabajo. Haber tenido la oportunidad de presentarles mi
trabajo a ustedes fue un gran honor. Muchas gracias por los intercambios, los consejos y los
comentarios.

Durante este proceso, tuve la oportunidad de visitar la Universidad de la República (Uruguay)
y la Universidad de Duke (Estados Unidos). Quisiera agradecer enfáticamente a ambas insti-
tuciones por invitarme así como a las personas con las que tuve la posibilidad de intercam-
biar durante éstas estadías: Matías Di Martino, Guillermo Sapiro, Gregory Randall, Matías
Tailanián, Pablo Musé y Marcelo Fiori.

Agradezco también a todos los miembros del Centre Borelli. Los intercambios tenidos a
lo largo de los años han enriquecido profundamente mi formación y mi calidad humana. En
particular, me gustaría agradecer a Jean-Michel Morel y Gabriele Facciolo por la confianza, a
Rafael Grompone, con quien tengo el placer de compartir mis tareas de enseãnza y al equipo de
detección de falsificaciones (Quentin Bammey, Yanhao Li y Tina Nikoukhah) por la oportunidad
de haber trabajado juntos. Quisiera agradecer también a todos aquellos que han hecho este
proceso más llevadero e incluso un placer. Agradezco particularmente a Franco Marchesoni,
Roger Marí, Tina Nikoukhah y Antoine Tadros. Asimismo, me gustaría mencionar a mis
compañeros de Duke: Yanhao Li, Max Dunitz, Anis Ben Mabrouk, Seginous Mowlavi, Flavien
Armangeon, Aitor Artola y Matthieu Serfaty, quienes me apoyaron durante el dificl proceso
de redacción de esta tesis. Por último, un gran agradecimiento al equipo de secretarias del
laboratorio. En particular, gracias a Alina por ayudarme siempre.

Más allá de la maravillosa gente que tuve la posibilidad de conocer gracias al doctorado, me
gustaría también agradecer a todos mis amigos que, sin ser parte de mi ámbito de investigación,
han sabido acompañarme en este camino. Quiero agradecer a mis amigos en Uruguay: Eliana,
Nadja, Santiago, Gerardo, Diego y Maxi, por hacerme sentir que la ausencia no es tal. Y a
mis amigos en París Franco, Chuchi, Manuel, Mavi, Inés y a todo el equipo CA Paris 14, por
haber logrado hacer de París mi lugar.

Por último pero no menos importante, agradezco a mi familia por su apoyo incondicional,
por haber sabido estar presentes a pesar de la distancia y por recordarme siempre dónde está
mi hogar. En particular, quiero agradecer a mis padres y a mis hermanos, a quienes esta tesis
está dedicada.

Esta página ha sido intencionalmente dejada en blanco.

Resumen

Las imágenes son potentes vectores de información que transmiten gran cantidad de datos
y conocimientos a través de representaciones visuales. Su importancia en diversos ámbitos
no puede negarse, ya que ofrecen ventajas únicas para la comunicación, la comprensión y la
documentación. En una era caracterizada por la omnipresente influencia de las imágenes digi-
tales, la ciencia forense de las imágenes representa una disciplina vital que aborda la acuciante
necesidad de mantener la veracidad y fiabilidad del contenido visual digital. Las imágenes
están naturalmente dotadas de una huella digital, incrustada durante el proceso de formación
de la imagen. De hecho, la creación de una imagen digital, desde su adquisición en el sensor
de la cámara hasta su almacenamiento final, imprime distintos artefactos que sirven como
firma única. El objetivo de esta tesis es recuperar esta huella dactilar mediante el análisis del
ruido. A lo largo de la cadena de procesamiento de la cámara, el ruido de Poisson inicial se
transforma mediante múltiples operaciones propias de cada proceso de formación de la imagen,
dando lugar a la imagen comprimida final. Como consecuencia, los residuos de ruido pueden
arrojar importantes datos forenses.

Estos indicios permiten detectar falsificaciones. En efecto, aunque las manipulaciones
actuales permiten alcanzar un alto grado de fidelidad visual, al mismo tiempo introducen al-
teraciones en la estructura intrínseca de la imagen. La mayoría de los métodos de detección de
falsificaciones aprovechan estas alteraciones de la huella intrínseca para detectar las regiones
manipuladas. La primera parte de esta tesis se centra en este problema. Aquí, proponemos dos
métodos basados en la detección de inconsistencias locales del modelo de ruido con respecto a
un modelo de fondo. En particular, el método Noisesniffer adopta un paso de validación a con-
trario, con el objetivo de controlar el número esperado de falsas detecciones. A continuación,
exploramos la posibilidad de aprender los rastros forenses mediante redes convolucionales pro-
fundas. Por último, nos centramos en la evaluación de los propios métodos de detección de
falsificaciones. Proponemos una metodología y un conjunto de datos para estudiar la sensibili-
dad de las herramientas de detección a rastros específicos, así como su capacidad para realizar
la detección sin pistas semánticas en la imagen.

Las tareas forenses referidas a la cámara de origen, como la identificación del modelo
de cámara de origen o la certificación del dispositivo de origen, también pueden realizarse
utilizando dicha huella. De hecho, algunas de las huellas forenses incrustadas durante el
proceso de adquisición de la imagen son exclusivas del modelo o del dispositivo. Aislando
dichas señales, se puede obtener información sobre el dispositivo de origen. La segunda parte
de esta tesis se centra en estas tareas. Aquí exploramos enfoques de aprendizaje para determinar
si un par de imágenes contienen las mismas trazas forenses. Además, proponemos un nuevo
enfoque estadístico para la certificación de la cámara de origen basado en trazas PRNU. Dicho
enfoque se basa en dos pruebas de hipótesis basadas en correlaciones locales que no requieren
el cálculo de distribuciones empíricas.

Aún así, nada impide a los falsificadores ocultar la huella digital de la imagen. Por eso
dedicamos la parte final de esta tesis al análisis de diferentes ataques contraforenses. Destacar
las limitaciones de los métodos forenses actuales es importante para saber cuánta confianza se

puede depositar en una imagen y para fomentar la exploración de métodos de autenticación
alternativos. Con este fin, analizamos un enfoque novedoso introducido recientemente en la
literatura para eliminar los rastros de la cámaras. Este enfoque se basa en una innovadora
función de pérdida híbrida durante el entrenamiento de la red definida como una combinación
de tres funciones diferentes: la función de similitud incrustada, la función de fidelidad truncada
y la función de identidad cruzada. Además, proponemos un nuevo ataque contraforense basado
en modelos de difusión.

iv

Contents

Resumen iii

1 Introduction 1
1.1 The social maze of fake images: challenges and strategies 1

1.1.1 Criminal background . 2

1.1.2 Issues for law enforcement . 3

1.1.3 Current methods and tools of law enforcement 3

1.1.4 Issues for journalists . 4

1.1.5 Current methods and tools for journalists 4

1.2 The camera processing pipeline and its traces on noise (Chapter 2) 5

1.3 Forgery Detection in Digital Images by Multi-Scale Noise Estimation (Chapter 3) 7

1.4 Noisesniffer: Forgery Detection by Noise Spatial Statistics (Chapter 4) 9

1.5 Exploring Image Forgery Detection via Forensic Similarity Graphs (Chapter 5) . 11

1.6 Non-Semantic Evaluation of Image Forensics Tools (Chapter 6) 12

1.7 Analysis of the Forensic Similarity Approach for Source Camera Model Com-
parison (Chapter 7) . 14

1.8 Photo-Response Non-Uniformity (Chapter 8) 15

1.9 A Study of CamTE: a Camera Trace Erasing Network (Chapter 9) 17

1.10 Diffusion Models for Counter-Forensics (Chapter 10) 17

1.11 Summary of Contributions . 19

1.11.1 Publications . 19

1.11.2 Reproducible research through IPOL demos 21

1.11.3 Projects and transitions to society . 21

2 The camera processing pipeline and its traces on noise 25
2.1 Introduction . 25

2.2 Describing the image processing chain . 26

2.2.1 Raw image acquisition . 26

2.2.2 Demosaicing . 26

2.2.3 Color Correction . 28

2.2.4 JPEG compression . 29

2.3 The avatars of noise throughout the camera processing chain 30

2.4 The Impact of JPEG Compression on Prior Image Noise 33

2.4.1 Modeling compressed noise . 33

2.4.2 JPEG Compression on Gaussian Noise 35

2.4.3 Experiments . 36

2.4.4 Discussion . 38

2.5 Tracing the Camera Processing Pipeline for Forgery Detection 38

Contents

I Forgery detection based on the alterations on noise 41

3 Forgery Detection in Digital Images by Multi-Scale Noise Estimation 43
3.1 Introduction . 43

3.2 Related Work . 44

3.3 The Proposed Method . 45

3.4 Experimental Results . 48

3.4.1 Relevance of the Multi-Scale Approach 50

3.4.2 Comparison with State-of-the-Art Methods 51

3.4.3 Influence of the Macroblock Size . 56

3.5 Conclusions and Limitations . 57

4 Noisesniffer: Forgery Detection by Noise Spatial Statistics 59
4.1 Introduction . 59

4.2 Method . 60

4.2.1 Distributions computation . 61

4.2.2 Statistical validation . 62

4.2.3 Region growing algorithm . 64

4.3 Detailed implementation . 64

4.4 Experiments . 72

4.4.1 Impact of the parameters in the detection performance 73

4.4.2 Comparison with the state of the art 77

4.4.3 Limitations . 82

4.4.4 Robustness . 83

4.5 Conclusion . 86

5 Exploring Image Forgery Detection via Forensic Similarity Graphs 87
5.1 Introduction . 87

5.2 Forensic similarity score . 88

5.2.1 Problem formulation . 88

5.2.2 Method . 88

5.3 Forensic similarity graph for forgery detection 91

5.4 Demo . 94

5.5 Experiments . 95

5.5.1 Forged images . 95

5.5.2 Authentic images . 95

5.6 Conclusions . 95

6 Non-Semantic Evaluation of Image Forensics Tools 99
6.1 Introduction . 99

6.2 Related Works . 100

6.3 Image formation pipeline . 103

6.4 The Proposed Methodology . 105

6.5 Experiments . 109

6.5.1 Evaluated methods . 109

6.5.2 Evaluation Metrics . 109

6.5.3 Results . 109

6.6 Discussion . 111

6.7 Conclusion . 111

vi

Contents

II Source camera identification based on noise characteris-
tics 113

7 Analysis of the Forensic Similarity Approach for Source Camera Model Com-
parison 115
7.1 Introduction . 115

7.2 Method . 116

7.2.1 Problem formulation . 116

7.2.2 Architecture . 116

7.2.3 Dataset . 117

7.2.4 Training procedure . 118

7.2.5 Demo . 119

7.3 Experiments . 119

7.3.1 Known camera models . 119

7.3.2 Known and unknown camera models 120

7.3.3 Unknown camera models . 121

7.4 Conclusion . 122

8 Photo-response non-uniformity 125
8.1 Introduction . 125

8.2 Related work . 126

8.2.1 PRNU estimation . 126

8.2.2 PRNU detection . 127

8.3 New source camera statistical certification . 128

8.3.1 Tests based on ranks . 130

8.3.2 Tests on the correlation distributions 130

8.4 Experimental analysis . 131

8.4.1 Datasets. 131

8.4.2 PRNU estimation. 132

8.4.3 Matching and Mismatching tests. 132

8.4.4 Performance assessment. 132

8.4.5 Empirical check of the probability of false alarm. 134

8.4.6 Influence of the block size. 134

8.5 Conclusion . 135

III Counter-forensics 137

9 A study of CamTE: a Camera Trace Erasing Network 139
9.1 Introduction . 139

9.2 Problem formulation . 140

9.3 Method . 140

9.3.1 Architecture . 140

9.3.2 Proposed hybrid loss . 141

9.3.3 Implementation details . 142

9.3.4 Training settings . 144

9.3.5 The role of each loss . 145

9.4 Demo . 146

9.5 Experiments . 146

9.5.1 Quality inspection . 146

vii

Contents

9.5.2 Indirect effectiveness analysis . 146
9.5.3 Effectiveness analysis on JPEG traces 149

9.6 Conclusion . 149

10 Diffusion Models for Image Counter-Forensics 153
10.1 Introduction . 153
10.2 Related work . 154

10.2.1 Image counter-forensics . 154
10.2.2 Diffusion-based adversarial purification 155

10.3 Background . 156
10.4 Proposed method . 156
10.5 Experiments . 157

10.5.1 Forgery traces removal . 158
10.5.2 Image Quality Assessment . 161

10.6 Influence of the parameters . 163
10.6.1 Diffusion time-step . 163
10.6.2 Guidance scale . 163

10.7 Conclusions and Future Work . 164

Conclusion 170

Referencias 171

Índice de tablas 190

Índice de figuras 193

viii

Chapter 1

Introduction

This chapter provides a short description of the problem and the main contri-
butions of this thesis. The focus is the analysis of the noise in digital images
and its forensics applications. Throughout this dissertation, we present not only
the problem of forgery detection but also other forensics tasks based on noise
characteristics such as source camera model identification and source camera cer-
tification. Furthermore, we explore the robustness of such approaches to different
counter-forensics attacks. This chapter ends by listing the contributions of this
thesis through publications, online demos, projects, and transitions to society.

Parts of the first section of this chapter have been published as a book chapter [12,
183]. The considerations presented in the final section are part of the work
published as The approach to reproducible research of the Image Processing On
Line (IPOL) journal in the Informatio journal [174].

1.1 The social maze of fake images: challenges and strategies

The Internet, digital media, new means of communication, and social networks have boosted
the emergence of a connected world where the idea of achieving absolute control over informa-
tion seems unattainable. Images are ubiquitous and therefore have become an essential part of
the news. Unfortunately, they have also become a tool of disinformation aimed at distracting
the public from reality.

Manipulation of images is everywhere. Simply removing red eyes from family photos could
already be considered an image manipulation, whereas it is simply aimed at making a flash
image look more natural. Even amateur photographers can easily erase the electric wires
hanging from their poles in a vacation panorama, correct cosmetic imperfections such as
wrinkles on a face, not to mention touch-ups done on models in magazines.

Beyond these mostly benign examples, image manipulation can lead to falsified results in
scientific publications, reports, or journalistic articles. Altered images might imply an altered
meaning, and can thus be used as forged evidence, for instance, to defame a person or even to
report UFO or paranormal activity. More frequently, falsified images are published and relayed
on social media, in order to produce and spread fake news.

The proliferation of consumer software tools and their ease of use have made image ma-
nipulation very accessible to many users. Some software even goes as far as to automatically
restore a natural look to an image when parts of it have been altered or deleted. Recently, deep
neural networks have made it possible to forge images almost automatically. One example is

Chapter 1. Introduction

the site This Person Does Not Exist1, which randomly generates surprisingly realistic faces
of people who are not real. The most surprising application is, undoubtedly, the arrival of
deepfake methods, which allow, among other features, to replace a face in a video with one
of another person (face swapping).

The digital image is an essential medium of communication in today’s world. People need
to be able to trust this method of communication. Therefore, it is essential that news agen-
cies, government agencies, and law enforcement maintain and preserve trust in this essential
technology.

1.1.1 Criminal background

These new possibilities of image manipulation have been exploited for a long time by govern-
ments, criminal organizations, and offenders. Stalinist propaganda images come to mind, as
certain characters who had become undesirable were removed from official photographs, as we
can see in Figure 1.1.

Figure 1.1: An example showing successive modifications applied to an image.

Today, image manipulation can serve the interests of criminal or terrorist organizations as
part of their propaganda (false claims, false events, masking of identification elements, addition
of objects). Face swapping and deepfake techniques are also a simple way to undermine the
reputation and privacy of public figures by placing them in compromising photos or videos. The
manipulation of images is also a means of exerting coercion, pressure, or blackmail against a

1www.thispersondoesnotexist.com.

2

www.thispersondoesnotexist.com.

1.1. The social maze of fake images: challenges and strategies

third party. These new image manipulation techniques are also used by pedophiles to generate
photographs that satisfy their fantasies.

Manipulated images can also be used to cause economic harm to companies through
disinformation campaigns. Administrative documents can be falsified in order to obtain official
papers, rental documents, or a loan from specialized organizations. Face morphing, whose
objective is to obtain the photo of a visually “compatible” face from two faces, enables two
users to share the same ID in order to deceive an identity check.

1.1.2 Issues for law enforcement

In the past, confessions, testimonies or photographs were enough to prove guilt. Technology
was not sufficiently developed to mislead investigators. Today, these methods are no longer
sufficient and law enforcement authorities need innovative scientific tools to be able to present
reliable evidence in court. As technology evolves rapidly, law enforcement agencies must
continuously ensure scientific monitoring in order to keep up with state-of-the-art technology,
anticipate, and have the most recent tools available to detect manipulation and other forms
of cheating for malicious purposes. It is essential to maintain a high level of training for
the experts responsible for authenticating the images. In fact, the role of the police, and in
particular of the technical and scientific police, is to highlight any falsification in order to allow
perpetrators to be sentenced but also to exonerate the persons under judicial inquiry if they are
innocent or if their crime cannot be proven. The role of the expert in image authentication is
to detect any form of manipulation, rigging, or editing aimed at distorting reality. They must
be able to answer the following questions:

• Is the image authentic?

• Does it represent the real context of the depicted scene?

• What is the history of the image and its possible manipulations?

• Where is the manipulated part?

• Is the image coming from the actual device that supposedly produced it?

In general, it is easier to conclude that an image is falsified than to say it is authentic.
Detecting manipulation traces is getting harder over time, as new forgery methods are being
developed. As a consequence, not finding any forgery traces does not prove the image’s
authenticity. The level of expertise of the forger should also be taken into account. In fact,
the possible traces of manipulation will not be the same depending on whether the author is
a neophyte, a seasoned photographer, or a special effects professional. The author can also
use so-called anti-forensic techniques aimed at masking traces of manipulation so that they
become undetectable by experts; it is up to the expert to know these techniques and their
weaknesses.

1.1.3 Current methods and tools of law enforcement

As technologies evolve over time, detection tools must also adapt. Particularly during the
transition from film photography to digital images, the authentication methods that were
mainly based on a magnifying glass observation (visual analysis of defects, consistency of
shadows and lighting, vanishing points) have been completed with structural and statistical
analyses.

3

Chapter 1. Introduction

To this date, few commercial tools can authenticate images effectively. Most of the time
experts need to design their own tools, which poses the problem of their acceptability in court.
In order to compensate for this lack of objective and precise tools, the police recruit trainees,
who participate in national projects (for example, the DEFALS challenge funded by French
DGA2 and the National Research Agency) or international projects (H2020 projects of the
European Commission). The objective is to involve university researchers as well as industrial
actors and practitioners (forensic experts). In addition, experts are developing good practices
guides such as the “Best Image Authentication Practice Manual” within the framework of the
ENFSI3, in order to standardize and formalize analysis methodologies.

1.1.4 Issues for journalists

Verifying images has become a major part of the journalists’ everyday job to quote and reuse
eyewitness content or to debunk decontextualized and tampered pictures. Nevertheless, proving
the authenticity of images found on the web remains a challenging task.

Following the rise of the so-called fake news wave in 2016, fact-checking has become very
trendy among media organizations and NGOs. The database maintained by the US Duke
University reporters‘ Lab lists in August 2021 a total of 349 active fact-checking organizations
in the world.

Social media giants such as Facebook have partnered with fact-checkers to help them verify
viral content on their platforms, including images and videos. Fact checkers need therefore
to be able to prove and explain in a scientific and verifiable process, why an image is fake.
The first common step is to reverse search with an engine indexing billions of images such
as Google images, Yandex, Bing or Tineye. The image may be real but simply taken out of
context (date, place, depicting another previous event).

Fact-checkers may also find an original image (or a supposed original image). Then, they
need to match and compare this image with the one they try to verify. If no original image
can be found, then the only possible method would be to detect hypothetical forgeries in the
image itself, rather than the binary file.

1.1.5 Current methods and tools for journalists

Even if the research field of digital image forensics has a strong link with the fight against
fake news, the developed methods usually remain in the academic environment. Indeed, most
of these methods are unknown or difficult to use by the general public. Their implementation
-when not provided by the authors- often requires background knowledge of image processing
and coding skills. And, even when the implementation is provided, making the algorithms run
still requires some computational expertise. Some academic tools try to bring these methods
into the public domain (such as the demo platform of the IPOL journal) but their use by the
general public is still underdeveloped.

In order to close this gap, different image verification tools have been created. These
platforms are specially created for general public use, helping fact-checkers and individuals in
general to integrate the forensics methods developed by academia in their daily lives. We can
mention as the main image verification tools the following:

• The Image Verification Assistant [229] is a web-based application, developed within the
REVEAL project, that exposes the results of seven image forensics algorithms to end
users, and additionally presents the EXIF metadata (if any) of the input image.

2Direction Générale de l’Armement.
3ENFSI: European Network of Forensic Science Institutes.

4

https://reporterslab.org/fact-checking/
https://reporterslab.org/fact-checking/
https://ipol.im
http://reveal-mklab.iti.gr/reveal/
https://revealproject.eu/

1.2. The camera processing pipeline and its traces on noise (Chapter 2)

• The InVID-WeVerify plug-in [204] incorporates seven state-of-the-art forensic methods
to analyze still images, using the backend of the above Image Verification Assistant.
Furthermore, it integrates image-reverse search engines, metadata viewers as well as a
magnifier lens. This platform also performs video analysis by keyframe fragmentation.

• FotoForensics is an online platform that provides a simple interface for image analy-
sis. The list of integrated tools includes metadata extraction and error level analysis,
which consists in recompressing the image at a known uniform compression quality and
analyzing the residual between these two. Despite being easy to use and free, it does
not incorporate actual forensic algorithms but rather metadata readers and visualization
tools.

• The Forensically online tool regroups a set of filters for digital image forensics. The
main features include metadata extraction, error level analysis, noise level estimation,
luminance gradient computation, and JPEG analysis. Filters are provided together with
parameters the user can adjust. This platform is free and easy to use. However, despite
being more complete than the previously described one, it does not incorporate most of
the recent state-of-the-art forensic filters.

• Ghiro is an open-source project that provides a fully automated image forensic tool. The
main features are metadata extraction, thumbnail consistency analysis, GPS localiza-
tion, error level analysis, and image hash matching. Despite being open source, local
installation is not straightforward for the general public. Furthermore, the last update
dates from 5 years ago.

• The Assembler experiment conducted by Jigsaw and Google Research provided journal-
ists and fact-checkers with recently developed methods to detect manipulated images. It
incorporated six state-of-the-art filters, combining both AI models and classical methods.
This experiment is now closed according to Jigsaw‘s website.

• The Authenticate software by Amped provides a comprehensive tool for image analy-
sis. It includes integrity verification, context analysis, camera identification, processing
analysis, and tampering detection. However, this is a professional expensive software,
inaccessible to the general public.

In a survey launched at the beginning of the Envisu4 project, fact-checkers operating
forensic tools answered that they mainly use the InVID-WeVerify verification plug-in forensic
toolkit (96,8%) but also Forensically (28,6%), Fotoforensics (25,4%) and the (now closed)
Assembler experiment from Google Jigsaw (4,8%).

It is worth mentioning that verification platforms are not the only support fact-checkers
use to analyze images. Reverse image search engines such as Google, Yandex and TinEye, are
also used to analyze and compare visually similar images on the web.

In the next section, we go deeper into the image formation process to reveal the traces
such operations leave in the final image.

1.2 The camera processing pipeline and its traces on noise

(Chapter 2)

From the raw acquisition on the camera sensor to its storage, an image undergoes a series
of operations: denoising, demosaicing, white balance, gamma correction, and compression, as
depicted in Figure 1.2. A description of each of these steps is provided in Section 2.2.

5

https://weverify.eu/verification-plugin/
https://fotoforensics.com/
https://29a.ch/photo-forensics/
http://www.getghiro.org/
https://projectassembler.org/
https://ampedsoftware.com/authenticate
https://weverify.eu/verification-plugin/
https://29a.ch/photo-forensics/
https://fotoforensics.com/
https://projectassembler.org/
https://images.google.com/
https://yandex.ru/
https://tineye.com/

Chapter 1. Introduction

Noisesniffer: image forgery
detection through noise analysis
Marina Gardella1, Pablo Musé2, Miguel Colom1, Jean-Michel Morel1
1 Centre Borelli – École Normale Supérieure Paris-Saclay
2 IIE, Facultad de Ingeniería, Universidad de la República

Introduction
In recent times, great concern has been raised about the authenticity of the
images shared on social networks and used as evidence to support news.
Although fake images are not a new issue, the ease with which it is possible
tomanipulate images today, aswell as the quality of these fakes, havemade
this a highly relevant social problem. How can we verify the authenticity of
an image? To detect forgeries, we search for local inconsistencies in the
traces left by the image formation process.

Original image (left) and a viral fake photo
of Emma González ripping up the U.S. Constitution (right).

Image processing pipeline
Images undergo a complex processing chain from the moment light
reaches the camera’s sensor until the final digital image is delivered. Each
of its operations leaves traces on the image that, though imperceptible to
the human eye, can be exploited for forensic analysis.

0 1000 2000 3000 4000 5000
Intensity

0

10

20

30

40

50

No
ise

 le
ve

l

0 1000 2000 3000 4000 5000
Intensity

0

10

20

30

40

50

No
ise

 le
ve

l

0 50 100 150 200 250
Intensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

No
ise

 le
ve

l

0 50 100 150 200 250
Intensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

No
ise

 le
ve

l

Raw image acquisition

Demosaicing

Contrast enhancement

JPEG-Compression

Each step of the camera processing pipeline modifies the model of the ini-
tial raw Poisson-Gaussian noise. Yet, the noise model remains consistent.
A forgery generally alters this spatial consistency. Local anomalies of the
noise model can become informative cues for forgery detection.

The Noisesniffer method
The method is based in the principles of noise estimation methods: for
each intensity level, in each color channel,

. Select the flattest blocks,
. Select a small percentile of these blocks,
where noise dominates over signal,
. Estimate noise in high frequencies. Try our demo!

If we assume that the variance of the flattest blocks chosen in the first step
can only be explained by noise, the small percentile selected in the second
step should have a random uniform distribution with respect to the first.
We aim at detecting significant deviations from one distribution to the
other, that could not happen by chance but are the result of tampering.
For each observed event we compute its number of false alarms (NFA):

• We establish the null hypothesisH0 (absence of any forgery),

• For each observation e, we compute the expected number of occur-
rences of such event under the null model, NFA = NtestsPH0 E e

The smallest theNFAof anobservation is, themost significant thedetection.

Pr
is
tin

e
Fo

rg
ed

Pr
is
tin

e
Fo

rg
ed

Pr
is
tin

e
Fo

rg
ed

Left: pristine and forged images. Center: flattest blocks (white) and the %
among those having the lowest standard deviation (red). Right: forgery detections

masks obtained by Noisesniffer with automatic, unsupervised thresholding.

Automatic and interpretable detection
Splicebuster Noiseprint Wavelet ManTraNet

Pr
is
tin

e
Fo

rg
ed

Most of the existing methods require interpretation: how can we distin-
guish significant detections from false alarms?
We provide a fully automatic and easy to interpret output by detecting the
regions that significantly deviate from the background model.

Acknowledgment
This work has received funding by the Paris Region Ph.D. grant from Ré-
gion Île-de-France, the ANR-DGA challenge DEFALS (ANR--DEFA-)
and the European Union under the Horizon Europe VERA.AI project, Grant
Agreement number .

Figure 1.2: Simplified processing pipeline of an image, from its acquisition by the camera sensor to
its storage as a JPEG-compressed image. The central column represents the image as it goes through
each step. The left column shows the details of the image obtained as it goes throughout the camera
processing pipeline. The right column plots the noise of the image as a function of intensity in all three
channels (red, green blue) [41]. Because each step leaves a specific footprint on the noise pattern of
the image, analyzing this noise enables us to reverse-engineer the pipeline of an image. This, in turn,
enables us to detect regions of an image that were processed differently and are thus likely to be forged.

These operations leave traces on the final image, often imperceptible to the naked eye
but still detectable. By analyzing those artifacts, it is possible to reconstruct the history of
an image. Indeed, one can model the different operations that took place during the creation
of the image, as well as their order and parameters. Being able to model the image creation
pipeline of an image is relevant by itself, in particular, because it can guide the restoration of
the image. More importantly, it serves as a distinctive fingerprint for the image, an intrinsic
watermark. Discrepancies within the pipeline that lack coherence throughout the entire image
frequently offer valuable clues of tampering.

As it can be seen in Figure 1.2, each step in the camera processing chain leaves traces
in the noise model. Indeed, the raw image captured by the camera sensor follows a Poisson
noise model which is, furthermore, identical for all the color channels. Once the image is
demosaiced, such a model is no longer valid. Even more, the different color channels have
their own different noise curve. Gamma correction gives the noise curve a bell-shape, due to the
power law function this operation applies. Finally, JPEG compression flattens the bell-shaped
curve. All this process is presented more in-depth in Sections 2.3 and 2.4.

Noise analysis offers a relevant insight into the image history. Indeed, if part of an image

6

1.3. Forgery Detection in Digital Images by Multi-Scale Noise Estimation
(Chapter 3)

has been locally modified, or comes from a different donor image, the authentic and forged
regions are thus likely to present different noise profiles. Figure 1.3 depicts this situation: the
forged region presents a different noise model than that of the background image. Section 2.5
briefly reviews the use of such camera traces to develop forgery detection methods in the
literature.

Figure 1.3: Example of a forged image (left) and local noise curves (right). The forged area comes
from a different image that has its own pipeline. Noise models (right) differ between the background
image (pink) and the donor one (green). The resulting tampered image presents local inconsistencies
in the noise model.

From the considerations formulated in Chapter 2 and presented in this section, we devel-
oped the forgery detection method described in Chapter 3 which we shall introduce in the next
section.

1.3 Forgery Detection in Digital Images by Multi-Scale Noise

Estimation (Chapter 3)

As we saw in the preceding section, noise analysis offers a relevant insight into the image
history. However, the final noise model present in JPEG-compressed images is complex since it
is not only signal-dependent but also frequency-dependent (see Section 2.4 for more details).
To deal with such complexity, in Chapter 3 we propose a multi-scale algorithm. The multi-
scale approach has been shown to effectively deal with the correlations introduced by the
demosaicing and JPEG-compression processes [42] and stands out as a suitable framework for
noise inconsistency analysis.

The proposed approach consists of computing local noise curves and comparing them to
the global noise curve, obtained from the whole image, computed using the extended version
of Ponomarenko et al. method [41]. For non-forged images, we expect local noise curves
to show similar noise level functions as the global one. However, noise estimation is highly
affected by image content. Indeed, noise overestimation is expected to happen in textured
regions [146]. As a consequence, local noise curves computed over textured areas may be
above the global one, even if no tampering has been performed. To prevent this kind of region
from being perceived as suspicious, we only consider suspicious local noise curves that are
below the global one. Indeed, the global noise curve provides a lower bound for local noise

7

Chapter 1. Introduction

curves since the noise estimation algorithm [41] has more samples from which to choose the
adequate ones to estimate noise.

This process is done for each channel. Each color channel provides a heatmap showing
the percentage of bins of each region that are below the global noise curve, as depicted in
Figure 1.4. The information of the three channels is combined by taking the mean of them.Such
a process is repeated through several scales in order to capture the noise inconsistencies in low
and medium frequencies. Finally, the heatmaps at each scale contribute with the same weight
to the final output, as depicted in Figure 1.4.

Input image

S0

Red channel Green channel Blue channel Geometric mean

S1

Red channel Green channel Blue channel Geometric mean

S2

Red channel Green channel Blue channel Geometric mean

Output

Figure 1.4: Complete pipeline of the method: successive scales are extracted from the input image. At
each scale, one heatmap per color channel is computed and then combined according to their geometric
mean. Finally, the obtained heatmaps at each scale are summed and normalized to produce the final
output.

This method, although simple, is able to outperform state-of-the-art methods for coloriza-
tion attacks. This forgery technique shows the relevance of considering intensity-dependent
noise models instead of single noise levels. Indeed, when changing the color in a region of
the image, noise levels are not necessarily perturbed. However, those noise levels will not
be consistent with the new intensity but with the original. Estimating noise curves as the
proposed method does enable detection of this kind of inconsistency which only appears when
considering intensity-dependent noise models.

Besides, we evaluate the pertinence of the multi-scale approach. Using multiple scales
leads to better results compared to a single one. Regarding the number of scales yielding a
better performance, the use of three scales gives the best scores. In fact, given that JPEG
compression is applied in 8× 8 blocks without overlap, it is at the third scale that we are able
to capture noise contained in lower frequencies, less affected by the JPEG quantization in the
DCT coefficients.

In the next section, we shall introduce another forgery detection method based on noise
analysis. Although this method is more sophisticated than the one presented here, it is based
on the principles of the noise estimation method [41] presented here.

8

1.4. Noisesniffer: Forgery Detection by Noise Spatial Statistics (Chapter 4)

1.4 Noisesniffer: Forgery Detection by Noise Spatial Statistics

(Chapter 4)

In Chapter 4 we present a more sophisticated image forgery detection method based on noise
analysis than the one presented in Chapter 3. This method is based on the principles of the
noise estimation method [41] used in Chapter 3. Indeed, most non-parametric noise estimation
methods share the same principles: they start by selecting the homogeneous regions of the
image where noise dominates over the signal, and then they estimate noise in the frequency or
the spatial domain using just a small portion of the blocks in the previously selected region [132].

The presented method follows a similar procedure to identify the blocks within the ho-
mogeneous regions that are good candidates for noise estimation. However, instead of using
these blocks to estimate the noise level, we are interested in analyzing the spatial distribution
of such blocks. Indeed, if the variance in the homogeneous regions identified in the first step
is only explained by noise, the small proportion of blocks that are then used to estimate noise
should be a random uniform selection over the homogeneous region. However, if we observe
that the blocks used for noise estimation concentrate in a particular part of the homogeneous
region, we can deduce that this zone exhibits a suspicious noise deficit.

The proposed method is developed in two steps. Firstly, we compute the set of blocks
corresponding to the homogeneous regions and then the subset of those blocks having the
lowest standard deviation. Secondly, the spatial distribution of these two sets is compared to
detect if there is a statistically significant deviation from one distribution to the other. To do
so, we adopt an a contrario approach [56] and assign a number of false alarms (NFA) to each
detection.

In order to select the suitable blocks for noise estimation, for each color channel and
intensity, we compute their variance in low and medium frequencies and only keep a small
percentile of those. The intensity variations in these blocks are likely to be explained only by
noise. Then, for all these blocks we compute their variance and compare the spatial distribution
of the whole set of blocks to the one of those ones having the lowest variance. As depicted
in the top row of Figure 1.5, in absence of any forgery, this subset should correspond to a
random uniform selection over the whole set of blocks previously selected. However, as shown
in the bottom row of Figure 1.5, forgeries inducing noise deficit cause deviations from one
distribution to the other.

Still, deviations from one distribution to another might happen just by chance. Thus
some criterion is needed in order to spot deviations that are statistically significant from
those that could happen just by chance. In Chapter 4, we propose to use an a contrario
approach [56] to statistically validate these deviations. This theory is based on the Non-
Accidentalness Principle, which states that we perceive a structure whenever a large deviation
from randomness occurs [8]. However, computing the probability of these events might be
hard. This problem is solved by the introduction of the Number of False Alarms (NFA) of an
event, which is an upper bound on the expectation of occurrences of such event under the
null model [56]. By establishing the desired threshold on the NFA –which corresponds to an
estimate of the mean number of false detections under the background model – we can obtain
automatic forgery detection masks. Figure 1.6 shows the obtained masks for the example
previously depicted in Figure 1.5.

Noisesniffer is first evaluated in Section 4.4 using a subset of the Trace database, which is
introduced in Chapter 6. Then, in Chapter 6 we present a more exhaustive evaluation. In ad-
dition, we offer an online executable version of the described method allowing everyone to test it
on their own suspicious images https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000341.

9

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000341

Chapter 1. Introduction

Pristine image Distributions

Forged image Distributions

Figure 1.5: Distributions computation results in pristine (top) and forged (bottom) images from the
Korus dataset [121, 122]. In white, the 3 × 3 blocks having the lowest variance in low and medium
frequencies. For these blocks, the intensity variations in these blocks are likely to be explained only
by noise. In red, a small percentile amongst this set having the lowest variance. In the absence of
any forgery, this subset should correspond to a random uniform selection over the whole set of blocks
previously selected. However, forgeries inducing noise deficit cause deviations from one distribution to
the other.

Pristine image Estimated mask

Forged image Estimated mask

Figure 1.6: Forgery detection masks obtained for the example previously shown in Figure 1.5 by detecting
deviations from the background model that are statistically significant [56].

10

1.5. Exploring Image Forgery Detection via Forensic Similarity Graphs
(Chapter 5)

1.5 Exploring Image Forgery Detection via Forensic Similarity

Graphs (Chapter 5)

The two methods presented in the previous sections aim at reconstructing the image formation
process by detecting visually imperceptible traces that are left in the image at each step of
the camera processing pipeline. Indeed, most classical methods rely on hand-crafted features.
However, learning camera-related features has also been attempted in the literature. In Chap-
ter 5, we explore one of such approaches: the forensic similarity network introduced by O.
Mayer and M.C. Stamm and its applications to forgery detection.

To construct the forensic similarity score, Mayer and Stamm propose to design a feature
extractor function f and the similarity function S such that S(f(X1), f(X2)) is as close to
1 as possible whenever the patches X1 and X2 have the same camera traces and as close as
possible to 0 when not. To develop such functions, they propose a learning-based strategy.

The feature extractor consists of 5 convolutional blocks and 2 fully connected layers.
Two such feature extractor networks, in siamese configuration with weight-sharing, are used
to process in parallel the two patches, producing a feature vector for each patch. Then, a
similarity network takes both feature vectors as input and computes their similarity score.

The system is trained in two phases. In the first phase, the feature extractor is trained
by adding a fully connected layer with softmax activation. The feature extractor is trained
as a source camera classifier, using image patches with associated labels corresponding to
their source camera model. Research indicates that the deep features associated with camera
model classification provide a good starting point for several forensics tasks. During the second
training phase, the similarity network is trained to target a specific task. Here, the task is to
determine if two image patches come from the same camera model.

By computing the forensic similarity of each of the patches within an image, the authors
construct a graph representation where patches are represented as the vertices of the graph,
and the edge weights are assigned in order to reflect the forensic similarity between them.
Patches that have undergone the same processing operations are expected to form commu-
nities. Communities are characterized by strong connections within the members and weak
connections to non-members. This way, forgery detection can be formulated as a community
detection problem, and forgery localization as a community partition problem.

In order to detect communities, the image graph representation is modeled as a weighted
graph G = (V,W), where V = {v1, . . . , vn} is the set of vertices and W is a symmetric matrix
satisfying Wij ≥ 0 for all i, j = 1, . . . , n and Wii = 0 for all i = 1, . . . , n. Two approaches
are then proposed to detect communities in weighted graphs: spectral clustering [66] and
modularity optimization [171].

Spectral clustering focuses on the study of the eigenvalues of the graph Laplacian matrix,
defined as

L = D −W (1.1)

where D is the degree matrix defined as Dii =
∑

j Wij and Dij = 0 if i ̸= j. The multiplicity
of the eigenvalue λ = 0 corresponds to the number of communities in the graph. The authors
use the eigengap heuristic [153] to detect if more than one community exists by computing
the second smallest eigenvalue λ2, and comparing it to a pre-defined threshold. If λ2 is smaller
than τ , the image is classified as forged, and if it is larger, as non-forged.

On the other hand, modularity was introduced as a measure of the quality of a particular
graph partition [171]. This is done by comparing the observed edge density within a community
to the expected edge density given by the background model. Modularity can be expressed as

11

Chapter 1. Introduction

Q =
1

2m

∑

i,j

(Wij − E(Wij)) δ(ci, cj), (1.2)

where the sum is taken over all the pair of vertices, m is the weighted total number of edges

m =
∑

i,j Wij

2 , W is the weights matrix, E(Wij) is the expected weight for an edge connecting
vertices i and j given by the background model, δ is the Kronecker δ-function and ci is the
community to which vertex i belongs. Modularity optimization aims at finding the community
partition for which the modularity is maximized. If the optimal value for the modularity is
close to 0, then there is no evidence of community structure [171]. Therefore, to detect image
tampering the authors compare Qopt to a pre-defined threshold.

Forged image Forgery mask 1 Forgery mask 2

Extracted patches Weights matrix Detected communities

Figure 1.7: Examples of weight matrices and graph partitions on a forged image from the MISD
Dataset [109], having two spliced regions. The community detection algorithm used for these examples
is the modularity optimization, with patches of size 128 × 128 and 50% of overlap. The edge weight
threshold was set to 0.9. We observe that the community partition found by the algorithm (in red)
points to the forgery masks.

Figure 1.7 shows an example of the previously described detection method. In the top
row, the input image and its corresponding splicing masks. In the second row, we observe the
extracted patches, the weight matrix associated with the graph representation of the image
and, finally, the communities partition found using modularity optimization.

In Chapter 6 we present an exhaustive quantitative evaluation of the described method.
In addition, we offer an online executable demo allowing everyone to test it on their own
suspicious images: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432.

1.6 Non-Semantic Evaluation of Image Forensics Tools (Chap-

ter 6)

In the previous sections, we have focused on image forgery detection methods. In order to
evaluate their performance, a key decision is the evaluation framework. In this section, we
shall describe a new evaluation approach.

12

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432

1.6. Non-Semantic Evaluation of Image Forensics Tools (Chapter 6)

(a) Raw image (b) Forgery mask: M

(c) Pipeline 0: P0 (d) Pipeline 1: P1

(e) Forgery: F =M̄P0 +MP1 (f) Residual |F − P0|

(g) Noiseprint result (h) Mantranet result

Figure 1.8: Different image formation pipelines are applied to the same RAW image to obtain two
images, that are combined to obtain a forged image. The authentic and forged regions present different
camera pipeline traces but are otherwise perfectly coherent. The last row shows the result of two
forensic tools on this image: Noiseprint [48] and Mantranet [221].

13

Chapter 1. Introduction

Image forensics algorithms are mainly evaluated by their performance in benchmark chal-
lenges. This practice has several limitations: in many cases, the same database is split into
training and evaluation data. As a consequence, algorithms are trained and evaluated on
images that have gone through similar image processing pipelines, forgery algorithms, and
anti-forensic tools. Hence, there is no guarantee that such learning-based methods will work
in the wild, where those parameters vary much more. Regardless of the variety of the training
set, the question arises of whether the forgeries are being detected by trained detectors for
semantic reasons, or because of local inconsistencies in the image.

Indeed, while semantic analysis of an image can provide hints, the rigorous proof of a
forgery should not be based on semantic arguments only. The situation is similar to the
dilemma arising from the observations of Galileo, which contradicted the accepted knowledge
of his time. In the words of Bertolt Brecht [24]:

Galileo: How would it be if your Highness were now to observe these impossible
as well as unnecessary stars through this telescope?
The Mathematician: One might be tempted to reply that your telescope,
showing something that cannot exist, may not be a very reliable telescope, eh?

The telescope could have been unreliable, indeed, and a scientific inquiry on the instrument
could have been justified. However, concluding, as the Mathematician does, that the telescope
was unreliable just based on the contents of the observations is not prudent. Similarly, the
proof of a forgery must be based on image traces, not on semantic arguments, because the
semantics of an image are usually the purpose and not the means of a forgery.

With these considerations in mind, in Chapter 6 we propose a methodology and a database
to evaluate image forensic tools on images where authentic and forged regions only differ in
the traces left behind by the image processing pipeline. Using this methodology, we create the
Trace database by adding various forgery traces to raw images from the Raise [52] dataset,
as shown in Figure 1.8. This procedure avoids the difficulties of producing convincing and
unbiased semantic forgeries, which often require manual work. We create several datasets,
each of which corresponds to a specific pipeline inconsistency, such as a different noise level
or compression pattern. This gives us insight into the sensitivity of forensic tools to specific
traces and thus highlights the complementarity of different methods.

1.7 Analysis of the Forensic Similarity Approach for Source

Camera Model Comparison (Chapter 7)

As pointed out in Chapter 2, the traces left by the image processing pipeline can be used for
several forensics tasks rather than image forgery detection and localization. In this chapter, we
explore another use of such traces related to source camera forensics. Providing information
about the camera with which an image was acquired can be crucial for different forensic
applications. Indeed, it can provide clues to track pornographic content, check for copyright
infringement, and verify the consistency of a database.

Classic methods tackle this problem by searching for device traces. These traces include
sensor pattern noise [151], lens distortions [36], demosaicing artefacts, white balance traces [55]
and compression. Some of these features, such as the PRNU4 pattern [151] or radial distor-
tion [36], are device-specific and can lead to accurate device identification. In particular, the
use of PRNU traces for source camera certification is explored in Chapter 8. Other features

4Photo Response Non-Uniformity

14

1.8. Photo-Response Non-Uniformity (Chapter 8)

are shared by different devices from the same model or brand, and can therefore provide
information about the device model rather than identifying a particular source camera [207].

In this chapter, we show that the forensic similarity approach presented in Chapter 5 can
also be used for source camera model comparison. Indeed, such an approach aims to determine
whether two image patches share the same forensic traces or not. Images acquired with devices
from the same model are expected to exhibit the same similar forensic traces, while devices
from different models are expected to produce different traces. In order to make the chapter
self-contained, the forensic similarity approach is presented again in Section 7.2.

Reference image Test image 1 Test image 2 Histogram

Apple iPhone 6s Apple iPhone 6s LG G3 Similarity scores

Figure 1.9: Results of the forensic similarity approach applied to source camera comparison. The first
figure presents the reference image, the second and third the test images and, finally, the fourth figure
shows the histogram of the forensic similarity scores obtained in the patch-to-patch comparisons.

The goal of the method is to determine if a pair of images has been captured by the
same camera model or not. The method takes as input three images: a reference image,
and two test images that will be compared to the reference one. To perform an image-wise
comparison built upon the patch comparison provided by the forensic similarity approach,
we set a number of randomly chosen patch-to-patch comparisons to be considered. The
output is a histogram showing the forensic scores obtained for each patch-to-patch compar-
ison, for both image comparisons. Figure 1.9 shows an example of the forensic similarity
approach applied to source camera model comparison. We offer an online executable ver-
sion of the described method allowing everyone to test it on their own suspicious images
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=424.

1.8 Photo-Response Non-Uniformity (Chapter 8)

Following the same approach introduced in the previous section, Chapter 8 also focuses on
source camera forensics based on the image residue. In this chapter we focus on the Photo-
response non-uniformity (PRNU) and its usage for source camera identification. The PRNU
pattern, as we shall introduce in Section 2.3, is caused by the non-uniform response of each
pixel to the same amount of incoming photons. It is systematically present in every image
captured by a given sensor and it has been shown to be a sort of device fingerprint. Here, we
tackle the problem of detecting the presence of a PRNU pattern in a query image and propose
a new statistical certification method.

The standard procedure to estimate the PRNU of a given camera is to average the noise
residuals of a certain amount of images captured by said camera [31, 129, 151]. The noise
residuals are generally extracted using a denoising filter [31, 46, 136, 151]. Since these noise
residuals contain other types of noise and random variations in addition to the fixed PRNU,
these residuals are averaged to suppress the random variations and enhance the fixed pattern

15

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=424

Chapter 1. Introduction

that is present in all of them. This fixed pattern can be then refined to discard non-unique
artifacts that are not part of the PRNU.

Once the PRNU pattern is estimated, the problem of source camera identification consists
in determining if the PRNU pattern is present in the query image or not. This problem can be
stated as a statistical hypothesis testing problem, with the null hypothesis corresponding to the
absence of a tested PRNU pattern, and the alternative its presence [31, 83]. The test statistic
used to decide between one alternative or the other is usually a correlation metric [83, 151].
This kind of metric provides a measure of the presence of the PRNU of the camera in the given
image. By comparing the observed test statistic to a pre-fixed threshold that depends on the
significance level at which the test is performed, one can decide whether the query image was
taken with the camera under investigation or not.

A major drawback, shared by all the test statistics proposed for PRNU detection, is that
their distribution needs to be determined empirically by analyzing the behavior of a given
camera’s PRNU pattern with respect to images acquired using the same device and to images
acquired with a different device. This poses a major problem for source camera certification
since these methods do not provide an accurate false alarm rate for each detection, but rather
a lower bound related to the size of the dataset used to derive such thresholds.

Matching test Mismatching test

100 80 60 40 20 0
log10(p-values)

0

100

200

300

400

500

co
un

t

Matching test: histogram of p-values K-S test on ranks - orig

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

10

20

30

40

50

co
un

t

Mismatching test: histogram of p-values K-S test on ranks - orig

detected
not detected

Figure 1.10: Histograms of the log
10
(p−values) obtained with the Kolmogorov-Smirnov test on the

uniformity of the ranks. The histogram in the left corresponds to the matching test and the one on
the right to the mismatching test in the native resolution images from Forhheim dataset [93]. The
matching histograms are truncated in -100 and, therefore, all the p-values below this bound contribute
to this bin. We observe that the proposed approaches deliver very significant detections. Furthermore,
the p-values obtained for the mismatching test are mostly above 10−1.

In this chapter, we propose an alternative strategy for source camera certification that can
be used in conjunction with the classic testing approaches. Our method relies on two hypothesis
tests based on local correlations that do not require computing empirical distributions. For
each detection, we provide the p-value of the test as a confidence measure. As shown in
Figure 1.10, in most cases PRNU true detections are almost absolute, with p-values smaller
than 10−100. On the other hand, most true negatives deliver p-values above 10−1.

The proposed approach complements the classic testing statistics by associating a very
informative confidence measure with detections and rejections. However, our approach does
not require the construction of datasets to model the test statistics under the null hypothesis.
Instead, we learn a stochastic background model from the image itself. Therefore, the presented
method can help certify most of the results given by the classic metrics, but without the need
for empirical thresholds.

16

1.9. A Study of CamTE: a Camera Trace Erasing Network (Chapter 9)

1.9 A Study of CamTE: a Camera Trace Erasing Network

(Chapter 9)

So far, we have focused on the applications of noise analysis to different forensics tasks. Still,
forgers may attempt to hide these traces. The following chapters shall focus on this problem.

Throughout the image formation process, the raw image acquired by an electronic sensor
undergoes several operations such as denoising, demosaicing, white balance, contrast correc-
tion, and compression. These operations leave traces in the resulting image that encodes
information about the camera processing chain. Such traces, though imperceptible to the
naked eye, play a crucial role in various forensic tasks, as shown in the previous chapters.
However, nothing prevents people from covering up these traces in order to deceive such
methods. Understanding the boundaries of forensic analysis is crucial so that efforts are made
to surpass them. Counter-forensics emerged as the research domain that challenges digital
forensics and methodically investigates its limitations [22].

In this chapter we explore the camera trace erasing method proposed by Chen et al. [29].
This method aims at extracting the camera trace, i.e. the signal embedded in the image during
the image formation process which implicitly encodes information about the camera processing
chain (see Chapter 2), while preserving the image content.

Given an image I, the authors state that we can decompose it in two components: The
content signal S and the camera trace T :

I = S + T. (1.3)

In order to extract the camera trace T , the goal is to find F : X → X such that F (I) = S,
where X stands for the space of all images. However, finding such F amongst all possible
functions F : X → X is not straightforward.

The proposed camera trace erasing method is a parametric function Fθ, where θ are
trainable parameters. For network training, a novel hybrid loss is designed. This hybrid loss is
defined as a combination of three different losses: the embedded similarity loss, the truncated
fidelity loss, and the cross-identity loss. In this section, we briefly describe the method and its
results.

We qualitatively evaluate this method in three aspects: the image quality of the purified
images, the direct effectiveness on JPEG trace removal, and the indirect effectiveness of de-
ceiving the source camera model method introduced in Chapter 7. Figure 1.11 shows the
ability of the camera trace erasing method to deceive the source camera model comparison
method presented in Chapter 7. In addition, we offer an online demo for anyone to test their
own images: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000443.

The next section introduces a new counter-forensic method based on diffusion models.
In Chapter 10, which we shall introduce in the next section, a quantitative evaluation of the
CamTE approach is also provided.

1.10 Diffusion Models for Counter-Forensics (Chapter 10)

In this chapter, we study the capabilities of diffusion models to erase the traces left by forgers
and, therefore, deceive forensics methods. Such an approach has been recently introduced for
adversarial purification, achieving significant performance [175, 212].

Adversarial attacks share some common properties with image forgeries, in the sense that
both techniques introduce subtle modifications to the images that, though imperceptible to
the naked eye, disrupt the image’s traces. The goal of adversarial attacks is to deceive a

17

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000443

Chapter 1. Introduction

Original image Output image Histograms of

(reference image and image 1) (image 2) forensic similarity scores

iP
h
on

e
6+

Figure 1.11: Effectiveness of the camera trace erasing method to deceive the forensic similarity approach
(Chapter 7). The first figure displays the original image, which is taken as the reference image and also
as image 1 in the comparison. The middle figure displays the output image, taken as image 2. Finally,
the third figure shows the histogram of the forensic similarity scores obtained in the 100 patch-to-patch
comparisons.

model into making incorrect predictions. Adversarial purification can be, therefore, linked to
counter-forensics since it aims at pre-processing the input data to remove these adversarial
perturbations. Generally, these purification methods are based on generative models [191].

In recent years, diffusion models have emerged as highly effective generative models [96,
197]. These models have showcased impressive capabilities in generating high-quality sam-
ples, outperforming traditional Generative Adversarial Networks (GANs) in the realm of image
generation. The advancements in diffusion models have led to significant improvements in
the fidelity and realism of synthesized images, highlighting their potential as state-of-the-art
models in the field.

In this chapter we evaluate, for the first time, the efficiency of diffusion purification meth-
ods, currently used for adversarial purification [175, 212], as counter-forensics methods. The
rationale behind the use of diffusion models for adversarial purification is that these models
learn the distribution of clean data. Hence, by diffusing an adversarial example and then ap-
plying the reverse generative process, the diffusion model gradually removes the adversarial
perturbations and reconstructs the underlying clean sample.

The same rationale can be applied to hide the forensic traces caused by tampering. Indeed,
since diffusion models are trained on pristine images, diffusion purification methods applied to
forged images should recover purified images without any inconsistency in the camera traces.
Once such disruptions on the camera processing chain are erased, purified images should be
able to deceive any forgery detection method relying on them. Figure 1.12 shows an example
of the aforementioned approach: while ZERO [176] correctly detects the original forgery, once
diffusion purification is applied, the method is no longer able to detect it.

The experimental analysis performed in this chapter shows that diffusion purification meth-
ods are well-suited for counter-forensics tasks. Such approaches outperform already existing
counter-forensics techniques both in deceiving forensics methods, and in preserving the natural
look of the purified images.

18

1.11. Summary of Contributions

Result

Diffusion
process

Reverse
generative

process

Forged image Purified forged image

Diffusion
purification

Result

Forgery detection Forgery detection

Figure 1.12: Illustration of the use of diffusion models as a counter-forensic technique. A forged
image from FAU dataset [37], correctly detected by ZERO [176], produces no detection after diffusion
purification.

1.11 Summary of Contributions

Heretofore, we have introduced the research work carried out during this thesis. Still, this is not
the only thing researchers do. Communicating the results achieved to the concerned audience
is as relevant as achieving them. Transitions in research are not mere administrative steps; they
are the lifeblood of the scientific process and play a vital role in shaping the impact of research
on society. They enable the accumulation of knowledge, foster collaboration, ensure ethical
conduct, drive innovation, inform policy-making, and promote lifelong learning. Recognizing
the importance of transitions in research is essential for researchers, policymakers, and society
at large as they collectively work to address the complex challenges of the modern world
and strive for progress and improvement. This thesis has led to several transitions, including
publications, online demos, and real-world applications.

1.11.1 Publications

This thesis has led to the following publications:

Conference and Journal

• Diffusion models meet image counter-forensics, M. Tailanián, M. Gardella, A. Pardo,
P. Musé. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
2024. (Chapter 10)

• SiamTE: Siamese Trace Erasing for camera trace extraction, M. Gardella. Ac-
cepted for publicacion in Image Processing On Line (IPOL), 2023. (Chapter 9)

19

Chapter 1. Introduction

• Image forgery detection based on noise inspection: analysis and refinement of
the Noisesniffer method, M. Gardella, P. Musé, M. Colom, J.-M. Morel. Accepted for
publicacion in Image Processing On Line (IPOL), 2023. (Chapter 4)

• PRNU-based source camera statistical certification, M. Gardella, P. Musé, M.
Colom, J.-M. Morel, D. Perraud. IEEE International Workshop on Information Forensics
and Security (WIFS), 2023. (Chapter 8)

• A Contrario Detection of H.264 Video Double Compression, Y. Li, M. Gardella, Q.
Bammey, T. Nikoukhah, R. Grompone von Gioi, M. Colom, J.-M. Morel. IEEE Interna-
tional Conference on Image Processing (ICIP), 2023. (Not included in the manuscript)

• Détection a contrario de la double compression vidéo et application préliminaire
à la détection de deepfakes, Y. Li, M. Gardella, Q. Bammey, T. Nikoukhah, R.
Grompone von Gioi, M. Colom, J.-M. Morel. Groupe de Recherche en Traitement du
Signal et des Images (GRETSI), 2023. (Not included in the manuscript)

• Forensic Similarity for Source Camera Model Comparison, M. Gardella, P. Musé.
Image Processing On Line (IPOL), 2022. Best student paper award –MLBriefs 2022.
(Chapter 7)

• Image Forgery Detection via Forensic Similarity Graphs, M. Gardella, P. Musé.
Image Processing On Line (IPOL), 2022. Best student paper award – MLBriefs 2022.
(Chapter 5)

• Video Signal-Dependent Noise Estimation via Inter-Frame Prediction, Y. Li, M.
Gardella, Q. Bammey, T. Nikoukhah, R. Grompone von Gioi, M. Colom, J.-M. Morel.
IEEE International Conference on Image Processing (ICIP), 2022. (Not included in the
manuscript)

• The approach to reproducible research of the Image Processing On Line (IPOL)
journal, A. Nicolaï, Q. Bammey, M. Gardella, T. Nikoukhah, O. Boulant, I. Bargio-
tas, N. Monzón, C. Truong, B. Kerautret, P. Monasse, M. Colom. Informatio, 2022.
(Chapter 1)

• The Impact of JPEG Compression on Prior Image Noise, M. Gardella, T. Nikoukhah,
Y. Li, Q. Bammey. IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2022. (Chapter 2)

• Non-Semantic Evaluation of Image Forensics Tools: Methodology and Database,
Q. Bammey, T. Nikoukhah, M. Gardella, R. Grompone von Gioi, M. Colom, J.-M. Morel.
IEEE/CVF Winter Conference on Applications of Computer Vision, 2022. (Chapter 6)

• Forgery Detection in Digital Images by Multi-Scale Noise Estimation, M. Gardella,
P. Musé, J.-M Morel, M. Colom. Journal of Imaging, 2021. (Chapter 3)

• NoiseSniffer: a Fully Automatic Image Forgery Detector Based on Noise Analy-
sis, M. Gardella, P. Musé, J.-M Morel, M. Colom. 9th IEEE International Workshop on
Biometrics and Forensics (IWBF), 2021. Best paper award – IWBF 2021. (Chapter 4)

Book chapter

20

https://centreborelli.github.io/MLBriefs2022/
https://centreborelli.github.io/MLBriefs2022/
https://iwbf2021.com/

1.11. Summary of Contributions

• How to Reconstruct the History of a Digital Image, and of Its Alterations, Mul-
timedia Security 1: Authentication and Data Hiding, Q. Bammey, M. Colom, M.
Gardella, R. Grompone von Gioi, J.-M. Morel, T. Nikoukhah and D. Perraud. Directed
by William Puech. John Wiley & Sons, Inc., 2022. (Chapter 2)

• Comment reconstruire l’histoire d’une image digitale, et de ses altérations, Sécu-
rité Multimédia vol. 1, Q. Bammey, M. Colom, M. Gardella, R. Grompone von Gioi,
J.-M. Morel, T. Nikoukhah and D. Perraud. Directed by William Puech. ISTE, 2021.
(Chapter 2)

1.11.2 Reproducible research through IPOL demos

Scientific research requires that results can be accessed, tested, and replicated by other re-
searchers. In general, performing reproducible research is not simple and it can be even im-
possible (for example, in the case of astrophysics replicating singular events if even out of the
control of the researcher). However, in computational sciences there is no special hindrance to
reproduce, repeat, and compare results. In 2009 the Image Processing On Line (IPOL) journal
was founded as a modest contribution to implement reproducible research in the Image Pro-
cessing field, and then expanded to more general signal-processing algorithms, such as video
or physiological signal processing, among others. IPOL re-defined the concept of publication,
which is no longer just the article, but the combination of the article, its source code, and any
associated data needed to reproduce the results, everything as an indivisible whole. During
this thesis, we developed the following IPOL demos:

• Forensic Similarity for Source Camera Model Comparison
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=424,

• Image Forgery Detection via Forensic Similarity Graphs
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432,

• Image forgery detection based on noise inspection: analysis and refinement of the Nois-
esniffer method https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000341,

• SiamTE: Siamese Trace Erasing for camera trace extraction
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000443,

• A Signal-dependent Video Noise Estimator Via Inter-frame Signal Suppression
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=420.

1.11.3 Projects and transitions to society

The DEFALS challenge Our societies have become both permeable and dependent on in-
formation which, thanks to the Internet, can be easily disseminated. In this context, images
are a major vector of information; they are often given evidentiary value to support opinions or
justify decisions. This is why they are sometimes powerful vectors of disinformation. Indeed,
users of digital photographs have sophisticated means at their disposal to retouch them, or
even counterfeit them, without leaving any obvious trace.

In this context, the DEFALS project 5, organized by the ANR, had the goal of initiating
and advancing research in image analysis for integrity verification purposes and encouraging

5https://anr.fr/fr/detail/call/challenge-detection-de-falsifications-dans-des

-images-defals/

21

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=424
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000341
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000443
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=420
https://anr.fr/fr/detail/call/challenge-detection-de-falsifications-dans-des-images-defals/
https://anr.fr/fr/detail/call/challenge-detection-de-falsifications-dans-des-images-defals/

Chapter 1. Introduction

connections between the image and optics communities, end users and manufacturers. This
project took the form of a challenge or competition where each selected team developed an
analysis system, allowing the automated detection of modifications made to images. During
this project, two of the image forgery detection algorithms based on noise analysis were de-
veloped: PB (Chapter 3) and Noisesniffer (Chapter 4). These methods proved to be useful in
the “into the wild” images.

EnVisu4 project: Enhanced Visual Forensics We also participated in the ENVISU4 project,
financed by the International Fact-Checking Network (IFCN). The purpose of this project was
to tackle forensic tools usability problems reported by fact checkers trying to debunk fake
images. In response to this challenge, we significantly enhanced the forensic toolbox, with new
state-of-the-art methods, completely redesigned the user interface, and integrated a new tool
to compare images and export the result into an animated GIF image to better reveal image
manipulation.

Figure 1.13: Preview of the new version of the platform. The different forensic filters are applied to an
image from satirical photoshopper @GuillaumeTC on Twitter.

Figure 1.13 showcases the new version of the platform, featuring new state-of-the-art
methods classified according to the inconsistencies they search for and a new tab displaying
image enhancers.

VERA.AI project: VERification Assisted by Artificial Intelligence Together with 14 part-
ners, we are currently part of VERA.AI project, funded by EU Horizon Europe, the UK’s
innovation agency and the Swiss State Secretariat for Education, Research and Innovation
(SERI). It is the aim of the VERA.AI project and its partners to develop and build trust-
worthy AI (Artificial Intelligence) solutions in the fight against disinformation. These are to
be co-created in close collaboration between leading technology experts in the domain and
prospective future users–all brought together in the VERA.AI project consortium, following a
multidisciplinary co-creation approach.

All this is to deliver solutions that can be used by the widest possible community such
as journalists, investigators, researchers and such like, while also setting the foundations for

22

https://twitter.com/GuillaumeTC

1.11. Summary of Contributions

future research and development in the area Artificial Intelligence against disinformation. The
expected solutions will deal with different content types (audio, video, images, and text) and
do so across a variety of languages. They will mostly be open and accessible to and usable by
anyone.

APATE project: A Prototype deepfake Assessment Toolbox for forensic Experts We
are currently participating in the APATE project, funded by the ANR, together with SNPS
(National Scientific Police Service), LIX (Ecole Polytechnique), EPITA (School for Computer
Science and Advanced Techniques) and IDM (Idemia I&S). The goal is to advance the state of
the art on methods of detection of deepfakes, with the necessary environment to make them
usable by experts in the courts.

23

Esta página ha sido intencionalmente dejada en blanco.

Chapter 2

The camera processing pipeline and its
traces on noise

This chapter provides the necessary background that this thesis builds upon. We
first briefly describe the image processing pipeline and the traces each of the
operation leave on the noise model. We then give a more in-depth analysis of
the effects of JPEG compression on prior image noise. As we shall see, it is this
step that modifies the most the noise model, which initially follows a Poisson
distribution. Finally, we propose an overview of the use of the traces left by the
camera processing chain for forgery detection. Parts of the three first sections of
this chapter have been published as a chapter of a book [12, 183]. The work pre-
sented in the fourth section is published as The Impact of JPEG Compression on
Prior Image Noise in the ICASSP conference [74] and an online demo is available
at: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000136.

2.1 Introduction

The goal of this chapter is to briefly review each step of the processing chain of an image,
how they affect the noise present in images and how the traces left can be used for forgery
detection. This information can sometimes appear in the data accompanying the image, called
EXIF (Exchangeable Image File Format), which also includes information such as the brand
and model of the camera and lens, the date and location of the photograph, and its shooting
settings. However, this data can be easily modified, and is often automatically deleted by
social media for privacy reasons [80]. Therefore, we are interested in the information left by
the operations on the image itself and not in the metadata. Some methods, like the one
presented in [99], offer to check the consistency of the data present in the image with its EXIF
metadata.

The knowledge of the image processing chain allows for the detection of the presence of
certain changes. A first application is the authentication of the model of a camera. The
processing chain is specific to each device model; so it is possible to determine the device
model by identifying the processing chain [207]. This subject will be covered in Part II. A
second series of methods are based on the study of the residue – sometimes called noise –
left by the processing chain. This residue is made up of all the traces left by each operation.
Using this idea, Cozzolino and Verdoliva proposed to use steganography tools to extract the
image residue [49]. Treating this residue as a hidden information in the image, an algorithm
such as Expectation-Maximization (EM) is then used to classify the different regions of the

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000136

Chapter 2. The camera processing pipeline and its traces on noise

image. Subsequently, neural networks have shown good performance in extracting the residue
automatically [48, 78], or even in carrying out the classification themselves [240]. While it is
often difficult, or even impossible, to distinguish each step in the processing chain individually,
it is easier to distinguish two different processing chains as a whole. This idea is exploited
by O. Mayer and M.C. Stamm [162] to construct a forensics traces similarity score. Such an
approach will be covered in Chapter 5.

The outline of this chapter stems from previous considerations. Before getting into the
problem ourselves, we proceed in Section 2.2 with a description of the main operations of the
image processing chain. Section 2.3 is dedicated to the transformations that the noise of the
raw image undergoes at each operation applied during a standard processing chain leading to
the visible image. We then dedicate Section 2.4 to a more in depth study of the impact of JPEG
compression on prior image noise. Indeed, as we shall see in Section 2.3, JPEG compression is
the operation that has the most impact on noise. Finally, Section 2.5 will briefly review how
the traces left by the camera processing pipeline can be used to detect forgeries.

2.2 Describing the image processing chain

The main steps in the digital image acquisition process are illustrated in Figure 2.1. Together
with the corresponding image at each step, we provide a zoom in on the details of each image,
so that the reader can spot the fine details introduced by each operation.

2.2.1 Raw image acquisition

The first step of acquiring a raw image consists of counting the number of incident photons
over the sensor along the exposure time. There are two different technologies used in camera
sensors: Charge Coupled Devices (CCDs) and Complementary Metal-Oxide-Semiconductors
(CMOS). Although their operating principles differ, both can be modelled in a very similar
way [1]. Both sensors transform incoming light photons into electronic charge which interacts
with detection devices to produce electrons stored in a potential light well. When the latter is
full, the pixels become saturated, and the electrons are no longer as into output voltage values.
The final step is to convert the analog voltage measurements into digital quantized values.

2.2.2 Demosaicing

Most cameras cannot see color directly, because each pixel is obtained through a single sensor
which can only count the number of photons reaching it in a certain wavelength range. In
order to obtain a color image, a color filter array (CFA) is placed in front of the sensors. Each
of them only counts the photons of a certain wavelength. As a result, each pixel has a value
relative to one color. By using filters of different colors on neighbouring pixels, the missing
colors can then be interpolated.

Although other exist, almost all cameras use the same CFA: the Bayer array, which is
illustrated in Figure 2.2. This matrix samples half the pixels in green, a quarter in red, and
the last quarter in blue. Sampling more pixels in green is justified by the human visual system,
which is more sensitive to the green color.

Unlike other steps in creating an image, a wide variety of algorithms are used to demosaic
an image. Bilinear interpolation is the simplest of the demosaicing algorithms. It consists of
linear interpolation of missing colors by the average of a pixel’s direct neighbours sampled in
that color. This method is simple, but tends to produce strong aberrations in non-flat regions,
especially in the presence of edges or details.

26

2.2. Describing the image processing chain

Noisesniffer: image forgery
detection through noise analysis
Marina Gardella1, Pablo Musé2, Miguel Colom1, Jean-Michel Morel1
1 Centre Borelli – École Normale Supérieure Paris-Saclay
2 IIE, Facultad de Ingeniería, Universidad de la República

Introduction
In recent times, great concern has been raised about the authenticity of the
images shared on social networks and used as evidence to support news.
Although fake images are not a new issue, the ease with which it is possible
tomanipulate images today, aswell as the quality of these fakes, havemade
this a highly relevant social problem. How can we verify the authenticity of
an image? To detect forgeries, we search for local inconsistencies in the
traces left by the image formation process.

Original image (left) and a viral fake photo
of Emma González ripping up the U.S. Constitution (right).

Image processing pipeline
Images undergo a complex processing chain from the moment light
reaches the camera’s sensor until the final digital image is delivered. Each
of its operations leaves traces on the image that, though imperceptible to
the human eye, can be exploited for forensic analysis.

0 1000 2000 3000 4000 5000
Intensity

0

10

20

30

40

50

No
ise

 le
ve

l

0 1000 2000 3000 4000 5000
Intensity

0

10

20

30

40

50

No
ise

 le
ve

l

0 50 100 150 200 250
Intensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

No
ise

 le
ve

l

0 50 100 150 200 250
Intensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

No
ise

 le
ve

l

Raw image acquisition

Demosaicing

Contrast enhancement

JPEG-Compression

Each step of the camera processing pipeline modifies the model of the ini-
tial raw Poisson-Gaussian noise. Yet, the noise model remains consistent.
A forgery generally alters this spatial consistency. Local anomalies of the
noise model can become informative cues for forgery detection.

The Noisesniffer method
The method is based in the principles of noise estimation methods: for
each intensity level, in each color channel,

. Select the flattest blocks,
. Select a small percentile of these blocks,
where noise dominates over signal,
. Estimate noise in high frequencies. Try our demo!

If we assume that the variance of the flattest blocks chosen in the first step
can only be explained by noise, the small percentile selected in the second
step should have a random uniform distribution with respect to the first.
We aim at detecting significant deviations from one distribution to the
other, that could not happen by chance but are the result of tampering.
For each observed event we compute its number of false alarms (NFA):

• We establish the null hypothesisH0 (absence of any forgery),

• For each observation e, we compute the expected number of occur-
rences of such event under the null model, NFA = NtestsPH0 E e

The smallest theNFAof anobservation is, themost significant thedetection.

Pr
is
tin

e
Fo

rg
ed

Pr
is
tin

e
Fo

rg
ed

Pr
is
tin

e
Fo

rg
ed

Left: pristine and forged images. Center: flattest blocks (white) and the %
among those having the lowest standard deviation (red). Right: forgery detections

masks obtained by Noisesniffer with automatic, unsupervised thresholding.

Automatic and interpretable detection
Splicebuster Noiseprint Wavelet ManTraNet

Pr
is
tin

e
Fo

rg
ed

Most of the existing methods require interpretation: how can we distin-
guish significant detections from false alarms?
We provide a fully automatic and easy to interpret output by detecting the
regions that significantly deviate from the background model.

Acknowledgment
This work has received funding by the Paris Region Ph.D. grant from Ré-
gion Île-de-France, the ANR-DGA challenge DEFALS (ANR--DEFA-)
and the European Union under the Horizon Europe VERA.AI project, Grant
Agreement number .

Figure 2.1: Simplified processing pipeline of an image, from its acquisition by the camera sensor to its
storage as a JPEG-compressed image. The right column represents the image as it goes through each
step. The left column shows the details of the image obtained at each step.

27

Chapter 2. The camera processing pipeline and its traces on noise

Figure 2.2: The Bayer Matrix is by far the most used for sampling colors in cameras.

To avoid these artefacts, more recent methods attempt to simultaneously take into account
information from the three color channels and avoid interpolating along a steep gradient. For
instance, the Hamilton-Adams method is carried out in three stages [94]. First, it interpolates
the missing green values by taking into account the green gradients corrected for the discrete
Laplacian of the color already known at each pixel to interpolate horizontally or vertically, in
the direction where the gradient is weakest. It then interpolates the red and blue channels on
the pixels sampled in green, taking the average of the two neighbouring pixels of the same
color, corrected for the discrete Laplacian of green in the same direction. Finally, it interpolates
the red channel of blue-sampled pixels and the blue channel of red-sampled pixels using the
corrected average of the Laplacian of the green, in the smoothest diagonal.

Linear Minimum Mean-Square Error demosaicing [76] suggests working not directly on the
three color channels (red, green and blue), but on the pixelwise differences between red and
green on the one hand, and between blue and green on the other. It interpolates this difference
separately in the horizontal and vertical directions, in order to estimate first the green channel,
followed by the differences between red and green, and then between blue and green. The red
and blue channels can then be recovered by a simple substraction. This method, as well as
many other, makes the underlying assumption that the difference of color channels is smoother
than the color channels themselves, and therefore easier to interpolate.

More recently, convolutional neural networks have been proposed to demosaic an image.
For instance, Demosaicnet uses a convolutional neural network to jointly interpolate and de-
noise an image [60, 77]. Even if these methods offer superior results to algorithms without
training, they also require more resources, and are therefore not widely used yet in digital
cameras.

The methods described here are only a brief overview of the large array of methods that
exist for image demosaicing. This variety is increased by the fact that most industrial cameras
do not disclose their demosaicing algorithm, which is often private.

No demosaicing method is perfect – after all, it is a matter of reconstructing missing
information – and produce some level of artefacts, although some produce much fewer artefacts
than others. Therefore, it is possible to detect these artefacts to obtain information on the
demosaicing method applied to the image.

2.2.3 Color Correction

White balance aims to adjust values obtained by the sensors so that they match the colors
perceived by the observer by adjusting the gain values of each channel. The way in which
white balance adjusts the output depends on the characteristics of the light sources, and is
done so that achromatic objects from the real scene are rendered as such [149]. For example,

28

2.2. Describing the image processing chain

white balance can be achieved by multiplying the value of each channel, so that a pixel that
has a maximum value in each channel is found to have the same maximum value 255 in all
channels.

Then, the image goes through what is known as gamma correction. The charge accumu-
lated by the sensor is proportional to the number of photons incident on the device during
the exposure time. However, human perception is not linear with the signal intensity [65].
Therefore, the image is processed to accurately represent human vision by applying a concave

function of the form fk,γ = ku
1
γ , where γ typically varies between 1.8 and 2.2. The idea

behind this procedure is not only to enhance the contrast of the image, but also to encode
more precisely the information in the dark areas, which are too dark in the raw image.

Nevertheless, commercial cameras generally do not apply this simple function, but rather
a tone curve. Tone curves allow image intensities to be mapped according to pre-computed
tables that simulate the non-linearity present in human vision.

2.2.4 JPEG compression

 8X8 Blocks

Compressed file

 8X8 Tables

Input image Color space
transformation

DCTQuantificationEntropy coding

RGB YCBCR

Downsampling
of the chroma
channels

Figure 2.3: JPEG compression pipeline.

The stages of the JPEG compression algorithm, illustrated in Figure 2.3, are detailed
below. The first stage of the JPEG encoding process consists of performing a color space
transformation from RGB to YCBCR where Y is the luminance component and CB and CR

are the chrominance components of the blue difference and the red difference. Since HVS
is less sensitive to color changes than to changes in luminance, color components can be
subsampled without affecting visual perception too much. The subsampling ratio generally
applied is 4:2:0, which means that the horizontal and vertical resolution is reduced by a factor
of 2. After the color subsampling, each channel is divided in blocks of 8 × 8 and each block is
processed independently. The Discrete Cosine Transform (DCT) is applied to each block and
the coefficients are quantized.

The JPEG quality factor Q, ranging between 1 and 100, corresponds to the rate of image
compression. The lower this rate, the lighter the resulting file, but the more deteriorated the
image. A quantization matrix linked to Q provides a factor for each component of the DCT
blocks. It is during this quantization step that the greatest loss of information occurs, but it is
also this step that allows the most space in memory to be saved. The coefficients corresponding
to the high frequencies, of which the HVS struggles to distinguish the variations, are the most
quantized, sometimes going so far as to be entirely cancelled.

Finally, as in the example in Figure 2.4, the quantized blocks are encoded without loss to
obtain a JPEG file. Each 8 × 8 block is zig-zagged and the coefficients are arranged in the

29

Chapter 2. The camera processing pipeline and its traces on noise

form of a vector in which the first components represent the low frequencies and the last ones
represent the high frequencies.

Lossless compression by RLE coding (range coding) then exploits the long series of zeros
at the end of each vector due to the strong quantization of the high frequencies, and then a
Huffman code allows for a final lossless compression of the data, to which a header is finally
added to form the file.

102 -33 -58 35 58 -51 15 -12

5 -34 49 18 27 1 -5 3

-46 14 80 -35 -50 19 7 -18

-53 21 34 -20 2 34 36 12

9 -2 9 -5 -32 -15 45 37

-8 15 -16 7 -8 11 4 7

19 -28 -2 -26 -2 7 -44 -21

18

25 -12 -44 35 48 -37 -3

DCT coefficients

6 -3 -6 2 2 -1 0 0

0 -3 4 1 1 0 0 0

-3 1 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Quantification matrix

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Quantification

[]

Quantified DCT coefficients

Figure 2.4: An example of the impact of quantization on a DCT block. Each DCT coefficient is
quantized by a value found in a quantization matrix. Rounding to the nearest integer results in many
of the high frequency coefficients being set to zero. Each block is zig-zagged to be encoded as a vector
with a sequence of zeros.

2.3 The avatars of noise throughout the camera processing

chain

This section examines the way in which noise is affected at each step of the camera process-
ing chain, described in the previous section. To do so, we estimate the noise curves of each
of the intermediate images generated along the camera pipeline using the extended Pono-
marenko et al. method [41]. This methods estimates, for each image intensity, the standard
deviation of the noise associated to this value. The estimated noise curves along the camera
processing chain are displayed in Figure 2.5.

Raw image acquisition

The value at each pixel generated by the process described in Section 2.2.1 can be modelled
as a Poisson variable, whose expectation is the real noiseless value of the pixel. The noise
measured at the CCD or CMOS sensor has several components; Table 2.1 describes the main
sources.

30

2.3. The avatars of noise throughout the camera processing chain

Noisesniffer: image forgery
detection through noise analysis
Marina Gardella1, Pablo Musé2, Miguel Colom1, Jean-Michel Morel1
1 Centre Borelli – École Normale Supérieure Paris-Saclay
2 IIE, Facultad de Ingeniería, Universidad de la República

Introduction
In recent times, great concern has been raised about the authenticity of the
images shared on social networks and used as evidence to support news.
Although fake images are not a new issue, the ease with which it is possible
tomanipulate images today, aswell as the quality of these fakes, havemade
this a highly relevant social problem. How can we verify the authenticity of
an image? To detect forgeries, we search for local inconsistencies in the
traces left by the image formation process.

Original image (left) and a viral fake photo
of Emma González ripping up the U.S. Constitution (right).

Image processing pipeline
Images undergo a complex processing chain from the moment light
reaches the camera’s sensor until the final digital image is delivered. Each
of its operations leaves traces on the image that, though imperceptible to
the human eye, can be exploited for forensic analysis.

0 1000 2000 3000 4000 5000
Intensity

0

10

20

30

40

50

No
ise

 le
ve

l

0 1000 2000 3000 4000 5000
Intensity

0

10

20

30

40

50

No
ise

 le
ve

l

0 50 100 150 200 250
Intensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

No
ise

 le
ve

l

0 50 100 150 200 250
Intensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

No
ise

 le
ve

l

Raw image acquisition

Demosaicing

Contrast enhancement

JPEG-Compression

Each step of the camera processing pipeline modifies the model of the ini-
tial raw Poisson-Gaussian noise. Yet, the noise model remains consistent.
A forgery generally alters this spatial consistency. Local anomalies of the
noise model can become informative cues for forgery detection.

The Noisesniffer method
The method is based in the principles of noise estimation methods: for
each intensity level, in each color channel,

. Select the flattest blocks,
. Select a small percentile of these blocks,
where noise dominates over signal,
. Estimate noise in high frequencies. Try our demo!

If we assume that the variance of the flattest blocks chosen in the first step
can only be explained by noise, the small percentile selected in the second
step should have a random uniform distribution with respect to the first.
We aim at detecting significant deviations from one distribution to the
other, that could not happen by chance but are the result of tampering.
For each observed event we compute its number of false alarms (NFA):

• We establish the null hypothesisH0 (absence of any forgery),

• For each observation e, we compute the expected number of occur-
rences of such event under the null model, NFA = NtestsPH0 E e

The smallest theNFAof anobservation is, themost significant thedetection.

Pr
is
tin

e
Fo

rg
ed

Pr
is
tin

e
Fo

rg
ed

Pr
is
tin

e
Fo

rg
ed

Left: pristine and forged images. Center: flattest blocks (white) and the %
among those having the lowest standard deviation (red). Right: forgery detections

masks obtained by Noisesniffer with automatic, unsupervised thresholding.

Automatic and interpretable detection
Splicebuster Noiseprint Wavelet ManTraNet

Pr
is
tin

e
Fo

rg
ed

Most of the existing methods require interpretation: how can we distin-
guish significant detections from false alarms?
We provide a fully automatic and easy to interpret output by detecting the
regions that significantly deviate from the background model.

Acknowledgment
This work has received funding by the Paris Region Ph.D. grant from Ré-
gion Île-de-France, the ANR-DGA challenge DEFALS (ANR--DEFA-)
and the European Union under the Horizon Europe VERA.AI project, Grant
Agreement number .

Figure 2.5: Simplified processing pipeline of an image, from its acquisition by the camera sensor to its
storage as a JPEG-compressed image. The left column represents the image as it goes through each
step. The right column plots the noise of the image as a function of intensity in all three channels (red,
green blue) [41].

31

Chapter 2. The camera processing pipeline and its traces on noise

Figure 2.5 shows that, at this step, all channels have the same noise curve. As noise follows
a Poisson distribution, the noise variance follows a simple linear relation σ2 = a + bu, where
u is the intensity of the ideal noiseless image, and a and b are constants. Consequently, the
noise curves are strictly increasing. Moreover, although the noise curves do not account for it,
the noise characteristics reported above suggest that the noise is uncorrelated, i.e. the noise
at a certain pixel is not related to noise at any other pixel with the same signal intensity.

Type of noise Description

Shot noise Due to the physical nature of light. It de-
scribes the fluctuations in the number of
photons detected due to their independent
emission from each other.

Dark noise Some electrons accumulate on the potential
well as the result of a thermal cause. These
electrons are known as dark current because
they are present and will be detected even
in the absence of light.

Photo Response Non-Uniformity (PRNU) It describes the way in which the individ-
ual pixels in the sensor array respond to
uniform light sources. Due to variations
in pixel geometry, substrate material, and
micro-lenses, different pixels do not produce
the same number of electrons from the same
number of photons hitting them.

Readout noise During the readout phase of the acquisition
process, a voltage value is read at each pixel.
This voltage is computed as a potential dif-
ference from a reference level which repre-
sents the absence of light. Thermal noise,
inherent in the readout circuit, affects the
output values.

Electronic noise It is caused by the absorption of electro-
magnetic energy by the semiconductors of
the camera circuits and the cross-talk phe-
nomenon.

Table 2.1: Description of the main sources of noise during the acquisition process

Demosaicing

Demosaicing is presented in more detail in Section 2.2.2. After this step, the noise at each
pixel is correlated with its neighbours. After demosaicing each channel has a different noise
curve since channels are processed differently by the demosaicing algorithm.

32

2.4. The Impact of JPEG Compression on Prior Image Noise

Color correction

White balance increases the intensity range of the image. Since the weights are different in each
color channels, as mentioned in Section 2.2.3, the three noise curves are less correlated after this
step. Then, gamma correction greatly increases the noise and the dynamic range of the image,
due to the power law function. Furthermore, the noise curves are no longer monotonically
increasing after this step. Indeed, if we denote γ the function applied during the gamma
correction step, the asymptotic expansion around the intensity u yields γ(u+n) = γ(u)+γ′(u)n
where n is the noise at the intensity u.

JPEG Compression

The dynamic range remains unchanged after JPEG compression. However, noise is reduced
after JPEG compression due to the quantization of the DCT coefficients, in particular those
corresponding to high frequencies. In this case, the curve estimated by the Ponomarenko et al.
algorithm [41] shall not be accurate since the noise estimation method estimates noise at high
frequencies, which are altered or even destroyed by compression.

The noise present in JPEG images is the result of several transformations on the initial
noise model, which initially follows a Poisson distribution. In the end, the final image’s noise
does not follow any predefined model, it rather depends on many unknown parameters which
are set by each manufacturer. The only certainty we have is that noise is intensity-dependent
and frequency-dependent.

2.4 The Impact of JPEG Compression on Prior Image Noise

JPEG compression is widely used to store digital images and extensive studies analysed its
impact on the image quality; in particular the quantization noise and artefacts created by
JPEG. Nevertheless, there is little work on the impact of JPEG compression on the noise
already present in the image, which we briefly introduced in the previous section. In this
section, we propose a model predicting how the noise power is affected by JPEG compression.
This allows for a better understanding the noise traces on the image, which is crucial for image
forensic analysis and image restoration. An interactive demo for this section is available at
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000136.

2.4.1 Modeling compressed noise

From the moment a raw image is acquired until the final JPEG picture is obtained, a complex
processing chain is applied. Each of these operations alters the noise model. Indeed, the initial
Poisson-Gaussian noise [67] undergoes several operations resulting in a complex noise model,
as reviewed in the previous section. The final stage in most digital images consists in JPEG
compression. Indeed, to be stored or transferred in a reasonable amount of time, images must
undergo a compression step.

Many noise estimation algorithms [59, 178, 179, 226] suppose that noise can be estimated
using only the high frequency coefficients of small patches in an image. However, this is
not true for JPEG-compressed images, since the quantization step during the compression
process attenuates these high frequencies. Indeed, for JPEG images, noise variance decreases
as the frequency increases. As a result, these noise estimation methods yield to an inaccurate
estimation of the noise. Noise estimation is a mandatory step of countless image processing
tasks such as denoising [51, 235], forgery detection [49, 73], anomaly detection [61], PRNU

33

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000136

Chapter 2. The camera processing pipeline and its traces on noise

δ
=

2

Original image Noisy Compressed noisy Residual (σ = 1.64)

δ
=

8

Compressed image Noisy Compressed noisy Residual (σ = 8.42)

Figure 2.6: Gaussian noise is added to the dice image before compression. An estimation of the
remaining noise is obtained by computing the difference between the noisy and noiseless images, both
after compression. This enables us to estimate specifically the effect of the compression on existing
noise, while ignoring most of the noise coming directly from the compression. As per our model, a
low noise level is diminished even more by the compression, whereas a higher noise level is instead
augmented. Compression is done with the Pillow library at a quality factor of 85.

extraction [31, 186] and steganography [200, 201], just to mention a few. The performance
achieved by the methods developed to tackle each of these tasks depend on how accurately
they are able to estimate noise.

The aim of this section is to provide a characterisation of the resulting noise after JPEG
compression. Such a model could help accurately estimate noise, boosting the performance of a
huge variety of image processing tasks that require noise estimation as one of their fundamental
steps.

After JPEG compression, there are two kinds of noise in the image: the original noise, that
was there before compression and was compressed with the rest of the image, and the noise
coming from the JPEG compression itself. There is consequent literature on estimating the
noise that directly comes from compression itself [95, 134, 135]. Due to the lossy nature of
JPEG, it affects tasks in various domains. In image forensics, subtle traces such as demosaicing
artefacts are much harder to analyse when the image is compressed [130]. Mandelli et al. [157]
analyse the effects of JPEG compression on different camera traces and show that care must be
taken from the training data to ensure some robustness to compression. Image classification,
especially when done at full resolution, is also affected by compression [128].

In comparison, analysis of how the compression affects already-present noise has received
little attention. We propose to study in details how JPEG compression affects noise that was
present prior to the compression. Indeed, noise is present in an image from the sensing of the
real scene. Each step in the pipeline, including JPEG compression, alters the already-existing
noise in some way, while often adding its own noise on top of it. See [107] for a general
overview of the impact of each processing step on the noise. Jiang et al. [105] notice that
counter-forensics techniques, aimed at hiding JPEG compression, usually introduce inconsistent
noise in the image. Noise-level analysis is applied to distinguish authentic regions from region
with hidden traces of a previous compression. Corchs et al. [45] study the influence of images
distortions, in particular Gaussian noise and JPEG compression, on the overall image quality.
While this study combines Gaussian noise that is subjected to further JPEG compression,
they do not directly study the influence JPEG compression had on the noise, but rather the
combined effect both had on the end image’s quality.

34

2.4. The Impact of JPEG Compression on Prior Image Noise

2.4.2 JPEG Compression on Gaussian Noise

Although the noise present in an image before JPEG compression is not Gaussian, the Poisson
distribution of noise derived from the photon count can be approximated by a Gaussian dis-
tribution. However, this Gaussian distribution would still be intensity dependent. In order to
transform this signal dependent noise into homoscedastic, a variance stabilizing transformation
can be applied [6]. This procedure allows us to work with the popular white Gaussian noise
assumption used in many noise estimation and denoising algorithms.

Let n be the spatially-independent zero-mean Gaussian noise existing in an image before
JPEG compression. We note by ũ ≜ u+ n the noisy observation in pixels, were u is the ideal
noiseless image. Here we focus on the luminance colour space which is not downsampled and
thus preserves more image details. Excluding the effect of lossless compression (QF = 100),
the impact of lossy JPEG compression can be modelled as follows:

Consider an 8×8 block, the first operation consists in performing the DCT transformation
of the block. Then, the DCT coefficients are converted into integers with division by a
quantization table, followed by rounding. During the decoding stage, the multiplication by
the quantization table is performed, followed by the inverse DCT (IDCT). The whole JPEG
encoding-decoding process can be expressed as:

ũ′ = IDCT ◦Quant ◦DCT(ũ) = A⊺

[

Aũ⊙ 1

q

]

⊙ q, (2.1)

where A ∈ O(64,R) is the orthogonal matrix of DCT, [·] represents the rounding operation,
q ∈ R

64
+ is the quantization table and ⊙ denotes the element-wise multiplication.

Since n is Gaussian, the noisy observation ũ is in fact a Gaussian vector. Furthermore, if
we assume that for all the pixels in a patch, the noise level is constant and equal to σ then
ũ ∼ N (u,Σũ) , with Σũ = σ2I. The DCT is an orthogonal transformation and, therefore,

x ≜ DCT (ũ) ∼ N (Au,Σx) , (2.2)

where Σx = Σu = σ2I.

The input of [·] in the pipeline, noted as z ≜ x⊙ 1
q

is still a Gaussian vector: z ∼ N (µz,Σz)

with µz = Au⊙1/q and Σz = diag
(

σ2/q21, . . . , σ
2/q264

)

. However, the impact of the rounding

operation [·], described in detail in [216], is not linear. The rounded z is z′ ≜ [z] has expected
value for each entry

E[z′i] = µz,i +
1

π

∞
∑

l=1

e

(

− 2(σπl)2

q2
i

)

sin (2πlµz,i)
(−1)l

l
. (2.3)

Compared to textured patches, evaluating noise on flat patches is easier since the signal
is uniform and the variation only contains noise. Thus we focus on the study of ũ ← ũ −
mean (ũ) for the pre-compression image and ũ′ ← ũ′ − mean (ũ′) for the post-compression
image. Then we get ũ ∼ N

(

0, σ2I
)

and x ∼ N
(

0, σ2I
)

. The input of Quant (·)
is z ∼ N

(

0, diag
(

σ2/q21, . . . , σ
2/q264

))

which has zero mean. The rounded zero-mean
Gaussian variable has a zero expectation E [z′i] = E [zi] = 0 according to Equation 2.3, and its
variance is

Var
(

z′i
)

=
σ2

q2i
+

1

12
+

∞
∑

l=1

(−1)l
(

1

(πl)2
+

4σ2

q2i

)

e
− 2(σπl)2

q2
i . (2.4)

Finally, the variation after compression ũ′i = A⊺
:,iz

′ × qi satisfies E (ũ′i) = 0. If we define

35

Chapter 2. The camera processing pipeline and its traces on noise

Noiseless
compressed

image

Noisy
compressed

image

Noiseless
uncompressed

image

Added noise
Noisy

uncompressed
image

JPEG compression

JPEG compression

D
if

fe
re

n
ce

Ground truth
noise residual

Figure 2.7: Ground truth residual computation from noiseless uncompressed images.

σ′
j
2 ≜ Var

(

ũ′j

)

, we get

σ′
j
2
=

64
∑

i=1

(Ai,j)
2Var

(

z′i
)

q2i . (2.5)

In particular, if the quantization table satisfies qi = q ∀i then,

σ′
j
2
=

64
∑

i=1

(Ai,j)
2Var

(

z′
)

q2 = q2Var
(

z′
)

≜ σ′2, (2.6)

which is independent of the pixel index j. We get the relation between the standard deviation
σ of the original noise and σ′ that of the quantized noise:

σ′

q
=

√

√

√

√

σ2

q2
+

1

12
+

∞
∑

l=1

(−1)l
(

1

(πl)2
+

4σ2

q2

)

e
− 2(σπl)2

q2 . (2.7)

2.4.3 Experiments

To validate the model derived in Section 2.4.2 we conducted several experiments on both
synthetic noise images and real noiseless images to which we added noise. The Noise-Free
Test Images dataset [39] contains 16 high-qualities images that were carefully downsampled
to remove traces of previous noise, allowing us to control the amount of noise to add to the
image.

To compute the ground truth noise residuals we first select an uncompressed noiseless
image (flat or from the dataset). Given a quality factor QF and a noise level σ, the noiseless
uncompressed image is processed in two different ways. The first one consists in adding white
noise of variance σ2 to the uncompressed noiseless image and then compressing it with quality
factor QF . The second consists only in performing the compression step, without adding noise.
The ground truth noise residual is computed as the difference between the noisy compressed
image and the noiseless compressed image. This computation is summarised in Figure 2.7.

Figure 2.8 shows the standard deviation of the noise residual for each 8×8 DCT coefficient
and for different compression qualities, and for a fixed pre-compression noise level equal to 10.
The noise’s standard deviation decreases as the frequency increases, as suggested by our model.
However, this effect is not homogeneous across different JPEG qualities, we can notice that
the lower the JPEG quality, the more notorious this effect becomes. It is also remarkable that
lowering the JPEG quality more strongly damages the high frequencies of noise, while keeping

36

2.4. The Impact of JPEG Compression on Prior Image Noise

A
W
G
N

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

IM
G

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

QF 10 50 90

Figure 2.8: Noise residual standard deviation for each DCT coefficient, for quality factors
QF = 10, 50, 90 and for a fixed pre-compression noise σ = 10. The top row corresponds to synthetic
Gaussian noise (constructed by taking the noiseless uncompressed image as a completely flat image)
and the bottom row to an image from the NFTI dataset with added noise [39].

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Input σ/q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
st
-c
om

pr
es

sio
n

σ/
q

Model
AWGN
dice.png
traffic.png
Overall

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Input σ/q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
st
-c
om

pr
es

sio
n

σ/
q

Model
AWGN
dice.png
traffic.png
Overall

Figure 2.9: Ratio of the post-compression noise standard deviation and quality factor σ′
q

as function of

the same ratio before compression, with σ ∈ [1, 20] and q = 8 (left), q = 64 (right). The model curve
corresponds to Equation 2.7 and highly coincides with the pure noise curve.

the low ones mostly unchanged. Furthermore, for a compression quality QF = 90 we observe
that the effects of compression are pretty innocuous as the noise standard deviation is still
mostly homogeneous across frequencies.

Figure 2.9 shows the standard deviation of the noise after JPEG compression divided by q as
a function of the pre-compression noise divided by q, for different input images and quantization
factors q = 8, 64. We observe that for very small values of noise, the output noise is higher
than the input noise on real images. Although the theory suggests output noises should be
smaller in this range of values, the experimental results are disturbed by JPEG noise. This
JPEG noise is negligible when compared to higher noise levels but becomes predominant when
the noise levels are very low. For medium noise levels we observe, as suggested by our model,
that output noises are smaller than input noises. This is due to the effect of quantization since

37

Chapter 2. The camera processing pipeline and its traces on noise

it removes the small variations in pixel’s values for which noise is responsible. As the noise
grows, we observe that the curves converge to the identity when q is low enough, as predicted
by the model on pure noise. This is explained by the fact that, for large enough noise levels, the
quantization factor becomes negligible with respect to the noise level. However, with a larger
value of q, the noise seems dimmed by compression, deviating from the theoretical model. In
practice, this is only caused by clipping; indeed to reach a σ

q
ratio of 1 when q = 64, the

noise’s standard deviation must also reach 64. More pixels thus become saturated when noise
is applied, thus lowering the noise level before even compression. When comparing the output
noise to the post-clipping, pre-compression noise, we fall back to a curve similar to the q = 8
case.

Although the two curves are similar, a given noise level will have a lower σ
q

ratio if q is high,
and the noise will be more affected. Since high-frequencies components are often attributed
higher quantization factors, their noise is thus reduced more.

On the other hand, we observe that textured images, such as traffic, show larger deviations
from the theoretical model than non-textured images or even pure synthetic noise. This
phenomenon can be explained by the fact that in textured images high frequencies are not
only affected by noise but also by texture. Even though our method removes most of the
quantization noise, some remain in the residual, and is more prominent when the noise level
is comparatively lower.

2.4.4 Discussion

In this section, we derived a model for the effect of JPEG compression on prior noise. Both
the theoretical and experimental results show that post-quantization, prior noise is frequency-
dependent. In particular, previously-normal noise only remains normal separately for each DCT
coefficient. We believe the applications for our study to be numerous and varied, in particular
whenever precise knowledge of the noise of an image is required, such as restoration of bad
quality (compressed) images, steganography, and image forensics. Here we focused on the
luminance channel. Future work will extend this model to the chroma components, which are
subsampled in addition to the quantization which was covered here.

2.5 Tracing the Camera Processing Pipeline for Forgery De-

tection

When analysing the authenticity of an image, one may encounter the traces left by several of
the stages presented in Section 2.2 and illustrated in Figure 2.1. Certain approaches rely on
metadata to analyse such traces [114]. However, it is important to note that this metadata is
frequently altered or eliminated when images are shared online [80]. It is with this consideration
in mind that, in the subsequent discussion, we explore algorithms that focus on the pixel-level
representation of images, without relying on metadata.

At each stage of the camera pipeline, as depicted in Figure 2.5, distinct traces are left on the
image. Tampering within an image results in distinct traces in the authentic and manipulated
regions. The detection of these traces depends on the history of the forged image, as various
kinds of traces may be impacted and identified. For instance, both demosaicing and JPEG
compression introduce periodic artifacts into an image. When an image is forged, local shifts in
the phase of these artifacts can occur. However, the detection of demosaicing disruptions [10,
35, 192] is limited to high-quality images that have not undergone significant compression
or resampling [10, 181], whereas inconsistencies in JPEG compression [4, 20, 100, 143, 176]

38

2.5. Tracing the Camera Processing Pipeline for Forgery Detection

are naturally absent in uncompressed images but are more readily discernible in lower-quality
versions, such as those shared on social media. Consequently, it becomes feasible to identify
alterations in patterns or regions where the compression quality diverges from the rest of the
image. These methods are effective when the forgery occurs after an initial compression of the
entire image or the inclusion of the forged area. This is often the case with many manipulated
images found online, where JPEG images are downloaded, modified, and then re-uploaded,
resulting in images that may have undergone multiple compression stages.

Noise analysis can also provide important clues to detect and locate forgeries. As shown in
Figure 2.5, each step of the pipeline leaves traces in the noise model. If part of an image has
been modified, or comes from a different donor image, the authentic and forged regions are thus
likely to present different noise profiles. Figure 2.10 depicts this situation: the forged region
presents a different noise model than that of the background image. Several methods aim
at detecting this kind of inconsistencies. For instance, Mahdian and Saic [155] perform local
wavelet-based noise level estimation using a median absolute deviation estimator.The method
developped by Lyu, Pan, and Zhang [154] relies on the kurtosis concentration phenomenon.
Still, other noise statistics rather than the noise level can be used for forgery detection. For
instance, Itier et al.rely on the color noise correlation to detect the boundaries of spliced
regions. Splicebuster [49] computes the noise residual of an image after a high-pass filter,
and uses the co-occurences of said residuals as local features characterizing the signature of
an image. Noiseprint [48] extends on Splicebuster by using Siamese networks to extract a
noise-sensitive fingerprint. The extraction of such a fingerprint is further refined in TruFor [90]
and further combined with anomaly detection techniques to detect forgeries.

Figure 2.10: Example of a forged image (left) and local noise curves (right). The forged area comes
from a different image that has its own pipeline. Noise models (right) differ between the background
image (pink) and the donor one (green). The resulting tampered image presents local inconsistencies
in the noise model.

The variety of traces that can be present in images make exhaustiveness difficult. Recent
works, such as Comprint [158] propose to fuse the characteristic fingerprints of several traces.
Another possibility is to consider forgery detection as a learning problem and develop a generic
model – usually a neural network – to localize forgeries in the image [99, 162, 221]. While these
methods are more generic and potentially more exhaustive, their results are usually opaque. It
is thus difficult to know when, and to what extent, they can be trusted. One can also attempt
to detect forgeries directly; for instance ManTraNet [221] is a bipartite end-to-end network,
trained to detect image-level manipulations with one part, while the second part is trained on

39

Chapter 2. The camera processing pipeline and its traces on noise

synthetic forgery datasets to detect and localize forgeries in the image. Self- consistency [99]
analysis also uses a siamese network with the goal of detecting whether two patches are likely to
share the same Exif metadata, and thus to have been processed with the same pipeline. Mayer
and Stamm [162] train a siamese network to provide a forensic similarity score. Such score
is then used to construct a similarity graph where forgeries are spotted as graph communities
(Chapter 5).

40

Part I

Forgery detection based on the alterations
on noise

Chapter 3

Forgery Detection in Digital Images by
Multi-Scale Noise Estimation

In this chapter we introduce a simple, yet effective, forgery detection method
derived from the observations made in Chapter 2. Indeed, as shown in Section 2.5,
tampering within an image is likely to produce inconsistencies in the noise model.
The method presented in this chapter looks for such inconsistencies by estimating
local noise curves and then comparing them to the global noise curve, obtained
from the whole image. This work is published as Forgery Detection in Digital
Images by Multi-Scale Noise Estimation on J. Imaging [73].

3.1 Introduction

As mentioned in Section 1.1, an escalating number of falsified images are being shared on
the web and feeding fake news. Indeed, the popularization of digital devices as well as the
development of user-friendly manipulation software have resulted in an increase in the traffic
of manipulated content. The credibility of images is under question, and therefore, methods
relying on scientific evidence are required to assess the authenticity of images.

Two different approaches have emerged to address this issue. On the one hand, tech-
niques such as digital image watermarking or perceptual image hashing. Image watermarking
consists in embedding data into the image that can be later detected or extracted for au-
thentication purposes [16, 195]. On the other hand, perceptual image hashing is a technique
used to establish the “perceptual equality” of image content, making it possible to perform
image authentication by comparing the hash values of an original image and an image to be
authenticated [91, 92].

Although these methods provide reliable authentication, they require an active role from
the image owners.

On the other hand, passive methods that do not depend on prior actions or knowledge have
also been developed. Starting from the seminal work of H. Farid [64], digital forensics tools
have been developed to provide scientific evidence to help determine the authenticity of the
images under question [112]. These methods rely on the fact that image forgery techniques
leave specific traces (see Chapter 2) that can be detected as local inconsistencies in the image
statistics [63, 180]. Most classic methods aim to detect specific cues such as misalignment
of the Bayer pattern or perturbations in the demosaicing traces [10, 35, 192], differences in
the camera response function [98, 142], or inconsistencies in the JPEG-compression grid or
quality [20, 100, 124, 176, 225].

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

Recent deep-learning models have been developed to tackle the task of forgery detec-
tion [25]. These methods can be trained to detect specific falsification techniques such
as splicing [19, 188], copy-move [148, 189] and inpainting [137, 213], or to detect general
attacks [99, 104, 221]. The main challenge shared by these methods is the construction of
adequate training datasets ensuring good results on new real-world examples.

As reviewed in Section 2.5, noise residuals can provide substantial cues for detecting forg-
eries. Indeed, the initial Poisson noise [67] is transformed by multiple operations specific to
each image formation process [40], leading to the final JPEG image. Hence, detecting noise
inconsistencies is a rich source of forgery evidence. The use of noise residuals has evolved
over time. Early methods [155, 177] directly search inconsistencies in this residual whereas
more recent algorithms use it as an input for further feature extraction [48, 49]. Accurately
estimating the residual noise traces after the complex set of transformations of the camera’s
processing chain is the main challenge of this class of algorithms.

With these considerations in mind, we propose a noise-based method built on non-parametric
multi-scale noise estimation [41]. The multi-scale approach has been shown to effectively deal
with the correlations introduced by the demosaicing and JPEG-compression processes [42] and
stands out as a suitable framework for noise inconsistency analysis.

The rest of the chapter is organized as follows. Section 3.2 reviews the image forgery de-
tection techniques based on noise inspection. The proposed method is described in Section 3.3.
Section 3.4 presents experimental results in addition to a comparison with other state-of-the-art
techniques. The main conclusions are summarized in Section 3.5, where future work directions
are also highlighted.

3.2 Related Work

Blind noise-based detection methods usually estimate noise variance locally to detect suspicious
regions and then apply a classification criterion to locate forgeries. Mahdian and Saic [155]
propose to estimate the noise variance in blocks using a median absolute deviation (MAD)
estimator in the wavelet domain. Classification is performed using homogeneous noise stan-
dard deviation criteria. In turn, Ke et al. [113] propose noise level estimation using principal
component analysis (PCA) [185]. K-means is then applied to group image blocks into two
clusters. A similar approach is developped by Zeng et al. [232]. A different method was intro-
duced by Lyu et al. [154], where block-wise noise estimation is based on the observation that
the kurtosis values across different band-passed filter channels are constant [242]. The method
concludes by segmenting the image into regions with significantly different noise variances by
k-means. Liu et al. [144], segment the input image using the simple linear iterative clustering
(SLIC) algorithm. Then, for each region, five filters are used to extract noise. The computed
noise features are then used for classification, which is performed by energy-based graph cut.

The aforementioned methods estimate a single and constant noise level, namely an additive
white Gaussian noise (AWGN) model. However, this hypothesis does not hold in realistic
scenarios since noise levels depend on the image intensity (see Section 2.3). More recent
methods consider this fact and estimate a noise level function (NLF) rather than a single noise
level. Yao et al. [224] proposed to jointly estimate the NLF and the camera response function
(CRF) by segmenting the image into edge and non-edge regions. Noise level functions are then
compared and an empirical threshold is fixed in order to detect salient curves. The methods
introduced by Julliand et al. [106, 108] instead analyze a histogram based on the noise density
function at the local level in order to reveal suspicious areas. The method proposed by Pun et
al. [184] computes an NLF-based on Wiener filtering. Local noise levels in regions with a
certain brightness are assumed to follow a Poisson distribution, according to which, the larger

44

3.3. The Proposed Method

the distance to the NLF, the higher the probability of forgery. On the other hand, the approach
developed by Zhu and Li [241] consists of estimating a noise level function that depends on
the local sharpness rather than on the intensity.

Recently, forgery detection methods based on deep learning and feature modeling have
been developed. Cozzolino et al. [49] propose using noise residuals to extract local features
and compute their co-occurrence histograms, which are then classified in two classes using
the expectation–maximization algorithm. More recently, the same authors presented a novel
CNN-based method for noise residual extraction [48]. A similar approach can be found in [164],
which will be further analysed in Chapter 5. On the other hand, Zhou et al. [240] proposed
a two-stream CNN, one for the detection of tampering artifacts and the other to leverage
noise features. Deep learning-based methods are more general than previously described ones.
A major limitation of these methods is that they require large training datasets, which are not
always available. Furthermore, their performance generally remains dataset dependent.

3.3 The Proposed Method

We propose a new method for JPEG-compressed image forgery detection based on multi-scale
noise estimation. The method addresses the fact that, after going through the complete
camera processing pipeline, noise is not only signal-dependent but also frequency-dependent
(see Sections 2.3 and 2.4). In particular, after demosaicing, noise becomes spatially correlated,
and furthermore, the quantization of the DCT coefficients during JPEG-compression differently
affects the noise at each frequency. In this context, multi-scale noise estimation is the most
suitable approach since it enables capturing noise at medium and low frequencies.

Let I be an image with C color channels. We first split the image into W ×W blocks
with 1/2 overlap, extending the image in the borders by mirroring if necessary. We will
refer to these blocks as macroblocks. For each color channel, we estimate the global image
noise curve as well as the local noise curves for each macroblock using the extension of the
Ponomarenko et al.method [41]. For each channel, we compare the global noise curve with
the ones locally obtained by computing the number of bins of the local noise curve that are
below the global noise curve. By doing so, we obtained a heatmap for each channel that
shows, for each macroblock, the percentage of bins in its noise curve whose count is below the
global estimation. The information contained in the C obtained heatmaps is then combined
by taking their geometric mean. As a result, we obtain a single heatmap.

For non-forged images, we expect the macroblocks to show similar noise levels functions as
the one computed for the whole image. However, noise estimation is highly affected by image
content. Indeed, noise overestimation is expected to happen in textured regions [146]. As a
consequence, local noise curves computed over textured areas may be above the global one,
even if no tampering has been performed. To prevent this kind of macroblock being perceived
as suspicious, we only consider the number of bins below the global noise curve. Indeed,
the global noise curve provides a lower bound for local noise curves since the noise estimation
algorithm [41] has more samples from which to choose the adequate ones to estimate noise.
Therefore, local noise curves that are below the global one are suspected to correspond to a
different source. Figure 3.1 depicts the previously described situation. Indeed, we can observe
that the non-forged macroblock shows higher noise levels than the global image, even though
it is not tampered. On the other hand, the manipulated macroblock exhibits lower noise levels.

The next step consists of repeating the previously described process but replacing the image
I and the macroblocks by their down-scaled version. To this aim, let S be the operator that
tessellates the image into sets of 2 × 2 pixels blocks, and replaces each block by the average
of the four pixels. We define Sn(I)as the n-th scale of an image I obtained by applying n

45

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

times the operator S to the image I. This procedure allows noise curves to show the noise
contained in lower frequencies and can provide further evidence of tampering that could be
hidden under strong JPEG-compression.

0 50 100 150 200 250
Intensity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

S
ta

nd
ar

d
de

vi
at

io
n

global image
forged macroblock
pristine macroblock

Figure 3.1: Estimated noise curves for the global image and for two macroblocks—one of which is
contained in the manipulated region and the other is coming from the non-manipulated part of the
image.

By iterating the process at successive scales, we obtain one heatmap per scale which shows
the geometric mean of the percentages obtained at each channel. Each of these heatmaps
may provide useful information to detect tampering since they account for noise contained at
different frequencies. The sum of the heatmaps obtained at the different scales is computed
and then normalized in the [0, 255] interval. To obtain the final heatmap, for each pixel we
compute the average of the values of each macroblock containing it.

The residual noise present in images having undergone demosaicing and JPEG-compression
is correlated and therefore creates medium-sized noise spots. This may cause the blocks of size
8 × 8 used for noise estimation to fit inside these spots, thus causing noise underestimation.
Again, estimating noise in sub-sampled versions of the image enables these spots to fit inside
the scanning blocks and to accurately measure low-frequency noise. We propose repeating the
sub-scaling process until reaching S2(I), as suggested in [42].

Further scales could be also considered. However, the most relevant information is already
retrieved at S2. Furthermore, the macroblock’s size would become critically small and unfit to
estimate noise curves: if the original macroblocks are sized W ×W in S0, in S1 they will be
of size (W/2)× (W/2), and in S2 of size (W/4)× (W/4). Indeed, as shown in Section 3.4.3,
the best performance for the proposed method is achieved when considering macroblocks of
size W = 256. In this context, the macroblocks are sized 128× 128 in S1 and 64× 64 in S2.

Figure 3.2 shows the pipeline of the proposed method, from the moment that the algorithm
is fed with the input image until the final heatmap is delivered. Additionally, a summarized
version of the proposed method is given in Algorithm 1. The actual source code is available
at https://github.com/marigardella/PB_Forgery_Detection, together with the
instructions and requirements to run the method.

46

https://github.com/marigardella/PB_Forgery_Detection

3.3. The Proposed Method

Input image

S0

Red channel Green channel Blue channel Geometric mean

S1

Red channel Green channel Blue channel Geometric mean

S2

Red channel Green channel Blue channel Geometric mean

Output

Figure 3.2: Complete pipeline of the method: successive scales are extracted from the input image.
At each scale, one heatmap per color channel is computed and then combined according to their
geometric mean. Finally, the obtained heatmaps at each scale are summed and normalized to produce
the final output.

Algorithm 1: Pseudo-code for the proposed method
Input I: image of shape Nx ×Ny with C color channels.
Param W = 256: macroblock side
Param S= 0.5: stride
Param num_scales: number of scales

1 Mx = ⌊Nx/(W × S)⌋ − 1. # horizontal number of macroblocks

2 My = ⌊Ny/(W × S)⌋ − 1. # vertical number of macroblocks

3 macroblocks_list← list of all W ×W macroblocks with S stride.
4 for each scale s do
5 for each channel c do
6 Ics ← get image in scale s and channelc.
7 fIcs ← noise curve estimation for Ics using [41].
8 Hc ← zeros(Mx ×My).
9 for each macroblock in macroblocks_list do

10 M c
s ← get macroblock in scale s and channel c.

11 fMc
s
← noise curve estimation for M c

s using [41].
12 Hc[M c

s]← percentage of bins of fMc
s

below fIcs .

13 Hs ← geometric mean of the heatmaps Hc.

14 Haux ← sum and normalization of heatmaps Hs.
15 H ← compute for each pixel the average of Haux for each macroblock containing it.
16 return H.

47

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

3.4 Experimental Results

We conducted three experiments. First, we evaluated the relevance of the multi-scale approach
by comparing the results obtained using a single scale (S0(I)), two sub-scales (S0(I) and
S1(I)) and three sub-scales (S0(I), S1(I) and S2(I)). Second, we compared our method
with state-of-the-art forgery-detection algorithms based on noise analysis. Finally, we evaluate
the influence of W , the main parameter of the method, in the performance of the proposed
approach.

Datasets All experiments were conducted on the CG-1050 database [26] which contains four
datasets, each one corresponding to a different forgery technique: colorization, copy-move,
splicing and retouching. The total number of forged images is 1050. This database is varied in
nature, including images captured in 10 different places. The size of the images is 3456×4608
or 4608×3456 pixels. The database includes both RGB and grayscale images, all of which are
JPEG-compressed. The estimated JPEG-quality [124] for each dataset is shown in Table 3.1.

Table 3.1: Average JPEG-quality and range for each of the datasets.

Retouching Colorization Splicing Copy-Move
Average JPEG-quality 86.9 86.8 87.3 86.8
JPEG-quality range [71,88] [71,88] [71,88] [71,88]

Forgery masks were constructed by computing the absolute difference between the original
image and the forged one in each channel. To avoid pixels whose values had changed due
to global manipulations rather than tampering, the difference from one image to another was
thresholded. Only pixels whose value varied more than this threshold for at least one channel
were kept. Masks were then further refined in order to prevent isolated pixels from being
regarded as forged. The thresholds used were 15 for the copy-move, colorization and splicing
datasets and 10 for the retouching one.

The distribution of the mask’s size on each of the four datasets is shown in Figure 3.3.

48

3.4. Experimental Results

200 400 600 800 1000 1200
Mask size

0.0000

0.0005

0.0010

0.0015

0.0020

Retouching

0 500 1000 1500 2000 2500
Mask size

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Colorization

100 200 300 400 500 600 700 800
Mask size

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Splicing

0 200 400 600 800 1000 1200 1400 1600
Mask size

0.0000

0.0005

0.0010

0.0015

0.0020

Copy-move

Figure 3.3: Distribution of the forgery size in each of the datasets considered. The forgery size is shown
as the square root of the mask size, which represents the side of its equivalent square.

Evaluation Measures Forgery localization is a particular case of binary classification. Indeed,
there are two possible classes for each pixel: forged (positive) or non-forged (negative). Perfor-
mance measures are usually based on the confusion matrix [198], which has four values, each
one corresponding to the four possible combinations of predicted and actual classes, as shown
in Figure 3.4.

True positivePositive

Positive

False negative

Negative

False positiveNegative True negative

Actual class

Predicted class

Figure 3.4: Confusion matrix: rows represent the actual classes while columns represent the prediction.
The matrix has four possible values, corresponding to the four possible combinations of predicted and
actual classes.

Three metrics based on these four quantities are proposed in order to compare the results
obtained in both experiments. Namely, we evaluated the results using the IoU, the F1 and the

49

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

MCC scores, defined as

MCC =
TP× TN− FP× FN

√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
,

IoU =
TP

TP +FN + FP
,

F1 =
2TP

2TP +FN +FP
.

where TP stands for true positive, TN for true negative, FN for false negative and FP for
false positive.

These metrics are designed to evaluate binary-estimated masks. However, all of the meth-
ods analyzed in this chapter propose continuous heatmaps rather than binary masks. To adapt
the metrics to the continuous setting, we used their weighted version. In this approach,
the value of a heatmap H at each pixel x is regarded as the probability of forgery of the
pixel. Therefore, we define the weighted true positives, weighted true negatives, weighted
false negatives and weighted false positives as:

TPw =
∑

x

H(x)×M(x),

TNw =
∑

x

(1−H(x))× (1−M(x)),

FNw =
∑

x

H(x)× (1−M(x)),

FPw =
∑

x

(1−H(x))×M(x),

respectively, where H is the output heatmap normalized between 0 and 1, and M is the ground-
truth binary mask where pixels with a value of 1 are forged. Then, the weighted version of
the IoU, F1 and MCC scores are obtained replacing TP, TN, FN and FP with their weighted
versions. It is important to point out that for some of the methods, the output is a two-sided
heatmap (meaning that suspicious regions can appear in lighter or darker colors). Taking this
into consideration, both the output heatmap and the inverted one are evaluated and only the
highest score is kept.

3.4.1 Relevance of the Multi-Scale Approach

We first examined the pertinence of a multi-scale scheme. For this purpose, we computed
the results obtained when considering one single scale S0(I) (which would correspond to the
input image), using two scales S0(I) and S1(I), and using three scales S0(I), S1(I) and S2(I).
The scores obtained for each of these settings are shown in Table 3.2.

We can observe that using multiple scales leads to better results compared to a single
one. Indeed, in all four datasets, the scores obtained by PB2 and PB3 are better than those
obtained by PB1 for the three metrics. Regarding the number of scales yielding a better
performance, the use of three scales obtains the best scores for the retouching, colorization
and splicing datasets, whereas the use of two scales achieves a better performance in the
copy-move dataset. However, the results obtained for the copy-move dataset are poor for the
three variants of the method, and furthermore, they have very similar scores. We conclude
that the use of three scales, S0(I), S1(I) and S2(I), gives the best performance among the
evaluated alternatives. In fact, given that JPEG-compression is applied in 8×8 blocks without

50

3.4. Experimental Results

overlap, it is at S2 that the most accurate noise estimation is achieved since we are able to
capture noise contained in lower frequencies, which is less affected by the quantization of the
DCT coefficients.

MCC
Retouching Colorization Splicing Copy-Move

PB1 0.0672 0.0958 0.0276 0.0380
PB2 0.0848 0.1066 0.0310 0.0377
PB3 0.0915 0.1108 0.0316 0.0362

IoU
Retouching Colorization Splicing Copy-Move

PB1 0.0242 0.0721 0.0112 0.0148
PB2 0.0284 0.0756 0.0122 0.0149
PB3 0.0300 0.0761 0.0123 0.0145

F1
Retouching Colorization Splicing Copy-Move

PB1 0.0454 0.1122 0.0216 0.0281
PB2 0.0529 0.1175 0.0234 0.0282
PB3 0.0557 0.1192 0.0236 0.0276

Table 3.2: MCC, IoU and F1 scores for our method with one scale (PB1), two scales (PB2) and three
scales (PB3).

3.4.2 Comparison with State-of-the-Art Methods

In order to assess the performance of our method, we compared the results obtained on the CG-
1050 dataset with those delivered by state-of-the-art noise-based methods: Splicebuster [49],
Noiseprint [48], Mahdian [155], Pan [177], Zeng [232], Zhu [241] and Median [210]. For each
algorithm, we used a publicly available implementation [230]. Table 3.3 lists all the evaluated
methods as well as their reference article and the link to the source code used for the compar-
ison.

Method Ref. Source Code
Mahdian [155] https://github.com/MKLab-ITI/image-forensics

Pan [177] https://github.com/MKLab-ITI/image-forensics

Zeng [232] https://github.com/MKLab-ITI/image-forensics

Median [210] https://github.com/MKLab-ITI/image-forensics

Splicebuster [49] http://www.grip.unina.it/research/83-multimedia_forensics

Noiseprint [48] http://www.grip.unina.it/research/83-multimedia_forensics

Zhu [241] https://github.com/marigardella/Zhu_2018

Table 3.3: State-of-the-art methods used for the comparison as well as their reference and link to
source code.

The obtained results are given in Table 3.4. We observe that Splicebuster outperforms the
rest of the methods in the retouching and splicing datasets regardless of the metric.

51

https://github.com/MKLab-ITI/image-forensics
https://github.com/MKLab-ITI/image-forensics
https://github.com/MKLab-ITI/image-forensics
https://github.com/MKLab-ITI/image-forensics
http://www.grip.unina.it/research/83-multimedia_forensics
http://www.grip.unina.it/research/83-multimedia_forensics
https://github.com/marigardella/Zhu_2018

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

MCC
Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0915 (2) 0.1108 (1) 0.0316 (2) 0.0362 (1) 1.5
Splicebuster 0.1176 (1) 0.0535 (4) 0.0502 (1) 0.0233 (4) 2.5
Mahdian 0.0434 (6) 0.0566 (3) 0.0247 (4) 0.0257(3) 4
Pan 0.0513 (4) 0.0681 (2) 0.0282 (3) 0.0306 (2) 2.75
Noiseprint 0.0558 (3) 0.0361 (6) 0.0182 (6) 0.0177 (6) 5.25
Median 0.0479 (5) 0.0469 (5) 0.0204 (5) 0.0195 (5) 5
Zeng 0.0180 (7) 0.0262 (7) 0.0119 (8) 0.0117 (8) 7.5
Zhu 0.0147 (8) 0.0201 (8) 0.0180 (7) 0.0123 (7) 7.5

IoU
Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0300 (3) 0.0761 (1) 0.0123 (2) 0.0145 (2) 2
Splicebuster 0.0600 (1) 0.0577 (2) 0.0242 (1) 0.0166 (1) 1.25
Mahdian 0.0168 (5) 0.0548 (4) 0.0102 (5) 0.0131(5) 4.75
Pan 0.0198 (4) 0.0576 (3) 0.0109 (4) 0.0138 (4) 3.75
Noiseprint 0.0312 (2) 0.0450 (7) 0.0114 (3) 0.0142 (2) 3.5
Median 0.0163 (6) 0.0513 (5) 0.0095 (7) 0.0123(6) 6
Zeng 0.0136 (7) 0.0441 (8) 0.0084 (8) 0.0114 (8) 7.75
Zhu 0.0129 (8) 0.0453 (6) 0.0102 (5) 0.0116(7) 6.5

F1
Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0557 (3) 0.1192 (1) 0.0236 (2) 0.0276 (2) 2
Splicebuster 0.1081 (1) 0.0965 (2) 0.0448 (1) 0.0314 (1) 1.25
Mahdian 0.0324 (5) 0.0902 (4) 0.0199 (6) 0.0250(5) 5
Pan 0.0380 (4) 0.0946 (3) 0.0211 (4) 0.0264 (4) 3.75
Noiseprint 0.0588 (2) 0.0778 (7) 0.0222 (3) 0.0271 (3) 3.75
Median 0.0315 (6) 0.0857 (5) 0.0185 (7) 0.0236 (6) 6
Zeng 0.0264 (7) 0.0765 (8) 0.0165 (8) 0.0220 (8) 7.75
Zhu 0.0250 (8) 0.0779 (6) 0.0200 (5) 0.0224(7) 6.5

Table 3.4: Results of the evaluated methods measured by the average weighted IoU, F1 and MCC
scores for each dataset that maximized the score.

Our method ranks first for colorization attacks for all the three metrics considered. This
forgery technique shows the relevance of considering noise curves instead of single noise levels.
Indeed, when changing the color in a region of the image, noise levels are not necessarily
perturbed. However, those noise levels will not be consistent with the new intensity but with
the original. Estimating noise curves as the proposed method does enables detecting this
kind of inconsistency which only appears when considering intensity-dependent noise models.
Regarding the copy-move dataset, Splicebuster delivers the best results when considering the
F1 and IoU scores. However, our approach obtains the best MCC score.

The average ranking shows that Splicebuster outperforms the rest of the methods when
considering both the F1 and IoU scores, followed by our method. Nevertheless, our method
achieves the best average ranking when considering the MCC score, followed by Splicebuster.
Noiseprint stands out as the third best performing method for the IoU and F1 scores. It even
ranks second for retouching and copy-move attacks when considering these scores. However,
it shows a poor performance for the colorization dataset. This can be explained by the fact
that the camera signature is left unchanged when performing this kind of manipulation. The
Pan and Mahdian methods are middle-ranked, showing better results when considering the
MCC score. Finally, Median, Zeng and Zhu show the worst performance of all the considered

52

3.4. Experimental Results

methods regardless of the metric considered.
All of the evaluated methods have different resolutions which may affect their performance

when forgeries are too small. To analyze the effects of the size of the forgeries, we computed
the average score as a function of the forgery size. Figure 3.5 shows the average score ob-
tained by each method when setting different lower bounds for the forgery size in each of the
datasets considered.

200 400 600 800 1000 1200
Lower bound for mask size

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

MCC

R
et
o
u
ch
in
g

200 400 600 800 1000 1200
Lower bound for mask size

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

F1

200 400 600 800 1000 1200
Lower bound for mask size

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

IoU

0 500 1000 1500 2000 2500
Lower bound for mask size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

C
o
lo
ri
za
ti
o
n

0 500 1000 1500 2000 2500
Lower bound for mask size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

0 500 1000 1500 2000 2500
Lower bound for mask size

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

100 200 300 400 500 600 700 800
Lower bound for mask size

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

S
p
li
ci
n
g

100 200 300 400 500 600 700 800
Lower bound for mask size

0.025

0.050

0.075

0.100

0.125

0.150

0.175

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

100 200 300 400 500 600 700 800
Lower bound for mask size

0.02

0.04

0.06

0.08

0.10

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

0 200 400 600 800 1000 1200 1400 1600
Lower bound for mask size

0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

C
o
p
y
-m

o
v
e

0 200 400 600 800 1000 1200 1400 1600
Lower bound for mask size

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

0 200 400 600 800 1000 1200 1400 1600
Lower bound for mask size

0.05

0.10

0.15

0.20

A
ve

ra
ge

 s
co

re

PB3_256
splicebuster
noiseprint
mahdian
lyu
median
zeng
zhu

Figure 3.5: Average weighted MCC (left), IoU (middle) and F1 (right) scores obtained by each method
as a function of the lower bound for the forgery size, in each of the datasets considered. Forgery size
is shown as the square root of the mask size, which represents the side of its equivalent square.

The results suggest that our method outperforms the state-of-the-art approaches when
considering large forgeries in all the datasets regardless of the considered score. The fact that
it does not perform that well when considering small manipulations is a direct consequence of
the size of the macroblocks. Indeed, for our method to provide reliable detection, the tampered
region should be at least of the size of one of the tested macroblocks. In contrast, the per-
formance of Splicebuster decreases as we consider larger forgeries. This is partially expected
since the Gaussian-uniform model used in this method is better suited for small forgeries,
as suggested by their authors in the original paper [49].

For further evaluation, we used the visual inspection of the results obtained by the proposed

53

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

method and state-of-the-art approaches. Figure 3.6 shows examples of the outputs obtained
by these methods for the colorization and retouching attacks, respectively, as well as for the
corresponding original untampered images.

54

3.4. Experimental Results

Forged

In
p

u
t

Original Forged Original

G
ro

u
n

d
tr

u
th

P
B

3
S

p
li

ce
b

u
st

er
N

o
is

ep
ri

n
t

M
ah

d
ia

n
P

an
M

ed
ia

n
Z

en
g

Z
h

u

Figure 3.6: Results obtained for examples where colorization (first column) and retouching (third
column) were performed, as well as for their corresponding original images (second and fourth columns).
On the successive rows, the results obtained by each of the approaches for these images.

55

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

For the colorization attack shown in Figure 3.6, we can observe that, for all of the ap-
proaches except ours, the heatmap obtained when applying the method to the forged and
original images are very similar. None of these methods is able to distinguish the tampered
region by detecting the traces of the forgery. Instead, the proposed method provides a sig-
nificant difference between the forged and pristine image; we observe that the forgery clearly
stands out while for the pristine image, the values of the heatmap in that area are moderated.

In the case of retouching, we observe that all of the methods point out the forged region or
at least part of it as suspicious. However, several interpretation problems arise. When analyzing
the results provided by Splicebuster, we can notice that the heatmap corresponding to the
tampered image precisely points to the border of part of the forgery. However, when considering
the pristine image, there are several areas of the heatmap showing the same values, even if they
are not tampered. The Noiseprint results better localize the forgery even though false alarms
are present in the pristine image. Mahdian, Pan, Median, Zeng and Zhu methods show a
further drawback: in the heatmap corresponding to the manipulated image, the forged regions
stand out at the same level as other non-tampered parts of the image. The interpretation of
the heatmaps is left to the user who has to decide whether the regions detected as suspicious
should be considered forged or discarded. On the other hand, our method is able to localize the
forgery when applied to the tampered image while showing no extreme values for the pristine
one, making it easier for users to interpret.

3.4.3 Influence of the Macroblock Size

The main parameter of the proposed method is W , the size of the macroblocks where local
noise curves are computed. The larger this size, the more accurate the NLF estimation.
However, the size of the macroblocks directly affects the precision with which forgeries are
located. As shown in Figure 3.5, the performance of the method relies on the macroblocks’ size.

In order to evaluate the capabilities of the method, we carried out an analysis of such
performance depending on the size of the macroblocks. We tested three possible values for
W : 512, 384 and 256. The results, presented in Table 3.5, suggest that the best performance
is achieved for W = 256. Indeed, for the retouching, colorization and copy-move datasets,
the best scores are obtained when considering macroblocks of size 256 × 256. On the other
hand, when considering the splicing dataset, macroblocks of size 512× 512 yield a better IoU
score. However, the difference is very small and when considering other metrics, W = 256
achieves higher scores.

56

3.5. Conclusions and Limitations

MCC
Retouching Colorization Splicing Copy-Move

PB1_512 0.0585 0.0770 0.0246 0.0316
PB2_512 0.0729 0.0830 0.0268 0.0321
PB3_512 0.0804 0.0901 0.0291 0.0320
PB1_384 0.0625 0.0838 0.0242 0.0348
PB2_384 0.0789 0.0924 0.0284 0.0350
PB3_384 0.0869 0.1015 0.0289 0.0344
PB1_256 0.0672 0.0958 0.0276 0.0380
PB2_256 0.0848 0.1066 0.0310 0.0377
PB3_256 0.0915 0.1108 0.0316 0.0362

IoU
Retouching Colorization Splicing Copy-Move

PB1_512 0.0226 0.0650 0.0113 0.0141
PB2_512 0.0262 0.0673 0.0120 0.0144
PB3_512 0.0278 0.0691 0.0124 0.0142
PB1_384 0.0234 0.0679 0.0110 0.0145
PB2_384 0.0274 0.0708 0.0120 0.0146
PB3_384 0.0289 0.0730 0.0122 0.0144
PB1_256 0.0242 0.0721 0.0112 0.0148
PB2_256 0.0284 0.0756 0.0122 0.0149
PB3_256 0.0300 0.0761 0.0123 0.0145

F1
Retouching Colorization Splicing Copy-Move

PB1_512 0.0428 0.1032 0.0215 0.0268
PB2_512 0.0492 0.1067 0.0229 0.0272
PB3_512 0.0520 0.1099 0.0235 0.0270
PB1_384 0.0441 0.1068 0.0211 0.0275
PB2_384 0.0512 0.1112 0.0229 0.0277
PB3_384 0.0540 0.1151 0.0232 0.0274
PB1_256 0.0454 0.1122 0.0216 0.0281
PB2_256 0.0529 0.1175 0.0234 0.0282
PB3_256 0.0557 0.1192 0.0236 0.0276

Table 3.5: MCC, IoU and F1 and scores for our method with one scale (PB1), two scales (PB2) and
three scales (PB3) and considering different macroblock sizes: 512, 384 and 256.

3.5 Conclusions and Limitations

In the fight against disinformation, the use of objective methods able to detect manipulated
multimedia content becomes crucial. Providing such tools is the aim of the digital forensics
research community, and in particular, of the present work. We believe that image forgery
detection is a key resource to fight fake news.

JPEG images are broadly used and clearly stand out as one of the most popular image
formats. From the acquired raw image to the final JPEG format delivered by the camera,
a complex processing chain is applied. Along this process, the originally Poisson-distributed
noise undergoes several transformations, resulting in a complex noise structure in the JPEG
image whose model does not match the AWGN hypothesis. Noise inconsistency analysis is
a rich resource for forgery detection given that forged regions are likely to have undergone a
different processing pipeline or an out-of-camera manipulation. However, noise-based methods

57

Chapter 3. Forgery Detection in Digital Images by Multi-Scale Noise
Estimation

require accurately dealing with the changes induced by the successive steps of the camera
processing chain.

In this chapter, we presented a method that can correctly deal with the complex noise
residuals observable in the JPEG image. The proposed method implements a multi-scale
approach which has shown to be suitable for analyzing the highly correlated noise present in
JPEG-compressed images.

Our comparative results show that our method outperforms state-of-the-art approaches
when evaluating the results with the MCC score. For colorization attacks, our method performs
best, regardless of the metric. In addition, when the size of the forgeries is large enough, our
method shows the best performance in all the datasets, for all three considered metrics.

Nevertheless, the proposed method has its own limitations, mainly related to too-small
and too-large forgeries. Indeed, if the forgery is too small with respect to the macroblock’s
size, the method is likely to miss it. On the other hand, if the forgery is comparatively too
large, the global noise curve may be distorted by the tampered region. The method is also by
construction unable to detect a pure internal copy-move. Indeed, such a manipulation leaves
the noise model unaltered. As a final negative note, the method cannot detect splicing when
the forged region has more noise than the background image.

58

Chapter 4

Noisesniffer: Forgery Detection by Noise
Spatial Statistics

In this chapter we present a more sophisticated forgery detection method based
on noise analysis. This method estimates for each image a background stochastic
model which makes it possible to detect local noise anomalies. The algorithm
includes an a contrario statistical validation step, which associates a Number of
False Alarms (NFA) with each tampering detection. Detections are obtained by
a threshold of the NFA, which renders the method fully automatic and endows it
with a false alarm control mechanism.

This work is accepted for publication as Image forgery detection based on noise
inspection: analysis and refinement of the Noisesniffer method on IPOL which
is an improvement over our work published in the IWBF conference [72]. An online
demo is available at: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000341

4.1 Introduction

As reviewed in Chapter 2, the residual noise present in images depends on the in-camera
processing chain. It can therefore reveal the presence of forged regions by detecting local
inconsistencies in the noise statistics that are incompatible with a unique camera processing
pipeline. Such inconsistencies can be produced by the forgery or its post-processing. In the
previous chapter we presented a simple yet effective method to exploit noise inconsistencies
for forgery detection. Here, we present a more sophisticated forgery detection method based
on noise analysis. Hereafter, we shall focus on the relevant references for the particular topic
of this chapter. To make the discussion self-contained, we opted to keep some references that
might have already been presented in the previous chapter.

Blind noise-based detection methods usually estimate noise variance locally to detect sus-
picious regions and then apply a classification criterion to locate forgeries. Mahdian and
Saic [155] propose a block-wise noise variance estimation using a median absolute deviation
(MAD) estimator in the wavelet domain. Their classification process relies on a homogenous
noise standard deviation criterion. In contrast, Ke et al. [113] estimate the noise level using
principal component analysis (PCA) [185]. They employ K-means clustering to group image
blocks into two clusters. A similar approach is developed by Zeng et al. [232]. A different
method was introduced by Lyu et al. [154], where block-wise noise estimation is based on
the observation that the kurtosis values across different band-passed filter channels are con-
stant [242]. The method concludes by segmenting the image into regions with significantly

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000341

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

different noise variances by k-means. Liu and Pun [144] employ a different segmentation tech-
nique known as the simple linear iterative clustering (SLIC). For each region, they use five
filters to extract noise characteristics, and subsequently, the computed noise features are used
for classification via an energy-based graph cut method.

The aforementioned methods share the same drawback: they estimate a single and constant
noise level, namely an additive white Gaussian noise (AWGN) model. Yet this hypothesis does
not hold in realistic scenarios where noise levels depend on the image intensity [147]. More
recent methods consider this fact and estimate a noise level function (NLF) rather than a
single noise level. Yao et al. [224], proposed to jointly estimate the NLF and the camera
response function (CRF) by segmenting the image into edge and non-edge regions. Noise level
functions are then compared and an empirical threshold is fixed to detect salient curves. The
methods introduced by Julliand et al. [106, 108] instead analyze a histogram based on the noise
density function at the local level in order to reveal suspicious areas. Pun et al. [184] compute
an NLF-based on Wiener filtering. Local noise levels in regions with a certain brightness are
assumed to follow a Poisson distribution, according to which, the larger the distance to the
NLF, the higher the probability of forgery. On the other hand, the approach introduced by
Zhu and Zhao [241] consists of estimating a noise level function that depends on the local
sharpness rather than on the intensity. Gardella et al. [73] suggest that, for JPEG-compressed
images, not only the noise is intensity dependent but also scale-dependent. Thus, they propose
to estimate an NLF at different scales to capture noise inconsistencies at multiple scales.

Recently, forgery detection methods based on deep learning and feature modeling have
been developed. Splicebuster [49] proposes to use noise residuals to extract local features
and compute their co-occurrence histograms, which are then classified in two classes using
the Expectation–Maximization algorithm. More recently, the same authors presented a novel
CNN-based method for noise residual extraction [48]. A similar approach was introduced
by Mayer and Stamm [70, 164], where a pair of CNNs in a siamese configuration is used
to extract camera-related artifacts from pairs of patches which are then used to construct a
similarity graph. Forgeries are detected as communities in the aforementioned graph. Zhou
et al [240] proposed a two-stream CNN, one for the detection of tampering artifacts and the
other to leverage noise features. Deep learning-based methods are more general than previously
described ones. ManTraNet [221] is a bipartite end-to-end network, trained to detect image-
level manipulations with one part, while the second part is trained on synthetic forgery datasets
to detect and localize forgeries in the image. A major limitation of these methods is that they
require large training datasets, which are not always available. Furthermore, their performance
generally remains dataset-dependent.

In this chapter, we present an improved version of the Noisesniffer method [72], an auto-
matic forgery detector that chases traces of the image noise model disruptions. This method
is based on the observation that, even though the camera processing chain modifies the initial
raw Poisson-Gaussian noise, the final noise model should be coherent along the image. Local
forgeries generally alter this coherence, creating an anomalous noise model in the tampered
area [180]. Local anomalies of the noise model, though generally imperceptible to the human
eye, can become informative cues for forensic analysis.

4.2 Method

Most non-parametric noise estimation methods share the same principles: they start by select-
ing the homogeneous regions of the image where noise dominates over the signal, and then
they estimate noise in the frequency or the spatial domain using just a small portion of the
blocks in the previously selected region [132]. In this work, we follow a similar procedure to

60

4.2. Method

identify the blocks within the homogeneous regions that are good candidates for noise estima-
tion. However, instead of using these blocks to estimate the noise level, we are interested in
analyzing the spatial distribution of such blocks.

Indeed, if the variance in the homogeneous regions identified in the first step is only
explained by noise, the small proportion of blocks that are then used to estimate noise should
be a random uniform selection over the homogeneous region. However, if we observe that the
blocks used for noise estimation concentrate in a particular part of the homogeneous region,
we can deduce that this zone exhibits a suspicious noise deficit.

The proposed method is developed in two steps. Firstly, we compute the set of blocks
corresponding to the homogeneous regions and then the subset of those blocks having the
lowest standard deviation. Secondly, the spatial distribution of these two sets is compared to
detect if there is a statistically significant deviation from one distribution to the other. To do
so, we adopt an a contrario approach [56] and assign a number of false alarms (NFA) to each
detection.

4.2.1 Distributions computation

The method takes as input an image I of size X × Y , with C color channels. Given w, we
first consider all its w × w overlapping blocks.

When the potential well in the camera sensor is full, the excess of photons does not
contribute to the output voltage values and the pixel becomes saturated. Since noise is
clipped at saturated pixels, saturated pixels may cause unreliable noise estimations. To avoid
this situation, blocks having at least one saturated pixel are discarded. By doing so, we get a
list of valid blocks.

When the light interacts with a detector, the photons arrive randomly and independently,
resulting in fluctuations in the measured signal. These fluctuations are responsible for the noise
at the first step of the image formation process to be signal-dependent. Therefore, to compare
the noise levels amongst different blocks, their intensity needs to be taken into account. For
each channel, we group the valid blocks in bins with fixed size B according to their mean
intensity.

In order to select the suitable regions for noise estimation, for each color channel c and bin
b, we first compute the orthogonal Discrete Cosine Transform (DCT II) of each block in the
bin, and for each block, we compute its variance in low and medium frequencies. A pair of
frequencies (i, j) is said to correspond to a low or medium frequency if 0 < i+ j < T , where
T is a fixed threshold that depends on the block size. Note that the pair (i, j) = (0, 0) – the
mean of the block term – is not considered [41].

Blocks are then sorted in ascending order according to their variance in low and medium
frequencies, and only a small percentile given by the parameter n is kept. These blocks
constitute the set Lc

b, where c denotes the corresponding color channel and b the corresponding
bin. Since most of the energy corresponding to the image geometry is located at the low and
medium frequencies, the selected blocks we keep correspond to the most homogeneous ones.

The intensity variations in these blocks are likely to be explained only by noise. The next
step is to compute their variance and order them in ascending order. The subset V c

b ⊂ Lc
b

corresponds to the m% of the blocks in Lc
b having the lowest variance, including completely

flat blocks (i.e. blocks whose variance is equal to zero). However, if more than the m% of
the blocks in Lc

b are completely flat, the bin is declared invalid. This last precaution aims at
preventing false detections due to strong image alterations introduced by the camera image
processing pipeline. For instance, when applying strong JPEG compression, artificial flat zones
may appear. Indeed, homogeneous regions usually have small DCT coefficients. Therefore,

61

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

when the quantization factors are big, the JPEG encoder will set them to zero, resulting in
flat zones.

Finally, by aggregating the sets obtained for each color channel c and each valid bin b, we
define:

V =
⋃

c

⋃

valid b

V c
b and L =

⋃

c

⋃

valid b

Lc
b. (4.1)

By construction, V ⊂ L.

4.2.2 Statistical validation

Our null hypothesis (H0) is the absence of any forgery. Under H0, blocks in V and in L should
have the same spatial distribution in the image. Indeed, the blocks in V should correspond
to a random and uniform selection over the blocks in L. Nevertheless, when analyzing the
distributions of V and L, small deviations from one to the other are likely to happen due to
randomness. The fundamental question arises as to whether the observed spatial distribution
is likely to happen by chance or not.

A criterion is needed in order to spot deviations that are statistically significant from those
that could happen just by chance. Here, we propose to use an a contrario approach [56]
to statistically validate these deviations. This theory is based on the Non-Accidentalness
Principle, which states that we perceive a structure whenever a large deviation from randomness
occurs [8]. However, computing the probability of these events might be hard. This problem
is solved by the introduction of the Number of False Alarms (NFA) of an event, which is an
upper bound on the expectation of occurrences of such event under the null model [56].

Given a region R to be tested for forgery, our null hypothesis H0 implies that the blocks1

in V correspond to a random uniform Poisson point process among the blocks in L. Suppose
that for region R there are N blocks o1, . . . oN in L, K out of which are also in V . We define
the random variables Zi for i = 1, . . . , N as:

Zi =

{

1 if oi ∈ V,
0 if oi ̸∈ V.

(4.2)

Since our null model is that the blocks in V correspond to a random and uniform selection
over the blocks in L, under this hypothesis the variables Zi follow a Bernoulli distribution with
parameter p, for all i = 1, . . . N . Since in each bin and in each channel exactly m% of the
blocks in Lc

b are kept in V c
b ; globally exactly m% of the blocks of L are in V . Thus, we fix

p = m.

Following the a contrario methodology [56], the number of false alarms (NFA) of the region
R is defined as

NFA(R) = NtestsPH0(Z ≥ K), where Z =

N
∑

i=1

Zi. (4.3)

The probability PH0(Z ≥ K) is difficult to compute directly because the random variables
Zi with i = 1, . . . , N are not independent. This is because the w×w blocks used to construct
V and L are taken with overlap. We solve this problem by considering that we are making w2

separate tests: one for each w × w grid without overlap and assuming that for each of these

1In practice, we consider a block o to be in a certain region R if its origin is in R.

62

4.2. Method

tests, we observe N/w2 blocks in L and K/w2 blocks in V . Then, the NFA of the region R
is defined

NFA(R) = w2NtestsB
(

K

w2
,
N

w2
,m

)

, (4.4)

where Ntests is the number of tests to be detailed below and B denotes the tail of the binomial
law:

B(k, n, p) =
n
∑

i=k

(

n

i

)

pi(1− p)n−i. (4.5)

The expression in Equation 4.4 is, in fact, an upper bound of the actual NFA, since at least
one of the grids will have more favorable parameters.

A region R is said to be ε-meaningful if NFA(R) < ε. Once ε is fixed, a region R is
detected if it is ε-meaningful. This means that the expected number of regions to be declared
ε-meaningful under H0 is smaller than ε. Therefore, ε gives an a priori estimate of the mean
number of false detections under H0. For the rest of the chapter, the threshold ε is set to 1.
Although we would normally require a mean number of false detections smaller than 1, due
to the discrete nature of the binomial law, the average number of false detections is actually
much smaller than the upper bound ε [87].

To complete the formulation we still need to specify the family of regions to be tested.
Instead of using rectangular macro-blocks as in the original Noisesniffer formulation [72], we
consider more general connected regions, as in [88]. With this aim, we consider a square
tessellation of the image, with squares of size lβ × lβ. Given a block β(i, j) of this tilling,
where (i, j) denotes the origin of the block, β(i, j) is connected with its horizontal and vertical
neighbor blocks, namely, to β(i± lβ , j) and β(i, j ± lβ). The regions to be tested correspond
to those that can be built under this 4-connectivity notion, using the squares of the tessellation
as cells. These figures are called polyominoes. The exact number of polyominoes pn of a given
size n is – in general – not known. However, it can be approximated as [103]

pn ≈ 0.316915× 4.062570n

n
. (4.6)

Still, we need to consider that each polyomino can be placed at any position in the con-
structed square tiling. To consider all the possible placements, pn needs to be multiplied by
the number of cell squares, namely X

lβ
× Y

lβ
. This is not an exact calculation since it also

considers some polyominoes that extend outside the image domain.
Finally, for a given region R of size |R|, where the size is the number of cells it contains,

the number of tests can be written as:

N
|R|
tests =

(

X

lβ
× Y

lβ

)

p|R|. (4.7)

Note that we are interested in testing arbitrary-sized regions rather than fixed-sized regions.
Hence, we need to distribute the weight of the NFA computed for each region size in such
a way that, when computing the final NFA, it truly represents the NFA of the whole image
where we have tested several region sizes. To do so, the number of tests is multiplied by the
total number of possible region sizes. The region sizes we are interested in are those ranging
from one only cell β to half of the image size 1

2
X
lβ
× Y

lβ
, since we only consider forgeries up to

this size. Therefore, we have 1
2
X
lβ
× Y

lβ
possible region sizes.

63

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

Then, the number of tests, when considering all the polyominoes sizes we are testing in
the whole image is given by

Ntests =
1

2

(

X

lβ
× Y

lβ

)(

X

lβ
× Y

lβ

)

p|R|. (4.8)

With this number of tested regions, the NFA of a candidate region is

NFA(R) =
w2

2

(

X

lβ
× Y

lβ

)2

0.316915× 4.062570|R|

|R| B
(

K

w2
,
N

w2
,m

)

. (4.9)

4.2.3 Region growing algorithm

Testing all possible 4-connected regions is computationally intractable. Instead, we propose a
heuristic approach to reduce the number of regions that will be evaluated using the a contrario
approach described in the previous section. The construction of such candidate regions is based
on the greedy algorithm proposed by Grompone et al. [88], and the modifications introduced
in [202].

The construction can be summarized as follows: a first criterion is used to decide which
cells are suspicious of being meaningful. Then, these cells are used as seeds to construct larger
regions by iteratively adding connected cells satisfying the region growing criteria. Once the
region stops growing, the NFA is computed. If a detection is made, the cells in the region are
masked and will not start a new region in further iterations.

For a cell β to be used as a seed, we impose the following criteria. Let Nβ be the number
of observed blocks in L, of which Kβ are also in V . If

Kβ

Nβ

> m, (4.10)

then β is a possible seed pixel for a new region. This criterion is based on the fact that the
expected proportion of a Binomial law is equal to the probability of success on each Bernoulli
experiment, which in our case is equal to m.

Starting from a seed cell, the region-growing algorithm iteratively adds neighbor cells that
satisfy the region-growing criterion. To define this criterion, we follow the approach introduced
by Tailanian et al. [202]. Namely, in order to decide if a cell is to be added or not to the region,
we evaluate the NFA value of the region with and without this cell. If adding the cell makes
the region more meaningful (i.e. if it lowers the NFA value), the cell is added.

The region-growing criterion can be stated as follows. Let R be a region and β a neighbor
cell. Let NR and Nβ denote the number of observed blocks in L for R and β respectively, of
which KR and Kβ are also in V . For the NFA of R ∪ {β} to be smaller than the NFA of R,
the following condition must be met:

4.062570

|R|+ 1
B
(

KR +Kβ

w2
,
NR +Nβ

w2
,m

)

<
1

|R|B
(

KR

w2
,
NR

w2
,m

)

. (4.11)

4.3 Detailed implementation

As described in Section 4.2.1, the first step of the methods consists in extracting the list of
w × w overlapping valid blocks from image I. Valid blocks are those which do not have any
saturated pixels. Here we adopt a relaxed notion of saturation: saturated pixels are those
presenting the maximum value or the minimum value in at least one of the image channels.

64

4.3. Detailed implementation

This notion is more robust to dynamic range changes than just checking pixels with intensities
equal to 0 or 255. The implementation of this step is described in Algorithm 2.

Algorithm 2: Computes the indices of the valid blocks (i.e. not containing

saturated pixels). (ComputeValidBlocksIndices)

Input I: image of size X × Y with 3 color-channels

Input w: block side

Output validBlocks: list of the indices of the valid blocks

1 Inotsat ← (1)X×Y # initialize all pixels to 1 (not saturated)

2 for ch← 0 to 2 do
3 Imax

sat ←
[

Ich < max(Ich)
]

mark as saturated pixels where the max in

ch is achieved

4 Imin
sat ←

[

Ich > min(Ich)
]

mark as saturated pixels where the min in

ch is achieved

5 convert Imax
sat and Imin

sat to integers # update saturated pixels

6 Inotsat ← Inotsat · Imax
sat · Imin

sat # where · stands for the Hadamard product

7 K← (1)w×w

8 M ←
[

Inotsat ∗ K > w2 − 0.5
]

where ∗ stands for convolution

the result is True only if all the pixels in the w × w block are

not saturated

9 validBlocks← indices where M = True

10 return validBlocks

Secondly, the mean intensity of all the w × w overlapping blocks is computed channel-
wise. Though the method only requires to compute the mean intensity of the valid blocks,
computing the mean intensities of all the blocks can be efficiently done using a convolution,
as described in Algorithm 3.

Algorithm 3: Computes a three dimensional array containing the means of all

the w × w blocks in the image, in each color channel. (AllImageMeans)

Input I: image of size X × Y with 3 color-channels

Input w: block side

Output Imeans: three dimensional array containing the means of all the w × w

blocks in the image, in each color channel

1 K← 1
w2 (1)w×w # define the averaging kernel of size w × w

2 Imeans ← I ∗K # convolution between I and K

3 return Imeans

After these two steps, the channel-wise processing starts. Given a color-channel ch, in
order to define the bins, we first sort the valid blocks according to their mean intensity values,
as shown in Algorithm 4.

65

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

Algorithm 4: Sorts the valid blocks according to their mean intensity in a given

color channel ch. (SortBlocksByMean)

Input ch: color-channel

Input Imeans: three-dimensional array containing the means of all the w × w blocks

in the image

Input validBlocks: list of the indices of the valid blocks

Output sortedValidBlocks: list of valid blocks sorted in ascending order according to

their mean intensity in channel ch.

1 sortedArgs← argsort(Imeans[validBlocks, ch]) # sort the blocks

2 sortedValidBlocks← validBlocks[sortedArgs]

3 return sortedValidBlocks

Since it is unlikely that the number of valid blocks is a multiple of the number of samples
in each bin, given by parameter B, we update this parameter in order to distribute the blocks
in bins. This is done according to Algorithm 5.

Algorithm 5: Updates the number of samples per bin.

(UpdateSamplesPerBin)

Input numBlocks: number of valid blocks.

Input B: number of samples per bin

Output B̃: updated number of samples per bin

Output numBins: number of bins

1 numBins← round(numBlocks/B)

2 if numBins = 0 then
3 numBins← 1 # force to have at least one bin

4 B̃ ← ⌊numBlocks/numBins⌋
5 return B̃, numBins

Then for each bin in channel ch, the first step is to compute the list of blocks that
corresponds to the bin bk, for k = 0, . . . , numBins−1. All the bins will have B̃ samples except
for the last one.

66

4.3. Detailed implementation

Algorithm 6: Computes the list of blocks corresponding to the k-th bin.

(BinBlockList)

Input k: bin.

Input B̃: updated number of samples per bin.

Input numBins: number of bins.

Input numBlocks: number of valid blocks.

Input sortedValidBlocks: list of valid blocks sorted according to their mean.

Output bk: list of the blocks corresponding to the k-th bin.

1 if k = numBins-1 then
2 bk ← sortedValidBlocks[(numBins− 1)× B̃, . . . , numBlocks]

3 else
4 bk ← sortedValidBlocks[k × B̃, . . . , (k + 1)× B̃]

5 return bk

Once the list of blocks corresponding to a certain bin k is computed, we then compute
their DCT II. Next, a mask of size w×w corresponding to the low and medium frequencies is
computed, according to Algorithm 7. The thresholds used correspond to those in [41].

Algorithm 7: Computes a mask of size w×w that corresponds to low-medium

frequencies. (GetTMask)

Input w: block side, w ∈ {3, 5, 8}.
Output mask: mask of size w × w that corresponds to low-medium frequencies.

1 if w = 3 then
2 T ← 3

3 if w = 5 then
4 T ← 5

5 if w = 8 then
6 T ← 9

7 mask← (0)w×w # define as a zero matrix of sixe w × w

8 for i← 0 to w − 1 do
9 for j ← 0 to w − 1 do

10 if i+ j ̸= 0 and i+ j < T then
11 mask(i, j)← 1

12 return mask

Then, the low-medium frequency energy of each DCT block is computed according to
Algorithm 8. For commodity, we use here and afterward the term "variance" to refer to this
energy. Indeed, since the expectation is zero, this sum is in fact proportional to the empirical
variance.

67

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

Algorithm 8: Computes the variance in low-medium frequencies of the DCT

II of a w × w block. (ComputeLowFreqVar)

Input D: a DCT block of size w × w.

Input mask: a mask corresponding to low and medium frequencies. # see

Algorithm 7

Output σ2
low-med: variance in low-medium frequencies of the DCT II block.

1 Dlow-med ← D· mask # keep only the low-med frequencies of the block D

2 σ2
low-med ←

∑w−1
i,j=0 Dlow-med(i, j)

2

3 return σ2
low-med

Afterwards, a small percentile2, given by parameter n, of the blocks having the lowest low-
medium frequency variance is selected. The selection procedure is summarized in Algorithm 9

Algorithm 9: Selects the percentile n of blocks in the bin having the lowest

variances in low-medium frequencies. (SelectBlocksVL)

Input B̃: updated number of samples per bin. # see Algorithm 5

Input bk: list of the blocks in the bin. # see Algorithm 6

Input σ2
low-med: list of the variances in low-medium frequencies of the blocks.# see

Algorithm 8

Input n: a percentile.

Output blow-med
k : list of the n× B̃ blocks in the bin having the lowest variances in

low-medium frequencies.

1 N ← n× B̃ # number of blocks that correspond to the n percentile

2 sortedArgs← argsort(σ2
low-med)

3 bsorted
k ← bk[sortedArgs]

4 blow-med
k ← bsorted

k [0, . . . , N]

5 return blow-med
k

Then, the standard deviation of the selected blocks in the bin is computed. These standard
deviations are analyzed as described in Algorithm 10 to check if the bin is valid or not.

Algorithm 10: Determines if a bin is valid or not. (BinIsValid)

Input B̃: updated number of samples per bin. # see Algorithm 5

Input σ: list of the standard deviations of the blocks in the bin.

Input n: a percentile.

Input m: a percentile.

Output binValid: boolean variable, True if bin is valid, False if not.

1 M ← B̃ × n×m

2 binValid← [count(σ = 0) < M]

3 return binValid

If the bin is valid, then the m percentile of the blocks having the lowest low-medium
frequency variance (selected in Algorithm 9) is kept. The selection procedure is summarized

2Throughout this chapter we refer to percentiles and porcentages indistinctively.

68

4.3. Detailed implementation

in Algorithm 11.

Algorithm 11: Selects the percentile m of blocks having the lowest standard

deviations amongst those having the lowest low-medium frequency variance.

(SelectBlocksStds)

Input B̃: updated number of samples per bin. # see Algorithm 5

Input blow-med: list of the blocks with the lowest low-med frequency variance. # see

Algorithm 9

Input σ: list of the standard deviation of the blocks having the lowest low-med

frequency variance.

Input n: percentile of blocks with the lowest energy in low frequencies

Input m: percentile of blocks with the lowest standard deviation

Output bσ: list of the m× n× B̃ blocks in the bin having the lowest variances in

low-medium frequencies.

1 M ← m× n× B̃ # number of blocks that correspond to the m percentile

2 sortedArgs← argsort(σ)

3 blow-med
sorted ← blow-med[sortedArgs]

4 bσ ← blow-med
sorted [0, . . . ,M]

5 return bσ

Finally, if the bin is valid, the n percentile of blocks selected in Algorithm 9 is added to
the set L and the m percentile amongst them having the lowest standard deviation selected
in Algorithm 11 is added to the set V .

69

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

Algorithm 12: Overview of the distributions computation (Section 4.2.1)

Input I: image of size X × Y with 3 color-channels

Input n: percentile of blocks with the lowest energy in low frequencies

Input m: percentile of blocks with the lowest standard deviation

Param w: block side

Param B: number of samples per bin

Output V : set of blocks in the n-th percentile having the lowest energy in low

frequencies

Output L: subset of V of blocks in the m-th percentile having the lowest standard

deviation

1 validBlocks← ComputeValidBlocksIndices(I, w)

2 Imeans ← AllImageMeans(I, w)

3 V ← ∅
4 L← ∅
5 for ch = 0 to 2 do
6 Vch ← ∅
7 Lch ← ∅
8 sortedValidBlocks← SortBlocksByMean(ch, Imeans, validBlocks)

9 B̃ ← UpdateSamplesPerBin(len(validBlocks), B)

10 numBlocks← len(validBlocks)

11 numBins← round(numBlocks/B̃)

12 for k = 0 to numBins- 1 do
13 bk ← BinBlockList(b, B̃, numBins, sortedValidBlocks)

14 mask← GetTMask(w)

15 σ2
low-med ← ComputeLowFreqVar(DCT(block),mask) for all block in bk

16 blow-med
k ← SelectBlocksVL(B̃, bk, σ

2
low-med, n)

17 σ ← [std(block) for all block in bk]

18 if BinIsValid(B̃, σ, n,m) then
19 bσk ← SelectBlocksStds(B̃, blow-med

k , σ, n,m)

20 append blow-med
k to Lch

21 append bσk to Vch

22 append Lch to L

23 append Vch to V

24 return L, V

Once the distributions L and V are computed, they go through the statistical validation
process (Section 4.2.2) to spot significant deviations from one another. The NFA computation
is described in Algorithm 13.

70

4.3. Detailed implementation

Algorithm 13: NFA computation
Input I: image of size X × Y with 3 color-channels

Input w: block side

Input lβ: block side

Input m: percentile of blocks having the lowest standard deviation

Output V : set of blocks in the n-th percentile having the lowest energy in low

frequencies

Output L: subset of V of blocks in the m-th percentile having the lowest standard

deviation

Output Mask: forgery detection mask

1 mask← (0)X×Y

2 ε← 1

3 cells← list of all the lβ × lβ non-overlapping blocks in I

4 for each cell ∈ cells do
5 if cell satisfies seed criteria (Equation 4.10) then
6 R← [cell]

7 Rinit ← 1

8 Rfin ← 0

9 NR ← number of L− blocks in R

10 KR ← number of V − blocks in R

11 while Rinit ̸= Rfin do
12 Rinit ← len(R)

13 Rfin = Rinit

14 neighbour cells←
list of cells having a common edge to any element in R

15 for each neighbour ∈ neighbour cells do
16 if neighbour ̸∈

R and neighbour satisfies growing criteria (Equation 4.11) then
17 append neighbour to R

18 Nneighbour ← number of L− blocks in neighbour

19 Kneighbour ← number of V − blocks in neighbour

20 NR ← NR +Nneighbour

21 KR ← KR +Kneighbour

22 Rfin ← Rfin + 1

23 NFAR ← w2

2

(

X
lβ
× Y

lβ

)2
0.316915× 4.062570Rfin

Rfin
B
(

⌊KR

w2 ⌋, ⌈NR

w2 ⌉,m
)

24 if NFAR < ε then
25 mask[R]← 1

26 return mask

71

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

4.4 Experiments

We used the Trace database [13] to evaluate the method. This dataset will be presented in
detail in Chapter 6. Still, we summarize here its main characteristics which are relevant to this
chapter.

The Trace database is made of 1000 images taken from the Raise dataset [52]. For each
image, two forgery masks are made: the endomask, obtained by taking a random object
from the image’s automatic segmentation, and the exomask, which is simply the endomask
of another image of the set and thus does not correlate to the contents of the image. The
concept of the database is to process each raw image with two different pipelines, and splice
both processed images according to the forgery masks. Of the six datasets that are proposed,
only one is of interest to us: the raw noise level dataset. In this dataset, the two pipelines are
the same except for the initial raw noise level model.

In this dataset, noise is added to each raw image before processing it. The noise variance
is modeled as σ2 = A+Bu, where A and B are constants and u is the noiseless image. Given
a base image, the authors sort two different pairs of constants (A0, B0) and (A1, B1) that
determine the two different noise models. Both images - which are in fact the same but having
a different noise model - are then processed with the same subsequent pipeline. Since the
proposed method is only able to detect forgeries having lower noise levels, we restrict
the analysis to those images. This sums to 499 images in each, the endomasks and the
exomasks datasets. The endomasks dataset is used to find the optimal parameter configuration
and to analyze the influence of each parameter on the performance (Section 4.4.1). The
comparison with other state-of-the-art methods (Section 4.4.2) was performed on the exomasks
dataset, to avoid any kind of overfitting.

To assess the quantitative performance of the different parameters configurations and
methods, we used three metrics: the Matthews Correlation Coefficient (MCC), the Intersection
over Union score (IoU), and the F1 score, defined by

MCC =
TP × TN − FP × FN

√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (4.12)

IoU =
TP

TP + FN + FP
, (4.13)

F1 =
2TP

2TP + FN + FP
, (4.14)

where TP , FP , TN and FN denote the pixel-wise number of true positives, false positives,
true negatives, and false negatives, respectively. The IoU and F1 scores vary between 0 and 1.
The result is 0 when no true positives are detected and 1 for perfect detection. The MCC score
varies from -1 for a detection that is complementary to the ground truth, to 1 for a perfect
detection. A score of 0 represents an uninformative result and is the expected performance of
any random classifier. The MCC is more representative than the F1 and IoU scores [33, 34],
particularly because it is less dependent on the proportion of positives in the ground truth.

The scores were computed for each image and then averaged over each dataset. As most
surveyed methods do not provide a binary output but a heat map, to adapt the metrics to
the continuous setting, we used their weighted version. In this approach, the value of a heat
map H at each pixel x is regarded as the probability of forgery of the pixel. Therefore, given
the ground truth mask M , we define the weighted true positives, weighted false positives,
weighted true negatives and weighted false negatives as

72

4.4. Experiments

TPw =
∑

x

H(x) ·M(x), (4.15)

FPw =
∑

x

(1−H(x)) ·M(x), (4.16)

TNw =
∑

x

(1−H(x)) · (1−M(x)), (4.17)

FNw =
∑

x

H(x) · (1−M(x)), (4.18)

where · stands for the Hadamard product.

4.4.1 Impact of the parameters in the detection performance

The method has the following parameters:

w: the side length of the blocks used for noise analysis,

B: the number of samples per bin,

n: the percentile of blocks having the lowest variance in low-medium frequencies, stored in
L,

m: the percentile of blocks with the lowest standard deviation amongst those having the
lowest variance in low-medium frequencies, stored in V ,

lβ: the side of the cells used in the NFA computation.

We tested several values for each parameter. For w we tested the values 3, 5 and 8, for
B, 20000 and 40000, for n, 0.1, 0.05 and 0.01, for m, 0.5, 0.4, 0.3, 0.2 and 0.1, and for lβ,
60, 80 and 100. The best parameter configurations are given in Table 4.1.

Parameters MCC F1 IoU
w = 3, B = 20000, n = 0.1, m = 0.5, lβ = 100 0.3572 (2) 0.3716 (2) 0.2723 (1)

w = 3, B = 40000, n = 0.1, m = 0.5, lβ = 100 0.3570 (3) 0.3717 (1) 0.2719 (2)

w = 3, B = 40000, n = 0.1, m = 0.5, lβ = 60 0.3640 (1) 0.3618 (3) 0.2647 (3)

Table 4.1: Best parameter configurations obtained for the tested values.

We set the optimal parameter configuration to w = 3, b = 20000, n = 0.1, m = 0.5 and
lβ = 100, as it delivers the best results when giving the same weight to each of the three
metrics. To analyze the individual performance of each parameter, we set the rest of them to
the optimal value and only vary the parameter under investigation.

Impact of the block size of the blocks used for noise analysis w

While keeping the rest of the parameters to their optimal value, we tested three possible values
for w: 3, 5, and 8. Setting w smaller than 3 would imply too few samples are available to
estimate the variance in low and medium frequencies. The results in terms of performance
metrics are shown in Table 4.2. We observe that the size of the blocks w highly impacts the
performance of the method, being 3 the optimal value among the tested ones.

73

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

w MCC F1 IoU
3 0.3572 0.3716 0.2723
5 0.2837 0.2879 0.2013
8 0.2039 0.2004 0.1356

Table 4.2: Scores obtained on the endomasks noise level dataset from the Trace database [13] when
setting w to 3, 5 and 8, while keeping the rest of the parameters to their optimal value.

Figure 4.1 shows an example of the results obtained when setting w to 3, 5 and 8. Since
the forgery is a textured zone, finding homogeneous blocks inside the forgery is more difficult
when using bigger blocks, as the distributions show. Therefore, the detection featured when
setting w to 3 achieves better results. Indeed, when setting w to 3 the MCC score is 0.9322,
the F1 score 0.9444, and the IoU score 0.8947 while the corresponding scores when setting
w to 5 and 8 are 0.9275, 0.9404, 0.8875 and 0.8730, 0.8965, 0.81239, respectively.

w = 3 w = 5 w = 8

r
0
f
2
2
c
4
3
c
t

Forged image Distributions Distributions Distributions

Ground truth mask Estimated mask Estimated mask Estimated mask

Figure 4.1: Results obtained on image r0f22c43ct from the Trace dataset [13] when setting w to 3,
5, and 8, while keeping the rest of the parameters to their optimal value. The distribution images show
the blocks in L painted in white and, on top, those in V painted in red.

Impact of the number of blocks per bin B

While keeping the rest of the parameters to their optimal value, we tested two possible values
for B: 20000 and 40000. The results in terms of performance metrics are shown in Table 4.3.
We observe that the size of the blocks B has very little influence on the performance.

Indeed, as Figure 4.2 shows, the difference between the results obtained when using bins
having 40000 or 20000 samples is very subtle, if any. In this example case, when setting
B = 20000 the method achieves the scores MCC = 0.8546, F1 = 0.8577, and IoU = 0.7509,
while when setting B = 40000 the method presents the following scores MCC = 0.8440,
F1 = 0.8493, and IoU = 0.7381.

B MCC F1 IoU
20000 0.3572 0.3716 0.2723
40000 0.350 0.3717 0.2719

Table 4.3: Scores obtained on endomasks noise level dataset from the Trace database [13] when setting
B to 40000 and 20000, while keeping the rest of the parameters to their optimal value.

74

4.4. Experiments

B = 20000 B = 40000
r
0
4
9
8
9
a
7
0
t

Forged image Distributions Distributions

Ground truth mask Estimated mask Estimated mask

Figure 4.2: Results obtained on image r04989a70t from the Trace dataset [13] when setting B to 40000
and 20000, while keeping the rest of the parameters to their optimal value. The distribution images
show the blocks in L painted in white and, on top, those in V painted in red. The detection featured
when setting B = 20000 achieves the scores MCC = 0.8546, F1 = 0.8577, and IoU = 0.7509, while
the one featured when setting B = 40000 presents the following scores MCC = 0.8440, F1 = 0.8493,
and IoU = 0.7381.

Impact of the percentile n

While keeping the rest of the parameters to their optimal value, we tested three possible values
for n: 0.1, 0.05, and 0.01. The results in terms of performance metrics are shown in Table 4.4.
We observe that the value of the parameter n has a strong influence on the performance of the
method. We set 0.1 as an upper bound for n since bigger values could lead to false positives
in textured images. Indeed, our method assumes that the n percentile of the total number of
w × w blocks extracted from the image are homogeneous.

Figure 4.3 depicts an example of the different outputs that can be obtained with the
method when varying n. When setting n = 0.1 the achieved scores are MCC = 0.7064,
F1 = 0.7154 and IoU = 0.5569, when setting n = 0.05, the scores are MCC = 0.6564,
F1 = 0.6675, IoU = 0.5009, finally, when setting n = 0.01, the scores are MCC = 0.5070,
F1 = 0.5240, IoU = 0.3550.

Regarding the distributions in Figure 4.3, we observe that when setting n to 0.1, the
concentration of the blocks in V (painted in red) in the forged zone becomes more evident
than in the rest of the cases. As a consequence, the statistical validation step detects more
accurately the deviant statistics of the region.

n MCC F1 IoU
0.1 0.3572 0.3716 0.2723
0.05 0.3372 0.3382 0.2437
0.01 0.2020 0.1864 0.1295

Table 4.4: Scores obtained on endomasks noise level dataset from the Trace database [13] when setting
n to 0.1, 0.05, and 0.01, while keeping the rest of the parameters to their optimal value.

75

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

n = 0.1 n = 0.05 n = 0.01

r
1
b
e
2
a
3
d
5
t

Forged image Distributions Distributions Distributions

Ground truth mask Estimated mask Estimated mask Estimated mask

Figure 4.3: Results obtained on image r1be2a3d5t from the Trace dataset [13] when setting n to 0.1,
0.05 and 0.01, while keeping the rest of the parameters to their optimal value. The distribution images
show the blocks in L painted in white and, on top, those in V painted in red. When setting n = 0.1
the achieved scores are MCC = 0.7064, F1 = 0.7154 and IoU = 0.5569, when setting n = 0.05, the
scores are MCC = 0.6564, F1 = 0.6675, IoU = 0.5009, finally, when setting n = 0.01, the scores are
MCC = 0.5070, F1 = 0.5240, IoU = 0.3550.

Impact of the percentile m

While keeping the rest of the parameters to their optimal value, we tested five possible values
for m: 0.1, 0.2, 0.3, 0.4, and 0.5. The results in terms of performance metrics are shown in
Table 4.5. The percentile m has a mild but non-negligible influence on the performance of the
method.

Figure 4.4 shows an example of the different outputs that can be obtained with the method
when varying m. For simplicity, we only display the results for m equal to 0.5, 0.3 and
0.1. When setting m = 0.5 the achieved scores are MCC = 0.7791, F1 = 0.8040 and
IoU = 0.6722, when setting m = 0.3, the scores are MCC = 0.7344, F1 = 0.7643 and
IoU = 0.6185, finally, when setting m = 0.1, the scores are MCC = 0.7732, F1 = 0.7987
and IoU = 0.6648.

Regarding the distributions depicted in Figure 4.4, we observe that the concentration of
blocks in V (painted in red) becomes more evident when setting m = 0.5. This makes
the detection of the deviant statistics of the region more accurate, as can be seen from the
estimated masks. Still, the optimal value of m depends on the size of the forgery: small
forgeries are more easily spotted with small m values while large forgeries, such as the one in
the example, are better spotted with big values of m.

m MCC F1 IoU
0.5 0.3572 0.3716 0.2723
0.4 0.3540 0.3716 0.2723
0.3 0.3498 0.3600 0.2607
0.2 0.3388 0.3437 0.2466
0.1 0.3166 0.3155 0.2234

Table 4.5: Scores obtained on the endomasks noise level dataset from the Trace database [13] when
setting m to 0.5, 0.4, 0.3, 0.2 and 0.1, while keeping the rest of the parameters to their optimal value.

76

4.4. Experiments

m = 0.5 m = 0.3 m = 0.1

r
1
b
5
4
7
5
4
7
t

Forged image Distributions Distributions Distributions

Ground truth mask Estimated mask Estimated mask Estimated mask



β

β

β β β

β

β

 β

β β

M

Figure 4.4: Results obtained on image r1b547547t from the Trace dataset [13] when setting m to 0.3,
0.2, and 0.1, while keeping the rest of the parameters to their optimal value. The distribution images
show the blocks in L painted in white and, on top, those in V painted in red. When setting m = 0.5
the achieved scores are MCC = 0.7791, F1 = 0.8040 and IoU = 0.6722, when setting m = 0.3, the
scores are MCC = 0.7344, F1 = 0.7643 and IoU = 0.6185, finally, when setting m = 0.1, the scores
are MCC = 0.7732, F1 = 0.7987 and IoU = 0.6648.

Impact of the size of the cells lβ

While keeping the rest of the parameters to their optimal value, we tested three possible values
for lβ: 60, 80, 100. The results in terms of performance metrics are shown in Table 4.6.

The parameter lβ has no influence in the distributions computation but it influences the
statistical validation step. As can be seen in Table 4.6, the influence of this parameter on the
overall performance is not critical. Furthermore, the evidence is not conclusive regarding the
optimal value for lβ. Indeed, bigger values deliver higher F1 and IoU scores while smaller
values deliver better MCC scores.

Figure 4.5 shows an example of the different estimated masks that can be obtained when
varying the parameter lβ. Larger zones are detected when setting larger values for lβ. On the
other hand, smaller values for lβ seem to capture more accurately the shapes. In terms of
scores, the detection featured when setting lβ = 100 are MCC = 0.6460, F1 = 0.7116 and
IoU = 0.5523, when setting lβ = 80, MCC = 0.6553, F1 = 0.7107 and IoU = 0.5512 and
when setting lβ = 60, MCC = 0.6473, F1 = 0.6945, IoU = 0.5320.

lβ MCC F1 IoU
100 0.3572 0.3716 0.2723
80 0.3596 0.3679 0.2705
60 0.3623 0.3604 0.2635

Table 4.6: Scores obtained on the endomasks noise level dataset from the Trace database [13] when
setting lβ to 100, 80, and 60, while keeping the rest of the parameters to their optimal value.

4.4.2 Comparison with the state of the art

We used the endomasks dataset to conduct an evaluation comparing the performance of the
proposed method (which we shall refer to as Noisesniffer+) to other relevant ones. Among
them we compared to classic methods detecting noise traces: the previous formulation of
Noisesniffer [72], Lyu [154, 230] and Mahdian [155, 230]; as well as to generic methods

77

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

lβ = 100 lβ = 80 lβ = 60

r
0
9
b
8
6
1
8
5
t

Forged image Distributions Distributions Distributions

Ground truth mask Estimated mask Estimated mask Estimated mask

Figure 4.5: Results obtained on image r09b86185t from the Trace dataset [13] when setting lβ to 100,
80, and 60, while keeping the rest of the parameters to their optimal value. The distribution images
show the blocks in L painted in white and, on top, those in V painted in red. In the three cases,
the distributions are the same since the parameter lβ does not affect this step. In terms of scores,
the detection featured when setting lβ = 100 are MCC = 0.6460, F1 = 0.7116 and IoU = 0.5523,
when setting lβ = 80, MCC = 0.6553, F1 = 0.7107 and IoU = 0.5512 and when setting lβ = 60,
MCC = 0.6473, F1 = 0.6945, IoU = 0.5320.

Splicebuster [49], Noiseprint [48], ManTraNet [9, 221]. For each of these methods, we list the
source code used for evaluation in Table 4.7.

Method Ref. Source Code
Noisesniffer [72] https://github.com/marinagardella/Noisesniffer

Mahdian [155, 230] https://github.com/MKLab-ITI/image-forensics

Pan [177, 230] https://github.com/MKLab-ITI/image-forensics

Splicebuster [49] http://www.grip.unina.it/research/83-multimedia_forensics

Noiseprint [48] http://www.grip.unina.it/research/83-multimedia_forensics

ManTraNet [9, 221] https://www.ipol.im/pub/art/2022/431/

Table 4.7: State-of-the-art methods used for the comparison as well as their reference and link to
source code.

In the case of the Lyu and Mahdian algorithms, a specific transformation is needed to score
their results. These methods do not act directly as detectors, but rather locally estimate and
output the noise level. To turn their outputs into a heat map detection, we computed and
normalized the distance of the output to its median. By doing so, we allow these methods to
detect regions having noise levels that are far from the median noise level of the image. These
regions can have noise deficit or noise excess. The MCC, F1 and IoU scores obtained by
each of the analyzed methods are presented in Table 4.8.

Firstly, when comparing the performance of Noisesniffer+ in the exomasks dataset (Ta-
ble 4.8) to the one in the endomasks dataset (Section 4.4.1), we observe that the performance
is better when using exomasks. This can be explained by considering that, when using seman-
tically generated masks, the forged zone usually has a homogeneous intensity while when using
exogeneous masks, forgeries have more heterogeneous intensities. Since the method performs
intra-bin comparisons, the wider range of intensities benefits the detection of the manipulated
zone since more bins are involved. This phenomenon has been already reported by Q. Bammey
et al. [13] for Noisesniffer.

78

https://github.com/marinagardella/Noisesniffer
https://github.com/MKLab-ITI/image-forensics
https://github.com/MKLab-ITI/image-forensics
http://www.grip.unina.it/research/83-multimedia_forensics
http://www.grip.unina.it/research/83-multimedia_forensics
https://www.ipol.im/pub/art/2022/431/

4.4. Experiments

Method MCC F1 IoU
Noisesniffer+ 0.502 0.512 0.395

Noisesniffer [72] 0.285 0.274 0.181
Lyu [154, 230] 0.011 0.114 0.066

Mahdian [155, 230] 0.0331 0.114 0.067
Splicebuster [49] 0.178 0.188 0.116
Noiseprint [48] 0.133 0.174 0.106

ManTraNet [9, 221] 0.062 0.110 0.063

Table 4.8: Results of different state-of-the-art forensics tools on the exomasks noise level dataset from
the Trace database [13].

Noisesniffer+ outperforms all the evaluated methods. The region growing algorithm pre-
sented here, as well as the parameter optimization, doubles the scores obtained by the previous
Noisesniffer method [72]. After Noisesniffer, the best-performing methods are Splicebuster and
Noiseprint. Splicebuster presents better scores than Noiseprint when using the three proposed
metrics. However, the difference is minor for the F1 and IoU scores. ManTraNet presents a
higher MCC score than the Mahdian and Lyu algorithms. However, their order is inverted
for the F1 or IoU scores, where the Mahdian and Lyu methods perform equivalently and
outperform ManTraNet.

The observed difference in the ranking when considering the MCC score or the F1 or IoU
scores can be explained by the definition of the scores. The F1 and IoU scores neglect the
effectiveness of the methods in classifying negative samples. Indeed, their definition excludes
the true negatives. On the other hand, the MCC score treats the positive and the negative
classes equivalently. Hence, true negatives are as important as true positives. From this
analysis, we should expect Splicebuster to have similar detections as Noiseprint but more true
negatives. The same applies to ManTraNet, Lyu and Mahdian.

Figure 4.6 shows examples of images where Noisesniffer+ outperforms the other methods.
Firstly, we observe that Noisesniffer+ provides more accurate masks than its previous version.
For image r17ad56act we observe that only a few of the methods timidly highlight the true
forgery, except for Noisesniffer+. In most cases, methods highlight the near-saturated regions
of the image. On image r1c5ec853t, Lyu and Mantranet output very noisy heatmaps, due to
the textures of the image. Mahdian, Noiseprint and Splicebuster provide very partial detections
of the forgery. As for image r1bf00696t, besides Noisesniffer+, only Lyu seems to spot a
different behavior on the forged region. Still, their output is tainted with the textures of the
image. A similar phenomenon happens for image r1ea8ccbbt.

Figure 4.7 shows examples of images where Noisesniffer+ is outperformed by the other
methods. For these images, we observe that Noisesniffer+ outputs partial detections (r10cf67d1t,
r0fd69c12t and r141665bdt) or less accurate detections (r059cae86t). For a detailed anal-
ysis of the causes of such limitations, see Section 4.4.3.

For image r10cf67d1t, Noisesniffer+ and Noisesniffer are able to detect just a portion of
the forgery while Splicebuster, Noiseprint and ManTraNet correctly identify the forged region.
Similarly, on image r0fd69c12t, our method is outperformed by Mahdian, Splicebuster and
Noiseprint. Image r059cae86t is correctly detected by Noisesniffer+. However, the provided
mask is not as accurate as the ones provided by Noiseprint and Splicebuster. Finally, the
partial detection of our method in image r141665bdt is outperformed by the detections made
by Splicebuster. Other methods such as ManTraNet, Noiseprint and Lyu also spot the forgery.
However, they provide noisy heatmaps.

79

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

r17ad56act r1c5ec853t r1bf00696t r1ea8ccbbt
F
o
rg
ed

im
a
g
e

G
T

m
a
sk

N
o
is
es
n
iff
er
+

N
o
is
es
n
iff
er

L
y
u

M
a
h
d
ia
n

S
p
li
ce
b
u
st
er

N
o
is
ep
ri
n
t

M
a
n
T
ra
N
et

Figure 4.6: Examples from the Trace dataset [13] were the proposed method outperforms the state of
the art. For visualization purposes, Splicebuster’s and Mahdian’s outputs were inverted.

80

4.4. Experiments

r10cf67d1t r059cae86t r0fd69c12t r141665bdt
F
o
rg
ed

im
a
g
e

G
T

m
a
sk

N
o
is
es
n
iff
er
+

N
o
is
es
n
iff
er

L
y
u

M
a
h
d
ia
n

S
p
li
ce
b
u
st
er

N
o
is
ep
ri
n
t

M
a
n
T
ra
N
et

Figure 4.7: Examples from the Trace dataset [13] where the proposed method is outperformed by other
the state-of-the-art methods. For visualization purposes, Splicebuster’s and Mahdian’s outputs were
inverted.

81

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

4.4.3 Limitations

Besides the cases that are out of the scope of the method, namely when the forgery does
not modify the background noise model or has higher noise levels, there are several scenarios
under which the method may fail to detect the manipulation. Here, we analyze such cases: in
Section 4.4.3 we inspect the missed detections, in Section 4.4.3 we examine the false detections
and finally, in Section 4.4.3 we study wrong attributions.

Missed detections

The method may fail to detect forgeries even when the forged area has lower noise levels than
the image. The main reasons for this are related to the size of the forgery, the texture of the
manipulated area, or even the saturation of the region.

Figure 4.8 shows examples of such cases. Indeed, image r1b1c1019t has a very small
forgery. Therefore, even if blocks in V concentrate in this region, in the overall spatial distri-
bution this deviation will not be significant. In image r05db7e7ft, the forgery is on a textured
zone. Since blocks in L -and therefore in V - are chosen from homogeneous areas, only a few
blocks are picked in the forged area. Consequently, the method fails to detect it. Finally, in
image r0667a51ft the forgery is in a saturated zone. Since the method discards blocks having
at least one saturated pixel, the method excludes saturated regions from the analysis. Thus,
the forgery is undetectable to the method.

Forged image Ground truth mask Distributions Estimated mask

r
1
b
1
c
1
0
1
9
t

r
0
5
d
b
7
e
7
f
t

r
0
6
6
7
a
5
1
f
t

Figure 4.8: Examples of missed detections from the Trace dataset [13]. Even if the forged area has
lower noise levels than the background, the method fails to detect them. The main reasons for this
to happen are related to the size of the forgery (r1b1c1019t), the texture of the manipulated area
(r05db7e7ft), or even the saturation of the forged region (r0667a51ft).

False detections

The main cause of false detections is the presence of flat regions in highly textured images.
Since the method assumes that there is a fixed proportion of the image blocks that are homoge-
neous, if the image is highly textured, some blocks in L will contain texture. Therefore, in the
next step, when selecting those blocks having the lowest standard deviation, the method will

82

4.4. Experiments

select the homogeneous ones, since when compared to textured blocks, these blocks present a
lower variance.

Figure 4.9 shows an example of false detections in highly textured images. In this case,
the method detects the flat zones in the image as forgeries.

Forged image Ground truth mask Distributions Estimated mask

r
1
3
c
8
5
6
3
4
t

Figure 4.9: Example of false detection from the Trace dataset [13]. The image is highly textured. The
method detects the flat zones in the image as forgeries.

Wrong attribution

Although forgeries having higher noise levels than the background are not supposed to be
detected by the method nor generate false detections, in some few and very specific cases, this
can happen. When the forgery is big enough and increases the noise in most of the blocks
having similar intensities, the method identifies as forged the non-forged regions. The wrong
attribution phenomenon happens when the method confuses the background model with the
one resulting from tampering.

Figure 4.10 shows an example of wrong attribution. In this case, the parameters used are
w = 5, B = 40000, n = 0.05, m = 0.3 and lβ = 100. The method detects several forgeries.
The one in the rocks is due to the textures in the image, as already explained in Subsec-
tion 4.4.3. However, the ones in the sky correspond to the wrong attribution phenomenon
described above. Indeed, the forgery covers most of the sky. Therefore, the small pristine
zones -that have lower noise levels than the forgery- are regarded as local anomalies and thus
detected by the method.

Forged image Ground truth mask Distributions Estimated mask

r
0
9
6
9
6
b
a
3
t

Figure 4.10: Example of wrong attribution from the Trace dataset [13]. The false detection in the
rocks is due to the textures in the image, as already explained in Subsection 4.4.3. However, the ones
in the sky correspond to the wrong attribution phenomenon. Since the forgery covers most of the sky,
the small pristine zones -that have lower noise levels than the forgery- are regarded as local anomalies
and thus detected by the method.

4.4.4 Robustness

We focus on two common operations performed on social networks that limit the performance
of the method: JPEG compression and downsampling. Since most fake images are shared
through these networks, assessing the performance of the method under these manipulations
is relevant for real-world usage.

83

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

JPEG compression

JPEG compression is the most popular method for lossy compression of digital images [211].
The first step consists in a color space transformation after which the image is tessellated in
8 × 8 blocks. Each block is then processed by first applying the DCT II and then quantizing
the resulting coefficients. The quantization factors depend on the desired final quality, being
bigger for lower-quality factors and smaller for higher ones. Finally, the coefficients are lossless
compressed.

Since the quantization step mainly acts on the high-frequency coefficients, the distribution
computations, in particular the construction of the set L, become strongly affected by this com-
pression scheme. This effect depends, of course, on the quantization factors used. Table 4.9
presents the scores obtained by the method at different compression qualities3: QF = 90,
QF = 70 and QF = 50. The scores degrade as the compression factor decreases. Even
for a quality factor of 90, the method already shows degraded results. Figure 4.11 depicts
the effects of JPEG compression at different quality factors (QF) on the performance of the
method. The results degrade as the quality factor decreases, and the detected zone is reduced
as the compression becomes more aggressive. Besides, strong JPEG compression causes arti-
ficial flat zones in the image due to which the method delivers false detections for QF = 70
and QF = 50.

MCC F1 IoU
Uncompressed 0.502 0.512 0.395
QF = 90 0.432 0.452 0.337
QF = 70 0.318 0.353 0.248
QF = 50 0.199 0.249 0.166

Table 4.9: Scores obtained by the proposed method at different JPEG compression levels of the exomasks
noise level dataset from the Trace database [13]. The scores degrade as the quality factor decreases.

Image downsampling

According to the Nyquist sampling theorem, resampling an image with a lower than twice the
maximum frequency produces aliasing artifacts. These artifacts can be avoided by applying a
low-pass filter to the image before resampling. Although there is no standard way of down-
scaling an image, here we cover two possible approaches: first, a naive resampling where no
pre-filtering is applied, and a more sophisticated case where a Gaussian blur is applied before
resampling.

Table 4.10 presents the scores obtained by the method when scaling the image to half
its original resolution with and without pre-filtering the image before downsampling. The
downsampling applied consists simply at keeping one pixel out of two in each direction. The
Gaussian pre-filtering consists in convolving the image with a Gaussian kernel of size 5×5 and
standard deviation (1.2, 1.2).

Firstly, we observe that the scores degrade when the image is downsampled. Downsampling
an image with or without pre-filtering reduces the power of the method since fewer samples are
available to estimate the distributions. Therefore, detecting statistically significant deviations
becomes more difficult. Furthermore, since the size of the cells used for the region-growing

3Images where compressed using the ‘ImageMagick’ (https://imagemagick.org) convert com-
mand line and specifying the corresponding quality factor with the flag - quality.

84

https://imagemagick.org

4.4. Experiments

Uncompressed QF = 90 QF = 70 QF = 50
r
0
a
c
7
0
2
4
3
t

Forged image Distributions Distributions Distributions Distributions

Ground truth mask Estimated mask Estimated mask Estimated mask Estimated mask

Figure 4.11: Results obtained on image r0ac70243t from the Trace dataset [13] when compressed at
different quality factors. The results degrade as the quality factor decreases.

algorithm is fixed, this entails a mask accuracy loss; the masks do not adapt correctly to
irregular borders.

Gaussian pre-filtering is equivalent to applying a low-pass filter to the image in the frequency
domain. Similarly to JPEG compression, the cancellation of high-frequency coefficients strongly
affects the construction of the sets L and V . Therefore, when Gaussian pre-filtering is applied
before downscaling, the results are worse than when downscaling the image itself.

Figure 4.12 presents an example of the effects of downscaling with and without pre-filtering
for a scaling factor s = 0.5. We can observe the reduction in the number of samples in the
sets L and V for both downsampling scenarios. When downscaling is applied without any
prefiltering, the method is able to detect most of the forgery. However, the mask accuracy
is affected by the smaller image resolution. When pre-filtering the image before downscaling,
the method is also able to detect most of the forgery but looses some small regions due to the
influence of the Gaussian blur in the high frequencies.

MCC F1 IoU
Original resolution 0.502 0.512 0.395

Downsampling (s = 0.5) without prefiltering 0.423 0.450 0.340
Downsampling (s = 0.5) with Gaussian blur prefiltering 0.399 0.430 0.3238

Table 4.10: Scores obtained by the proposed method at a scaling factor s = 0.5 with and without
pre-filtering on the exomasks noise level dataset from the Trace database [13]. The performance of the
method degrades when the image is downscaled. This degradation is worsen when Gaussian pre-filtering
is applied.

85

Chapter 4. Noisesniffer: Forgery Detection by Noise Spatial Statistics

Original Downsampling Downsampling

without prefiltering with prefiltering

Resolution 1640× 2474 820× 1237 820× 1237
r
0
a
c
7
0
2
4
3
t

Forged image Distributions Distributions Distributions

Ground truth mask Estimated mask Estimated mask Estimated mask

Figure 4.12: Results obtained on image r0ac70243t from the Trace dataset [13] when downscaled
at a scaling factor s = 0.5 with and without pre-filtering. The forgery is detected when downscaling
is applied without any pre-filtering. However, when Gaussian blur is applied prior to downscaling, the
method is unable to perform any detection.

4.5 Conclusion

This chapter describes and improves Noisesniffer, a forgery detection method based on noise
analysis. As a relevant addition to other existing noise-based methods, Noisesniffer incorporates
a statistical validation step detecting only the inconsistencies that could not happen by chance.
Each detection is associated with a number of false alarms (NFA). In this chapter, we build on
the previous statistical detection step to provide refined detections. The method also provides,
together with the statistically validated detection mask, a visual exploration of the relative
flat patch distributions which can also aid the interpretation of the results. Results show
that the proposed modifications to the original Noisesniffer method improve its performance.
Additionally, the method outperforms the state of the art on forgeries having noise deficit.

86

Chapter 5

Exploring Image Forgery Detection via
Forensic Similarity Graphs

As mentioned in Chapter 2, sniffing the traces left by the camera processing chain
can be exploited for forgery detection. Most classic methods are constructed
over hand-crafted features. However, learning camera related features has also
been attempted in literature. In the article “Exposing Fake Images with Forensic
Similarity Graphs”, O. Mayer and M. C. Stamm introduce a novel image forgery
detection method. The proposed method is built on a graph-based representation
of images, where image patches are represented as the vertices of the graph, and
the edge weights are assigned in order to reflect the forensic similarity between the
connected patches. In this representation, forged regions form highly connected
subgraphs. Therefore, forgery detection and localization can be cast as a cluster
analysis problem on the similarity graph. In this chapter, we present briefly the
method and offer an online executable version allowing everyone to test it on their
own suspicious images. The work presented here is published as Image Forgery
Detection via Forensic Similarity Graphs in IPOL [70] and the online demo is
available at: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432.

5.1 Introduction

The forgery detection methods introduced in the two previous chapters (Chapter 3 and Chap-
ter 4) tackle imperceptible specific traces that are left in the image at each step of the camera
processing pipeline [180]. Namely, they search for inconsistencies in the noise model. In-
deed, several methods share this approach and are designed to analyse specific cues such as
demosaicing inconsistencies [10, 35], JPEG artifacts [176, 225] and more [97].

However, this is not the only approach that has been introduced in literature. As mentioned
in the previous chapters, deep learning methods for forgery detection have also been developed.
Some of these methods are directly trained on forged images and aim at identifying specific
manipulations [160, 190, 221]. However, training a network to learn all possible manipulations
is not feasible.

Following this observation, other deep learning approaches have been proposed [23, 48,
90, 99, 158, 163]. These methods mimic the hand crafted methodology adopted by classical
methods. Namely, they aim at extracting features related to the camera processing chain, and
to detect local inconsistencies in these features. The main difference is that, in this case, these
features are learnt.

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432

Chapter 5. Exploring Image Forgery Detection via Forensic Similarity Graphs

In particular, Mayer and Stamm [162] show the forensic potential of features learnt for
source camera classification. Indeed, the authors develop the “forensic similarity score" that
aims at distinguishing if two image patches share the same forensic traces or not. In this
chapter, we explore the approach in [163] which exploits this forensic similarity measure for
forgery detection.

5.2 Forensic similarity score

5.2.1 Problem formulation

The problem can be stated as follows: Given two image patches, we want to assign a score of
0 to the pair of patches if they have different forensic traces, and a score of 1 if they share the
same forensic traces. That is, we search for a map C : X ×X → {0, 1}, where X is the space
of all image patches, such that

C(X1, X2) =

{

0 if X1, X2 have different forensic traces,
1 if X1, X2 have the same forensic traces.

This problem can be tackled in three steps. First, a suitable set of N features capturing
the forensic information is extracted from each patch, by means of a feature extractor f :
X → R

N . The resulting feature vectors are then compared based on a similarity function
S : RN × R

N → [0, 1]. Finally, the similarity measure is compared to a threshold τ so as to
obtain a binary output. The map C can be then written as

C(X1, X2) =

{

0 if S(f(X1), f(X2)) ≤ τ,
1 if S(f(X1), f(X2)) ≥ τ.

This way, the problem of finding C amounts to find two functions f : X → R
N and S :

R
N ×R

N → [0, 1] such that S(f(X1), f(X2)) is as close to 0 as possible whenever X1 and X2

have different forensic traces, and as close as possible to 1 whenever the two image patches
share the same traces. Figure 5.2 shows the system overview.

5.2.2 Method

In [162], Mayer and Stamm propose to design both the feature extractor function f and the
similarity function S based on a learning strategy. In this section we specify the architecture
as well as the training strategies developed in their work.

Architecture

The feature extractor is based on the MISLnet architecture [17] and is depicted in Figure 5.1.
Namely, it consists of 5 convolutional blocks and 2 fully connected layers. Each of the con-
volutional layers, except for the first one, is followed by batch normalization, hyperbolic tan-
gent activation and max-pooling. The size of the convolutional filters used at each layer are
5 × 5 × 3 × 6, 7 × 7 × 6 × 96, 5 × 5 × 96 × 64, 5 × 5 × 64 × 64 and 1 × 1 × 64 × 128
respectively. A stride equal to 1 is used in all the layers except for the second one, where the
stride is set to 2. The last convolutional layer, which uses 1× 1 kernels, can be regarded as a
learned cross-feature maps associations. The max-pooling operation is performed using 3× 3
kernels. The two fully connected layers that follow the convolutional blocks consist both of
200 neurons with hyperbolic tangent activation.

88

5.2. Forensic similarity score

RGB im
ag

e

1-stride

1-stride
1-stride 1-stride

2-stride
BN +

TanH +
MaxPool

BN +
TanH +

MaxPool
BN +

TanH +
MaxPool

5
5

5

5

5

5

1
1

7

7

BN +
TanH +

MaxPool
TanH

Conv
5x5x3x6

Conv
7x7x6x96 Conv

5x5x96x64
Conv

5x5x64x64

Conv
5x5x64x128

200 neurons 200 neurons
TanH

Figure 5.1: Feature extractor architecture.

Two such feature extractor networks, in siamese configuration with weight-sharing, are
used to process in parallel the two patches, producing a feature vector for each patch. Then,
a similarity network takes both feature vectors as input and computes their similarity score.
Figure 5.2 shows the complete system overview. The first layer of the similarity network
consists of 2048 neurons with ReLu activation, that maps each feature vector into a new
feature space. The authors use a hard-sharing siamese configuration for this first layer. Then,
a new feature vector is constructed by concatenating both feature vectors and their element-
wise multiplication. This vector feeds another fully-connected layer with 64 neurons. Finally,
a single-neuron layer with sigmoid activation takes the resulting 64-dimensional vector and
produces the similarity score associated to the pair of input patches.1

X1

f(X)1

Convolution

C
o
n
c
a
te

n
a
tio

n

Batch Norm

Element-wise
S(f(X), f(X))1 2multiplication

TanH activation

Similarity
Max Poolingscore

f(X)2
NeuronX2

(with activation)

Feature extractors in siamese configuration Similarity network

Hard sharing

H
a

rd
 s

h
a

rin
g

Figure 5.2: System overview. The first module consists of a pair of feature extractor networks in siamese
configuration with weight-sharing. It takes two image patches and computes its corresponding feature
vectors. These vectors are then compared by means of the second module (the similarity network),
which computes a similarity score associated to the pair of image patches.

Dataset

Mayer and Stamm collected a dataset of 47,785 images from 95 different camera models.
Among them, 26 camera models come from the Dresden dataset [81] while the rest are from
the authors’ database. This dataset is divided into three disjoint subsets. Subset 1 consists
of 50 camera models selected randomly from those having at least 40,000 non overlapping
256× 256 patches. Subset 2 comprises 30 camera models from the remaining ones having at
least 25,000 non-overlapping patches. Subset 3 comprises the remaining 15 camera models.

1In practice, the authors use two output units with softmax activation, one indicating “similar"
traces and the other one indicating “different" traces. The observed output for evaluation is the one
corresponding to “similar".

89

Chapter 5. Exploring Image Forgery Detection via Forensic Similarity Graphs

The complete list of camera models is given in Table 5.1. The camera models in blue were
collected from the Dresden dataset [81].

Subsets 1 and 2 are used for training (see Section 5.2.2) while Subset 3 is used for evalua-
tion, which we will not cover here. The interested reader is referred to the original paper [162].

Subset 1
Apple iPhone 4 Agfa Sensor530s Apple iPhone 4s Canon EOS SL1
Apple iPhone 5 Canon PC1730 Apple iPhone 5s Canon A580
Apple iPhone 6 Canon ELPH 160 Apple iPhone 6+ Canon S100
Apple iPhone 6s Canon SX530 HS Canon SX420 IS Canon SX610 HS
Casio EX-Z150 Fujifilm S8600 Huawei Honor 5x LG G2
LG G3 LG Nexus 5x Motorola Maxx Motorola Turbo
Motorola X Motorola XT1060 Nikon S33 Nikon S7000
Nikon S710 Nikon D200 Nikon D3200 Nikon D7100
Panasonic DMC-FZ50 Panasonic FZ200 Pentax K-7 Pentax OptioA40
Praktica DCZ5.9 Ricoh GX100 Rollei RCP-7325XS Samsung Note4
Samsung S2 Samsung S4 Samsung L74wide Samsung NV15
Sony DSC-H300 Sony DSC-W800 Sony DSC-WX350 Sony DSC-H50
Sony DSC-T77 Sony NEX-5TL

Subset 2
Apple iPad Air 2 Blackberry Leap Apple iPhone 5c Canon Ixus70
Agfa DC-733s Canon PC1234 Agfa DC-830i Canon G10
Canon SX400 IS Canon T4i Fujifilm XP80 Fujifilm J50
HTC One M7 Kodak C813 Kodak M1063 LG Nexus 5
Motorola Nexus 6 Nikon D70 Nikon D7000 Nokia Lumia 920
Olympus TG-860 Panasonic TS30 Pentax OptioW60 Samsung Note3
Samsung Note5 Samsung S3 Samsung S5 Samsung S7
Sony A6000 Sony DSC-W170

Subset 3
Agfa DC-504 Canon Ixus55 Agfa Sensor505x Canon A640
Canon Rebel T3i LG Optimus L90 LG Realm Nikon S3700
Nikon D3000 Olympus 1050SW Samsung Lite Samsung Nexus
Samsung Note2 Samsung S6 EdgeSony DSC-T70

Table 5.1: Camera models used for training and evaluation. Camera models in blue come from the
Dresden dataset [81]. Subset 1 is used during the first training phase. Subset 1 and 2 are used during
the second training phase. Subset 3 is used for evaluation.

Training procedure

The system is trained in two phases. In the first phase, the feature extractor is trained by
adding a fully connected layer with softmax activation. The feature extractor is trained as
a source camera classifier, using image patches with associated labels corresponding to their
source camera model. Research indicates that the deep features associated to camera model
classification provide a good starting point for several forensics tasks [164]. The authors use
a cross-entropy loss, optimized using stochastic gradient descent for 30 epochs, with batches

90

5.3. Forensic similarity graph for forgery detection

of 50 images. Initially the learning rate is set to 0.001, and is halved every three epochs. The
authors train two versions of the feature extractor: one using 128× 128 patches and another
one using 256× 256 patches.

During the second training phase, the similarity network is trained to target a specific task.
Here, the task is to determine if two image patches come from the same camera model, but
it could be to determine a specific editing operation or a specific parameter given an editing
operation. The labels in the training dataset are assigned accordingly: 0 indicates that the
patches come from the same camera model, and a 1 indicates they come from different ones.
During this phase, the weights of the feature extractor are fine-tuned, i.e. they are also updated
to better fit the particular task. The similarity network is trained using stochastic gradient
descent with cross-entropy loss for 30 epochs. The learning rate is initialized to 0.005, and
then is halved every three epochs.

During the first training phase, the feature extractor is trained using 40,000 randomly
sampled image patches from each of the camera models in Subset 1, giving a total of 2,000,000
image patches. During the second training phase, the similarity network is trained and the
feature extractor weights are updated using a training dataset of pairs of image patches. This
dataset is constructed using camera models in Subset 1 and Subset 2.

5.3 Forensic similarity graph for forgery detection

A similarity graph is a graph where the edge weights represent the similarity between the
connected nodes. In [163], Mayer and Stamm propose to construct a similarity graph from the
image using a similarity measure that reflects the similarity of the processing pipeline. To do
so, they represent the image patches as nodes and assign weights to the edges according to
the forensic similarity score between them, described in Section 5.2. The resulting graph is a
fully connected graph, where edges connecting patches having similar forensic traces will have
weights near 1, and edges connecting patches with low forensic similarity will have weights
near 0.

In this representation, patches that have undergone the same processing operations are
expected to form communities. Communities are characterized by strong connections within
the members and weak connections to non-members. This way, forgery detection can be for-
mulated as a community detection problem, and forgery localization as a community partition
problem. Several community detections techniques have been reported in literature [69]. In
their work, Mayer and Stamm focus on two particular techniques: spectral clustering and
modularity optimization. However, it is important to notice that it is straightforward to extend
the proposed approach to other clustering methods.

Spectral Clustering

A weighted graph G = (V,W) is a pair where V = {v1, . . . , vn} is the set of vertices and
W is a symmetric matrix satisfying Wij ≥ 0 for all i, j = 1, . . . , n and Wii = 0 for all
i = 1, . . . , n. The weight matrix W can be considered as an extension of the adjacency matrix
for non-weighted graphs. Indeed, if Wij ∈ {0, 1}, both definitions become equivalent.

Spectral clustering methods aim at partitioning the graph G based on the spectrum of W
itself or any other matrices built on it. In this work, the authors focus on the study of the
spectrum of the graph Laplacian matrix, defined as

L = D −W, (5.1)

91

Chapter 5. Exploring Image Forgery Detection via Forensic Similarity Graphs

where D is the degree matrix defined as Dii =
∑

j Wij and Dij = 0 if i ̸= j. The matrix
D generalizes the degree matrix for non-weighted graphs. Indeed, if Wij ∈ {0, 1}, for all i, j,
both definitions are equivalent.

Since, by construction, all the rows of L sum up to 0, λ1 = 0 is always an eigenvalue
for L, corresponding to the eigenvector (1, 1, . . . , 1). Furthermore, its multiplicity corresponds
to the number of connected components in the graph. Indeed, the membership vectors (i.e.
vectors having ones for the connected nodes and zeros for the other nodes) will be eigenvec-
tors associated to the 0 eigenvalue. This property of the graph Laplacian can be applied to
community structure detection, by observing that if there are weakly linked sub-graphs, the
smallest non-zero eigenvalue will still be close to zero [66].

The authors use the eigengap heuristic [153] to detect if more than one community exists
by computing the second smallest eigenvalue λ2, and comparing it to a pre-defined threshold
τ = 100, derived empirically. If λ2 is smaller than τ , the image is classified as forged and if it
is bigger, as non-forged.

In case the image is considered as tampered, forgery localization can be performed by
finding the community partition. The authors only consider the case when two communities
exist. In this case, graph bipartition can be achieved from the eigenvector of the second
smallest eigenvalue λ2 of the graph Laplacian matrix [66]. To do so, it is enough to compute
an eigenvector u2 associated to λ2 and partition the graph according to the sign of each
component of u2. Indeed, for each vertex vi, labels are assigned according to:

ci =

{

1 if ui2 ≥ 0

0 if ui2 < 0,
(5.2)

where ci denotes the predicted community for the node vi.

Modularity optimization

Modularity was introduced as a measure of the quality of a particular graph partition [171].
It is built on the observation that random graphs are not expected to have communities
structures. Therefore, by comparing the observed edge density within a community to the
expected edge density given by the background model, one can assess the meaningfulness of
the given community structure. Modularity can be expressed as

Q =
1

2m

∑

i,j

(Wij − E(Wij)) δ(ci, cj), (5.3)

where the sum is taken over all the pair of vertices, m is the weighted total number of edges

m =
∑

i,j Wij

2 , W is the weights matrix, E(Wij) is the expected weight for an edge connecting
vertices i and j given by the background model, δ is the Kronecker δ-function and ci is the
community to which vertex i belongs.

The choice of the null model is not entirely unconstrained according to Newman [172].
Firstly, E(Wij) should be equal to E(Wji) since we are considering undirected graphs. Sec-
ondly, Q should be equal to 0 when all the vertices belong to a single community. Setting
ci = cj for all i, j = 1, . . . , n it follows that

∑

i,j

Wij =
∑

i,j

E(Wij) = 2m. (5.4)

Despite these constraints, there are several possible background models satisfying these
conditions. Mayer and Stamm adopt the same null model as Newman [172]. Firstly, this model

92

5.3. Forensic similarity graph for forgery detection

imposes that the expected degree of each vertex is equal to the actual degree in the graph,

∑

i

E(Wij) = Djj . (5.5)

This condition implies automatically the constraint
∑

i,j E(Wij) = 2m. Secondly, the null
model suggested by Newman imposes that the expected weight of an edge connecting vertices
i and j is the product of a function f of their degrees

E(Wij) = f(Dii)f(Djj). (5.6)

Equation 5.5 and Equation 5.6 imply

E(Wij) =
DiiDjj

2m
. (5.7)

Therefore, under this background model, modularity can be written as

Q =
1

2m

∑

i,j

(

Wij −
DiiDjj

2m

)

δ(ci, cj). (5.8)

Modularity optimization aims at finding the community partition for which the modularity is
maximized, i.e.

Qopt = max
c1,...,cn

1

2m

∑

i,j

(

Wij −
DiiDjj

2m

)

δ(ci, cj). (5.9)

Different strategies to optimize the modularity have been addressed in the literature [69].
Mayer and Stamm use the fast greedy technique introduced in [38], where vertices are succes-
sively joined to form larger communities in a way such that modularity increases.

If the optimal value for the modularity is close to 0, there is no evidence of community
structure [171]. Therefore, to detect if an image is tampered the authors compare Qopt to a
pre-defined threshold τ = 0.025. Then, if the observed Qopt is larger than τ , the image is
classified as forged; otherwise, the image is classified as pristine.

In case the image is classified as forged, the same optimization problem can be used
to partition the image into clusters. Indeed, in that case the optimization problem can be
expressed as

copt
1 , . . . , copt

n = argmax
c1,...,cn

1

2m

∑

i,j

(

Wij −
DiiDjj

2m

)

δ(ci, cj).

The authors impose two clusters, and set an edge weighting threshold equal to 0.9, meaning
that all the edges with lower weights are set to 0. Figure 5.3 shows an example of the results
obtained using the modularity optimization algorithm.

Pixel-level masks

Once an image is classified as forged and a community partition has been performed, labels
are assigned to the nodes. In our setting, nodes are patches, which are usually taken with
overlap. Therefore, it is necessary to aggregate this information to produce pixel-wise masks.
To do so, Mayer and Stamm first construct a pixel-map. For the case in which the number of
clusters is equal to 2, as it is in our setting, we can assume that there are only two labels: 0
and 1. The pixel-map can be then expressed as

P (x, y) =
1

{R : (x, y) ∈ R}
∑

R:(x,y)∈R

c(R), (5.10)

93

Chapter 5. Exploring Image Forgery Detection via Forensic Similarity Graphs

Forged image Forgery mask 1 Forgery mask 2

Extracted patches Weights matrix Detected communities

Figure 5.3: Examples of weight matrices and graph partitions on a forged image from the MISD
Dataset [109], having two spliced regions. The community detection algorithm used for these examples
is the modularity optimization, with patches of size 128 × 128 and 50% of overlap. The edge weight
threshold used is equal to 0.9. We observe that the community partition found by the algorithm points
to the forgery masks (in red).

where (x, y) is a pixel, R is a patch and c(R) is the predicted label for the patch. The factor
1

#{R:(x,y)∈R} normalizes the pixel-map to take into account the fact that pixels near the borders
are covered by fewer patches.

This pixel-map is further smoothed using a 32 × 32 Gaussian kernel and compared to a
threshold in order to produce a binary output. The threshold used by the authors is equal to
0.5. Finally, the smallest region is marked as forged and the largest one as pristine.

5.4 Demo

The online demo takes as input a suspicious image. The goal is to firstly classify the image
in forged or pristine and, in the former case, to localize the forgery. The user is required to
select the size of the patches, being 128× 128 and 256× 256 the two available options. The
user can also decide the overlap with which these patches will be taken (50% or 75% of the
patch size). Finally, the user can choose whether to use spectral clustering 5.3 or modularity
optimization 5.3.

The demo prints the classification in tampered or non-tampered, according to the eigengap
if spectral clustering is the chosen clustering algorithm, or according to the optimal modularity
in case modularity optimization is chosen. The thresholds used to decide between tampered
and non-tampered are those used by Mayer and Stamm, as explained in Section 5.3. If the
image is classified as non-forged, a black mask is shown as output. On the other hand, if
the image is classified as tampered, forgery localization is performed according to the chosen
clustering technique, and the output mask shows the obtained results.

94

5.5. Experiments

5.5 Experiments

5.5.1 Forged images

We first test the proposed approach on forged images. In these cases, the method should
manage to identify the image as forged, and then perform forgery localization. Figure 5.4
shows the results obtained on some images from [97], for both clustering techniques and both
patch sizes. In all these experiments, the patch overlap was set to 75%.

We observe that in most cases the method is able to detect the images as forged, except for
one of the examples when using the spectral clustering technique and blocks of size 128×128.
Interestingly, the eigengap seems to be very sensitive to the patch size, with significant lower
values for larger patches. On the other hand, the optimal modularity seems to be more stable.

Regarding forgery localization, both techniques show significant agreement between the
ground truth mask and the estimated mask. However, modularity optimization shows some
falsely detected regions that are not present when using spectral clustering.

5.5.2 Authentic images

In these experiments we assess the performance of the studied approach when the input image
is not tampered. Figure 5.5 shows examples of the obtained results for several authentic images
from [97].

The method is able to correctly identify the images as non-tampered in most cases. How-
ever, spectral clustering, when patches are of size 256 × 256, delivers some false detections,
as well as modularity optimization when used with 128× 128 patches. These false detections
seem to correspond to image regions having a distinctive texture. However, not all textured
zones generate false alarms, as can be seen in the second image were none of the clustering
techniques have false detections, despite the fact that the image has textured and flat zones.

An exhaustive quantitative evaluation of the described method is presented in Chapter 6.

5.6 Conclusions

In this Chapter we introduced and analyzed the method introduced in the article “Exposing
Fake Images with Forensic Similarity Graphs” by O. Mayer and M. C. Stamm. In addition,
we provide an online demo at: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432.
As an alternative to the methods presented in the previous chapter, the one studied here
attempts to learn camera related features. Such an approach seems effective according to the
qualitative experiments shown in Section ??. Still, the method delivers some false detections
and, in addition, the eigengap seems to be very sensitive to the patch size, with significant
lower values for larger patches.

95

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=432

Chapter 5. Exploring Image Forgery Detection via Forensic Similarity Graphs

Spectral Clustering Modularity Optimization

1
2
8
×
1
2
8

p
at

ch
es

Forged image eigengap = 85.945 < 100 Qopt
= 0.0400 > 0.025

2
5
6
×
2
5
6

p
at

ch
es

Ground truth mask eigengap = 36.235 < 100 Qopt
= 0.0453 > 0.025

Spectral Clustering Modularity Optimization

1
2
8
×
1
2
8

p
at

ch
es

Forged image eigengap = 17.458 < 100 Qopt
= 0.1264 > 0.025

2
5
6
×
2
5
6

p
at

ch
es

Ground truth mask eigengap = 7.404 < 100 Qopt
= 0.1223 > 0.025

Spectral Clustering Modularity Optimization

1
2
8
×
1
2
8

p
at

ch
es

Forged image eigengap = 178.579 > 100 Qopt
= 0.0890 > 0.025

2
5
6
×
2
5
6

p
at

ch
es

Ground truth mask eigengap = 38.598 < 100 Qopt
= 0.0677 > 0.025

Figure 5.4: Results obtained using the demo for some spliced images from the Columbia dataset [97].
The overlap is set to 75% of the patch size in all cases.

96

5.6. Conclusions

Spectral Clustering Modularity Optimization

Authentic image

1
2
8
×
1
2
8

p
at

ch
es

eigengap = 458.976 > 100 Qopt
= 0.0022 < 0.025

2
5
6
×
2
5
6

p
at

ch
es

eigengap = 71.269 < 100 Qopt
= 0.0178 < 0.025

Spectral Clustering Modularity Optimization

Authentic image

1
2
8
×
1
2
8

p
at

ch
es

eigengap = 678.299 > 100 Qopt
= 0.0014 < 0.025

2
5
6
×
2
5
6

p
at

ch
es

eigengap = 134.239 > 100 Qopt
= 0.0073 < 0.025

Spectral Clustering Modularity Optimization

Authentic image

1
2
8
×
1
2
8

p
at

ch
es

eigengap = 104.728 > 100 Qopt
= 0.0641 > 0.025

2
5
6
×
2
5
6

p
at

ch
es

eigengap = 45.229 < 100 Qopt
= 0.0143 < 0.025

Figure 5.5: Results obtained using the demo for some authentic images from the Columbia dataset [97].
The overlap is set to 75% of the patch size in all cases.

97

Esta página ha sido intencionalmente dejada en blanco.

Chapter 6

Non-Semantic Evaluation of Image
Forensics Tools

In this chapter we propose a new method to evaluate image forensics tools, that
characterizes what image cues are being used by each detector. Our method
enables effortless creation of an arbitrarily large dataset of carefully tampered im-
ages in which controlled detection cues are present. Starting with raw images,
we alter aspects of the image formation pipeline (see Chapter 2) inside a mask,
while leaving the rest of the image intact. This does not change the image’s
interpretation; we thus call such alterations “non-semantic”, as they yield no se-
mantic inconsistencies. This method avoids the painful and often biased creation
of convincing semantics. All aspects of image formation (noise, CFA, compression
pattern and quality, etc.) can vary independently in both the authentic and tam-
pered parts of the image. Alteration of a specific cue enables precise evaluation
of the many forgery detectors that rely on this cue, and of the sensitivity of more
generic forensic tools to each specific trace of forgery, and can be used to guide
the combination of different methods. Based on this methodology, we create a
database and conduct an evaluation of the main state-of-the-art image forensics
tools, where we characterize the performance of each method with respect to
each detection cue. This work is published as Non-Semantic Evaluation of Image
Forensics Tools: Methodology and Database in the WACV conference [13].

6.1 Introduction

Digital images play an extensive role in our lives and forgeries are present everywhere [64].
Creating visually realistic image alterations is easy.

Yet each modification of the image imprints traces onto it, that are cues of the tampering.
Some forgery detection tools aims at detecting a specific trace in a suspicious image by finding
local inconsistencies, while other methods, usually learning-based, are more generic. Semantic
analysis of an image can provide hints, but the rigorous proof of a forgery should not be solely
semantic. The situation is akin to the dilemma arising from the observations of Galileo, which
contradicted the accepted knowledge of his time. In the words of Bertolt Brecht [24]:

Galileo: How would it be if your Highness were now to observe these impossible
as well as unnecessary stars through this telescope?
The Mathematician: One might be tempted to reply that your telescope,
showing something which cannot exist, may not be a very reliable telescope, eh?

Chapter 6. Non-Semantic Evaluation of Image Forensics Tools

The telescope could have been unreliable, indeed, and a scientific inquiry on the instrument
could have been justified. However, concluding, as the Mathematician does, that the telescope
was unreliable just based on the contents of the observations is not prudent. Similarly, the
proof of a forgery must be based on image traces, not on semantic arguments, because the
semantics of an image are usually the purpose and not the means of a forgery.

Image forensics algorithms are mainly evaluated by their performance in benchmark chal-
lenges. This practice has several limitations: in many cases, the same database is split into
training and evaluation data. As a consequence, algorithms are trained and evaluated on
images that have gone through similar image processing pipelines, forgery algorithms and anti-
forensic tools. Hence, there is no guarantee that such learning-based methods will work in
the wild, where those parameters vary much more. Regardless of the variety of the training
set, the question arises of whether the forgeries are being detected by trained detectors for
semantic reasons, or because of local inconsistencies in the image.

With these considerations in mind, we propose a methodology and a database to evaluate
image forensic tools on images where authentic and forged regions only differ in the traces
left behind by the image processing pipeline. Using this methodology, we create the Trace
database by adding various forgery traces to raw images from the Raise [52] dataset, as shown
in Figure 6.1. This procedure avoids the difficulties of producing convincing and unbiased
semantic forgeries, which often requires manual work. We create several datasets, each of
which corresponding to a specific pipeline inconsistency, such as a different noise level or
compression pattern. This gives us insight into the sensitivity of forensic tools to specific
traces, and thus highlights the complementarity of different methods.

Our contribution is twofold:

• we create a database of “fake” images with controlled inconsistencies in their formation
pipeline,

• using this database, we conduct an evaluation of existing forensic tools.

6.2 Related Works

There is a large literature on image forensics, starting from the seminal work of Farid [64].
Some methods focus on the detection of a specific tampering attack such as copy-move or
splicing, but the most classic forgery detection methods aim at detecting local perturbations
of the traces left in the image by the processing chain. Such local disruptions hint at a local
forgery. To do so, these methods strive to suppress image content and highlight intrinsic
artefacts left by demosaicking, JPEG encoding, etc. [180]. These forgery detection methods
can therefore be grouped by their specifically-targeted traces, which we now briefly review.

Noise-level-based methods analyse the noise model of images (see Section 6.3) to find
regions with a different amount of noise, that could result from tampering. Mahdian and
Saic [155] perform local wavelet-based noise level estimation using a median absolute deviation
estimator. Lyu et al. [154] relies on the kurtosis concentration phenomenon. More recently,
Noisesniffer (from Chapter 4) defines a background stochastic model enabling the detection
of local and statistically-significant noise anomalies. These methods can potentially detect a
relatively wide variety of forgeries, as each can alter the noise level.

Detecting the specific image demosaicing algorithm (see Section 6.3) has not been at-
tempted since the 2005 pioneer paper by Popescu and Farid [181], conceived at a time where
those algorithms were simpler and easier to distinguish, although some generic noise-pattern

100

6.2. Related Works

(a) Raw image (b) Forgery mask: M

(c) Pipeline 0: P0 (d) Pipeline 1: P1

(e) Forgery: F =M̄P0 +MP1 (f) Residual |F − P0|

(g) Noiseprint result (h) Mantranet result

Figure 6.1: Different image formation pipelines are applied to the same RAW image to obtain two
images, that are combined to obtain a forged image. The authentic and forged regions present different
camera pipeline traces, but are otherwise perfectly coherent. The last row shows the result of two
forensic tools on this image.

101

Chapter 6. Non-Semantic Evaluation of Image Forensics Tools

analysis method can distinguish different algorithms given large enough regions [48]. How-
ever, detecting the mosaic pattern has received more extensive coverage. Choi et al. [35] used
the fact that sampled pixels were more likely to take extremal values, while Shin et al. [192]
noticed that they had a higher variance. Bammey et al. [10] combined the translation invari-
ance of convolutional neural networks with the periodicity of the mosaic pattern to train a
self-supervised network into implicitly detecting demosaicing artefacts. Because demosaicing
artefacts lie in the high frequencies, they are lost under a strong JPEG compression or when
the image has been downsampled. As such, they are usually best used on high-quality images.

JPEG compression leaves blocking effects and quantization of the DCT coefficient of each
block. JPEG forensic tools can thus be divided into two categories. BAG [138] and CAGI [100]
analyse blocking artefacts, while other methods analyse the DCT coefficients. More precisely,
CDA [143] and I-CDA [20] are based on the AC coefficient distributions, while FDF-A [4] is
based on the first digit distribution of AC coefficients. Zero [176] counts the number of null
DCT coefficients in all blocks and deduces the grid origin. These methods can only work when
the forgery was done after a first JPEG compression. And when this is the case, they usually
yield very good results.

In the past few years, multi-purpose tools were proposed to detect inconsistencies from
multiple traces simultaneously. Similarity Graphs (from Chapter 5) trains a siamese network on
image patches to predict the similarity in their forensic traces. The similarity score is then used
to construct a graph representation of the image, where community detection is performed
to spot forgeries. Splicebuster [49] uses the co-occurences of noise residuals as local features
revealing tampered image regions. Noiseprint [48] extends on Splicebuster and uses a Siamese
network trained on authentic images to extract the noise residual of an image, which is then
analysed for inconsistencies. ManTraNet [221] is a bipartite end-to-end network, trained to
detect image-level manipulations with one part, while the second part is trained on synthetic
forgery datasets to detect and localise forgeries in the image. Finally, Self-consistency [99]
analysis also uses a Siamese network with the goal of detecting whether two patches have
been processed with the same pipeline. They make use of N-Cuts segmentation [104] to auto-
matically cluster and detect relevant traces of forgeries. With these methods, exhaustiveness is
theoretically possible. However, results are not self-explanatory and those method’s decisions
are harder to justify. Furthermore, learning-based methods can be limited by the training data,
and may fail to generalize well in uncontrolled scenarios.

There is also considerable literature proposing datasets for the evaluation of forensic tools.
An early example is the Columbia Dataset [173], which only contains spliced 128×128 grayscale
blocks for which no masks are provided. New benchmarks were proposed in 2009 with CASIA
V1.0 and V2.0 [58]. These datasets included splicing and copy-move attacks, with a total of
8000 pristine images and 6000 tampered images. Post-processing was introduced as a counter-
forensics technique. MICC F220 and F2000 datasets [3] as well as the IMD dataset [37]
provide further benchmarks for copy-move detection. These datasets were constructed in an
automatic way. While the first two randomly select the region of the image to be copy-pasted,
IMD dataset performed snippets extraction. Other datasets adressing copy-move forgeries with
post-processing counter attacks are also available [209, 215].

Image forgery-detection challenges are another source of benchmark datasets. The Na-
tional Institute of Standards and Technology (NIST) organizes, since 2017, an annual challenge
for which different datasets are released [89]. It includes automatically and manually generated
forgeries of considerable variety, and can thus be useful to evaluate image forgery detection in
uncontrolled scenarios.

Some datasets aim at performing forgeries imperceptible to the naked eye. A good example
is the Korus dataset [121, 122] which contains 220 pristine images and 220 handmade tampered

102

6.3. Image formation pipeline

images targeting object removal or insertion.

The recent DEFACTO dataset [156] is constructed on the MSCOCO dataset [140] and
includes a wide range of forgeries such as copy-move, splicing, inpainting and morphing. Se-
mantically meaningful forgeries are generated automatically but with several biases such as
copy-pasting objects in the same axis or only performing splicing with simple objects.

Most recent forgery-detection datasets start from pristine images and perform several sorts
of forgeries on them [238]. Since the creation of early datasets [58, 97, 173], the number
of tampering techniques has increased to include new ones such as colorization [26], inpaint-
ing [26, 156] and morphing [156, 239]. Post-processing and counter-forensic techniques have
been increasingly used to produce visually imperceptible forgeries; but such approaches may
also introduce detectable traces.

Efforts have also been made to automatically obtain large datasets. Yet, the resulting
forged images are either semantically incorrect [3, 37] or biased [156]. Both scenarios pose
problems for training neural networks, which risk overfitting on the forgeries’ methods and
semantic content.

The variety of forgery methods makes the evaluation of forensic tools difficult to interpret,
as the performance depends on the suitability of the detection tool for the specific forgery
method. In quantitative experiments, using multiple datasets, and especially datasets with
varied forgeries, helps assess the quality of a forensic tool. However, those results also become
harder to interpret. On the other hand, while results using the proposed database will not be
reflective of uncontrolled scenarios, they help precisely identify which traces a forensic tool can
and cannot detect.

6.3 Image formation pipeline

In this section we summarise the image formation pipeline, which was already introduced in
Chapter 2. Figure 6.2 summarises the main steps [54] and shows how the noise curves change
at its different steps.

Raw image acquisition The value at each pixel can be modelled as a Poisson random
variable [67]. Noise variance at this step thus follows an affine relation σ2 = A+ Bu where
u is the intensity of the ideal noiseless image and A and B are constants (see Figure 6.2).
Furthermore, given the nature of the noise sources at this step, noise can be accurately modelled
as uncorrelated, meaning that noise at one pixel is not related with the noise at any other pixel.

Demosaicing Most digital cameras are equipped with a single sensor array. In order to obtain
a colour image, a colour filter array (CFA) is placed in front of the sensor to split incident light
components according to their wavelength. The raw image obtained from the sensor therefore
is a mosaic containing a single colour component per pixel: red, green, or blue. Demosaicing
methods interpolate the missing colours at each pixel to reconstruct a full colour image. After
demosaicing (Figure 6.2), each channel has a different noise curve, and noise becomes spatially
correlated.

Colour Correction In order to obtain a faithful representation of the colours as perceived by
the observer, white balance adjusts colour intensities in such a way that achromatic objects
from the real scene are rendered as such [149]. This is done by scaling each channel separately,
thus also scaling differently the noise level of each channel. Given that the relationship between
stimulus and human perception is logarithmic [65], cameras then apply a power law function

103

Chapter 6. Non-Semantic Evaluation of Image Forensics Tools

Figure 6.2: Evolution of the noise curves when passing through the successive steps of a (simplified)
image processing pipeline.

to the intensity of each channel. After this step, known as gamma correction, the noise level
is no longer monotonously increasing with the intensity.

JPEG compression The JPEG image standard is the most popular lossy compression scheme
for photographic images [211]. The image goes through a colour space transformation and
each channel is partitioned into non-overlapping 8×8-pixel blocks. The type-II discrete cosine
transform (DCT) is applied to each of these blocks. The resulting coefficients are quantized
according to a table and the coefficients are then compressed without additionnal loss. Due
to the cancellation of high-frequency coefficients, the noise is reduced after compression.

104

6.4. The Proposed Methodology

6.4 The Proposed Methodology

We created a database of “forged” images which leaves the semantics of the images intact.
The overall idea of our method is to take a raw image, process it with two different pipelines,
and merge the two processed images as follows: the first image is used for the authentic
region and the second image for the “forged” area determined by a mask, as can be seen in
Figure 6.1. As a base we use the RAISE-1k dataset [52], which contains one thousand pristine
raw images of varied categories, taken from three different cameras. We note that the variety
of source cameras is not important to our database, as we erase the previous camera traces
by downsampling the image, then resimulate the whole image processing pipeline ourselves, as
explained below. Furthermore, our open source generation code can be applied on any other
source of images, to automatically generate arbitrarily large quantities of “forged” images.

Methodology for the creation of the database A raw image already contains noise, fur-
thermore its pixels are all sampled in the same CFA pattern. In order to reduce the noise and
eliminate the CFA pattern, we start by downsampling each image by a factor 2. This enables
us to choose the amount of noise to be added, and to mosaic the image in any of the four
possible patterns. Once the image has been downsampled, we process the image with two
different pipelines. The two images are then merged as explained above.

Figure 6.3: Details of the same image with forgeries made using the two masks. On the left, the
endomask coincides with the image’s structure, here a tree. The forgery is less conspicuous than on
the right where the exomask is in the sky, where the borders do not coincide with the images’ content.

105

Chapter 6. Non-Semantic Evaluation of Image Forensics Tools

Forgery masks For each image we construct two different kinds of masks, which we shall call
endomasks and exomasks. Since inconsistencies in the image processing pipeline are usually
most visible at the border of the forgery, endomasks are obtained as regions of a segmentation
of the image. To do this, we segment the original images with EncNet [234]. For each image,
we take a pixel at random, and select the image region it belongs to. We accept the mask if its
size is less than half the image’s, otherwise we pick another pixel until we find a suitable mask.
This ensures that each image has only one forgery, whose size is at most half the image’s.
Using such endogenous masks or endomasks corresponding to a region of the segmented image
ensures almost invisible forgeries. Indeed their borders are natural image borders, as shown in
Figure 6.3.

The exomasks are instead unrelated to the image’s content. To determine them, we start
by pairing the images of the dataset according to their endomasks’ sizes. Then, the endomask
of each image is used as the exogenous mask, or exomask, of its paired image. Using a mask
from another image ensures that the mask is not linked to the image’s semantic. The chosen
pairing enables comparisons separately on each image, as the size of the masks is similar. See
Figure 6.4 for examples of endo- and exomasks.

Multiple datasets One of our goals is to determine which inconsistencies each forensic tool
is sensitive to. Changes in the image processing pipeline, done at different steps of the chain,
lead to different inconsistencies (see Section 6.3). In consequence, we created five specific
datasets, each of which features a specific change in the image processing pipeline. For each
image, we started by randomly choosing the three parameters that are used for this image
across all datasets:

• The mosaic pattern, chosen among the four possible offsets of the camera’s Bayer
pattern.

• The demosaicing algorithm, chosen randomly among those available in the LibRaw
library [139].

• The gamma-correction power.

The gamma correction is the same for both regions of the image, and the mosaic pattern is
the same except for the CFA Grid, CFA Algorithm and Hybrid datasets. For each image, both
the endo- and exomasks, constructed as explained above, are the same across all datasets.

Raw Noise Level dataset In this dataset we add random noise to each raw image before
processing it. As pointed out in Section 6.3, noise variance in raw images follows a linear
relation given by σ2 = A + Bu, where A and B are constants and u is the noiseless image.
We start by randomly selecting two different pairs of constants (A0, B0) and (A1, B1), in a
range that ensures the resulting images look natural. Both images are then processed with the
same pipeline. This dataset mimics the inconsistencies in noise models that could be found in
spliced images.

CFA Grid dataset In this dataset we only change the mosaic pattern of the forged image
inside the mask. Thus, the original image and the forged one would be identical if not for
their mosaic grid origins. This kind of trace may appear (with probability 3

4) when the forgery
was an internal copy-move. Indeed, even if the forged region has a similar signature, there is
no reason the mosaic grid of the forged region should be the same as in the authentic region
unless the copy-move translation is a multiple of 2 in both directions.

106

6.4. The Proposed Methodology

Endomask Image Exomask

Figure 6.4: For each image, we use an endomask (left) taken from the image’s segmentation, and an
exomask (right) taken from another image and thus decorrelated from the image’s contents. The last
two images were paired during mask creation, thus the endomask of each becomes the exomask of the
other.

107

Chapter 6. Non-Semantic Evaluation of Image Forensics Tools

CFA Algorithm dataset In this dataset, the two processing pipelines use different demo-
saicing algorithms. The demosaicing pattern is chosen independently for each pipeline. Thus
there is a 1

4 chance that they are aligned.

A new mosaic pattern is also randomly chosen, thus having a 3
4 chance of being different

from the one of the main image. This dataset represents the change in the mosaic that would
occur from splicing, as two different images most likely do not share the same demosaicing
algorithms, and the alignment of their patterns after splicing is random.

JPEG Grid dataset In this dataset we only change the compression grid origin. Similarly to
the CFA Grid dataset, if the forgery is an internal copy-move, the JPEG grid of the forged region
is different from the grid in the authentic region, with probability 63

64 . The JPEG compression
quality used in both pipelines is then chosen randomly, keeping the values in a range that is
typical of most compressed images and challenging enough for JPEG-based algorithms.

JPEG Quality dataset In this dataset, both the authentic and forged regions are processed
with the same pipeline, except for the JPEG compression which is done in the two regions
with different quality factors, again chosen uniformly between 75 and 100. Like with the CFA
Algorithm dataset or the JPEG grid data, a new JPEG grid pattern is also randomly chosen,
which has a 63

64 chance of being different from the main region’s grid. This dataset simulates
the effect of the splicing of an image onto another, both images being compressed at different
quality factors.

The hybrid dataset One could argue that although generic learning-based forensics tools
may not be able to point out a single inconsistency in an image, they might be best suited to
find multiple inconsistencies stacked together. Clearly, a splicing may introduce joint inconsis-
tencies in noise level, JPEG encoding and demosaicing; while a direct copy-move can introduce
alterations in the JPEG and CFA grids. To investigate such possibilities, in addition to the five
specific datasets described above, we created a sixth, hybrid dataset. In this dataset, forgeries
combine noise, demosaicing and/or JPEG compression traces. At least two of those traces are
altered in each images.

To create this dataset, we adopt the following procedure for each image:

1. We randomly choose whether to modify two or three steps of the pipeline (added noise,
demosaicing grid/method, JPEG grid/quality). If we only change two, we select which
steps to change.

2. For JPEG and CFA modifications, we select whether we only change the CFA and JPEG
grids, or if we change the demosaicing methods, the JPEG quality factor and potentially
the CFA and JPEG grids. The decision is made jointly for JPEG and CFA, as the CFA and
JPEG Grid datasets mimic artefacts commonly found in internal copy-move forgeries,
whereas the CFA Algorithm and JPEG Quality datasets represent inconsistencies more
typical of splicing.

3. Finally, for each different change, we select its parameters in the same way as for the
specific datasets.

In short, each image has a minimum of two parameters that vary between the two parts. At
the maximum, all studied parameters in this chapter (raw noise level, demosaicing pattern and
algorithm, JPEG grid and quality factor) can vary between the two regions.

108

6.5. Experiments

6.5 Experiments

6.5.1 Evaluated methods

We used the constructed database to conduct an evaluation of image forensics tools. We tested
both classic and SOTA forgery detection methods pertaining to different traces: noise-level-
based detection methods Noisesniffer (from Chapter 4), Lyu [154, 230] and Mahdian [155, 230];
CFA-grid detection methods Bammey [10], Shin [192] and Choi [11, 35]; JPEG-based meth-
ods Zero [176], CAGI [100, 230], FDF-A [4, 230], I-CDA [20, 230], CDA [143, 230] and
BAG [138, 230], as well as generic methods Similarity Graphs (from Chapter 5), Splice-
buster [49], Noiseprint [48], ManTraNet [221] and Self-Consistency [99].

6.5.2 Evaluation Metrics

We evaluated the results of these methods using the Matthews correlation coefficient (MCC) [161].
This metric varies from -1 for a detection that is complementary to the ground truth, to 1
for a perfect detection. A score of 0 represents an uninformative result and is the expected
performance of a random classifier. The MCC is more representative than the F1 and IoU
scores [33, 34], partly as it is less dependant on the proportion of positives in the ground truth,
which is especially important given the large variety of forgery mask sizes in the database.

The MCC was computed for each image, and then averaged over each dataset. As most
surveyed methods do not provide a binary output but a continuous heatmap, we weighted the
confusion matrix using the heatmap.

6.5.3 Results

The complete results are given in Table 6.1. Visualization of the detection by several methods
on one image across all datasets can be seen in Figure 6.5. In the CFA and JPEG datasets,
state-of-the-art methods that focus on those specific traces, such as Bammey [10] for CFA
and ZERO [176] for JPEG, perform much better than generic tools. This is partly expected,
as those methods aim to detect exactly this specific trace. Still, some generic methods such
as Similarity Graphs (from Chapter 5) achieve a competitive performance.

This observation is more nuanced in the Noise Level dataset where, depending on the
type of mask considered, Noisesniffer (from Chapter 4) and Self-Consistency [99] achieve the
best results. Indeed, exomasks cover a wider range of intensities enabling a better comparison
between noise models, which is exploited by Noisesniffer. Also, half of the forgeries present in
this database are undetectable for this method since it is only able to detect forgeries having
lower noise levels.

On the hybrid dataset, the scores of the specific methods are lower than on the specific
datasets. For the JPEG-based methods, this is explained by the fact that one sixth of this
dataset does not feature JPEG compression traces. For the CFA and Lyu and Mahdian noise-
based methods, this is made worse by the fact that JPEG compression alters the previous
noise and demosaicing artefacts, as shown in Figure 6.2. In particular, CFA-based methods
are notoriously weak on JPEG images, since JPEG compression removes the high frequencies,
in which mosaic artefacts lie. This can be seen in Figure 6.5, where the CFA-based method
Bammey cannot make any prediction on the hybrid image, where the main and forged region
were compressed with quality factors of 93 and 75, respectively.

While multi-purpose forensic methods can, to some extent, detect noise-level inconsisten-
cies, in the demosaicing algorithm and in the JPEG quality, they are blind to shifts in both the
JPEG and CFA grids. This is not entirely surprising; with the exception of Splicebuster, the

109

Chapter 6. Non-Semantic Evaluation of Image Forensics Tools

Noise Level CFA Grid CFA Algorithm JPEG Grid JPEG Quality Hybrid

Splicebuster

Bammey

ZERO

Noiseprint

ManTraNet

Noisesniffer

Sim. Graphs

Figure 6.5: Visualization of the results of several methods for one image on all the datasets. Some
methods, such as Noiseprint or Bammey, correctly detect the forgeries in the relevant images, but tend
to make noise-like false detections in the images for which they cannot see the forgery. Automatically
selecting the relevant detections of an algorithm would make it easier to use without needing interpre-
tation. The image and mask can be seen in Figure 6.1.

tested generic tools are based on mostly-convolutional neural networks, which are invariant to
translation. Although Noiseprint [48] adapts its training scheme to be able to detect shifts in
periodic patterns, it cannot see the demosaicing and JPEG compression grids, although it is
sensitive to JPEG quality inconsistencies and to some extent to demosaicing algorithm changes
as well.

Most methods perform similarly on the endomask and exomask datasets. Two notable
exceptions are Noisesniffer which underperforms on endomasks, and Self-Consistency, which
works much better on endomasks. Both observations are easily explained: when using ex-
ogeneous masks, forgeries have more heterogeneous intensities. Since the method performs
intra-bin comparisons, the wider range of intensities benefits the detection of the manipulated
zone since more bins are involved. In contrast, Self-consistency’s content-awareness is lost
when segmenting forgeries with exomasks. Regardless of the dataset considered, the scores
obtained by all of the methods have a high standard deviation with respect to their mean value.
This suggests that, given a dataset, the scores in each individual image are not concentrated
around the mean but rather spread on a large range of values. Hence, even for methods having
low scores, some good detections are likely to happen.

110

6.6. Discussion

6.6 Discussion

Most methods yield similar results on exo- and endomasks. While one kind is usually sufficient,
comparing the results on both shows some methods are content-aware.

The goal of this evaluation was not to rank different methods, but to offer a rigorous
insight on the capabilities of each. Knowing to which kind of inconsistencies forensic tools
are sensitive helps understand and explain its detections in uncontrolled cases, and can help
efforts to combine different methods. In that sense, the proposed database is complementary
to more traditional databases.

Even though many methods can yield decent scores, the standard deviations of theses
scores over all images of the same dataset is often very high. Even though algorithms perform
well on many forgeries, they also often yield false positives that require interpretation to be
distinguished from true detections, such as Figure 6.1. This is a critical point for many
methods, as it makes them usable only to a trained eye.

6.7 Conclusion

Image forensics datasets are usually grouped according to forgery types (eg. splicing, inpainting,
or copy-moves), and do not separate the semantic content from the actual traces left by the
forgery. In this chapter, we proposed to remove the semantic value of forgeries and to focus
only on the traces. We designed a methodology to automatically create image “forgeries” that
leave no semantic traces, by introducing controlled changes in the image processing pipeline.
We built datasets by focusing on noise-level inconsistencies, mosaic and JPEG artefacts, and
conducted an evaluation of some image forensics tools using this dataset.

Although we focused on three kinds of changes in the forgeries, the same methodology
can be applied to more traces, including multiple compression, or image manipulations such
as resampling. In fact, we can address all forgeries where two different camera pipelines
are involved. This includes copy-move, splicing and some methods of inpainting. Further
work would incorporate other traces, such as those left by synthesis methods. Although not
surveyed here, the same methodology can be applied to study robustness of detection under
adverse events such as global JPEG compression, by passing the images through compression
before analysis. Our images were not post-processed, except for inconsistencies linked to JPEG
compression. This makes it easy to assess the robustness to any kind of post-processing.

Note that there are no authentic images in the dataset. Testing the frequency of false
positives is for now complementary to the proposed methodology, but could be included in fur-
ther work by comparing the response of forensic tools to the forged images and their authentic
counterparts, otherwise-processed with the same pipeline.

Our method can transform automatically large sets of images into forged images with fully
controlled tampering cues and no bias that might cause overfitting. Besides evaluation of
existing image forensics tools, this methodology could also be used to train forgery detection
methods, although care would be needed so as not to overfit if using the same methodology
for both training and evaluation.

111

Chapter 6. Non-Semantic Evaluation of Image Forensics Tools

Dataset

Noise Level CFA Grid CFA Algorithm JPEG Grid JPEG Quality Hybrid
N

oi
se

-l
ev

el
-b

as
ed Noisesniffer 0.192 (0.376)0.192 (0.376) -0.008 (0.121) 0.057 (0.256) -0.010 (0.118) 0.072 (0.278) 0.129 (0.326)0.129 (0.326)

(Chapter 4) 0.135 (0.317)0.135 (0.317) -0.014 (0.139) 0.003 (0.213) -0.013 (0.137) 0.026 (0.224) 0.078 (0.274)0.078 (0.274)

Lyu [154]
0.010 (0.090)0.010 (0.090) 0.002 (0.093) 0.002 (0.094) 0.000 (0.089) 0.002 (0.091) 0.012 (0.097)0.012 (0.097)

0.007 (0.137)0.007 (0.137) 0.010 (0.157) 0.009 (0.159) 0.007 (0.148) 0.013 (0.156) 0.018 (0.150)0.018 (0.150)

Mahdian [155]
0.046 (0.146)0.046 (0.146) 0.005 (0.082) 0.039 (0.128) 0.005 (0.086) 0.036 (0.132) 0.055 (0.158)0.055 (0.158)

0.055 (0.171)0.055 (0.171) 0.023 (0.159) 0.057 (0.183) 0.014 (0.146) 0.052 (0.180) 0.067 (0.191)0.067 (0.191)

C
FA

-b
as

ed

Bammey [10]
0.007 (0.084) 0.682 (0.329)0.682 (0.329) 0.501 (0.427)0.501 (0.427) 0.023 (0.095) 0.029 (0.091) 0.133 (0.288)0.133 (0.288)

0.021 (0.153) 0.665 (0.349)0.665 (0.349) 0.491 (0.429)0.491 (0.429) 0.018 (0.107) 0.020 (0.100) 0.128 (0.290)0.128 (0.290)

Shin [192]
0.007 (0.101) 0.104 (0.166)0.104 (0.166) 0.085 (0.172)0.085 (0.172) -0.002 (0.042) -0.001 (0.043) 0.015 (0.109)0.015 (0.109)

0.004 (0.123) 0.099 (0.171)0.099 (0.171) 0.084 (0.179)0.084 (0.179) -0.005 (0.058) -0.006 (0.059) 0.012 (0.114)0.012 (0.114)

Choi [11, 35]
0.026 (0.025) 0.603 (0.203)0.603 (0.203) 0.420 (0.208)0.420 (0.208) 0.001 (0.002) -0.001 (0.003) 0.156 (0.114)0.156 (0.114)

0.030 (0.018) 0.575 (0.191)0.575 (0.191) 0.385 (0.210)0.385 (0.210) -0.001 (0.002) 0.001 (0.001) 0.139 (0.116)0.139 (0.116)

JP
E

G
-b

as
ed

Zero [176]
0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.796 (0.349)0.796 (0.349) 0.732 (0.413)0.732 (0.413) 0.638 (0.451)0.638 (0.451)

0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.756 (0.387)0.756 (0.387) 0.708 (0.421)0.708 (0.421) 0.624 (0.453)0.624 (0.453)

CAGI [100]
0.004 (0.045) 0.000 (0.027) 0.002 (0.033) 0.038 (0.077)0.038 (0.077) 0.044 (0.080)0.044 (0.080) 0.031 (0.071)0.031 (0.071)

0.003 (0.052) 0.000 (0.042) 0.001 (0.044) 0.023 (0.077)0.023 (0.077) 0.028 (0.082)0.028 (0.082) 0.021 (0.073)0.021 (0.073)

FDF-A [4]
0.031 (0.139) -0.004 (0.087) -0.003 (0.085) 0.226 (0.242)0.226 (0.242) 0.228 (0.249)0.228 (0.249) 0.203 (0.244)0.203 (0.244)

0.014 (0.169) -0.015 (0.139) -0.017 (0.139) 0.216 (0.265)0.216 (0.265) 0.216 (0.273)0.216 (0.273) 0.187 (0.264)0.187 (0.264)

I-CDA [20]
0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.416 (0.417)0.416 (0.417) 0.422 (0.407)0.422 (0.407) 0.381 (0.407)0.381 (0.407)

0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.423 (0.408)0.423 (0.408) 0.414 (0.414)0.414 (0.414) 0.385 (0.408)0.385 (0.408)

CDA [143]
-0.001 (0.034) 0.000 (0.055) 0.000 (0.052) 0.485 (0.339)0.485 (0.339) 0.474 (0.344)0.474 (0.344) 0.401 (0.360)0.401 (0.360)

-0.004 (0.068) -0.003 (0.098) -0.005 (0.097) 0.449 (0.351)0.449 (0.351) 0.442 (0.350)0.442 (0.350) 0.378 (0.354)0.378 (0.354)

BAG [138]
0.000 (0.015) 0.006 (0.078) 0.009 (0.079) 0.232 (0.461)0.232 (0.461) 0.229 (0.458)0.229 (0.458) 0.171 (0.430)0.171 (0.430)

0.002 (0.029) 0.025 (0.164) 0.026 (0.164) 0.227 (0.459)0.227 (0.459) 0.223 (0.455)0.223 (0.455) 0.161 (0.430)0.161 (0.430)

M
u
lt

i-
p
u
rp

os
e

to
ol

s

Similarity Graphs 0.109 (0.326)0.109 (0.326) 0.063 (0.260)0.063 (0.260) 0.144 (0.350)0.144 (0.350) 0.525 (0.416)0.525 (0.416) 0.580 (0.399)0.580 (0.399) 0.495 (0.434)0.495 (0.434)

(Chapter 5) 0.102 (0.357)0.102 (0.357) 0.074 (0.329)0.074 (0.329) 0.135 (0.388)0.135 (0.388) 0.526 (0.430)0.526 (0.430) 0.577 (0.405)0.577 (0.405) 0.523 (0.441)0.523 (0.441)

Noiseprint [48]
0.127 (0.200)0.127 (0.200) -0.001 (0.069)-0.001 (0.069) 0.066 (0.149)0.066 (0.149) 0.013 (0.087)0.013 (0.087) 0.178 (0.248)0.178 (0.248) 0.153 (0.230)0.153 (0.230)

0.108 (0.232)0.108 (0.232) 0.002 (0.114)0.002 (0.114) 0.060 (0.179)0.060 (0.179) 0.016 (0.140)0.016 (0.140) 0.138 (0.279)0.138 (0.279) 0.128 (0.261)0.128 (0.261)

ManTraNet [221]
0.049 (0.091)0.049 (0.091) 0.000 (0.040)0.000 (0.040) 0.074 (0.169)0.074 (0.169) 0.004 (0.023)0.004 (0.023) 0.095 (0.164)0.095 (0.164) 0.112 (0.169)0.112 (0.169)

0.032 (0.099)0.032 (0.099) -0.004 (0.065)-0.004 (0.065) 0.053 (0.165)0.053 (0.165) 0.000 (0.043)0.000 (0.043) 0.086 (0.171)0.086 (0.171) 0.107 (0.176)0.107 (0.176)

Self- 0.082 (0.323)0.082 (0.323) 0.028 (0.261)0.028 (0.261) 0.036 (0.270)0.036 (0.270) 0.011 (0.262)0.011 (0.262) 0.078 (0.335)0.078 (0.335) 0.138 (0.370)0.138 (0.370)

-Consistency [99] 0.154 (0.429)0.154 (0.429) 0.077 (0.393)0.077 (0.393) 0.082 (0.403)0.082 (0.403) 0.060 (0.386)0.060 (0.386) 0.151 (0.440)0.151 (0.440) 0.246 (0.425)0.246 (0.425)

Splicebuster [49]
0.099 (0.188)0.099 (0.188) 0.003 (0.085)0.003 (0.085) 0.075 (0.157)0.075 (0.157) 0.005 (0.083)0.005 (0.083) 0.084 (0.175)0.084 (0.175) 0.101 (0.192)0.101 (0.192)

0.100 (0.217)0.100 (0.217) 0.012 (0.157)0.012 (0.157) 0.072 (0.202)0.072 (0.202) 0.006 (0.135)0.006 (0.135) 0.082 (0.220)0.082 (0.220) 0.099 (0.215)0.099 (0.215)

Table 6.1: Results of different state-of-the-art forensics tools on our six datasets, using the Matthews
Correlation Coefficient (MCC), detailed in Section 6.5.2. The methods, on the left, are grouped by
categories. As a baseline, a random classifier is expected to yield a score of 0. The mean of the MCC
scores over each image of the dataset, as well as the standard deviation in parentheses, are shown for
the exogenous mask and endogenous mask datasets. Grayed-out numbers represent results of methods
on datasets that are irrelevant to said methods. The best two scores are underlined for each database.112

Part II

Source camera identification based on noise
characteristics

Chapter 7

Analysis of the Forensic Similarity Approach
for Source Camera Model Comparison

As pointed out in Chapter 2, the traces left by the image processing pipeline
can be used for several forensics tasks rather than image forgery detection and
localization. In this chapter, we show that the forensic similarity approach (Chap-
ter 5) can also be used for source camera model comparison. Indeed, such an
approach aims at determining whether two image patches share the same forensic
traces or not. Images acquired with devices from the same model are expected to
exhibit the same similar forensic traces, while devices from different models are
expected to produce different traces. In order to make the chapter self-contained,
the forensic similarity approach is explained again in Section 7.2.

The work presented in this chapter is published as Forensic Similarity for Source
Camera Model Comparison in IPOL [71] and an online demo is available at:
hhttps://ipolcore.ipol.im/demo/clientApp/demo.html?id=424.

7.1 Introduction

Providing information about the camera with which an image was acquired can be crucial
for different forensic applications. Indeed, it can provide clues to track pornographic content,
to check for copyright infringement, and to verify the consistency of a database. There are
different approaches that aim at describing the source device of a given image. Some of them
try to identify the particular device with which the image was taken [36, 151], while others
focus on identifying the brand or model of the source camera [205, 206?].

Classic methods tackle this problem by searching for device traces. These traces include
sensor pattern noise [151], lens distortions [36], demosaicing artefacts, white balance traces [55]
and compression. Some of these features, such as the PRNU pattern [151] or radial distor-
tion [36], are device-specific and can lead to accurate device identification. In particular, the
use of PRNU traces for source camera certification is explored in Chapter 8. Other features
are shared by different devices from the same model or brand, and can therefore provide
information about the device model rather than identifying a particular source camera [207].

In this chapter we explore how the forensic similarity approach introduced in Chapter 5 can
be applied for source camera model comparison. This approach aims at determining whether
two image patches share the same forensic traces or not. Forensic traces are signals embedded
in the image during the image formation process. Indeed, from the moment the light hits the
camera sensors until the final digital file is delivered, the image undergoes several operations

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=424

Chapter 7. Analysis of the Forensic Similarity Approach for Source Camera
Model Comparison

such as demosaicing, denoising, gamma correction, white balance and compression. Each of
these operations leaves specific artifacts in the final image. Images acquired with devices from
the same model are expected to exhibit the same similar forensic traces, while devices from
different models are expected to produce different traces.

7.2 Method

7.2.1 Problem formulation

The problem can be stated as follows: Given two image patches, we want to assign a score of
0 to the pair of patches if they have different forensic traces, and a score of 1 if they share the
same forensic traces. That is, we search for a map C : X ×X → {0, 1}, where X is the space
of all image patches, such that

C(X1, X2) =

{

0 if X1, X2 have different forensic traces,
1 if X1, X2 have the same forensic traces.

This problem can be tackled in three steps. First, a suitable set of N features capturing
the forensic information is extracted from each patch, by means of a feature extractor f :
X → R

N . The resulting feature vectors are then compared based on a similarity function
S : RN × R

N → [0, 1]. Finally, the similarity measure is compared to a threshold τ so as to
obtain a binary output. The map C can be then written as

C(X1, X2) =

{

0 if S(f(X1), f(X2)) ≤ τ,
1 if S(f(X1), f(X2)) ≥ τ.

This way, the problem of finding C amounts to find two functions f : X → R
N and S :

R
N ×R

N → [0, 1] such that S(f(X1), f(X2)) is as close to 0 as possible whenever X1 and X2

have different forensic traces, and as close as possible to 1 whenever the two image patches
share the same traces. Figure 7.2 shows the system overview.

In [162], Mayer and Stamm propose to design both the feature extractor function f and the
similarity function S based on a learning strategy. In this section we specify the architecture
as well as the training strategies developed in their work.

7.2.2 Architecture

The feature extractor is based on the MISLnet architecture [17] and is depicted in Figure 7.1.
Namely, it consists of 5 convolutional blocks and 2 fully connected layers. Each of the con-
volutional layers, except for the first one, is followed by batch normalization, hyperbolic tan-
gent activation and max-pooling. The size of the convolutional filters used at each layer are
5 × 5 × 3 × 6, 7 × 7 × 6 × 96, 5 × 5 × 96 × 64, 5 × 5 × 64 × 64 and 1 × 1 × 64 × 128
respectively. A stride equal to 1 is used in all the layers except for the second one, where the
stride is set to 2. The last convolutional layer, which uses 1× 1 kernels, can be regarded as a
learned cross-feature maps associations. The max-pooling operation is performed using 3× 3
kernels. The two fully connected layers that follow the convolutional blocks consist both of
200 neurons with hyperbolic tangent activation.

Two such feature extractor networks, in siamese configuration with weight-sharing, are
used to process in parallel the two patches, producing a feature vector for each patch. Then,
a similarity network takes both feature vectors as input and computes their similarity score.
Figure 7.2 shows the complete system overview. The first layer of the similarity network

116

7.2. Method

RGB im
ag

e

1-stride

1-stride
1-stride 1-stride

2-stride
BN +

TanH +
MaxPool

BN +
TanH +

MaxPool
BN +

TanH +
MaxPool

5
5

5

5

5

5

1
1

7

7

BN +
TanH +

MaxPool
TanH

Conv
5x5x3x6

Conv
7x7x6x96 Conv

5x5x96x64
Conv

5x5x64x64

Conv
5x5x64x128

200 neurons 200 neurons
TanH

Figure 7.1: Feature extractor architecture.

consists of 2048 neurons with ReLu activation, that maps each feature vector into a new
feature space. The authors use a hard-sharing siamese configuration for this first layer. Then,
a new feature vector is constructed by concatenating both feature vectors and their element-
wise multiplication. This vector feeds another fully-connected layer with 64 neurons. Finally,
a single-neuron layer with sigmoid activation takes the resulting 64-dimensional vector and
produces the similarity score associated to the pair of input patches.1

X1

f(X)1

Convolution

C
o
n
c
a
te

n
a
tio

n

Batch Norm

Element-wise
S(f(X), f(X))1 2multiplication

TanH activation

Similarity
Max Poolingscore

f(X)2
NeuronX2

(with activation)

Feature extractors in siamese configuration Similarity network

Hard sharing

H
a

rd
 s

h
a

rin
g

Figure 7.2: System overview. The first module consists of a pair of feature extractor networks in siamese
configuration with weight-sharing. It takes two image patches and computes its corresponding feature
vectors. These vectors are then compared by means of the second module (the similarity network),
which computes a similarity score associated to the pair of image patches.

7.2.3 Dataset

Mayer and Stamm collected a dataset of 47,785 images from 95 different camera models.
Among them, 26 camera models come from the Dresden dataset [81] while the rest are from
the authors’ database. This dataset is divided into three disjoint subsets. Subset 1 consists
of 50 camera models selected randomly from those having at least 40,000 non overlapping
256× 256 patches. Subset 2 comprises 30 camera models from the remaining ones having at
least 25,000 non-overlapping patches. Subset 3 comprises the remaining 15 camera models.
The complete list of camera models is given in Table 7.1. The camera models in blue were
collected from the Dresden dataset [81].

Subsets 1 and 2 are used for training (see Section 7.2.4) while Subset 3 is used for evalua-
tion, which we will not cover here. The interested reader is referred to the original paper [162].

1In practice, the authors use two output units with softmax activation, one indicating “similar"
traces and the other one indicating “different" traces. The observed output for evaluation is the one
corresponding to “similar".

117

Chapter 7. Analysis of the Forensic Similarity Approach for Source Camera
Model Comparison

Subset 1
Apple iPhone 4 Agfa Sensor530s Apple iPhone 4s Canon EOS SL1
Apple iPhone 5 Canon PC1730 Apple iPhone 5s Canon A580
Apple iPhone 6 Canon ELPH 160 Apple iPhone 6+ Canon S100
Apple iPhone 6s Canon SX530 HS Canon SX420 IS Canon SX610 HS
Casio EX-Z150 Fujifilm S8600 Huawei Honor 5x LG G2
LG G3 LG Nexus 5x Motorola Maxx Motorola Turbo
Motorola X Motorola XT1060 Nikon S33 Nikon S7000
Nikon S710 Nikon D200 Nikon D3200 Nikon D7100
Panasonic DMC-FZ50 Panasonic FZ200 Pentax K-7 Pentax OptioA40
Praktica DCZ5.9 Ricoh GX100 Rollei RCP-7325XS Samsung Note4
Samsung S2 Samsung S4 Samsung L74wide Samsung NV15
Sony DSC-H300 Sony DSC-W800 Sony DSC-WX350 Sony DSC-H50
Sony DSC-T77 Sony NEX-5TL

Subset 2
Apple iPad Air 2 Blackberry Leap Apple iPhone 5c Canon Ixus70
Agfa DC-733s Canon PC1234 Agfa DC-830i Canon G10
Canon SX400 IS Canon T4i Fujifilm XP80 Fujifilm J50
HTC One M7 Kodak C813 Kodak M1063 LG Nexus 5
Motorola Nexus 6 Nikon D70 Nikon D7000 Nokia Lumia 920
Olympus TG-860 Panasonic TS30 Pentax OptioW60 Samsung Note3
Samsung Note5 Samsung S3 Samsung S5 Samsung S7
Sony A6000 Sony DSC-W170

Subset 3
Agfa DC-504 Canon Ixus55 Agfa Sensor505x Canon A640
Canon Rebel T3i LG Optimus L90 LG Realm Nikon S3700
Nikon D3000 Olympus 1050SW Samsung Lite Samsung Nexus
Samsung Note2 Samsung S6 EdgeSony DSC-T70

Table 7.1: Camera models used for training and evaluation. Camera models in blue come from the
Dresden dataset [81]. Subset 1 is used during the first training phase. Subset 1 and 2 are used during
the second training phase. Subset 3 is used for evaluation.

7.2.4 Training procedure

The system is trained in two phases. In the first phase, the feature extractor is trained by
adding a fully connected layer with softmax activation. The feature extractor is trained as
a source camera classifier, using image patches with associated labels corresponding to their
source camera model. Research indicates that the deep features associated to camera model
classification provide a good starting point for several forensics tasks [164]. The authors use
a cross-entropy loss, optimized using stochastic gradient descent for 30 epochs, with batches
of 50 images. Initially the learning rate is set to 0.001, and is halved every three epochs. The
authors train two versions of the feature extractor: one using 128× 128 patches and another
one using 256× 256 patches.

During the second training phase, the similarity network is trained to target a specific task.
Here, the task is to determine if two image patches come from the same camera model, but
it could be to determine a specific editing operation or a specific parameter given an editing
operation. The labels in the training dataset are assigned accordingly: 0 indicates that the

118

7.3. Experiments

patches come from the same camera model, and a 1 indicates they come from different ones.
During this phase, the weights of the feature extractor are fine-tuned, i.e. they are also updated
to better fit the particular task. The similarity network is trained using stochastic gradient
descent with cross-entropy loss for 30 epochs. The learning rate is initialized to 0.005, and
then is halved every three epochs.

During the first training phase, the feature extractor is trained using 40,000 randomly
sampled image patches from each of the camera models in Subset 1, giving a total of 2,000,000
image patches. During the second training phase, the similarity network is trained and the
feature extractor weights are updated using a training dataset of pairs of image patches. This
dataset is constructed using camera models in Subset 1 and Subset 2.

7.2.5 Demo

The goal of the method is to determine if a pair of images have been captured by the same
camera model or not. It takes as input three images: a reference image, and two test images
that will be compared to the reference one. To perform image-wise comparison built upon the
patch comparison provided by the forensic similarity approach, the user is required to choose
the number of randomly chosen patch-to-patch comparisons (ranging from 100 to 700) to be
considered. The user can also decide if these patches are taken with overlap (half of the patch
size) or not. Finally, the user can decide the patch size, being 128 and 256 the two available
options.

The output of the demo is an interactive histogram showing the forensic scores obtained
for each patch-to-patch comparison, for both image comparisons. By moving the mouse over
the histogram, the user can recover the bins bounds as well as the count that corresponds to
each bin. The user can also zoom in different sections of the histogram to better visualize the
results.

7.3 Experiments

In this section we show several experiments conducted using the demo. The images used
come from the Vision dataset [193] and the Forchheim dataset [93]. Notice that none of these
datasets were used for training: all the images used for these experiments are new to the
network.

To assess the performance of the forensic similarity approach, we designed three different
experiments with different challenging scenarios. In the first experiment we test the approach
using images coming from camera models that were used for training. In the next experiment
we compare images coming from known models to images coming from unknown ones. Finally,
we test the forensic similarity approach on pairs of camera models that are unknown to the
network.

All the experiments were conducted using the default parameters values. Namely, the
number of patch-to-patch comparisons is 300, the size of the patches is set to 256 and the
patches are taken without overlap.

7.3.1 Known camera models

Figure 7.3 shows the results obtained when applying the forensic similarity approach for source
camera comparison for images taken with camera models that are known to the network.
Namely, for this experiment we use camera models that are included in Subset 1 and Subset
2 (see Table 7.1).

119

Chapter 7. Analysis of the Forensic Similarity Approach for Source Camera
Model Comparison

We observe that, when faced to known camera models, the similarity scores between images
coming from the same camera model concentrate around 1. Furthermore, the similarity scores
obtained when comparing images coming from different camera models concentrate around 0,
except for the case in which iPhone 6 is compared to iPhone 6s. This might be mainly due to
the fact that these two devices share similar processing pipelines. In this case we observe that
the similarity scores wrongly concentrate around 1. However, it can be also noticed that the
non-matching histogram exhibits a thicker tail than the matching one.

Reference image Test image 1 Test image 2 Histogram

Apple iPhone 6s Apple iPhone 6s LG G3 Similarity scores

Samsung S5 Samsung S5 Samsung S3 Similarity scores

Apple iPhone 4 Apple iPhone 4 Apple iPhone 4s Similarity scores

Apple iPhone 6s Apple iPhone 6s Apple iPhone 6 Similarity scores

Figure 7.3: Results of the forensic similarity approach applied to source camera comparison when images
under test come from camera models used during training.

7.3.2 Known and unknown camera models

Figure 7.5 shows the results obtained when applying the forensic similarity approach for source
camera comparison, to test images taken with camera models that are known to the network
against images from camera models that were not used for training. Namely, for this experiment
we test camera models that are included in Subset 1 and Subset 2 (see Table 7.1) against
camera models that are not part of them.

120

7.3. Experiments

Under this setting the results are more heterogeneous. The network is able to distinguish
images coming from iPhone 6s from those coming from Huawei P9 Lite as well as those
coming from Samsung S3 Mini and Samsung S3. When comparing iPad Mini to iPhone 4,
the network also delivers similarity scores close to 0. However, the network is not able to
identify two images taken with iPad Mini as having similar forensic traces. On the other hand,
the results obtained when comparing Samsung S5 and Sony Xperia E5, the histogram shows
that the patch-to-patch similarity scores seem uniformly distributed over the [0, 1] interval,
therefore preventing from taking any conclusion about their forensic similarity.

Reference image Test image 1 Test image 2 Histogram

Apple iPhone 6s Apple iPhone 6s Huawei P9 Lite Similarity scores

Samsung S5 Samsung S5 Sony Xperia E5 Similarity scores

Apple iPad Mini Apple iPad Mini Apple iPhone 4 Similarity scores

Samsung S3 Samsung S3 Samsung S3 Mini Similarity scores

Figure 7.4: Results of the forensic similarity approach applied to source camera comparison, when
comparing images coming from camera models used during training to images from camera models
unknown to the network.

7.3.3 Unknown camera models

Figure 7.5 shows the results obtained when applying the forensic similarity approach for source
camera comparison to test images taken with camera models that are unknown to the network.

121

Chapter 7. Analysis of the Forensic Similarity Approach for Source Camera
Model Comparison

Namely, in this experiment we consider camera models that are not included in Subset 1 or
Subset 2 (see Table 7.1).

In this challenging scenario, we observe degraded results with respect to the previous
experiments. Indeed, camera models showing good results for matching images (Motorola Z2
Play and Huawei P9 Lite), the mismatching results are incorrect. On the contrary, the devices
delivering good results when compared to a different camera model (Google Pixel 3 and Sony
Xperia E5), fail at identifying matching images.

Reference image Test image 1 Test image 2 Histogram

Huawei P9 Lite Huawei P9 Lite Huawei P20 Lite Similarity scores

Sony Xperia E5 Sony Xperia E5 Wiko Lenny 2 Similarity scores

Google Pixel 3 Google Pixel 3 Google Nexus 5 Similarity scores

Motorola Z2 Play Motorola Z2 Play Motorola G8 Plus Similarity scores

Figure 7.5: Results of the forensic similarity approach applied to source camera comparison, when
comparing images coming from camera models that were not used for training.

7.4 Conclusion

In this Chapter we explored the use of the forensic similarity approach (Chapter 5) for source
camera model comparison. Such an approach aims at determining whether two image patches
share the same forensic traces or not. In addition, we provide an online demo at:
hhttps://ipolcore.ipol.im/demo/clientApp/demo.html?id=424. The method seems to be ef-

122

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=424

7.4. Conclusion

fective when, at least on of the images, comes from a camera model used during training.
Still, there are some exceptions to this, such as when comparing images coming from Apple
iPhone 6 and Apple iPhone 6s. This example points to critical point: even if these are different
mobile models, is this enough to guarantee that the cameras are not the same? Besides this,
the method seems not to generalize correctly to unseen camera models.

123

Esta página ha sido intencionalmente dejada en blanco.

Chapter 8

Photo-response non-uniformity

The problem of detecting the presence of a PRNU pattern in a query image can
be stated as a hypothesis testing problem. The test statistics that have been
proposed to perform this test all suffer from the same drawback: decision thresh-
olds need to be set empirically. This poses a major problem for source camera
certification, since these methods do not provide an accurate false alarm rate for
each detection but rather a lower bound related to the size of the dataset used
to derive such thresholds. In this chapter, we propose an alternative approach
for source camera certification that can be used together with the classic testing
strategies. Our method relies on two hypothesis tests based on local correlations
which do not require computing empirical distributions. The p-value of the test
serves is a statistically founded confidence measure that can serve as certification.
Our results show that in most cases, the PRNU true detections give almost ab-
solute guarantees, with p-values smaller than 10−100, while most true negatives
deliver p-values above 10−1.

The work presented in this chapter is published as PRNU-based source camera
statistical certification in the IEEE International Workshop on Information Foren-
sics and Security (WIFS) 2023 [75].

8.1 Introduction

Digital cameras are equipped with sensors that count the number of incident photons and
output the corresponding voltage. The two main technologies used in camera sensors, CCD
and CMOS, are both two-dimensional arrays of photosensitive cells, each corresponding to a
pixel. Due to physical imperfections, digital sensors leave unique traces in the image which
can be used for several forensics tasks.

One of these traces is the photo response non-uniformity (PRNU) pattern. It is caused
by a non-uniform response of each pixel to the same amount of incoming photons, due to
manufacturing imperfections. In contrast to other sources of noise, the PRNU pattern is
deterministic, and it is systematically present in every image captured with a given sensor.

Since each sensor array produces a unique PRNU pattern, it can be considered as a device
fingerprint [151]. This observation has led to several forensic applications: source camera
identification [31, 151], image and video forgery detection [31, 121, 170], scanner identi-
fication [82, 115] - even CT scanners [116] -, deepfakes and computer generated graphics
detection [150, 167], and profile linking [18].

In this work we are interested in digital source camera authentication. Given an image and

Chapter 8. Photo-response non-uniformity

a camera, we want to certify if the image was taken with the camera in question. To address
this problem, we assume that the camera, or at least a certain amount of images acquired with
it, are available.

The standard procedure to estimate the PRNU of a given camera is to average the noise
residuals of a certain amount of images captured by said camera [31, 129, 151]. The noise
residuals are generally extracted using a denoising filter [31, 46, 136, 151]. Since these noise
residuals contain other types of noise and random variations in addition to the fixed PRNU,
these residuals are averaged to suppress the random variations and enhance the fixed pattern
that is present in all of them. This fixed pattern can be then refined to discard non-unique
artifacts that are not part of the PRNU.

Once the PRNU pattern is estimated, the problem of source camera identification consists
in determining if the PRNU pattern is present in the query image or not. This problem can be
stated as a statistical hypothesis testing problem, with the null hypothesis corresponding to the
absence of a tested PRNU pattern, and the alternative its presence [31, 83]. The test statistic
used to decide between one alternative or the other is usually a correlation metric [83, 151].
This kind of metric provides a measure of the presence of the PRNU of the camera in the
given image. By comparing the observed test statistic to a pre-fixed threshold that depends
on the significance level at which the test is performed, one can conclude if the query image
was taken with the camera under investigation or not.

PRNU analysis for source camera identification delivers robust results that are, furthermore,
stable over time [84, 151]. Its reliability has led to its acceptance as court evidence. Indeed,
PRNU-based source camera identification has passed the Daubert standard [123]. In order to
be admissible in court, a scientific technique is required—among other conditions—to provide
an error rate. This condition aims at enforcing methods delivering statistically validated results.

A major drawback, shared by all the test statistics proposed for PRNU detection, is that
their distribution needs to be determined empirically by analyzing the behaviour of a given
camera’s PRNU pattern with respect to images acquired using the same device and to images
acquired with a different device. This poses a major problem for source camera certification
since these methods do not provide an accurate false alarm rate for each detection, but rather
a lower bound related to the size of the dataset used to derive such thresholds.

In this section, we propose an alternative strategy for source camera certification that can
be used in conjunction with the classic testing approaches. Our method relies on two hypothesis
tests based on local correlations that do not require computing empirical distributions. For
each detection, we provide the p-value of the test as a confidence measure. As shown in
Figure 8.1, in most cases PRNU true detections are almost absolute, with p-values smaller
than 10−100. On the other hand, most true negatives deliver p-values above 10−1.

8.2 Related work

8.2.1 PRNU estimation

There are two key choices in the PRNU estimation procedure: the choice of the denoising filter
used to extract the noise residuals, and the residuals merging procedure.

Early methods [31, 151] are built on a wavelet-based denoising filter. Namely, both works
by Chen et al. and Lukas et al. use the Mihcaks filter [166] to extract the noise residual of each
image. With the development of new and more sophisticated denoising algorithms, subsequent
works, such as [136] and [46], proposed to modify the original algorithm by choosing another
denoising filter. In this sense, the performance of methods such as BM3D [51] and the Argenti

126

8.2. Related work

Matching test Mismatching test

100 80 60 40 20 0
log10(p-values)

0

100

200

300

400

500

co
un

t

Matching test: histogram of p-values K-S test on ranks - orig

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

10

20

30

40

50

co
un

t

Mismatching test: histogram of p-values K-S test on ranks - orig

detected
not detected

Figure 8.1: Histograms of the log
10
(p−values) obtained with the Kolmogorov-Smirnov test on the

uniformity of the ranks. The histogram in the left corresponds to the matching test and the one on
the right to the mismatching test in the native resolution images from Forhheim dataset [93]. The
matching histograms are truncated in -100 and, therefore, all the p-values below this bound contribute
to this bin. We observe that the proposed approaches deliver very significant detections. Furthermore,
the p-values obtained for the mismatching test are mostly above 10−1.

filter [7] were tested. These results suggest that BM3D slightly outperforms the previous
formulation of the algorithm but with a much higher computational cost.

Other denoising techniques such as context adaptive interpolation [111, 217], adaptive
spatial filtering [44], content adaptive guided image filtering [231] and the total variation
filter [79] were also addressed in the literature. Furthermore, the use of CNN denoisers such
as DnCNN [235], FFDNet [236], DANet [228] and ADNet [208] for PRNU extraction has also
been proposed [233]. In this case, denoisers need to be specifically trained for the task.

The simplest merging method consists in averaging the noise residuals [151]. Chen et
al. [31] proposed to estimate the PRNU using a maximum likelihood estimator (MLE), which
takes into account the fact that PRNU is a multiplicative factor. Lawgaly et al. [129] point
out that the noise variance changes from one image to another depending on the lighting
conditions and camera settings. They therefore propose to perform a weighted average of the
noise residuals.

Regardless of the choice of the denoiser and the averaging procedure, the estimated pat-
tern does not only contain the PRNU pattern but also other non-unique artifacts that are
systematically present in every image. These artifacts cannot be used for source camera iden-
tification since they might be shared between several devices. To further refine the estimation,
several enhancement techniques have been proposed. Chen et al. [31] suggested removing
them by performing two operations: removing the linear pattern and using a Wiener filter in
the Fourier domain. Other enhancing techniques such as the phase-only operation [110] and
spectrum equalization [141] have also been proposed. However, according to a systematic
evaluation [2], the only post-processing technique that yields significant improvements is the
removal of shared components suggested by [31].

8.2.2 PRNU detection

Once the PRNU pattern P is extracted, the problem of detecting its presence in a given image
is formulated as a hypothesis test where the null hypothesis is its absence and the alternative
its presence. A test statistic is needed in order to perform the statistical test.

The pioneer work of Lukas et al. [151] used the Pearson correlation between the estimated

127

Chapter 8. Photo-response non-uniformity

pattern P and the noise residual R extracted from the query image as a test statistic:

ρ(P,R) =
(P − P) · (R−R)

||P − P ||||R−R|| , (8.1)

where the over-line denotes the mean value. After attempting to model theoretically the
distribution of this test statistic, they conclude that the only feasible solution is to set the
decision threshold empirically.

Chen et al. [31] pointed out that textures and denoising imperfections may affect the
detection of the PRNU in the noise residuals. The authors constructed a correlation predictor
that takes into consideration these observations. Some modern approaches to this construction
have also been addressed in the literature [27]. Liu et al. [145] followed the same approach
but instead of using the whole image to compute the correlation, they choose to use only the
blocks having the highest signal-to-noise ratio, where the signal here refers to the PRNU.

The Pearson correlation coefficient presents an important limitation: with the presence
of non-unique artifacts, its value raises and produces false positives. To address this issue,
Goljan [83] proposed to use the peak-to-correlation energy (PCE), which suppresses the effect
of periodic patterns,

PCE (P,R) =
ρ2(speak;P,R)

1
mn−|N|

∑

s ̸∈N
ρ2(s;P,R)

, (8.2)

where the correlation coefficient ρ(s;P,R) is computed at the spatial shift s = (s1, s2),
speak = argmax ρ(s;P,R), N is a square neighborhood around speak and (m,n) is the size
of image.

Still, with this measure the information about the sign of the correlation is lost. To preserve
it, a signed version of the PCE can be used instead:

sPCE (P,R) =
ρ2(speak;P,R)× sign(ρ(speak;P,R))

1
mn−|N|

∑

s ̸∈N
ρ2(s;P,R)

, (8.3)

or, equivalently, the correlation over circular cross-correlation norm (CCN) introduced by Kang
et al. [110],

CCN (P,R) =
ρ(speak;P,R)

√

1
mn−|N|

∑

s ̸∈N
ρ2(s;P,R)

. (8.4)

These metrics are more robust to the presence of non-unique periodic patterns. How-
ever, decisions thresholds remain empirical. Indeed, despite the theoretical development done
in [84], the authors found that the data did not follow the theoretical distribution. Therefore,
they ended up computing decision thresholds empirically. They found that a threshold of 60
guaranteed a false alarm rate of 10−6. However, this threshold depends on the JPEG-quality
of the images [85].

8.3 New source camera statistical certification

PRNU analysis has shown an exceptional performance for source camera identification and has
even been admitted as scientific evidence in court rooms. However, as reviewed in Section 8.2.2,
PRNU detection metrics are unable to deliver accurate false alarm rates for each detection.

128

8.3. New source camera statistical certification

0 1000 2000 3000 4000 5000
ranks

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

co
un

t

Histogram of ranks (D08_img_orig_0065)

0 1000 2000 3000 4000 5000
ranks

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

co
un

t

Histogram of ranks (D07_img_orig_0115)

Matching Mismatching

K-S uniformity test K-S uniformity test

p-value: 1.70× 10−265 p-value: 0.257

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0

2

4

6

8

10

12

14

16
Histogram of correlations (D07_img_orig_0115)

(B , B)
(B , B)

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Histogram of correlations (D08_img_orig_0065)
(B , B)
(B , B)

Matching Mismatching

K-S two samples test K-S two samples test

p-value: 2.24× 10−262 p-value: 0.307

Figure 8.2: Top: histograms of ranks of an image containing the PRNU pattern (left) and of an image
which does not (right). In the matching case, the density is higher for larger rank values. On the
contrary, for the mismatching case, the ranks follow an uniform distribution. Bottom: normalized
histograms of correlations. In green {ρ(BI

i , B
P
i) : i = 1, . . . ,K} and {ρ(BI

i , B
P
j) : j ̸= i} in red. The

left plot corresponds to an image containing the PRNU pattern and the right one to an image that
does not contain it. For the matching case, the mode of the green histogram is bigger than the one of
the red histogram. On the other hand, in the non-matching case both histograms coincide.

Our proposed testing approach does not require the construction of such a dataset to
model the test statistics under the null hypothesis. Instead, we learn a stochastic background
model from the image itself. Our approach can help certify most of the results given by the
classic metrics, but without the need for empirical thresholds.

Let I be a probe image and P the PRNU pattern extracted from the candidate source
camera C. We want to determine whether the image I was taken with camera C or not. Our
null hypothesis is that image I was not taken with camera C and hence, the PRNU pattern
P is not present:

H0) P is not present in I,

H1) P is present in I.
(8.5)

for testing, we consider bI1, . . . , b
I
K blocks without overlap of size W ×W extracted from

129

Chapter 8. Photo-response non-uniformity

the noise residual of image I and bP1 , . . . , b
P
K , W ×W blocks without overlap extracted from

the PRNU pattern, where W is a fixed hyperparameter. For a given correlation metric ρ and

for each block bIi , we compute its correlation ρ
(

bIi , b
P
j

)

with bPj for j = 1, . . . ,K.

If C is the source camera of I, for each bIi we expect to observe that ρ(bIi , b
P
i) exhibits

higher values than ρ(bIi , b
P
j) for j ̸= i. Conversely, if C is not the source camera, the behaviour

of ρ(bIi , b
P
i) should be similar to that of ρ(bIi , b

P
j) for j ̸= i.

We propose two testing approaches to capture this effect. The first is based on the rankings
of the correlations ρ(bIi , b

P
i) with respect to the rest of the correlations ρ(bIi , b

P
j), j ̸= i. The

second consists in directly comparing the distribution of the correlations ρ(bIi , b
P
i) to the rest.

Here we have focused on the case where there is no shift between the PRNU pattern and
the image. However, the proposed approach can be adapted to shifted images by searching
for the offset parameter for which the correlations deviate from the background model.

8.3.1 Tests based on ranks

For each block bI1, . . . , b
I
K in the image’s residual consider the variables rI1, . . . , r

I
K defined as

the rank of ρ(bIi , b
P
i) amongst all the correlations ρ(bIi , b

P
j) for j = 1, . . . ,K, in ascending

order. Under the null hypothesis, rI1, . . . , r
I
K follow a discrete uniform distribution with val-

ues 1, . . . ,K. However, if the PRNU pattern is present, rI1, . . . , r
I
K , will concentrate more

probability in the higher values. This situation is depicted in Figure 8.2 (top). Following this
observation, we can reframe the hypothesis test 8.5 as:

H0)FrI1 ,...,r
I
K
= FU [{1,...,K}],

H1)FrI1 ,...,r
I
K
< FU [{1,...,K}],

(8.6)

where F is the cumulative distribution function and U [{1, . . . ,K}] corresponds to a discrete
uniform distribution with values 1, . . . ,K. Note that the alternative hypothesis captures only
the case where the deviation from uniformity comes from a probability concentration on high
rank values. The one-tailed nature of this test delivers lower p-values than with two-tailed
tests.

To perform this hypothesis test there are several alternatives. Here we use one of them:
the classic one-sided Kolmogorov-Smirnov test. This test compares the two distributions in
Equation 8.6 with a statistics based on the supremum distance.

Figure 8.2 shows the p-values obtained with the proposed test. It accurately detects the
deviations from uniformity and, therefore, detects the presence of the PRNU pattern. On the
other hand, the test is not able to reject H0, which is consistent with the fact that these ranks
come from an image that does not contain the tested PRNU pattern.

8.3.2 Tests on the correlation distributions

The second approach we developed consists in establishing a background model for the non-
matching correlations. To do so, we consider the correlations {ρ(bIi , bPj) : j ̸= i}. This
framework shares the same idea as previous approaches where the distributions of the corre-
lations under H0 were computed empirically but, instead of using images from other devices,
we construct this background model from the image itself.

Once the background distribution is established, we compare it to the distribution of
{ρ(bIi , bPi) : i = 1, . . . ,K}. We expect both distributions to be the same for the non-matching
case whereas, for the matching case, {ρ(bIi , bPi) : i = 1, . . . ,K} should present higher values.
This situation is depicted in Figure 8.2 (bottom). For the matching case, we observe that

130

8.4. Experimental analysis

sPCE K-S uniformity test K-S two-samples test

F
or

ch
h
ei

m
D

at
as

et
Native 646 74 645 75 646 74

Twitter 579 141 596 124 590 130

Telegram 263 457 272 448 262 458

WhatsApp 260 460 248 472 243 477

Facebook 32 688 26 694 25 695

Instagram 21 699 17 703 16 704

V
IS

IO
N

D
at

as
et Native 7007 405 7059 353 7057 355

Facebook Highh 6948 617 6911 654 6885 680

Facebook Low 4456 3109 4384 3181 4280 3285

WhatsApp 7139 426 7194 371 7182 383

Table 8.1: True positives (TP) and false negatives (FN) for each method on each social media dataset
when setting a threshold of 60 on the sPCE and its equivalent p-value threshold of 10−6 on the p-values
of the proposed testing approaches.

the distributions are visibly different. In contrast, for the non-matching case, the distributions
behave similarly.

To test whether {ρ(bIi , bPj) : j ̸= i} and {ρ(bIi , bPi) : i = 1, . . . ,K} behave similarly we
perform a Kolmogorov-Smirnov test with two samples. The hypothesis are:

H0)F{ρ(bIi ,b
P
j):j ̸=i} = F{ρ(bIi ,b

P
i):i=1,...,K},

H1)F{ρ(bIi ,b
P
j):j ̸=i} > F{ρ(bIi ,b

P
i):i=1,...,K}.

(8.7)

This test measures the distance between the two cumulative distribution functions using
the supremum distance. Instead of using a theoretical distribution as we did before, we are
comparing two empirical distributions.

In Figure 8.2 (bottom) we present the p-values obtained with this Kolmogorov-Smirnov
test. Note that this test is able to accurately detect the deviations from one distribution to
the other in the case shown in the left. However, the test on the right does not reject H0.

8.4 Experimental analysis

8.4.1 Datasets.

To test the performance of the proposed PRNU detection testing approaches we used the
Forchheim Dataset [93] and the VISION dataset [193]. Both datasets include different qualities:
not only the native resolution images is available but also their social media versions.

In the case of the Forchheim Dataset [93], the available social media versions are Facebook,
Twitter, Telegram, WhatsApp, and Instagram. In the case of the VISION Dataset [193], the
available social media versions are WhatsApp, Facebook (low) and Facebook (high).

131

Chapter 8. Photo-response non-uniformity

Native WhatsApp Instagram Telegram Twitter Facebook

W 48 96 128 48 96 128 48 96 128 48 96 128 48 96 128 48 96 128

K-S test on ranks 645 645 647 275 248 253 16 17 14 285 272 264 595 596 593 30 26 25

K-S test on corrs 645 646 645 274 243 243 14 16 12 279 262 255 593 590 592 30 25 24

Table 8.2: True positives (TP) for each testing approach on each social media from the Forchheim
dataset [93] when varying the size of the blocks W ×W used to compute the local correlations.

8.4.2 PRNU estimation.

To estimate the PRNU patterns we followed the well-known method proposed by Chen et
al. [31]. In their work, they use a maximum likelihood estimator (MLE) to extract the PRNU
residuals from a certain amount of noise residuals of images captured by the said camera.To
extract the noise residuals the authors use the Mihçak’s filter [166].

For the Forchheim dataset, we estimated the PRNU pattern using 50 reference images
selected as having the same image orientation (portrait). For social networks, we used the
version of the reference images that corresponded to the media.

The VISION dataset has flat images of each device. These images were used to extract the
PRNU. However, they are only available at the native resolution. For the social media versions,
we proceeded as for the Forchheim dataset, by selecting 50 reference images to estimate the
PRNU pattern.

8.4.3 Matching and Mismatching tests.

With the estimated PRNU patterns, we conducted matching and mismatching tests. The
matching test consisted in comparing the estimated PRNU patterns to the single-image PRNU
patterns extracted from images coming from the same device and same social network. For the
Forchheim dataset, the matching test was conducted on 30 images randomly chosen amongst
those that were not used for PRNU estimation. For the VISION dataset, we used for each
device all the images not used to extract the reference pattern. The number varies for each
device.

The mismatching test consisted in comparing the estimated PRNU patterns to the single-
image PRNU patterns extracted from images coming from different devices and same social
network. For the Forchheim dataset, we designed a more challenging mismatching test by
choosing 30 test images amongst devices of the same brand. For the VISION dataset, we
randomly selected the same number of images used in the matching test but from other
devices than the one under analysis. In both cases these images were selected amongst those
that were not used to extract the PRNU pattern.

8.4.4 Performance assessment.

To assess the performance of the testing approaches presented in Section 8.3, we used the
sPCE metric (Equation 8.3), which is the preferred test statistic in source camera identification
applications [2].

For each query image, we tested the possible rotations that aligned the image orientations
and kept the highest sPCE score and the smallest p-value for each test. Since there is no shift

132

8.4. Experimental analysis

K-S uniformity test on ranks K-S 2-samples test on correlations

Matching test Mismatching test Matching test Mismatching test

Forchheim dataset

N
a
ti
v
e

100 80 60 40 20 0
log10(p-values)

0

100

200

300

400

500

co
un

t

Matching test: histogram of p-values K-S test on ranks - orig

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

10

20

30

40

50

co
un

t

Mismatching test: histogram of p-values K-S test on ranks - orig

detected
not detected

100 80 60 40 20 0
log10(p-values)

0

100

200

300

400

500

co
un

t

Matching test: histogram of p-values K-S test on corrs - orig

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

10

20

30

40

co
un

t

Mismatching test: histogram of p-values K-S test on corrs - orig

detected
not detected

W
h
a
ts

a
p
p

100 80 60 40 20 0
log10(p-values)

0

20

40

60

80

100

120

co
un

t

Matching test: histogram of p-values K-S test on ranks - whatsapp

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

10

20

30

40

50

60
co

un
t

Mismatching test: histogram of p-values K-S test on ranks - whatsapp

detected
not detected

100 80 60 40 20 0
log10(p-values)

0

20

40

60

80

100

120

co
un

t

Matching test: histogram of p-values K-S test on corrs - whatsapp

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

10

20

30

40

50

co
un

t

Mismatching test: histogram of p-values K-S test on corrs - whatsapp

detected
not detected

VISION dataset

N
a
ti
v
e

100 80 60 40 20 0
log10(p-values)

0

1000

2000

3000

4000

5000

6000

7000

co
un

t

Matching test: histogram of p-values K-S test on ranks - VISION

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

100

200

300

400

500

co
un

t

Mismatching test: histogram of p-values K-S test on ranks - VISION

detected
not detected

100 80 60 40 20 0
log10(p-values)

0

1000

2000

3000

4000

5000

6000

7000

co
un

t

Matching test: histogram of p-values K-S test on corrs - VISION

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

100

200

300

400

co
un

t

Misatching test: histogram of p-values K-S test on corrs - VISION

detected
not detected

F
a
c
e
b
o
o
k

L
o
w

100 80 60 40 20 0
log10(p-values)

0

200

400

600

800

1000

1200

1400

co
un

t

Matching test: histogram of p-values K-S test on ranks - VISION_FBL

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

100

200

300

400

500

600

700

co
un

t

Mismatching test: histogram of p-values K-S test on ranks - VISION_FBL

detected
not detected

100 80 60 40 20 0
log10(p-values)

0

200

400

600

800

co
un

t

Matching test: histogram of p-values K-S test on corrs - VISION_FBL

detected
not detected

6 5 4 3 2 1 0
log10(p-values)

0

100

200

300

400

co
un

t

Misatching test: histogram of p-values K-S test on corrs - VISION_FBL

detected
not detected

Figure 8.3: Histograms of the log
10
(p−values) obtained in the matching and mismatching tests in the

Forchheim dataset (Native and WhatsApp) and in the VISION (Native and Facebook Low) dataset [193],
for each testing approach. The matching histograms are truncated in -100 and, therefore, all the p-
values below this bound contribute to this bin. We observe that the proposed approaches deliver very
significant detections for all the image versions. Furthermore, the p-values obtained for the mismatching
test are far from the 10−6 threshold, most of them are even above 10−1.

between images, in the sPCE computation speak was directly set to (0, 0). We used blocks of
size 96× 96 and, as correlation metric, the correlation coefficient defined in Equation 8.1.

To assess the performance of the proposed methods, we established a threshold of 60
for the sPCE as done in [84]. According to the authors, they tested 1,024,050 mismatching
images and got a maximum sPCE value of 57. Therefore, they conclude that a threshold of
60 guarantees a false alarm rate smaller than 10−6. Hence, we could set a p-value threshold
of 10−6 in our methods for a fair comparison.

When setting such thresholds, none of the methods deliver false detections in any of the
datasets. This means that none of the images in the mismatching test is wrongly detected as
having each tested PRNU pattern. This result is consistent with the threshold set on the false
alarm rate.

Regarding the matching test, the results when setting these thresholds are shown in Ta-
ble 8.1. Firstly, we observe that the percentage of detections is smaller in all the social media
versions of the images, than the one obtained with its native resolution. Also, we observe that

133

Chapter 8. Photo-response non-uniformity

both Kolmogorov-Smirnov tests reach a similar performance, with slightly better results with
the Kolmogorov-Smirnov uniformity test on ranks.

The proposed approach and the sPCE statistic perform similarly. In some cases, such
as the WhatsApp, Instagram and Facebook images from the Forchheim dataset and both of
the Facebook versions of the VISION dataset, the sPCE metric delivers more detections than
our approaches. This does not mean that our tests do not work but rather that the level of
confidence of those detections are above the threshold of 10−6.

On the other hand, our approach gains some detections that are missed with the classic
test statistics. Such is the case of Twitter and Telegram images from the Forchheim dataset
and the native and WhatsApp images from the VISION dataset.

The key point of our testing approach is that we can obtain the false alarm probability—by
means of the p-value—for every detection. Indeed, the magnitude of the sPCE, whenever
bigger than 60, only tells us that the false alarm rate associated with the detection is smaller
than 10−6. However, we are left in the ignorance of the exact false alarm rate corresponding
to the observed value. By computing the p-value, we directly obtain the false alarm probability
of each detection.

Figure 8.3 shows the histograms of the log10(p-values) obtained in the Forchheim dataset
(Native and WhatsApp) and in the VISION (Native and Facebook Low) dataset [193], for
each testing approach.

Besides the possibility of setting a threshold and obtaining a binary classification, we can
also compute the false alarm rate associated to each detection which, in many cases, exceeds
the settled threshold, making the detection more meaningful. The number of detections (see
Table 8.1), as well as their meaningfulness, decrease when considering social medias that
degrade image quality.

Regarding the mismatching test, the p-values obtained are far from the 10−6 threshold,
most of them are even above 10−1. Furthermore, this observation is not nuanced when
considering the social network versions of the images. Indeed, even for these cases mismatching
images deliver high p-values, far from the settled threshold.

8.4.5 Empirical check of the probability of false alarm.

So far we have presented the theoretical guarantees given by the proposed approach. Still, it is
important to check if such theoretical probabilities of false alarm actually match the empirical
ones. Figure 8.4 presents the empirical false alarm rates, plotted against the theoretical ones.
We observe that, though empirical false alarm rates are bigger than the theoretical ones, this
difference seems to be constant regardless the magnitude of such probabilities. We conclude
that, despite that the actual theoretical value does not match the empirical probabilities, they
do match in terms of order of magnitude.

8.4.6 Influence of the block size.

The proposed testing approaches have one hyperparameter, W , which sets the size of the
blocks (W ×W) used to compute the local correlations. The bigger these blocks are, the
more reliable the correlation estimation is. Conversely, the smaller it is, the more samples
needed to perform the Kolmogorov-Smirnov test.

The results on the Forchheim dataset when varying the block size are presented in Table 8.2.
While PRNU detection on native resolution images works better using bigger block sizes, the
performance on social networks is better when using smaller blocks. Also, when using blocks
of size 48× 48 on WhatsApp images the proposed approach outperforms sPCE (Table 8.1).

134

8.5. Conclusion

VISION - Native

K-S uniformity test K-S two samples test

VISION - Facebook Low

K-S uniformity test K-S two samples test

Figure 8.4: Empirical false alarm rates plotted against the theoretical ones for VISION dataset in
both, Native and Facebook Low resolutions. We observe that, though empirical false alarm rates are
bigger than the theoretical ones, this difference seems to be constant regardless the magnitude of such
probabilities.

These results suggest that a multi-testing approach where several block sizes are consid-
ered or an adaptive block size that depends on the image size could improve the proposed
approaches. This path will be pursued in future works.

8.5 Conclusion

We presented a new testing framework for PRNU detection in source camera certification tasks.
These tests are constructed on local correlations between the query image noise residual and
the PRNU extracted from the suspected camera. We presented a way of modeling the ranks of
these correlations and a background model for the correlations themselves that can be learnt
from the image itself. We showed that our approach complements the classic testing statistics
by associating a very informative confidence measure with detections and rejections. In some
cases a PRNU presence was detected in images that were missed by the previous existing
methods.

135

Esta página ha sido intencionalmente dejada en blanco.

Part III

Counter-forensics

Chapter 9

A study of CamTE: a Camera Trace
Erasing Network

As pointed out in Part I and Part II, camera traces - though imperceptible to the
naked eye - play a crucial role in various forensic tasks. However, nothing prevents
people to cover-up these traces in order to deceive such methods. Understanding
the boundaries of forensic analysis is crucial so that efforts are made to surpass
them. In the article “Camera Trace Erasing", Chen et al. propose a Siamese Trace
Erasing method aiming at extracting those traces. In order to do so, the authors
design a novel hybrid loss for network training. This hybrid loss defined as a
combination of three different losses: the embedded similarity loss, the truncated
fidelity loss and the cross-identity loss. In this section we briefly explore the
method and its results.

This work is accepted for publication as SiamTE: Siamese Trace Erasing for cam-
era trace extraction on IPOL. We also offer an online demo for anyone to test their
own images: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000443.

9.1 Introduction

The traces left throughout the image formation process (see Chapter 2) encode information
about the camera processing chain. These cues play a crucial role in various forensics tasks,
such as forgery detection (see Part I) and source camera characterization (see II). However,
nothing prevents people to cover-up these traces in order to deceive methods based on camera
traces. Understanding the boundaries of forensic analysis is crucial so that efforts are made to
surpass them.

Counter-forensics emerged as the research domain that challenges digital forensics and
methodically investigates its limitations [22]. In the article “Camera Trace Erasing", Chen et
al. propose a siamese trace erasing method aiming at extracting those traces while preserving
the image content. In order to do so, the authors design a novel hybrid loss for network
training. This hybrid loss defined as a combination of three different losses: the embedded
similarity loss, the truncated fidelity loss and the cross-identity loss. The final goal of such an
approach is to reveal the weakness of the trace-based forensic methods.

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000443

Chapter 9. A study of CamTE: a Camera Trace Erasing Network

9.2 Problem formulation

Given an image I, the authors state that we can decompose it in two components: The content
signal S and the camera trace T 1:

I = S + T. (9.1)

In order to extract the camera trace T , the goal is to find F : X → X such that F (I) = S,
where X stands for the space of all images. However, finding such F amongst all possible
functions F : X → X is not straight-forward. To do so, the authors define two properties,
related to the desired camera trace properties.

Firstly, the camera trace should be a distinctive trace of images. Let ϕ : X × X → R

be a similarity function related to camera traces, meaning that the similarity between two
images increases as the distinctive part (the camera trace) decreases. Given two camera trace
extractors F1 and F2, we say F1 is better than F2 if:

ϕ(F1(I1), F1(I2)) > ϕ(F2(I1), F2(I2)), (9.2)

for all pair of images (I1, I2) having different camera traces. The intuition behind this property
is that the better we remove the camera traces of two images captured with different camera
types, the worse the similarity function is able to distinguish them.

Secondly, we want the camera trace to be the only distinctive part. Given a pair of images
(I1, I2) having different camera traces and a camera trace extractor F , if we define SF

i = F (Ii)
and TF

i = Ii − F (Ii) for i = 1, 2, then the ideal camera trace extractor F should satisfy:

ϕ(SF
1 + TF

2 , SF
2 + TF

1) = ϕ(SF
1 + TF

1 , SF
2 + TF

2). (9.3)

This condition implies not only that the camera trace erasing method effectively removes the
camera traces but also that it does not introduce a new trace that increases the similarity.

9.3 Method

9.3.1 Architecture

The proposed camera trace erasing method is a parametric function Fθ were θ are trainable
parameters. The architecture used by the authors is based on the DDFN presented in [30] and
depicted in Figure 9.1. It consists of three modules, a feature extractor, a feature integrator
and a reconstruction block. This architecture adopts dense connections, dilated and classical
convolution layers and path-widening branches.

C
3

D
3

D
3

C
3

C C
1

C
3

D
3

D
3

C
3

C C
1

C C
1DDFN

Feature extraction Feature integration Reconstruction

C
1

C
3

D
3

D
3

C
3

C C
1

C...

Figure 9.1: Figure extracted from Figure 2 of the article [30]. Rectangular blocks denote convolutions,
being “C” the classical convolution and “D” its dilated variant. The following “1” and “3” denote the
kernel size. Circular blocks with the “C” letter denote concatenation. Each layer in DDFN (except the
last one) uses ReLU as activation function.

1It is not clear from this formulation if random noise not related to the camera is included in S or
in T .

140

9.3. Method

It is important to mention that the architecture design is not the main focus of this work.
Indeed, the authors state that the embodiment of Fθ could be addressed by other network
structures.

9.3.2 Proposed hybrid loss

In order to train the model, the authors adopt a siamese configuration with weight sharing.
Figure 9.2 depicts such a configuration in the case of two branches. However, the method can
be generalized to process an arbitrary number of images by adding more branches. The authors
also come up with a novel loss design, an hybrid loss consisting of three different losses: the
embedding similarity loss, the cross-identity loss and the truncated fidelity loss. The flowchart
of such losses is also depicted in Figure 9.2.

+

cross identity

label F (.) Ө

 L TF

 1

F (.) Ө

 I E(.)

E(.) C(.)

C(.)

+

 -

 -

 LCE

 LCElabel
 2

 1

 I 2

 L TF

 L ES

 S 1

 S 2 T 2

 T 1

CIL
+

LCE

 LCE

Figure 9.2: Figure based on Figure 3 of the article [29]. The figure depicts a simplified version of the
configuration used for training, for the case of two input images processed at the same time. First, the
two images having different labels are fed to the network. The content signal S is extracted from each
of these images. The signal contents go through a fixed embedding after which the embedding similarity
loss is computed. Together with the original image I, the extracted signals are used to compute the
truncated fidelity loss. Finally, the camera traces of each of the input images are extracted and plugged
in the other one. These synthetic images go through a fixed classification network whose outputs are
used, together with the input labels, to compute the cross-entropy loss, which is then added to the
corss-identity loss.

• Embedded similarity loss (LES).

Inspired by Equation 9.2, the authors propose the embedded similarity loss (Les). The
computation of such loss consist in, firstly, applying a fixed embedding E in a trace-
related space to the content signals extracted in a fixed trace-related space. In this
embedding space, the features are firstly normalized and then used to compute the
euclidean distance between them, as a similarity score.

• Cross identity loss (LCI).

Inspired by the property stated in Equation 9.3, the authors propose the cross-identity
loss. Suppose we have a group of G images coming from different devices. Let {Ig}Gg=1

be, together with its corresponding labels {1, . . . , G}, the input of the network during
the training phase, and let Sg = Fθ(Ig) and Tg = Ig − Sg the extracted signal content
and camera trace for image Ig, for all g = 1, . . . , G. For each g, the authors construct
the synthetic images

Igi = Si + Tg for all i = 1, . . . , G such that i ̸= g, (9.4)

141

Chapter 9. A study of CamTE: a Camera Trace Erasing Network

by plugging the traces of device g into the signal content extracted from each of the
other devices.

The goal of the cross-identity loss is to maximize the probability of Igi of being captured
by device g, for all i = 1, . . . , G such that i ̸= g.

• Truncated fidelity loss (LTF).

The two previous losses focus on extracting the camera traces while avoiding the in-
troduction of new ones. Still, none of them guarantees the preservation of the signal
content. A fidelity loss is needed in order to keep the output image similar to the in-
put one. However, the output image should not be exactly similar to the original one,
since the camera traces are to be removed. Still, the camera trace is a weak signal
with respect to the content signal. By introducing a margin T , the authors define the
truncated fidelity loss:

LTF(I) =







|I − Fθ(I)| if |I − Fθ(I)| > T

0 if |I − Fθ(I)| ≤ T
, (9.5)

where |·| stands for the Manhattan (L1) distance. An appropriate threshold T , allows to
preserve the essential manipulation required to extract the camera trace while avoiding
the potential over-manipulation in the image content.

Finally, these three losses are linearly combined to build the hybrid loss:

LH = λ1LES + λ2LTF + λ3LCI, (9.6)

where λ1, λ2 and λ3 are the weighting factors.

9.3.3 Implementation details

In this section we provide the implementation details of the embedded similarity loss (Algrithm 14)
and the cross-identity loss (Algorithm 15), as given by the authors. It is important to mention
that the training code has not been released and, therefore, it is impossible to us to verify the
correspondence between the given pseudo-codes and the actually implemented code.

In both implementations the authors use a shift operator to speed up computations. Indeed,
this shift operators enables one-to-one operations to be computed in parallel. As a consequence,
the number of sequential operations is reduced from GP2 (for non-commutative operations)
or GC2 (for commutative operations) to G − 1, where GP2 denotes G permute 2 and GC2

stands for G choose 2.

142

9.3. Method

Algorithm 14: Computation of the embedded similarity loss

Input: {Ig}Gg=1 : a group of G images with different camera traces;

Input: Fθ(·) : a camera trace erasing function with parameters θ;

Input: E(·) : a fixed image embedding;

Input: N(·) : L2 normalization operator;

Input: shiftk(·) : a shift operator with step k;

Input: D(·) : the euclidean distance;

Input: M : a margin for the euclidean distance.

Output: Embedded similarity loss of {Ig}Gg=1

1 Initialize feat as en empty vector # vector to store the embedded content

signals

2 for g ∈ {1, . . . , G} do

3 sig← Fθ(Ig) # extract the content signal from Ig

4 featg ← E(sig) # embed the content signal using the embedding E(·)
5 featg ← N(featg) # normalize the resulting features

6 feat← [feat, featg] # append the result to feat

7 Initialize LES to zero

8 for k ∈ {1, . . . , G− 1} do

9 dist← max(0, D(feat, shiftk(feat))−M) # distance between features

up to a margin

10 LES ← LES + mean(dist)

11 LES ← LES/(G− 1)

12 return LES

143

Chapter 9. A study of CamTE: a Camera Trace Erasing Network

Algorithm 15: Computation of the cross-identity loss

Input: {Ig}Gg=1 : a group of G images with different camera traces;

Input: {ℓg}Gg=1 : labels corresponding to {Ig}Gg=1;

Input: Fθ(·) : a camera trace erasing function with parameters θ;

Input: C(·) : an image origin classifier;

Input: shiftk(·) : a shift operator with step k;

Input: LCE : operator to compute the cross-entropy loss.

Output: Cross-identity loss of {Ig}Gg=1

1 Initialize sig as en empty vector # vector to store the extracted content

signals

2 Initialize trs as en empty vector # vector to store the extracted camera

traces

3 for g ∈ {1, . . . , G} do

4 sigg ← Fθ(Ig) # extract the content signal from Ig

5 sig← [sig, sigg] # append the result to sig

6 trsg ← Ig − Fθ(Ig) # extract the camera traces from Ig

7 trs← [trs, trsg] # append the result to trs

8 Initialize LCI to zero

9 for k ∈ {1, . . . , G− 1} do

10 pred← C(sig) + shiftk(trs) # obtain feedback from C on synthetic

images (Equation 9.4)

11 loss← LCE(pred, shiftk({ℓg}Gg=1)) # cross entropy loss of pred with

shifted labels

12 LCI ← LCI + mean(loss)

13 LCI ← LCI/(G− 1)

14 return LCI

9.3.4 Training settings

Training is performed in an extended version of the Kaggle Camera Model Identification (KCMI)
dataset. It contains 2,750 images coming from 10 different camera models: Sony NEX-7,
Motorola Moto X, Motorola Nexus 6, Motorola DROID MAXX, LG Nexus 5x, Apple iPhone 6,
Apple iPhone 4s, HTC One M7, Samsung Galaxy S4 and Samsung Galaxy Note 3. The authors
first separate 550 images from this dataset, that are then used for evaluation. Therefore, only
2,200 from the KCMI dataset are left for training and validation. To supplement the training
dataset, the authors downloaded from Flickr 2,800 extra images coming from the same 10
camera models. We shall call this dataset KCMI+. Note that, in KCMI+, each camera model
has 500 representative images.

The image origin classifier C(·) used to compute LCI as detailed in Algorithm 15 is a
ResNet trained on KCMI+. The weights in this ResNet are initialized using an ImageNet
pretrained model [35]. Once the image origin classifier is trained, the stacked convolutions in
this network are used as the embedding function E(·) for the calculation of LES, as specified
in Algorithm 14.

144

9.3. Method

The camera trace erasing method is also trained on KCMI+ dataset. Images from KCMI+
are randomly copped into patches of size 336×336. The network is fed with groups of patches
of size G, which is set to 4. These groups are made up randomly but must satisfy that the four
patches come from different types of camera. The mini-batches used for gradient descent are
formed with 64 groups of patches random chosen. Adam is used as the optimization algorithm
for training with momentum factor set to 0.9. The ratio between the weighting factors in the
definition of the hybrid loss (Equation 9.6) λ1 : λ2 : λ3 is set to 3 : 1000 : 1 or 3 : 500 : 1. As
for the hyper-parameters, the margin M in the computation of LES in Algorithm 14 is set to
0.5 and the truncated fidelity threshold T in Equation 9.5 to 3.

9.3.5 The role of each loss

The authors conduct an ablation study to analyse the role of each of the components of the
hybrid loss. Three aspects are evaluated on the conducted ablation study: the effectiveness
of the camera trace erasing method (i.e. how well the camera trace is erased), how natural
the output image looks and the similarity between the original image and output one. To
evaluate the effectiveness of the method, the authors compute the accuracy on the image
origin classification task after erasing the camera traces. To do so, they use the two source
camera classifiers presented in [125], which obtained the second place in the Camera Model
Identification Challenge hosted by the IEEE Signal Processing Society2. To evaluate the quality
of the images once the camera trace is erased the authors use the NIQE [169] while, to evaluate
the similarity to the original image, they use the Manhattan (L1) distance. Here, instead of
reproducing the quantitative results obtained, we will present them qualitatively3.

• The role of the embedded similarity loss (LES)

Removing LES has no effect on the image quality nor the Manhattan distance to the
original image. However, the effectiveness is highly reduced when this loss is not taken
into account. Indeed, the accuracy of the camera origin classifiers is doubled, with
respect to the baseline, when removing LES. Minimizing the cross-identity loss requires
the removal of the camera traces up to some extent but it seems that partially removing
the camera traces is enough to minimize LCI. Therefore, this loss -together with the
truncated fidelity loss- are not enough to guarantee the effectiveness of the method.

• The role of the truncated fidelity loss (LTF)

Removing LTF has a positive effect on the effectiveness of the method. Indeed, the
accuracy of the classifiers is halved with respect to the baseline when this loss is not
taken into account. However, the resulting image quality is deteriorated: the NIQE
value grows as well as the Manhattan distance to the original image. This makes sense
since the motivation to introduce this loss is avoiding the over-manipulation of the image
content.

• The role of the cross-identity loss (LCI)

Removing LCI has a positive effect on the effectiveness of the method while keeping the
Manhattan distance to the original image similar to the baseline. However, the NIQE
value gets worse. The truncated fidelity loss together with the embedded similarity loss
are not enough to guarantee a visually natural result. Indeed, the authors show that
removing the cross-identity loss generates unpleasant visual artifacts.

2https://www.kaggle.com/c/sp-society-camera-model-identification
3Quantitative results can be found in Table 4 of the paper [29].

145

Chapter 9. A study of CamTE: a Camera Trace Erasing Network

9.4 Demo

The demo takes an input an image with, at most, 1000 × 1000 pixels. This restriction is
imposed for the method to run on real-time. However, interested users can download the
source code and run it on images of any size. The output of the demo is the camera-traces-
erased version of the image as well as the residual image. The Manhattan distance between
the input and the output is provided, as well as the NIQE of both, the input (for reference)
and the output. The displayed Manhattan distance is computed as an average rather than
as a sum to avoid any size bias and the implementation of NIQE is the one available in the
Pytorch toolbox for image quality assessment [28].

9.5 Experiments

In this section we conduct some experiments on the described method. Firstly, we conduct
an inspection on the quality of the results in some particular cases. Secondly, we analyse
its effectiveness indirectly by conducting a source camera model comparison [71, 162] on the
results of the method. Finally, we attempt a direct evaluation of the effectiveness focusing on
a particular camera trace: the JPEG artifacts [176].

9.5.1 Quality inspection

The goal of this experiment is to evaluate the quality of the output images once the cam-
era traces are erased. Figure 9.3 and Figure 9.4 present the results obtained on images
D15_I_nat_0070 and D19_I_nat_0122 from VISION dataset [193]. The first row of each
figure shows the input images, the second row the output images and the third row the resid-
ual images. Each row displays both, the full size image (left) as well as some zoom-in details
(right).

Firstly, we observe that there is a content leakage in the residuals. Indeed, edges and
textures present in the input image are leaked to the residual. This causes a loss of sharpness
in the output images. This loss of details in the output image can even lead to the complete
destruction of structures present in the original image, as the orange patch in Figure 9.4 shows.
On the other hand, the residual on flat patches seems not to present any fixed pattern, as shown
on the blue patch in Figure 9.3 and on the blue and green patches in Figure 9.4. However, it
is interesting noting that the variance in the blue and green patches in Figure 9.4 are different,
probably due to the fact that the original patches present different intensity levels.

The Manhattan distance to the original is approximately 1.5 in both, Figure 9.3 and
Figure 9.4. This means that, in average, the absolute difference between the input and output
images at a pixel level is 1.5. Regarding the NIQE, we observe a deterioration in its value with
respect to the original image in both examples. Though the actual NIQEs observed in the two
examples are quite different, in both cases this deterioration is expressed as an increase on the
NIQE value by a factor of 1.4.

9.5.2 Indirect effectiveness analysis

The goal of this experiment is to illustrate the effectiveness of the method by performing source
camera model comparisons between the input image and the output image. To do so, we use
the forensic similarity approach [71, 162]. The conducted experiments were performed taking
128 × 128 patches without overlap and performing 100 patch-to-patch comparisons. Results
are shown in Figure 9.5 for three different camera models from the VISION dataset [193].

146

9.5. Experiments

In
p
u
t
im

a
g
e

(a) Full size image (b) Details

O
u
tp
u
t
im

a
g
e

(c) Full size image (d) Details

R
es
id
u
a
l
im

a
g
e

(e) Full size image (f) Details

Figure 9.3: Results on image D15_I_nat_0070 from VISION dataset [193]. The Manhattan distance
between input and output is 1.5198, the NIQE of the input is 3.9870 and the NIQE of the output is
5.6754.

147

Chapter 9. A study of CamTE: a Camera Trace Erasing Network

In
p
u
t
im

a
g
e

(a) Full size image (b) Details

O
u
tp
u
t
im

a
g
e

(c) Full size image (d) Details

R
es
id
u
a
l
im

a
g
e

(e) Full size image (f) Details

Figure 9.4: Results on image D19_I_nat_0122 from VISION dataset [193]. The Manhattan distance
between input and output is 1.5080, the NIQE of the input is 6.2907 and the NIQE of the outputis
8.9289.

148

9.6. Conclusion

The first column displays the original image, which is taken as the reference image and also
as image 1 in the comparison. The middle column displays the output image, taken as image
2. Finally, the third column shows the histogram of the forensic similarity scores obtained in
the 100 patch-to-patch comparisons.

We observe that in all cases the method is able to deteriorate the results of the source
camera comparison. The original image, when compared to itself, exhibits similarity scores
that concentrate around 1. This concentration is attenuated in all cases when the original
image is compared to the one having its camera traces erased. However, this new comparison
does not lead to similarity scores concentrating around 0 as we should expect for images having
different forensic traces. In all cases, though the similarity scores are lowered, they are still
mostly above 0.5.

9.5.3 Effectiveness analysis on JPEG traces

Direct evaluation of the effectiveness of the camera trace erasing method would require a
complete model for the in-camera processing process and the design of specific tools to extract
each of the traces related to it. Though modelling the complete pipeline can be difficult, there
are some specific traces that can be directly analyzed. This is the case of JPEG traces, for
which specific methods to detect JPEG artifacts with high confidence are available [176].
In this experiment, we will illustrate the effect of the camera traces erasing method on the
presence of JPEG grids.

To do so, we take as a departure point an uncompressed image and compress it at different
qualities: 99, 97, 95 and 90, using ImageMagick [101] convert with the quality flag indicat-
ing the corresponding quality factor. the resulting images then go through the camera erasing
method. Finally, we compare the grid detection on the original images to the detection on the
processed ones. The results of this experiment on image kodim07 from the Kodak Lossless
True Color Image Suite dataset [182] are depicted in Figure 9.6, where the second and fourth
column display the JPEG grid detection results.

We observe that for high quality JPEG compression (Q = 99), the method effectively
erases the JPEG traces. For the rest of the cases (Q = 97, Q = 95 and Q = 90), ZERO [176]
still detects the main grid even after erasing the camera traces. However, the confidence of
such detections is lowered as it can be seen from the log(NFA) values displayed. Even in
these failure cases, the traces are removed in most regions of the image, as it can be observed
from the votemaps. Indeed, the removal of the traces is not homogeneous along the image:
some textured zones seem to better preserve the JPEG artefacts.

9.6 Conclusion

In this section, we briefly described the CamTE camera trace erasing method and analyzed
its results in different cases. The proposed hybrid loss seems to be an adequate approach to
tackle both, the extraction of the camera traces and the preservation of the content signal.

However, though the method makes the camera traces less significant, their detection is still
possible in some cases such as strong JPEG-compression. Furthermore, though the resulting
image delivers good image quality metrics, the CamTE residuals present some content leakage,
mainly regarding edges and textures. Indeed, regarding the results presented in Section 9.5.1
and in Section 9.5.3, the method seems to work better on flat regions than in textured ones,
for both the quality of the output and the effectiveness of the trace erasing.

149

Chapter 9. A study of CamTE: a Camera Trace Erasing Network

Original image Output image Histograms of

(reference image and image 1) (image 2) forensic similarity scores

iP
h
on

e
6+

iP
h
on

e
6

G
al

ax
y

S
3

M
in

i
H

u
aw

ei
H

on
or

5c

Figure 9.5: Effectiveness of the camera trace erasing method to deceive the forensic similarity ap-
proach [71, 162]. The first column displays the original image, which is taken as the reference image
and also as image 1 in the comparison. The middle column displays the output image, taken as image
2. Finally, the third column shows the histogram of the forensic similarity scores obtained in the 100
patch-to-patch comparisons.

150

9.6. Conclusion

Original image Votemap Output image Votemap

U
n
co

m
p
re

ss
ed

No overall JPEG grid found No overall JPEG grid found

C
o
m

p
re

ss
ed

(Q
9
9
)

Grid found (log(NFA) = −483.956) No overall JPEG grid found

C
o
m

p
re

ss
ed

(Q
9
7
)

Grid found (log(NFA) = −7757.9) Grid found (log(NFA) = −0.465052)

C
o
m

p
re

ss
ed

(Q
9
5
)

Grid found (log(NFA) = −8381.53) Grid found (log(NFA) = −21.1083)

C
o
m

p
re

ss
ed

(Q
=

9
0
)

Grid found (log(NFA) = −8940.34) Grid found (log(NFA) = −86.6735)

Figure 9.6: Effectiveness of the camera trace erasing method to erase the JPEG traces, detected using
ZERO [176]. The first column displays the original image and the second column its corresponding
JPEG grid detection results. The third column displays the image after erasing its camera traces and
the fourth column its corresponding JPEG grid detection results.

151

Esta página ha sido intencionalmente dejada en blanco.

Chapter 10

Diffusion Models for Image
Counter-Forensics

In this chapter, we assess the capabilities of diffusion models to erase the traces left
by forgers and, therefore, deceive forensics methods. Such an approach has been
recently introduced for adversarial purification, achieving significant performance.
We show that diffusion purification methods are well suited for counter-forensics
tasks. Such approaches outperform already existing counter-forensics techniques
both in deceiving forensics methods, and in preserving the natural look of the
purified images.

This work is published as Diffusion models meet image counter-forensics in the
WACV conference [203].

10.1 Introduction

Image forgeries are present everywhere [64], from fake news on social media [187] to scientific
misconduct. Indeed, many image processing tools are available to create visually realistic
image alterations. Yet, these modifications leave traces on the image that are tampering cues.
Image forensics aims at detecting these alterations by finding local inconsistencies [64]. Image
counter-forensics emerged as the research field that challenges forensics methods and explores
their limitations [22].

Adversarial attacks share some common properties with image forgeries, in the sense that
both techniques introduce subtle modifications to the images that, though imperceptible to
the naked eye, disrupt the image’s traces. The goal of adversarial attacks is to deceive a
model into making incorrect predictions. Adversarial purification can be, therefore, linked to
counter-forensics since it aims at prepossessing the input data to remove these adversarial
perturbations. Generally, these purification methods are based on generative models [191].

In recent years, diffusion models have emerged as highly effective generative models [96,
197]. These models have showcased impressive capabilities in generating high-quality sam-
ples, outperforming traditional Generative Adversarial Networks (GANs) in the realm of image
generation. The advancements in diffusion models have led to significant improvements in
the fidelity and realism of synthesized images, highlighting their potential as state-of-the-art
models in the field.

In this chapter we evaluate, for the first time, the efficiency of diffusion purification meth-
ods, currently used for adversarial purification [175, 212], as counter-forensics methods. The
rationale behind the use of diffusion models for adversarial purification is that these models

Chapter 10. Diffusion Models for Image Counter-Forensics

Result

Diffusion
process

Reverse
generative

process

Forged image Purified forged image

Diffusion
purification

Result

Forgery detection Forgery detection

Figure 10.1: Illustration of the use of diffusion models as a counter-forensic technique. A forged
image from FAU dataset [37], correctly detected by ZERO [176], produces no detection after diffusion
purification.

learn the distribution of clean data. Hence, by diffusing an adversarial example and then ap-
plying the reverse generative process, the diffusion model gradually removes the adversarial
perturbations and reconstructs the underlying clean sample.

The same rationale can be applied to hide the forensic traces caused by tampering. Indeed,
since diffusion models are trained on pristine images, diffusion purification methods applied to
forged images should recover purified images without any inconsistency in the camera traces.
Once such disruptions on the camera processing chain are erased, purified images should be
able to deceive any forgery detection method relying on them. Figure 10.1 shows an example
of the aforementioned approach: while ZERO [176] correctly detects the original forgery, once
diffusion purification is applied, the method is no longer able to detect it.

10.2 Related work

10.2.1 Image counter-forensics

Counter-forensics attacks can be classified into two categories: the first one corresponds those
that focus on a specific trace or method, while the second category corresponds to generic
attacks that aim at erasing all the forgery traces and should, therefore, be able to deceive any
forensic method.

Among methods that target specific forensic detectors or traces, Fan et al. [62] and Come-
sana et al. [43] propose attacks against histogram based methods, mainly used to detect JPEG
compression traces. Kirchner et al. [118] propose hiding resampling traces by removing the pe-
riodic variations in the residual signal in the spatial domain. Do et al. [57] design SIFT-specific
attacks that are able to deceive copy-move forgery detectors based on such local descriptors.

154

10.2. Related work

With the advent of learning-based forgery detectors, counter-forensic attacks specifically
designed for such methods have also been proposed. Marra et al. [159] design a counter-
forensic scheme on the feature space. Their goal is to restore the features of the pristine
image and, by doing so, to cross the decision boundary of the target detector. In the case of
perfect knowledge of the target method, this counter-forensic method delivers great results.
However, when the target detector is unknown, the results degrade tremendously. Other
methods countering specific learning-based detectors with optimum attack which relies on
gradient descent solutions have also been explored [32, 86].

With limited knowledge of forensic models, counter-forensics attackers focus more on
erasing the traces by generic tools [15]. The median filter is a technique commonly used
as an anti-forensics attack [222], in deep convolutional neural network versions [117] or even
variational formulations [194]. Though this method can be effective on several traces, it
leaves a distinctive streaking artifact that can be retrieved [119, 227]. To compensate for this,
techniques to remove such artifacts have been proposed [68, 194].

More recently, Chen et al. [29] proposed erasing camera traces trying not to damage the
signal content by adopting a Siamese-based neural network (see Chapter 9 for more details on
this method). Cozzolino et al. [50] and Wu et al. [218] use generative adversarial approaches.
Baracchi et al. [14] exploit a real camera firmware to perform the manipulation while reproduc-
ing the image statistics. This approach can be most efficient at creating real camera traces,
and can easily fool camera identification methods into thinking the image was taken with this
camera. However, this method is difficult to use, since it requires disassembling a camera to
hack its input field.

10.2.2 Diffusion-based adversarial purification

Nie et al. [175] were the first ones to propose the use of the forward and reverse processes
of a pre-trained diffusion model for image adversarial purification. Their method –DiffPure–
first diffuses adversarial examples with a small amount of noise. Then, the clean image is
recovered by means of a reverse generative process. A very similar idea was developed at the
same time by Blau et al. [21]. The theoretical fundamentals justifying the performance of such
diffusion-based adversarial purification methods are derived in [223].

Wang et al. [212] face the difficult trade-off between choosing a long diffusion time, which
guarantees the removal of the adversarial perturbation, and choosing a small one, which guar-
antees the similarity between the input image and the purified one. They propose to guide
the reverse process by the adversarial image. By doing so, the purified image is forced to stay
close to the input image.

Wu et al. [219] also guide the reverse process by the adversarial image. However, they
propose to sample the initial input from pure Gaussian noise and gradually denoise it. The
rationale of their approach is that the diffused image still carries corrupted structures and the
reverse process is likely to get stuck in those corrupted structures.

As the field evolves, several applications of these approaches have been developed. In [5]
the authors analyze the performance of DiffPure [175] to purify adversarial attacks on the
classification of metastatic tissue. In [199] the authors apply the same principle as in [175]
but using an extension of diffusion models to the 3D space [152]. Similarly, [220] also shares
the grounds of DiffPure [175] but using a waveform-based diffusion model [120] for adversarial
audio purification.

Diffusion purification methods have rapidly gained attention in the field. This interest has
even led to questioning the evaluation practices of such techniques [133].

155

Chapter 10. Diffusion Models for Image Counter-Forensics

10.3 Background

In this section, we provide a brief overview of Denoising Diffusion Models [96, 196, 197] that
will be used as a basis for the next section. Recently, denoising diffusion models, alternatively
referred to as score-based generative models, have emerged as a powerful approach amongst
generative methods. Denoising diffusion models consist of two processes: a forward diffusion
process that progressively adds noise to the input, and a reverse generative process that learns
to generate data by denoising.

Forward diffusion process. The diffusion process is a Markov process that gradually adds
noise to the clean input data. Let T be the number of steps of the diffusion process, x0 an
input image, and xt the forward image until step t (0 ≤ t ≤ T). The diffusion process from
clean data x0 to xT is defined as

q(x1:T |x0) =

T
∏

t=1

q(xt|xt−1), (10.1)

with

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (10.2)

where the variances β1, . . . , βT are predefined small values.
A notable characteristic of the forward process is that there is a closed-form to generate

xt at any given time step t directly from x0 [96]. Indeed, let ᾱt =
∏t

s=1(1−βs), then we can
directly sample xt as

xt =
√
ᾱt x0 +

√

(1− ᾱ) ϵ, where ϵ ∼ N (0, I). (10.3)

Reverse denoising process. The reverse generative process is a Markov process that gradually
eliminates the noise added in the forward process. The reverse process from xT to x0 is given
by

pθ(x0:T−1|xT) =

T
∏

t=1

p(xt−1|xt) (10.4)

with

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (10.5)

where the mean µθ(xt, t) is a trainable network and the variances σ2
0, . . . , σ

2
T can either be

fixed or learned using a neural network.

10.4 Proposed method

Our goal is to introduce subtle modifications to a forged image, in order to erase the traces
left by the tampering process while, at the same time, preserving the semantic content. The
approach we propose is based on diffusion purification methods [175, 212, 219]. It consists of
two steps: first, we add noise up to a certain time-step t = t∗ in the forward diffusion process,
and then we gradually remove it following the reverse diffusion process, up to t = 0. We refer
to this method as Diffusion Counter-Forensics, or shortly Diff-CF.

The intuition behind this idea is that the probability distributions of the forged and its
corresponding clean image are separated in t = 0, but by adding noise in the forward process,

156

10.5. Experiments

the boundaries between the distributions get fuzzier and they begin to overlap, more so the
higher the value of t∗. Then, starting from a noisy sample that can belong to either probability
distribution, the reverse diffusion process, which was trained on pristine images only, generates
a purified version of the image, with no forgery traces. See, for instance, Figure 2 in [165].

The value t∗ plays a fundamental role. Intuitively, t∗ has to be large enough so that the
noise added hides the forgery traces, but small enough so that we can preserve the image
semantics and structure. If we set the value of t∗ too high, the resulting image would deviate
too much from the original one. On the other hand, if the value of t∗ is too small, we might
not be able to erase the forgery traces correctly. This trade-off is studied more in-depth in
Section 10.6.1.

With the purpose of being able to use larger values of t∗ without deviating too much from
the input image, we also analyze the introduction of guidance in the reverse diffusion process.
We refer to this variant as Counter-Forensics Guided Diffusion, or Diff-CFG. More precisely,
we propose to guide the reverse process using the forged image itself, as in [212]. In this way,
we encourage the network to produce a clean image as close as possible to the forged one,
under the assumption that the forgery traces are subtle enough that they are not reconstructed.
In the normal reverse diffusion process, at each time step a new image is sampled following
Equation 10.5. Instead, for this variant we propose to sample from

pθ(xt−1|xt) = N (xt−1;µθ(xt, t)− stΣ∇xtD(xt, xin), σ2
t I), (10.6)

where Σ is the variance of xt, D(xt, xin) is some similarity measure between xt and the input
image (forged image) xin, and st is a scale factor that depends on the time step t. For high
values of t, the forgery traces are completely hidden by the added noise, so we can afford to
use large values for st, without the risk of guiding the process to reconstruct the forged traces.
On the other hand, for small values of t the forgery traces are more retained, and therefore we
should use smaller values for st. Similar to what is proposed in [212, 219], we define st to be
proportional to the added noise, as

st = s

√
1− ᾱt√
ᾱt

, (10.7)

where s is a hyper-parameter.

For all experiments, we used the following values: t∗ = 40, s = 106, and D = – SSIM [214]
as the guidance metric. A detailed discussion on the influence of the hyper-parameters is
presented in Section 10.6. In all cases, the images are divided into patches of 256× 256 pixels
before running the diffusion process. As for the diffusion model, we used a pre-trained class
unconditional checkpoint1.

10.5 Experiments

To assess the performance of the proposed approaches, we compared both the non-guided
(Diff-CF) and the guided (Diff-CFG) variants with the Camera Trace Erasing technique
(CamTE) [29] and with BM3D [51, 131]. While comparison with a plain denoiser is not
a common practice in the field, we believe that it should be included. Indeed, camera traces
are a sort of noise, in the sense they produce variations in the pixel’s values that are not related

1https://github.com/openai/guided-diffusion

157

https://github.com/openai/guided-diffusion

Chapter 10. Diffusion Models for Image Counter-Forensics

Original CamTE BM3D Diff-CF Diff-CFG

C
h
o
i

M
a
n
Tr
a
N
e
t

N
o
is
e
p
ri
n
t

S
p
li
ce
b
u
st
e
r

Tr
u
F
o
r

Figure 10.2: Results obtained by different forensics methods on the different versions of image
r7710a7fat from the Korus dataset [121, 122]. The best two scores are shown in bold and un-
derlined for each database. We observe that Choi [35], ManTraNet [221] and Noiseprint [48] feature
no detection when Diff-CF or Diff-CFG are applied. For Splicebuster [49] and TruFor [90], even if
counter-forensics techniques are not completely able to deceive them, the proposed approaches degrade
their detections the most.

to the captured scene. On the other hand, we excluded from the comparison the median filter-
ing, which is a popular technique in counter-forensics, since it was shown to be outperformed
by CamTE [29].

We ran our comparisons in four image forgery detection benchmark datasets: Korus [121,
122], FAU [37], COVERAGE [215] and DSO-1 [53]. Since most of the methods except for
Bammey [10] deliver poor detection results on the DSO dataset, we decided to exclude this
dataset from the forgery traces removal analysis and only keep it for image quality assessment.

The goal of counter-forensics methods is to erase all the traces left by the tampering process
while preserving the image structures and its semantic content. Therefore, we evaluate two
aspects of the counter-forensics techniques under analysis. First, how effectively they hide the
forgeries (Section 10.5.1) and second, the quality of the purified images (Section 10.5.2).

10.5.1 Forgery traces removal

The first point to evaluate is how well the proposed approaches remove the forgery traces.
To do so, we ran several state-of-the-art forgery detection methods on the original datasets
as well as in their counter-forensics versions (images purified using different techniques). To
evaluate their capability of deceiving the forensics methods, we look at the difference between
the detection performance before and after purification. The forensics methods that were
used are: ZERO [176], Noiseprint [48], Splicebuster [49], ManTraNet [221], Choi [11, 35],

158

10.5. Experiments

CatNet Choi Comprint MantraNet Noiseprint Shin SpliceBuster TruFor ZERO Noisesniffer Sim-Graphs Avgw

K
o

ru
s

O
ri

g
in

al 0.0790 0.1971 0.0534 0.1261 0.0988 0.0221 0.1405 0.3428 0.0050 0.1853 0.2452 -

0.0433 0.1261 0.0461 0.0982 0.0792 0.0568 0.1012 0.2575 0.0028 0.1378 0.1815 -
C

am
T

E 0.0468 0.0597 0.0356 0.0646 0.0420 0.0305 0.0817 0.1961 0.0000 0.1332 0.1192 -0.1024

0.0278 0.0400 0.0389 0.0644 0.0545 0.0578 0.0729 0.1489 0.0000 0.103 0.1113 -0.0479

B
M

3
D 0.0997 0.0352 0.0278 0.0652 0.0420 0.0155 0.0860 0.2579 0.0000 0.1034 0.1123 -0.0819

0.0646 0.0227 0.0346 0.0746 0.0514 0.0540 0.0744 0.1964 0.0000 0.0856 0.0876 -0.0358

D
if

f-
C

F 0.0418 0.0147 0.0024 0.0255 0.0190 0.0027 0.0350 0.1454 0.0045 0.0631 0.0484 -0.1451

0.0204 0.0246 0.0215 0.0416 0.0360 0.0487 0.0401 0.1131 0.0027 0.0712 0.0534 -0.0677

D
if

f-
C

F
G 0.0852 0.0044 0.0125 0.0442 0.0267 0.0040 0.0456 0.2064 0.0005 0.1060 0.0485 -0.1177

0.0527 0.0043 0.0281 0.0552 0.0446 0.0491 0.0488 0.1601 0.0011 0.0887 0.0518 -0.0536

F
A

U
O

ri
g
in

al 0.3228 0.3045 0.0393 0.0203 0.0358 0.1134 0.0074 0.4039 0.5855 -0.03416 0.3089 -

0.2329 0.2670 0.0305 0.0336 0.0482 0.1289 0.0251 0.3373 0.5003 0.0161 0.2591 -

C
am

T
E 0.0141 0.1426 0.0092 0.0154 0.0242 0.0826 0.0045 0.0553 0.0441 -0.0460 0.0632 -0.6120

0.0085 0.1173 0.0206 0.0427 0.0434 0.1046 0.0277 0.0572 0.0288 0.0073 0.0803 -0.4259

B
M

3
D 0.0757 0.0679 -0.0017 -0.0268 -0.0014 0.0411 0.0011 0.0802 0.0393 -0.0421 0.0103 -0.6145

0.0517 0.0559 0.0126 0.0377 (0.0041) 0.0331 0.0803 0.0243 0.0799 0.0266 0.0124 0.0371 -0.4298

D
if

f-
C

F 0.0070 0.0242 0.0001 0.0057 -0.0018 0.0128 -0.0050 0.0399 -0.0007 -0.0109 0.0000 -0.6922

0.0056 0.0458 0.0159 0.0355 (0.0019) 0.0199 0.0602 0.0123 0.0520 0.0015 0.0429 0.0263 -0.4687

D
if

f-
C

F
G 0.0241 0.0137 -0.0059 0.0128 0.0002 0.0202 0.0127 0.0470 -0.0043 -0.0271 0.0020 -0.6882

0.0184 0.0220 0.0143 0.0339 0.0287 0.0646 0.0246 0.0592 0.0008 0.0295 0.0208 -0.4688

C
O

V
E

R
A

G
E

O
ri

g
in

al 0.2747 0.0075 0.0230 0.2617 0.0062 0.0615 -0.0571 0.4442 0.0082 0.0659 -0.0107 -

0.2199 0.0109 0.0856 0.1856 0.0858 0.1106 0.0423 0.3752 0.0070 0.0750 0.0569 -

C
am

T
E 0.1480 0.0056 -0.0015 0.0790 -0.0230 0.0489 -0.0722 0.2614 0.0000 0.0145 -0.0341 -0.1646

0.1162 0.0079 0.0711 0.0719 0.0770 0.1043 0.0361 0.2212 0.0000 0.0543 0.064 -0.1048

B
M

3
D 0.2666 0.0051 -0.0281 0.0371 -0.0145 0.0515 -0.0771 0.3267 0.0000 -0.0351 -0.0726 -0.1141

0.2151 0.0036 0.0617 0.0841 0.0773 0.1055 0.0336 0.2863 0.0000 0.0459 0.0398 -0.0571

D
if

f-
C

F 0.1598 0.0011 -0.0065 0.0483 -0.0115 0.0514 -0.0602 0.2849 0.0000 0.0054 -0.0614 -0.1595

0.1278 0.0059 0.0687 0.0537 0.0790 0.1055 0.0383 0.2427 0.0000 0.0842 0.0489 -0.0974

D
if

f-
C

F
G 0.2003 -0.0004 -0.0124 0.0680 0.0024 0.0475 -0.0717 0.2738 0.0000 -0.0098 -0.0477 -0.1478

0.1607 0.0010 0.0630 0.0693 0.0858 0.1051 0.0334 0.2386 0.0000 0.0664 0.0457 -0.0890

Table 10.1: IoU and MCC results for Korus [121, 122], FAU [37] and COVERAGE [215] datasets and
all methods, except for Bammey [10]. For each dataset, we present in the first row the performance of
the forgery detectors over the original images. Then, in the following rows, we show the performance
of the same detectors over the considered counter-forensic versions of the images, and the difference to
the original performance (metric CF −metric orig). The lower this difference is, the better the counter-
forensic method erased the forgery traces. For the sake of readability, methods that are not able to
obtain a reasonable performance over the original dataset (MCC < 0.03) are grayed out. Bammey [10]
is excluded from this table, as it was not able to obtain an acceptable performance over any of the
considered datasets. The last column (Avgw), is the average of the differences metric CF −metric orig,
weighted by the performance in the original dataset.

Bammey [10], Shin [192], Comprint [158], CAT-Net [126, 127] and TruFor [90].

Choi et al. [35] aims to detect inconsistencies in the mosaic pattern with which the raw
image was captured. To do so, they use the fact that sampled pixels were more likely to take
extreme values. Also aiming at demosaicing inconsistencies, Shin et al. [192] use the fact that
sampled pixels have a higher variance to detect forged regions. Bammey et al. [10] combined
the translation invariance of convolutional neural networks with the periodicity of the mosaic
pattern to train a self-supervised network into implicitly detecting demosaicing artefacts.

Splicebuster [49] uses the co-occurrences of noise residuals as local features revealing
tampered image regions. Noiseprint [48] extends on Splicebuster and uses a Siamese network
trained on authentic images to extract the noise residual of an image, which is then analyzed
for inconsistencies. TruFor [90] also relies on a noise-sensitive fingerprint that is used with

159

Chapter 10. Diffusion Models for Image Counter-Forensics

the RGB image to detect deviations from the expected regular pattern that characterizes each
pristine image.

Zero [176] targets JPEG artifacts. This method counts the number of null DCT coefficients
in all blocks and deduces the grid origin. By doing this locally, this method can detect regions
having an inconsistent grid origin. Comprint [158] combines the use of a compression fingerprint
with the noise fingerprint in [48]. Comprint is an end-to-end fully convolutional neural network
including RGB and DCT streams, aiming at learning compression artifacts on RGB and DCT
domains jointly.

ManTraNet [221] is a bipartite end-to-end network, trained to detect image-level manipu-
lations with one part, while the second part is trained on synthetic forgery datasets to detect
and localize forgeries in the image.

To measure detections, we provide scores with the Intersection over Union (IoU) and the
Matthews Correlation Coefficient (MCC). In terms of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), the IoU is the ratio between the number of pixels
in the intersection of detected samples and of ground-truth-positive samples and the number
of pixels in the union of these sets. Its formula is thus similar to the F1 score:

IoU =
TP

TP + FN + FP
, (10.8)

while the MCC represents the correlation between the ground truth and detections:

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (10.9)

The scores were computed for each image and then averaged over each dataset. As most
surveyed methods do not provide a binary output but a heat map, to adapt the metrics to the
continuous setting, we used their weighted version. We regard the value of a heat map H at
each pixel u is as the probability of forgery of the pixel. Therefore, given the ground truth
mask M , we define the weighted TP, weighted FP, weighted TN and weighted FN as:

TPw =
∑

u

H(u) ·M(u), (10.10)

FPw =
∑

x

(1−H(u)) ·M(u), (10.11)

TNw =
∑

x

(1−H(u)) · (1−M(u)), (10.12)

FNw =
∑

x

H(u) · (1−M(u)). (10.13)

IoU and MCC results for all datasets and all methods are presented in Table 10.1. For
each dataset, we present in the first row the performance of the forgery detectors over the
original images. Then, in the following rows, we show the performance of the same detectors
over the considered counter-forensic versions of the images, and the difference to the original
performance (metric purified−metric orig). The lower this difference is, the better the counter-
forensic method erased the forgery traces.

The results in Table 10.1 show that the proposed counter-forensic methods based on
diffusion models outperform other counter-forensic techniques in most cases. Indeed, except
for the COVERAGE dataset [215] where our methods rank second and third (after CamTE),
in all the rest of the datasets Diff-CF and Diff-CFG achieve the best score reductions. When
comparing Diff-CF to Diff-CFG, we observe that the non-guided version delivers, in most cases,
the best results as a counter-forensic method. This can be explained by the fact that, when

160

10.5. Experiments

we do not condition the method, the reverse generative process is able to get closer to the
distribution of the clean training data.

Regarding the forensic methods individually, we observe that TruFor [90] outperforms the
rest of the methods in most cases. Furthermore, it is the only method that still has an accept-
able performance after applying counter-forensics attacks, except on the FAU dataset [37].
Indeed, in this case, once counter-forensic methods are applied, the method delivers highly
deteriorated results.

Figure 10.2 shows an example of the results obtained by different forensics methods on the
different versions of the same forged image. We observe that Choi delivers pretty much the
same result as in the original forgery when CamTE or BM3D are applied. However, it features
no detection when Diff-CF or Diff-CFG are used as counter-forensics techniques. Noiseprint
and ManTraNet provide better detections when CamTE or BM3D are applied, respectively.
However, no detection is made when using the proposed approaches. On the other hand,
none of the counter-forensics methods is able to completely deceive Splicebuster and Trufor.
However, we can observe that their results degrade the most when Diff-CF and Diff-CFG are
applied.

10.5.2 Image Quality Assessment

Another important point to evaluate the pertinence of counter-forensic methods is their re-
sulting image quality. We evaluate this quality in two senses. Firstly, we are interested in how
natural the purified images are. To evaluate this, we use the reference-free image quality as-
sessment techniques NIQE [169] and BRISQE [168]. Secondly, it is also important to measure
the similarity between the input image and the one obtained after the counter-forensic attack.
We, of course, want these two images to be perceptually similar. To evaluate this aspect we
use the full reference image quality assessment methods LPIPS [237], SSIM [214], and PSNR.
For all the metrics we use the implementations provided by the PyIQA library [28].

Results are presented in Table 10.2. For all reference-free metrics, the proposed diffusion-
based counter-forensics methods achieve the best performance. For the full-reference metrics,
we also obtained the best performance for LPIPS, but BM3D and CamTE get better perfor-
mance in terms of PSNR and SSIM.

Among the proposed methods, the guided variant always achieves better performance in
terms of PSNR and SSIM, as expected. Indeed, the guidance explicitly encourages the purified
image to be close to the input image. Still, the results are not so conclusive when evaluating
the LPIPS score, where the non-guided version shows a slightly better performance on the
Korus dataset.

It is important to mention that, even if Diff-CFG uses SSIM as the guidance distance, this
does not imply that the obtained scores on that metric should be perfect. In Equation 10.6, the
guidance can be interpreted as a sort of gradient descent towards the minimum of D(·, xin).
To achieve this minimum, the guidance scale st plays a crucial role. Using a non-optimum
(in terms of the optimization problem) guidance scale causes the final SSIM score not to be
optimal. But this “optimum” guidance scale could not be the best to effectively erase the
forgery traces. Section 10.6 studied this trade-off more in-depth.

Regarding the reference-free image quality assessment metrics, Diff-CF always achieves
better results than Diff-CFG. This can be explained by the fact that the unconstrained genera-
tive process gets closer to the distribution of the images with which it was trained. Therefore,
these images look more natural.

Figure 10.3 shows a qualitative example of the different purified images. We observe that
both Diff-CF and Diff-CFG are good at preserving the fine textures and edges of the image,

161

Chapter 10. Diffusion Models for Image Counter-Forensics

NIQE BRISQUE LPIPS PSNR SSIM

(▼) (▼) (▼) (▲) (▲)

K
or

u
s

Original 5.7271 13.7602 0.0000 80.0000 1.0000

CamTE 5.5442 34.5632 0.1684 38.2833 0.9433

BM3D 5.1004 38.0418 0.0835 43.1409 0.9802

Diff-CF 3.8693 23.1161 0.0733 32.9680 0.8769

Diff-CFG 4.1070 28.3290 0.0771 34.3391 0.9126

FA
U

Original 4.7392 20.5726 0.0000 80.0000 1.0000

CamTE 5.8360 40.1577 0.2098 37.8765 0.9460

BM3D 5.4875 42.7470 0.1045 41.2625 0.9797

Diff-CF 3.8896 19.8268 0.0985 33.0308 0.8792

Diff-CFG 4.2440 29.9920 0.0952 34.4725 0.9159

C
O

V
E

R
A

G
E

Original 4.5529 19.0256 0.0000 80.0000 1.0000

CamTE 5.4513 30.3558 0.0631 35.7974 0.9648

BM3D 5.8792 35.9560 0.0237 44.1417 0.9888

Diff-CF 4.3343 17.1298 0.0281 33.4959 0.9275

Diff-CFG 5.0359 27.8903 0.0276 34.6969 0.9487

D
S
O

-1

Original 3.9174 16.6183 0.0000 80.0000 1.0000

CamTE 5.2180 40.2867 0.2022 38.5459 0.9446

BM3D 5.1870 39.8485 0.1239 41.9057 0.9750

Diff-CFG 3.3907 9.2614 0.0950 34.1204 0.8862

Diff-CFG 3.6686 19.3601 0.0899 35.3473 0.9154

Table 10.2: Image quality assessment results of the evaluated counter-forensics techniques. The ▼
indicates that the lower the score the better while the ▲ indicates that the higher score the better. The
best two scores are shown in bold and underlined for each database. For the no-reference metrics NIQE
and BRISQE, the proposed diffusion-based counter-forensics methods achieve the best performance.

while CamTE and BM3D blur all these fine structures. For instance, the details highlighted in
the green patch show that the granularity in the cherubs’ cheeks is blurred out by BM3D and
CamTE, while it is preserved by the diffusion-based models. This is also visible in the cherubs’
chin, highlighted in the yellow patch. As for the edges, the sharpness of the nose (green patch)
and the lips (yellow patch) are also better preserved by the proposed approaches.

162

10.6. Influence of the parameters

Reference

Original CamTE BM3D Diff-CF Diff-CFG

Figure 10.3: Image quality comparison for all considered counter-forensics methods. We observe that
both Diff-CF and Diff-CFG are good at preserving the fine textures and edges of the image while
CamTE and BM3D blur all these fine structures.

10.6 Influence of the parameters

The goal of this chapter is to provide a first study on the use of diffusion models as counter-
forensics techniques. As such, it is important to evaluate how the results vary along with
the parameters. The non-guided approach Diff-CF has only one parameter: the time step
t∗, while Diff-CFG has two: the time step t∗ and the guidance scale s. In this experiment,
we focus mainly on Diff-CFG since we think that the interaction of both parameters is way
more complex than analyzing a single one. The experiments in this section are carried out on
Korus dataset [121, 122]. We evaluate both: the forgery traces removal capabilities and the
image quality of the purified images. For the first, we compute the performance drop for the
best performing methods over the original dataset: Choi, MantraNet, Noiseprint, Splicebuster,
and TruFor. For the second, we use all the image quality assessment metrics presented in
Section 10.5.2.

10.6.1 Diffusion time-step

The results of the impact of the time-step t∗ are presented on the left-hand side of Figure 10.4.
The analysis is pretty straightforward: the larger the value of t∗, the forgery traces removal
performance improves (gets lower). On the other hand, the image quality metrics improve the
smaller the value of t∗. There is a clear trade-off in the selection of this parameter, that is
simple to understand: with higher values of t∗, we add more noise to the original image in the
forward diffusion process, which makes it easier to hide the forgery traces. On the other hand,
starting the reverse process too far away from the original image leads to larger deviations
between the original image and the purified one.

In addition, it is interesting to note that all the full-reference metrics keep strongly de-
grading as we increase t∗, but the reference-free metrics seem to follow a more asymptotic
behavior. This evidence can be explained due to the fact that, even if the generated images
are more apart from the original one, the diffusion process, following the learned distribution,
is still generating natural images.

10.6.2 Guidance scale

The guidance scale ensures that the purified image remains close to the manipulated image,
thus not modifying its semantic content. However, it is crucial that the chosen guidance scale

163

Chapter 10. Diffusion Models for Image Counter-Forensics

Time Guidance scale

F
o

rg
er

y
tr

ac
es

re
m

o
v
al

Im
ag

e
q

u
al

it
y

Figure 10.4: Study of the impact of the time-step t∗ (left-hand side), and guidance scale s (right-hand
side). For each parameter, we evaluate its influence on the forgery traces removal task (top) and on
the purified image quality (bottom). For the forgery traces removal task, we plot the average of the
difference between the performance before and after purification, for the best performing methods the
original dataset, as a function of the parameters’ value. The colored background area represents the 95%
confidence interval. For the Image quality assessment, all five metrics presented in Section 10.5.2 are
plotted as a function of the parameters’ value, each one with a different axis, for a better visualization.
This figure is best viewed in color. An interactive version of these plots is included in the supplementary
material.

is not excessively large since it would cause the purified image to match the adulterated image,
potentially retaining the manipulation traces [219].

We conducted a series of experiments to study the scale influence, varying the scale value
(s in Equation 10.7), while keeping a fixed time-step t∗ = 10. As can be seen in the right-hand
side of Figure 10.4, the performance difference has small variations for about the first half of
the scale range studied, then shows a slight increase, and finally a great drop. The best point
we could choose would be with the lowest value, so at first one could be tempted to use the
highest value for the scale. But if we add the image quality assessment to the analysis, we
observe that for those scale values, the quality of the images is highly degraded. Therefore,
an intermediate point should be chosen. Note that the optimal point for the forgery traces
removal is not the optimal point in terms of image quality. As mentioned in Section 10.5.2,
this could explain why in our experiments, we do not obtain the best performance in terms of
SSIM, even though we are guiding the diffusion process with this metric.

10.7 Conclusions and Future Work

In this chapter, we presented a first study on the use of diffusion models for counter-forensics
tasks. We showed that such an approach can deliver better results than the already existing
techniques for both, forgery trace removal and image quality. Of course, there is a risk that the
shown approaches would be used by people wanting to create forgeries and make them look
authentic. The simplicity of this method increases this risk. However, it is also because of its
simplicity that the method should be made public: It is important to expose the shortcomings

164

10.7. Conclusions and Future Work

of current methods so that one can know how much trust can be put into an image, and so
that alternative ways of authentication are developed.

In this direction, future work includes analyzing the traces left by the diffusion purification
process [47] to check whether the use of such a counter-forensic approach can be detected or
not. Also, it would be interesting to analyze the robustness of the different methods to such
kind of counter-forensic methods.

165

Esta página ha sido intencionalmente dejada en blanco.

Conclusion

This short chapter concludes a thesis dedicated to the study of noise throughout the image
formation process and its applications to image forensics. Several contributions were made to
the state of the art in image forgery detection and source camera identification. In addition,
we also investigated counter-forensics techniques to assess the limitations of various forgery
detection methods.

Chapter 1 introduced the subject of image forensics. Here we explored the issues and chal-
lenges such subject represents for law enforcement and for journalists, and the tools currently
available for those. Furthermore, this chapter summarized the main contents of this thesis and
the contributions derived from it.

Chapter 2 reviewed the image processing pipeline and its main operations. We presented
the traces left by each of its steps which can be regarded as a sort of image fingerprint embedded
during the image formation process. Specifically, we showed how it is reflected in the noise
model. In particular, we showed that, after JPEG-compression, the noise present in an image
does not fit the additive white Gaussian noise hypothesis but rather it is intensity-dependent
and frequency-dependent.

Chapter 3 brings forward a simple, yet effective, method for forgery detection based on
noise analysis. Such method computes local noise curves and compares them to the global
noise curve estimated from the whole image. By doing so at multiple scales, the method is
well-suited to work on JPEG-compressed images. Assuming that forgeries represent a small
region of the images and do not modify the global noise curve, regions for which the local
noise curve differs from the global one are regarded as suspicious. This method is specially
effective on colorization attacks. Indeed, this kind of forgery introduces inconsistencies which
only appear when considering intensity-dependent noise models.

Chapter 4 introduces a more sophisticated method than the one in the preceding chapter.
This method estimates for each image a background stochastic model which makes it possible
to detect local noise anomalies. The algorithm includes an a contrario statistical validation step,
which associates a Number of False Alarms (NFA) with each tampering detection. Detections
are obtained by a threshold of the NFA, which renders the method fully automatic and endows
it with a false alarm control mechanism.

Chapter 5 explored the possibility of learning the camera traces instead of using hand-
crafted features. Here we introduced and analyzed the forensic similarity approach by Mayer
and Stamm [162] and its use for forgery detection. Such an approach is built on a graph-based
representation of images, where image patches are represented as the vertices of the graph, and
the edge weights are assigned in order to reflect the forensic similarity between the connected
patches. The forensic similarity score is learned through a neural network. In this setting, we
showed that forgery detection and localization can be cast as a cluster analysis problem on the
similarity graph.

Chapter 6 introduced a novel way to evaluate forgery detection methods. By locally
modifying the formation pipeline of an image, we were able to create “non-semantic forgeries”,
that contain changes in the underlying traces of the image without changing any of its semantic

Chapter 10. Diffusion Models for Image Counter-Forensics

content. This methodology enables trace-aware evaluation of forensics tools, as it can highlight
exactly to which traces each method is sensitive. Noisesniffer (from Chapter 4) beats the rest of
the noise-based models and achieves the state-of-the-art performance of learning approaches.

Chapter 7 introduced a new forensic task: source camera model comparison. The goal
is to determine if two images were taken with cameras from the same model. The method
introduced in this chapter takes over the forensic similarity approach already introduced in
Chapter 5 but applies it patch-wise to produce a forensic similarity histogram. Results on
this method show that the performance depends on the model, being the results way better
whenever the camera models were used during training.

Chapter 8 also focused on source camera forensics but, in this chapter, we introduced
PRNU-based methods for source camera identification. Here, we presented a new testing
approach to detect the presence of a certain PRNU pattern in a query image. Such an approach
relies on two hypothesis tests based on local correlations which do not require computing
empirical distributions. Furthermore, the p-value of the test serves as a statistically founded
confidence measure that can serve as certification.

Chapter 9 tackled the problem of hiding the camera traces in order to deceive forensics
methods relying on those. In this chapter we introduce and analyse the camera trace erasing
approach by Chen et al. [29]. The goal of such approach is to extract the forensic traces of
an image while preserving the image content. To do so, we presented and analysed the novel
hybrid loss proposed by the authors which is a combination of the embedded similarity loss,
the truncated fidelity loss and the cross-identity loss.

Chapter 10 analysed, for the first time in the literature, the use of diffusion models for
counter-forensics tasks. Here, we showed that by diffusing a forged image and then applying the
reverse generative process, the camera processing traces regenerated are consistent. Therefore,
methods searching for inconsistencies in such cues to detect forgeries become ineffective.
Furthermore, the purified images remain semantically close from the input one.

All in all, the main contributions of this thesis are:

• A rigorous theoretical study on the impact of JPEG-compression on prior image noise
with experimental validation (Chapter 2).

• The introduction of a new state-of-the-art noise-based forgery detection method, Nois-
esniffer from Chapter 4.

• The Trace methodology and database, introduced in Chapter 6, which provides a method
to estimate the non-semantic detection strengths and weaknesses of all forensic methods.

• A novel approach for source camera authentication that does not require the compu-
tation of empirical distributions and delivers, for each test, a p-value that serves as a
statistically founded confidence measure.

• A first study on the use of diffusion purification methods for counter-forensics (Chap-
ter 10).

These contributions open up several paths for further exploration. Though Noisesniffer
achieves a state-of-the-art performance it looses, by construction, forgeries having higher noise
levels than the background image. This choice was made to prevent the method of delivering
false alarms due to textures. Further work on how to differentiate texture from noise could be
beneficial for the method to extend its scope. Furthermore, a multi-scale approach as the one
used in Chapter 3 could also lead to a better performance of the method.

Further work on the Trace database would include a systematic analysis of more camera
traces and post-processing applied to the whole image, such as double compression traces. In

168

10.7. Conclusions and Future Work

addition to evaluation, the proposed methodology could also be used to train forgery detection
methods. Indeed, it could be used to re-train the forensic similarity approach in Chapter 5 and
in Chapter 7 using different artificially generated pipelines instead of camera models.

Regarding PRNU analysis, although the testing approach seems pretty complete, new
questions regarding the uniqueness of the PRNU have merged in the literature [102]. Indeed,
the PRNU extracted using the classical approaches reviewed in 8 contains traces from the
image processing and post-processing pipeline which are specially strong in modern devices.
Therefore, such devices trigger an increase in the false alarm rate. Still, we are confident that
isolating such non-unique artifacts of finding a region of the spectrum where their magnitude
is not so significant can solve this problem.

Counter-forensics seem to be a less explored subject in the literature. Here we presented a
first study on the use of diffusion models to cover-up forgeries. This analysis can be extended
in several ways. Firstly, by optimizing the parameters to achieve better results. Second, it
could also be tested on other forensics tasks rather than forgery detection. Finally, the residual
image (i.e. the difference between the input and the purified output) could be used as input
for forgery detection since it contains all the relevant forgery traces.

More generally, the last part of this thesis poses a major question on the robustness of
trace-based methods. It was shown in the last chapter that simple counter-forensic attacks
can significantly decrease the performance of most approaches. Thinking about alternative
ways of authenticating images should be in the mind of all the image forensics community.

These brief passages concludes this thesis. I would like to express my gratitude once more
to those who supported me throughout this journey, as well as the reader for your interest in
my work.

169

Esta página ha sido intencionalmente dejada en blanco.

Bibliography

[1] C. Aguerrebere, J. Delon, Y. Gousseau, and P. Musé. Study of the digital camera
acquisition process and statistical modeling of the sensor raw data. Technical report,
Aug. 2013. URL https://hal.archives-ouvertes.fr/hal-00733538.

[2] M. Al-Ani and F. Khelifi. On the spn estimation in image forensics: A systematic
empirical evaluation. IEEE Transactions on Information Forensics and Security, 12(5):
1067–1081, 2017. doi: 10.1109/TIFS.2016.2640938.

[3] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra. A SIFT-based forensic
method for copy-move attack detection and transformation recovery. IEEE Trans. on
Information Forensics and Security, 6(3):1099–1110, Sep. 2011. doi: 10.1109/TIFS.2
011.2129512. URL http://www.lambertoballan.net/downloads/2011_tifs_pre

print.pdf.

[4] I. Amerini, R. Becarelli, R. Caldelli, and A. Del Mastio. Splicing forgeries localization
through the use of first digit features. In 2014 IEEE International Workshop on Infor-
mation Forensics and Security (WIFS), pages 143–148. IEEE, 2014.

[5] L. L. Ankile, A. Midgley, and S. Weisshaar. Denoising diffusion probabilistic models as
a defense against adversarial attacks. ArXiv, abs/2301.06871:null, 2023. doi: 10.48550
/arXiv.2301.06871.

[6] F. J. Anscombe. The transformation of poisson, binomial and negative-binomial data.
Biometrika, 35(3/4):246–254, 1948. ISSN 00063444. URL http://www.jstor.org/

stable/2332343.

[7] F. Argenti, G. Torricelli, and L. Alparone. Mmse filtering of generalised signal-dependent
noise in spatial and shift-invariant wavelet domains. Signal Processing, 86(8):2056–
2066, 2006. ISSN 0165-1684. doi: https://doi.org/10.1016/j.sigpro.2005.10.014. URL
https://www.sciencedirect.com/science/article/pii/S0165168405003592.

[8] F. Attneave. Some informational aspects of visual perception. Psychological review, 61
3:183–93, 1954.

[9] Q. Bammey. Analysis and Experimentation on the ManTraNet Image Forgery Detector.
Image Processing On Line, 12:457–468, 2022. https://doi.org/10.5201/ipol.202

2.431.

[10] Q. Bammey, R. G. v. Gioi, and J.-M. Morel. An adaptive neural network for unsuper-
vised mosaic consistency analysis in image forensics. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

https://hal.archives-ouvertes.fr/hal-00733538
http://www.lambertoballan.net/downloads/2011_tifs_preprint.pdf
http://www.lambertoballan.net/downloads/2011_tifs_preprint.pdf
http://www.jstor.org/stable/2332343
http://www.jstor.org/stable/2332343
https://www.sciencedirect.com/science/article/pii/S0165168405003592
https://doi.org/10.5201/ipol.2022.431
https://doi.org/10.5201/ipol.2022.431

Bibliography

[11] Q. Bammey, R. Grompone von Gioi, and J.-M. Morel. Image Forgeries Detection through
Mosaic Analysis: the Intermediate Values Algorithm. Image Processing On Line, 11:
317–343, 2021. https://doi.org/10.5201/ipol.2021.355.

[12] Q. Bammey, M. Colom, T. Ehret, M. Gardella, R. Grompone, J.-M. Morel, T. Nikoukhah,
and D. Perraud. How to Reconstruct the History of a Digital Image, and of Its Alter-
ations, chapter 1, pages 1–40. John Wiley & Sons, Ltd, 2022. ISBN 9781119901808.
doi: https://doi.org/10.1002/9781119901808.ch1. URL https://onlinelibrary.wi

ley.com/doi/abs/10.1002/9781119901808.ch1.

[13] Q. Bammey, T. Nikoukhah, M. Gardella, R. G. von Gioi, M. Colom, and J.-M. Morel.
Non-semantic evaluation of image forensics tools: Methodology and database. In 2022
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages
2383–2392, 2022. doi: 10.1109/WACV51458.2022.00244.

[14] D. Baracchi, D. Shullani, M. Iuliani, D. Giani, and A. Piva. Camera obscura: Exploiting
in-camera processing for image counter forensics. Forensic Science International: Digital
Investigation, 38:301213, 2021. ISSN 2666-2817. doi: https://doi.org/10.1016/j.fsidi.
2021.301213.

[15] M. Barni, M. C. Stamm, and B. Tondi. Adversarial multimedia forensics: Overview and
challenges ahead. In 2018 26th European Signal Processing Conference (EUSIPCO),
pages 962–966. IEEE, 2018.

[16] P. Bas, J.-M. Chassery, and B. Macq. Geometrically invariant watermarking using feature
points. IEEE Transactions on Image Processing, 11(9):1014–1028, 2002. doi: 10.1109/
TIP.2002.801587.

[17] B. Bayar and M. C. Stamm. Constrained convolutional neural networks: A new ap-
proach towards general purpose image manipulation detection. IEEE Transactions on
Information Forensics and Security, 13(11):2691–2706, 2018.

[18] F. Bertini, R. Sharma, A. Iannì, and D. Montesi. Profile resolution across multilayer
networks through smartphone camera fingerprint. In Proceedings of the 19th Interna-
tional Database Engineering & Applications Symposium, IDEAS ’15, page 23–32, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334143.
doi: 10.1145/2790755.2790765. URL https://doi.org/10.1145/2790755.2790765.

[19] X. Bi, Y. Wei, B. Xiao, and W. Li. Rru-net: The ringed residual u-net for image
splicing forgery detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 30–39, 2019.

[20] T. Bianchi, A. De Rosa, and A. Piva. Improved dct coefficient analysis for forgery
localization in jpeg images. In 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2444–2447. IEEE, 2011.

[21] T. Blau, R. Ganz, B. Kawar, A. Bronstein, and M. Elad. Threat model-agnostic adver-
sarial defense using diffusion models, 2022.

[22] R. Böhme and M. Kirchner. Counter-forensics: Attacking image forensics. In Digital
image forensics, pages 327–366. Springer, 2013.

172

https://doi.org/10.5201/ipol.2021.355
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119901808.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119901808.ch1
https://doi.org/10.1145/2790755.2790765

Bibliography

[23] L. Bondi, S. Lameri, D. Güera, P. Bestagini, E. J. Delp, and S. Tubaro. Tampering
detection and localization through clustering of camera-based cnn features. In 2017
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 1855–1864, 2017. doi: 10.1109/CVPRW.2017.232.

[24] B. Brecht. The Life of Galileo. Methuen, 1968. Translated by D. I. Vesey.

[25] I. Castillo Camacho and K. Wang. A comprehensive review of deep-learning-based
methods for image forensics. Journal of Imaging, 7(4), 2021. ISSN 2313-433X. doi:
10.3390/jimaging7040069. URL https://www.mdpi.com/2313-433X/7/4/69.

[26] M. Castro, D. M. Ballesteros, and D. Renza. A dataset of 1050-tampered color and
grayscale images (cg-1050). Data in Brief, 28:104864, 2020. ISSN 2352-3409. doi:
https://doi.org/10.1016/j.dib.2019.104864. URL http://www.sciencedirect.com/

science/article/pii/S2352340919312193.

[27] S. Chakraborty. A cnn-based correlation predictor for prnu-based image manipulation
localization. Electronic Imaging, 2020:78–1, 01 2020. doi: 10.2352/ISSN.2470-1173.
2020.4.MWSF-078.

[28] C. Chen and J. Mo. IQA-PyTorch: Pytorch toolbox for image quality assessment.
[Online]. Available: https://github.com/chaofengc/IQA-PyTorch, 2022.

[29] C. Chen, Z. Xiong, X. Liu, and F. Wu. Camera trace erasing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

[30] C. Chen, Z. Xiong, X. Tian, Z.-J. Zha, and F. Wu. Real-world image denoising with
deep boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12):
3071–3087, 2020. doi: 10.1109/TPAMI.2019.2921548.

[31] M. Chen, J. Fridrich, M. Goljan, and J. Lukas. Determining image origin and integrity
using sensor noise. IEEE Transactions on Information Forensics and Security, 3(1):74–90,
2008. doi: 10.1109/TIFS.2007.916285.

[32] Z. Chen, B. Tondi, X. Li, R. Ni, Y. Zhao, and M. Barni. A gradient-based pixel-domain
attack against svm detection of global image manipulations. In 2017 IEEE workshop on
information forensics and security (WIFS), pages 1–6. IEEE, 2017.

[33] D. Chicco. Ten quick tips for machine learning in computational biology. BioData
mining, 10:35–35, Dec 2017. ISSN 1756-0381. doi: 10.1186/s13040-017-0155-3. URL
https://pubmed.ncbi.nlm.nih.gov/29234465.

[34] D. Chicco and G. Jurman. The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics,
21(1):6–6, Jan 2020. ISSN 1471-2164. doi: 10.1186/s12864-019-6413-7. URL
https://pubmed.ncbi.nlm.nih.gov/31898477.

[35] C.-H. Choi, J.-H. Choi, and H.-K. Lee. Cfa pattern identification of digital cameras
using intermediate value counting. In Proceedings of the Thirteenth ACM Multimedia
Workshop on Multimedia and Security, MM&Sec ’11, page 21–26, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450308069. doi:
10.1145/2037252.2037258. URL https://doi.org/10.1145/2037252.2037258.

173

https://www.mdpi.com/2313-433X/7/4/69
http://www.sciencedirect.com/science/article/pii/S2352340919312193
http://www.sciencedirect.com/science/article/pii/S2352340919312193
https://github.com/chaofengc/IQA-PyTorch
https://pubmed.ncbi.nlm.nih.gov/29234465
https://pubmed.ncbi.nlm.nih.gov/31898477
https://doi.org/10.1145/2037252.2037258

Bibliography

[36] K. S. Choi, E. Y. Lam, and K. K. Y. Wong. Automatic source camera identification
using the intrinsic lens radial distortion. Opt. Express, 14(24):11551–11565, Nov 2006.
doi: 10.1364/OE.14.011551. URL http://opg.optica.org/oe/abstract.cfm?URI

=oe-14-24-11551.

[37] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou. An evaluation of
popular copy-move forgery detection approaches. IEEE Transactions on Information
Forensics and Security, 7(6):1841–1854, 2012. doi: 10.1109/TIFS.2012.2218597.

[38] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large
networks. Phys. Rev. E, 70:066111, Dec 2004. doi: 10.1103/PhysRevE.70.066111.
URL https://link.aps.org/doi/10.1103/PhysRevE.70.066111.

[39] M. Colom. Noise-free test images dataset. URL http://mcolom.info/pages/no_noi

se_images/.

[40] M. Colom. Multiscale noise estimation and removal for digital images. PhD thesis,
Universitat de les Illes Balears, 7 2014.

[41] M. Colom and A. Buades. Analysis and Extension of the Ponomarenko et al. Method,
Estimating a Noise Curve from a Single Image. Image Processing On Line, 3:173–197,
2013. doi: https://doi.org/10.5201/ipol.2013.45.

[42] M. Colom, M. Lebrun, A. Buades, and J. Morel. Nonparametric multiscale blind estima-
tion of intensity-frequency-dependent noise. Image Processing, IEEE Transactions on,
24(10):3162–3175, Oct 2015. ISSN 1057-7149. doi: 10.1109/TIP.2015.2438537.

[43] P. Comesana and F. Perez-Gonzalez. The optimal attack to histogram-based forensic
detectors is simple (x). In 2014 IEEE International Workshop on Information Forensics
and Security (WIFS), pages 137–142. IEEE, 2014.

[44] A. Cooper. Improved photo response non-uniformity (prnu) based source camera iden-
tification. Forensic science international, 226 1-3:132–41, 2013.

[45] S. Corchs, F. Gasparini, and R. Schettini. Noisy images-JPEG compressed: subjective
and objective image quality evaluation. In S. Triantaphillidou and M.-C. Larabi, editors,
Image Quality and System Performance XI, volume 9016, pages 274 – 282. International
Society for Optics and Photonics, SPIE, 2014. URL https://doi.org/10.1117/12.2

039273.

[46] A. Cortiana, V. Conotter, G. Boato, and F. G. B. D. Natale. Performance comparison of
denoising filters for source camera identification. In Media Watermarking, Security, and
Forensics III, volume 7880, pages 60 – 65. International Society for Optics and Photonics,
SPIE, 2011. doi: 10.1117/12.872489. URL https://doi.org/10.1117/12.872489.

[47] R. Corvi, D. Cozzolino, G. Zingarini, G. Poggi, K. Nagano, and L. Verdoliva. On the
detection of synthetic images generated by diffusion models, 2022.

[48] D. Cozzolino and L. Verdoliva. Noiseprint: A cnn-based camera model fingerprint. IEEE
Transactions on Information Forensics and Security, 15:144–159, 2020. doi: 10.1109/
TIFS.2019.2916364.

174

http://opg.optica.org/oe/abstract.cfm?URI=oe-14-24-11551
http://opg.optica.org/oe/abstract.cfm?URI=oe-14-24-11551
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
http://mcolom.info/pages/no_noise_images/
http://mcolom.info/pages/no_noise_images/
https://doi.org/10.1117/12.2039273
https://doi.org/10.1117/12.2039273
https://doi.org/10.1117/12.872489

Bibliography

[49] D. Cozzolino, G. Poggi, and L. Verdoliva. Splicebuster: A new blind image splicing
detector. In 2015 IEEE International Workshop on Information Forensics and Security
(WIFS), pages 1–6, 2015. doi: 10.1109/WIFS.2015.7368565.

[50] D. Cozzolino, J. Thies, A. Rossler, M. Niessner, and L. Verdoliva. Spoc: Spoofing
camera fingerprints. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 990–1000, June 2021.

[51] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16
(8):2080–2095, 2007. doi: 10.1109/TIP.2007.901238.

[52] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato. Raise: A raw images
dataset for digital image forensics. In Proceedings of the 6th ACM Multimedia Systems
Conference, pages 219–224, 2015.

[53] T. J. de Carvalho, C. Riess, E. Angelopoulou, H. Pedrini, and A. de Rezende Rocha.
Exposing digital image forgeries by illumination color classification. IEEE Transactions
on Information Forensics and Security, 8(7):1182–1194, 2013. doi: 10.1109/TIFS.201
3.2265677.

[54] M. Delbracio, D. Kelly, M. S. Brown, and P. Milanfar. Mobile computational photogra-
phy: A tour, 2021.

[55] Z. Deng, A. Gijsenij, and J. Zhang. Source camera identification using auto-white
balance approximation. In 2011 International Conference on Computer Vision, pages
57–64, 2011. doi: 10.1109/ICCV.2011.6126225.

[56] A. Desolneux, L. Moisan, and J.-M. Morel. Gestalt Theory and Computer Vision, pages
71–101. Springer Netherlands, Dordrecht, 2004. ISBN 978-1-4020-2081-0. doi: 10.100
7/1-4020-2081-3_4. URL https://doi.org/10.1007/1-4020-2081-3_4.

[57] T.-T. Do, E. Kijak, T. Furon, and L. Amsaleg. Deluding image recognition in sift-based
cbir systems. In Proceedings of the 2nd ACM Workshop on Multimedia in forensics,
Security and Intelligence, pages 7–12, 2010.

[58] J. Dong, W. Wang, and T. Tan. Casia image tampering detection evaluation database.
In 2013 IEEE China Summit and International Conference on Signal and Information
Processing, pages 422–426, 2013. doi: 10.1109/ChinaSIP.2013.6625374.

[59] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet
shrinkage. JASA, 90(432):1200–1224, 1995. doi: 10.1080/01621459.1995.10476626.
URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.104766

26.

[60] T. Ehret and G. Facciolo. A Study of Two CNN Demosaicking Algorithms. Image
Processing On Line, 9:220–230, 2019. doi: 10.5201/ipol.2019.274.

[61] T. Ehret, A. Davy, M. Delbracio, and J.-M. Morel. How to Reduce Anomaly Detection
in Images to Anomaly Detection in Noise. Image Processing On Line, 9:391–412, 2019.
doi: https://doi.org/10.5201/ipol.2019.263.

175

https://doi.org/10.1007/1-4020-2081-3_4
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476626
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476626

Bibliography

[62] W. Fan, K. Wang, F. Cayre, and Z. Xiong. Jpeg anti-forensics using non-parametric dct
quantization noise estimation and natural image statistics. In Proceedings of the first
ACM workshop on Information hiding and multimedia security, pages 117–122, 2013.

[63] H. Farid. Digital doctoring: How to tell the real from the fake. Significance, 3:162 –
166, 11 2006. doi: 10.1111/j.1740-9713.2006.00197.x.

[64] H. Farid. Photo Forensics. The MIT Press, 2016.

[65] G. Fechner. Elemente der psychophysik, breitkopf und härtel. Leipzig: Breitkopf und
Härtel, 1860.

[66] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23
(2):298–305, 1973. URL http://eudml.org/doc/12723.

[67] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical poissonian-gaussian
noise modeling and fitting for single-image raw-data. IEEE transactions on image pro-
cessing, 17:1737–54, 11 2008. doi: 10.1109/TIP.2008.2001399.

[68] M. Fontani and M. Barni. Hiding traces of median filtering in digital images. In 2012
Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pages
1239–1243. IEEE, 2012.

[69] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
ISSN 0370-1573. doi: https://doi.org/10.1016/j.physrep.2009.11.002. URL https:

//www.sciencedirect.com/science/article/pii/S0370157309002841.

[70] M. Gardella and P. Musé. Image Forgery Detection via Forensic Similarity Graphs. Image
Processing On Line, 12:490–500, 2022. https://doi.org/10.5201/ipol.2022.432.

[71] M. Gardella and P. Musé. Forensic Similarity for Source Camera Model Comparison.
Image Processing On Line, 12:480–489, 2022. https://doi.org/10.5201/ipol.202

2.424.

[72] M. Gardella, P. Musé, J.-M. Morel, and M. Colom. Noisesniffer: a fully automatic
image forgery detector based on noise analysis. In 2021 IEEE International Workshop
on Biometrics and Forensics (IWBF), pages 1–6, 2021. doi: 10.1109/IWBF50991.20
21.9465095.

[73] M. Gardella, P. Musé, J.-M. Morel, and M. Colom. Forgery detection in digital images
by multi-scale noise estimation. Journal of Imaging, 7(7), 2021. ISSN 2313-433X. doi:
10.3390/jimaging7070119. URL https://www.mdpi.com/2313-433X/7/7/119.

[74] M. Gardella, T. Nikoukhah, Y. Li, and Q. Bammey. The impact of jpeg compression on
prior image noise. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2689–2693, 2022. doi: 10.1109/ICAS
SP43922.2022.9746060.

[75] M. Gardella, P. Musé, M. Colom, J.-M. Morel, and D. Perraud. Prnu-based source
camera statistical certification. In 2023 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6, 2023. doi: 10.1109/WIFS58808.2023.103
75045.

176

http://eudml.org/doc/12723
https://www.sciencedirect.com/science/article/pii/S0370157309002841
https://www.sciencedirect.com/science/article/pii/S0370157309002841
https://doi.org/10.5201/ipol.2022.432
https://doi.org/10.5201/ipol.2022.424
https://doi.org/10.5201/ipol.2022.424
https://www.mdpi.com/2313-433X/7/7/119

Bibliography

[76] P. Getreuer. Zhang-Wu Directional LMMSE Image Demosaicking. Image Processing
On Line, 1:117–126, 2011. doi: 10.5201/ipol.2011.g_zwld.

[77] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint demosaicking and de-
noising. ACM Trans. Graph., 35(6):191:1–191:12, Nov. 2016. ISSN 0730-0301. doi:
10.1145/2980179.2982399. URL http://doi.acm.org/10.1145/2980179.2982399.

[78] A. Ghosh, Z. Zhong, T. E Boult, and M. Singh. Spliceradar: A learned method for blind
image forensics. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2019.

[79] F. Gisolf, A. Malgoezar, T. Baar, and Z. Geradts. Improving source camera identification
using a simplified total variation based noise removal algorithm. Digital Investigation,
10:207–214, 10 2013. doi: 10.1016/j.diin.2013.08.002.

[80] O. Giudice, A. Paratore, M. Moltisanti, and S. Battiato. A classification engine for image
ballistics of social data. In Image Analysis and Processing - ICIAP 2017, pages 625–636.
Springer International Publishing, 2017. doi: 10.1007/978-3-319-68548-9_57. URL
https://doi.org/10.1007%2F978-3-319-68548-9_57.

[81] T. Gloe and R. Böhme. The ’dresden image database’ for benchmarking digital image
forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, page 1584–1590, New York, NY, USA, 2010. Association for Computing Machinery.
ISBN 9781605586397. doi: 10.1145/1774088.1774427. URL https://doi.org/10.1

145/1774088.1774427.

[82] T. Gloe, E. Franz, and A. Winkler. Forensics for flatbed scanners. Proceedings of SPIE
- The International Society for Optical Engineering, 6505, 02 2007. doi: 10.1117/12.7
04165.

[83] M. Goljan. Digital camera identification from images - estimating false acceptance
probability. Proc. 8th Int. Workshop Digital Watermarking, pages 454–468, 01 2008.

[84] M. Goljan, J. Fridrich, and T. Filler. Large scale test of sensor fingerprint camera
identification. In E. J. D. III, J. Dittmann, N. D. Memon, and P. W. Wong, editors,
Media Forensics and Security, volume 7254, page 72540I. International Society for Optics
and Photonics, SPIE, 2009. doi: 10.1117/12.805701. URL https://doi.org/10.111

7/12.805701.

[85] M. Goljan, M. Chen, P. Comesaña, and J. Fridrich. Effect of compression on sensor-
fingerprint based camera identification. Electronic Imaging, 2016:1–10, 02 2016. doi:
10.2352/ISSN.2470-1173.2016.8.MWSF-086.

[86] D. Gragnaniello, F. Marra, G. Poggi, and L. Verdoliva. Analysis of adversarial attacks
against cnn-based image forgery detectors. In 2018 26th European Signal Processing
Conference (EUSIPCO), pages 967–971. IEEE, 2018.

[87] R. Grompone von Gioi and J. Jakubowicz. On computational gestalt detection thresh-
olds. Journal of Physiology-Paris, 103(1):4–17, 2009. ISSN 0928-4257. doi: https:
//doi.org/10.1016/j.jphysparis.2009.05.002. URL https://www.sciencedirect.co

m/science/article/pii/S0928425709000229. Neuromathematics of Vision.

177

http://doi.acm.org/10.1145/2980179.2982399
https://doi.org/10.1007%2F978-3-319-68548-9_57
https://doi.org/10.1145/1774088.1774427
https://doi.org/10.1145/1774088.1774427
https://doi.org/10.1117/12.805701
https://doi.org/10.1117/12.805701
https://www.sciencedirect.com/science/article/pii/S0928425709000229
https://www.sciencedirect.com/science/article/pii/S0928425709000229

Bibliography

[88] R. Grompone von Gioi, C. Hessel, T. Dagobert, J.-M. Morel, and C. de Franchis. Ground
Visibility in Satellite Optical Time Series Based on A Contrario Local Image Matching.
Image Processing On Line, 11:212–233, 2021. https://doi.org/10.5201/ipol.202

1.342.

[89] H. Guan, M. Kozak, E. Robertson, Y. Lee, A. N. Yates, A. Delgado, D. Zhou,
T. Kheyrkhah, J. Smith, and J. Fiscus. Mfc datasets: Large-scale benchmark datasets
for media forensic challenge evaluation. In 2019 IEEE Winter Applications of Computer
Vision Workshops (WACVW), pages 63–72, 2019. doi: 10.1109/WACVW.2019.00018.

[90] F. Guillaro, D. Cozzolino, A. Sud, N. Dufour, and L. Verdoliva. Trufor: Leveraging
all-round clues for trustworthy image forgery detection and localization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 20606–20615, June 2023.

[91] A. Hadmi, W. Puech, B. A. E. Said, and A. A. Ouahman. Perceptual image hashing.
In M. D. Gupta, editor, Watermarking, chapter 2. IntechOpen, Rijeka, 2012. doi: 10.5
772/37435. URL https://doi.org/10.5772/37435.

[92] A. Hadmi, W. Puech, B. Ait Es Said, and A. Ait Ouahman. A robust and secure
perceptual hashing system based on a quantization step analysis. Signal Processing:
Image Communication, 28(8):929–948, 2013. ISSN 0923-5965. doi: https://doi.org/
10.1016/j.image.2012.11.009. URL https://www.sciencedirect.com/science/ar

ticle/pii/S0923596512002135. SPECIAL ISSUE ON BIOLOGICALLY INSPIRED
APPROACHES FOR VISUAL INFORMATION PROCESSING AND ANALYSIS.

[93] B. Hadwiger and C. Riess. The forchheim image database for camera identification in
the wild. In Pattern Recognition. ICPR International Workshops and Challenges: Virtual
Event, January 10–15, 2021, Proceedings, Part VI, page 500–515, Berlin, Heidelberg,
2021. Springer-Verlag. ISBN 978-3-030-68779-3.

[94] J. F. Hamilton Jr and J. E. Adams Jr. Adaptive color plan interpolation in single sensor
color electronic camera, May 13 1997. US Patent 5,629,734.

[95] B. K. T. Ho, V. Y. Tseng, M. Ma, and D. T. Chen. Mathematical model to quantify
JPEG block artifacts. In Y. Kim, editor, Medical Imaging 1993: Image Capture, For-
matting, and Display, volume 1897, pages 269 – 275. International Society for Optics
and Photonics, SPIE, 1993. URL https://doi.org/10.1117/12.146974.

[96] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[97] Y.-F. Hsu and S.-F. Chang. Detecting image splicing using geometry invariants and
camera characteristics consistency. In International Conference on Multimedia and Expo,
2006.

[98] Y.-F. Hsu and S.-F. Chang. Image splicing detection using camera response function
consistency and automatic segmentation. In International Conference on Multimedia
and Expo, 2007.

[99] M. Huh, A. Liu, A. Owens, and A. A. Efros. Fighting fake news: Image splice detection
via learned self-consistency. In ECCV, 2018.

178

https://doi.org/10.5201/ipol.2021.342
https://doi.org/10.5201/ipol.2021.342
https://doi.org/10.5772/37435
https://www.sciencedirect.com/science/article/pii/S0923596512002135
https://www.sciencedirect.com/science/article/pii/S0923596512002135
https://doi.org/10.1117/12.146974

Bibliography

[100] C. Iakovidou, M. Zampoglou, S. Papadopoulos, and Y. Kompatsiaris. Content-aware
detection of jpeg grid inconsistencies for intuitive image forensics. Journal of Visual
Communication and Image Representation, 54:155–170, 2018.

[101] ImageMagick. Imagemagick studio llc, 2023. URL https://imagemagick.org.

[102] M. Iuliani, M. Fontani, and A. Piva. A leak in prnu based source identifica-
tion—questioning fingerprint uniqueness. IEEE Access, 9:52455–52463, 2021. doi:
10.1109/ACCESS.2021.3070478.

[103] I. Jensen and A. J. Guttmann. Statistics of lattice animals (polyominoes) and polygons.
Journal of Physics A: Mathematical and General, 33(29):L257–L263, jul 2000. doi:
10.1088/0305-4470/33/29/102.

[104] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. doi: 10.1109/34.8
68688.

[105] Y. Jiang, H. Zeng, X. Kang, and L. Liu. The game of countering jpeg anti-forensics based
on the noise level estimation. In 2013 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference, pages 1–9, 2013. doi: 10.1109/APSIPA
.2013.6694156.

[106] T. Julliand, V. Nozick, and H. Talbot. Automatic image splicing detection based on
noise density analysis in raw images. In International Conference on Advanced Concepts
for Intelligent Vision Systems, pages 126–134. Springer, 2016.

[107] T. Julliand, V. Nozick, and H. Talbot. Image noise and digital image forensics. In
Y.-Q. Shi, H. J. Kim, F. Pérez-González, and I. Echizen, editors, Digital-Forensics and
Watermarking, pages 3–17, Cham, 2016. Springer International Publishing. ISBN 978-
3-319-31960-5.

[108] T. Julliand, V. Nozick, I. Echizen, and H. Talbot. Using the noise density down projection
to expose splicing in jpeg images. 2017.

[109] K. D. Kadam, S. Ahirrao, and K. Kotecha. Multiple image splicing dataset (misd): A
dataset for multiple splicing. Data, 6(10), 2021. ISSN 2306-5729. doi: 10.3390/data
6100102. URL https://www.mdpi.com/2306-5729/6/10/102.

[110] X. Kang, Y. Li, Z. Qu, and J. Huang. Enhancing source camera identification perfor-
mance with a camera reference phase sensor pattern noise. IEEE Trans. on Information
Forensics and Security, 7(2):393–402, 2012. doi: 10.1109/TIFS.2011.2168214.

[111] X. Kang, J. Chen, K. Lin, and P. Anjie. A context-adaptive spn predictor for trustworthy
source camera identification. EURASIP Journal on Image and Video Processing, 2014:
19, 12 2014. doi: 10.1186/1687-5281-2014-19.

[112] A. Kashyap, R. S. Parmar, M. Agrawal, and H. Gupta. An evaluation of digital image
forgery detection approaches, 2017.

[113] Y. Ke, Q. Zhang, W. Min, and S. Zhang. Detecting image forgery based on noise
estimation. International Journal of Multimedia and Ubiquitous Engineering, 9(1):325–
336, 2014.

179

https://imagemagick.org
https://www.mdpi.com/2306-5729/6/10/102

Bibliography

[114] E. Kee, M. K. Johnson, and H. Farid. Digital image authentication from jpeg headers.
IEEE Transactions on Information Forensics and Security, 6(3):1066–1075, 2011. doi:
10.1109/TIFS.2011.2128309.

[115] N. Khanna, A. K. Mikkilineni, and E. J. Delp. Scanner identification using feature-based
processing and analysis. 4(1), 2009. ISSN 1556-6013. doi: 10.1109/TIFS.2008.2009604.
URL https://doi.org/10.1109/TIFS.2008.2009604.

[116] A. Kharboutly, W. Puech, G. Subsol, and D. Hoa. Improving sensor noise analysis for ct-
scanner identification. In 2015 23rd European Signal Processing Conference (EUSIPCO),
pages 2411–2415, 2015. doi: 10.1109/EUSIPCO.2015.7362817.

[117] D. Kim, H.-U. Jang, S.-M. Mun, S. Choi, and H.-K. Lee. Median filtered image restora-
tion and anti-forensics using adversarial networks. IEEE Signal Processing Letters, 25
(2):278–282, 2017.

[118] M. Kirchner and R. Bohme. Hiding traces of resampling in digital images. IEEE Trans-
actions on Information Forensics and Security, 3(4):582–592, 2008.

[119] M. Kirchner and J. Fridrich. On detection of median filtering in digital images. In N. D.
Memon, J. Dittmann, A. M. Alattar, and E. J. D. III, editors, Media Forensics and
Security II, volume 7541, page 754110. International Society for Optics and Photonics,
SPIE, 2010.

[120] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. In International Conference on Learning Representations,
2021.

[121] P. Korus and J. Huang. Multi-scale analysis strategies in prnu-based tampering localiza-
tion. IEEE Transactions on Information Forensics and Security, PP:1–1, 12 2016. doi:
10.1109/TIFS.2016.2636089.

[122] P. Korus and J. Huang. Evaluation of random field models in multi-modal unsupervised
tampering localization. In Proc. of IEEE Int. Workshop on Inf. Forensics and Security,
2016.

[123] C. Kraetzer and J. Dittmann. Considerations on the benchmarking of media forensics.
In 2015 23rd European Signal Processing Conference (EUSIPCO), pages 61–65, 2015.
doi: 10.1109/EUSIPCO.2015.7362345.

[124] N. Krawetz and H. F. Solutions. A picture’s worth. Hacker Factor Solutions, 6(2):2,
2007.

[125] A. Kuzin, A. Fattakhov, I. Kibardin, V. I. Iglovikov, and R. Dautov. Camera model
identification using convolutional neural networks. 2018 IEEE International Conference
on Big Data (Big Data), pages 3107–3110, 2018.

[126] M.-J. Kwon, I.-J. Yu, S.-H. Nam, and H.-K. Lee. Cat-net: Compression artifact tracing
network for detection and localization of image splicing. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 375–384, 2021.

[127] M.-J. Kwon, S.-H. Nam, I.-J. Yu, H.-K. Lee, and C. Kim. Learning jpeg compression
artifacts for image manipulation detection and localization. International Journal of
Computer Vision, 130(8):1875–1895, Aug. 2022. doi: 10.1007/s11263-022-01617-5.

180

https://doi.org/10.1109/TIFS.2008.2009604

Bibliography

[128] W.-L. Lau, Z.-L. Li, and K.-K. Lam. Effects of jpeg compression on image classification.
IJRS, 24(7):1535–1544, 2003.

[129] A. Lawgaly, F. Khelifi, and A. Bouridane. Weighted averaging-based sensor pattern noise
estimation for source camera identification. In 2014 IEEE ICIP, pages 5357–5361, 2014.
doi: 10.1109/ICIP.2014.7026084.

[130] N. Le and F. Retraint. An improved algorithm for digital image authentication and
forgery localization using demosaicing artifacts. IEEE Access, 7:125038–125053, 2019.
doi: 10.1109/ACCESS.2019.2938467.

[131] M. Lebrun. An Analysis and Implementation of the BM3D Image Denoising Method.
Image Processing On Line, 2:175–213, 2012. https://doi.org/10.5201/ipol.201

2.l-bm3d.

[132] M. Lebrun, M. Colom, A. Buades, and J. Morel. Secrets of image denoising cuisine.
Acta Numerica, 21(1):475–576, 2012.

[133] M. Lee and D. Kim. Robust evaluation of diffusion-based adversarial purification. ArXiv,
abs/2303.09051:null, 2023. doi: 10.48550/arXiv.2303.09051.

[134] B. Li, T.-T. Ng, X. Li, S. Tan, and J. Huang. Revealing the trace of high-quality jpeg
compression through quantization noise analysis. IEEE Transactions on Information
Forensics and Security, 10(3):558–573, 2015. doi: 10.1109/TIFS.2015.2389148.

[135] B. Li, T.-T. Ng, X. Li, S. Tan, and J. Huang. Statistical model of jpeg noises and its
application in quantization step estimation. IEEE Transactions on Image Processing, 24
(5):1471–1484, 2015. doi: 10.1109/TIP.2015.2405477.

[136] C.-T. Li, A. Ho, I. Amerini, R. Caldelli, V. Cappellini, F. Picchioni, and A. Piva. Estimate
of PRNU Noise Based on Different Noise Models for Source Camera Identification, pages
9–20. 01 2012. ISBN 9781466617599. doi: 10.4018/978-1-4666-1758-2.ch002.

[137] H. Li and J. Huang. Localization of deep inpainting using high-pass fully convolutional
network. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[138] W. Li, Y. Yuan, and N. Yu. Passive detection of doctored jpeg image via block artifact
grid extraction. Signal Processing, 89(9):1821–1829, 2009.

[139] LibRaw. Libraw library. URL https://www.libraw.org.

[140] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ra-
manan, C. L. Zitnick, and P. Dollár. Microsoft coco: Common objects in context,
2015.

[141] X. Lin and C.-T. Li. Preprocessing reference sensor pattern noise via spectrum equal-
ization. IEEE Transactions on Information Forensics and Security, 11(1):126–140, 2016.
doi: 10.1109/TIFS.2015.2478748.

[142] Z. Lin, R. Wang, X. Tang, and H.-Y. Shum. Detecting doctored images using camera
response normality and consistency. Association for Computing Machinery, Inc., March
2005. URL https://www.microsoft.com/en-us/research/publication/detecti

ng-doctored-images-using-camera-response-normality-and-consistency/.

181

https://doi.org/10.5201/ipol.2012.l-bm3d
https://doi.org/10.5201/ipol.2012.l-bm3d
https://www.libraw.org
https://www.microsoft.com/en-us/research/publication/detecting-doctored-images-using-camera-response-normality-and-consistency/
https://www.microsoft.com/en-us/research/publication/detecting-doctored-images-using-camera-response-normality-and-consistency/

Bibliography

[143] Z. Lin, J. He, X. Tang, and C.-K. Tang. Fast, automatic and fine-grained tampered
jpeg image detection via dct coefficient analysis. Pattern Recognition, 42(11):2492–
2501, 2009.

[144] B. Liu and C.-M. Pun. Splicing forgery exposure in digital image by detecting noise
discrepancies. International Journal of Computer and Communication Engineering, 4
(1):33, 2015.

[145] B.-B. Liu, Y. Hu, and H.-K. Lee. Source camera identification from significant noise
residual regions. In 2010 IEEE International Conference on Image Processing, pages
1749–1752, 2010. doi: 10.1109/ICIP.2010.5652426.

[146] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise estimation from a single image.
In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Volume 1, CVPR ’06, pages 901–908, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 0-7695-2597-0. doi: 10.1109/CVPR.2006.207.
URL http://dx.doi.org/10.1109/CVPR.2006.207.

[147] C. Liu, R. Szeliski, S. B. Kang, C. Zitnick, and W. Freeman. Automatic estimation and
removal of noise from a single image. IEEE transactions on pattern analysis and machine
intelligence, 30:299–314, 03 2008. doi: 10.1109/TPAMI.2007.1176.

[148] Y. Liu, Q. Guan, and X. Zhao. Copy-move forgery detection based on convolutional
kernel network. Multimedia Tools and Applications, 77, 07 2018. doi: 10.1007/s11042
-017-5374-6.

[149] O. Losson and E. Dinet. From the Sensor to Color Images. In C. Fernandez-Maloigne,
F. Robert-Inacio, and L. Macaire, editors, Digital Color - Acquisition, Perception, Coding
and Rendering, Digital Image and Signal Processing series, pages 149–185. Wiley, Mar.
2012. URL https://hal.archives-ouvertes.fr/hal-00705825.

[150] F. Lugstein, S. Baier, G. Bachinger, and A. Uhl. Prnu-based deepfake detection. In
Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security,
IH&MMSec ’21, page 7–12, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450382953. doi: 10.1145/3437880.3460400. URL https:

//doi.org/10.1145/3437880.3460400.

[151] J. Lukás, J. Fridrich, and M. Goljan. Digital camera identification from sensor pattern
noise. Information Forensics and Security, IEEE Transactions on, 1:205 – 214, 07 2006.
doi: 10.1109/TIFS.2006.873602.

[152] S. Luo and W. Hu. Diffusion probabilistic models for 3d point cloud generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2837–2845, June 2021.

[153] U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
dec 2007. ISSN 0960-3174. doi: 10.1007/s11222-007-9033-z. URL https://doi.or

g/10.1007/s11222-007-9033-z.

[154] S. Lyu, X. Pan, and X. Zhang. Exposing region splicing forgeries with blind local noise
estimation. Int. J. Comput. Vision, 110(2):202–221, Nov. 2014. ISSN 0920-5691. doi:
10.1007/s11263-013-0688-y. URL https://doi.org/10.1007/s11263-013-0688-y.

182

http://dx.doi.org/10.1109/CVPR.2006.207
https://hal.archives-ouvertes.fr/hal-00705825
https://doi.org/10.1145/3437880.3460400
https://doi.org/10.1145/3437880.3460400
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11263-013-0688-y

Bibliography

[155] B. Mahdian and S. Saic. Using noise inconsistencies for blind image forensics. Image
and Vision Computing, 27:1497–1503, 09 2009. doi: 10.1016/j.imavis.2009.02.001.

[156] G. Mahfoudi, B. Tajini, F. Retraint, F. Morain-Nicolier, J.-L. Dugelay, and M. Pic.
Defacto: Image and face manipulation dataset. In 27th European Signal Processing
Conference (EUSIPCO 2019), A Coruña, Spain, Sept. 2019.

[157] S. Mandelli, N. Bonettini, P. Bestagini, and S. Tubaro. Training cnns in presence of
jpeg compression: Multimedia forensics vs computer vision. In 2020 IEEE International
Workshop on Information Forensics and Security (WIFS), pages 1–6. IEEE, 2020.

[158] H. Mareen, D. V. Bussche, F. Guillaro, D. Cozzolino, G. Van Wallendael, P. Lambert,
and L. Verdoliva. Comprint: Image forgery detection and localization using compression
fingerprints. arXiv preprint arXiv:2210.02227, 2022.

[159] F. Marra, G. Poggi, F. Roli, C. Sansone, and L. Verdoliva. Counter-forensics in machine
learning based forgery detection. In Media Watermarking, Security, and Forensics 2015,
volume 9409, page 94090L. International Society for Optics and Photonics, 2015.

[160] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi. A full-image full-resolution
end-to-end-trainable cnn framework for image forgery detection, 2019.

[161] B. Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451,
1975. ISSN 0005-2795. doi: https://doi.org/10.1016/0005-2795(75)90109-9. URL
https://www.sciencedirect.com/science/article/pii/0005279575901099.

[162] O. Mayer and M. C. Stamm. Forensic similarity for digital images. IEEE Transactions
on Information Forensics and Security, 2019. ISSN 1556-6013. doi: 10.1109/TIFS.201
9.2924552.

[163] O. Mayer and M. C. Stamm. Exposing fake images with forensic similarity graphs.
IEEE Journal of Selected Topics in Signal Processing, 14(5):1049–1064, 2020. doi:
10.1109/JSTSP.2020.3001516.

[164] O. Mayer, B. Bayar, and M. C. Stamm. Learning unified deep-features for multiple
forensic tasks. In Proceedings of the 6th ACM Workshop on Information Hiding and
Multimedia Security, pages 79–84. ACM, 2018.

[165] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. Sdedit:
Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

[166] M. Mihçak, I. Kozintsev, and K. Ramchandran. Spatially adaptive statistical modeling
of wavelet image coefficients and its application to denoising. 1999 IEEE ICASSP, 6:
3253–3256 vol.6, 1999.

[167] L. Min, F. Peng, and Y. Zhu. Identifying natural images and computer generated graphics
based on binary similarity measures of prnu. Multimedia Tools and Applications, 78, 01
2019. doi: 10.1007/s11042-017-5101-3.

[168] A. Mittal, A. K. Moorthy, and A. C. Bovik. No-reference image quality assessment in
the spatial domain. IEEE Transactions on Image Processing, 21(12):4695–4708, 2012.
doi: 10.1109/TIP.2012.2214050.

183

https://www.sciencedirect.com/science/article/pii/0005279575901099

Bibliography

[169] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a “completely blind” image
quality analyzer. IEEE Signal Processing Letters, 20(3):209–212, 2013. doi: 10.1109/
LSP.2012.2227726.

[170] N. Mondaini, R. Caldelli, A. Piva, M. Barni, and V. Cappellini. Detection of malevolent
changes in digital video for forensic applications. In E. J. D. III and P. W. Wong, editors,
Security, Steganography, and Watermarking of Multimedia Contents IX, volume 6505,
pages 300 – 311. International Society for Optics and Photonics, SPIE, 2007. doi:
10.1117/12.704924. URL https://doi.org/10.1117/12.704924.

[171] M. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical review. E, Statistical, nonlinear, and soft matter physics, 69:026113, 03 2004.
doi: 10.1103/PhysRevE.69.026113.

[172] M. E. J. Newman. Finding community structure in networks using the eigenvectors of
matrices. Phys. Rev. E, 74:036104, Sep 2006. doi: 10.1103/PhysRevE.74.036104.
URL https://link.aps.org/doi/10.1103/PhysRevE.74.036104.

[173] T.-T. Ng and S.-F. Chang. A data set of authentic and spliced image blocks. Technical
report, Columbia University, June 2004.

[174] A. Nicolaï, Q. Bammey, M. Gardella, T. Nikoukhah, O. Boulant, I. Bargiotas, N. Monzón,
C. Truong, B. Kerautret, P. Monasse, and M. Colom. The approach to reproducible
research of the Image Processing On Line (IPOL) journal. Informatio, 27(1), June 2022.
doi: 10.35643/Info.27.1.7. URL https://hal.science/hal-04122026.

[175] W. Nie, B. Guo, Y. Huang, C. Xiao, A. Vahdat, and A. Anandkumar. Diffusion models
for adversarial purification. In International Conference on Machine Learning (ICML),
2022.

[176] T. Nikoukhah, J. Anger, T. Ehret, M. Colom, J.-M. Morel, and R. Grompone von Gioi.
Jpeg grid detection based on the number of dct zeros and its application to automatic
and localized forgery detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 110–118, 2019.

[177] X. Pan, X. Zhang, and S. Lyu. Exposing image forgery with blind noise estimation. In
Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security,
MM&Sec ’11, page 15–20, New York, NY, USA, 2011. Association for Computing
Machinery. ISBN 9781450308069. doi: 10.1145/2037252.2037256. URL https:

//doi.org/10.1145/2037252.2037256.

[178] N. N. Ponomarenko, V. V. Lukin, S. K. Abramov, K. O. Egiazarian, and J. T. Astola.
Blind evaluation of additive noise variance in textured images by nonlinear processing
of block DCT coefficients. In E. R. Dougherty, J. T. Astola, and K. O. Egiazarian,
editors, Image Processing: Algorithms and Systems II, volume 5014, pages 178 – 189.
International Society for Optics and Photonics, SPIE, 2003. doi: https://doi.org/10.1
117/12.477717.

[179] N. N. Ponomarenko, V. V. Lukin, M. Zriakhov, A. Kaarna, and J. Astola. An automatic
approach to lossy compression of aviris images. 2007 IEEE International Geoscience and
Remote Sensing Symposium, pages 472–475, 2007.

184

https://doi.org/10.1117/12.704924
https://link.aps.org/doi/10.1103/PhysRevE.74.036104
https://hal.science/hal-04122026
https://doi.org/10.1145/2037252.2037256
https://doi.org/10.1145/2037252.2037256

Bibliography

[180] A. C. Popescu and H. Farid. Statistical tools for digital forensics. In Information Hiding,
2004.

[181] A. C. Popescu and H. Farid. Exposing digital forgeries in color filter array interpolated
images. IEEE Transactions on Signal Processing, 53(10):3948–3959, 2005. doi: 10.110
9/TSP.2005.855406.

[182] V. Prakash, K. Prasad, and T. Prasad. Color image demosaicing using sparse based
radial basis function network, 09 2016.

[183] W. Puech. Sécurité multimédia 1. Number v. 1 in Encyclopédie sciences, Image,
Compression, codage et protection des images et vidéos. ISTE editions, 2021. ISBN
9781789480269. URL https://books.google.es/books?id=2Ws3EAAAQBAJ.

[184] C.-M. Pun, B. Liu, and X. Yuan. Multi-scale noise estimation for image splicing forgery
detection. Journal of Visual Communication and Image Representation, 38, 03 2016.
doi: 10.1016/j.jvcir.2016.03.005.

[185] S. Pyatykh, J. Hesser, and L. Zheng. Image noise level estimation by principal component
analysis. IEEE transactions on image processing, 22(2):687–699, 2012.

[186] T. Qiao, F. Retraint, R. Cogranne, and T. H. Thai. Individual camera device iden-
tification from jpeg images. Signal Processing: Image Communication, 52:74–86,
2017. ISSN 0923-5965. doi: https://doi.org/10.1016/j.image.2016.12.011. URL
https://www.sciencedirect.com/science/article/pii/S0923596516301953.

[187] M. A. Qureshi and M. Deriche. A review on copy move image forgery detection tech-
niques. In 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices
(SSD14), pages 1–5. IEEE, 2014.

[188] Y. Rao, J. Ni, and H. Zhao. Deep learning local descriptor for image splicing detection
and localization. IEEE Access, 8:25611–25625, 2020.

[189] Y. Rodriguez-Ortega, D. M. Ballesteros, and D. Renza. Copy-move forgery detection
(cmfd) using deep learning for image and video forensics. Journal of Imaging, 7(3),
2021. ISSN 2313-433X. doi: 10.3390/jimaging7030059. URL https://www.mdpi.c

om/2313-433X/7/3/59.

[190] R. Salloum, Y. Ren, and C. J. Kuo. Image splicing localization using A multi-task fully
convolutional network (MFCN). CoRR, abs/1709.02016, 2017. URL http://arxiv.

org/abs/1709.02016.

[191] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=BkJ3ib

b0-.

[192] H. J. Shin, J. J. Jeon, and I. K. Eom. Color filter array pattern identification using
variance of color difference image. Journal of Electronic Imaging, 26(4):1 – 12, 2017. doi:
10.1117/1.JEI.26.4.043015. URL https://doi.org/10.1117/1.JEI.26.4.043015.

[193] D. Shullani, M. Fontani, M. Iuliani, O. Alshaya, and A. Piva. Vision: a video and image
dataset for source identification. EURASIP Journal on Information Security, 2017:15,
10 2017. doi: 10.1186/s13635-017-0067-2.

185

https://books.google.es/books?id=2Ws3EAAAQBAJ
https://www.sciencedirect.com/science/article/pii/S0923596516301953
https://www.mdpi.com/2313-433X/7/3/59
https://www.mdpi.com/2313-433X/7/3/59
http://arxiv.org/abs/1709.02016
http://arxiv.org/abs/1709.02016
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
https://doi.org/10.1117/1.JEI.26.4.043015

Bibliography

[194] K. Singh, A. Kansal, and G. Singh. An improved median filtering anti-forensics with
better image quality and forensic undetectability. Multidimensional Systems and Signal
Processing, 30(4):1951–1974, 2019.

[195] N. Singh, M. Jain, and S. Sharma. A survey of digital watermarking techniques. page 6,
08 2013.

[196] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In F. Bach and D. Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015.
PMLR. URL https://proceedings.mlr.press/v37/sohl-dickstein15.html.

[197] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-
based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

[198] S. V. Stehman. Selecting and interpreting measures of thematic classification accuracy.
Remote Sensing of Environment, 62(1):77–89, 1997. ISSN 0034-4257. doi: https:
//doi.org/10.1016/S0034-4257(97)00083-7. URL https://www.sciencedirect.co

m/science/article/pii/S0034425797000837.

[199] J. Sun, W. Nie, Z. Yu, Z. Mao, and C. Xiao. Pointdp: Diffusion-driven purification
against adversarial attacks on 3d point cloud recognition. ArXiv, abs/2208.09801:null,
2022. doi: 10.48550/arXiv.2208.09801.

[200] T. Taburet, P. Bas, J. Fridrich, and W. Sawaya. Computing dependencies between
dct coefficients for natural steganography in jpeg domain. In Proceedings of the ACM
Workshop on Information Hiding and Multimedia Security, IH&MMSec’19, page 57–62,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450368216.
doi: 10.1145/3335203.3335715. URL https://doi.org/10.1145/3335203.3335715.

[201] T. Taburet, P. Bas, W. Sawaya, and R. Cogranne. Jpeg steganography and synchro-
nization of dct coefficients for a given development pipeline. In Proceedings of the
2020 ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec
’20, page 139–149, New York, NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450370509. doi: 10.1145/3369412.3395074. URL https:

//doi.org/10.1145/3369412.3395074.

[202] M. Tailanian, P. Musé, and A. Pardo. A contrario multi-scale anomaly detection method
for industrial quality inspection, 2022. URL https://arxiv.org/abs/2205.11611.

[203] M. Tailanián, M. Gardella, A. Pardo, and P. Musé. Diffusion models meet image counter-
forensics. In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), pages 3925–3935, January 2024.

[204] D. Teyssou, J.-M. Leung, E. Apostolidis, K. Apostolidis, S. Papadopoulos, M. Zam-
poglou, O. Papadopoulou, and V. Mezaris. The invid plug-in: web video verification on
the browser. In Proceedings of the first international workshop on multimedia verifica-
tion, pages 23–30, 2017.

186

https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://www.sciencedirect.com/science/article/pii/S0034425797000837
https://www.sciencedirect.com/science/article/pii/S0034425797000837
https://doi.org/10.1145/3335203.3335715
https://doi.org/10.1145/3369412.3395074
https://doi.org/10.1145/3369412.3395074
https://arxiv.org/abs/2205.11611

Bibliography

[205] T. H. Thai, R. Cogranne, and F. Retraint. Camera model identification based on hy-
pothesis testing theory. In 2012 Proceedings of the 20th European Signal Processing
Conference (EUSIPCO), pages 1747–1751, 2012.

[206] T. H. Thai, R. Cogranne, and F. Retraint. Camera model identification based on the
heteroscedastic noise model. IEEE Transactions on Image Processing, 23(1):250–263,
2014. doi: 10.1109/TIP.2013.2290596.

[207] T. H. Thai, F. Retraint, and R. Cogranne. Camera model identification based on dct
coefficient statistics. Digit. Signal Process., 40(C):88–100, may 2015. ISSN 1051-2004.
doi: 10.1016/j.dsp.2015.01.002. URL https://doi.org/10.1016/j.dsp.2015.01.

002.

[208] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu. Attention-guided cnn for image
denoising. Neural Networks, 124:177–129, 2020.

[209] D. Tralic, I. Zupancic, S. Grgic, and M. Grgic. Comofod — new database for copy-move
forgery detection. In Proceedings ELMAR-2013, pages 49–54, 2013.

[210] J. Wagner. Noise analysis for image forensics. https://29a.ch/2015/08/21/noise-
analysis-for-image-forensics.

[211] G. K. Wallace. The jpeg still picture compression standard. IEEE transactions on
consumer electronics, 38(1):xviii–xxxiv, 1992.

[212] J. Wang, Z. Lyu, D. Lin, B. Dai, and H. Fu. Guided diffusion model for adversarial
purification. ArXiv, abs/2205.14969:null, 2022. doi: 10.48550/arXiv.2205.14969.

[213] X. Wang, S. Niu, and H. Wang. Image inpainting detection based on multi-task deep
learning network. IETE Technical Review, 38(1):149–157, 2021. doi: 10.1080/025646
02.2020.1782274. URL https://doi.org/10.1080/02564602.2020.1782274.

[214] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004. doi: 10.1109/TIP.2003.819861.

[215] B. Wen, Y. Zhu, R. Subramanian, T.-T. Ng, X. Shen, and S. Winkler. Coverage – a
novel database for copy-move forgery detection. In IEEE International Conference on
Image processing (ICIP), pages 161–165, 2016.

[216] B. Widrow and I. Kollár. Quantization Noise: Roundoff Error in Digital Computation,
Signal Processing, Control, and Communications. 2008. ISBN 9781139472845. URL
https://books.google.fr/books?id=8q-xcGeEJDwC.

[217] G. Wu, X. Kang, and K. Liu. A context adaptive predictor of sensor pattern noise for
camera source identification. In 2012 IEEE ICIP, pages 237–240, 2012. doi: 10.1109/
ICIP.2012.6466839.

[218] J. Wu, Z. Wang, H. Zeng, and X. Kang. Multiple-operation image anti-forensics with
wgan-gp framework. In 2019 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), pages 1303–1307. IEEE, 2019.

[219] Q. Wu, H. Ye, and Y. Gu. Guided diffusion model for adversarial purification from
random noise. ArXiv, abs/2206.10875:null, 2022. doi: 10.48550/arXiv.2206.10875.

187

https://doi.org/10.1016/j.dsp.2015.01.002
https://doi.org/10.1016/j.dsp.2015.01.002
https://doi.org/10.1080/02564602.2020.1782274
https://books.google.fr/books?id=8q-xcGeEJDwC

Bibliography

[220] S. Wu, J. Wang, W. Ping, W. Nie, and C. Xiao. Defending against adversarial audio via
diffusion model. ArXiv, abs/2303.01507:null, 2023. doi: 10.48550/arXiv.2303.01507.

[221] Y. Wu, W. Abd-Almageed, and P. Natarajan. Mantra-net: Manipulation tracing network
for detection and localization of image forgeries with anomalous features. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9543–
9552, 2019.

[222] Z.-H. Wu, M. C. Stamm, and K. R. Liu. Anti-forensics of median filtering. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 3043–3047.
IEEE, 2013.

[223] C. Xiao, Z. Chen, K. Jin, J. Wang, W. Nie, M. Liu, A. Anandkumar, B. Li, and
D. Song. Densepure: Understanding diffusion models towards adversarial robustness.
arXiv preprint arXiv:2211.00322, 2022.

[224] H. Yao, S. Wang, X. Zhang, C. Qin, and J. Wang. Detecting image splicing based
on noise level inconsistency. Multimedia Tools and Applications, 76(10):12457–12479,
2017.

[225] S. Ye, Q. Sun, and E.-C. Chang. Detecting digital image forgeries by measuring incon-
sistencies of blocking artifact. In 2007 IEEE International Conference on Multimedia
and Expo, pages 12–15. Ieee, 2007.

[226] G. Yu and G. Sapiro. DCT image denoising: a simple and effective image denoising
algorithm. Image Processing On Line, 1, 2011. doi: 10.5201/ipol.2011.ys-dct.

[227] H.-D. Yuan. Blind forensics of median filtering in digital images. IEEE Transactions on
Information Forensics and Security, 6:1335–1345, 12 2011.

[228] Z. Yue, Q. Zhao, L. Zhang, and D. Meng. Dual adversarial network: Toward real-world
noise removal and noise generation. In Proceedings of the European Conference on
Computer Vision (ECCV). August 2020.

[229] M. Zampoglou, S. Papadopoulos, Y. Kompatsiaris, R. Bouwmeester, and J. Spangen-
berg. Web and social media image forensics for news professionals. In Proceedings of
the International AAAI Conference on Web and Social Media, volume 10.1, 2016.

[230] M. Zampoglou, S. Papadopoulos, and Y. Kompatsiaris. Large-scale evaluation of splicing
localization algorithms for web images. Multimedia Tools and Applications, 76(4):4801–
4834, 2017.

[231] H. Zeng and X. Kang. Fast source camera identification using content adaptive guided
image filter. Journal of Forensic Sciences, 61(2):520–526, 2016. doi: https://doi.org/
10.1111/1556-4029.13017. URL https://onlinelibrary.wiley.com/doi/abs/10

.1111/1556-4029.13017.

[232] H. Zeng, Y. Zhan, X. Kang, and X. Lin. Image splicing localization using pca-based
noise level estimation. Multimedia Tools and Applications, 76(4):4783–4799, 2017.

[233] H. Zeng, M. Hosseini, K. Deng, A. Peng, and M. Goljan. A comparison study of cnn
denoisers on prnu extraction, 2021. preprint available at https://arxiv.org/abs/21
12.02858.

188

https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.13017
https://onlinelibrary.wiley.com/doi/abs/10.1111/1556-4029.13017
https://arxiv.org/abs/2112.02858
https://arxiv.org/abs/2112.02858

Bibliography

[234] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. Agrawal. Context
encoding for semantic segmentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[235] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Resid-
ual learning of deep cnn for image denoising. IEEE Transactions on Image Processing,
26(7):3142–3155, 2017. doi: 10.1109/TIP.2017.2662206.

[236] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and flexible solution for cnn-
based image denoising. IEEE Trans. on Image Processing, 27(9):4608–4622, Sep 2018.
ISSN 1941-0042. doi: 10.1109/tip.2018.2839891. URL http://dx.doi.org/10.1109

/TIP.2018.2839891.

[237] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effec-
tiveness of deep features as a perceptual metric. In CVPR, 2018.

[238] L. Zheng, Y. Zhang, and V. Thing. A survey on image tampering and its detection
in real-world photos. Journal of Visual Communication and Image Representation, 12
2018. doi: 10.1016/j.jvcir.2018.12.022.

[239] P. Zhou, X. Han, V. I. Morariu, and L. S. Davis. Two-stream neural networks for
tampered face detection. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 1831–1839, 2017. doi: 10.1109/CVPRW.20
17.229.

[240] P. Zhou, X. Han, V. I. Morariu, and L. S. Davis. Learning rich features for image
manipulation detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1053–1061, 2018.

[241] N. Zhu and Z. Li. Blind image splicing detection via noise level function. Sig-
nal Processing: Image Communication, 68:181–192, 2018. ISSN 0923-5965. doi:
https://doi.org/10.1016/j.image.2018.07.012. URL https://www.sciencedir

ect.com/science/article/pii/S0923596518303588.

[242] D. Zoran and Y. Weiss. Scale invariance and noise innature image. IEEE International
Conference on Computer Vision, Kyoto, Japan., 2009.

189

http://dx.doi.org/10.1109/TIP.2018.2839891
http://dx.doi.org/10.1109/TIP.2018.2839891
https://www.sciencedirect.com/science/article/pii/S0923596518303588
https://www.sciencedirect.com/science/article/pii/S0923596518303588

Esta página ha sido intencionalmente dejada en blanco.

List of Tables

2.1 Description of the main sources of noise during the acquisition process 32

3.1 Average JPEG-quality and range for each of the datasets. 48

3.2 MCC, IoU and F1 scores for our method with one scale (PB1), two scales (PB2)
and three scales (PB3). 51

3.3 State-of-the-art methods used for the comparison as well as their reference and
link to source code. 51

3.4 Results of the evaluated methods measured by the average weighted IoU, F1
and MCC scores for each dataset that maximized the score. 52

3.5 MCC, IoU and F1 and scores for our method with one scale (PB1), two scales
(PB2) and three scales (PB3) and considering different macroblock sizes: 512,
384 and 256. 57

4.1 Best parameter configurations obtained for the tested values. 73

4.2 Scores obtained on the endomasks noise level dataset from the Trace database [13]
when setting w to 3, 5 and 8, while keeping the rest of the parameters to their
optimal value. 74

4.3 Scores obtained on endomasks noise level dataset from the Trace database [13]
when setting B to 40000 and 20000, while keeping the rest of the parameters
to their optimal value. 74

4.4 Scores obtained on endomasks noise level dataset from the Trace database [13]
when setting n to 0.1, 0.05, and 0.01, while keeping the rest of the parameters
to their optimal value. 75

4.5 Scores obtained on the endomasks noise level dataset from the Trace database [13]
when setting m to 0.5, 0.4, 0.3, 0.2 and 0.1, while keeping the rest of the pa-
rameters to their optimal value. 76

4.6 Scores obtained on the endomasks noise level dataset from the Trace database [13]
when setting lβ to 100, 80, and 60, while keeping the rest of the parameters
to their optimal value. 77

4.7 State-of-the-art methods used for the comparison as well as their reference and
link to source code. 78

4.8 Results of different state-of-the-art forensics tools on the exomasks noise level
dataset from the Trace database [13]. 79

4.9 Scores obtained by the proposed method at different JPEG compression levels
of the exomasks noise level dataset from the Trace database [13]. The scores
degrade as the quality factor decreases. 84

List of Tables

4.10 Scores obtained by the proposed method at a scaling factor s = 0.5 with
and without pre-filtering on the exomasks noise level dataset from the Trace
database [13]. The performance of the method degrades when the image is
downscaled. This degradation is worsen when Gaussian pre-filtering is applied. . 85

5.1 Camera models used for training and evaluation. Camera models in blue come
from the Dresden dataset [81]. Subset 1 is used during the first training phase.
Subset 1 and 2 are used during the second training phase. Subset 3 is used for
evaluation. 90

6.1 Results of different state-of-the-art forensics tools on our six datasets, using
the Matthews Correlation Coefficient (MCC), detailed in Section 6.5.2. The
methods, on the left, are grouped by categories. As a baseline, a random
classifier is expected to yield a score of 0. The mean of the MCC scores over
each image of the dataset, as well as the standard deviation in parentheses,
are shown for the exogenous mask and endogenous mask datasets. Grayed-out
numbers represent results of methods on datasets that are irrelevant to said
methods. The best two scores are underlined for each database. 112

7.1 Camera models used for training and evaluation. Camera models in blue come
from the Dresden dataset [81]. Subset 1 is used during the first training phase.
Subset 1 and 2 are used during the second training phase. Subset 3 is used for
evaluation. 118

8.1 True positives (TP) and false negatives (FN) for each method on each social
media dataset when setting a threshold of 60 on the sPCE and its equivalent
p-value threshold of 10−6 on the p-values of the proposed testing approaches. . 131

8.2 True positives (TP) for each testing approach on each social media from the
Forchheim dataset [93] when varying the size of the blocks W ×W used to
compute the local correlations. 132

10.1 IoU and MCC results for Korus [121, 122], FAU [37] and COVERAGE [215]
datasets and all methods, except for Bammey [10]. For each dataset, we
present in the first row the performance of the forgery detectors over the original
images. Then, in the following rows, we show the performance of the same
detectors over the considered counter-forensic versions of the images, and the
difference to the original performance (metric CF − metric orig). The lower
this difference is, the better the counter-forensic method erased the forgery
traces. For the sake of readability, methods that are not able to obtain a
reasonable performance over the original dataset (MCC < 0.03) are grayed
out. Bammey [10] is excluded from this table, as it was not able to obtain an
acceptable performance over any of the considered datasets. The last column
(Avgw), is the average of the differences metric CF − metric orig, weighted by
the performance in the original dataset. 159

10.2 Image quality assessment results of the evaluated counter-forensics techniques.
The ▼ indicates that the lower the score the better while the ▲ indicates that
the higher score the better. The best two scores are shown in bold and under-
lined for each database. For the no-reference metrics NIQE and BRISQE, the
proposed diffusion-based counter-forensics methods achieve the best performance.162

192

List of Figures

1.1 An example showing successive modifications applied to an image. 2

1.2 Simplified processing pipeline of an image, from its acquisition by the camera
sensor to its storage as a JPEG-compressed image. The central column repre-
sents the image as it goes through each step. The left column shows the details
of the image obtained as it goes throughout the camera processing pipeline.
The right column plots the noise of the image as a function of intensity in
all three channels (red, green blue) [41]. Because each step leaves a specific
footprint on the noise pattern of the image, analyzing this noise enables us to
reverse-engineer the pipeline of an image. This, in turn, enables us to detect
regions of an image that were processed differently and are thus likely to be
forged. 6

1.3 Example of a forged image (left) and local noise curves (right). The forged area
comes from a different image that has its own pipeline. Noise models (right)
differ between the background image (pink) and the donor one (green). The
resulting tampered image presents local inconsistencies in the noise model. . . 7

1.4 Complete pipeline of the method: successive scales are extracted from the input
image. At each scale, one heatmap per color channel is computed and then
combined according to their geometric mean. Finally, the obtained heatmaps
at each scale are summed and normalized to produce the final output. 8

1.5 Distributions computation results in pristine (top) and forged (bottom) images
from the Korus dataset [121, 122]. In white, the 3 × 3 blocks having the
lowest variance in low and medium frequencies. For these blocks, the intensity
variations in these blocks are likely to be explained only by noise. In red, a
small percentile amongst this set having the lowest variance. In the absence of
any forgery, this subset should correspond to a random uniform selection over
the whole set of blocks previously selected. However, forgeries inducing noise
deficit cause deviations from one distribution to the other. 10

1.6 Forgery detection masks obtained for the example previously shown in Figure 1.5
by detecting deviations from the background model that are statistically signif-
icant [56]. 10

1.7 Examples of weight matrices and graph partitions on a forged image from the
MISD Dataset [109], having two spliced regions. The community detection
algorithm used for these examples is the modularity optimization, with patches
of size 128 × 128 and 50% of overlap. The edge weight threshold was set to
0.9. We observe that the community partition found by the algorithm (in red)
points to the forgery masks. 12

List of Figures

1.8 Different image formation pipelines are applied to the same RAW image to
obtain two images, that are combined to obtain a forged image. The authentic
and forged regions present different camera pipeline traces but are otherwise
perfectly coherent. The last row shows the result of two forensic tools on this
image: Noiseprint [48] and Mantranet [221]. 13

1.9 Results of the forensic similarity approach applied to source camera compari-
son. The first figure presents the reference image, the second and third the
test images and, finally, the fourth figure shows the histogram of the forensic
similarity scores obtained in the patch-to-patch comparisons. 15

1.10 Histograms of the log10(p−values) obtained with the Kolmogorov-Smirnov
test on the uniformity of the ranks. The histogram in the left corresponds to
the matching test and the one on the right to the mismatching test in the native
resolution images from Forhheim dataset [93]. The matching histograms are
truncated in -100 and, therefore, all the p-values below this bound contribute
to this bin. We observe that the proposed approaches deliver very significant
detections. Furthermore, the p-values obtained for the mismatching test are
mostly above 10−1. 16

1.11 Effectiveness of the camera trace erasing method to deceive the forensic simi-
larity approach (Chapter 7). The first figure displays the original image, which
is taken as the reference image and also as image 1 in the comparison. The
middle figure displays the output image, taken as image 2. Finally, the third
figure shows the histogram of the forensic similarity scores obtained in the 100
patch-to-patch comparisons. 18

1.12 Illustration of the use of diffusion models as a counter-forensic technique. A
forged image from FAU dataset [37], correctly detected by ZERO [176], pro-
duces no detection after diffusion purification. 19

1.13 Preview of the new version of the platform. The different forensic filters are
applied to an image from satirical photoshopper @GuillaumeTC on Twitter. . . 22

2.1 Simplified processing pipeline of an image, from its acquisition by the camera
sensor to its storage as a JPEG-compressed image. The right column represents
the image as it goes through each step. The left column shows the details of
the image obtained at each step. 27

2.2 The Bayer Matrix is by far the most used for sampling colors in cameras. . . . 28

2.3 JPEG compression pipeline. 29

2.4 An example of the impact of quantization on a DCT block. Each DCT coeffi-
cient is quantized by a value found in a quantization matrix. Rounding to the
nearest integer results in many of the high frequency coefficients being set to
zero. Each block is zig-zagged to be encoded as a vector with a sequence of
zeros. 30

2.5 Simplified processing pipeline of an image, from its acquisition by the camera
sensor to its storage as a JPEG-compressed image. The left column represents
the image as it goes through each step. The right column plots the noise of
the image as a function of intensity in all three channels (red, green blue) [41]. 31

194

https://twitter.com/GuillaumeTC

List of Figures

2.6 Gaussian noise is added to the dice image before compression. An estimation
of the remaining noise is obtained by computing the difference between the
noisy and noiseless images, both after compression. This enables us to estimate
specifically the effect of the compression on existing noise, while ignoring most
of the noise coming directly from the compression. As per our model, a low
noise level is diminished even more by the compression, whereas a higher noise
level is instead augmented. Compression is done with the Pillow library at a
quality factor of 85. 34

2.7 Ground truth residual computation from noiseless uncompressed images. 36

2.8 Noise residual standard deviation for each DCT coefficient, for quality factors
QF = 10, 50, 90 and for a fixed pre-compression noise σ = 10. The top row
corresponds to synthetic Gaussian noise (constructed by taking the noiseless
uncompressed image as a completely flat image) and the bottom row to an
image from the NFTI dataset with added noise [39]. 37

2.9 Ratio of the post-compression noise standard deviation and quality factor σ′
q

as function of the same ratio before compression, with σ ∈ [1, 20] and q = 8
(left), q = 64 (right). The model curve corresponds to Equation 2.7 and highly
coincides with the pure noise curve. 37

2.10 Example of a forged image (left) and local noise curves (right). The forged area
comes from a different image that has its own pipeline. Noise models (right)
differ between the background image (pink) and the donor one (green). The
resulting tampered image presents local inconsistencies in the noise model. . . 39

3.1 Estimated noise curves for the global image and for two macroblocks—one of
which is contained in the manipulated region and the other is coming from the
non-manipulated part of the image. 46

3.2 Complete pipeline of the method: successive scales are extracted from the input
image. At each scale, one heatmap per color channel is computed and then
combined according to their geometric mean. Finally, the obtained heatmaps
at each scale are summed and normalized to produce the final output. 47

3.3 Distribution of the forgery size in each of the datasets considered. The forgery
size is shown as the square root of the mask size, which represents the side of
its equivalent square. 49

3.4 Confusion matrix: rows represent the actual classes while columns represent
the prediction. The matrix has four possible values, corresponding to the four
possible combinations of predicted and actual classes. 49

3.5 Average weighted MCC (left), IoU (middle) and F1 (right) scores obtained by
each method as a function of the lower bound for the forgery size, in each of
the datasets considered. Forgery size is shown as the square root of the mask
size, which represents the side of its equivalent square. 53

3.6 Results obtained for examples where colorization (first column) and retouching
(third column) were performed, as well as for their corresponding original images
(second and fourth columns). On the successive rows, the results obtained by
each of the approaches for these images. 55

4.1 Results obtained on image r0f22c43ct from the Trace dataset [13] when set-
ting w to 3, 5, and 8, while keeping the rest of the parameters to their optimal
value. The distribution images show the blocks in L painted in white and, on
top, those in V painted in red. 74

195

List of Figures

4.2 Results obtained on image r04989a70t from the Trace dataset [13] when set-
ting B to 40000 and 20000, while keeping the rest of the parameters to their
optimal value. The distribution images show the blocks in L painted in white
and, on top, those in V painted in red. The detection featured when set-
ting B = 20000 achieves the scores MCC = 0.8546, F1 = 0.8577, and
IoU = 0.7509, while the one featured when setting B = 40000 presents the
following scores MCC = 0.8440, F1 = 0.8493, and IoU = 0.7381. 75

4.3 Results obtained on image r1be2a3d5t from the Trace dataset [13] when set-
ting n to 0.1, 0.05 and 0.01, while keeping the rest of the parameters to their
optimal value. The distribution images show the blocks in L painted in white
and, on top, those in V painted in red. When setting n = 0.1 the achieved
scores are MCC = 0.7064, F1 = 0.7154 and IoU = 0.5569, when setting
n = 0.05, the scores are MCC = 0.6564, F1 = 0.6675, IoU = 0.5009, fi-
nally, when setting n = 0.01, the scores are MCC = 0.5070, F1 = 0.5240,
IoU = 0.3550. 76

4.4 Results obtained on image r1b547547t from the Trace dataset [13] when set-
ting m to 0.3, 0.2, and 0.1, while keeping the rest of the parameters to their
optimal value. The distribution images show the blocks in L painted in white
and, on top, those in V painted in red. When setting m = 0.5 the achieved
scores are MCC = 0.7791, F1 = 0.8040 and IoU = 0.6722, when setting
m = 0.3, the scores are MCC = 0.7344, F1 = 0.7643 and IoU = 0.6185,
finally, when setting m = 0.1, the scores are MCC = 0.7732, F1 = 0.7987
and IoU = 0.6648. 77

4.5 Results obtained on image r09b86185t from the Trace dataset [13] when set-
ting lβ to 100, 80, and 60, while keeping the rest of the parameters to their
optimal value. The distribution images show the blocks in L painted in white
and, on top, those in V painted in red. In the three cases, the distributions
are the same since the parameter lβ does not affect this step. In terms of
scores, the detection featured when setting lβ = 100 are MCC = 0.6460,
F1 = 0.7116 and IoU = 0.5523, when setting lβ = 80, MCC = 0.6553,
F1 = 0.7107 and IoU = 0.5512 and when setting lβ = 60, MCC = 0.6473,
F1 = 0.6945, IoU = 0.5320. 78

4.6 Examples from the Trace dataset [13] were the proposed method outperforms
the state of the art. For visualization purposes, Splicebuster’s and Mahdian’s
outputs were inverted. 80

4.7 Examples from the Trace dataset [13] where the proposed method is out-
performed by other the state-of-the-art methods. For visualization purposes,
Splicebuster’s and Mahdian’s outputs were inverted. 81

4.8 Examples of missed detections from the Trace dataset [13]. Even if the forged
area has lower noise levels than the background, the method fails to detect
them. The main reasons for this to happen are related to the size of the
forgery (r1b1c1019t), the texture of the manipulated area (r05db7e7ft), or
even the saturation of the forged region (r0667a51ft). 82

4.9 Example of false detection from the Trace dataset [13]. The image is highly
textured. The method detects the flat zones in the image as forgeries. 83

196

List of Figures

4.10 Example of wrong attribution from the Trace dataset [13]. The false detection
in the rocks is due to the textures in the image, as already explained in Subsec-
tion 4.4.3. However, the ones in the sky correspond to the wrong attribution
phenomenon. Since the forgery covers most of the sky, the small pristine zones
-that have lower noise levels than the forgery- are regarded as local anomalies
and thus detected by the method. 83

4.11 Results obtained on image r0ac70243t from the Trace dataset [13] when com-
pressed at different quality factors. The results degrade as the quality factor
decreases. 85

4.12 Results obtained on image r0ac70243t from the Trace dataset [13] when down-
scaled at a scaling factor s = 0.5 with and without pre-filtering. The forgery is
detected when downscaling is applied without any pre-filtering. However, when
Gaussian blur is applied prior to downscaling, the method is unable to perform
any detection. 86

5.1 Feature extractor architecture. 89

5.2 System overview. The first module consists of a pair of feature extractor net-
works in siamese configuration with weight-sharing. It takes two image patches
and computes its corresponding feature vectors. These vectors are then com-
pared by means of the second module (the similarity network), which computes
a similarity score associated to the pair of image patches. 89

5.3 Examples of weight matrices and graph partitions on a forged image from the
MISD Dataset [109], having two spliced regions. The community detection
algorithm used for these examples is the modularity optimization, with patches
of size 128× 128 and 50% of overlap. The edge weight threshold used is equal
to 0.9. We observe that the community partition found by the algorithm points
to the forgery masks (in red). 94

5.4 Results obtained using the demo for some spliced images from the Columbia
dataset [97]. The overlap is set to 75% of the patch size in all cases. 96

5.5 Results obtained using the demo for some authentic images from the Columbia
dataset [97]. The overlap is set to 75% of the patch size in all cases. 97

6.1 Different image formation pipelines are applied to the same RAW image to
obtain two images, that are combined to obtain a forged image. The authentic
and forged regions present different camera pipeline traces, but are otherwise
perfectly coherent. The last row shows the result of two forensic tools on this
image. 101

6.2 Evolution of the noise curves when passing through the successive steps of a
(simplified) image processing pipeline. 104

6.3 Details of the same image with forgeries made using the two masks. On the left,
the endomask coincides with the image’s structure, here a tree. The forgery is
less conspicuous than on the right where the exomask is in the sky, where the
borders do not coincide with the images’ content. 105

6.4 For each image, we use an endomask (left) taken from the image’s segmenta-
tion, and an exomask (right) taken from another image and thus decorrelated
from the image’s contents. The last two images were paired during mask cre-
ation, thus the endomask of each becomes the exomask of the other. 107

197

List of Figures

6.5 Visualization of the results of several methods for one image on all the datasets.
Some methods, such as Noiseprint or Bammey, correctly detect the forgeries
in the relevant images, but tend to make noise-like false detections in the
images for which they cannot see the forgery. Automatically selecting the
relevant detections of an algorithm would make it easier to use without needing
interpretation. The image and mask can be seen in Figure 6.1. 110

7.1 Feature extractor architecture. 117

7.2 System overview. The first module consists of a pair of feature extractor net-
works in siamese configuration with weight-sharing. It takes two image patches
and computes its corresponding feature vectors. These vectors are then com-
pared by means of the second module (the similarity network), which computes
a similarity score associated to the pair of image patches. 117

7.3 Results of the forensic similarity approach applied to source camera comparison
when images under test come from camera models used during training. 120

7.4 Results of the forensic similarity approach applied to source camera comparison,
when comparing images coming from camera models used during training to
images from camera models unknown to the network. 121

7.5 Results of the forensic similarity approach applied to source camera comparison,
when comparing images coming from camera models that were not used for
training. 122

8.1 Histograms of the log10(p−values) obtained with the Kolmogorov-Smirnov
test on the uniformity of the ranks. The histogram in the left corresponds to
the matching test and the one on the right to the mismatching test in the native
resolution images from Forhheim dataset [93]. The matching histograms are
truncated in -100 and, therefore, all the p-values below this bound contribute
to this bin. We observe that the proposed approaches deliver very significant
detections. Furthermore, the p-values obtained for the mismatching test are
mostly above 10−1. 127

8.2 Top: histograms of ranks of an image containing the PRNU pattern (left) and
of an image which does not (right). In the matching case, the density is higher
for larger rank values. On the contrary, for the mismatching case, the ranks
follow an uniform distribution. Bottom: normalized histograms of correlations.
In green {ρ(BI

i , B
P
i) : i = 1, . . . ,K} and {ρ(BI

i , B
P
j) : j ̸= i} in red. The

left plot corresponds to an image containing the PRNU pattern and the right
one to an image that does not contain it. For the matching case, the mode of
the green histogram is bigger than the one of the red histogram. On the other
hand, in the non-matching case both histograms coincide. 129

8.3 Histograms of the log10(p−values) obtained in the matching and mismatching
tests in the Forchheim dataset (Native and WhatsApp) and in the VISION
(Native and Facebook Low) dataset [193], for each testing approach. The
matching histograms are truncated in -100 and, therefore, all the p-values below
this bound contribute to this bin. We observe that the proposed approaches
deliver very significant detections for all the image versions. Furthermore, the
p-values obtained for the mismatching test are far from the 10−6 threshold,
most of them are even above 10−1. 133

198

List of Figures

8.4 Empirical false alarm rates plotted against the theoretical ones for VISION
dataset in both, Native and Facebook Low resolutions. We observe that, though
empirical false alarm rates are bigger than the theoretical ones, this difference
seems to be constant regardless the magnitude of such probabilities. 135

9.1 Figure extracted from Figure 2 of the article [30]. Rectangular blocks denote
convolutions, being “C” the classical convolution and “D” its dilated variant.
The following “1” and “3” denote the kernel size. Circular blocks with the “C”
letter denote concatenation. Each layer in DDFN (except the last one) uses
ReLU as activation function. 140

9.2 Figure based on Figure 3 of the article [29]. The figure depicts a simplified
version of the configuration used for training, for the case of two input images
processed at the same time. First, the two images having different labels are fed
to the network. The content signal S is extracted from each of these images.
The signal contents go through a fixed embedding after which the embedding
similarity loss is computed. Together with the original image I, the extracted
signals are used to compute the truncated fidelity loss. Finally, the camera
traces of each of the input images are extracted and plugged in the other
one. These synthetic images go through a fixed classification network whose
outputs are used, together with the input labels, to compute the cross-entropy
loss, which is then added to the corss-identity loss. 141

9.3 Results on image D15_I_nat_0070 from VISION dataset [193]. The Manhat-
tan distance between input and output is 1.5198, the NIQE of the input is
3.9870 and the NIQE of the output is 5.6754. 147

9.4 Results on image D19_I_nat_0122 from VISION dataset [193]. The Manhat-
tan distance between input and output is 1.5080, the NIQE of the input is
6.2907 and the NIQE of the outputis 8.9289. 148

9.5 Effectiveness of the camera trace erasing method to deceive the forensic simi-
larity approach [71, 162]. The first column displays the original image, which
is taken as the reference image and also as image 1 in the comparison. The
middle column displays the output image, taken as image 2. Finally, the third
column shows the histogram of the forensic similarity scores obtained in the
100 patch-to-patch comparisons. 150

9.6 Effectiveness of the camera trace erasing method to erase the JPEG traces,
detected using ZERO [176]. The first column displays the original image and
the second column its corresponding JPEG grid detection results. The third
column displays the image after erasing its camera traces and the fourth column
its corresponding JPEG grid detection results. 151

10.1 Illustration of the use of diffusion models as a counter-forensic technique. A
forged image from FAU dataset [37], correctly detected by ZERO [176], pro-
duces no detection after diffusion purification. 154

10.2 Results obtained by different forensics methods on the different versions of
image r7710a7fat from the Korus dataset [121, 122]. The best two scores are
shown in bold and underlined for each database. We observe that Choi [35],
ManTraNet [221] and Noiseprint [48] feature no detection when Diff-CF or
Diff-CFG are applied. For Splicebuster [49] and TruFor [90], even if counter-
forensics techniques are not completely able to deceive them, the proposed
approaches degrade their detections the most. 158

199

List of Figures

10.3 Image quality comparison for all considered counter-forensics methods. We
observe that both Diff-CF and Diff-CFG are good at preserving the fine textures
and edges of the image while CamTE and BM3D blur all these fine structures. 163

10.4 Study of the impact of the time-step t∗ (left-hand side), and guidance scale s
(right-hand side). For each parameter, we evaluate its influence on the forgery
traces removal task (top) and on the purified image quality (bottom). For the
forgery traces removal task, we plot the average of the difference between the
performance before and after purification, for the best performing methods the
original dataset, as a function of the parameters’ value. The colored background
area represents the 95% confidence interval. For the Image quality assessment,
all five metrics presented in Section 10.5.2 are plotted as a function of the
parameters’ value, each one with a different axis, for a better visualization.
This figure is best viewed in color. An interactive version of these plots is
included in the supplementary material. 164

200

Esta es la última página.
Compilado el Monday 4th March, 2024.

http://iie.fing.edu.uy/

http://iie.fing.edu.uy/

	Resumen
	Introduction
	The social maze of fake images: challenges and strategies
	Criminal background
	Issues for law enforcement
	Current methods and tools of law enforcement
	Issues for journalists
	Current methods and tools for journalists

	The camera processing pipeline and its traces on noise (Chapter 2)
	Forgery Detection in Digital Images by Multi-Scale Noise Estimation (Chapter 3)
	Noisesniffer: Forgery Detection by Noise Spatial Statistics (Chapter 4)
	Exploring Image Forgery Detection via Forensic Similarity Graphs (Chapter 5)
	Non-Semantic Evaluation of Image Forensics Tools (Chapter 6)
	Analysis of the Forensic Similarity Approach for Source Camera Model Comparison (Chapter 7)
	Photo-Response Non-Uniformity (Chapter 8)
	A Study of CamTE: a Camera Trace Erasing Network (Chapter 9)
	Diffusion Models for Counter-Forensics (Chapter 10)
	Summary of Contributions
	Publications
	Reproducible research through IPOL demos
	Projects and transitions to society

	The camera processing pipeline and its traces on noise
	Introduction
	Describing the image processing chain
	Raw image acquisition
	Demosaicing
	Color Correction
	JPEG compression

	The avatars of noise throughout the camera processing chain
	The Impact of JPEG Compression on Prior Image Noise
	Modeling compressed noise
	JPEG Compression on Gaussian Noise
	Experiments
	Discussion

	Tracing the Camera Processing Pipeline for Forgery Detection

	I Forgery detection based on the alterations on noise
	Forgery Detection in Digital Images by Multi-Scale Noise Estimation
	Introduction
	Related Work
	The Proposed Method
	Experimental Results
	Relevance of the Multi-Scale Approach
	Comparison with State-of-the-Art Methods
	Influence of the Macroblock Size

	Conclusions and Limitations

	Noisesniffer: Forgery Detection by Noise Spatial Statistics
	Introduction
	Method
	Distributions computation
	Statistical validation
	Region growing algorithm

	Detailed implementation
	Experiments
	Impact of the parameters in the detection performance
	Comparison with the state of the art
	Limitations
	Robustness

	Conclusion

	Exploring Image Forgery Detection via Forensic Similarity Graphs
	Introduction
	Forensic similarity score
	Problem formulation
	Method

	Forensic similarity graph for forgery detection
	Demo
	Experiments
	Forged images
	Authentic images

	Conclusions

	Non-Semantic Evaluation of Image Forensics Tools
	Introduction
	Related Works
	Image formation pipeline
	The Proposed Methodology
	Experiments
	Evaluated methods
	Evaluation Metrics
	Results

	Discussion
	Conclusion

	II Source camera identification based on noise characteristics
	Analysis of the Forensic Similarity Approach for Source Camera Model Comparison
	Introduction
	Method
	Problem formulation
	Architecture
	Dataset
	Training procedure
	Demo

	Experiments
	Known camera models
	Known and unknown camera models
	Unknown camera models

	Conclusion

	Photo-response non-uniformity
	Introduction
	Related work
	PRNU estimation
	PRNU detection

	New source camera statistical certification
	Tests based on ranks
	Tests on the correlation distributions

	Experimental analysis
	Datasets.
	PRNU estimation.
	Matching and Mismatching tests.
	Performance assessment.
	Empirical check of the probability of false alarm.
	Influence of the block size.

	Conclusion

	III Counter-forensics
	A study of CamTE: a Camera Trace Erasing Network
	Introduction
	Problem formulation
	Method
	Architecture
	Proposed hybrid loss
	Implementation details
	Training settings
	The role of each loss

	Demo
	Experiments
	Quality inspection
	Indirect effectiveness analysis
	Effectiveness analysis on JPEG traces

	Conclusion

	Diffusion Models for Image Counter-Forensics
	Introduction
	Related work
	Image counter-forensics
	Diffusion-based adversarial purification

	Background
	Proposed method
	Experiments
	Forgery traces removal
	Image Quality Assessment

	Influence of the parameters
	Diffusion time-step
	Guidance scale

	Conclusions and Future Work

	Conclusion
	Referencias
	Índice de tablas
	Índice de figuras

